1
|
Yu B, Sopic M, Sluimer JC. Single-cell RNA sequencing (scRNA-seq) and its insights into cellular heterogeneity in atherosclerosis. Vascul Pharmacol 2025:107499. [PMID: 40345606 DOI: 10.1016/j.vph.2025.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) has transformed our understanding of cellular diversity in human biology, providing novel insights into disease mechanisms. In cardiovascular disease (CVD), scRNA-seq enables precise mapping of complex cell populations, uncovering unique cell types and states that influence disease progression and suggest new therapeutic targets. In atherosclerosis (AS), scRNA-seq has redefined plaque pathology by identifying distinct cell types, including endothelial cells (ECs), smooth muscle cells (SMCs), fibroblasts, macrophages, T cells, and B cells, each with specific roles in plaque stability, inflammation, and disease progression. In our review, we summarized these major cellular populations and their cellular heterogeneity in non-diseased and atherosclerotic aorta, as identified by scRNA-seq in mice and human tissues. We discussed conserved and species-specific subpopulations, their defining markers, and their functional implications in plaque progression. In addition, we integrated findings from scRNA-seq with experimental studies to highlight key molecular targets with therapeutic potential. In the future, these insights offer a refined cellular and molecular framework of atherosclerosis and may help the development of targeted interventions to promote plaque stabilization and reduce cardiovascular risk.
Collapse
Affiliation(s)
- Baixue Yu
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands.
| | - Miron Sopic
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg; Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.
| | - Judith C Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands; Aachen Maastricht Institute for CardioRenal research (AMICARE), 52074 Aachen, Germany; British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
2
|
Dalal AR, Pedroza AJ, Kim J, Gilles C, Gu W, Kusadokoro S, Shad R, Mitchel O, Jackson W, Hiesinger W, Berry G, MacFarlane EG, Quertermous T, Cheng P, Fischbein MP. Chemokine (C-C Motif) Ligand 2 Expressing Adventitial Fibroblast Expansion During Loeys-Dietz Syndrome Aortic Aneurysm Formation. Arterioscler Thromb Vasc Biol 2025; 45:722-742. [PMID: 40109260 PMCID: PMC12018128 DOI: 10.1161/atvbaha.124.322069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Loeys-Dietz syndrome (LDS), caused by mutations in the TGF-β (transforming growth factor-β) signaling cascade, leads to aggressive thoracic aneurysms. While vascular smooth muscle cell (SMC) phenotype modulation has been implicated in thoracic aneurysm formation, we sought to characterize the role of cell state transitions in LDS aneurysm pathogenesis. METHODS We performed single-cell transcriptomic characterization of aortic root/ascending aorta from a murine LDS model (Tgfbr2G357W/+ versus littermate WT [wild-type] control) at 8 weeks, 24 weeks, and aortic root/ascending aortic samples from human LDS surgical specimens (n=5 LDS [TGFBR1/2] and n=2 donor control) to understand cell state transitions and transcriptomic alterations in LDS. Select cell markers were spatially localized with RNA in situ hybridization, immunofluorescence, and immunohistochemistry. Single-cell RNA sequencing of murine and human LDS samples (>30 000 cells) revealed unique SMC, fibroblast, and macrophage transcriptomic profiles in LDS. RESULTS Instead of SMC phenotypic modulation seen in Marfan syndrome, transcriptomic alterations observed in LDS are most prominent in the adventitial fibroblast in the Tgfbr2G357W/+ mouse model. While a distinct modulated SMC cluster does not appear in Tgfbr2G357W/+, SMCs transcriptomically differ from WT counterparts. Adventitial fibroblasts were activated into a proinflammatory state associated with increased macrophage recruitment (Ccl2, Il6, Ccl7, and Cxcl2) and fibrotic response genes (Col1a1, Col1a2, and Col3a1), with a 6-fold increase in aortic wall macrophage content in Tgfbr2G357W/+ compared with WT. Similar findings were also observed in human LDS aortic samples with increased proinflammatory adventitial fibroblast transcriptomic program in parallel with heightened macrophage recruitment. CONCLUSIONS Despite phenotypic similarities in aneurysm formation, the dominant cellular and molecular mechanism of Marfan syndrome and LDS aneurysms are distinct. LDS mouse and human adventitial fibroblasts transcriptomically modulate into a proinflammatory state. Adventitial fibroblasts, in addition to SMCs, are another important pathological cell population during LDS aneurysm formation to consider for targeted therapy to potentially impede LDS aneurysm formation.
Collapse
MESH Headings
- Animals
- Loeys-Dietz Syndrome/genetics
- Loeys-Dietz Syndrome/pathology
- Loeys-Dietz Syndrome/metabolism
- Loeys-Dietz Syndrome/complications
- Humans
- Adventitia/pathology
- Adventitia/metabolism
- Receptor, Transforming Growth Factor-beta Type II/genetics
- Receptor, Transforming Growth Factor-beta Type II/metabolism
- Disease Models, Animal
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Female
- Transcriptome
- Phenotype
- Macrophages/metabolism
- Macrophages/pathology
- Aortic Aneurysm/pathology
- Aortic Aneurysm/metabolism
- Aortic Aneurysm/genetics
- Chemokine CCL2/metabolism
- Chemokine CCL2/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Aorta/pathology
- Aorta/metabolism
- Single-Cell Analysis
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
Collapse
Affiliation(s)
- Alex R. Dalal
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Albert J. Pedroza
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Jennifer Kim
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Casey Gilles
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Wenduo Gu
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford CA USA
| | - Sho Kusadokoro
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Rohan Shad
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Olivia Mitchel
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - William Jackson
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford CA USA
| | - William Hiesinger
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Gerald Berry
- Department of Pathology, Stanford University School of Medicine, Stanford CA USA
| | - Elena Gallo MacFarlane
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford CA USA
| | - Paul Cheng
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford CA USA
| | - Michael P. Fischbein
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| |
Collapse
|
3
|
Cho JM, Vu K, Park SK, Zhu E, Li YR, Zhao P, Yokota T, Yang L, Lu R, Xiang YK, Shen YH, Chapleau MW, Hsiai TK. Habitual Exercise Modulates Neuroimmune Interaction to Mitigate Aortic Stiffness. Circ Res 2025. [PMID: 40304034 DOI: 10.1161/circresaha.124.325656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Exercise augments hemodynamic shear to activate mechano-sensitive molecular transducers in the vascular endothelium. Recently, the central nervous system has been reported to mediate neuroimmune interaction in the aortic adventitia (AA). Whether exercise modulates the sympathetic nerve interaction with the immune cells to mitigate aortic stiffness remains unknown. METHODS AND RESULTS Four weeks of Ang II (angiotensin II) infusion to C57BL/6 mice increased neural activation to increase the expression of TH (tyrosine hydroxylase) for sympathetic nerve axons and norepinephrine levels along with the colocalization of synapsin and β2-AR (β2-adrenergic receptor)-positive macrophages in the AA. This Ang II-mediated sympathetic nerve and macrophage interaction activated fibroblasts to increase vascular fibrosis and arterial pulse wave velocity. Sympathetic denervation with celiac ganglionectomy or 6-hydroxydopamine treatment abrogated Ang II-mediated TH+, AA thickness, and pulse wave velocity. Single-cell RNA sequencing analyses of the AA revealed that Ang II increased the circulating monocyte-derived macrophages (Ccr2+CD80) but reduced the resident macrophages (Lyve1+CD163). Gene ontology analysis of differentially expressed genes unveiled that voluntary wheel running mitigated Ang II-mediated increase in Ccr2+CD80 macrophages, cytokine-mediated signaling pathways in macrophages, and extracellular matrix deposition in fibroblasts. Macrophage depletion with Ki20227 (colony stimulating factor 1 receptor inhibitor) reduced Ang II-mediated synapsin+ macrophages. Using the Ccr2 knock-in (Ccr2gfp)/knock-out (Ccr2KO) mice, we observed that Ang II-mediated increases in Ccr2+ macrophages were expressed in Ccr2gfp mice but were absent in Ccr2KO mice. Also, Ang II-induced increases in synapsin expression, neighboring Ccr2+ cells, AA thickness, and pulse wave velocity were reduced in Ccr2KO mice. Both Ki20227 and Ccr2KO reduced the Ang II-mediated increase in TH levels. Furthermore, voluntary wheel running-mediated reduction in vascular fibrosis and aortic stiffness were mitigated by a β2-AR agonist, terbutaline, indicating β2-AR in neuroimmune modulation. CONCLUSIONS Exercise mitigates Ang II-mediated sympathetic axon interaction with the circulating monocyte-derived macrophages in the AA to attenuate vascular fibrosis and aortic stiffness.
Collapse
Affiliation(s)
- Jae Min Cho
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles. (J.M.C., K.V., S.-K.P., E.Z., P.Z., T.Y., T.K.H.)
- Department of Medicine, Greater Los Angeles VA Healthcare System, CA (J.M.C., S.-K.P., E.Z., P.Z., T.Y., T.K.H.)
| | - Khoa Vu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles. (J.M.C., K.V., S.-K.P., E.Z., P.Z., T.Y., T.K.H.)
| | - Seul-Ki Park
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles. (J.M.C., K.V., S.-K.P., E.Z., P.Z., T.Y., T.K.H.)
- Department of Medicine, Greater Los Angeles VA Healthcare System, CA (J.M.C., S.-K.P., E.Z., P.Z., T.Y., T.K.H.)
| | - Enbo Zhu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles. (J.M.C., K.V., S.-K.P., E.Z., P.Z., T.Y., T.K.H.)
- Department of Medicine, Greater Los Angeles VA Healthcare System, CA (J.M.C., S.-K.P., E.Z., P.Z., T.Y., T.K.H.)
| | - Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles. (Y.-R.L., L.Y.)
| | - Peng Zhao
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles. (J.M.C., K.V., S.-K.P., E.Z., P.Z., T.Y., T.K.H.)
- Department of Medicine, Greater Los Angeles VA Healthcare System, CA (J.M.C., S.-K.P., E.Z., P.Z., T.Y., T.K.H.)
| | - Tomohiro Yokota
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles. (J.M.C., K.V., S.-K.P., E.Z., P.Z., T.Y., T.K.H.)
- Department of Medicine, Greater Los Angeles VA Healthcare System, CA (J.M.C., S.-K.P., E.Z., P.Z., T.Y., T.K.H.)
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles. (Y.-R.L., L.Y.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles. (L.Y.)
- Molecular Biology Institute, University of California, Los Angeles. (L.Y.)
- Department of Medicine, Greater Los Angeles VA Healthcare System, CA (J.M.C., S.-K.P., E.Z., P.Z., T.Y., T.K.H.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA (L.Y.)
| | - Rong Lu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles (R.L.)
| | - Yang Kevin Xiang
- Department of Pharmacology, University of California, Davis (Y.K.X.)
- VA Northern California Healthcare System, Mather, CA (Y.K.X.)
| | - Ying H Shen
- Department of Surgery, Baylor College of Medicine, Houston, TX (Y.H.S.)
| | - Mark W Chapleau
- Departments of Internal Medicine and Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine (M.W.C.)
| | - Tzung K Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles. (J.M.C., K.V., S.-K.P., E.Z., P.Z., T.Y., T.K.H.)
- Department of Bioengineering, School of Engineering and Applied Science, University of California, Los Angeles. (T.K.H.)
- Department of Medicine, Greater Los Angeles VA Healthcare System, CA (J.M.C., S.-K.P., E.Z., P.Z., T.Y., T.K.H.)
- Medical Engineering, California Institute of Technology, Pasadena, CA (T.K.H.)
| |
Collapse
|
4
|
Sukhavasi K, Mocci G, Ma L, Hodonsky CJ, Diez Benevante E, Muhl L, Liu J, Gustafsson S, Buyandelger B, Koplev S, Lendahl U, Vanlandewijck M, Singha P, Örd T, Beter M, Selvarajan I, Laakkonen JP, Väli M, den Ruijter HM, Civelek M, Hao K, Ruusalepp A, Betsholtz C, Järve H, Kovacic JC, Miller CL, Romanoski C, Kaikkonen MU, Björkegren JLM. Single-cell RNA sequencing reveals sex differences in the subcellular composition and associated gene-regulatory network activity of human carotid plaques. NATURE CARDIOVASCULAR RESEARCH 2025; 4:412-432. [PMID: 40211055 PMCID: PMC11994450 DOI: 10.1038/s44161-025-00628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/17/2025] [Indexed: 04/12/2025]
Abstract
Carotid stenosis causes ischemic stroke in both sexes, but the clinical presentation and plaque characteristics differ. Here we run deep single-cell sequencing of 7,690 human carotid plaque cells from male and female patients. While we found no sex differences in major cell types, we identified a predominance of the osteogenic phenotype in smooth muscle cells, immunomodulating macrophages (MPs) and endothelial cells (ECs) undergoing endothelial-to-mesenchymal transition in females. In males, we found smooth muscle cells with the chondrocytic phenotype, MPs involved in tissue remodeling and ECs with angiogenic activity. Sex-biased subcellular clusters were integrated with tissue-specific gene-regulatory networks (GRNs) from the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task study. We identified GRN195 involved in angiogenesis and T cell-mediated cytotoxicity in male ECs, while in females, we found GRN33 and GRN122 related to TREM2-/TREM1+ MPs and endothelial-to-mesenchymal transition. The impact of GRN195 on EC proliferation in males was functionally validated, providing evidence for potential therapy targets for atherosclerosis that are sex specific.
Collapse
Grants
- 19TPA34910021 American Heart Association (American Heart Association, Inc.)
- R01 HL148167 NHLBI NIH HHS
- R01 HL148239 NHLBI NIH HHS
- PlaqOmics (18CVD02) Fondation Leducq
- R01 HG012773 NHGRI NIH HHS
- R01 HL168174 NHLBI NIH HHS
- AtheroGen (22CVD04) and PlaqOmics(18CVD02) Fondation Leducq
- R01 HL164577 NHLBI NIH HHS
- R01 HL166428 NHLBI NIH HHS
- research support from the NIH (R01HL148167, R01HG012773), New South Wales health grant RG194194, the Bourne Foundation, Snow Medical and Agilent
- Sydäntutkimussäätiö (Finnish Foundation for Cardiovascular Research)
- Sigrid Juséliuksen Säätiö (Sigrid Jusélius Foundation)
- Research Council of Finland, Competitive Funding to Strengthen University Research Profiles, 7th Call, profiling measure TransMed, (352968)
- The Research Council of Finland (328835), and GeneCellNano Flagship Program 337120
Collapse
Affiliation(s)
- Katyayani Sukhavasi
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital and Department of Cardiology, Institute of Clinical Medicine, Tartu University, Tartu, Estonia.
| | - Giuseppe Mocci
- Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chani J Hodonsky
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Genome Sciences, University of Virginia, Charlottesville, VA, USA
| | - Ernest Diez Benevante
- Laboratory of Experimental Cardiology, Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lars Muhl
- Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Jianping Liu
- Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Sonja Gustafsson
- Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Byambajav Buyandelger
- Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Simon Koplev
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Vanlandewijck
- Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Prosanta Singha
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tiit Örd
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mustafa Beter
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilakya Selvarajan
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Johanna P Laakkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marika Väli
- Department of Pathological Anatomy and Forensic Sciences, Tartu University, Tartu, Estonia
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mete Civelek
- Department of Genome Sciences, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arno Ruusalepp
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital and Department of Cardiology, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | - Christer Betsholtz
- Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Heli Järve
- Department of Vascular Surgery and The Surgery Clinic, Tartu University Hospital, Tartu, Estonia
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical School, University of NSW, Sydney, New South Wales, Australia
| | - Clint L Miller
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Genome Sciences, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Casey Romanoski
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Johan L M Björkegren
- Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden.
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Clinical Gene Networks AB, Stockholm, Sweden.
| |
Collapse
|
5
|
Lambaren K, Trac N, Fehrenbach D, Madhur M, Chung EJ. T Cell-Targeting Nanotherapies for Atherosclerosis. Bioconjug Chem 2025; 36:332-346. [PMID: 39979082 DOI: 10.1021/acs.bioconjchem.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Cardiovascular diseases remain the leading cause of mortality worldwide. Specifically, atherosclerosis is a primary cause of acute cardiac events. However, current therapies mainly focus on lipid-lowering versus addressing the underlying inflammatory response that leads to its development and progression. Nanoparticle-mediated drug delivery offers a promising approach for targeting and regulating these inflammatory responses. In atherosclerotic lesions, inflammatory cascades result in increased T helper (Th) 1 and Th17 activity and reduced T regulatory activation. The regulation of T cell responses is critical in preventing the inflammatory imbalance in atherosclerosis, making them a key therapeutic target for nanotherapy to achieve precise atherosclerosis treatment. By functionalizing nanoparticles with targeting modalities, therapeutic agents can be delivered specifically to immune cells in atherosclerotic lesions. In this Review, we outline the role of T cells in atherosclerosis, examine current nanotherapeutic strategies for targeting T cells and modulating their differentiation, and provide perspectives for the development of nanoparticles specifically tailored to target T cells for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Karla Lambaren
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Noah Trac
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Daniel Fehrenbach
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Meena Madhur
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Eun Ji Chung
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, United States
- Bridge Institute, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
6
|
Li C, Pan Y, Wang Y, Li X, Tie Y, Li S, Wang R, Zhao X, Fan J, Yan X, Wang Y, Sun X. Single-cell RNA sequencing of the carotid artery and femoral artery of rats exposed to hindlimb unloading. Cell Mol Life Sci 2025; 82:50. [PMID: 39833543 PMCID: PMC11747068 DOI: 10.1007/s00018-024-05572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Prolonged spaceflight is known to cause vascular deconditioning and remodeling. Tail suspension, a widely used spaceflight analog, is reported to result in vascular remodeling of rats. However, little is known about the cellular atlas of the heterogeneous cells of CA and FA from hindlimb-unloaded rats. METHODS Firstly, we leveraged scRNA-seq to perform clustering analysis to identify diverse cell populations and sub-clusters within CA and FA from rats subjected to 3 months of hindlimb unloading. The dysregulated genes specific for artery types and cell types in HU group compared to Con were unraveled. Then R package "Cellchat" was used to reveal ligand-receptor cellular communication. At last, the TF network analysis was performed using the SCENIC R package to predict the pivotal TFs in rat artery remodeling induced by hindlimb unloading. RESULTS Clustering analysis identified ECs, SMCs, fibroblasts, and a spectrum of immune cells, as well as neuronal and stem cells. Notably, an increased percentage of ECs in the CA and a diminished proportion of SMCs in both CA and FA were observed following tail suspension. Intersection of dysregulated genes specific for artery type and cell type after tail suspension revealed several gene sets involved in ECM remodeling, inflammation, vasoconstriction, etc. Fibroblasts, in particular, exhibited the most significant gene expression variability, highlighting their plasticity. Subclustering within ECs, SMCs and fibroblasts revealed specialized subsets engaged in processes such as EndoMT and cell cycle checkpoint regulation. Additionally, enhanced intercellular interactions among major cell types, especially between SMC and fibroblast, underscored the importance of cell communication in vascular remodeling. Several TFs were identified as potentially influential in the vascular remodeling process under simulated microgravity conditions. CONCLUSIONS This study presents the first cellular atlas of the conductive arteries in hindlimb-unloaded rats, revealing a spectrum of dysregulated gene profiles. The identification of the subclusters of ECs, SMCs and fibroblasts, cellular communication analysis and transcription factors prediction are also included in this work. The findings provide a reference for future research on vascular deconditioning following long-duration spaceflight.
Collapse
Affiliation(s)
- Chengfei Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Yikai Pan
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Yuan Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Xi Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Yateng Tie
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Shuhan Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Ruonan Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Xingcheng Zhao
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Jieyi Fan
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Xianchun Yan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China.
| | - Yongchun Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China.
| | - Xiqing Sun
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China.
| |
Collapse
|
7
|
Fries LE, Chung A, Chang HK, Yuan TL, Bauer RC. Single-Cell RNA-Seq Reveals Adventitial Fibroblast Alterations during Mouse Atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.05.616802. [PMID: 39868275 PMCID: PMC11761046 DOI: 10.1101/2024.10.05.616802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Background Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of mortality in the western world despite the success of lipid lowering therapies, highlighting the need for novel lipid-independent therapeutic strategies. Genome-wide association studies (GWAS) have identified numerous genes associated with ASCVD that function in the vessel wall, suggesting that vascular cells mediate ASCVD, and that the genes and pathways essential for this vascular cell function may be novel therapeutic targets for the treatment of ASCVD. Furthermore, some of these implicated genes appear to function in the adventitial layer of the vasculature, suggesting these cells are able to potentiate ASCVD. Methods To investigate the role of adventitial cells in atherosclerosis, we conducted single-cell RNA sequencing (scRNA-seq) of the aortic adventitia during atherogenesis in male Ldlr -/- mice via pools of three mice, two samples per condition. We cross-referenced the scRNA-seq data with human ASCVD GWAS to identify regulators of adventitial responses in ASCVD. These regulators were then validated in vitro in human adventitial fibroblasts. Results We identified four adventitial fibroblast populations, all of which displayed shifts in population size and gene expression over the course of atherogenesis. SERPINH1, an ASCVD-linked GWAS gene, was differentially expressed in adventitial fibroblasts during atherogenesis. Knockdown of SERPINH1 in vitro reduced fibroblast migration and altered subcluster marker gene expression. Conclusions These findings reveal dynamic changes in adventitial fibroblasts during atherosclerosis and suggest that reduced SERPINH1 expression disrupts adventitial fibroblast function, contributing to ASCVD progression.
Collapse
Affiliation(s)
- Lauren E Fries
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Allen Chung
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Hyun K Chang
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Timothy L Yuan
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| | - Robert C Bauer
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Horstmann H, Michel NA, Sheng X, Hansen S, Lindau A, Pfeil K, Fernández MC, Marchini T, Winkels H, Mitre LS, Abogunloko T, Li X, Mwinyella TBN, Gissler MC, Bugger H, Heidt T, Buscher K, Hilgendorf I, Stachon P, Piepenburg S, Verheyen N, Rathner T, Gerhardt T, Siegel PM, Oswald WK, Cohnert T, Zernecke A, Madl J, Kohl P, Foks AC, von zur Muehlen C, Westermann D, Zirlik A, Wolf D. Cross-species single-cell RNA sequencing reveals divergent phenotypes and activation states of adaptive immunity in human carotid and experimental murine atherosclerosis. Cardiovasc Res 2024; 120:1713-1726. [PMID: 39041203 PMCID: PMC11587564 DOI: 10.1093/cvr/cvae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 07/24/2024] Open
Abstract
AIMS The distinct functions of immune cells in atherosclerosis have been mostly defined by pre-clinical mouse studies. Contrastingly, the immune cell composition of human atherosclerotic plaques and their contribution to disease progression are only poorly understood. It remains uncertain whether genetic animal models allow for valuable translational approaches. METHODS AND RESULTS Single-cell RNA-sequencing (scRNA-seq) was performed to define the immune cell landscape in human carotid atherosclerotic plaques. The human immune cell repertoire demonstrated an unexpectedly high heterogeneity and was dominated by cells of the T-cell lineage, a finding confirmed by immunohistochemistry. Bioinformatical integration with 7 mouse scRNA-seq data sets from adventitial and atherosclerotic vascular tissue revealed a total of 51 identities of cell types and differentiation states, of which some were only poorly conserved between species and exclusively found in humans. Locations, frequencies, and transcriptional programmes of immune cells in mouse models did not resemble the immune cell landscape in human carotid atherosclerosis. In contrast to standard mouse models of atherosclerosis, human plaque leucocytes were dominated by several T-cell phenotypes with transcriptional hallmarks of T-cell activation and memory formation, T-cell receptor, and pro-inflammatory signalling. Only mice at the age of 22 months partially resembled the activated T-cell phenotype. In a validation cohort of 43 patients undergoing carotid endarterectomy, the abundance of activated immune cell subsets in the plaque defined by multi-colour flow cytometry associated with the extent of clinical atherosclerosis. CONCLUSION Integrative scRNA-seq reveals a substantial difference in the immune cell composition of murine and human carotid atherosclerosis-a finding that questions the translational value of standard mouse models for adaptive immune cell studies. Clinical associations suggest a specific role for T-cell driven (auto-)immunity in human plaque formation and instability.
Collapse
Affiliation(s)
- Hauke Horstmann
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Division of Cardiology, Department of Medicine, NYU Cardiovascular Research Center, NYU Grossmann School of Medicine, 10016 New York, NY, USA
| | - Nathaly Anto Michel
- Department of Cardiology, University Heart Center Graz, Medical University of Graz, 8036 Graz, Austria
| | - Xia Sheng
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sophie Hansen
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alexandra Lindau
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Katharina Pfeil
- Division of Cardiology, Department of Medicine, NYU Cardiovascular Research Center, NYU Grossmann School of Medicine, 10016 New York, NY, USA
| | - Marbely C Fernández
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Institute for Experimental Cardiovascular Medicine, Heart Centre, University of Freiburg, 79106 Freiburg, Germany
| | - Timoteo Marchini
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Holger Winkels
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50923 Cologne, Germany
| | - Lucia Sol Mitre
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79106 Freiburg, Germany
| | - Tijani Abogunloko
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79106 Freiburg, Germany
| | - Xiaowei Li
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Timothy Bon-Nawul Mwinyella
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Mark Colin Gissler
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Heiko Bugger
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Cardiology, University Heart Center Graz, Medical University of Graz, 8036 Graz, Austria
| | - Timo Heidt
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Konrad Buscher
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine, University Hospital of Münster, 48149 Münster, Germany
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Peter Stachon
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sven Piepenburg
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Nicolas Verheyen
- Department of Cardiology, University Heart Center Graz, Medical University of Graz, 8036 Graz, Austria
| | - Thomas Rathner
- Department of Cardiology, University Heart Center Graz, Medical University of Graz, 8036 Graz, Austria
| | - Teresa Gerhardt
- Department of Cardiology, Angiology and Intensive Care Medicine CBF, Deutsches Herzzentrum der Charité, and Berlin Institute of Health (BIH), 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin , 13353 Berlin, Germany
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, 10029 New York, NY, USA
| | - Patrick Malcolm Siegel
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | | | - Tina Cohnert
- Department of Vascular Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Josef Madl
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Institute for Experimental Cardiovascular Medicine, Heart Centre, University of Freiburg, 79106 Freiburg, Germany
| | - Peter Kohl
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Institute for Experimental Cardiovascular Medicine, Heart Centre, University of Freiburg, 79106 Freiburg, Germany
| | - Amanda C Foks
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, 2333 CC Leiden, The Netherlands
| | - Constantin von zur Muehlen
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Dirk Westermann
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Andreas Zirlik
- Department of Cardiology, University Heart Center Graz, Medical University of Graz, 8036 Graz, Austria
| | - Dennis Wolf
- Department of Cardiology and Angiology I, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
9
|
Huang D, Jiao X, Huang S, Liu J, Si H, Qi D, Pei X, Lu D, Wang Y, Li Z. Analysis of the heterogeneity and complexity of murine extraorbital lacrimal gland via single-cell RNA sequencing. Ocul Surf 2024; 34:60-95. [PMID: 38945476 DOI: 10.1016/j.jtos.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
PURPOSE The lacrimal gland is essential for maintaining ocular surface health and avoiding external damage by secreting an aqueous layer of the tear film. However, a healthy lacrimal gland's inventory of cell types and heterogeneity remains understudied. METHODS Here, 10X Genome-based single-cell RNA sequencing was used to generate an unbiased classification of cellular diversity in the extraorbital lacrimal gland (ELG) of C57BL/6J mice. From 43,850 high-quality cells, we produced an atlas of cell heterogeneity and defined cell types using classic marker genes. The possible functions of these cells were analyzed through bioinformatics analysis. Additionally, the CellChat was employed for a preliminary analysis of the cell-cell communication network in the ELG. RESULTS Over 37 subclasses of cells were identified, including seven types of glandular epithelial cells, three types of fibroblasts, ten types of myeloid-derived immune cells, at least eleven types of lymphoid-derived immune cells, and five types of vascular-associated cell subsets. The cell-cell communication network analysis revealed that fibroblasts and immune cells play a pivotal role in the dense intercellular communication network within the mouse ELG. CONCLUSIONS This study provides a comprehensive transcriptome atlas and related database of the mouse ELG.
Collapse
Affiliation(s)
- Duliurui Huang
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Jiangman Liu
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Hongli Si
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Yimian Wang
- Division of Medicine, Faculty of Medical Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Zhijie Li
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China.
| |
Collapse
|
10
|
Pi H, Wang G, Wang Y, Zhang M, He Q, Zheng X, Yin K, Zhao G, Jiang T. Immunological perspectives on atherosclerotic plaque formation and progression. Front Immunol 2024; 15:1437821. [PMID: 39399488 PMCID: PMC11466832 DOI: 10.3389/fimmu.2024.1437821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Atherosclerosis serves as the primary catalyst for numerous cardiovascular diseases. Growing evidence suggests that the immune response is involved in every stage of atherosclerotic plaque evolution. Rapid, but not specific, innate immune arms, including neutrophils, monocytes/macrophages, dendritic cells (DCs) and other innate immune cells, as well as pattern-recognition receptors and various inflammatory mediators, contribute to atherogenesis. The specific adaptive immune response, governed by T cells and B cells, antibodies, and immunomodulatory cytokines potently regulates disease activity and progression. In the inflammatory microenvironment, the heterogeneity of leukocyte subpopulations plays a very important regulatory role in plaque evolution. With advances in experimental techniques, the fine mechanisms of immune system involvement in atherosclerotic plaque evolution are becoming known. In this review, we examine the critical immune responses involved in atherosclerotic plaque evolution, in particular, looking at atherosclerosis from the perspective of evolutionary immunobiology. A comprehensive understanding of the interplay between plaque evolution and plaque immunity provides clues for strategically combating atherosclerosis.
Collapse
Affiliation(s)
- Hui Pi
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Guangliang Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Yu Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ming Zhang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Qin He
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Xilong Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ting Jiang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| |
Collapse
|
11
|
Liu T, Chen Y, Hou L, Yu Y, Ma D, Jiang T, Zhao G. Immune cell-mediated features of atherosclerosis. Front Cardiovasc Med 2024; 11:1450737. [PMID: 39234608 PMCID: PMC11371689 DOI: 10.3389/fcvm.2024.1450737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by innate and adaptive immune responses, which seriously threatens human life and health. It is a primary cause of coronary heart disease, myocardial infarction, and peripheral vascular disease. Research has demonstrated that immune cells are fundamental to the development of atherosclerosis and chronic inflammation. Therefore, it is anticipated that immunotherapy targeting immune cells will be a novel technique in the management of atherosclerosis. This article reviews the growth of research on the regulatory role of immune cells in atherosclerosis and targeted therapy approaches. The purpose is to offer new therapeutic approaches for the control and treatment of cardiovascular illnesses caused by atherosclerosis.
Collapse
Affiliation(s)
- Tingting Liu
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Yanjun Chen
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lianjie Hou
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Yulu Yu
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Dan Ma
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ting Jiang
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| |
Collapse
|
12
|
Patrick R, Janbandhu V, Tallapragada V, Tan SSM, McKinna EE, Contreras O, Ghazanfar S, Humphreys DT, Murray NJ, Tran YTH, Hume RD, Chong JJH, Harvey RP. Integration mapping of cardiac fibroblast single-cell transcriptomes elucidates cellular principles of fibrosis in diverse pathologies. SCIENCE ADVANCES 2024; 10:eadk8501. [PMID: 38905342 PMCID: PMC11192082 DOI: 10.1126/sciadv.adk8501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Single-cell technology has allowed researchers to probe tissue complexity and dynamics at unprecedented depth in health and disease. However, the generation of high-dimensionality single-cell atlases and virtual three-dimensional tissues requires integrated reference maps that harmonize disparate experimental designs, analytical pipelines, and taxonomies. Here, we present a comprehensive single-cell transcriptome integration map of cardiac fibrosis, which underpins pathophysiology in most cardiovascular diseases. Our findings reveal similarity between cardiac fibroblast (CF) identities and dynamics in ischemic versus pressure overload models of cardiomyopathy. We also describe timelines for commitment of activated CFs to proliferation and myofibrogenesis, profibrotic and antifibrotic polarization of myofibroblasts and matrifibrocytes, and CF conservation across mouse and human healthy and diseased hearts. These insights have the potential to inform knowledge-based therapies.
Collapse
Affiliation(s)
- Ralph Patrick
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | | | - Shannon S. M. Tan
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Emily E. McKinna
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Osvaldo Contreras
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Shila Ghazanfar
- School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - David T. Humphreys
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Nicholas J. Murray
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Yen T. H. Tran
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Robert D. Hume
- Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
- School of Medical Science, The University of Sydney, Camperdown, NSW 2006, Australia
- Centre for Heart Failure and Diseases of the Aorta, The Baird Institute, Sydney, NSW 2042, Australia
| | - James J. H. Chong
- Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Richard P. Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington, NSW 2052, Australia
| |
Collapse
|
13
|
Mocci G, Sukhavasi K, Örd T, Bankier S, Singha P, Arasu UT, Agbabiaje OO, Mäkinen P, Ma L, Hodonsky CJ, Aherrahrou R, Muhl L, Liu J, Gustafsson S, Byandelger B, Wang Y, Koplev S, Lendahl U, Owens GK, Leeper NJ, Pasterkamp G, Vanlandewijck M, Michoel T, Ruusalepp A, Hao K, Ylä-Herttuala S, Väli M, Järve H, Mokry M, Civelek M, Miller CJ, Kovacic JC, Kaikkonen MU, Betsholtz C, Björkegren JL. Single-Cell Gene-Regulatory Networks of Advanced Symptomatic Atherosclerosis. Circ Res 2024; 134:1405-1423. [PMID: 38639096 PMCID: PMC11122742 DOI: 10.1161/circresaha.123.323184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND While our understanding of the single-cell gene expression patterns underlying the transformation of vascular cell types during the progression of atherosclerosis is rapidly improving, the clinical and pathophysiological relevance of these changes remains poorly understood. METHODS Single-cell RNA sequencing data generated with SmartSeq2 (≈8000 genes/cell) in 16 588 single cells isolated during atherosclerosis progression in Ldlr-/-Apob100/100 mice with human-like plasma lipoproteins and from humans with asymptomatic and symptomatic carotid plaques was clustered into multiple subtypes. For clinical and pathophysiological context, the advanced-stage and symptomatic subtype clusters were integrated with 135 tissue-specific (atherosclerotic aortic wall, mammary artery, liver, skeletal muscle, and visceral and subcutaneous, fat) gene-regulatory networks (GRNs) inferred from 600 coronary artery disease patients in the STARNET (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task) study. RESULTS Advanced stages of atherosclerosis progression and symptomatic carotid plaques were largely characterized by 3 smooth muscle cells (SMCs), and 3 macrophage subtype clusters with extracellular matrix organization/osteogenic (SMC), and M1-type proinflammatory/Trem2-high lipid-associated (macrophage) phenotypes. Integrative analysis of these 6 clusters with STARNET revealed significant enrichments of 3 arterial wall GRNs: GRN33 (macrophage), GRN39 (SMC), and GRN122 (macrophage) with major contributions to coronary artery disease heritability and strong associations with clinical scores of coronary atherosclerosis severity. The presence and pathophysiological relevance of GRN39 were verified in 5 independent RNAseq data sets obtained from the human coronary and aortic artery, and primary SMCs and by targeting its top-key drivers, FRZB and ALCAM in cultured human coronary artery SMCs. CONCLUSIONS By identifying and integrating the most gene-rich single-cell subclusters of atherosclerosis to date with a coronary artery disease framework of GRNs, GRN39 was identified and independently validated as being critical for the transformation of contractile SMCs into an osteogenic phenotype promoting advanced, symptomatic atherosclerosis.
Collapse
MESH Headings
- Humans
- Single-Cell Analysis
- Animals
- Gene Regulatory Networks
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Mice
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Male
- Plaque, Atherosclerotic
- Disease Progression
- Female
- Macrophages/metabolism
- Macrophages/pathology
- Mice, Knockout
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
Collapse
Affiliation(s)
- Giuseppe Mocci
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
| | - Katyayani Sukhavasi
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital and Department of Cardiology, Institute of Clinical Medicine, Tartu University, Estonia (K.S., A.R., H.J.)
| | - Tiit Örd
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
| | - Sean Bankier
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway (S.B., T.M.)
| | - Prosanta Singha
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
| | - Uma Thanigai Arasu
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
| | - Olayinka Oluwasegun Agbabiaje
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
| | - Petri Mäkinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York (L. Ma, S.K., K.H., J.L.M.B.)
| | - Chani J. Hodonsky
- Robert M. Berne Cardiovascular Research Center (C.J.H., G.K.O., C.J.M.), University of Virginia, Charlottesville
- Center for Public Health Genomics (C.J.H., R.A., M.C.), University of Virginia, Charlottesville
| | - Redouane Aherrahrou
- Center for Public Health Genomics (C.J.H., R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (R.A., M.C.), University of Virginia, Charlottesville
| | - Lars Muhl
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
| | - Jianping Liu
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
| | - Sonja Gustafsson
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
| | - Byambajav Byandelger
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
| | - Ying Wang
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, CA (Y.W., N.J.L.)
- Stanford Cardiovascular Institute, Stanford University, CA (Y.W., N.J.L.)
| | - Simon Koplev
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York (L. Ma, S.K., K.H., J.L.M.B.)
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, United Kingdom (S.K.)
| | - Urban Lendahl
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
| | - Gary K. Owens
- Robert M. Berne Cardiovascular Research Center (C.J.H., G.K.O., C.J.M.), University of Virginia, Charlottesville
| | - Nicholas J. Leeper
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, CA (Y.W., N.J.L.)
- Stanford Cardiovascular Institute, Stanford University, CA (Y.W., N.J.L.)
| | - Gerard Pasterkamp
- Laboratory of Experimental Cardiology (G.P., M.M.), University Medical Center Utrecht, the Netherlands
- Central Diagnostics Laboratory (G.P., M.M.), University Medical Center Utrecht, the Netherlands
| | - Michael Vanlandewijck
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
| | - Tom Michoel
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway (S.B., T.M.)
| | - Arno Ruusalepp
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital and Department of Cardiology, Institute of Clinical Medicine, Tartu University, Estonia (K.S., A.R., H.J.)
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York (L. Ma, S.K., K.H., J.L.M.B.)
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
| | - Marika Väli
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.V., C.B.)
- Department of Pathological anatomy and Forensic medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia (M.V.)
| | - Heli Järve
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital and Department of Cardiology, Institute of Clinical Medicine, Tartu University, Estonia (K.S., A.R., H.J.)
| | - Michal Mokry
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
- Laboratory of Experimental Cardiology (G.P., M.M.), University Medical Center Utrecht, the Netherlands
| | - Mete Civelek
- Center for Public Health Genomics (C.J.H., R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (R.A., M.C.), University of Virginia, Charlottesville
| | - Clint J. Miller
- Robert M. Berne Cardiovascular Research Center (C.J.H., G.K.O., C.J.M.), University of Virginia, Charlottesville
| | - Jason C. Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York (J.C.K.)
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia (J.C.K.)
- St. Vincent’s Clinical School, University of NSW, Sydney, Australia (J.C.K.)
| | - Minna U. Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
| | - Christer Betsholtz
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.V., C.B.)
| | - Johan L.M. Björkegren
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York (L. Ma, S.K., K.H., J.L.M.B.)
- Clinical Gene Networks AB, Stockholm, Sweden (J.L.M.B.)
| |
Collapse
|
14
|
Torimoto K, Elliott K, Nakayama Y, Yanagisawa H, Eguchi S. Cardiac and perivascular myofibroblasts, matrifibrocytes, and immune fibrocytes in hypertension; commonalities and differences with other cardiovascular diseases. Cardiovasc Res 2024; 120:567-580. [PMID: 38395029 PMCID: PMC11485269 DOI: 10.1093/cvr/cvae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Hypertension is a major cause of cardiovascular diseases such as myocardial infarction and stroke. Cardiovascular fibrosis occurs with hypertension and contributes to vascular resistance, aortic stiffness, and cardiac hypertrophy. However, the molecular mechanisms leading to fibroblast activation in hypertension remain largely unknown. There are two types of fibrosis: replacement fibrosis and reactive fibrosis. Replacement fibrosis occurs in response to the loss of viable tissue to form a scar. Reactive fibrosis occurs in response to an increase in mechanical and neurohormonal stress. Although both types of fibrosis are considered adaptive processes, they become maladaptive when the tissue loss is too large, or the stress persists. Myofibroblasts represent a subpopulation of activated fibroblasts that have gained contractile function to promote wound healing. Therefore, myofibroblasts are a critical cell type that promotes replacement fibrosis. Although myofibroblasts were recognized as the fibroblasts participating in reactive fibrosis, recent experimental evidence indicated there are distinct fibroblast populations in cardiovascular reactive fibrosis. Accordingly, we will discuss the updated definition of fibroblast subpopulations, the regulatory mechanisms, and their potential roles in cardiovascular pathophysiology utilizing new knowledge from various lineage tracing and single-cell RNA sequencing studies. Among the fibroblast subpopulations, we will highlight the novel roles of matrifibrocytes and immune fibrocytes in cardiovascular fibrosis including experimental models of hypertension, pressure overload, myocardial infarction, atherosclerosis, aortic aneurysm, and nephrosclerosis. Exploration into the molecular mechanisms involved in the differentiation and activation of those fibroblast subpopulations may lead to novel treatments for end-organ damage associated with hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Keiichi Torimoto
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Katherine Elliott
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Yuki Nakayama
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Eguchi
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
15
|
Correale M, Chirivì F, Bevere EML, Tricarico L, D’Alto M, Badagliacca R, Brunetti ND, Vizza CD, Ghio S. Endothelial Function in Pulmonary Arterial Hypertension: From Bench to Bedside. J Clin Med 2024; 13:2444. [PMID: 38673717 PMCID: PMC11051060 DOI: 10.3390/jcm13082444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Pulmonary arterial hypertension is a complex pathology whose etiology is still not completely well clarified. The pathogenesis of pulmonary arterial hypertension involves different molecular mechanisms, with endothelial dysfunction playing a central role in disease progression. Both individual genetic predispositions and environmental factors seem to contribute to its onset. To further understand the complex relationship between endothelial and pulmonary hypertension and try to contribute to the development of future therapies, we report a comprehensive and updated review on endothelial function in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Michele Correale
- Cardiothoracic Department, Policlinico Riuniti University Hospital, 71100 Foggia, Italy;
| | - Francesco Chirivì
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Ester Maria Lucia Bevere
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Lucia Tricarico
- Cardiothoracic Department, Policlinico Riuniti University Hospital, 71100 Foggia, Italy;
| | - Michele D’Alto
- Department of Cardiology, A.O.R.N. dei Colli, Monaldi Hospital, University of Campania L. ‘Vanvitelli’, 80133 Naples, Italy;
| | - Roberto Badagliacca
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.B.); (C.D.V.)
| | - Natale D. Brunetti
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Carmine Dario Vizza
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.B.); (C.D.V.)
| | - Stefano Ghio
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| |
Collapse
|
16
|
Gibson Hughes TA, Dona MSI, Sobey CG, Pinto AR, Drummond GR, Vinh A, Jelinic M. Aortic Cellular Heterogeneity in Health and Disease: Novel Insights Into Aortic Diseases From Single-Cell RNA Transcriptomic Data Sets. Hypertension 2024; 81:738-751. [PMID: 38318714 DOI: 10.1161/hypertensionaha.123.20597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Aortic diseases such as atherosclerosis, aortic aneurysms, and aortic stiffening are significant complications that can have significant impact on end-stage cardiovascular disease. With limited pharmacological therapeutic strategies that target the structural changes in the aorta, surgical intervention remains the only option for some patients with these diseases. Although there have been significant contributions to our understanding of the cellular architecture of the diseased aorta, particularly in the context of atherosclerosis, furthering our insight into the cellular drivers of disease is required. The major cell types of the aorta are well defined; however, the advent of single-cell RNA sequencing provides unrivaled insights into the cellular heterogeneity of each aortic cell type and the inferred biological processes associated with each cell in health and disease. This review discusses previous concepts that have now been enhanced with recent advances made by single-cell RNA sequencing with a focus on aortic cellular heterogeneity.
Collapse
Affiliation(s)
- Tayla A Gibson Hughes
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Malathi S I Dona
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (M.S.I.D., A.R.P.)
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Alexander R Pinto
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (M.S.I.D., A.R.P.)
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Maria Jelinic
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| |
Collapse
|
17
|
Sharma D, Worssam MD, Pedroza AJ, Dalal AR, Alemany H, Kim HJ, Kundu R, Fischbein M, Cheng P, Wirka R, Quertermous T. Comprehensive Integration of Multiple Single-Cell Transcriptomic Data Sets Defines Distinct Cell Populations and Their Phenotypic Changes in Murine Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:391-408. [PMID: 38152886 PMCID: PMC11285358 DOI: 10.1161/atvbaha.123.320030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND The application of single-cell transcriptomic (single-cell RNA sequencing) analysis to the study of atherosclerosis has provided unique insights into the molecular and genetic mechanisms that mediate disease risk and pathophysiology. However, nonstandardized methodologies and relatively high costs associated with the technique have limited the size and replication of existing data sets and created disparate or contradictory findings that have fostered misunderstanding and controversy. METHODS To address these uncertainties, we have performed a conservative integration of multiple published single-cell RNA sequencing data sets into a single meta-analysis, performed extended analysis of native resident vascular cells, and used in situ hybridization to map the disease anatomic location of the identified cluster cells. To investigate the transdifferentiation of smooth muscle cells to macrophage phenotype, we have developed a classifying algorithm based on the quantification of reporter transgene expression. RESULTS The reporter gene expression tool indicates that within the experimental limits of the examined studies, transdifferentiation of smooth muscle cell to the macrophage lineage is extremely rare. Validated transition smooth muscle cell phenotypes were defined by clustering, and the location of these cells was mapped to lesion anatomy with in situ hybridization. We have also characterized 5 endothelial cell phenotypes and linked these cellular species to different vascular structures and functions. Finally, we have identified a transcriptomically unique cellular phenotype that constitutes the aortic valve. CONCLUSIONS Taken together, these analyses resolve a number of outstanding issues related to differing results reported with vascular disease single-cell RNA sequencing studies, and significantly extend our understanding of the role of resident vascular cells in anatomy and disease.
Collapse
Affiliation(s)
- Disha Sharma
- Division of Cardiovascular Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305
| | - Matthew DeForest Worssam
- Division of Cardiovascular Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305
| | - Albert J. Pedroza
- Division of Cardiothoracic surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305
| | - Alex R. Dalal
- Division of Cardiothoracic surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305
| | - Haizea Alemany
- Division of Cardiovascular Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305
| | - Hyun-Jung Kim
- Division of Cardiovascular Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305
| | | | - Michael Fischbein
- Division of Cardiothoracic surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305
| | - Paul Cheng
- Division of Cardiovascular Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305
| | - Robert Wirka
- Division of Cardiology, McAllister Heart Institute, UNC School of Medicine, 111 Mason Farm Road, MBRB 3312B, Chapel Hill, NC 27599-7126
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305
| |
Collapse
|
18
|
Liu Y, Tan Y, Zhang Z, Yi M, Zhu L, Peng W. The interaction between ageing and Alzheimer's disease: insights from the hallmarks of ageing. Transl Neurodegener 2024; 13:7. [PMID: 38254235 PMCID: PMC10804662 DOI: 10.1186/s40035-024-00397-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Ageing is a crucial risk factor for Alzheimer's disease (AD) and is characterised by systemic changes in both intracellular and extracellular microenvironments that affect the entire body instead of a single organ. Understanding the specific mechanisms underlying the role of ageing in disease development can facilitate the treatment of ageing-related diseases, such as AD. Signs of brain ageing have been observed in both AD patients and animal models. Alleviating the pathological changes caused by brain ageing can dramatically ameliorate the amyloid beta- and tau-induced neuropathological and memory impairments, indicating that ageing plays a crucial role in the pathophysiological process of AD. In this review, we summarize the impact of several age-related factors on AD and propose that preventing pathological changes caused by brain ageing is a promising strategy for improving cognitive health.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China
| | - Yejun Tan
- School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China
| | - Min Yi
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China.
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China.
| |
Collapse
|
19
|
Raposo-Gutiérrez I, Rodríguez-Ronchel A, Ramiro AR. Atherosclerosis antigens as targets for immunotherapy. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1129-1147. [PMID: 39196152 DOI: 10.1038/s44161-023-00376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/18/2023] [Indexed: 08/29/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arteries that can lead to thrombosis, infarction and stroke, underlying the first cause of mortality worldwide. Adaptive immunity plays critical roles in atherosclerosis, and numerous studies have ascribed both atheroprotective and atherogenic functions to specific subsets of T and B cells. However, less is known on how antigen specificity determines the protective or adverse outcome of such adaptive responses. Understanding antigen triggers in atherosclerosis is crucial to delve deeper into mechanisms of disease initiation and progression and to implement specific immunotherapeutic approaches, including vaccination strategies. Here we review the role of adaptive immunity in atherosclerosis and the insights that single-cell technology has provided into the function of distinct immune cell subsets. We outline the most relevant atherosclerosis antigens and antibodies reported to date and examine their immunotherapeutic potential. Finally, we review the most promising vaccination-based clinical trials targeting the adaptive immune system.
Collapse
Affiliation(s)
- Irene Raposo-Gutiérrez
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain
| | - Ana Rodríguez-Ronchel
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain
| | - Almudena R Ramiro
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain.
| |
Collapse
|
20
|
Wu Z, Yin H, Guo Y, Yin H, Li Y. Detection of cell-type-enriched long noncoding RNAs in atherosclerosis using single-cell techniques: A brief review. Life Sci 2023; 333:122138. [PMID: 37805167 DOI: 10.1016/j.lfs.2023.122138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Cardiovascular diseases are the leading causes of mortality and morbidity worldwide. Atherosclerotic plaque underlies the predominant factors and is composed of various cell types, including structure cells, such as endothelial and smooth muscle cells, and immune cells, such as macrophages and T cells. Single-cell RNA sequencing (scRNA-seq) has been extensively applied to decipher these cellular heterogeneities to expand our understanding on the mechanisms of atherosclerosis (AS) and to facilitate identifying cell-type-specific long noncoding RNAs (LncRNAs). LncRNAs have been demonstrated to deeply regulate biological activities at the transcriptional and post-transcriptional levels. A group of well-documented functional lncRNAs in AS have been studied. In our review, we selectively described several lncRNAs involved in the critical process of AS. We highlighted four novel lncRNAs (lncRNA CARMN, LINC00607, PCAT19, LINC01235) detected in scRNA-seq datasets and their functions in AS. We also reviewed open web source and bioinformatic tools, as well as the latest methods to perform an in-depth study of lncRNAs. It is fundamental to annotate functional lncRNAs in the various biological activities of AS, as lncRNAs may represent promising targets in the future for treatment and diagnosis in clinical practice.
Collapse
Affiliation(s)
- Zhiyuan Wu
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730 Beijing, PR China
| | - Huarun Yin
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100730 Beijing, PR China
| | - Yongsheng Guo
- Peking University Health Science Center, 100191 Beijing, PR China
| | - Hongchao Yin
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100730 Beijing, PR China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730 Beijing, PR China; Peking University Health Science Center, 100191 Beijing, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 100730 Beijing, PR China
| |
Collapse
|
21
|
Sun X, Lu Y, Wu J, Wen Q, Li Z, Tang Y, Shi Y, He T, Liu L, Huang W, Weng C, Wu Q, Xiao Q, Yuan H, Xu Q, Cai J. Meta-Analysis of Single-Cell RNA-Seq Data Reveals the Mechanism of Formation and Heterogeneity of Tertiary Lymphoid Organ in Vascular Disease. Arterioscler Thromb Vasc Biol 2023; 43:1867-1886. [PMID: 37589134 PMCID: PMC10521807 DOI: 10.1161/atvbaha.123.318762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Tertiary lymphoid organs (TLOs) are ectopic lymphoid organs developed in nonlymphoid tissues with chronic inflammation, but little is known about their existence in different types of vascular diseases and the mechanism that mediated their development. METHODS To take advantage of single-cell RNA sequencing techniques, we integrated 28 single-cell RNA sequencing data sets containing 5 vascular disease models (atherosclerosis, abdominal aortic aneurysm, intimal hyperplasia, isograft, and allograft) to explore TLOs existence and environment supporting its growth systematically. We also searched Medline, Embase, PubMed, and Web of Science from inception to January 2022 for published histological images of vascular remodeling for histological evidence to support TLO genesis. RESULTS Accumulation and infiltration of innate and adaptive immune cells have been observed in various remodeling vessels. Interestingly, the proportion of such immune cells incrementally increases from atherosclerosis to intimal hyperplasia, abdominal aortic aneurysm, isograft, and allograft. Importantly, we uncovered that TLO structure cells, such as follicular helper T cells and germinal center B cells, present in all remodeled vessels. Among myeloid cells and lymphocytes, inflammatory macrophages, and T helper 17 cells are the major lymphoid tissue inducer cells which were found to be positively associated with the numbers of TLO structural cells in remodeled vessels. Vascular stromal cells also actively participate in vascular TLO genesis by communicating with myeloid cells and lymphocytes via CCLs (C-C motif chemokine ligands), CXCL (C-X-C motif ligand), lymphotoxin, BMP (bone morphogenetic protein) chemotactic, FGF-2 (fibroblast growth factor-2), and IGF (insulin growth factor) proliferation mechanisms, particularly for lymphoid tissue inducer cell aggregation. Additionally, the interaction between stromal cells and immune cells modulates extracellular matrix remodeling. Among TLO structure cells, follicular helper T, and germinal center B cells have strong interactions via TCR (T-cell receptor), CD40 (cluster of differentiation 40), and CXCL signaling, to promote the development and maturation of the germinal center in TLO. Consistently, by reviewing the histological images from the literature, TLO genesis was found in those vascular remodeling models. CONCLUSIONS Our analysis showed the existence of TLOs across 5 models of vascular diseases. The mechanisms that support TLOs formation in different models are heterogeneous. This study could be a valuable resource for understanding and discovering new therapeutic targets for various forms of vascular disease.
Collapse
Affiliation(s)
- Xuejing Sun
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Yao Lu
- The Center of Clinical Pharmacology (Y.L., H.Y.), Central South University, Changsha, China
| | - Junru Wu
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Qing Wen
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Zhengxin Li
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Yan Tang
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Yunmin Shi
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Tian He
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Lun Liu
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Wei Huang
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Chunyan Weng
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| | - Qing Wu
- The Third Xiangya Hospital and High-Performance Computing Center (Q. Wu), Central South University, Changsha, China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (Q. Xiao, Q. Xu)
| | - Hong Yuan
- The Center of Clinical Pharmacology (Y.L., H.Y.), Central South University, Changsha, China
| | - Qingbo Xu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (Q. Xiao, Q. Xu)
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China (Q. Xu)
| | - Jingjing Cai
- Department of Cardiology (X.S., J.W., Q. Wen, Z.L., Y.T., Y.S., T.H., L.L., W.H., C.W., J.C.), Central South University, Changsha, China
| |
Collapse
|
22
|
Hinkley H, Counts DA, VonCanon E, Lacy M. T Cells in Atherosclerosis: Key Players in the Pathogenesis of Vascular Disease. Cells 2023; 12:2152. [PMID: 37681883 PMCID: PMC10486666 DOI: 10.3390/cells12172152] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-rich plaques within arterial walls. T cells play a pivotal role in the pathogenesis of atherosclerosis in which they help orchestrate immune responses and contribute to plaque development and instability. Here, we discuss the recognition of atherosclerosis-related antigens that may trigger T cell activation together with additional signaling from co-stimulatory molecules and lesional cytokines. Although few studies have indicated candidates for the antigen specificity of T cells in atherosclerosis, further research is needed. Furthermore, we describe the pro-atherogenic and atheroprotective roles of diverse subsets of T cells such as CD4+ helper, CD8+ cytotoxic, invariant natural killer, and γδ T cells. To classify and quantify T cell subsets in atherosclerosis, we summarize current methods to analyze cellular heterogeneity including single cell RNA sequencing and T cell receptor (TCR) sequencing. Further insights into T cell biology will help shed light on the immunopathology of atherosclerosis, inform potential therapeutic interventions, and pave the way for precision medicine approaches in combating cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | - Michael Lacy
- Department of Medical Laboratory Sciences, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
23
|
van Kuijk K, McCracken IR, Tillie RJHA, Asselberghs SEJ, Kheder DA, Muitjens S, Jin H, Taylor RS, Wichers Schreur R, Kuppe C, Dobie R, Ramachandran P, Gijbels MJ, Temmerman L, Kirkwoord PM, Luyten J, Li Y, Noels H, Goossens P, Wilson-Kanamori JR, Schurgers LJ, Shen YH, Mees BME, Biessen EAL, Henderson NC, Kramann R, Baker AH, Sluimer JC. Human and murine fibroblast single-cell transcriptomics reveals fibroblast clusters are differentially affected by ageing and serum cholesterol. Cardiovasc Res 2023; 119:1509-1523. [PMID: 36718802 PMCID: PMC10318398 DOI: 10.1093/cvr/cvad016] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 02/01/2023] Open
Abstract
AIMS Specific fibroblast markers and in-depth heterogeneity analysis are currently lacking, hindering functional studies in cardiovascular diseases (CVDs). Here, we established cell-type markers and heterogeneity in murine and human arteries and studied the adventitial fibroblast response to CVD and its risk factors hypercholesterolaemia and ageing. METHODS AND RESULTS Murine aorta single-cell RNA-sequencing analysis of adventitial mesenchymal cells identified fibroblast-specific markers. Immunohistochemistry and flow cytometry validated platelet-derived growth factor receptor alpha (PDGFRA) and dipeptidase 1 (DPEP1) across human and murine aorta, carotid, and femoral arteries, whereas traditional markers such as the cluster of differentiation (CD)90 and vimentin also marked transgelin+ vascular smooth muscle cells. Next, pseudotime analysis showed multiple fibroblast clusters differentiating along trajectories. Three trajectories, marked by CD55 (Cd55+), Cxcl chemokine 14 (Cxcl14+), and lysyl oxidase (Lox+), were reproduced in an independent RNA-seq dataset. Gene ontology (GO) analysis showed divergent functional profiles of the three trajectories, related to vascular development, antigen presentation, and/or collagen fibril organization, respectively. Trajectory-specific genes included significantly more genes with known genome-wide associations (GWAS) to CVD than expected by chance, implying a role in CVD. Indeed, differential regulation of fibroblast clusters by CVD risk factors was shown in the adventitia of aged C57BL/6J mice, and mildly hypercholesterolaemic LDLR KO mice on chow by flow cytometry. The expansion of collagen-related CXCL14+ and LOX+ fibroblasts in aged and hypercholesterolaemic aortic adventitia, respectively, coincided with increased adventitial collagen. Immunohistochemistry, bulk, and single-cell transcriptomics of human carotid and aorta specimens emphasized translational value as CD55+, CXCL14+ and LOX+ fibroblasts were observed in healthy and atherosclerotic specimens. Also, trajectory-specific gene sets are differentially correlated with human atherosclerotic plaque traits. CONCLUSION We provide two adventitial fibroblast-specific markers, PDGFRA and DPEP1, and demonstrate fibroblast heterogeneity in health and CVD in humans and mice. Biological relevance is evident from the regulation of fibroblast clusters by age and hypercholesterolaemia in vivo, associations with human atherosclerotic plaque traits, and enrichment of genes with a GWAS for CVD.
Collapse
Affiliation(s)
- Kim van Kuijk
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- Institute of Experimental Medicine and Systems Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ian R McCracken
- BHF Centre for Cardiovascular Sciences (CVS), Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Renée J H A Tillie
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Sebastiaan E J Asselberghs
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- Department of Vascular Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dlzar A Kheder
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Stan Muitjens
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Han Jin
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Richard S Taylor
- BHF Centre for Cardiovascular Sciences (CVS), Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ruud Wichers Schreur
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Division of Nephrology and Clinical Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ross Dobie
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Prakesh Ramachandran
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marion J Gijbels
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, Amsterdam, The Netherlands
- GROW, School for Oncology and Development Biology, Maastricht University, Maastricht, The Netherlands
| | - Lieve Temmerman
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Phoebe M Kirkwoord
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Joris Luyten
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- Department of Vascular Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yanming Li
- Division of Cardiothoracic Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX, USA
| | - Heidi Noels
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Pieter Goossens
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - John R Wilson-Kanamori
- Division of Nephrology and Clinical Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Leon J Schurgers
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- Institute of Experimental Medicine and Systems Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX, USA
| | - Barend M E Mees
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- Department of Vascular Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Erik A L Biessen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Neil C Henderson
- Division of Nephrology and Clinical Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Department of Vascular Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Andrew H Baker
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- BHF Centre for Cardiovascular Sciences (CVS), Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Judith C Sluimer
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- BHF Centre for Cardiovascular Sciences (CVS), Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
24
|
Härdtner C, Kumar A, Ehlert CA, Vico TA, Starz C, von Ehr A, Krebs K, Dufner B, Hoppe N, Stachon P, Heidt T, Wolf D, von Zur Mühlen C, Grüning B, Robbins CS, Maegdefessel L, Westermann D, Dederichs TS, Hilgendorf I. A comparative gene expression matrix in Apoe-deficient mice identifies unique and atherosclerotic disease stage-specific gene regulation patterns in monocytes and macrophages. Atherosclerosis 2023; 371:1-13. [PMID: 36940535 DOI: 10.1016/j.atherosclerosis.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a systemic and chronic inflammatory disease propagated by monocytes and macrophages. Yet, our knowledge on how transcriptome of these cells evolves in time and space is limited. We aimed at characterizing gene expression changes in site-specific macrophages and in circulating monocytes during the course of atherosclerosis. METHODS We utilized apolipoprotein E-deficient mice undergoing one- and six-month high cholesterol diet to model early and advanced atherosclerosis. Aortic macrophages, peritoneal macrophages, and circulating monocytes from each mouse were subjected to bulk RNA-sequencing (RNA-seq). We constructed a comparative directory that profiles lesion- and disease stage-specific transcriptomic regulation of the three cell types in atherosclerosis. Lastly, the regulation of one gene, Gpnmb, whose expression positively correlated with atheroma growth, was validated using single-cell RNA-seq (scRNA-seq) of atheroma plaque from murine and human. RESULTS The convergence of gene regulation between the three investigated cell types was surprisingly low. Overall 3245 differentially expressed genes were involved in the biological modulation of aortic macrophages, among which less than 1% were commonly regulated by the remote monocytes/macrophages. Aortic macrophages regulated gene expression most actively during atheroma initiation. Through complementary interrogation of murine and human scRNA-seq datasets, we showcased the practicality of our directory, using the selected gene, Gpnmb, whose expression in aortic macrophages, and a subset of foamy macrophages in particular, strongly correlated with disease advancement during atherosclerosis initiation and progression. CONCLUSIONS Our study provides a unique toolset to explore gene regulation of macrophage-related biological processes in and outside the atheromatous plaque at early and advanced disease stages.
Collapse
Affiliation(s)
- Carmen Härdtner
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, Freiburg, Germany
| | - Anup Kumar
- Department of Computer Science, Bioinformatics Group, University of Freiburg, Georges-Koehler-Allee 106, Freiburg, Germany
| | - Carolin A Ehlert
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, Freiburg, Germany
| | - Tamara Antonela Vico
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, Freiburg, Germany
| | - Christopher Starz
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, Freiburg, Germany
| | - Alexander von Ehr
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, Freiburg, Germany
| | - Katja Krebs
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, Freiburg, Germany
| | - Bianca Dufner
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, Freiburg, Germany
| | - Natalie Hoppe
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, Freiburg, Germany
| | - Peter Stachon
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, Freiburg, Germany
| | - Timo Heidt
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, Freiburg, Germany
| | - Dennis Wolf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, Freiburg, Germany
| | - Constantin von Zur Mühlen
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, Freiburg, Germany
| | - Björn Grüning
- Department of Computer Science, Bioinformatics Group, University of Freiburg, Georges-Koehler-Allee 106, Freiburg, Germany
| | - Clinton S Robbins
- Peter Munk Cardiac Centre, University Health Network, 101 College St, Toronto, Canada
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Technical University Munich, Arcisstr. 21, Munich, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), Berlin, Germany; Department of Medicine, Karolinska Institutet and University Hospital, Eugeniavägen 3, Stockholm, Sweden; Partner Site Munich Heart Alliance, Arcisstr. 21, Munich, Germany
| | - Dirk Westermann
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, Freiburg, Germany
| | - Tsai-Sang Dederichs
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, Freiburg, Germany.
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, Freiburg, Germany; Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, Elsaesser Street 2Q, Freiburg, Germany.
| |
Collapse
|
25
|
Wen J, Ling R, Chen R, Zhang S, Dai Y, Zhang T, Guo F, Wang Q, Wang G, Jiang Y. Diversity of arterial cell and phenotypic heterogeneity induced by high-fat and high-cholesterol diet. Front Cell Dev Biol 2023; 11:971091. [PMID: 36910156 PMCID: PMC9997679 DOI: 10.3389/fcell.2023.971091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Lipid metabolism disorder is the basis of atherosclerotic lesions, in which cholesterol and low-density lipoprotein (LDL) is the main factor involved with the atherosclerotic development. A high-fat and high-cholesterol diet can lead to this disorder in the human body, thus accelerating the process of disease. The development of single-cell RNA sequencing in recent years has opened the possibility to unbiasedly map cellular heterogeneity with high throughput and high resolution; alterations mediated by a high-fat and high-cholesterol diet at the single-cell transcriptomic level can be explored with this mean afterward. We assessed the aortic arch of 16-week old Apoe-/- mice of two control groups (12 weeks of chow diet) and two HFD groups (12 weeks of high fat, high cholesterol diet) to process single-cell suspension and use single-cell RNA sequencing to anatomize the transcripts of 5,416 cells from the control group and 2,739 from the HFD group. Through unsupervised clustering, 14 cell types were divided and defined. Among these cells, the cellular heterogeneity exhibited in endothelial cells and immune cells is the most prominent. Subsequent screening delineated ten endothelial cell subsets with various function based on gene expression profiling. The distribution of endothelial cells and immune cells differs significantly between the control group versus the HFD one. The existence of pathways that inhibit atherosclerosis was found in both dysfunctional endothelial cells and foam cells. Our data provide a comprehensive transcriptional landscape of aortic arch cells and unravel the cellular heterogeneity brought by a high-fat and high-cholesterol diet. All these findings open new perspectives at the transcriptomic level to studying the pathology of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yizhou Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
26
|
Warwick T, Buchmann GK, Pflüger-Müller B, Spaeth M, Schürmann C, Abplanalp W, Tombor L, John D, Weigert A, Leo-Hansmann M, Dimmeler S, Brandes RP. Acute injury to the mouse carotid artery provokes a distinct healing response. Front Physiol 2023; 14:1125864. [PMID: 36824462 PMCID: PMC9941170 DOI: 10.3389/fphys.2023.1125864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Treatment of vascular stenosis with angioplasty results in acute vascular damage, which may lead to restenosis. Owing to the highly complex cellularity of blood vessels, the healing response following this damage is incompletely understood. To gain further insight into this process, scRNA-seq of mouse carotid tissue after wire injury was performed. Stages of acute inflammation, resolution and remodeling were recapitulated in these data. To identify cell types which give rise to neointima, analyses focused on smooth muscle cell and fibroblast populations, and included data integration with scRNA-seq data from myocardial infarction and atherosclerosis datasets. Following carotid injury, a subpopulation of smooth muscle cells which also arises during atherosclerosis and myocardial infarction was identified. So-called stem cell/endothelial cell/monocyte (SEM) cells are candidates for repopulating injured vessels, and were amongst the most proliferative cell clusters following wire-injury of the carotid artery. Importantly, SEM cells exhibit specific transcriptional profiles which could be therapeutically targeted. SEM cell gene expression patterns could also be detected in bulk RNA-sequencing of neointimal tissue isolated from injured carotid vessels by laser capture microdissection. These data indicate that phenotypic plasticity of smooth muscle cells is highly important to the progression of lumen loss following acute carotid injury. Interference with SEM cell formation could be an innovative approach to combat development of restenosis.
Collapse
Affiliation(s)
- Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt am Main, Germany,German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Giulia Karolin Buchmann
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt am Main, Germany,German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Beatrice Pflüger-Müller
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt am Main, Germany,German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Manuela Spaeth
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt am Main, Germany,German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Christoph Schürmann
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt am Main, Germany,German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Wesley Abplanalp
- German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany,Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lukas Tombor
- German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany,Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - David John
- German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany,Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martin Leo-Hansmann
- Department of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany,Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ralf P. Brandes
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt am Main, Germany,German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany,*Correspondence: Ralf P. Brandes,
| |
Collapse
|
27
|
Wu S, Liu S, Wang B, Li M, Cheng C, Zhang H, Chen N, Guo X. Single-cell transcriptome in silico analysis reveals conserved regulatory programs in macrophages/monocytes of abdominal aortic aneurysm from multiple mouse models and human. Front Cardiovasc Med 2023; 9:1062106. [PMID: 36698942 PMCID: PMC9868255 DOI: 10.3389/fcvm.2022.1062106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/16/2022] [Indexed: 01/10/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening disease and there is currently a lack of effective treatment to prevent it rupturing. ScRNA-seq studies of AAA are still lacking. In the study, we analyzed the published AAA scRNA-seq datasets from the mouse elastase-induced model, CaCl2 treatment model, Ang II-induced model and human by using bioinformatic approaches and in silico analysis. A total of 26 cell clusters were obtained and 11 cell types were identified from multiple mouse AAA models. Also, the proportion of Mφ/Mo increased in the AAA group and Mφ/Mo was divided into seven subtypes. There were significant differences in transcriptional regulation patterns of Mφ/Mo in different AAA models. The enrichment pathways of upregulated or downregulated genes from Mφ/Mo in the three mouse datasets were different. The actived regulons of Mφ/Mo had strong specificity and the repressed regulons showed high consistency. The co-upregulated genes as well as actived regulons and co-downregulated genes as well as repressed regulons were closely correlated and formed regulatory networks. Mφ/Mo from human AAA dataset was divided into five subtypes. The proportion of three macrophage subpopulations increased but the proportion of two monocyte subpopulations decreased. In the AAA group, the upregulated or downregulated genes of Mφ/Mo were enriched in different pathways. After further analyzing the genes in Mφ/Mo of both mouse and human scRNA-seq datasets, two genes were upregulated in the four datasets, IL-1B and THBS1. In conclusion, in silico analysis of scRNA-seq revealed that Mφ/Mo and their regulatory related genes as well as interaction networks played an important role in the pathogenesis of AAA.
Collapse
Affiliation(s)
- Shiyong Wu
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shibiao Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Baoheng Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng Li
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chao Cheng
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., Wuhan, China
| | - Hairong Zhang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Hairong Zhang,
| | - Ningheng Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,Ningheng Chen,
| | - Xueli Guo
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,Xueli Guo,
| |
Collapse
|
28
|
Wang W, Liang M, Wang L, Bei W, Rong X, Xu J, Guo J. Role of prostaglandin E2 in macrophage polarization: Insights into atherosclerosis. Biochem Pharmacol 2023; 207:115357. [PMID: 36455672 DOI: 10.1016/j.bcp.2022.115357] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Atherosclerosis, a trigger of cardiovascular disease, poses grave threats to human health. Although atherosclerosis depends on lipid accumulation and vascular wall inflammation, abnormal phenotypic regulation of macrophages is considered the pathological basis of atherosclerosis. Macrophage polarization mainly refers to the transformation of macrophages into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, which has recently become a much-discussed topic. Increasing evidence has shown that M2 macrophage polarization can alleviate atherosclerosis progression. PGE2 is a bioactive lipid that has been observed to be elevated in atherosclerosis and to play a pro-inflammatory role, yet recent studies have reported that PGE2 promotes anti-inflammatory M2 macrophage polarization and mitigates atherosclerosis progression. However, the mechanisms by which PGE2 acts remain unclear. This review summarizes current knowledge of PGE2 and macrophages in atherosclerosis. Additionally, we discuss potential PGE2 mechanisms of macrophage polarization, including CREB, NF-κB, and STAT signaling pathways, which may provide important therapeutic strategies based on targeting PGE2 pathways to modulate macrophage polarization for atherosclerosis treatment.
Collapse
Affiliation(s)
- Weixuan Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Mingjie Liang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Weijian Bei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Jianqin Xu
- Department of Endocrinology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi Province, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China.
| |
Collapse
|
29
|
Nettersheim FS, Armstrong SS, Durant C, Blanco-Dominguez R, Roy P, Orecchioni M, Suryawanshi V, Ley K. Titration of 124 antibodies using CITE-Seq on human PBMCs. Sci Rep 2022; 12:20817. [PMID: 36460735 PMCID: PMC9718773 DOI: 10.1038/s41598-022-24371-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022] Open
Abstract
Single-cell RNA-sequencing (scRNA-Seq) is widely used to characterize immune cell populations. However, mRNA levels correlate poorly with expression of surface proteins, which are well established to define immune cell types. CITE-Seq (cellular indexing of transcriptomes and epitopes by sequencing) utilizes oligonucleotide-tagged antibodies to simultaneously analyze surface phenotypes and transcriptomes. Considering the high costs of adding surface phenotyping to scRNA-Seq, we aimed to determine which of 188 tested CITE-Seq antibodies can detect their antigens on human peripheral blood mononuclear cells (PBMCs), a commonly interrogated cell population in immunology, and find the optimal concentration for staining. The recommended concentration was optimal for 76 antibodies, whereas staining quality of 7 antibodies improved when the concentration was doubled. 33 and 8 antibodies still worked well when the concentration was reduced to 1/5 or 1/25, respectively. 64 antigens were not detected at any antibody concentration. Optimizing the antibody panel by removing antibodies not able to detect their target antigens and adjusting concentrations of the remaining antibodies will improve the analysis and may reduce costs. In conclusion, our data are a resource for building an informative and cost-effective panel of CITE-Seq antibodies and use them at their optimal concentrations in future CITE-seq experiments on human PBMCs.
Collapse
Affiliation(s)
- Felix Sebastian Nettersheim
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | | | | | - Rafael Blanco-Dominguez
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- Centro Nacional de Investigaciones Cardiovasculares, 28029, Madrid, Spain
| | - Payel Roy
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | | | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
- Department of Bioengineering, University of California, San Diego, San Diego, CA, 92093, USA.
- Immunology Center of Georgia (IMMCG), Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
30
|
Shi X, Zhu S, Liu M, Stone SS, Rong Y, Mao K, Xu X, Ma C, Jiang Z, Zha Y, Yan C, Yu X, Wu D, Liu G, Mi J, Zhao J, Li Y, Ding Y, Wang X, Zhang YB, Ji X. Single-Cell RNA-Seq Reveals a Population of Smooth Muscle Cells Responsible for Atherogenesis. Aging Dis 2022; 13:1939-1953. [PMID: 36465170 PMCID: PMC9662277 DOI: 10.14336/ad.2022.0313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/13/2022] [Indexed: 01/30/2024] Open
Abstract
Understanding the regional propensity differences of atherosclerosis (AS) development is hindered by the lack of animal models suitable for the study of the disease process. In this paper, we used 3S-ASCVD dogs, an ideal large animal human-like models for AS, to interrogate the heterogeneity of AS-prone and AS-resistant arteries; and at the single-cell level, identify the dominant cells involved in AS development. Here we present data from 3S-ASCVD dogs which reliably mimic human AS pathophysiology, predilection for lesion sites, and endpoint events. Our analysis combined bulk RNA-seq with single-cell RNA-seq to depict the transcriptomic profiles and cellular atlas of AS-prone and AS-resistant arteries in 3S-ASCVD dogs. Our results revealed the integral role of smooth muscle cells (SMCs) in regional propensity for AS. Notably, TNC+ SMCs were major contributors to AS development in 3S-ASCVD dogs, indicating enhanced extracellular matrix remodeling and transition to myofibroblasts during the AS process. Moreover, TNC+ SMCs were also present in human AS-prone carotid plaques, suggesting a potential origin of myofibroblasts and supporting the relevance of our findings. Our study provides a promising large animal model for pre-clinical studies of ASCVD and add novel insights surrounding the regional propensity of AS development in humans, which may lead to interventions that delay or prevent lesion progression and adverse clinical events.
Collapse
Affiliation(s)
- Xiaofeng Shi
- School of Engineering Medicine, Beihang University, Beijing, China.
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.
| | - Shangming Zhu
- School of Engineering Medicine, Beihang University, Beijing, China.
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Meijing Liu
- School of Engineering Medicine, Beihang University, Beijing, China.
| | - Sara Saymuah Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yao Rong
- School of Engineering Medicine, Beihang University, Beijing, China.
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Ke Mao
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Xiaopeng Xu
- School of Engineering Medicine, Beihang University, Beijing, China.
| | - Chao Ma
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Zhuoyuan Jiang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Yan Zha
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Chun Yan
- School of Engineering Medicine, Beihang University, Beijing, China.
| | - Xiaofan Yu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Guiyou Liu
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.
| | - Jidong Mi
- Beijing SINOGENE Biotechnology Co., Ltd, Beijing, China.
| | - Jianping Zhao
- Beijing SINOGENE Biotechnology Co., Ltd, Beijing, China.
| | - Yuan Li
- Beijing SINOGENE Biotechnology Co., Ltd, Beijing, China.
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Xiaogang Wang
- School of Engineering Medicine, Beihang University, Beijing, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University) Ministry of Industry and Information Technology, Beijing, China.
| | - Yong-Biao Zhang
- School of Engineering Medicine, Beihang University, Beijing, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University) Ministry of Industry and Information Technology, Beijing, China.
| | - Xunming Ji
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
31
|
Ding X, An Q, Zhao W, Song Y, Tang X, Wang J, Chang CC, Zhao G, Hsiai T, Fan G, Fan Y, Li S. Distinct patterns of responses in endothelial cells and smooth muscle cells following vascular injury. JCI Insight 2022; 7:e153769. [PMID: 36278486 PMCID: PMC9714785 DOI: 10.1172/jci.insight.153769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/02/2022] [Indexed: 01/27/2025] Open
Abstract
Vascular smooth muscle cells (SMCs) are heterogeneous, and their differential responses to vascular injury are not well understood. To address this question, we performed single-cell analysis of vascular cells to a ligation injury in mouse carotid arteries after 3 days. While endothelial cells had a homogeneous activation of mesenchymal genes, less than 30% of SMCs responded to the injury and generated 2 distinct clusters - i.e., proinflammatory SMCs and stress-responsive SMCs. Proinflammatory SMCs were enriched with high levels of inflammatory markers such as vascular cell adhesion molecule-1 while stress-responsive SMCs overexpressed heat shock proteins. Trajectory analysis suggested that proinflammatory SMCs were potentially derived from a specific subpopulation of SMCs. Ligand-receptor pair analysis showed that the interaction between macrophages and proinflammatory SMCs was the major cell-cell communication among all cell types in the injured arteries. In vitro coculture demonstrated that VCAM1+ SMCs had a stronger chemotactic effect on macrophage recruitment than VCAM1- SMCs. Consistently, the number of VCAM1+ SMCs significantly increased in injured arteries and atherosclerotic lesions of ApoE-/- mice and human arteries. These findings provide insights at the single-cell level on the distinct patterns of endothelial cells and SMC responses to vascular injury.
Collapse
Affiliation(s)
- Xili Ding
- Department of Bioengineering, University of California, Los Angeles, California, USA
- School of Engineering Medicine and
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Qin An
- Department of Human Genetics, David Geffen School of Medicine
| | - Weikang Zhao
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Yang Song
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Xiaokai Tang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Wang
- Department of Human Genetics, David Geffen School of Medicine
| | - Chih-Chiang Chang
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Gexin Zhao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, and
| | - Tzung Hsiai
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Medicine, University of California, Los Angeles, California, USA
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine
| | - Yubo Fan
- School of Engineering Medicine and
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
32
|
Li Q, Wang M, Zhang S, Jin M, Chen R, Luo Y, Sun X. Single-cell RNA sequencing in atherosclerosis: Mechanism and precision medicine. Front Pharmacol 2022; 13:977490. [PMID: 36267275 PMCID: PMC9576927 DOI: 10.3389/fphar.2022.977490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is the pathological basis of various vascular diseases, including those with high mortality, such as myocardial infarction and stroke. However, its pathogenesis is complex and has not been fully elucidated yet. Over the past few years, single-cell RNA sequencing (scRNA-seq) has been developed and widely used in many biological fields to reveal biological mechanisms at the cellular level and solve the problems of cellular heterogeneity that cannot be solved using bulk RNA sequencing. In this review, we briefly summarize the existing scRNA-seq technologies and focus on their application in atherosclerosis research to provide insights into the occurrence, development and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qiaoyu Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Mengchen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Meiqi Jin
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Rongchang Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| |
Collapse
|
33
|
The adventitia in arterial development, remodeling, and hypertension. Biochem Pharmacol 2022; 205:115259. [PMID: 36150432 DOI: 10.1016/j.bcp.2022.115259] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022]
Abstract
The adventitia receives input signals from the vessel wall, the immune system, perivascular nerves and from surrounding tissues to generate effector responses that regulate structural and mechanical properties of blood vessels. It is a complex and dynamic tissue that orchestrates multiple functions for vascular development, homeostasis, repair, and disease. The purpose of this review is to highlight recent advances in our understanding of the origins, phenotypes, and functions of adventitial and perivascular cells with particular emphasis on hypertensive vascular remodeling.
Collapse
|
34
|
Ma WF, Turner AW, Gancayco C, Wong D, Song Y, Mosquera JV, Auguste G, Hodonsky CJ, Prabhakar A, Ekiz HA, van der Laan SW, Miller CL. PlaqView 2.0: A comprehensive web portal for cardiovascular single-cell genomics. Front Cardiovasc Med 2022; 9:969421. [PMID: 36003902 PMCID: PMC9393487 DOI: 10.3389/fcvm.2022.969421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA-seq (scRNA-seq) is a powerful genomics technology to interrogate the cellular composition and behaviors of complex systems. While the number of scRNA-seq datasets and available computational analysis tools have grown exponentially, there are limited systematic data sharing strategies to allow rapid exploration and re-analysis of single-cell datasets, particularly in the cardiovascular field. We previously introduced PlaqView, an open-source web portal for the exploration and analysis of published atherosclerosis single-cell datasets. Now, we introduce PlaqView 2.0 (www.plaqview.com), which provides expanded features and functionalities as well as additional cardiovascular single-cell datasets. We showcase improved PlaqView functionality, backend data processing, user-interface, and capacity. PlaqView brings new or improved tools to explore scRNA-seq data, including gene query, metadata browser, cell identity prediction, ad hoc RNA-trajectory analysis, and drug-gene interaction prediction. PlaqView serves as one of the largest central repositories for cardiovascular single-cell datasets, which now includes data from human aortic aneurysm, gene-specific mouse knockouts, and healthy references. PlaqView 2.0 brings advanced tools and high-performance computing directly to users without the need for any programming knowledge. Lastly, we outline steps to generalize and repurpose PlaqView's framework for single-cell datasets from other fields.
Collapse
Affiliation(s)
- Wei Feng Ma
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, United States
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Adam W. Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Christina Gancayco
- Research Computing, University of Virginia, Charlottesville, VA, United States
| | - Doris Wong
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Yipei Song
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
- Department of Computer Engineering, University of Virginia, Charlottesville, VA, United States
| | - Jose Verdezoto Mosquera
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
- Research Computing, University of Virginia, Charlottesville, VA, United States
| | - Gaëlle Auguste
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Chani J. Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Ajay Prabhakar
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - H. Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gülbahçe, Turkey
| | - Sander W. van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Clint L. Miller
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
35
|
Wang Y, Wang Q, Xu D. New insights into macrophage subsets in atherosclerosis. J Mol Med (Berl) 2022; 100:1239-1251. [PMID: 35930063 DOI: 10.1007/s00109-022-02224-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 12/11/2022]
Abstract
Macrophages in atherosclerotic patients are notably plastic and heterogeneous. Single-cell RNA sequencing (Sc RNA-seq) can provide information about all the RNAs in individual cells, and it is used to identify cell subpopulations in atherosclerosis (AS) and reveal the heterogeneity of these cells. Recently, some findings from Sc RNA-seq experiments have suggested the existence of multiple macrophage subsets in atherosclerotic plaque lesions, and these subsets exhibit significant differences in their gene expression levels and functions. These cells affect various aspects of plaque lesion development, stabilization, and regression, as well as plaque rupture. This article aims to review the content and results of current studies that used RNA-seq to explore the different types of macrophages in AS and the related molecular mechanisms as well as to identify the potential roles of these macrophage types in the pathogenesis of atherosclerotic plaques. Also, this review listed some new therapeutic targets for delaying atherosclerotic lesion progression and treatment based on the experimental results.
Collapse
Affiliation(s)
- Yurong Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qiong Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
36
|
Sun X, Wu J, Liu L, Chen Y, Tang Y, Liu S, Chen H, Jiang Y, Liu Y, Yuan H, Lu Y, Chen Z, Cai J. Transcriptional switch of hepatocytes initiates macrophage recruitment and T-cell suppression in endotoxemia. J Hepatol 2022; 77:436-452. [PMID: 35276271 DOI: 10.1016/j.jhep.2022.02.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/06/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS The liver plays crucial roles in the regulation of immune defense during acute systemic infections. However, the roles of liver cellular clusters and intercellular communication in the progression of endotoxemia have not been well-characterized. METHODS Single-cell RNA sequencing analysis was performed, and the transcriptomes of 19,795 single liver cells from healthy and endotoxic mice were profiled. The spatial and temporal changes in hepatocytes and non-parenchymal cell types were validated by multiplex immunofluorescence staining, bulk transcriptomic sequencing, or flow cytometry. Furthermore, we used an adeno-associated virus delivery system to confirm the major mechanisms mediating myeloid cell infiltration and T-cell suppression in septic murine liver. RESULTS We identified a proinflammatory hepatocyte (PIH) subpopulation that developed primarily from periportal hepatocytes and to a lesser extent from pericentral hepatocytes and played key immunoregulatory roles in endotoxemia. Multicellular cluster modeling of ligand-receptor interactions revealed that PIHs play a crucial role in the recruitment of macrophages via the CCL2-CCR2 interaction. Recruited macrophages (RMs) released cytokines (e.g., IL6, TNFα, and IL17) to induce the expression of inhibitory ligands, such as PD-L1, on hepatocytes. Subsequently, RM-stimulated hepatocytes led to the suppression of CD4+ and memory T-cell subsets partly via the PD-1/PD-L1 interaction in endotoxemia. Furthermore, sinusoidal endothelial cells expressed the highest levels of proapoptotic and inflammatory genes around the periportal zone. This pattern of gene expression facilitated increases in the number of fenestrations and infiltration of immune cells in the periportal zone. CONCLUSIONS Our study elucidates unanticipated aspects of the cellular and molecular effects of endotoxemia on liver cells at the single-cell level and provides a conceptual framework for the development of novel therapeutic approaches for acute infection. LAY SUMMARY The liver plays a crucial role in the regulation of immune defense during acute systemic infections. We identified a proinflammatory hepatocyte subpopulation and demonstrated that the interactions of this subpopulation with recruited macrophages are pivotal in the immune response during endotoxemia. These novel findings provide a conceptual framework for the discovery of rational therapeutic targets in acute infection.
Collapse
Affiliation(s)
- Xuejing Sun
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Junru Wu
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Lun Liu
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yuanyuan Chen
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yan Tang
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Suzhen Liu
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Hang Chen
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China
| | - Youxiang Jiang
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yuanyuan Liu
- The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Hong Yuan
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China; The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yao Lu
- The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhaoyang Chen
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China.
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China; The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
37
|
Hu Y, Zhang Y, Liu Y, Gao Y, San T, Li X, Song S, Yan B, Zhao Z. Advances in application of single-cell RNA sequencing in cardiovascular research. Front Cardiovasc Med 2022; 9:905151. [PMID: 35958408 PMCID: PMC9360414 DOI: 10.3389/fcvm.2022.905151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) provides high-resolution information on transcriptomic changes at the single-cell level, which is of great significance for distinguishing cell subtypes, identifying stem cell differentiation processes, and identifying targets for disease treatment. In recent years, emerging single-cell RNA sequencing technologies have been used to make breakthroughs regarding decoding developmental trajectories, phenotypic transitions, and cellular interactions in the cardiovascular system, providing new insights into cardiovascular disease. This paper reviews the technical processes of single-cell RNA sequencing and the latest progress based on single-cell RNA sequencing in the field of cardiovascular system research, compares single-cell RNA sequencing with other single-cell technologies, and summarizes the extended applications and advantages and disadvantages of single-cell RNA sequencing. Finally, the prospects for applying single-cell RNA sequencing in the field of cardiovascular research are discussed.
Collapse
Affiliation(s)
- Yue Hu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Ying Zhang
- Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Yutong Liu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yan Gao
- Department of Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Tiantian San
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Xiaoying Li
- Department of Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan, China
- Department of Emergency, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Sensen Song
- Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Binglong Yan
- Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Zhuo Zhao
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
- Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan, China
- *Correspondence: Zhuo Zhao
| |
Collapse
|
38
|
Howe KL, Cybulsky M, Fish JE. The Endothelium as a Hub for Cellular Communication in Atherogenesis: Is There Directionality to the Message? Front Cardiovasc Med 2022; 9:888390. [PMID: 35498030 PMCID: PMC9051343 DOI: 10.3389/fcvm.2022.888390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells line every blood vessel and thereby serve as an interface between the blood and the vessel wall. They have critical functions for maintaining homeostasis and orchestrating vascular pathogenesis. Atherosclerosis is a chronic disease where cholesterol and inflammatory cells accumulate in the artery wall below the endothelial layer and ultimately form plaques that can either progress to occlude the lumen or rupture with thromboembolic consequences - common outcomes being myocardial infarction and stroke. Cellular communication lies at the core of this process. In this review, we discuss traditional (e.g., cytokines, chemokines, nitric oxide) and novel (e.g., extracellular vesicles) modes of endothelial communication with other endothelial cells as well as circulating and vessel wall cells, including monocytes, macrophages, neutrophils, vascular smooth muscle cells and other immune cells, in the context of atherosclerosis. More recently, the growing appreciation of endothelial cell plasticity during atherogenesis suggests that communication strategies are not static. Here, emerging data on transcriptomics in cells during the development of atherosclerosis are considered in the context of how this might inform altered cell-cell communication. Given the unique position of the endothelium as a boundary layer that is activated in regions overlying vascular inflammation and atherosclerotic plaque, there is a potential to exploit the unique features of this group of cells to deliver therapeutics that target the cellular crosstalk at the core of atherosclerotic disease. Data are discussed supporting this concept, as well as inherent pitfalls. Finally, we briefly review the literature for other regions of the body (e.g., gut epithelium) where cells similarly exist as a boundary layer but provide discrete messages to each compartment to govern homeostasis and disease. In this light, the potential for endothelial cells to communicate in a directional manner is explored, along with the implications of this concept - from fundamental experimental design to biomarker potential and therapeutic targets.
Collapse
Affiliation(s)
- Kathryn L. Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Myron Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
McQueen LW, Ladak SS, Abbasciano R, George SJ, Suleiman MS, Angelini GD, Murphy GJ, Zakkar M. Next-Generation and Single-Cell Sequencing Approaches to Study Atherosclerosis and Vascular Inflammation Pathophysiology: A Systematic Review. Front Cardiovasc Med 2022; 9:849675. [PMID: 35419441 PMCID: PMC8996078 DOI: 10.3389/fcvm.2022.849675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Background and Aims Atherosclerosis is a chronic inflammatory disease that remains the leading cause of morbidity and mortality worldwide. Despite decades of research into the development and progression of this disease, current management and treatment approaches remain unsatisfactory and further studies are required to understand the exact pathophysiology. This review aims to provide a comprehensive assessment of currently published data utilizing single-cell and next-generation sequencing techniques to identify key cellular and molecular contributions to atherosclerosis and vascular inflammation. Methods Electronic searches of Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE databases were undertaken from inception until February 2022. A narrative synthesis of all included studies was performed for all included studies. Quality assessment and risk of bias analysis was evaluated using the ARRIVE and SYRCLE checklist tools. Results Thirty-four studies were eligible for narrative synthesis, with 16 articles utilizing single-cell exclusively, 10 utilizing next-generation sequencing and 8 using a combination of these approaches. Studies investigated numerous targets, ranging from exploratory tissue and plaque analysis, cell phenotype investigation and physiological/hemodynamic contributions to disease progression at both the single-cell and whole genome level. A significant area of focus was placed on smooth muscle cell, macrophage, and stem/progenitor contributions to disease, with little focus placed on contributions of other cell types including lymphocytes and endothelial cells. A significant level of heterogeneity exists in the outcomes from single-cell sequencing of similar samples, leading to inter-sample and inter-study variation. Conclusions Single-cell and next-generation sequencing methodologies offer novel means of elucidating atherosclerosis with significantly higher resolution than previous methodologies. These approaches also show significant potential for translatability into other vascular disease states, by facilitating cell-specific gene expression profiles between disease states. Implementation of these technologies may offer novel approaches to understanding the disease pathophysiology and improving disease prevention, management, and treatment.Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021229960, identifier: CRD42021229960.
Collapse
Affiliation(s)
- Liam W. McQueen
- Department of Cardiovascular Sciences, Clinical Science Wing, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | - Shameem S. Ladak
- Department of Cardiovascular Sciences, Clinical Science Wing, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | - Riccardo Abbasciano
- Department of Cardiovascular Sciences, Clinical Science Wing, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | - Sarah J. George
- Bristol Heart Institute and Translational Biomedical Research Centre, Bristol Medical School, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - M-Saadeh Suleiman
- Bristol Heart Institute and Translational Biomedical Research Centre, Bristol Medical School, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Gianni D. Angelini
- Bristol Heart Institute and Translational Biomedical Research Centre, Bristol Medical School, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Gavin J. Murphy
- Department of Cardiovascular Sciences, Clinical Science Wing, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | - Mustafa Zakkar
- Department of Cardiovascular Sciences, Clinical Science Wing, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
40
|
Saigusa R, Durant CP, Suryawanshi V, Ley K. Single-Cell Antibody Sequencing in Atherosclerosis Research. Methods Mol Biol 2022; 2419:765-778. [PMID: 35238000 PMCID: PMC10155217 DOI: 10.1007/978-1-0716-1924-7_46] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transcriptomic information obtained by single cell RNA sequencing (scRNA-seq) can be supplemented by information on the cell surface phenotype by using oligonucleotide-tagged monoclonal antibodies (scAb-Seq). This is of particular importance in immune cells, where the correlation between mRNA and cell surface expression is very weak. scAb-Seq is facilitated by the availability of commercial antibodies and antibody mixes. Now panels of up to 200 antibodies are available for human and mouse cells. Proteins are detected by antibodies conjugated to a tripartite DNA sequence that contains a primer for amplification and sequencing, a unique oligonucleotide that acts as an antibody barcode and a poly(dA) sequence, simultaneously detecting extension of antibody-specific DNA sequences and cDNAs in the same poly(dT)-primed reaction. For each cell, surface protein expression is captured and sequenced along with the cell's transcriptome. Here, we list the steps needed to produce antibody sequencing data from tissue or blood cells.
Collapse
Affiliation(s)
| | | | | | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
41
|
Survey of Approaches for Investigation of Atherosclerosis In Vivo. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:57-72. [PMID: 35237958 DOI: 10.1007/978-1-0716-1924-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Although in vitro model systems are useful for investigation of atherosclerosis-associated processes, they represent simplification of complex events that occur in vivo, which involve interactions between many different cell types together with their environment. The use of animal model systems is important for more in-depth insights of the molecular mechanisms underlying atherosclerosis and for identifying potential targets for agents that can prevent plaque formation and even reverse existing disease. This chapter will provide a survey of such animal models and associated techniques that are routinely used for research of atherosclerosis in vivo.
Collapse
|
42
|
Eberhardt N, Giannarelli C. How Single-Cell Technologies Have Provided New Insights Into Atherosclerosis. Arterioscler Thromb Vasc Biol 2022; 42:243-252. [PMID: 35109673 PMCID: PMC8966900 DOI: 10.1161/atvbaha.121.315849] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of innovative single-cell technologies has allowed the high-dimensional transcriptomic and proteomic profiling of individual blood and tissue cells. Recent single-cell studies revealed a new cellular heterogeneity of atherosclerotic plaque tissue and allowed a better understanding of distinct immune functional states in the context of atherosclerosis. In this brief review, we describe how single-cell technologies have shed a new light on the cellular composition of atherosclerotic plaques, and their response to diet perturbations or genetic manipulation in mouse models of atherosclerosis. We discuss how single-cell RNA sequencing, cellular indexing of transcriptomes and epitopes by sequencing, transposase-accessible chromatin with high-throughput sequencing, and cytometry by time-of-flight platforms have empowered the identification of discrete immune, endothelial, and smooth muscle cell alterations in atherosclerosis progression and regression. Finally, we review how single-cell approaches have allowed mapping the cellular and molecular composition of human atherosclerotic plaques and the discovery of new immune alterations in plaques from patients with stroke.
Collapse
Affiliation(s)
- Natalia Eberhardt
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, NYU Langone Health, New York (NY), USA.,NYU Cardiovascular Research Center, New York University Grossman School of Medicine, NYU Langone Health, New York (NY), USA
| | - Chiara Giannarelli
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, NYU Langone Health, New York (NY), USA.,NYU Cardiovascular Research Center, New York University Grossman School of Medicine, NYU Langone Health, New York (NY), USA.,Department of Pathology, New York University Grossman School of Medicine, NYU Langone Health, New York (NY), USA.,Correspondence to: Chiara Giannarelli, MD, PhD, 435 East 30th street, Science Building, New York, NY, 10016,
| |
Collapse
|
43
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall, characterized by the formation of plaques containing lipid, connective tissue and immune cells in the intima of large and medium-sized arteries. Over the past three decades, a substantial reduction in cardiovascular mortality has been achieved largely through LDL-cholesterol-lowering regimes and therapies targeting other traditional risk factors for cardiovascular disease, such as hypertension, smoking, diabetes mellitus and obesity. However, the overall benefits of targeting these risk factors have stagnated, and a huge global burden of cardiovascular disease remains. The indispensable role of immunological components in the establishment and chronicity of atherosclerosis has come to the forefront as a clinical target, with proof-of-principle studies demonstrating the benefit and challenges of targeting inflammation and the immune system in cardiovascular disease. In this Review, we provide an overview of the role of the immune system in atherosclerosis by discussing findings from preclinical research and clinical trials. We also identify important challenges that need to be addressed to advance the field and for successful clinical translation, including patient selection, identification of responders and non-responders to immunotherapies, implementation of patient immunophenotyping and potential surrogate end points for vascular inflammation. Finally, we provide strategic guidance for the translation of novel targets of immunotherapy into improvements in patient outcomes. In this Review, the authors provide an overview of the immune cells involved in atherosclerosis, discuss preclinical research and published and ongoing clinical trials assessing the therapeutic potential of targeting the immune system in atherosclerosis, highlight emerging therapeutic targets from preclinical studies and identify challenges for successful clinical translation. Inflammation is an important component of the pathophysiology of cardiovascular disease; an imbalance between pro-inflammatory and anti-inflammatory processes drives chronic inflammation and the formation of atherosclerotic plaques in the vessel wall. Clinical trials assessing canakinumab and colchicine therapies in atherosclerotic cardiovascular disease have provided proof-of-principle of the benefits associated with therapeutic targeting of the immune system in atherosclerosis. The immunosuppressive adverse effects associated with the systemic use of anti-inflammatory drugs can be minimized through targeted delivery of anti-inflammatory drugs to the atherosclerotic plaque, defining the window of opportunity for treatment and identifying more specific targets for cardiovascular inflammation. Implementing immunophenotyping in clinical trials in patients with atherosclerotic cardiovascular disease will allow the identification of immune signatures and the selection of patients with the highest probability of deriving benefit from a specific therapy. Clinical stratification via novel risk factors and discovery of new surrogate markers of vascular inflammation are crucial for identifying new immunotherapeutic targets and their successful translation into the clinic.
Collapse
|
44
|
Fan Y, Zhou H, Liu X, Li J, Xu K, Fu X, Ye L, Li G. Applications of Single-Cell RNA Sequencing in Cardiovascular Research. Front Cell Dev Biol 2022; 9:810232. [PMID: 35174168 PMCID: PMC8841340 DOI: 10.3389/fcell.2021.810232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/14/2021] [Indexed: 11/28/2022] Open
Abstract
In recent years, cardiovascular disease (CVD) continues to be the leading cause of global disease burden. Extensive efforts have been made across basic, translational, and clinical research domains to curb the CVD epidemic and improve the health of the population. The successful completion of the Human Genome Project catapulted sequencing technology into the mainstream and aroused the interests of clinicians and scientific researchers alike. Advances in single-cell RNA sequencing (scRNA-seq), which is based on the transcriptional phenotypes of individual cells, have enabled the investigation of cellular fate, heterogeneity, and cell–cell interactions, as well as cell lineage determination, at a single-cell resolution. In this review, we summarize recent findings on the embryological development of the cardiovascular system and the pathogenesis and treatment of cardiovascular disease, as revealed by scRNA-seq technology. In particular, we discuss how scRNA-seq can help identify potential targets for the treatment of cardiovascular diseases and conclude with future perspectives for scRNA-seq.
Collapse
Affiliation(s)
- Yu Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Obstetrics, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Han Zhou
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xuexue Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jingyan Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Ke Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xiaodong Fu
- Department of Obstetrics, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lei Ye
- National Heart Research Institute of Singapore, Singapore, Singapore
- *Correspondence: Lei Ye, ; Guang Li,
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- *Correspondence: Lei Ye, ; Guang Li,
| |
Collapse
|
45
|
Tomas L, Prica F, Schulz C. Trafficking of Mononuclear Phagocytes in Healthy Arteries and Atherosclerosis. Front Immunol 2021; 12:718432. [PMID: 34759917 PMCID: PMC8573388 DOI: 10.3389/fimmu.2021.718432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Monocytes and macrophages play essential roles in all stages of atherosclerosis – from early precursor lesions to advanced stages of the disease. Intima-resident macrophages are among the first cells to be confronted with the influx and retention of apolipoprotein B-containing lipoproteins at the onset of hypercholesterolemia and atherosclerosis development. In this review, we outline the trafficking of monocytes and macrophages in and out of the healthy aorta, as well as the adaptation of their migratory behaviour during hypercholesterolemia. Furthermore, we discuss the functional and ontogenetic composition of the aortic pool of mononuclear phagocytes and its link to the atherosclerotic disease process. The development of mouse models of atherosclerosis regression in recent years, has enabled scientists to investigate the behaviour of monocytes and macrophages during the resolution of atherosclerosis. Herein, we describe the dynamics of these mononuclear phagocytes upon cessation of hypercholesterolemia and how they contribute to the restoration of tissue homeostasis. The aim of this review is to provide an insight into the trafficking, fate and disease-relevant dynamics of monocytes and macrophages during atherosclerosis, and to highlight remaining questions. We focus on the results of rodent studies, as analysis of cellular fates requires experimental manipulations that cannot be performed in humans but point out findings that could be replicated in human tissues. Understanding of the biology of macrophages in atherosclerosis provides an important basis for the development of therapeutic strategies to limit lesion formation and promote plaque regression.
Collapse
Affiliation(s)
- Lukas Tomas
- Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Filip Prica
- Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Schulz
- Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
46
|
Abstract
Cardiac lymphangiogenesis plays an important physiological role in the regulation of interstitial fluid homeostasis, inflammatory, and immune responses. Impaired or excessive cardiac lymphatic remodeling and insufficient lymph drainage have been implicated in several cardiovascular diseases including atherosclerosis and myocardial infarction (MI). Although the molecular mechanisms underlying the regulation of functional lymphatics are not fully understood, the interplay between lymphangiogenesis and immune regulation has recently been explored in relation to the initiation and development of these diseases. In this field, experimental therapeutic strategies targeting lymphangiogenesis have shown promise by reducing myocardial inflammation, edema and fibrosis, and improving cardiac function. On the other hand, however, whether lymphangiogenesis is beneficial or detrimental to cardiac transplant survival remains controversial. In the light of recent evidence, cardiac lymphangiogenesis, a thriving and challenging field has been summarized and discussed, which may improve our knowledge in the pathogenesis of cardiovascular diseases and transplant biology.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Faculty of Welfare and Health Science, Oita University, Oita, 870-1192, Japan.
| |
Collapse
|
47
|
Wang X, Wang R, Jiang L, Xu Q, Guo X. Endothelial repair by stem and progenitor cells. J Mol Cell Cardiol 2021; 163:133-146. [PMID: 34743936 DOI: 10.1016/j.yjmcc.2021.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
The integrity of the endothelial barrier is required to maintain vascular homeostasis and fluid balance between the circulatory system and surrounding tissues and to prevent the development of vascular disease. However, the origin of the newly developed endothelial cells is still controversial. Stem and progenitor cells have the potential to differentiate into endothelial cell lines and stimulate vascular regeneration in a paracrine/autocrine fashion. The one source of new endothelial cells was believed to come from the bone marrow, which was challenged by the recent findings. By administration of new techniques, including genetic cell lineage tracing and single cell RNA sequencing, more solid data were obtained that support the concept of stem/progenitor cells for regenerating damaged endothelium. Specifically, it was found that tissue resident endothelial progenitors located in the vessel wall were crucial for endothelial repair. In this review, we summarized the latest advances in stem and progenitor cell research in endothelial regeneration through findings from animal models and discussed clinical data to indicate the future direction of stem cell therapy.
Collapse
Affiliation(s)
- Xuyang Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruilin Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liujun Jiang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
48
|
Jiang L, Chen T, Sun S, Wang R, Deng J, Lyu L, Wu H, Yang M, Pu X, Du L, Chen Q, Hu Y, Hu X, Zhou Y, Xu Q, Zhang L. Nonbone Marrow CD34 + Cells Are Crucial for Endothelial Repair of Injured Artery. Circ Res 2021; 129:e146-e165. [PMID: 34474592 DOI: 10.1161/circresaha.121.319494] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Liujun Jiang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu)
| | - Ting Chen
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu).,Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang Province, China (T. Chen)
| | - Shasha Sun
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu).,Department of Cardiology and Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China. (S. Sun, M. Yang, Q. Chen, L. Zhang)
| | - Ruilin Wang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu)
| | - Jiacheng Deng
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu)
| | - Lingxia Lyu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu)
| | - Hong Wu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu)
| | - Mei Yang
- Department of Cardiology and Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China. (S. Sun, M. Yang, Q. Chen, L. Zhang)
| | - Xiangyuan Pu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu)
| | - Luping Du
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu)
| | - Qishan Chen
- Department of Cardiology and Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China. (S. Sun, M. Yang, Q. Chen, L. Zhang)
| | - Yanhua Hu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu)
| | - Xiaosheng Hu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu)
| | - Yijiang Zhou
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu)
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China (L. Jiang, T. Chen, S. Sun, R. Wang, J. Deng, L. Lyu, H. Wu, X. Pu, L. Du, Y. Hu, X. Hu, Y. Zhou, Q. Xu).,Centre for Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom (Q. Xu)
| | - Li Zhang
- Department of Cardiology and Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China. (S. Sun, M. Yang, Q. Chen, L. Zhang)
| |
Collapse
|
49
|
Kan H, Zhang K, Mao A, Geng L, Gao M, Feng L, You Q, Ma X. Single-cell transcriptome analysis reveals cellular heterogeneity in the ascending aortas of normal and high-fat diet-fed mice. Exp Mol Med 2021; 53:1379-1389. [PMID: 34548614 PMCID: PMC8492660 DOI: 10.1038/s12276-021-00671-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 01/26/2023] Open
Abstract
The aorta contains numerous cell types that contribute to vascular inflammation and thus the progression of aortic diseases. However, the heterogeneity and cellular composition of the ascending aorta in the setting of a high-fat diet (HFD) have not been fully assessed. We performed single-cell RNA sequencing on ascending aortas from mice fed a normal diet and mice fed a HFD. Unsupervised cluster analysis of the transcriptional profiles from 24,001 aortic cells identified 27 clusters representing 10 cell types: endothelial cells (ECs), fibroblasts, vascular smooth muscle cells (SMCs), immune cells (B cells, T cells, macrophages, and dendritic cells), mesothelial cells, pericytes, and neural cells. After HFD intake, subpopulations of endothelial cells with lipid transport and angiogenesis capacity and extensive expression of contractile genes were defined. In the HFD group, three major SMC subpopulations showed increased expression of extracellular matrix-degradation genes, and a synthetic SMC subcluster was proportionally increased. This increase was accompanied by upregulation of proinflammatory genes. Under HFD conditions, aortic-resident macrophage numbers were increased, and blood-derived macrophages showed the strongest expression of proinflammatory cytokines. Our study elucidates the nature and range of the cellular composition of the ascending aorta and increases understanding of the development and progression of aortic inflammatory disease.
Collapse
Affiliation(s)
- Hao Kan
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Ka Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiqin Mao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Li Geng
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Mengru Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Qingjun You
- Department of Thoracic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xin Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
50
|
Long-circulating XTEN864-annexin A5 fusion protein for phosphatidylserine-related therapeutic applications. Apoptosis 2021; 26:534-547. [PMID: 34405304 PMCID: PMC8370750 DOI: 10.1007/s10495-021-01686-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 01/21/2023]
Abstract
Annexin A5 (anxA5) is a marker for apoptosis, but has also therapeutic potential in cardiovascular diseases, cancer, and, due to apoptotic mimicry, against dangerous viruses, which is limited by the short blood circulation. An 864-amino-acid XTEN polypeptide was fused to anxA5. XTEN864-anxA5 was expressed in Escherichia coli and purified using XTEN as tag. XTEN864-anxA5 was coupled with DTPA and indium-111. After intravenous or subcutaneous injection of 111In-XTEN864-anxA5, mouse blood samples were collected for blood half-life determination and organ samples for biodistribution using a gamma counter. XTEN864-anxA5 was labeled with 6S-IDCC to confirm binding to apoptotic cells using flow cytometry. To demonstrate targeting of atherosclerotic plaques, XTEN864-anxA5 was labeled with MeCAT(Ho) and administered intravenously to atherosclerotic ApoE−/− mice. MeCAT(Ho)-XTEN864-anxA5 was detected together with MeCAT(Tm)-MAC-2 macrophage antibodies by imaging mass cytometry (CyTOF) of aortic root sections. The ability of anxA5 to bind apoptotic cells was not affected by XTEN864. The blood half-life of XTEN864-anxA5 was 13 h in mice after IV injection, markedly longer than the 7-min half-life of anxA5. 96 h after injection, highest amounts of XTEN864-anxA5 were found in liver, spleen, and kidney. XTEN864-anxA5 was found to target the adventitia adjacent to atherosclerotic plaques. XTEN864-anxA5 is a long-circulating fusion protein that can be efficiently produced in E. coli and potentially circulates in humans for several days, making it a promising therapeutic drug.
Collapse
|