1
|
Choi DH, Kang SK, Lee KE, Jung J, Kim EJ, Kim WH, Kwon YG, Kim KP, Jo I, Park YS, Park SI. Nitrosylation of β2-Tubulin Promotes Microtubule Disassembly and Differentiated Cardiomyocyte Beating in Ischemic Mice. Tissue Eng Regen Med 2023; 20:921-937. [PMID: 37679590 PMCID: PMC10519925 DOI: 10.1007/s13770-023-00582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Beating cardiomyocyte regeneration therapies have revealed as alternative therapeutics for heart transplantation. Nonetheless, the importance of nitric oxide (NO) in cardiomyocyte regeneration has been widely suggested, little has been reported concerning endogenous NO during cardiomyocyte differentiation. METHODS Here, we used P19CL6 cells and a Myocardiac infarction (MI) model to confirm NO-induced protein modification and its role in cardiac beating. Two tyrosine (Tyr) residues of β2-tubulin (Y106 and Y340) underwent nitrosylation (Tyr-NO) by endogenously generated NO during cardiomyocyte differentiation from pre-cardiomyocyte-like P19CL6 cells. RESULTS Tyr-NO-β2-tubulin mediated the interaction with Stathmin, which promotes microtubule disassembly, and was prominently observed in spontaneously beating cell clusters and mouse embryonic heart (E11.5d). In myocardial infarction mice, Tyr-NO-β2-tubulin in transplanted cells was closely related with cardiac troponin-T expression with their functional recovery, reduced infarct size and thickened left ventricular wall. CONCLUSION This is the first discovery of a new target molecule of NO, β2-tubulin, that can promote normal cardiac beating and cardiomyocyte regeneration. Taken together, we suggest therapeutic potential of Tyr-NO-β2-tubulin, for ischemic cardiomyocyte, which can reduce unexpected side effect of stem cell transplantation, arrhythmogenesis.
Collapse
Affiliation(s)
- Da Hyeon Choi
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Seong Ki Kang
- Division of Intractable Diseases, Center for Biomedical Sciences, Korea National Institute of Health (KNIH), Cheongju, Republic of Korea
- Department of Laboratory Medicine, Green Cross Laboratories, Yongin, Republic of Korea
| | - Kyeong Eun Lee
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Jongsun Jung
- AI Drug Platform Center, Syntekabio, Daejeon, Republic of Korea
| | - Eun Ju Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin, Republic of Korea
| | - Won-Ho Kim
- Division of Cardiovascular and Rare Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, College of Ewha Womans University, Seoul, Republic of Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Yoon Shin Park
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea.
| | - Sang Ick Park
- Division of Intractable Diseases, Center for Biomedical Sciences, Korea National Institute of Health (KNIH), Cheongju, Republic of Korea.
| |
Collapse
|
2
|
Guru SA, Saha P, Chen L, Tulshyan A, Ge ZD, Baily J, Simons L, Stefanowicz A, Bilewska A, Mehta V, Mishra R, Sharma S, Ali A, Krishnan S, Kaushal S. HSF-1 enhances cardioprotective potential of stem cells via exosome biogenesis and their miRNA cargo enrichment. Stem Cell Rev Rep 2023; 19:2038-2051. [PMID: 37261668 DOI: 10.1007/s12015-023-10565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Stem cell therapy provides a hope to no option heart disease patient group. Stem cells work via different mechanisms of which paracrine mechanism is reported to justify most of the effects. Therefore, identifying the control arms for paracrine cocktail production is necessary to tailor stem cell functions in disease contextual manner. In this study, we describe a novel paracrine cocktail regulatory axis, in stem cells, to enhance their cardioprotective abilities. We identified that HSF1 knockout resulted in reduced cardiac regenerative abilities of mesenchymal stem cells (MSCs) while its overexpression had opposite effects. Altered exosome biognesis and their miRNA cargo enrichment were found to be underlying these altered regenerative abilities. Decreased production of exosomes by MSCs accompanied their loss of HSF1 and vice versa. Moreover, the exosomes derived from HSF1 depleted MSCs showed significantly reduced candidate miRNA expression (miR-145, miR-146, 199-3p, 199b and miR-590) compared to those obtained from HSF1 overexpressing MSCs. We further discovered that HSF1 mediates miRNAs' enrichment into exosomes via Y binding protein 1 (YBX1) and showed, by loss and gain of function strategies, that miRNAs' enrichment in mesenchymal stem cell derived exosomes is deregulated with altered YBX1 expression. It was finally demonstrated that absence of YBX1 in MSCs, with normal HSF1 expression, resulted in significant accumulation of candidate miRNAs into the cells. Together, our data shows that HSF1 plays a critical role in determining the regenerative potential of stem cells. HSF1 does that by affecting exosome biogenesis and miRNA cargo sorting via regulation of YBX1 gene expression.
Collapse
Affiliation(s)
- Sameer Ahmad Guru
- Deininger Lab, Versiti, Blood Research Institute, Milwaukee, WI, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Progyaparamita Saha
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Ling Chen
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Antariksh Tulshyan
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Zhi-Dong Ge
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Jeanette Baily
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Lydia Simons
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Artur Stefanowicz
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Agata Bilewska
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Vivek Mehta
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Rachana Mishra
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Sudhish Sharma
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Asif Ali
- David Pincus lab, Molecular Genetics and Cell Biology Committee on Cancer Biology, Chicago University, Chicago, IL, USA
| | - Swetha Krishnan
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Sunjay Kaushal
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA.
| |
Collapse
|
3
|
The Prescription of Oral Mucosal Mesenchymal Stem Cells post-Traumatic Brain Injury Improved the Kidney and Heart Inflammation and Oxidative Stress. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8235961. [PMID: 36408281 PMCID: PMC9671733 DOI: 10.1155/2022/8235961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022]
Abstract
Background In the last years, mesenchymal stem cells (MSCs) have been considered as a useful strategy to treat many diseases such as traumatic brain injury (TBI). The production of inflammatory agents by TBI elicits an inflammatory response directed to other systems of body, such as the heart and the kidneys. In this study, the efficacy of oral mucosal mesenchymal stem cells (OMSCs) prescription after TBI in inflammation and oxidative stress of the heart and kidneys was evaluated. Methods Twenty-four male rats were located in groups as follows: sham, TBI, vehicle (Veh), and stem cell (SC). OMSCs were injected intravenously 1 and 24 hours after TBI. Inflammatory, oxidative stress, and histopathological outcomes of the heart and kidney tissues were investigated 48 hours after TBI. Results TBI caused an increase in the level of interleukin-1β (IL-1β), interleukin-6 (IL-6), malondialdehyde (MDA), and carbonyl protein (PC) of the heart and kidney compared to the sham group. Superoxide dismutase (SOD), total antioxidant capacity (TAC), catalase (CAT), and interleukin-10 (IL-10) of the heart and kidney decreased after TBI. The use of OMSCs after TBI reduced the changes of these factors in both the heart and the kidney. Conclusion Application of OMSCs after TBI can decrease inflammation and oxidative stress of the heart and kidney tissues leading to the reduction of damage. Therefore, this method can be evaluated in the TBI patients in future studies.
Collapse
|
4
|
Csöbönyeiová M, Beerová N, Klein M, Debreová-Čeháková M, Danišovič Ľ. Cell-Based and Selected Cell-Free Therapies for Myocardial Infarction: How Do They Compare to the Current Treatment Options? Int J Mol Sci 2022; 23:10314. [PMID: 36142245 PMCID: PMC9499607 DOI: 10.3390/ijms231810314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Because of cardiomyocyte death or dysfunction frequently caused by myocardial infarction (MI), heart failure is a leading cause of morbidity and mortality in modern society. Paradoxically, only limited and non-curative therapies for heart failure or MI are currently available. As a result, over the past two decades research has focused on developing cell-based approaches promoting the regeneration of infarcted tissue. Cell-based therapies for myocardial regeneration include powerful candidates, such as multipotent stem cells (mesenchymal stem cells (MSCs), bone-marrow-derived stem cells, endothelial progenitor cells, and hematopoietic stem cells) and induced pluripotent stem cells (iPSCs). These possess unique properties, such as potency to differentiate into desired cell types, proliferation capacity, and patient specificity. Preclinical and clinical studies have demonstrated modest improvement in the myocardial regeneration and reduced infarcted areas upon transplantation of pluripotent or multipotent stem cells. Another cell population that need to be considered as a potential source for cardiac regeneration are telocytes found in different organs, including the heart. Their therapeutic effect has been studied in various heart pathologies, such as MI, arrhythmias, or atrial amyloidosis. The most recent cell-free therapeutic tool relies on the cardioprotective effect of complex cargo carried by small membrane-bound vesicles-exosomes-released from stem cells via exocytosis. The MSC/iPSC-derived exosomes could be considered a novel exosome-based therapy for cardiovascular diseases thanks to their unique content. There are also other cell-free approaches, e.g., gene therapy, or acellular cardiac patches. Therefore, our review provides the most recent insights into the novel strategies for myocardial repair based on the regenerative potential of different cell types and cell-free approaches.
Collapse
Affiliation(s)
- Mária Csöbönyeiová
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Nikoleta Beerová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Martin Klein
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Michaela Debreová-Čeháková
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ľuboš Danišovič
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
5
|
Fang J, Li JJ, Zhong X, Zhou Y, Lee RJ, Cheng K, Li S. Engineering stem cell therapeutics for cardiac repair. J Mol Cell Cardiol 2022; 171:56-68. [PMID: 35863282 DOI: 10.1016/j.yjmcc.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/18/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Cardiovascular disease is the leading cause of death in the world. Stem cell-based therapies have been widely investigated for cardiac regeneration in patients with heart failure or myocardial infarction (MI) and surged ahead on multiple fronts over the past two decades. To enhance cellular therapy for cardiac regeneration, numerous engineering techniques have been explored to engineer cells, develop novel scaffolds, make constructs, and deliver cells or their derivatives. This review summarizes the state-of-art stem cell-based therapeutics for cardiac regeneration and discusses the emerged bioengineering approaches toward the enhancement of therapeutic efficacy of stem cell therapies in cardiac repair. We cover the topics in stem cell source and engineering, followed by stem cell-based therapies such as cell aggregates and cell sheets, and biomaterial-mediated stem cell therapies such as stem cell delivery with injectable hydrogel, three-dimensional scaffolds, and microneedle patches. Finally, we discuss future directions and challenges of engineering stem cell therapies for clinical translation.
Collapse
Affiliation(s)
- Jun Fang
- Department of Bioengineering, Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jennifer J Li
- Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, USA
| | - Xintong Zhong
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Zhou
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Randall J Lee
- Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, USA
| | - Ke Cheng
- Department of Biomedical Engineering, North Carolina State University, NC, USA
| | - Song Li
- Department of Bioengineering, Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, California 90095, USA.
| |
Collapse
|
6
|
Therapeutic Potential of Mesenchymal Stem Cells versus Omega n − 3 Polyunsaturated Fatty Acids on Gentamicin-Induced Cardiac Degeneration. Pharmaceutics 2022; 14:pharmaceutics14071322. [PMID: 35890218 PMCID: PMC9319609 DOI: 10.3390/pharmaceutics14071322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/28/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
This study compared the cardioprotective action of mesenchymal stem cells (MSCs) and PUFAs in a rat model of gentamicin (GM)-induced cardiac degeneration. Male Wistar albino rats were randomized into four groups of eight rats each: group I (control group), group II (gentamicin-treated rats receiving gentamicin intraperitoneally (IP) at dose of 100 mg/kg/day for 10 consecutive days), group III (gentamicin and PUFA group receiving gentamicin IP at dose of 100 mg/kg/day for 10 consecutive days followed by PUFAs at a dose of 100 mg/kg/day for 4 weeks), and group IV (gentamicin and MSC group receiving gentamicin IP at dose of 100 mg/kg/day followed by a single dose of MSCs (1 × 106)/rat IP). Cardiac histopathology was evaluated via light and electron microscopy. Immunohistochemical detection of proliferating cell nuclear antigen (PCNA), caspase-3 (apoptosis), Bcl2, and Bax expression was performed. Moreover, cardiac malonaldehyde (MDA) content, catalase activity, and oxidative stress parameters were biochemically evaluated. Light and electron microscopy showed that both MSCs and PUFAs had ameliorative effects. Their actions were mediated by upregulating PCNA expression, downregulating caspase-3 expression, mitigating cardiac MDA content, catalase activity, and oxidative stress parameters. MSCs and PUFAs had ameliorative effects against gentamicin-induced cardiac degeneration, with MSCs showing higher efficacy compared to PUFAs.
Collapse
|
7
|
A dual crosslinked hydrogel-mediated integrated peptides and BMSC therapy for myocardial regeneration. J Control Release 2022; 347:127-142. [PMID: 35460706 DOI: 10.1016/j.jconrel.2022.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Accepted: 04/08/2022] [Indexed: 12/27/2022]
Abstract
The efficacy of myocardial regeneration strategies for myocardial infarction (MI) is significantly compromised by the complex structure and microenvironment of the myocardium. Although tissue engineering strategies based on cell therapy and/or pro-angiogenesis can somewhat improve cardiac function, the lack of proper myocardial materials that can withstand sustained deformability and adaptable mechanical properties severely affects myocardial wall integrity, systolic-diastolic cycles, and regeneration. Herein, we developed an integrated single "all-in-one" in situ dual crosslinking conductive hydrogel with favorable treatment properties termed as MaHA/B-G-SH/Fe3+ by ionic interactions and chemical covalency based on modified hyaluronic acid (HA), gelatin (G), and Fe3+. The resulting dual crosslinking dynamic hydrogel not only provides self-healing and mechanical properties adapted to the myocardial systolic-diastolic cycle with simultaneous electrical signal transmission to fibrous islands and normal tissue, but also leads to significant increase of the myocardial wall thickness very close to that of normal myocardium upon one single injection with complete degradation within 28 days. Notably, the hydrogel covalently conjugated with a tailored peptide sequence of GGR-KLT and encapsulated with bone mesenchymal stem cells (BMSCs) was further used for in situ injection in a rat MI model, which exhibited (i) efficient inhibition of excessive matrix degradation dependent on early MMP-2 expression, (ii) triggered on-demand release of KLT for at least 14 days and significant promotion of angiogenesis, and (iii) synergistic BMSCs considerably enhanced myocardial regeneration within 28 days. Taken together, the dual crosslinking conductive hydrogel-mediated synergistic peptide and cell therapy provides comprehensive recovery and regeneration of the structure and function of the injured myocardium, thus demonstrating great potential for clinical translations.
Collapse
|
8
|
Kadekar S, Barbe L, Stoddart M, Varghese OP, Tenje M, Mestres G. Effect of the Addition Frequency of 5-Azacytidine in Both Micro- and Macroscale Cultures. Cell Mol Bioeng 2021; 14:121-130. [PMID: 33633814 PMCID: PMC7878657 DOI: 10.1007/s12195-020-00654-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Human mesenchymal stem cells (hMSCs) have a great clinical potential for tissue regeneration purposes due to its multilineage capability. Previous studies have reported that a single addition of 5-azacytidine (5-AzaC) causes the differentiation of hMSCs towards a myocardial lineage. The aim of this work was to evaluate the effect of 5-AzaC addition frequency on hMSCs priming (i.e., indicating an early genetic differentiation) using two culture environments. METHODS hMSCs were supplemented with 5-AzaC while cultured in well plates and in microfluidic chips. The impact of 5-AzaC concentration (10 and 20 μM) and addition frequency (once, daily or continuously), as well as of culture period (2 or 5 days) on the genetic upregulation of PPARγ (adipocytes), PAX3 (myoblasts), SOX9 (chondrocytes) and RUNX2 (osteoblasts) was evaluated. RESULTS Daily delivering 5-AzaC caused a higher upregulation of PPARγ, SOX9 and RUNX2 in comparison to a single dose delivery, both under static well plates and dynamic microfluidic cultures. A particularly high gene expression of PPARγ (tenfold-change) could indicate priming of hMSCs towards adipocytes. CONCLUSIONS Both macro- and microscale cultures provided results with similar trends, where addition frequency of 5-AzaC was a crucial factor to upregulate several genes. Microfluidics technology was proven to be a suitable platform for the continuous delivery of a drug and could be used for screening purposes in tissue engineering research.
Collapse
Affiliation(s)
- Sandeep Kadekar
- Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21 Uppsala, Sweden
| | - Laurent Barbe
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Box 35, 751 03 Uppsala, Sweden
| | | | - Oommen P. Varghese
- Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21 Uppsala, Sweden
| | - Maria Tenje
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Box 35, 751 03 Uppsala, Sweden
| | - Gemma Mestres
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Box 35, 751 03 Uppsala, Sweden
| |
Collapse
|
9
|
Markmee R, Aungsuchawan S, Tancharoen W, Narakornsak S, Pothacharoen P. Differentiation of cardiomyocyte-like cells from human amniotic fluid mesenchymal stem cells by combined induction with human platelet lysate and 5-azacytidine. Heliyon 2020; 6:e04844. [PMID: 32995593 PMCID: PMC7502343 DOI: 10.1016/j.heliyon.2020.e04844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/01/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
Human amniotic fluid mesenchymal stem cells (hAF-MSCs) have been shown to be effective in the treatment of many diseases. Platelet lysate (PL) contains multiple growth and differentiation factors; therefore, it can be used as a differentiation inducer. In this study, we attempted to evaluate the efficiency of human platelet lysate (hPL) on cell viability and the effects on cardiomyogenic differentiation of hAF-MSCs. When treating the cells with hPL, the result showed an increase in cell viability. Expressions of cardiomyogenic specific genes, including GATA4, cTnT, Cx43 and Nkx2.5, were higher in the combined treatment groups of 5-azacytidine (5-aza) and hPL than the expressions of cardiomyogenic specific genes in the control group and in the 5-aza treatment group. In terms of the results of immunofluorescence and immunoenzymatic staining, the highest expressions of cardiomyogenic specific proteins were revealed in combined treatment groups. It can be summarized that hPL may be an effective supporting cardiomyogenic supplementary factor for cardiomyogenic differentiation in hAF-MSCs.
Collapse
Affiliation(s)
- Runchana Markmee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sirinda Aungsuchawan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Waleephan Tancharoen
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Suteera Narakornsak
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Peraphan Pothacharoen
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
10
|
Mittal R, Jhaveri VM, McMurry HS, Kay SIS, Sutherland KJ, Nicole L, Mittal J, Jayant RD. Recent treatment modalities for cardiovascular diseases with a focus on stem cells, aptamers, exosomes and nanomedicine. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:831-840. [PMID: 29447002 DOI: 10.1080/21691401.2018.1436555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Due to the significant impact of CVD on humans, there is a need to develop novel treatment modalities tailored to major classes of cardiac diseases including hypertension, coronary artery disease, cardiomyopathies, arrhythmias, valvular disease and inflammatory diseases. In this article, we discuss recent advancements regarding development of therapeutic strategies based on stem cells, aptamers, exosomes, drug-eluting and dissolvable stents, immunotherapy and nanomedicine for the treatment of CVD. We summarize current research and clinical advances in cardiovascular therapeutics, with a focus on therapies that move beyond current oral- or sublingual-based regimens. This review article provides insight into current research and future treatment strategies that hold a great relevance for future clinical practice in pursuit of improving quality of life of patients suffering from CVD.
Collapse
Affiliation(s)
- Rahul Mittal
- a Department of Otolaryngology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Vasanti M Jhaveri
- a Department of Otolaryngology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Hannah S McMurry
- a Department of Otolaryngology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Sae-In Samantha Kay
- b Dr. Kiran C. Patel College of Osteopathic Medicine , Nova Southeastern University , Fort Lauderdale , FL , USA
| | - Kyle J Sutherland
- a Department of Otolaryngology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Lin Nicole
- a Department of Otolaryngology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Jeenu Mittal
- a Department of Otolaryngology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Rahul Dev Jayant
- c Department of Immunology , Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University , Miami , FL , USA
| |
Collapse
|
11
|
Haider KH, Aziz S, Al-Reshidi MA. Endothelial progenitor cells for cellular angiogenesis and repair: lessons learned from experimental animal models. Regen Med 2017; 12:969-982. [PMID: 29215316 DOI: 10.2217/rme-2017-0074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stem/progenitor cell-based therapy has been extensively studied for angiomyogenic repair of the ischemic heart by regeneration of the damaged myocytes and neovascularization of the ischemic tissue through biological bypassing. Given their inherent ability to assume functionally competent endothelial phenotype and release of broad array of proangiogenic cytokines, endothelial progenitor cells (EPCs)-based therapy is deemed as most appropriate for vaculogenesis in the ischemic heart. Emulating the natural repair process that encompasses mobilization and homing-in of the bone marrow and peripheral blood EPCs, their reparability has been extensively studied in the animal models of myocardial ischemia with encouraging results. Our literature review is a compilation of the lessons learned from the use of EPCs in experimental animal models with emphasis on the in vitro manipulation and delivery strategies to enhance their retention, survival and functioning post-engraftment in the heart.
Collapse
Affiliation(s)
| | - Salim Aziz
- Department of CV Surgery, George Washington University, 2440 M Street NW, Suite 505, Washington DC 20037, USA
| | - Mateq Ali Al-Reshidi
- Department of Basic Sciences, Sulaiman Al Rajhi Colleges, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Gu SR, Kang YG, Shin JW, Shin JW. Simultaneous engagement of mechanical stretching and surface pattern promotes cardiomyogenic differentiation of human mesenchymal stem cells. J Biosci Bioeng 2016; 123:252-258. [PMID: 27546303 DOI: 10.1016/j.jbiosc.2016.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/28/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022]
Abstract
It has been widely recognized and proved that biophysical factors for mimicking in vivo conditions should be also considered to have stem cells differentiated into desired cell type in vitro along with biochemical factors. Biophysical factors include substrate and biomechanical conditions. This study focused on the effect of biomimetic mechanical stretching along with changes in substrate topography to influence on cardiomyogenic differentiation of human mesenchymal stem cells (hMSCs). Elastic micropatterned substrates were made to mimic the geometric conditions surrounding cells in vivo. To mimic biomechanical conditions due to beating of the heart, mechanical stretching was applied parallel to the direction of the pattern (10% elongation, 0.5 Hz, 4 h/day). Suberoylanilide hydroxamic acid (SAHA) was used as a biochemical factor. The micropatterned substrate was found more effective in the alignment of cytoskeleton and cardiomyogenic differentiation compared with flat substrate. Significantly higher expression levels of related markers [GATA binding protein 4 (GATA4), troponin I, troponin T, natriuretic peptide A (NPPA)] were observed when mechanical stretching was engaged on micropatterned substrate. In addition, 4 days of mechanical stretching was associated with higher levels of expression than 2 days of stretching. These results indicate that simultaneous engagement of biomimetic environment such as substrate pattern and mechanical stimuli effectively promotes the cardiomyogenic differentiation of hMSCs in vitro. The suggested method which tried to mimic in vivo microenvironment would provide systematic investigation to control cardiomyogenic differentiation of hMSCs.
Collapse
Affiliation(s)
- Seo Rin Gu
- Department of Health Science and Technology, Inje University, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Yun Gyeong Kang
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Ji Won Shin
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Jung-Woog Shin
- Department of Health Science and Technology, Inje University, Gimhae, Gyeongnam 50834, Republic of Korea; Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam 50834, Republic of Korea; Cardiovascular and Metabolic Disease Center/Institute of Aged Life Redesign/UHARC, Inje University, Gimhae, Gyeongnam 50834, Republic of Korea.
| |
Collapse
|
13
|
Viral-mediated fusion of mesenchymal stem cells with cells of the infarcted heart hinders healing via decreased vascularization and immune modulation. Sci Rep 2016; 6:20283. [PMID: 26846200 PMCID: PMC4742880 DOI: 10.1038/srep20283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/30/2015] [Indexed: 12/31/2022] Open
Abstract
Cell fusion can occur between mesenchymal stem cells (MSCs) transplanted to improve cardiac function and cells of the recipient. The therapeutic benefit or detriment of resultant cell hybrids is unknown. Here we augment fusion of transplanted MSCs with recipient cardiac cell types via viral fusogens to determine how cardiac function is impacted. Using a Cre/LoxP-based luciferase reporter system coupled to biophotonic imaging and echocardiography, we found that augmenting fusion with the vesicular stomatitis virus glycoprotein (VSVG) increased the amount of fusion in the recipient mouse heart, but led to diminished cardiac function. Specifically, MSCs transfected with VSVG (MSC-VSVG) had the lowest mean fold increase in fractional area change (FAC) and cardiac output (CO). Although the amount of fusion detected had a strong positive correlation (Pearson) with fractional area change and cardiac output at day 7, this effect was lost by day 28. The decrease in cardiac function seen with MSC-VSVG treatment versus MSC alone or sham treatment was associated with decreased MSC retention, altered immune cell responsiveness and reduced vascularization in the heart. This outcome garners consideration in the context of cellular transplantation to damaged tissues, those with viral infection or other microenvironmental conditions that might promote fusion.
Collapse
|
14
|
Masumoto H, Matsuo T, Yamamizu K, Uosaki H, Narazaki G, Katayama S, Marui A, Shimizu T, Ikeda T, Okano T, Sakata R, Yamashita JK. Pluripotent stem cell-engineered cell sheets reassembled with defined cardiovascular populations ameliorate reduction in infarct heart function through cardiomyocyte-mediated neovascularization. Stem Cells 2012; 30:1196-205. [PMID: 22438013 DOI: 10.1002/stem.1089] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although stem cell therapy is a promising strategy for cardiac restoration, the heterogeneity of transplanted cells has been hampering the precise understanding of the cellular and molecular mechanisms. Previously, we established a cardiovascular cell differentiation system from mouse pluripotent stem cells, in which cardiomyocytes (CMs), endothelial cells (ECs), and mural cells (MCs) can be systematically induced and purified. Combining this with cell sheet technology, we generated cardiac tissue sheets reassembled with defined cardiovascular populations. Here, we show the potentials and mechanisms of cardiac tissue sheet transplantation in cardiac function after myocardial infarction (MI). Transplantation of the cardiac tissue sheet to a rat MI model showed significant and sustained improvement of systolic function accompanied by neovascularization. Reduction of the infarct wall thinning and fibrotic length indicated the attenuation of left ventricular remodeling. Cell tracing with species-specific fluorescent in situ hybridization after transplantation revealed a relatively early loss of transplanted cells and an increase in endogenous neovascularization in the proximity of the graft, suggesting an indirect angiogenic effect of cardiac tissue sheets rather than direct CM contributions. We prospectively dissected the functional mechanisms with cell type-controlled sheet analyses. Sheet CMs were the main source of vascular endothelial growth factor. Transplantation of sheets lacking CMs resulted in the disappearance of neovascularization and subsequent functional improvement, indicating that the beneficial effects of the sheet were achieved by sheet CMs. ECs and MCs enhanced the sheet functions and structural integration. Supplying CMs to ischemic regions with cellular interaction could be a strategic key in future cardiac cell therapy.
Collapse
Affiliation(s)
- Hidetoshi Masumoto
- Department of Stem Cell Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Numasawa Y, Kimura T, Miyoshi S, Nishiyama N, Hida N, Tsuji H, Tsuruta H, Segawa K, Ogawa S, Umezawa A. Treatment of human mesenchymal stem cells with angiotensin receptor blocker improved efficiency of cardiomyogenic transdifferentiation and improved cardiac function via angiogenesis. Stem Cells 2012; 29:1405-14. [PMID: 21755575 DOI: 10.1002/stem.691] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To improve the modest efficacy of mesenchymal stem cell (MSC) transplantation, the treatment of human MSCs with angiotensin receptor blockers (ARBs) was investigated. MSCs were cultured with or without the medium containing 3 μmol/l of ARBs before cardiomyogenic induction. After cardiomyogenic induction in vitro, cardiomyogenic transdifferentiation efficiency (CTE) was calculated by immunocytochemistry using anticardiac troponin-I antibody. In the nude rat chronic myocardial infarction model, we injected MSCs pretreated with candesartan (A-BM; n = 18) or injected MSCs without pretreatment of candesartan (BM; n = 25), each having survived for 2 weeks. The left ventricular function, as measured by echocardiogram, was compared with cardiomyogenic transdifferentiation in vivo, as determined by immunohistochemistry. Pretreatment with ARBs significantly increased the CTE in vitro (10.1 ± 0.8 n = 12 vs. 4.6 ± 0.3% n = 25, p < .05). Transplantation of candesartan-pretreated MSCs significantly improved the change in left ventricular ejection fraction (BM; -7.2 ± 2.0 vs. A-BM; 3.3 ± 2.3%). Immunohistochemistry revealed significant improvement of cardiomyogenic transdifferentiation in A-BM in vivo (BM; 0 ± 0 vs. A-BM; 0.014 ± 0.006%). Transplantation of ARB-pretreated MSCs significantly improved cardiac function and can be a promising cardiac stem cell source from which to expect cardiomyogenesis.
Collapse
Affiliation(s)
- Yohei Numasawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Strauer BE, Steinhoff G. 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart: from the methodological origin to clinical practice. J Am Coll Cardiol 2011; 58:1095-104. [PMID: 21884944 DOI: 10.1016/j.jacc.2011.06.016] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/06/2011] [Accepted: 04/07/2011] [Indexed: 12/28/2022]
Abstract
Intracoronary and intramyocardial stem cell therapy aim at the repair of compromised myocardium thereby--as a causal treatment--preventing ventricular remodeling and improving overall performance. Since the first-in-human use of bone marrow stem cells (BMCs) after acute myocardial infarction in 2001, a large number of clinical studies have demonstrated their clinical benefit: BMC therapy can be performed with usual cardiac catheterization techniques in the conscious patient as well as also easily during cardiosurgical interventions. New York Heart Association severity degree of patients as well as physical activity improve in addition to ("on top" of) all other therapeutic regimens. Stem cell therapy also represents an ultimate approach in advanced cardiac failure. For acute myocardial infarction and chronic ischemia, long-term mortality after 1 and 5 years, respectively, is significantly reduced. A few studies also indicate beneficial effects for chronic dilated cardiomyopathy. The clinical use of autologous BMC therapy implies no ethical problems, when unmodified primary cells are used. With the use of primary BMCs, there are no major stem cell-related side effects, especially no cardiac arrhythmias and inflammation. Various mechanisms of the stem cell action in the human heart are discussed, for example, cell transdifferentiation, cell fusion, activation of intrinsic cardiac stem cells, and cytokine-mediated effects. New techniques allow point-of-care cell preparations, for example, within the cardiac intervention or operation theater, thereby providing short preparation time, facilitated logistics of cell transport, and reasonable cost effectiveness of the whole procedure. The 3 main indications are acute infarction, chronic ischemic heart failure, and dilated cardiomyopathy. Future studies are desirable to further elucidate the mechanisms of stem cell action and to extend the current use of intracoronary and/or intramyocardial stem cell therapy by larger and presumably multicenter and randomized trials.
Collapse
|
17
|
Cho J, Zhai P, Maejima Y, Sadoshima J. Myocardial injection with GSK-3β-overexpressing bone marrow-derived mesenchymal stem cells attenuates cardiac dysfunction after myocardial infarction. Circ Res 2011; 108:478-89. [PMID: 21233455 PMCID: PMC3109296 DOI: 10.1161/circresaha.110.229658] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 12/30/2010] [Indexed: 01/01/2023]
Abstract
RATIONALE Glycogen synthase kinase (GSK)-3β upregulates cardiac genes in bone marrow-derived mesenchymal stem cells (MSCs) in vitro. Ex vivo modification of signaling mechanisms in MSCs may improve the efficiency of cardiac cell-based therapy (CBT). OBJECTIVE To test the effect of GSK-3β on the efficiency of CBT with MSCs after myocardial infarction (MI). METHODS AND RESULTS MSCs overexpressing either GSK-3β (GSK-3β-MSCs), LacZ (LacZ-MSCs), or saline was injected into the heart after coronary ligation. A significant improvement in the mortality and left ventricular (LV) function was observed at 12 weeks in GSK-3β-MSC-injected mice compared with in LacZ-MSC- or saline-injected mice. MI size and LV remodeling were reduced in GSK-3β-MSC-injected mice compared with in LacZ-MSC- or saline-injected ones. GSK-3β increased survival and increased cardiomyocyte differentiation of MSCs, as evidenced by activation of an Nkx2.5-LacZ reporter and upregulation of troponin T. Injection of GSK-3β-MSCs induced Ki67-positive myocytes and c-Kit-positive cells, suggesting that GSK-3β-MSCs upregulate cardiac progenitor cells. GSK-3β-MSCs also increased capillary density and upregulated paracrine factors, including vascular endothelial growth factor A (Vegfa). Injection of GSK-3β-MSCs in which Vegfa had been knocked down abolished the increase in survival and capillary density. However, the decrease in MI size and LV remodeling and the improvement of LV function were still observed in MI mice injected with GSK-3β-MSCs without Vegfa. CONCLUSIONS GSK-3β significantly improves the efficiency of CBT with MSCs in the post-MI heart. GSK-3β not only increases survival of MSCs but also induces cardiomyocyte differentiation and angiogenesis through Vegfa-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Jaeyeaon Cho
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
18
|
Suberoylanilide hydroxamic acid promotes cardiomyocyte differentiation of rat mesenchymal stem cells. Exp Cell Res 2009; 315:3044-51. [DOI: 10.1016/j.yexcr.2009.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 05/04/2009] [Accepted: 05/06/2009] [Indexed: 11/20/2022]
|
19
|
Li N, Lu X, Zhao X, Xiang FL, Xenocostas A, Karmazyn M, Feng Q. Endothelial nitric oxide synthase promotes bone marrow stromal cell migration to the ischemic myocardium via upregulation of stromal cell-derived factor-1alpha. Stem Cells 2009; 27:961-70. [PMID: 19353524 DOI: 10.1002/stem.6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aim of this study was to investigate the role of endothelial nitric oxide synthase (eNOS) in the host myocardium on bone marrow mesenchymal stromal cells (MSC) migration to the ischemic myocardium and whether stromal cell-derived factor-1alpha (SDF-1alpha) contributes to eNOS-mediated MSC migration. MSCs and coronary microvascular endothelial cells were isolated from adult wild-type (WT) mouse bone marrow and hearts, respectively. Cultured neonatal cardiomyocytes from WT, eNOS(-/-), and eNOS overexpressing transgenic (Tg) mice were subjected to anoxia and reoxygenation (A/R), and the conditioned medium was used as a chemoattractant for in vitro transendothelial migration assay. MSC migration was decreased in the presence of conditioned medium derived from eNOS(-/-) cardiomyocytes but increased in the presence of eNOS-Tg conditioned medium. SDF-1alpha expression was decreased in eNOS(-/-) but increased in eNOS-Tg cardiomyocytes following A/R and in the myocardium following ischemia/reperfusion (I/R). SDF-1alpha expression was cGMP-dependent as inhibition of soluble guanylyl cyclase decreased SDF-1alpha expression in WT cardiomyocytes. MSCs expressed very low levels of eNOS proteins compared with the adult myocardium. To examine MSC migration in vivo, MSCs derived from mice expressing enhanced green fluorescence protein (EGFP(+)) were intravenously administered to WT mice subjected to myocardial I/R. EGFP(+) cells in the ischemic region were decreased in eNOS(-/-) but increased in eNOS-Tg compared with WT hearts. MSC treatment improved cardiac function following I/R in WT but not in eNOS(-/-) mice. In conclusion, eNOS in the host myocardium promotes MSC migration to the ischemic myocardium and improves cardiac function through cGMP-dependent increases in SDF-1alpha expression.
Collapse
Affiliation(s)
- Na Li
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Animal and preliminary human studies of adult cell therapy following acute myocardial infarction have shown an overall improvement of cardiac function. Myocardial and vascular regeneration have been initially proposed as mechanisms of stem cell action. However, in many cases, the frequency of stem cell engraftment and the number of newly generated cardiomyocytes and vascular cells, either by transdifferentiation or cell fusion, appear too low to explain the significant cardiac improvement described. Accordingly, we and others have advanced an alternative hypothesis: the transplanted stem cells release soluble factors that, acting in a paracrine fashion, contribute to cardiac repair and regeneration. Indeed, cytokines and growth factors can induce cytoprotection and neovascularization. It has also been postulated that paracrine factors may mediate endogenous regeneration via activation of resident cardiac stem cells. Furthermore, cardiac remodeling, contractility, and metabolism may also be influenced in a paracrine fashion. This article reviews the potential paracrine mechanisms involved in adult stem cell signaling and therapy.
Collapse
Affiliation(s)
- Massimiliano Gnecchi
- Mandel Center for Hypertension Research, Duke University Medical Center, Durham, North Carolina 27710
- Division of Cardiology, Laboratory of Experimental Cardiology - Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Heart, Blood and Lung, University of Pavia, 27100 Pavia, Italy
| | - Zhiping Zhang
- Mandel Center for Hypertension Research, Duke University Medical Center, Durham, North Carolina 27710
- Cardiovascular Division, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Aiguo Ni
- Mandel Center for Hypertension Research, Duke University Medical Center, Durham, North Carolina 27710
- Cardiovascular Division, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Victor J. Dzau
- Mandel Center for Hypertension Research, Duke University Medical Center, Durham, North Carolina 27710
- Cardiovascular Division, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
21
|
Abstract
In recent years, cell transplantation has drawn tremendous interest as a novel approach to preserving or even restoring contractile function to infarcted hearts. A typical human infarct involves the loss of approximately 1 billion cardiomyocytes, and, therefore, many investigators have sought to identify endogenous or exogenous stem cells with the capacity to differentiate into committed cardiomyocytes and repopulate lost myocardium. As a result of these efforts, dozens of stem cell types have been reported to have cardiac potential. These include pluripotent embryonic stem cells, as well various adult stem cells resident in compartments including bone marrow, peripheral tissues, and the heart itself. Some of these cardiogenic progenitors have been reported to contribute replacement muscle through endogenous reparative processes or via cell transplantation in preclinical cardiac injury models. However, considerable disagreement exists regarding the efficiency and even the reality of cardiac differentiation by many of these stem cell types, making these issues a continuing source of controversy in the field. In this review, we consider approaches to cell fate mapping and establishing the cardiac phenotype, as well as the present state of the evidence for the cardiogenic and regenerative potential of the major candidate stem cell types.
Collapse
Affiliation(s)
- Hans Reinecke
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, 815 Mercer Street, Seattle, WA 98109
- Department of Pathology, University of Washington, 815 Mercer Street, Seattle, WA 98109
| | - Elina Minami
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, 815 Mercer Street, Seattle, WA 98109
- Department of Medicine/Cardiology, University of Washington, 1959 NE Pacific Street, Seattle 98195
| | - Wei-Zhong Zhu
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, 815 Mercer Street, Seattle, WA 98109
- Department of Pathology, University of Washington, 815 Mercer Street, Seattle, WA 98109
| | - Michael A. Laflamme
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, 815 Mercer Street, Seattle, WA 98109
- Department of Pathology, University of Washington, 815 Mercer Street, Seattle, WA 98109
| |
Collapse
|
22
|
Charwat S, Gyöngyösi M, Lang I, Graf S, Beran G, Hemetsberger R, Nyolczas N, Sochor H, Glogar D. Role of adult bone marrow stem cells in the repair of ischemic myocardium: current state of the art. Exp Hematol 2008; 36:672-80. [PMID: 18358589 DOI: 10.1016/j.exphem.2008.01.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 10/30/2007] [Accepted: 01/22/2008] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To review the milestones in stem cell therapy for ischemic heart disease from early basic science to large clinical studies and new therapeutic approaches. MATERIALS AND METHODS Basic research and clinical trials (systematic review) were used. The heart has the ability to regenerate through activation of resident cardiac stem cells or through recruitment of a stem cell population from other tissues, such as bone marrow. Although the underlying mechanism is yet to be made clear, numerous studies in animals have documented that transplantation of bone marrow-derived stem cells or circulating progenitor cells following acute myocardial infarction and ischemic cardiomyopathy is associated with a reduction in infarct scar size and improvements in left ventricular function and myocardial perfusion. RESULTS Cell-based cardiac therapy has expanded considerably in recent years and is on its way to becoming an established cardiovascular therapy for patients with ischemic heart disease. There have been recent insights into the understanding of mechanisms involved in the mobilization and homing of the imported cells, as well as into the paracrine effect, growth factors, and bioactive molecules. Additional information has been obtained regarding new stem cell sources, cell-based gene therapy, cell-enhancement strategies, and tissue engineering, all of which should enhance the efficacy of human cardiac stem cell therapy. CONCLUSIONS The recently published trials using bone marrow-origin stem cells in cardiac repair reported a modest but significant benefit from this therapy. Further clinical research should aim to optimize the cell types utilized and their delivery mode, and pinpoint optimal time of cell transplantation.
Collapse
Affiliation(s)
- Silvia Charwat
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Burlacu A, Rosca AM, Maniu H, Titorencu I, Dragan E, Jinga V, Simionescu M. Promoting effect of 5-azacytidine on the myogenic differentiation of bone marrow stromal cells. Eur J Cell Biol 2008; 87:173-84. [DOI: 10.1016/j.ejcb.2007.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 09/11/2007] [Accepted: 09/25/2007] [Indexed: 11/25/2022] Open
|
24
|
Grauss RW, van Tuyn J, Steendijk P, Winter EM, Pijnappels DA, Hogers B, Gittenberger-De Groot AC, van der Geest R, van der Laarse A, de Vries AAF, Schalij MJ, Atsma DE. Forced myocardin expression enhances the therapeutic effect of human mesenchymal stem cells after transplantation in ischemic mouse hearts. Stem Cells 2008; 26:1083-93. [PMID: 18203678 DOI: 10.1634/stemcells.2007-0523] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human mesenchymal stem cells (hMSCs) have only a limited differentiation potential toward cardiomyocytes. Forced expression of the cardiomyogenic transcription factor myocardin may stimulate hMSCs to acquire a cardiomyogenic phenotype, thereby improving their possible therapeutic potential. hMSCs were transduced with green fluorescent protein (GFP) and myocardin (hMSC(myoc)) or GFP and empty vector (hMSC). After coronary ligation in immune-compromised NOD/scid mice, hMSC(myoc) (n = 10), hMSC (n = 10), or medium only (n = 12) was injected into the infarct area. Sham-operated mice (n = 12) were used to determine baseline characteristics. Left ventricular (LV) volumes and ejection fraction (EF) were serially (days 2 and 14) assessed using 9.4-T magnetic resonance imaging. LV pressure-volume measurements were performed at day 15, followed by histological evaluation. At day 2, no differences in infarct size, LV volumes, or EF were observed among the myocardial infarction groups. At day 14, left ventricular ejection fraction in both cell-treated groups was preserved compared with the nontreated group; in addition, hMSC(myoc) injection also reduced LV volumes compared with medium injection (p < .05). Furthermore, pressure-volume measurements revealed a significantly better LV function after hMSC(myoc) injection compared with hMSC treatment. Immunohistochemistry at day 15 demonstrated that the engraftment rate was higher in the hMSC(myoc) group compared with the hMSC group (p < .05). Furthermore, these cells expressed a number of cardiomyocyte-specific markers not observed in the hMSC group. After myocardial infarction, injection of hMSC(myoc) improved LV function and limited LV remodeling, effects not observed after injection of hMSC. Furthermore, forced myocardin expression improved engraftment and induced a cardiomyocyte-like phenotype hMSC differentiation.
Collapse
Affiliation(s)
- Robert W Grauss
- Department of Cardiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nishiyama N, Miyoshi S, Hida N, Uyama T, Okamoto K, Ikegami Y, Miyado K, Segawa K, Terai M, Sakamoto M, Ogawa S, Umezawa A. The significant cardiomyogenic potential of human umbilical cord blood-derived mesenchymal stem cells in vitro. Stem Cells 2007; 25:2017-24. [PMID: 17495114 DOI: 10.1634/stemcells.2006-0662] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We tested the cardiomyogenic potential of the human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs). Both the number and function of stem cells may be depressed in senile patients with severe coronary risk factors. Therefore, stem cells obtained from such patients may not function well. For this reason, UCBMSCs are potentially a new cell source for stem cell-based therapy, since such cells can be obtained from younger populations and are being routinely utilized for clinical patients. The human UCBMSCs (5 x 10(3) per cm(2)) were cocultured with fetal murine cardiomyocytes ([CM] 1 x 10(5) per cm(2)). On day 5 of cocultivation, approximately half of the green fluorescent protein (GFP)-labeled UCBMSCs contracted rhythmically and synchronously, suggesting the presence of electrical communication between the UCBMSCs. The fractional shortening of the contracted UCBMSCs was 6.5% +/- 0.7% (n = 20). The UCBMSC-derived cardiomyocytes stained positive for cardiac troponin-I (clear striation +) and connexin 43 (diffuse dot-like staining at the margin of the cell) by the immunocytochemical method. Cardiac troponin-I positive cardiomyocytes accounted for 45% +/- 3% of GFP-labeled UCBMSCs. The cardiomyocyte-specific long action potential duration (186 +/- 12 milliseconds) was recorded with a glass microelectrode from the GFP-labeled UCBMSCs. CM were observed in UCBMSCs, which were cocultivated in the same dish with mouse cardiomyocytes separated by a collagen membrane. Cell fusion, therefore, was not a major cause of CM in the UCBMSCs. Approximately half of the human UCBMSCs were successfully transdifferentiated into cardiomyocytes in vitro. UCBMSCs can be a promising cellular source for cardiac stem cell-based therapy. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Nobuhiro Nishiyama
- Cardiopulmonary Division of Keio University School of Medicine, 35-Shinanomachi, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yamada Y, Yokoyama SI, Wang XD, Fukuda N, Takakura N. Cardiac stem cells in brown adipose tissue express CD133 and induce bone marrow nonhematopoietic cells to differentiate into cardiomyocytes. Stem Cells 2007; 25:1326-33. [PMID: 17289932 DOI: 10.1634/stemcells.2006-0588] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recently, there has been noteworthy progress in the field of cardiac regeneration therapy. We previously reported that brown adipose tissue (BAT) contained cardiac progenitor cells that were relevant to the regeneration of damaged myocardium. In this study, we found that CD133-positive, but not c-Kit- or Sca-1-positive, cells in BAT differentiated into cardiomyocytes (CMs) with a high frequency. Moreover, we found that CD133(+) brown adipose tissue-derived cells (BATDCs) effectively induced bone marrow cells (BMCs) into CMs. BMCs are considered to have the greatest potential as a source of CMs, and two sorts of stem cell populations, the MSCs and hematopoietic stem cells (HSCs), have been reported to differentiate into CMs; however, it has not been determined which population is a better source of CMs. Here we show that CD133-positive BATDCs induce BMCs into CMs, not through cell fusion but through bivalent cation-mediated cell-to-cell contact when cocultured. Moreover, BMCs induced by BATDCs are able to act as CM repletion in an in vivo infarction model. Finally, we found that CD45(-)CD31(-) CD105(+) nonhematopoietic cells, when cocultured with BATDCs, generated more than 20 times the number of CMs compared with lin(-)c-Kit(+) HSCs. Taken together, these data suggest that CD133-positive BATDCs are a useful tool as CM inducers, as well as a source of CMs, and that the nonhematopoietic fraction in bone marrow is also a major source of CMs. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Yoshihiro Yamada
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita-shi, Osaka, Japan
| | | | | | | | | |
Collapse
|
27
|
Yamada Y, Yokoyama SI, Fukuda N, Kidoya H, Huang XY, Naitoh H, Satoh N, Takakura N. A novel approach for myocardial regeneration with educated cord blood cells cocultured with cells from brown adipose tissue. Biochem Biophys Res Commun 2006; 353:182-8. [PMID: 17174277 DOI: 10.1016/j.bbrc.2006.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 12/03/2006] [Indexed: 11/21/2022]
Abstract
Umbilical cord blood (CB) is a promising source for regeneration therapy in humans. Recently, it was shown that CB was a source of mesenchymal stem cells as well as hematopoietic stem cells, and further that the mesenchymal stem cells could differentiate into a number of cells types of mesenchymal lineage, such as cardiomyocytes (CMs), osteocytes, chondrocytes, and fat cells. Previously, we reported that brown adipose tissue derived cells (BATDCs) differentiated into CMs and these CMs could adapt functionally to repair regions of myocardial infarction. In this study, we examined whether CB mononuclear cells (CBMNCs) could effectively differentiate into CMs by coculturing them with BATDCs and determined which population among CBMNCs differentiated into CMs. The results show that BATDCs effectively induced CBMNCs that were non-hematopoietic stem cells (HSCs) (educated CB cells: e-CBCs) into CMs in vitro. E-CBCs reconstituted infarcted myocardium more effectively than non-educated CBMNCs or CD34-positive HSCs. Moreover, we found that e-CBCs after 3 days coculturing with BATDCs induced the most effective regeneration for impaired CMs. This suggests that e-CBCs have a high potential to differentiate into CMs and that adequate timing of transplantation supports a high efficiency for CM regeneration. This strategy might be a promising therapy for human cardiac disease.
Collapse
Affiliation(s)
- Yoshihiro Yamada
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Furuta A, Miyoshi S, Itabashi Y, Shimizu T, Kira S, Hayakawa K, Nishiyama N, Tanimoto K, Hagiwara Y, Satoh T, Fukuda K, Okano T, Ogawa S. Pulsatile cardiac tissue grafts using a novel three-dimensional cell sheet manipulation technique functionally integrates with the host heart, in vivo. Circ Res 2006; 98:705-12. [PMID: 16469955 DOI: 10.1161/01.res.0000209515.59115.70] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We devised a method of fabricating easily transplantable scaffoldless 3D heart tissue, made with a novel cell-sheet (CS) technology from cultured cardiomyocytes using a fibrin polymer coated dish. In the present study, we tested in vivo electrical communication which is essential for improving heart function between the host heart and the grafted CS. The epicardial surface of the ventricle of an anesthetized open-chest nude rat was ablated by applying a heated metal. Bilayered CS was obtained from neonatal rat primary culture. CS was transplanted onto the injured myocardial surface (sMI) (sMI+sheet group). The rats were allowed to recover for 1 to 4 weeks, to stabilize the grafts. Action potentials (APs) from the excised perfused heart were monitored by the fluorescence signal of di-4ANEPPS with a high speed charge-coupled device camera. The APs were observed under epicardial pacing of the host heart or the CS grafts. The pacing threshold of the current output was measured in the sMI+sheet group and in the nongrafted sMI group at the center of the sMI and in the normal zone (Nz). Bidirectional AP propagation between the sMI and Nz was observed in the sMI+sheet group (n=14), but was blocked at the marginal area of the sMI in the sMI group (n=9). The ratio of the pacing threshold (sMI/Nz) was significantly lower in the sMI+sheet than in the sMI group (3.0+/-0.7, 19.0+/-6.1 respectively P<0.05). There were neither spontaneous nor pacing-induced arrhythmias in these two groups. Bidirectional smooth AP propagation between the host heart and the grafted CS was observed. This finding suggested functional integration of this CS graft with the host heart without serious arrhythmia.
Collapse
Affiliation(s)
- Akira Furuta
- Cardiopulmonary Division, Department of Internal Medicine, Keio University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ince H, Petzsch M, Kleine HD, Schmidt H, Rehders T, Körber T, Schümichen C, Freund M, Nienaber CA. Preservation from left ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by use of granulocyte-colony-stimulating factor (FIRSTLINE-AMI). Circulation 2005; 112:3097-106. [PMID: 16275869 DOI: 10.1161/circulationaha.105.541433] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Considering experimental evidence that stem cells enhance myocardial regeneration and granulocyte colony-stimulating factor (G-CSF) mediates mobilization of CD34+ mononuclear blood stem cells (MNCCD34+), we tested the impact of G-CSF integrated into primary percutaneous coronary intervention (PCI) management of acute myocardial infarction in man. METHODS AND RESULTS Fifty consecutive patients with ST-segment elevation myocardial infarction were subjected to primary PCI stenting with abciximab and followed up for 6 months; 89+/-35 minutes after successful PCI, 25 patients were randomly assigned in this pilot study (PROBE design) to receive subcutaneous G-CSF at 10 microg/kg body weight for 6 days in addition to standard care, including aspirin, clopidogrel, an ACE inhibitor, beta-blocking agents, and statins. By use of CellQuest software on peripheral blood samples incubated with CD45 and CD34, mobilized MNCCD34+ were quantified on a daily basis. With homogeneous demographics and clinical and infarct-related characteristics, G-CSF stimulation led to mobilization of MNCCD34+ to between 3.17+/-2.93 MNCCD34+/microL at baseline and 64.55+/-37.11 MNCCD34+/microL on day 6 (P<0.001 versus control); there was no indication of leukocytoclastic effects, significant pain, impaired rheology, inflammatory reactions, or accelerated restenosis at 6 months. Within 35 days, G-CSF and MNCCD34+ liberation led to enhanced resting wall thickening in the infarct zone of between 0.29+/-0.22 and 0.99+/-0.32 mm versus 0.49+/-0.29 mm in control subjects (P<0.001); under inotropic challenge with dobutamine (10 microg.kg(-1).min(-1)), wall motion score index showed improvement from 1.66+/-0.23 to 1.41+/-0.21 (P<0.004 versus control) and to 1.35+/-0.24 after 4 months (P<0.001 versus control), respectively, coupled with sustained recovery of wall thickening to 1.24+/-0.31 mm (P<0.001 versus control) at 4 months. Accordingly, resting wall motion score index improved with G-CSF to 1.41+/-0.25 (P<0.001 versus control), left ventricular end-diastolic diameter to 55+/-5 mm (P<0.002 versus control), and ejection fraction to 54+/-8% (P<0.001 versus control) after 4 months. Morphological and functional improvement with G-CSF was corroborated by enhanced metabolic activity and 18F-deoxyglucose uptake in the infarct zone (P<0.001 versus control). CONCLUSIONS G-CSF and mobilization of MNC(CD34+) after reperfusion of infarcted myocardium may offer a pragmatic strategy for preservation of myocardium and prevention of remodeling without evidence of aggravated restenosis.
Collapse
Affiliation(s)
- Hüseyin Ince
- Department of Internal Medicine, University Hospital Rostock, School of Medicine, Rostock, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang FB, Li L, Fang B, Zhu DL, Yang HT, Gao PJ. Passage-restricted differentiation potential of mesenchymal stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun 2005; 336:784-92. [PMID: 16143296 DOI: 10.1016/j.bbrc.2005.08.177] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 08/23/2005] [Indexed: 01/18/2023]
Abstract
Mesenchymal stem cells (MSCs) have limited ability to differentiate into cardiomyocytes and the factors affect this process are not fully understood. In this study, we investigated the passage (P)-related transdifferentiation potential of MSCs into cardiomyocyte-like cells and its relationship to the proliferation ability. After 5-azacytidine treatment, only P4 but not P1 and P8 rat bone marrow MSCs (rMSCs) showed formation of myotube and expressed cardiomyocyte-associated markers. The growth property analysis showed P4 rMSCs had a growth-arrest appearance, while P1 and P8 rMSCs displayed an exponential growth pattern. When the rapid proliferation of P1 and P8 rMSCs was inhibited by 5-bromo-2-deoxyuridine, a mitosis inhibitor, only P1, not P8 rMSCs, differentiated into cardiomyocyte-like cells after 5-azacytidine treatment. These results demonstrate that the differentiation ability of rMSCs into cardiomyocytes is in proliferation ability-dependent and passage-restricted patterns. These findings reveal a novel regulation on the transdifferentiation of MSCs and provide useful information for exploiting the clinical therapeutic potential of MSCs.
Collapse
Affiliation(s)
- Fa-Bao Zhang
- Laboratory of Molecular Cardiology and Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), China
| | | | | | | | | | | |
Collapse
|
31
|
Rohde E, Malischnik C, Thaler D, Maierhofer T, Linkesch W, Lanzer G, Guelly C, Strunk D. Blood monocytes mimic endothelial progenitor cells. Stem Cells 2005; 24:357-67. [PMID: 16141361 DOI: 10.1634/stemcells.2005-0072] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The generation of endothelial progenitor cells (EPCs) from blood monocytes has been propagated as a novel approach in the diagnosis and treatment of cardiovascular diseases. Low-density lipoprotein (LDL) uptake and lectin binding together with endothelial marker expression are commonly used to define these EPCs. Considerable controversy exists regarding their nature, in particular, because myelomonocytic cells share several properties with endothelial cells (ECs). This study was performed to elucidate whether the commonly used endothelial marker determination is sufficient to distinguish supposed EPCs from monocytes. We measured endothelial, hematopoietic, and progenitor cell marker expression of monocytes before and after angiogenic culture by fluorescence microscopy, flow cytometry, and real-time reverse transcription-polymerase chain reaction. The function of primary monocytes and monocyte-derived supposed EPCs was investigated during vascular network formation and EC colony-forming unit (CFU-EC) development. Monocytes cultured for 4 to 6 days under angiogenic conditions lost CD14/CD45 and displayed a commonly accepted EPC phenotype, including LDL uptake and lectin binding, CD31/CD105/CD144 reactivity, and formation of cord-like structures. Strikingly, primary monocytes already expressed most tested endothelial genes and proteins at even higher levels than their supposed EPC progeny. Neither fresh nor cultured monocytes formed vascular networks, but CFU-EC formation was strictly dependent on monocyte presence. LDL uptake, lectin binding, and CD31/CD105/CD144 expression are inherent features of monocytes, making them phenotypically indistinguishable from putative EPCs. Consequently, monocytes and their progeny can phenotypically mimic EPCs in various experimental models.
Collapse
Affiliation(s)
- Eva Rohde
- Department of Blood group Serology and Transfusion Medicine, Medical University, Auenbrugger Pl. 38 A-8036, Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kim BO, Tian H, Prasongsukarn K, Wu J, Angoulvant D, Wnendt S, Muhs A, Spitkovsky D, Li RK. Cell Transplantation Improves Ventricular Function After a Myocardial Infarction. Circulation 2005; 112:I96-104. [PMID: 16159872 DOI: 10.1161/01.circulationaha.105.524678] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Cell transplantation offers the promise in the restoration of ventricular function after an extensive myocardial infarction, but the optimal cell type remains controversial. Human unrestricted somatic stem cells (USSCs) isolated from umbilical cord blood have great potential to differentiate into myogenic cells and induce angiogenesis. The present study evaluated the effect of USSCs on myocardial regeneration and improvement of heart function after myocardial infarction in a porcine model.
Method and Results—
The distal left anterior descending artery of Yorkshire pigs (30 to 35 kg) was occluded by endovascular implantation of a coil. Four weeks after infarction, single-photon emission computed tomography technetium 99m sestamibi scans (MIBI) and echocardiography were performed. USSCs (100×10
6
) or culture media were then directly injected into the infarcted region (n=8 per group). Pigs were immunosuppressed by daily administration of cyclosporin A. At 4 weeks after transplantation, MIBI and echocardiography were repeated and heart function was also assessed with a pressure-volume catheter. The infarcted myocardium and implanted cells were studied histologically. MIBI showed improved regional perfusion (
P
<0.05) and wall motion (
P
<0.05) of the infarct region in the transplant group compared with the control. Ejection fraction evaluated by both MIBI and echocardiography decreased in the control group but increased in the transplant group (
P
<0.01). Scar thickness of the transplant group was higher than the control. The grafted cells were detected 4 weeks after transplantation by both immunohistochemistry and in situ hybridization.
Conclusion—
Engrafted USSCs were detected in the infarct region 4 weeks after cell transplantation, and the implanted cells improved regional and global function of the porcine heart after a myocardial infarction. This study suggests that the USSC implantation will be efficacious for cellular cardiomyoplasty.
Collapse
Affiliation(s)
- Byung-Ok Kim
- Department of Surgery, Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dai W, Hale SL, Martin BJ, Kuang JQ, Dow JS, Wold LE, Kloner RA. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation 2005; 112:214-23. [PMID: 15998673 DOI: 10.1161/circulationaha.104.527937] [Citation(s) in RCA: 414] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have the potential to replace infarct scar, but the long-term effects are unknown. We studied short- and long-term effects of MSC transplantation on left ventricular (LV) function in a rat myocardial infarction model. METHODS AND RESULTS Saline (n=46) or MSCs labeled with 1,1'-dioctadecyl-3,3,3'3'-testramethylindocarbocyanine perchlorate (DiI; n=49, 2x10(6) cells each) were injected into the scar of a 1-week-old myocardial infarction in Fischer rats. The presence and differentiation of engrafted cells and their effect on LV ejection fraction was assessed. At 4 weeks, LV stroke volume was significantly greater in the MSC-treated group (145+/-9 microL) than in the saline group (122+/-3 microL, P=0.032), and LV ejection fraction was significantly greater in MSC-treated animals (43.8+/-1.0%) than in the saline group (38.8+/-1.1%, P=0.0027). However, at 6 months, these benefits of MSC treatment were lost. DiI-positive cells were observed in the MSC group at 2 weeks and at 3 and 6 months. Expression of the muscle-specific markers alpha-actinin, myosin heavy chain, phospholamban, and tropomyosin was not observed at 2 weeks in DiI-positive cells. At 3 and 6 months, the DiI-positive cells were observed to express the above muscle-specific markers, but they did not fully evolve into an adult cardiac phenotype. Some of the DiI-positive cells expressed von Willebrand factor. CONCLUSIONS Allogeneic MSCs survive in infarcted myocardium as long as 6 months and express markers that suggest muscle and endothelium phenotypes. MSCs improved global LV function at 4 weeks; however, this benefit was transient, which suggests a possible early paracrine effect.
Collapse
Affiliation(s)
- Wangde Dai
- The Heart Institute, Good Samaritan Hospital, Division of Cardiovascular Medicine of Keck School of Medicine at University of Southern California, Los Angeles, CalifA 90017, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Li TS, Hayashi M, Ito H, Furutani A, Murata T, Matsuzaki M, Hamano K. Regeneration of infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor-beta-preprogrammed bone marrow stem cells. Circulation 2005; 111:2438-45. [PMID: 15883211 DOI: 10.1161/01.cir.0000167553.49133.81] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Recent studies have shown that bone marrow-derived stem cells differentiate into the phenotype of cardiomyocytes in vivo and in vitro. We tried to regenerate infarcted myocardium by implanting ex vivo transforming growth factor (TGF)-beta-preprogrammed CD117 (c-kit)-positive (CD117+) stem cells intramyocardially. METHODS AND RESULTS CD117+ cells were isolated from the bone marrow mononuclear cells of GFP-transgenic or normal C57/BL6 mice. The myogenic differentiation of CD117+ cells was achieved by cultivation with TGF-beta. Using an acute myocardial infarction model, we also tried to regenerate infarcted myocardium by implanting untreated (newly isolated) or preprogrammed (24 hours of cultivation with 5 ng/mL TGF-beta1) CD117+ cells intramyocardially. TGF-beta increased the cellular expression of myosin, troponins, connexin-43, GATA-4, and NKx-2.5, which suggested that it induced the myogenic differentiation of CD117+ cells. Compared with the effects of PBS injection only, the microvessel density in the infarcted myocardium was increased significantly 3 months after the implantation of either TGF-beta-preprogrammed or untreated CD117+ cells. Moreover, many of the TGF-beta-preprogrammed CD117+ cells were stained positively for myosin, whereas few of the untreated CD117+ cells were. Histological analysis revealed newly regenerated myocardium in the left ventricular anterior wall after the implantation of TGF-beta-preprogrammed cells but not untreated cells. Furthermore, the left ventricular percent fraction shortening was significantly higher after the implantation of TGF-beta-preprogrammed cells than after the implantation of untreated CD117+ cells. CONCLUSIONS TGF-beta conducted the myogenic differentiation of CD117+ stem cells by upregulating GATA-4 and NKx-2.5 expression. Therefore, the intramyocardial implantation of TGF-beta-preprogrammed CD117+ cells effectively assisted the myocardial regeneration and induced therapeutic angiogenesis, contributing to functional cardiac regeneration.
Collapse
Affiliation(s)
- Tao-Sheng Li
- Division of Cardiovascular Surgery, Department of Medical Bioregulation, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Sakaguchi G, Tambara K, Sakakibara Y, Ozeki M, Yamamoto M, Premaratne G, Lin X, Hasegawa K, Tabata Y, Nishimura K, Komeda M. Control-Released Hepatocyte Growth Factor Prevents the Progression of Heart Failure in Stroke-Prone Spontaneously Hypertensive Rats. Ann Thorac Surg 2005; 79:1627-34. [PMID: 15854944 DOI: 10.1016/j.athoracsur.2004.10.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2004] [Indexed: 11/23/2022]
Abstract
BACKGROUND We have developed a hepatocyte growth factor (HGF)-incorporating gelatin hydrogel sheet (HGF sheet), which was designed to release HGF more than 2 weeks in vivo. The present study investigated whether the HGF sheet could prevent the progression of heart failure in stroke-prone spontaneously hypertensive rats. METHODS Stroke-prone spontaneously hypertensive rats at the age of 25 weeks received placement of an HGF sheet on the left ventricular free wall (HGF, n = 10) or sham-operation (control, n = 10). All animals were followed up with Doppler echocardiography during the next 4 weeks and then underwent histologic analysis. The influence of the hydrogel sheet alone was assessed by echocardiography and left ventricular pressure measurements. Survival study was performed (each group, n = 11) at the age of 30 weeks. RESULTS There were two deaths in the control group and no deaths in the HGF group during the 4 weeks. Fractional shortening was significantly higher, and left ventricular diastolic dimension was significantly smaller in the HGF than in the control group. The slope of the peak early diastolic filling velocity and the ratio of that slope to the slope of the peak filling velocity at atrial contraction were significantly lower in the HGF than the control group. Myocardial fibrosis was lower and capillary density was significantly higher in the HGF than the control group. Placement of the hydrogel sheet alone did not affect any cardiac function compared with sham operation. The survival rate at 10 weeks after the surgery was much higher in the HGF than the control group. CONCLUSIONS The HGF sheet improves cardiac function, reverses left ventricular remodeling, and markedly improves survival in spontaneously hypertensive rats. These beneficial effects are associated with angiogenesis and reduced fibrosis in the left ventricular myocardium.
Collapse
Affiliation(s)
- Genichi Sakaguchi
- Department of Cardiovascular Surgery, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Melo LG, Pachori AS, Kong D, Gnecchi M, Wang K, Pratt RE, Dzau VJ. Molecular and cell-based therapies for protection, rescue, and repair of ischemic myocardium: reasons for cautious optimism. Circulation 2004; 109:2386-93. [PMID: 15159329 DOI: 10.1161/01.cir.0000128597.37025.00] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Luis G Melo
- Department of Physiology, Queen's University, 20 Stuart St, Kingston, Ontario K7L 3N6, Canada.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The field of stem cell biology continues to evolve with the ongoing characterization of multiple types of stem cells with their inherent potential for experimental and clinical application. Mesenchymal stem cells (MSC) are one of the most promising stem cell types due to their availability and the relatively simple requirements for in vitro expansion and genetic manipulation. Multiple populations described as "MSCs" have now been isolated from various tissues in humans and other species using a variety of culture techniques. Despite extensive in vitro characterization, relatively little has been demonstrated regarding their in vivo biology and therapeutic potential. Nevertheless, clinical trials utilizing MSCs are currently underway. The aim of this review is to critically analyze the field of MSC biology, particularly with respect to the current paradox between in vitro promise and in vivo efficacy. It is the authors' opinion that until this paradox is better understood, therapeutic applications will remain limited.
Collapse
Affiliation(s)
- Elisabeth H Javazon
- Children's Institute for Surgical Science, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
38
|
Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 2004; 109:1543-9. [PMID: 15023891 DOI: 10.1161/01.cir.0000124062.31102.57] [Citation(s) in RCA: 977] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Bone marrow cell therapy is reported to contribute to collateral formation through cell incorporation into new or remodeling vessels. However, the possible role of a paracrine contribution to this effect is less well characterized. METHODS AND RESULTS Murine marrow-derived stromal cells (MSCs) were purified by magnetic bead separation of cultured bone marrow. The release of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), placental growth factor (PlGF), and monocyte chemoattractant protein-1 (MCP-1) was demonstrated by analysis of MSC conditioned media (MSC-CM). MSC-CM enhanced proliferation of endothelial cells and smooth muscle cells in a dose-dependent manner; anti-VEGF and anti-FGF antibodies only partly attenuated these effects. Balb/C mice (n=10) underwent distal femoral artery ligation, followed by adductor muscle injection of 1x10(6) MSCs 24 hours later. Compared with controls injected with media (n=10) or mature endothelial cells (n=8), distal limb perfusion improved, and mid-thigh conductance vessels increased in number and total cross-sectional area. MSC injection improved limb function and appearance, reduced the incidence of auto-amputation, and attenuated muscle atrophy and fibrosis. After injection, labeled MSCs were seen dispersed between muscle fibers but were not seen incorporated into mature collaterals. Injection of MSCs increased adductor muscle levels of bFGF and VEGF protein compared with controls. Finally, colocalization of VEGF and transplanted MSCs within adductor tissue was demonstrated. CONCLUSIONS MSCs secrete a wide array of arteriogenic cytokines. MSCs can contribute to collateral remodeling through paracrine mechanisms.
Collapse
MESH Headings
- Animals
- Cells, Cultured/metabolism
- Cells, Cultured/transplantation
- Chemokine CCL2/metabolism
- Collateral Circulation
- Culture Media, Conditioned/pharmacology
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Fibroblast Growth Factor 2/metabolism
- Fibrosis
- Growth Substances/metabolism
- Hindlimb/blood supply
- Hypoxia-Inducible Factor 1, alpha Subunit
- Immunomagnetic Separation
- Injections, Intramuscular
- Ischemia/physiopathology
- Ischemia/therapy
- Mesenchymal Stem Cell Transplantation
- Mice
- Mice, Inbred BALB C
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/pathology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscular Atrophy/etiology
- Muscular Atrophy/pathology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Paracrine Communication
- Placenta Growth Factor
- Pregnancy Proteins/metabolism
- Stromal Cells/transplantation
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- T Kinnaird
- Cardiovascular Research Institute, Washington, DC 20010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Muguruma Y, Reyes M, Nakamura Y, Sato T, Matsuzawa H, Miyatake H, Akatsuka A, Itoh J, Yahata T, Ando K, Kato S, Hotta T. In vivo and in vitro differentiation of myocytes from human bone marrow-derived multipotent progenitor cells. Exp Hematol 2004; 31:1323-30. [PMID: 14662341 DOI: 10.1016/j.exphem.2003.09.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Recent studies have shown that bone marrow (BM) contains cells capable of differentiating into myocytes in vivo. However, addition of demethylation drugs has been necessary to induce myocyte differentiation from BM cells in vitro, and precise mechanisms of BM cells' conversion to myocytes and the origin of those cells have not been established. We investigated the expression of myogenic markers during differentiation and maturation of myocytes from BM-derived multipotent adult progenitor cells (MAPC) under physiological culture condition. MATERIALS AND METHODS Frozen BM samples from 21 healthy donors were used as a source of MAPC. To induce myocyte differentiation MAPC was cultured in the presence of 5% FCS, VEGF, bFGF, and IGF-1, and the expressions of myocyte markers were examined at various time points. We also investigated engraftment and differentiation of MAPC-derived myocytes in vivo. RESULTS Frozen BM-derived MAPC, cultured under the physiological myogenic condition, demonstrated spatial expression patterns of several myocyte markers similar to that of authentic myocyte differentiation. When injected into murine muscles, MAPC treated with the myogenic condition engrafted and differentiated into myocyte marker-positive cells and myotubes in vivo. CONCLUSION For the first time, we were able to induce myocyte formation from BM cells under the physiological condition in vitro and demonstrated that treating cells with this condition prior to intramuscular injection increased efficiency of engraftment and differentiation in vivo.
Collapse
Affiliation(s)
- Yukari Muguruma
- Division of Hematopoiesis, Research Center for Regenerative Medicine, Tokai University School of Medicine, Boseidai, Isehara, Kanagawa 259-1193, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li TS, Ito H, Kajiwara K, Hamano K. Long-Term Survival of Xenografted Neonatal Cardiomyocytes by Adenovirus-Mediated CTLA4-Ig Expression and CD40 Blockade. Circulation 2003; 108:1760-5. [PMID: 14504180 DOI: 10.1161/01.cir.0000091086.54107.49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Prolonged survival of xenografted neonatal cardiomyocytes was achieved by blocking the CD28/B7 costimulatory pathway via CTLA4-Ig gene transfer. We examined the long-term survival of xenografted neonatal cardiomyocytes by adenovirus-mediated CTLA4-Ig expression and transient CD40 blockade with anti-CD40L monoclonal antibody (MR1). METHODS AND RESULTS Neonatal cardiomyocytes derived from Dark Agouti rats were infected with CTLA4-Ig-expressing adenovirus vectors and injected directly into the normal myocardium of C3H/He mice. Mice were also given an intraperitoneal injection of 500 microg MR1 (CTLA+MR group, n=30) or control immunoglobulin (CTLA group, n=30) 1 hour before and 1, 3, and 7 days after cardiomyocyte implantation. As a control, cells infected with beta-Gal-expressing adenovirus vector (RL group, n=15) and cells without infection (control group, n=15) were injected into additional mice. Mice from all groups were killed 2, 4, and 8 weeks after xenotransplantation, and mice from the CTLA+MR and CTLA groups were killed 4 and 6 months after xenotransplantation. Neonatal cardiomyocytes were successfully infected by adenovirus vectors. Immunohistochemical analysis showed that the xenografted cardiomyocytes survived and expressed CTLA4-Ig for 6 months in all mice from the CTLA+MR and CTLA groups. A gap junction between the xenografted and host cardiomyocytes was also confirmed. Conversely, neonatal cardiomyocytes did not survive for even 2 weeks after xenotransplantation in the mice from the RL and control groups. CONCLUSIONS Long-term survival of xenografted neonatal cardiomyocytes was achieved by adenovirus-mediated CTLA4-Ig expression and transient CD40 blockade.
Collapse
Affiliation(s)
- Tao-Sheng Li
- Division of Cardiovascular Surgery, Department of Medical Bioregulation, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, Japan 755-8505
| | | | | | | |
Collapse
|
41
|
Bel A, Messas E, Agbulut O, Richard P, Samuel JL, Bruneval P, Hagège AA, Menasché P. Transplantation of autologous fresh bone marrow into infarcted myocardium: a word of caution. Circulation 2003; 108 Suppl 1:II247-52. [PMID: 12970241 DOI: 10.1161/01.cir.0000089040.11131.d4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND As the benefits of extemporaneous transplantation (Tx) of fresh (unfractionated) autologous bone marrow (BM) have been primarily studied in the setting of acute myocardial infarction, we assessed whether this approach could be effective for regenerating chronically infarcted myocardium. METHODS AND RESULTS Myocardial infarction was created in 18 sheep by ligation of circumflex arterial branches. Three weeks later, BM was aspirated from the iliac crest, washed, labeled with the fluorescent dye Dil and reinjected (mean: 422 x 10(6) cells in 3 mL) in 10 sites across the infarcted area through the reopened thoracotomy (n=9). Nine controls received culture medium. Left ventricular (LV) function was assessed before and 2 months after Tx by two-dimensional echocardiography whereas transmural velocity gradients were measured using M-mode tissue Doppler imaging at the center of the infarcted/grafted area. Formalin-fixed hearts were processed for the detection of grafted cells and angiogenesis. LV ejection fraction deteriorated similarly in the Tx and control groups (from 42+/-5% to 30+/-4% and from 40+/-4% to 31+/-1%, respectively; P=0.86). Likewise, BM Tx failed to prevent LV dilatation and impairment of the global wall motion score. The decrease in regional systolic velocity gradients (s(-1)) featured a similar pattern (Tx group: from 0.77+/-0.11 to 0.31+/-0.07; control group: from 0.73+/-0.10 to 0.50+/-0.07; P=0.06). Histologically, there was neither BM tissue engraftment, except for a few scattered Dil-positive macrophages in the infarcted fibrotic areas nor transdifferentiation of BM cells into endothelial cells. CONCLUSIONS These data caution against the functional efficacy of extemporaneous Tx of fresh unfractionated BM into postinfarction scars.
Collapse
Affiliation(s)
- Alain Bel
- Department of Cardiovascular Surgery, Hôpital Bichat, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, Miller L, Guetta E, Zipori D, Kedes LH, Kloner RA, Leor J. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 2003; 108:863-8. [PMID: 12900340 DOI: 10.1161/01.cir.0000084828.50310.6a] [Citation(s) in RCA: 897] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Systemic delivery of bone marrow-derived mesenchymal stem cells (BM-MSCs) is an attractive approach for myocardial repair. We aimed to test this strategy in a rat model after myocardial infarction (MI). METHODS AND RESULTS BM-MSCs were obtained from rat bone marrow, expanded in vitro to a purity of >50%, and labeled with 99mTc exametazime, fluorescent dye, LacZ marker gene, or bromodeoxyuridine. Rats were subjected to MI by transient coronary artery occlusion or to sham MI. 99mTc-labeled cells (4x10(6)) were transfused into the left ventricular cavity of MI rats either at 2 or 10 to 14 days after MI and were compared with sham-MI rats or MI rats treated with intravenous infusion. Gamma camera imaging and isolated organ counting 4 hours after intravenous infusion revealed uptake of the 99mTc-labeled cells mainly in the lungs, with significantly smaller amounts in the liver, heart, and spleen. Delivery by left ventricular cavity infusion resulted in drastically lower lung uptake, better uptake in the heart, and specifically higher uptake in infarcted compared with sham-MI hearts. Histological examination at 1 week after infusion identified labeled cells either in the infarcted or border zone but not in remote viable myocardium or sham-MI hearts. Labeled cells were also identified in the lung, liver, spleen, and bone marrow. CONCLUSIONS Systemic intravenous delivery of BM-MSCs to rats after MI, although feasible, is limited by entrapment of the donor cells in the lungs. Direct left ventricular cavity infusion enhances migration and colonization of the cells preferentially to the ischemic myocardium.
Collapse
Affiliation(s)
- Israel M Barbash
- Neufeld Cardiac Research Institute, Sheba Medical Center, Tel-Hashomer 52621, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Borenstein N, Bruneval P, Hekmati M, Bovin C, Behr L, Pinset C, Laborde F, Montarras D. Noncultured, autologous, skeletal muscle cells can successfully engraft into ovine myocardium. Circulation 2003; 107:3088-92. [PMID: 12810607 DOI: 10.1161/01.cir.0000070948.37545.e0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND There is compelling evidence showing that cellular cardiomyoplasty can improve cardiac function. Considering the potential benefit of using noncultured muscle cells (little time, lower cost, reduced risk of contamination), we investigated the feasibility of grafting cells obtained directly after enzymatic dissociation of skeletal muscle biopsies into ovine myocardium. We hypothesized that those noncultured muscle cells would engraft massively. METHODS AND RESULTS Autologous, intramyocardial skeletal muscle cell implantation was performed in 8 sheep. A skeletal muscle biopsy sample ( approximately 10 g) was explanted from each animal. The sheep were left to recover for approximately 3 hours and reanesthetized when the cells were ready for implantation. A left fifth intercostal thoracotomy was performed, and 10 epicardial injections of the muscle preparation (between 10 and 20 million cells) were carried out. All sheep were euthanized 3 weeks after myocardial implantation. Immunohistochemistry was performed with monoclonal antibodies to a fast skeletal isoform of myosin heavy chain. Skeletal myosin heavy-chain expression was detected in all slides at 3 weeks after implantation in 8 of 8 animals, confirming engraftment of skeletal muscle cells. Massive areas of engraftment (from 2 to 9 mm in diameter) or discrete loci were noted within the myocardial wall. CONCLUSIONS Our results indicate that noncultured skeletal muscle cells can successfully and massively engraft in ovine myocardium. Thus, avoiding the cell culture expansion phase is feasible and could become a promising option for cellular cardiomyoplasty.
Collapse
|
44
|
Bicknell KA, Surry EL, Brooks G. Targeting the cell cycle machinery for the treatment of cardiovascular disease. J Pharm Pharmacol 2003; 55:571-91. [PMID: 12831500 DOI: 10.1211/002235703765344487] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Cardiovascular disease represents a major clinical problem affecting a significant proportion of the world's population and remains the main cause of death in the UK. The majority of therapies currently available for the treatment of cardiovascular disease do not cure the problem but merely treat the symptoms. Furthermore, many cardioactive drugs have serious side effects and have narrow therapeutic windows that can limit their usefulness in the clinic. Thus, the development of more selective and highly effective therapeutic strategies that could cure specific cardiovascular diseases would be of enormous benefit both to the patient and to those countries where healthcare systems are responsible for an increasing number of patients. In this review, we discuss the evidence that suggests that targeting the cell cycle machinery in cardiovascular cells provides a novel strategy for the treatment of certain cardiovascular diseases. Those cell cycle molecules that are important for regulating terminal differentiation of cardiac myocytes and whether they can be targeted to reinitiate cell division and myocardial repair will be discussed as will the molecules that control vascular smooth muscle cell (VSMC) and endothelial cell proliferation in disorders such as atherosclerosis and restenosis. The main approaches currently used to target the cell cycle machinery in cardiovascular disease have employed gene therapy techniques. We will overview the different methods and routes of gene delivery to the cardiovascular system and describe possible future drug therapies for these disorders. Although the majority of the published data comes from animal studies, there are several instances where potential therapies have moved into the clinical setting with promising results.
Collapse
Affiliation(s)
- Katrina A Bicknell
- Cardiovascular Research Group, School of Animal and Microbial Sciences, The University of Reading, PO Box 228, Whiteknights, Reading, Berkshire, RG6 6AJ, UK
| | | | | |
Collapse
|
45
|
Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Amano K, Iba O, Imada T, Iwasaka T. Improvement of collateral perfusion and regional function by implantation of peripheral blood mononuclear cells into ischemic hibernating myocardium. Arterioscler Thromb Vasc Biol 2002; 22:1804-10. [PMID: 12426208 DOI: 10.1161/01.atv.0000039168.95670.b9] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE This study was performed to evaluate the angiogenic effect of implantation of peripheral blood mononuclear cells (PB-MNCs) compared with bone marrow mononuclear cells (BM-MNCs) into ischemic hibernating myocardium. METHODS AND RESULTS A NOGA electromechanical system was used to map the hibernating region and to inject cells. PB-MNCs and BM-MNCs contained similar levels of vascular endothelial growth factor and basic fibroblast growth factor, whereas contents of angiogenic cytokines (interleukin-1beta and tumor necrosis factor-alpha) were larger in PB-MNCs. Numbers of endothelial progenitors were approximately 500-fold higher in BM-MNCs. In BM-MNC-implanted myocardia of pigs, an increase in systolic function (ejection fraction from 33% to 52%) and regional blood flow (2.1-fold) and a reduction of the ischemic area (from 29% to 8%) were observed. PB-MNC implantation reduced the ischemic area (from 31% to 17%), the extent of which was less than that seen with BM-MNCs. In saline-implanted myocardium, the ischemic area expanded (from 28% to 38%), and systolic function deteriorated. Angiography revealed an increase in collateral vessel formation by PB-MNC or BM-MNC implantation. Capillary numbers were increased 2.6- and 1.7-fold by BM-MNC and PB-MNC implantation, respectively. BM-MNCs but not PB-MNCs were incorporated into neocapillaries. CONCLUSIONS Catheter-based implantation of PB-MNCs can effectively improve collateral perfusion and regional function in hibernating ischemic myocardium by its ability to mainly supply angiogenic factors and cytokines.
Collapse
Affiliation(s)
- Hiroshi Kamihata
- Department of Medicine II and Cardiovascular Center, Kansai Medical University, Moriguchi, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Werner N, Priller J, Laufs U, Endres M, Böhm M, Dirnagl U, Nickenig G. Bone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition. Arterioscler Thromb Vasc Biol 2002; 22:1567-72. [PMID: 12377731 DOI: 10.1161/01.atv.0000036417.43987.d8] [Citation(s) in RCA: 336] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Atherosclerosis and restenosis after vascular injury are both characterized by endothelial dysfunction, apoptosis, inappropriate endothelialization, and neointimal formation. Bone marrow-derived endothelial progenitor cells have been implicated in neovascularization, resulting in adult blood vessel formation. Despite the anticipated stem cell plasticity, the role of bone marrow-derived endothelial progenitor cells has not been clarified in vascular lesion development. METHODS AND RESULTS We investigated vascular lesion formation in mice after transplantation of bone marrow transfected by means of retrovirus with enhanced green fluorescent protein. Carotid artery injury was induced, resulting in neointimal formation. Fluorescence microscopy and immunohistological analysis revealed that bone marrow-derived progenitor cells are involved in reendothelialization of the vascular lesions. Treatment with rosuvastatin (20 mg/kg body wt per day), a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, enhanced the circulating pool of endothelial progenitor cells, propagated the advent of bone marrow-derived endothelial cells in the injured vessel wall, and, thereby, accelerated reendothelialization and significantly decreased neointimal formation. CONCLUSIONS Vascular lesion development initiated by endothelial cell damage is moderated by bone marrow-derived progenitor cells. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibition promotes bone marrow-dependent reendothelialization and diminishes vascular lesion development. These findings may help to establish novel pathophysiological concepts and therapeutic strategies in the treatment of various cardiovascular diseases.
Collapse
Affiliation(s)
- Nikos Werner
- Medizinische Klinik und Poliklinik, Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Müller P, Pfeiffer P, Koglin J, Schäfers HJ, Seeland U, Janzen I, Urbschat S, Böhm M. Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts. Circulation 2002; 106:31-5. [PMID: 12093766 DOI: 10.1161/01.cir.0000022405.68464.ca] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cell replacement therapy with stem cells able to differentiate into cardiomyocytes has been discussed as a method for remodeling damaged myocardium. A physiological or pathophysiological situation in which this phenomenon might be relevant is not known. We studied the origin of cardiomyocytes in myocardial biopsies of male patients that had undergone sex-mismatched cardiac transplantation to determine whether cells containing a Y chromosome (and therefore being of recipient origin) are able to differentiate into cardiomyocytes. METHODS AND RESULTS Myocardial biopsies (n=21) were obtained from the right ventricles of male patients (n=13) who had undergone sex-mismatched heart transplantation. Tissue from 1 nontransplanted male and myocardial biopsies from sex-matched heart-transplanted patients served as controls. Cells from donor and recipient origins were identified by fluorescence in situ hybridization with the use of specific probes for X and Y chromosomes on paraffin sections of the biopsies. Cell types were identified by using immunostaining procedures on the same tissue sections. Cardiomyocytes of recipient origin were detected in 8 of 13 male recipients of female hearts. They were connected by gap junctions with adjacent myocytes. Of the cardiomyocyte nuclei, 0.16+/-0.04% (mean+/-SEM, median 0.09%) contained the Y-chromosomal marker. There was no detectable correlation with the extent or number of rejection episodes, time of transplantation, or medical treatment regimen. CONCLUSIONS These results show that regeneration by cells of noncardiac origin (differentiated into cardiomyocytes and physiologically linked to neighboring myocytes) can be detected even in small myocardial biopsies. This may lead to new diagnostic and therapeutic strategies in the treatment of myocardial infarction, inflammatory heart disease, and/or heart failure.
Collapse
Affiliation(s)
- Patrick Müller
- Departments of Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Sakakibara Y, Tambara K, Lu F, Nishina T, Nagaya N, Nishimura K, Komeda M. Cardiomyocyte transplantation does not reverse cardiac remodeling in rats with chronic myocardial infarction. Ann Thorac Surg 2002; 74:25-30. [PMID: 12118775 DOI: 10.1016/s0003-4975(02)03601-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Several reports have documented the potential benefits of cell transplantation as an alternative to cardiac transplantation. This study was designed to investigate whether cardiomyocyte transplantation is effective in rats with chronic myocardial infarction. METHODS Syngeneic Lewis rats were used in this study. Chronic myocardial infarction was induced in rats by ligating the left anterior descending artery. Four weeks later, after left ventricular (LV) dysfunction with akinetic regions was confirmed by echocardiography, the rats were randomized into two groups: a group that received fetal cardiomyocyte transplantation (TX group; n = 11); and a group that received an intramyocardial injection of culture medium only (control group; n = 12). RESULTS Four weeks after treatment, the TX group had smaller end-systolic dimension (LVDs) (7.5 +/- 0.9 vs 8.9 +/- 0.8 mm, p < 0.01) and better fractional shortening (FS) (26.2 +/- 5.9 vs 17.7% +/- 5.1%, p < 0.01) than the control group. However, there were no differences in LV end-diastolic dimension, LVDs, and FS between baseline and post-treatment values in the TX group. In addition, plasma levels of atrial natriuretic peptide were not significantly different between the two groups 4 weeks after treatment. In microscopic examination, small amounts of transplanted cardiomyocytes were found only in the periinfarct area, not in the center of scar area, and a thicker ventricular wall in the infarct area was detected in the TX group. CONCLUSIONS Fetal cardiomyocyte transplantation prevented, but did not reverse, cardiac remodeling that was accompanied with heart failure in myocardial infarction rats. Further investigation is warranted for optimal clinical application to the failing heart.
Collapse
Affiliation(s)
- Yutaka Sakakibara
- Department of Cardiovascular Surgery, Kyoto University, Graduate School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002; 105:93-8. [PMID: 11772882 DOI: 10.1161/hc0102.101442] [Citation(s) in RCA: 1544] [Impact Index Per Article: 67.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cellular cardiomyoplasty has been proposed as an alternative strategy for augmenting the function of diseased myocardium. We investigated the potential of human mesenchymal stem cells (hMSCs) from adult bone marrow to undergo myogenic differentiation once transplanted into the adult murine myocardium. METHODS AND RESULTS A small bone marrow aspirate was taken from the iliac crest of healthy human volunteers, and hMSCs were isolated as previously described. The stem cells, labeled with lacZ, were injected into the left ventricle of CB17 SCID/beige adult mice. At 4 days after injection, none of the engrafted hMSCs expressed myogenic markers. A limited number of cells survived past 1 week and over time morphologically resembled the surrounding host cardiomyocytes. Immunohistochemistry revealed de novo expression of desmin, beta-myosin heavy chain, alpha-actinin, cardiac troponin T, and phospholamban at levels comparable to those of the host cardiomyocytes; sarcomeric organization of the contractile proteins was observed. In comparison, neither cardiac troponin T nor phospholamban was detected in the myotubes formed in vitro by MyoD-transduced hMSCs. CONCLUSIONS The purified hMSCs from adult bone marrow engrafted in the myocardium appeared to differentiate into cardiomyocytes. The persistence of the engrafted hMSCs and their in situ differentiation in the heart may represent the basis for using these adult stem cells for cellular cardiomyoplasty.
Collapse
Affiliation(s)
- Catalin Toma
- Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Md, USA
| | | | | | | | | |
Collapse
|
50
|
Hagège AA, Vilquin JT, Bruneval P, Menasché P. Regeneration of the myocardium: a new role in the treatment of ischemic heart disease? Hypertension 2001; 38:1413-5. [PMID: 11751727 DOI: 10.1161/hy1201.099618] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intramyocardial cell grafting aims to limit the consequences of the loss of contractile function of a damaged left ventricle. Its functional efficacy is suggested by a wealth of experimental data using multiple evaluation techniques in different animal species. Intramyocardial injections of cultured fetal cardiomyocytes after infarction increase the ejection fraction. Cultured autologous skeletal myoblasts, which do not raise immunologic, ethical, tumorigenesis, or donor availability problems, improve ventricular function to a similar extent. The presence of connexin-43 is demonstrated between fetal (but not myoblast) grafted cells and host myocytes. Thus, the mechanisms of this beneficial effect (direct systolic effect, paracrine factors, passive girdling effect, and decrease in wall stress) remain controversial. These encouraging results have opened the way to the first clinical trial in patients with low ejection fractions, akinetic and nonviable postinfarction scars, and indications for coronary artery bypasses in remote, viable, and ischemic areas. Large-scale cell expansion allows a yield of >10(9) myoblasts from a single human muscular biopsy. Cultured autologous myoblasts are directly administered by multiple injections within and around the infarcted area during open-chest surgery. Preliminary postoperative observations show an improvement in ejection fraction, reappearance of a systolic thickening of the grafted scars, and a new-onset metabolic viability within this area. Thus, this new procedure might become a useful adjunct to current treatments of severe ischemic heart failure.
Collapse
Affiliation(s)
- A A Hagège
- Faculté de Médecine Necker, Paris V University, and the Department of Cardiology, Hôpital Européen Georges Pompidou, France.
| | | | | | | |
Collapse
|