1
|
Ma N, Wu F, Liu J, Wu Z, Wang L, Li B, Liu Y, Dong X, Hu J, Fang X, Zhang H, Ai D, Zhou J, Wang X. Kindlin-2 Phase Separation in Response to Flow Controls Vascular Stability. Circ Res 2024; 135:1141-1160. [PMID: 39492718 DOI: 10.1161/circresaha.124.324773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Atheroprotective shear stress preserves endothelial barrier function, while atheroprone shear stress enhances endothelial permeability. Yet, the underlying mechanisms through which distinct flow patterns regulate EC integrity remain to be clarified. This study aimed to investigate the involvement of Kindlin-2, a key component of focal adhesion and endothelial adherens junctions crucial for regulating endothelial cell (EC) integrity and vascular stability. METHODS Mouse models of atherosclerosis in EC-specific Kindlin-2 knockout mice (Kindlin-2iΔEC) were used to study the role of Kindlin-2 in atherogenesis. Pulsatile shear (12±4 dynes/cm2) or oscillatory shear (0.5±4 dynes/cm2) were applied to culture ECs. Live-cell imaging, fluorescence recovery after photobleaching assay, and OptoDroplet assay were used to study the liquid-liquid phase separation (LLPS) of Kindlin-2. Co-immunoprecipitation, mutagenesis, proximity ligation assay, and transendothelial electrical resistance assay were used to explore the underlying mechanism of flow-regulated Kindlin-2 function. RESULTS We found that Kindlin-2 localization is altered under different flow patterns. Kindlin-2iΔEC mice showed heightened vascular permeability. Kindlin-2iΔEC were bred onto ApoE-/- mice to generate Kindlin-2iΔEC; ApoE-/- mice, which displayed a significant increase in atherosclerosis lesions. In vitro data showed that in ECs, Kindlin-2 underwent LLPS, a critical process for proper focal adhesion assembly, maturation, and junction formation. Mass spectrometry analysis revealed that oscillatory shear increased arginine methylation of Kindlin-2, catalyzed by PRMT5 (protein arginine methyltransferase 5). Functionally, arginine hypermethylation inhibits Kindlin-2 LLPS, impairing focal adhesion assembly and junction maturation. Notably, we identified R290 of Kindlin-2 as a crucial residue for LLPS and a key site for arginine methylation. Finally, pharmacologically inhibiting arginine methylation reduces EC activation and plaque formation. CONCLUSIONS Collectively, our study elucidates that mechanical force induces arginine methylation of Kindlin-2, thereby regulating vascular stability through its impact on Kindlin-2 LLPS. Targeting Kindlin-2 arginine methylation emerges as a promising hemodynamic-based strategy for treating vascular disorders and atherosclerosis.
Collapse
Affiliation(s)
- Nina Ma
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Fangfang Wu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Jiayu Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.Z.)
| | - Ziru Wu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Lu Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Bochuan Li
- Department of Physiology and Pathophysiology (B.L., D.A.), School of Basic Medical Sciences, Tianjin Medical University, China
| | - Yuming Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Xue Dong
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| | - Junhao Hu
- Laboratory of Vascular Biology and Organ Homeostasis, Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, China (J.H.)
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla (X.F.)
| | - Heng Zhang
- Department of Biochemistry and Molecular Biology (H.Z.), School of Basic Medical Sciences, Tianjin Medical University, China
| | - Ding Ai
- Department of Physiology and Pathophysiology (B.L., D.A.), School of Basic Medical Sciences, Tianjin Medical University, China
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.Z.)
| | - Xiaohong Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.), School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, China (N.M., F.W., Z.W., L.W., Y.L., X.D., X.W.)
| |
Collapse
|
2
|
Bialkowska K, El Khalki L, Rana PS, Wang W, Lindner DJ, Parker Y, Languino LR, Altieri DC, Pluskota E, Sossey-Alaoui K, Plow EF. Role of Kindlin 2 in prostate cancer. Sci Rep 2024; 14:19809. [PMID: 39191802 PMCID: PMC11349918 DOI: 10.1038/s41598-024-70202-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Kindlin-2 is a cytoskeletal adapter protein that is present in many different cell types. By virtue of its interaction with multiple binding partners, Kindlin-2 intercalates into numerous signaling pathways and cytoskeletal nodes. A specific interaction of Kindlin-2 that is of paramount importance in many cellular responses is its direct binding to the cytoplasmic tails of integrins, an interaction that controls many of the adhesive, migratory and signaling responses mediated by members of the integrin family of cell-surface heterodimers. Kindlin-2 is highly expressed in many cancers and is particularly prominent in prostate cancer cells. CRISPR/cas9 was used as a primary approach to knockout expression of Kindlin-2 in both androgen-independent and dependent prostate cancer cell lines, and the effects of Kindlin-2 suppression on oncogenic properties of these prostate cancer cell lines was examined. Adhesion to extracellular matrix proteins was markedly blunted, consistent with the control of integrin function by Kindlin-2. Migration across matrices was also affected. Anchorage independent growth was markedly suppressed. These observations indicate that Kindlin-2 regulates hallmark features of prostate cancer cells. In androgen expressing cells, testosterone-stimulated adhesion was Kindlin-2-dependent. Furthermore, tumor growth of a prostate cancer cell line lacking Kindlin-2 and implanted into the prostate gland of immunocompromised mice was markedly blunted and was associated with suppression of angiogenesis in the developing tumor. These results establish a key role of Kindlin-2 in prostate cancer progression and suggest that Kindlin-2 represents an interesting therapeutic target for treatment of prostate cancer.
Collapse
Affiliation(s)
- Katarzyna Bialkowska
- Department of Cardiovascular Biology and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44139, USA
| | - Lamyae El Khalki
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Priyanka S Rana
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Wei Wang
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Daniel J Lindner
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Translational Hematology and Oncology Research, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Yvonne Parker
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Lucia R Languino
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dario C Altieri
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Elzbieta Pluskota
- Department of Cardiovascular Biology and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44139, USA
| | - Khalid Sossey-Alaoui
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
- Division of Cancer Biology, MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH, 44109, USA.
| | - Edward F Plow
- Department of Cardiovascular Biology and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44139, USA.
| |
Collapse
|
3
|
Wang Y, Sarnowski C, Lin H, Pitsillides AN, Heard‐Costa NL, Choi SH, Wang D, Bis JC, Blue EE, Boerwinkle E, De Jager PL, Fornage M, Wijsman EM, Seshadri S, Dupuis J, Peloso GM, DeStefano AL. Key variants via the Alzheimer's Disease Sequencing Project whole genome sequence data. Alzheimers Dement 2024; 20:3290-3304. [PMID: 38511601 PMCID: PMC11095439 DOI: 10.1002/alz.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Genome-wide association studies (GWAS) have identified loci associated with Alzheimer's disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations, may identify causal variants within GWAS loci. METHODS We performed single common variant association analysis and rare variant aggregate analyses in the pooled population (N cases = 2184, N controls = 2383) and targeted analyses in subpopulations using WGS data from the Alzheimer's Disease Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of 83 previously identified GWAS lead variants. RESULTS Seventeen variants were significantly associated with AD within five genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate analyses. DISCUSSION This study demonstrates the utility of leveraging WGS to gain insights into AD loci identified via GWAS.
Collapse
Affiliation(s)
- Yanbing Wang
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
| | - Chloé Sarnowski
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
- Human Genetics CenterDepartment of EpidemiologySchool of Public HealthThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Honghuang Lin
- Department of MedicineUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | | | - Nancy L. Heard‐Costa
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| | - Seung Hoan Choi
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
| | - Dongyu Wang
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
| | - Joshua C. Bis
- Cardiovascular Health Research UnitDepartment of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Elizabeth E. Blue
- Department of MedicineDivision of Medical GeneticsUniversity of WashingtonSeattleWashingtonUSA
- Brotman Baty InstituteSeattleWashingtonUSA
| | | | - Eric Boerwinkle
- Human Genetics CenterDepartment of EpidemiologySchool of Public HealthThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Philip L. De Jager
- Center for Translational & Computational NeuroimmunologyDepartment of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Myriam Fornage
- Human Genetics CenterDepartment of EpidemiologySchool of Public HealthThe University of Texas Health Science Center at HoustonHoustonTexasUSA
- Brown Foundation Institute of Molecular MedicineMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Ellen M. Wijsman
- Division of Medical Genetics and Department Biostatistics Statistical Genetics LabUniversity of WashingtonHans Rosling Center for Population HealthSeattleWashingtonUSA
| | - Sudha Seshadri
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesThe University of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Josée Dupuis
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
- Department of Epidemiology, Biostatistics and Occupational HealthSchool of Population and Global HealthMcGill UniversityMontrealQuebecCanada
| | - Gina M. Peloso
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
| | - Anita L. DeStefano
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| | | |
Collapse
|
4
|
Ma X, Zhao D, Liu S, Zuo J, Wang W, Wang F, Li Y, Ding Z, Wang J, Wang X. FERMT2 upregulation in CAFs enhances EMT of OSCC and M2 macrophage polarization. Oral Dis 2024; 30:991-1003. [PMID: 37357349 DOI: 10.1111/odi.14610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVES FERMT2 upregulation was associated with malignant tumor behaviors, including epithelial-to-mesenchymal (EMT). This study aimed to characterize the expression profile of FERMT2 in oral squamous cell carcinoma (OSCC) and to explore its involvement in the tumor microenvironment sculptured by oral cancer-associated fibroblasts (OCAFs). MATERIALS Previous bulk-seq (TCGA-HNSC) and single-cell RNA-seq data sets were retrieved for bioinformatic analysis. Human OSCC lines SCC15 and CAL27, primary normal oral fibroblasts (NOFs), OCAFs, and THP-1 cells were used for intro studies. RESULTS FERMT2 expression was significantly higher in CAFs compared with OSCC tumor cells and normal fibroblasts. Higher FERMT2 expression might independently predict unfavorable disease-specific survival (DSS) in patients with OSCC. Knockdown of FERMT2 suppressed the expression and secretion of IGFBP7, SPARC, TIMP3, COL4A1, and IGFBP4 in OCAFs. OCAFs with FERMT2 knockdown had significantly weakened capability to induce the invasion of OSCC cells and the expression of mesenchymal markers. FERMT2 knockdown impaired the inducing effect of OCAFs on the migration of M0 macrophages and the expression of M2 macrophage markers. CONCLUSIONS FERMT2 could modulate the production and secretion of IGFBP7, SPARC, COL4A1, and IGFBP4 in OCAFs, thereby inducing the EMT of OSCC and M2 macrophage polarization.
Collapse
Affiliation(s)
- Xiangrui Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Dan Zhao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Shan Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinhua Zuo
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Wenlong Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Fang Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Yourui Li
- Department of Prosthodontics, Binzhou Medical University Hospital, Binzhou, China
| | - Zhangfan Ding
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jing Wang
- Department of Oral Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Xiaoyi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Wang S, Zhang Z, He J, Liu J, Guo X, Chu H, Xu H, Wang Y. Comprehensive review on gene mutations contributing to dilated cardiomyopathy. Front Cardiovasc Med 2023; 10:1296389. [PMID: 38107262 PMCID: PMC10722203 DOI: 10.3389/fcvm.2023.1296389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is one of the most common primary myocardial diseases. However, to this day, it remains an enigmatic cardiovascular disease (CVD) characterized by ventricular dilatation, which leads to myocardial contractile dysfunction. It is the most common cause of chronic congestive heart failure and the most frequent indication for heart transplantation in young individuals. Genetics and various other factors play significant roles in the progression of dilated cardiomyopathy, and variants in more than 50 genes have been associated with the disease. However, the etiology of a large number of cases remains elusive. Numerous studies have been conducted on the genetic causes of dilated cardiomyopathy. These genetic studies suggest that mutations in genes for fibronectin, cytoskeletal proteins, and myosin in cardiomyocytes play a key role in the development of DCM. In this review, we provide a comprehensive description of the genetic basis, mechanisms, and research advances in genes that have been strongly associated with DCM based on evidence-based medicine. We also emphasize the important role of gene sequencing in therapy for potential early diagnosis and improved clinical management of DCM.
Collapse
Affiliation(s)
- Shipeng Wang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhiyu Zhang
- Department of Cardiovascular Medicine, The Second People's Hospital of Yibin, Yibin, China
| | - Jiahuan He
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Junqian Liu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xia Guo
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Haoxuan Chu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Hanchi Xu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yushi Wang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Wang Z, Zhang L, Li B, Song J, Yu M, Zhang J, Chen C, Zhan J, Zhang H. Kindlin-2 in myoepithelium controls luminal progenitor commitment to alveoli in mouse mammary gland. Cell Death Dis 2023; 14:675. [PMID: 37833248 PMCID: PMC10576046 DOI: 10.1038/s41419-023-06184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Myoepithelium plays an important role in mammary gland development, but less is known about the molecular mechanism underlying how myoepithelium controls acinus differentiation during gestation. Herein, we found that loss of Kindlin-2 in myoepithelial cells impaired mammary morphogenesis, alveologenesis, and lactation. Using five genetically modified mouse lines combined with single-cell RNA sequencing, we found a Kindlin-2-Stat3-Dll1 signaling cascade in myoepithelial cells that inactivates Notch signaling in luminal cells and consequently drives luminal progenitor commitment to alveolar cells identity. Single-cell profiling revealed that Kindlin-2 loss significantly reduces the proportion of matured alveolar cells. Mechanistically, Kindlin-2 depletion in myoepithelial cells promotes Stat3 activation and upregulates Dll1, which activates the Notch pathway in luminal cells and inhibits luminal progenitor differentiation and maturation during gestation. Inhibition of Notch1 with tangeretin allowed luminal progenitors to regain commitment ability in the pregnant mice with Kindlin-2 depletion in myoepithelium. Taken together, we demonstrated that Kindlin-2 is essential to myoepithelium-controlled luminal progenitors to alveoli transition during gestation.
Collapse
Affiliation(s)
- Zhenbin Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Lei Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Bing Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
- Department of Histology and Embryology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Jiagui Song
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Miao Yu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Jing Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Ceshi Chen
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China.
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
7
|
Wang Y, Sarnowski C, Lin H, Pitsillides AN, Heard-Costa NL, Choi SH, Wang D, Bis JC, Blue EE, Boerwinkle E, De Jager PL, Fornage M, Wijsman EM, Seshadri S, Dupuis J, Peloso GM, DeStefano AL. Key variants via Alzheimer's Disease Sequencing Project whole genome sequence data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.28.23294631. [PMID: 37693453 PMCID: PMC10491364 DOI: 10.1101/2023.08.28.23294631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Genome-wide association studies (GWAS) have identified loci associated with Alzheimer's disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations, may identify causal variants within GWAS loci. METHODS We performed single common variant association analysis and rare variant aggregate analyses in the pooled population (N cases=2,184, N controls=2,383) and targeted analyses in sub-populations using WGS data from the Alzheimer's Disease Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of 83 previously identified GWAS lead variants. RESULTS Seventeen variants were significantly associated with AD within five genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate analyses. DISCUSSION This study demonstrates the utility of leveraging WGS to gain insights into AD loci identified via GWAS.
Collapse
Affiliation(s)
- Yanbing Wang
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
| | - Chloé Sarnowski
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Nancy L Heard-Costa
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Seung Hoan Choi
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
| | - Dongyu Wang
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Elizabeth E Blue
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
- Brotman Baty Institute, Seattle, WA, USA
| | | | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ellen M Wijsman
- Div. of Medical Genetics and Dept. Biostatistics Statistical Genetics Lab, University of Washington, Seattle, WA, USA
| | - Sudha Seshadri
- The Framingham Heart Study, Framingham, MA, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Boston University School of Medicine, Department of Neurology, Boston, MA, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, Montreal, Canada
| | - Gina M Peloso
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
| | - Anita L DeStefano
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
| | | |
Collapse
|
8
|
Lu SHA, Wu YH, Su LY, Hsu ZT, Weng TH, Wang HY, Yu C, Hsu PWC, Tsai SY. Cardiac myofibrillogenesis is spatiotemporally modulated by the molecular chaperone UNC45B. Stem Cell Reports 2023:S2213-6711(23)00184-4. [PMID: 37295424 PMCID: PMC10362501 DOI: 10.1016/j.stemcr.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
Sarcomeres are fundamental to cardiac muscle contraction. Their impairment can elicit cardiomyopathies, leading causes of death worldwide. However, the molecular mechanism underlying sarcomere assembly remains obscure. We used human embryonic stem cell (hESC)-derived cardiomyocytes (CMs) to reveal stepwise spatiotemporal regulation of core cardiac myofibrillogenesis-associated proteins. We found that the molecular chaperone UNC45B is highly co-expressed with KINDLIN2 (KIND2), a marker of protocostameres, and later its distribution overlaps with that of muscle myosin MYH6. UNC45B-knockout CMs display essentially no contractility. Our phenotypic analyses further reveal that (1) binding of Z line anchor protein ACTN2 to protocostameres is perturbed because of impaired protocostamere formation, resulting in ACTN2 accumulation; (2) F-ACTIN polymerization is suppressed; and (3) MYH6 becomes degraded, so it cannot replace non-muscle myosin MYH10. Our mechanistic study demonstrates that UNC45B mediates protocostamere formation by regulating KIND2 expression. Thus, we show that UNC45B modulates cardiac myofibrillogenesis by interacting spatiotemporally with various proteins.
Collapse
Affiliation(s)
- Serena Huei-An Lu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hsuan Wu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Liang-Yu Su
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Zi-Ting Hsu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Han Weng
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Hsin-Yu Wang
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Chiao Yu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Paul Wei-Che Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County 350, Taiwan
| | - Su-Yi Tsai
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
9
|
Li W, Wen L, Rathod B, Gingras AC, Ley K, Lee HS. Kindlin2 enables EphB/ephrinB bi-directional signaling to support vascular development. Life Sci Alliance 2023; 6:e202201800. [PMID: 36574991 PMCID: PMC9795039 DOI: 10.26508/lsa.202201800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
Direct contact between cells expressing either ephrin ligands or Eph receptor tyrosine kinase produces diverse developmental responses. Transmembrane ephrinB ligands play active roles in transducing bi-directional signals downstream of EphB/ephrinB interaction. However, it has not been well understood how ephrinB relays transcellular signals to neighboring cells and what intracellular effectors are involved. Here, we report that kindlin2 can mediate bi-directional ephrinB signaling through binding to a highly conserved NIYY motif in the ephrinB2 cytoplasmic tail. We show this interaction is important for EphB/ephrinB-mediated integrin activation in mammalian cells and for blood vessel morphogenesis during zebrafish development. A mixed two-cell population study revealed that kindlin2 (in ephrinB2-expressing cells) modulates transcellular EphB4 activation by promoting ephrinB2 clustering. This mechanism is also operative for EphB2/ephrinB1, suggesting that kindlin2-mediated regulation is conserved for EphB/ephrinB signaling pathways. Together, these findings show that kindlin2 enables EphB4/ephrinB2 bi-directional signal transmission.
Collapse
Affiliation(s)
- Wenqing Li
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lai Wen
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Bhavisha Rathod
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Ho-Sup Lee
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Manso AM, Romaine A, Christensen G, Ross RS. Integrins in Cardiac Form, Function, and Disease. BIOLOGY OF EXTRACELLULAR MATRIX 2023:135-183. [DOI: 10.1007/978-3-031-23781-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Xia W, Gao Z, Jiang X, Jiang L, Qin Y, Zhang D, Tian P, Wang W, Zhang Q, Zhang R, Zhang N, Xu S. Alzheimer's risk factor FERMT2 promotes the progression of colorectal carcinoma via Wnt/β-catenin signaling pathway and contributes to the negative correlation between Alzheimer and cancer. PLoS One 2022; 17:e0278774. [PMID: 36480537 PMCID: PMC9731493 DOI: 10.1371/journal.pone.0278774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence from epidemiological studies indicate that Alzheimer's disease (AD) has a negative relationship with the incidence of cancers. Whether the Alzheimer's genetic risk factor, named as fermitin family homolog-2 (FERMT2), plays a pivotal part in the progressive process of colorectal carcinoma (CRC) yet remains unclear. This study revealed that FERMT2 was upregulated in CRC tissues which predicted an unfavorable outcome of CRC using the PrognoScan web tool. FERMT2 was co-expressed with a variety of genes have been linked with CRC occurrence and implicated in the infiltration of immune cell in CRC tissues. Overexpressing FERMT2 promoted CRC progression with upregulation of Wnt/β-catenin signaling. Knockdown of FERMT2 suppressed the cell multiplication, colony formation rate, migration and invasion, along with the epithelial to mesenchymal transition (EMT) with downregulation Wnt/β-catenin proteins in cells of CRC, while overexpressing β-catenin reversed the inhibitory effects of silencing FERMT2 on the migration or invasion of CRC cells. Furthermore, Aβ1-42 treated HT22 cells induced downregulation of FERMT2 and inhibited the migration, invasion and EMT in co-cultured CT26 cells through Wnt/β-catenin signaling. Our results revealed that the downregulated FERMT2 gene during AD is prominently activated in CRC, which promotes its progression via Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Wenzhen Xia
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhaoyu Gao
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,Hebei International Joint Research Center for Brain Science, Shijiazhuang, Hebei, China,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, Hebei, China
| | - Xia Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,Key Laboratory for Colorectal Cancer Precision Diagnosis and Treatment of Hebei Province, Shijiazhuang, Hebei, China
| | - Lei Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,Hebei International Joint Research Center for Brain Science, Shijiazhuang, Hebei, China,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, Hebei, China
| | - Yushi Qin
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Di Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pei Tian
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wanchang Wang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qi Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Rui Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,Hebei International Joint Research Center for Brain Science, Shijiazhuang, Hebei, China,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, Hebei, China
| | - Nan Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,Hebei International Joint Research Center for Brain Science, Shijiazhuang, Hebei, China,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, Hebei, China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,Hebei International Joint Research Center for Brain Science, Shijiazhuang, Hebei, China,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, Hebei, China,* E-mail:
| |
Collapse
|
12
|
张 京, 宋 佳, 王 振, 龚 玉, 王 天, 周 津, 战 军, 张 宏. [Kindlin-2 regulates endometrium development via mTOR and Hippo signaling pathways in mice]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54:846-852. [PMID: 36241227 PMCID: PMC9568384 DOI: 10.19723/j.issn.1671-167x.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To investigate the effects and mechanisms of Kindlin-2 on uterus development and reproductive capacity in female mice. METHODS Cdh16-Cre tool mice and Kindlin-2flox/flox mice were used to construct the mouse model of uterus specific knockout of Kindlin-2, and the effects of Kindlin-2 deletion on uterine development and reproduction capacity of female mice were observed. High expression and knockdown of Kindlin-2 in endometrial cancer cell lines HEC-1 and Ish were used to detect the regulation of mammalian target of rapamycin (mTOR) signaling pathway. In addition, uterine proteins of the female mice with specific knockout of Kindlin-2 and female mice in the control group were extracted to detect the protein levels of key molecules of mTOR signaling pathway and Hippo signaling pathway. RESULTS The mouse model of uterine specific knockout of Kindlin-2 was successfully constructed. The knockout efficiency of Kindlin-2 in mouse uterus was identified and verified by mouse tail polymerase chain reaction (PCR), Western blot protein identification, immunohistochemical staining (IHC) and other methods. Compared with the control group, the female mice with uterus specific deletion of Kindlin-2 lost weight, seriously impaired reproductive ability, and the number of newborn mice decreased, but the proportion of the female mice and male mice in the newborn mice did not change. Hematoxylin eosin staining (HE) experiment showed that the endometrium of Kindlin-2 knockout group was incomplete and the thickness of uterine wall became thinner. In terms of mechanism, the deletion of Kindlin-2 in endo-metrial cancer cell lines HEC-1 and Ish could downregulate the protein levels of mTOR, phosphorylated mTOR, adenosine monophosphate-activated protein kinase (AMPK), phosphorylated AMPK and phosphorylated ribosomal protein S6 (S6), and the mTOR signal pathway was inhibited. It was found that the specific deletion of Kindlin-2 could upregulate the protein levels of Mps one binding 1 (MOB1) and phosphorylated Yes-associated protein (YAP) in the uterus of the female mice, and the Hippo signal pathway was activated. CONCLUSION Kindlin-2 inhibits the development of uterus by inhibiting mTOR signal pathway and activating Hippo signal pathway, thereby inhibiting the fertility of female mice.
Collapse
Affiliation(s)
- 京 张
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 佳桂 宋
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
- 北京大学第三医院医学创新研究院基础医学研究中心,北京 100191Center of Basic Medical Research, Institute of Medical Innovation and Research, Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - 振斌 王
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 玉清 龚
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 天卓 王
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 津羽 周
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 军 战
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 宏权 张
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| |
Collapse
|
13
|
Karlsen A, Gonzalez-Franquesa A, Jakobsen JR, Krogsgaard MR, Koch M, Kjaer M, Schiaffino S, Mackey AL, Deshmukh AS. The proteomic profile of the human myotendinous junction. iScience 2022; 25:103836. [PMID: 35198892 PMCID: PMC8851264 DOI: 10.1016/j.isci.2022.103836] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
Proteomics analysis of skeletal muscle has recently progressed from whole muscle tissue to single myofibers. Here, we further focus on a specific myofiber domain crucial for force transmission from muscle to tendon, the myotendinous junction (MTJ). To overcome the anatomical constraints preventing the isolation of pure MTJs, we performed in-depth analysis of the MTJ by progressive removal of the muscle component in semitendinosus muscle-tendon samples. Using detergents with increasing stringency, we quantified >3000 proteins across all samples, and identified 112 significantly enriched MTJ proteins, including 24 known MTJ-enriched proteins. Of the 88 novel MTJ markers, immunofluorescence analysis confirmed the presence of tetraspanin-24 (CD151), kindlin-2 (FERMT2), cartilage intermediate layer protein 1 (CILP), and integrin-alpha10 (ITGA10), at the human MTJ. Together, these human data constitute the first detailed MTJ proteomics resource that will contribute to advance understanding of the biology of the MTJ and its failure in pathological conditions.
Collapse
Affiliation(s)
- Anders Karlsen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Denmark and Part of IOC Research Center, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Alba Gonzalez-Franquesa
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens R Jakobsen
- Section for Sports Traumatology M51, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Denmark and Part of IOC Research Center, Copenhagen, Denmark
| | - Michael R Krogsgaard
- Section for Sports Traumatology M51, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Denmark and Part of IOC Research Center, Copenhagen, Denmark
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Denmark and Part of IOC Research Center, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Denmark and Part of IOC Research Center, Copenhagen, Denmark.,Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Wang W, Rana PS, Alkrekshi A, Bialkowska K, Markovic V, Schiemann WP, Plow EF, Pluskota E, Sossey-Alaoui K. Targeted Deletion of Kindlin-2 in Mouse Mammary Glands Inhibits Tumor Growth, Invasion, and Metastasis Downstream of a TGF-β/EGF Oncogenic Signaling Pathway. Cancers (Basel) 2022; 14:cancers14030639. [PMID: 35158908 PMCID: PMC8833458 DOI: 10.3390/cancers14030639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer (BC) is one of the leading causes of cancer-related deaths due in part to its invasive and metastatic properties. Kindlin-2 (FERMT2) is associated with the pathogenesis of several cancers. Although the role of Kindlin-2 in regulating the invasion-metastasis cascade in BC is widely documented, its function in BC initiation and progression remains to be fully elucidated. Accordingly, we generated a floxed mouse strain by targeting the Fermt2 (K2lox/lox) locus, followed by tissue-specific deletion of Kindlin-2 in the myoepithelial compartment of the mammary glands by crossing the K2lox/lox mice with K14-Cre mice. Loss of Kindlin-2 in mammary epithelial cells (MECs) showed no deleterious effects on mammary gland development, fertility, and lactation in mice bearing Kindlin-2-deletion. However, in a syngeneic mouse model of BC, mammary gland, specific knockout of Kindlin-2 inhibited the growth and metastasis of murine E0771 BC cells inoculated into the mammary fat pads. However, injecting the E0771 cells into the lateral tail vein of Kindlin-2-deleted mice had no effect on tumor colonization in the lungs, thereby establishing a critical role of MEC Kindlin-2 in supporting BC tumor growth and metastasis. Mechanistically, we found the MEC Kindlin-2-mediated inhibition of tumor growth and metastasis is accomplished through its regulation of the TGF-β/ERK MAP kinase signaling axis. Thus, Kindlin-2 within the mammary gland microenvironment facilitates the progression and metastasis of BC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (W.W.); (P.S.R.); (A.A.)
- Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA;
| | - Priyanka S. Rana
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (W.W.); (P.S.R.); (A.A.)
- Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA;
| | - Akram Alkrekshi
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (W.W.); (P.S.R.); (A.A.)
- Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA;
| | - Katarzyna Bialkowska
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (K.B.); (E.F.P.)
| | - Vesna Markovic
- Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA;
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Edward F. Plow
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (K.B.); (E.F.P.)
| | - Elzbieta Pluskota
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (K.B.); (E.F.P.)
- Correspondence: (E.P.); (K.S.-A.)
| | - Khalid Sossey-Alaoui
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (W.W.); (P.S.R.); (A.A.)
- Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
- Correspondence: (E.P.); (K.S.-A.)
| |
Collapse
|
15
|
Cui Q, Wang C, Liu S, Du R, Tian S, Chen R, Geng H, Subramanian S, Niu Y, Wang Y, Yue D. YBX1 knockdown induces renal cell carcinoma cell apoptosis via Kindlin-2. Cell Cycle 2021; 20:2413-2427. [PMID: 34709966 DOI: 10.1080/15384101.2021.1985771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Among urological tumors, renal cell carcinoma (RCC) is the third-highest mortality rate tumor, and 20%-30% of RCC patients present with metastases at the time of diagnosis. While the treatment of RCC has been improved over the last few years, its mortality stays high. Y-box binding protein 1 (YBX1) is a well-known oncoprotein that has tumor-promoting functions. YBX1 is widely considered to be an attractive therapeutic target in cancer. To develop novel therapeutics to target YBX1, it is of great importance to understand how YBX1 is finely regulated in cancer. Our previous studies showed that YBX1 in RCC cells significantly promoted cell adhesion, migration, and invasion. However, the role of YBX1 in RCC cells apoptosis has not been reported. In this study, we investigated the effect of YBX1 on cell apoptosis and elucidated the mechanisms involved. Results showed that YBX1 regulated RCC cells apoptosis and reactive oxygen species (ROS) generation via Kindlin-2. These findings indicated that YBX1 inhibited RCC cells apoptosis and may serve as a candidate RCC prognostic marker and a potential therapeutic target. Abbreviations: RCC: Renal cell carcinoma; YBX1: Y-box binding protein 1; ROS: Reactive oxygen species; ccRCC: Clear cell renal cell carcinoma; mccRCC: Metastatic clear cell renal cell carcinoma; G3BP1: Ras-GTPase activating protein SH3 domain-binding proteins 1; SPP1: Secreted phosphoprotein 1; NF-κB: Nuclear factor kappa beta; ECM: Extracellular matrix; EMT: Epithelial-mesenchymal transition; PYCR1: Pyrroline-5-carboxylate reductase 1; MEM: Eagle's Minimum Essential Medium; DMEM: Dulbecco's modified Eagle medium; FBS: Fetal bovine serum; PCR: Polymerase chain reaction; shRNA: Short hairpin RNA; siRNA: Small interfering RNA; BSA: Bovine serum albumin; DCFH-DA: 2,7-Dichlorodihydrofluorescein diacetate; FITC: Fluorescein isothiocyanate; PI: Propidium iodide.
Collapse
Affiliation(s)
- Qiqi Cui
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin China
| | - Chao Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin China
| | - Shuang Liu
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin China
| | - Runxuan Du
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin China
| | - Shaoping Tian
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin China
| | - Hua Geng
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Saravanan Subramanian
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yuanjie Niu
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin China
| | - Yong Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin China
| | - Dan Yue
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin China
| |
Collapse
|
16
|
Eysert F, Coulon A, Boscher E, Vreulx AC, Flaig A, Mendes T, Hughes S, Grenier-Boley B, Hanoulle X, Demiautte F, Bauer C, Marttinen M, Takalo M, Amouyel P, Desai S, Pike I, Hiltunen M, Chécler F, Farinelli M, Delay C, Malmanche N, Hébert SS, Dumont J, Kilinc D, Lambert JC, Chapuis J. Alzheimer's genetic risk factor FERMT2 (Kindlin-2) controls axonal growth and synaptic plasticity in an APP-dependent manner. Mol Psychiatry 2021; 26:5592-5607. [PMID: 33144711 PMCID: PMC8758496 DOI: 10.1038/s41380-020-00926-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022]
Abstract
Although APP metabolism is being intensively investigated, a large fraction of its modulators is yet to be characterized. In this context, we combined two genome-wide high-content screenings to assess the functional impact of miRNAs and genes on APP metabolism and the signaling pathways involved. This approach highlighted the involvement of FERMT2 (or Kindlin-2), a genetic risk factor of Alzheimer's disease (AD), as a potential key modulator of axon guidance, a neuronal process that depends on the regulation of APP metabolism. We found that FERMT2 directly interacts with APP to modulate its metabolism, and that FERMT2 underexpression impacts axonal growth, synaptic connectivity, and long-term potentiation in an APP-dependent manner. Last, the rs7143400-T allele, which is associated with an increased AD risk and localized within the 3'UTR of FERMT2, induced a downregulation of FERMT2 expression through binding of miR-4504 among others. This miRNA is mainly expressed in neurons and significantly overexpressed in AD brains compared to controls. Altogether, our data provide strong evidence for a detrimental effect of FERMT2 underexpression in neurons and insight into how this may influence AD pathogenesis.
Collapse
Affiliation(s)
- Fanny Eysert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Audrey Coulon
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Emmanuelle Boscher
- Centre de Recherche du CHU de Québec-Université Laval, CHUL, Axe Neurosciences, Québec City, QC, Canada
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Université Laval, Québec City, QC, Canada
| | - Anaїs-Camille Vreulx
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Amandine Flaig
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Tiago Mendes
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Sandrine Hughes
- E-Phy-Science, Bioparc de Sophia Antipolis, 2400 route des Colles, Biot, 06410, France
| | - Benjamin Grenier-Boley
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Xavier Hanoulle
- Université de Lille, CNRS, UMR8576-Labex DISTALZ, Villeneuve d'Ascq, 59655, France
| | - Florie Demiautte
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Charlotte Bauer
- Université Côte d'Azur, Inserm, CNRS, IPMC, DistAlz Laboratory of Excellence, Valbonne, France
| | - Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Philippe Amouyel
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Shruti Desai
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Ian Pike
- Proteome Sciences plc, Hamilton House, London, WC1H 9BB, UK
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Frédéric Chécler
- Université Côte d'Azur, Inserm, CNRS, IPMC, DistAlz Laboratory of Excellence, Valbonne, France
| | - Mélissa Farinelli
- E-Phy-Science, Bioparc de Sophia Antipolis, 2400 route des Colles, Biot, 06410, France
| | - Charlotte Delay
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Nicolas Malmanche
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Sébastien S Hébert
- Centre de Recherche du CHU de Québec-Université Laval, CHUL, Axe Neurosciences, Québec City, QC, Canada
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Université Laval, Québec City, QC, Canada
| | - Julie Dumont
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Devrim Kilinc
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Julien Chapuis
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France.
| |
Collapse
|
17
|
Chen K, Guo L, Wu C. How signaling pathways link extracellular mechano-environment to proline biosynthesis: A hypothesis: PINCH-1 and kindlin-2 sense mechanical signals from extracellular matrix and link them to proline biosynthesis. Bioessays 2021; 43:e2100116. [PMID: 34218442 DOI: 10.1002/bies.202100116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
We propose a signaling pathway in which cell-extracellular matrix (ECM) adhesion components PINCH-1 and kindlin-2 sense mechanical signals from ECM and link them to proline biosynthesis, a vital metabolic pathway for macromolecule synthesis, redox balance, and ECM remodeling. ECM stiffening promotes PINCH-1 expression via integrin signaling, which suppresses dynamin-related protein 1 (DRP1) expression and mitochondrial fission, resulting in increased kindlin-2 translocation into mitochondria and interaction with Δ1 -pyrroline-5-carboxylate (P5C) reductase 1 (PYCR1). Kindlin-2 interaction with PYCR1 protects the latter from proteolytic degradation, leading to elevated PYCR1 level. Additionally, PINCH-1 promotes P5C synthase (P5CS) expression and P5C synthesis, which, together with increased PYCR1 level, support augmented proline biosynthesis. This signaling pathway is frequently activated in fibrosis and cancer, resulting in increased proline biosynthesis and excessive collagen matrix production, which in turn further promotes ECM stiffening. Targeting this signaling pathway, therefore, may provide an effective strategy for alleviating fibrosis and cancer progression.
Collapse
Affiliation(s)
- Keng Chen
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Ling Guo
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Guzy R, Redente EF. Kindlin for the Fire: Targeting Proline Synthesis to Extinguish Matrix Production in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 65:4-5. [PMID: 33844940 PMCID: PMC8320124 DOI: 10.1165/rcmb.2021-0137ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Robert Guzy
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Elizabeth F Redente
- Department of Pediatrics, National Jewish Health, Denver, Colorado and.,Department of Medicine University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
19
|
Wang H, Wang C, Long Q, Zhang Y, Wang M, Liu J, Qi X, Cai D, Lu G, Sun J, Yao YG, Chan WY, Chan WY, Deng Y, Zhao H. Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway. Development 2021; 148:264926. [PMID: 33999995 DOI: 10.1242/dev.199441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/14/2021] [Indexed: 12/28/2022]
Abstract
The focal adhesion protein Kindlin2 is essential for integrin activation, a process that is fundamental to cell-extracellular matrix adhesion. Kindlin 2 (Fermt2) is widely expressed in mouse embryos, and its absence causes lethality at the peri-implantation stage due to the failure to trigger integrin activation. The function of kindlin2 during embryogenesis has not yet been fully elucidated as a result of this early embryonic lethality. Here, we showed that kindlin2 is essential for neural crest (NC) formation in Xenopus embryos. Loss-of-function assays performed with kindlin2-specific morpholino antisense oligos (MOs) or with CRISPR/Cas9 techniques in Xenopus embryos severely inhibit the specification of the NC. Moreover, integrin-binding-deficient mutants of Kindlin2 rescued the phenotype caused by loss of kindlin2, suggesting that the function of kindlin2 during NC specification is independent of integrins. Mechanistically, we found that Kindlin2 regulates the fibroblast growth factor (FGF) pathway, and promotes the stability of FGF receptor 1. Our study reveals a novel function of Kindlin2 in regulating the FGF signaling pathway and provides mechanistic insights into the function of Kindlin2 during NC specification.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chengdong Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Long
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Zhang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Meiling Wang
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Gunadong 518055, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Jie Liu
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Gunadong 518055, China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Gang Lu
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianmin Sun
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Yong-Gang Yao
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Wood Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Yee Chan
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Yi Deng
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Gunadong 518055, China.,Shenzhen Key Laboratory of Cell Microenvironment, Department of Chemistry, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.,Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| |
Collapse
|
20
|
Bu W, Levitskaya Z, Tan SM, Gao YG. Emerging evidence for kindlin oligomerization and its role in regulating kindlin function. J Cell Sci 2021; 134:256567. [PMID: 33912917 DOI: 10.1242/jcs.256115] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrin-mediated cell-extracellular matrix (ECM) interactions play crucial roles in a broad range of physiological and pathological processes. Kindlins are important positive regulators of integrin activation. The FERM-domain-containing kindlin family comprises three members, kindlin-1, kindlin-2 and kindlin-3 (also known as FERMT1, FERMT2 and FERMT3), which share high sequence similarity (identity >50%), as well as domain organization, but exhibit diverse tissue-specific expression patterns and cellular functions. Given the significance of kindlins, analysis of their atomic structures has been an attractive field for decades. Recently, the structures of kindlin and its β-integrin-bound form have been obtained, which greatly advance our understanding of the molecular functions that involve kindlins. In particular, emerging evidence indicates that oligomerization of kindlins might affect their integrin binding and focal adhesion localization, positively or negatively. In this Review, we presented an update on the recent progress of obtaining kindlin structures, and discuss the implication for integrin activation based on kindlin oligomerization, as well as the possible regulation of this process.
Collapse
Affiliation(s)
- Wenting Bu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551.,Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China518055
| | - Zarina Levitskaya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore639798
| |
Collapse
|
21
|
Phosphorylation of Kindlins and the Control of Integrin Function. Cells 2021; 10:cells10040825. [PMID: 33916922 PMCID: PMC8067640 DOI: 10.3390/cells10040825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022] Open
Abstract
Integrins serve as conduits for the transmission of information between cells and their extracellular environment. Signaling across integrins is bidirectional, transducing both inside-out and outside-signaling. Integrin activation, a transition from a low affinity/avidity state to a high affinity/avidity state for cognate ligands, is an outcome of inside-signaling. Such activation is particularly important for the recognition of soluble ligands by blood cells but also influences cell-cell and cell-matrix interactions. Integrin activation depends on a complex series of interactions, which both accelerate and inhibit their interconversion from the low to the high affinity/avidity state. There are three components regarded as being most proximately involved in integrin activation: the integrin cytoplasmic tails, talins and kindlins. The participation of each of these molecules in integrin activation is highly regulated by post-translation modifications. The importance of targeted phosphorylation of integrin cytoplasmic tails and talins in integrin activation is well-established, but much less is known about the role of post-translational modification of kindlins. The kindlins, a three-member family of 4.1-ezrin-radixin-moesin (FERM)-domain proteins in mammals, bind directly to the cytoplasmic tails of integrin beta subunits. This commentary provides a synopsis of the emerging evidence for the role of kindlin phosphorylation in integrin regulation.
Collapse
|
22
|
Qin L, Fu X, Ma J, Lin M, Zhang P, Wang Y, Yan Q, Tao C, Liu W, Tang B, Chen D, Bai X, Cao H, Xiao G. Kindlin-2 mediates mechanotransduction in bone by regulating expression of Sclerostin in osteocytes. Commun Biol 2021; 4:402. [PMID: 33767359 PMCID: PMC7994671 DOI: 10.1038/s42003-021-01950-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Osteocytes act as mechanosensors in bone; however, the underlying mechanism remains poorly understood. Here we report that deleting Kindlin-2 in osteocytes causes severe osteopenia and mechanical property defects in weight-bearing long bones, but not in non-weight-bearing calvariae. Kindlin-2 loss in osteocytes impairs skeletal responses to mechanical stimulation in long bones. Control and cKO mice display similar bone loss induced by unloading. However, unlike control mice, cKO mice fail to restore lost bone after reloading. Osteocyte Kindlin-2 deletion impairs focal adhesion (FA) formation, cytoskeleton organization and cell orientation in vitro and in bone. Fluid shear stress dose-dependently increases Kindlin-2 expression and decreases that of Sclerostin by downregulating Smad2/3 in osteocytes; this latter response is abolished by Kindlin-2 ablation. Kindlin-2-deficient osteocytes express abundant Sclerostin, contributing to bone loss in cKO mice. Collectively, we demonstrate an indispensable novel role of Kindlin-2 in maintaining skeletal responses to mechanical stimulation by inhibiting Sclerostin expression during osteocyte mechanotransduction.
Collapse
Affiliation(s)
- Lei Qin
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Jing Ma
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Manxia Lin
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Peijun Zhang
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Yishu Wang
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Qinnan Yan
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Chu Tao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Wen Liu
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
23
|
Examination of FERMT1 expression in placental chorionic villi and its role in HTR8-SVneo cell invasion. Histochem Cell Biol 2021; 155:669-681. [PMID: 33683437 DOI: 10.1007/s00418-021-01977-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 01/21/2023]
Abstract
Transmembrane integrin receptors mediate cell-extracellular matrix as well as cell-cell adhesion. As placental trophoblast cells undergo differentiation they display changes in integrin expression or switching, but the mechanism(s) of integrin activation that supports this differentiation is still unknown. The Fermitin family of adapter proteins (FERMT 1-3) are integrin activators that mediate integrin-mediated signaling. In this study, we examined the spatiotemporal pattern of expression of FERMT1 in human chorionic villi throughout gestation and its role in HTR8-SVneo substrate adhesion and invasion. Placental villous tissue was obtained from patients undergoing elective terminations at weeks 8-14, as well as from term deliveries at weeks 37-40 and analyzed by immunofluorescence. Additionally, HTR8-SVneo trophoblast cells were transfected with FERMT1-specific siRNA or non-targeting siRNA (control) and used in cell-substrate adhesion as well as invasion assays. FERMT1 was primarily localized to membrane-associated regions at the base or around the periphery of the villous cytotrophoblast and proximal as well as distal cell column trophoblast. FERMT1 was also localized to endothelial cells of blood vessels in chorionic villi. siRNA-mediated depletion of FERMT1 in HTR8-SVneo cells did not markedly alter HTR8-SVneo cell-substrate adhesion but did significantly decrease invasion (P < 0.05) compared to control cells. These novel findings identify the presence of the integrin activator FERMT1 in trophoblast cells and that FERMT1 can regulate HTR8-SVneo cell invasion. FERMT1 may directly influence integrin activation and the subsequent integrin-mediated signaling and differentiation that underlies the acquisition of the invasive trophoblast phenotype in vivo.
Collapse
|
24
|
Godbout E, Son DO, Hume S, Boo S, Sarrazy V, Clément S, Kapus A, Wehrle-Haller B, Bruckner-Tuderman L, Has C, Hinz B. Kindlin-2 Mediates Mechanical Activation of Cardiac Myofibroblasts. Cells 2020; 9:cells9122702. [PMID: 33348602 PMCID: PMC7766948 DOI: 10.3390/cells9122702] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
We identify the focal adhesion protein kindlin-2 as player in a novel mechanotransduction pathway that controls profibrotic cardiac fibroblast to myofibroblast activation. Kindlin-2 is co-upregulated with the myofibroblast marker α-smooth muscle actin (α-SMA) in fibrotic rat hearts and in human cardiac fibroblasts exposed to fibrosis-stiff culture substrates and pro-fibrotic TGF-β1. Stressing fibroblasts using ferromagnetic microbeads, stretchable silicone membranes, and cell contraction agonists all result in kindlin-2 translocation to the nucleus. Overexpression of full-length kindlin-2 but not of kindlin-2 missing a putative nuclear localization sequence (∆NLS kindlin-2) results in increased α-SMA promoter activity. Downregulating kindlin-2 with siRNA leads to decreased myofibroblast contraction and reduced α-SMA expression, which is dependent on CC(A/T)-rich GG(CArG) box elements in the α-SMA promoter. Lost myofibroblast features under kindlin-2 knockdown are rescued with wild-type but not ∆NLS kindlin-2, indicating that myofibroblast control by kindlin-2 requires its nuclear translocation. Because kindlin-2 can act as a mechanotransducer regulating the transcription of α-SMA, it is a potential target to interfere with myofibroblast activation in tissue fibrosis.
Collapse
Affiliation(s)
- Elena Godbout
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
| | - Dong Ok Son
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
| | - Stephanie Hume
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
| | - Stellar Boo
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
| | - Vincent Sarrazy
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
| | - Sophie Clément
- Division of Clinical Pathology, University Hospital, University of Geneva School of Medicine, 1211 Geneva 4, Switzerland;
| | - Andras Kapus
- Keenan Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire, University of Geneva, 1211 Geneva 4, Switzerland;
| | - Leena Bruckner-Tuderman
- Medical Center and Medical Faculty, University of Freiburg, 79104 Freiburg, Germany; (L.B.-T.); (C.H.)
| | - Cristina Has
- Medical Center and Medical Faculty, University of Freiburg, 79104 Freiburg, Germany; (L.B.-T.); (C.H.)
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
- Correspondence: ; Tel.: +1-416-978-8728
| |
Collapse
|
25
|
Chen D, Zhang C, Chen J, Yang M, Afzal TA, An W, Maguire EM, He S, Luo J, Wang X, Zhao Y, Wu Q, Xiao Q. miRNA-200c-3p promotes endothelial to mesenchymal transition and neointimal hyperplasia in artery bypass grafts. J Pathol 2020; 253:209-224. [PMID: 33125708 PMCID: PMC7839516 DOI: 10.1002/path.5574] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/17/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Increasing evidence has suggested a critical role for endothelial‐to‐mesenchymal transition (EndoMT) in a variety of pathological conditions. MicroRNA‐200c‐3p (miR‐200c‐3p) has been implicated in epithelial‐to‐mesenchymal transition. However, the functional role of miR‐200c‐3p in EndoMT and neointimal hyperplasia in artery bypass grafts remains largely unknown. Here we demonstrated a critical role for miR‐200c‐3p in EndoMT. Proteomics and luciferase activity assays revealed that fermitin family member 2 (FERM2) is the functional target of miR‐200c‐3p during EndoMT. FERMT2 gene inactivation recapitulates the effect of miR‐200c‐3p overexpression on EndoMT, and the inhibitory effect of miR‐200c‐3p inhibition on EndoMT was reversed by FERMT2 knockdown. Further mechanistic studies revealed that FERM2 suppresses smooth muscle gene expression by preventing serum response factor nuclear translocation and preventing endothelial mRNA decay by interacting with Y‐box binding protein 1. In a model of aortic grafting using endothelial lineage tracing, we observed that miR‐200c‐3p expression was dramatically up‐regulated, and that EndoMT contributed to neointimal hyperplasia in grafted arteries. MiR‐200c‐3p inhibition in grafted arteries significantly up‐regulated FERM2 gene expression, thereby preventing EndoMT and reducing neointimal formation. Importantly, we found a high level of EndoMT in human femoral arteries with atherosclerotic lesions, and that miR‐200c‐3p expression was significantly increased, while FERMT2 expression levels were dramatically decreased in diseased human arteries. Collectively, we have documented an unexpected role for miR‐200c‐3p in EndoMT and neointimal hyperplasia in grafted arteries. Our findings offer a novel therapeutic opportunity for treating vascular diseases by specifically targeting the miR‐200c‐3p/FERM2 regulatory axis. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Dan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jiangyong Chen
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Cardiothoracic Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, PR China
| | - Mei Yang
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tayyab A Afzal
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Weiwei An
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eithne M Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shiping He
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jun Luo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.,Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yu Zhao
- Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, PR China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
26
|
Integrin-mediated adhesion and mechanosensing in the mammary gland. Semin Cell Dev Biol 2020; 114:113-125. [PMID: 33187835 DOI: 10.1016/j.semcdb.2020.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
The mammary gland is dynamically remodelled during its postnatal development and the reproductive cycles. This inherent plasticity has been suggested to increase the susceptibility of the organ to carcinogenesis. Morphological changes in the mammary epithelium involve cell proliferation, differentiation, apoptosis, and migration which, in turn, are affected by cell adhesion to the extracellular matrix (ECM). Integrin adhesion receptors function in the sensing of the biochemical composition, patterning and mechanical properties of the ECM surrounding the cells, and strongly influence cell fate. This review aims to summarize the existing literature on how different aspects of integrin-mediated adhesion and mechanosensing, including ECM composition; stiffness and topography; integrin expression patterns; focal adhesion assembly; dynamic regulation of the actin cytoskeleton; and nuclear mechanotransduction affect mammary gland development, function and homeostasis. As the mechanical properties of a complex tissue environment are challenging to replicate in vitro, emphasis has been placed on studies conducted in vivo or using organoid models. Outright, these studies indicate that mechanosensing also contributes to the regulation of mammary gland morphogenesis in multiple ways.
Collapse
|
27
|
Mechanosensing dysregulation in the fibroblast: A hallmark of the aging heart. Ageing Res Rev 2020; 63:101150. [PMID: 32846223 DOI: 10.1016/j.arr.2020.101150] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022]
Abstract
The myofibroblast is a specialized fibroblast that expresses α-smooth muscle actin (α-SMA) and participates in wound contraction and fibrosis. The fibroblast to myofibroblast transition depends on chemical and mechanical signals. A fibroblast senses the changes in the environment (extracellular matrix (ECM)) and transduces these changes to the cytoskeleton and the nucleus, resulting in activation or inhibition of α-SMA transcription in a process called mechanosensing. A stiff matrix greatly facilitates the transition from fibroblast to myofibroblast, and although the aging heart is much stiffer than the young one, the aging fibroblast has difficulties in transitioning into the contractile phenotype. This suggests that the events occurring downstream of the matrix, such as activation or changes in expression levels of various proteins participating in mechanotransduction can negatively alter the ability of the aging fibroblast to become a myofibroblast. In this review, we will discuss in detail the changes in ECM, receptors (integrin or non-integrin), focal adhesions, cytoskeleton, and transcription factors involved in mechanosensing that occur with aging.
Collapse
|
28
|
Kindlin-2 Inhibits the Hippo Signaling Pathway by Promoting Degradation of MOB1. Cell Rep 2020; 29:3664-3677.e5. [PMID: 31825843 DOI: 10.1016/j.celrep.2019.11.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/27/2019] [Accepted: 11/07/2019] [Indexed: 01/03/2023] Open
Abstract
The Hippo signaling pathway plays a key role in development and cancer progression. However, molecules that intrinsically inhibit this pathway are less well known. Here, we report that the focal adhesion molecule Kindlin-2 inhibits Hippo signaling by interacting with and degrading MOB1 and promoting the interaction between MOB1 and the E3 ligase praja2. Kindlin-2 thus inhibits the phosphorylation of LATS1 and YAP and promotes YAP translocation into the nucleus, where it activates downstream Hippo target gene transcription. Kindlin-2 depletion activates Hippo/YAP signaling and alleviates renal fibrosis in Kindlin-2 knockout mice with unilateral ureteral occlusion (UUO). Moreover, Kindlin-2 levels are negatively correlated with MOB1 and phosphorylated (p) YAP in samples from patients with renal fibrosis. Altogether, these results demonstrate that Kindlin-2 inhibits Hippo signaling through degradation of MOB1. A specific long-lasting siRNA against Kindlin-2 effectively alleviated UUO-induced renal fibrosis and could be a potential therapy for renal fibrosis.
Collapse
|
29
|
Lee SH, Du J, Hwa J, Kim WH. Parkin Coordinates Platelet Stress Response in Diabetes Mellitus: A Big Role in a Small Cell. Int J Mol Sci 2020; 21:E5869. [PMID: 32824240 PMCID: PMC7461561 DOI: 10.3390/ijms21165869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Increased platelet activation and apoptosis are characteristic of diabetic (DM) platelets, where a Parkin-dependent mitophagy serves a major endogenous protective role. We now demonstrate that Parkin is highly expressed in both healthy platelets and diabetic platelets, compared to other mitochondria-enriched tissues such as the heart, muscle, brain, and liver. Abundance of Parkin in a small, short-lived anucleate cell suggest significance in various key processes. Through proteomics we identified 127 Parkin-interacting proteins in DM platelets and compared them to healthy controls. We assessed the 11 highest covered proteins by individual IPs and confirmed seven proteins that interacted with Parkin; VCP/p97, LAMP1, HADHA, FREMT3, PDIA, ILK, and 14-3-3. Upon further STRING analysis using GO and KEGG, interactions were divided into two broad groups: targeting platelet activation through (1) actions on mitochondria and (2) actions on integrin signaling. Parkin plays an important role in mitochondrial protection through mitophagy (VCP/p97), recruiting phagophores, and targeting lysosomes (with LAMP1). Mitochondrial β-oxidation may also be regulated by the Parkin/HADHA interaction. Parkin may regulate platelet aggregation and activation through integrin signaling through interactions with proteins like FREMT3, PDIA, ILK, and 14-3-3. Thus, platelet Parkin may regulate the protection (mitophagy) and stress response (platelet activation) in DM platelets. This study identified new potential therapeutic targets for platelet mitochondrial dysfunction and hyperactivation in diabetes mellitus.
Collapse
Affiliation(s)
- Seung Hee Lee
- Division of Cardiovascular Diseases, Center for Biomedical Sciences, National Institute of Health, Cheongju-si 28159, Chungbuk, Korea;
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; (J.D.); (J.H.)
| | - Jing Du
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; (J.D.); (J.H.)
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; (J.D.); (J.H.)
| | - Won-Ho Kim
- Division of Cardiovascular Diseases, Center for Biomedical Sciences, National Institute of Health, Cheongju-si 28159, Chungbuk, Korea;
| |
Collapse
|
30
|
The intercalated disc: a mechanosensing signalling node in cardiomyopathy. Biophys Rev 2020; 12:931-946. [PMID: 32661904 PMCID: PMC7429531 DOI: 10.1007/s12551-020-00737-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023] Open
Abstract
Cardiomyocytes, the cells generating contractile force in the heart, are connected to each other through a highly specialised structure, the intercalated disc (ID), which ensures force transmission and transduction between neighbouring cells and allows the myocardium to function in synchrony. In addition, cardiomyocytes possess an intrinsic ability to sense mechanical changes and to regulate their own contractile output accordingly. To achieve this, some of the components responsible for force transmission have evolved to sense changes in tension and to trigger a biochemical response that results in molecular and cellular changes in cardiomyocytes. This becomes of particular importance in cardiomyopathies, where the heart is exposed to increased mechanical load and needs to adapt to sustain its contractile function. In this review, we will discuss key mechanosensing elements present at the intercalated disc and provide an overview of the signalling molecules involved in mediating the responses to changes in mechanical force.
Collapse
|
31
|
He X, Song J, Cai Z, Chi X, Wang Z, Yang D, Xie S, Zhou J, Fu Y, Li W, Kong W, Zhan J, Zhang H. Kindlin-2 deficiency induces fatal intestinal obstruction in mice. Am J Cancer Res 2020; 10:6182-6200. [PMID: 32483447 PMCID: PMC7255029 DOI: 10.7150/thno.46553] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Smooth muscle-motility disorders are mainly characterized by impaired contractility and functional intestinal obstruction. Some of these cases are caused by genetic mutations of smooth muscle genes ACTA2, ACTG2, MYH11, MYLK and LMOD1. Still the etiology is complex and multifactorial and the underlying pathology is poorly understood. Integrin interaction protein Kindlin-2 is widely expressed in striated and smooth muscle cells (SMC). However, the function of Kindlin-2 in the smooth muscle remains elusive. Methods: We generated two mouse models using different cre promoter transgenic mice, Kindlin-2fl/fl SM22α-cre+ (cKO mice) and Kindlin-2fl/fl; MYH-cre+ (iKO mice). Embryos and adult tissues were prepared for hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) apoptosis assay. We investigated ultrastructure changes of mouse smooth muscle using transmission electron microscopy (TEM) and measured smooth muscle contractile force in mounting aortic and intestinal rings using the multiwire myograph system (DMT 620M). In addition, cell traction force microscopy (CTFM) was applied to observe the functional change of primary SMC after Kindlin-2 depletion by RNAi. Results: Depletion of Kindlin-2 encoding gene Fermt2 in embryonic smooth muscles leads to apoptosis, downregulates the key components of SMC, impairs smooth muscle development, and finally causes embryonic death at E14.5. Tamoxifen-induced Kindlin-2-specific knockout in adult mouse smooth muscle showed decreased blood pressure, intestinal hypoperistalsis, and eventually died of intestinal obstruction. Kindlin-2 depletion also leads to downregulated Myh11, α-SMA, and CNN, shortened myofilament, broken myofibrils, and impaired contractility of the smooth muscles in iKO mice. Mechanistically, loss of Kindlin-2 decreases Ca2+ influx in primary vascular smooth muscle cells (PVSMC) by downregulating the expression of calcium-binding protein S100A14 and STIM1. Conclusion: We demonstrated that Kindlin-2 is essential for maintaining the normal structure and function of smooth muscles. Loss of Kindlin-2 impairs smooth muscle formation during embryonic development by inducing apoptosis and jeopardizes the contraction of adult smooth muscle by blocking Ca2+ influx that leads to intestinal obstruction. Mice with Kindlin-2 depletion in adult smooth muscle could be a potent animal model of intestinal obstruction for disease research, drug treatment and prognosis.
Collapse
|
32
|
Tan HF, Tan SM. The focal adhesion protein kindlin-2 controls mitotic spindle assembly by inhibiting histone deacetylase 6 and maintaining α-tubulin acetylation. J Biol Chem 2020; 295:5928-5943. [PMID: 32169902 DOI: 10.1074/jbc.ra120.012954] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Kindlins are focal adhesion proteins that regulate integrin activation and outside-in signaling. The kindlin family consists of three members, kindlin-1, -2, and -3. Kindlin-2 is widely expressed in multiple cell types, except those from the hematopoietic lineage. A previous study has reported that the Drosophila Fit1 protein (an ortholog of kindlin-2) prevents abnormal spindle assembly; however, the mechanism remains unknown. Here, we show that kindlin-2 maintains spindle integrity in mitotic human cells. The human neuroblastoma SH-SY5Y cell line expresses only kindlin-2, and we found that when SH-SY5Y cells are depleted of kindlin-2, they exhibit pronounced spindle abnormalities and delayed mitosis. Of note, acetylation of α-tubulin, which maintains microtubule flexibility and stability, was diminished in the kindlin-2-depleted cells. Mechanistically, we found that kindlin-2 maintains α-tubulin acetylation by inhibiting the microtubule-associated deacetylase histone deacetylase 6 (HDAC6) via a signaling pathway involving AKT Ser/Thr kinase (AKT)/glycogen synthase kinase 3β (GSK3β) or paxillin. We also provide evidence that prolonged hypoxia down-regulates kindlin-2 expression, leading to spindle abnormalities not only in the SH-SY5Y cell line, but also cell lines derived from colon and breast tissues. The findings of our study highlight that kindlin-2 regulates mitotic spindle assembly and that this process is perturbed in cancer cells in a hypoxic environment.
Collapse
Affiliation(s)
- Hui-Foon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
33
|
Bialkowska K, Sossey-Alaoui K, Pluskota E, Izem L, Qin J, Plow EF. Site-specific phosphorylation regulates the functions of kindlin-3 in a variety of cells. Life Sci Alliance 2020; 3:3/3/e201900594. [PMID: 32024667 PMCID: PMC7010036 DOI: 10.26508/lsa.201900594] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
Studies of isolated cells, mice, and humans have demonstrated the vital role of the FERM domain protein kindlin-3 in integrin activation in certain hematopoietic and non-hematopoietic cells, consequent to binding to integrin β-subunits. To explore regulatory mechanisms, we developed a monoclonal antibody that selectively recognizes the phosphorylated form of Ser484 (pS484) in kindlin-3. Activation of platelets, HEL megakaryocytic-like cells and BT549 breast cancer cells led to enhanced expression of pS484 as assessed by immunofluorescence or Western blotting. In platelets, pS484 rose rapidly and transiently upon stimulation. When a mutant form of kindlin-3, T482S484/AA kindlin-3, was transduced into mouse megakaryocytes, it failed to support activation of integrin αIIbβ3, whereas wild-type kindlin-3 did. In MDA-MB231 breast cancer cells, expression of T482S484/AA kindlin-3 suppressed cell spreading, migration, invasion, and VEGF production. Wild-type kindlin-3 expressing cells markedly increased tumor growth in vivo, whereas T482S484/AA kindlin-3 significantly blunted tumor progression. Thus, our data establish that a unique phosphorylation event in kindlin-3 regulates its cellular functions.
Collapse
Affiliation(s)
- Katarzyna Bialkowska
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Khalid Sossey-Alaoui
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Elzbieta Pluskota
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Lahoucine Izem
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Jun Qin
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Edward F Plow
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
34
|
Kindlin-2 suppresses transcription factor GATA4 through interaction with SUV39H1 to attenuate hypertrophy. Cell Death Dis 2019; 10:890. [PMID: 31767831 PMCID: PMC6877536 DOI: 10.1038/s41419-019-2121-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Kindlin-2 plays an important role in the regulation of cardiac structure and function. Depletion of Kindlin-2 contributes to cardiac hypertrophy and progressive heart failure, however, the precise mechanisms involved in this process remain unclear. GATA4 is a critical transcription factor in regulating cardiogenesis. We found that Kindlin-2 suppresses the expression of GATA4 through binding to its promoter and prevents cardiomyocytes from hypertrophy induced by isoproterenol (ISO) treatment. Mechanistically, Kindlin-2 interacts with histone methyltransferase SUV39H1 and recruits it to GATA4 promoter leading to the occupancy of histone H3K9 di- and tri-methylation. Furthermore, to confirm the function of Kindlin-2 in vivo, we generated mice with targeted deletion of cardiac Kindlin-2. We found that 6-month-old Kindlin-2 cKO mice have developed hypertrophic cardiomyopathy and that this pathological process can be accelerated by ISO-treatment. GATA4 expression was markedly activated in cardiac tissues of Kindlin-2 cKO mice compared to wild-type animals. Collectively, our data revealed that Kindlin-2 suppresses GATA4 expression by triggering histone H3K9 methylation in part and protects heart from pathological hypertrophy.
Collapse
|
35
|
Chen C, Manso AM, Ross RS. Talin and Kindlin as Integrin-Activating Proteins: Focus on the Heart. Pediatr Cardiol 2019; 40:1401-1409. [PMID: 31367953 PMCID: PMC7590617 DOI: 10.1007/s00246-019-02167-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/18/2019] [Indexed: 01/11/2023]
Abstract
Integrin receptors enable cells to sense and respond to their chemical and physical environment. As a class of membrane receptors, they provide a dynamic, tightly regulated link between the extracellular matrix or cellular counter-receptors and intracellular cytoskeletal and signaling networks. They enable transmission of mechanical force across the plasma membrane, and particularly for cardiomyocytes, may sense the mechanical load placed on cells. Talins and Kindlins are two families of FERM-domain proteins which bind the cytoplasmic tail of integrins, recruit cytoskeletal and signaling proteins involved in mechano-transduction, and those which synergize to activate integrins, allowing the integrins to physically change and bind to extracellular ligands. In this review, we will discuss the roles of talin and kindlin, particularly as integrin activators, with a focus on cardiac myocytes.
Collapse
Affiliation(s)
- Chao Chen
- Department of Medicine/Cardiology, UCSD School of Medicine, La Jolla, CA, 92093, USA
- Department of Medicine/Cardiology, Veterans Administration Healthcare, San Diego, CA, 92161, USA
| | - Ana Maria Manso
- Department of Medicine/Cardiology, UCSD School of Medicine, La Jolla, CA, 92093, USA
- Department of Medicine/Cardiology, Veterans Administration Healthcare, San Diego, CA, 92161, USA
| | - Robert S Ross
- Department of Medicine/Cardiology, UCSD School of Medicine, La Jolla, CA, 92093, USA.
- Department of Medicine/Cardiology, Veterans Administration Healthcare, San Diego, CA, 92161, USA.
- University of California, San Diego, Biomedical Research Facility 2, Room 2A-17, 9500 Gilman Drive #0613-C, La Jolla, CA, 92093-0613, USA.
| |
Collapse
|
36
|
Minor M, Alcedo KP, Battaglia RA, Snider NT. Cell type- and tissue-specific functions of ecto-5'-nucleotidase (CD73). Am J Physiol Cell Physiol 2019; 317:C1079-C1092. [PMID: 31461341 DOI: 10.1152/ajpcell.00285.2019] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ecto-5'-nucleotidase [cluster of differentiation 73 (CD73)] is a ubiquitously expressed glycosylphosphatidylinositol-anchored glycoprotein that converts extracellular adenosine 5'-monophosphate to adenosine. Anti-CD73 inhibitory antibodies are currently undergoing clinical testing for cancer immunotherapy. However, many protective physiological functions of CD73 need to be taken into account for new targeted therapies. This review examines CD73 functions in multiple organ systems and cell types, with a particular focus on novel findings from the last 5 years. Missense loss-of-function mutations in the CD73-encoding gene NT5E cause the rare disease "arterial calcifications due to deficiency of CD73." Aside from direct human disease involvement, cellular and animal model studies have revealed key functions of CD73 in tissue homeostasis and pathology across multiple organ systems. In the context of the central nervous system, CD73 is antinociceptive and protects against inflammatory damage, while also contributing to age-dependent decline in cortical plasticity. CD73 preserves barrier function in multiple tissues, a role that is most evident in the respiratory system, where it inhibits endothelial permeability in an adenosine-dependent manner. CD73 has important cardioprotective functions during myocardial infarction and heart failure. Under ischemia-reperfusion injury conditions, rapid and sustained induction of CD73 confers protection in the liver and kidney. In some cases, the mechanism by which CD73 mediates tissue injury is less clear. For example, CD73 has a promoting role in liver fibrosis but is protective in lung fibrosis. Future studies that integrate CD73 regulation and function at the cellular level with physiological responses will improve its utility as a disease target.
Collapse
Affiliation(s)
- Marquet Minor
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Karel P Alcedo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rachel A Battaglia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
37
|
Wei CY, Zhu MX, Zhang PF, Yang X, Wang L, Ying JH, Luan WJ, Chen C, Liu JQ, Zhu M, Yang YW, Feng ZH, Qi FZ, Gu JY. Elevated kindlin-2 promotes tumour progression and angiogenesis through the mTOR/VEGFA pathway in melanoma. Aging (Albany NY) 2019; 11:6273-6285. [PMID: 31427543 PMCID: PMC6738412 DOI: 10.18632/aging.102187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023]
Abstract
Background: In our previous study, kindlin-2 promoted skin wound healing and decreased the permeability of neovascularization during angiogenesis. Herein, we explored the biological function and underlying mechanism of kindlin-2 in cutaneous melanoma. Methods and Results: Through a series of in vitro assays, we found that high levels of kindlin-2 promoted migration and invasion of melanoma cells without influencing cell proliferation. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analyses showed that upregulated kindlin-2 promoted the cellular epithelial-mesenchymal transition (EMT). Importantly, we found that melanoma cells overexpressing kindlin-2 promoted angiogenesis and VEGFA secretion in vitro and facilitated tumour growth and lung metastasis in vivo. To unveil the underlying mechanism, we conducted Next-generation sequencing (NGS) and differential expression analyses. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that overlapping differentially expressed genes (DEGs) were primarily enriched in the TGF-β, mTOR and VEGF signalling pathways. Then, we confirmed that the mTOR/VEGFA pathway was activated during the process of kindlin-2-induced melanoma progression and angiogenesis. Moreover, we demonstrated that kindlin-2 was significantly overexpressed in clinical melanoma samples and that a high level of kindlin-2 predicted a poor prognosis. Conclusions: Taken together, these findings showed that kindlin-2 promotes angiogenesis and tumour progression via the mTOR/VEGFA pathway.
Collapse
Affiliation(s)
- Chuan-Yuan Wei
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China.,Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, P.R. China
| | - Meng-Xuan Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Peng-Fei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200032, P.R. China
| | - Xuan Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, P.R. China
| | - Lu Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jiang-Hui Ying
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Wen-Jie Luan
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Cheng Chen
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jia-Qi Liu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Ming Zhu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yan-Wen Yang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zi-Hao Feng
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Fa-Zhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jian-Ying Gu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
38
|
Stewart RM, Rodriguez EC, King MC. Ablation of SUN2-containing LINC complexes drives cardiac hypertrophy without interstitial fibrosis. Mol Biol Cell 2019; 30:1664-1675. [PMID: 31091167 PMCID: PMC6727752 DOI: 10.1091/mbc.e18-07-0438] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cardiomyocyte cytoskeleton, including the sarcomeric contractile apparatus, forms a cohesive network with cellular adhesions at the plasma membrane and nuclear--cytoskeletal linkages (LINC complexes) at the nuclear envelope. Human cardiomyopathies are genetically linked to the LINC complex and A-type lamins, but a full understanding of disease etiology in these patients is lacking. Here we show that SUN2-null mice display cardiac hypertrophy coincident with enhanced AKT/MAPK signaling, as has been described previously for mice lacking A-type lamins. Surprisingly, in contrast to lamin A/C-null mice, SUN2-null mice fail to show coincident fibrosis or upregulation of pathological hypertrophy markers. Thus, cardiac hypertrophy is uncoupled from profibrotic signaling in this mouse model, which we tie to a requirement for the LINC complex in productive TGFβ signaling. In the absence of SUN2, we detect elevated levels of the integral inner nuclear membrane protein MAN1, an established negative regulator of TGFβ signaling, at the nuclear envelope. We suggest that A-type lamins and SUN2 play antagonistic roles in the modulation of profibrotic signaling through opposite effects on MAN1 levels at the nuclear lamina, suggesting a new perspective on disease etiology.
Collapse
Affiliation(s)
- Rachel M Stewart
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520-8002
| | - Elisa C Rodriguez
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520-8002
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520-8002
| |
Collapse
|
39
|
Huang J, Li X, Shi X, Zhu M, Wang J, Huang S, Huang X, Wang H, Li L, Deng H, Zhou Y, Mao J, Long Z, Ma Z, Ye W, Pan J, Xi X, Jin J. Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol 2019; 12:26. [PMID: 30845955 PMCID: PMC6407232 DOI: 10.1186/s13045-019-0709-6] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Integrins are a family of transmembrane glycoprotein signaling receptors that can transmit bioinformation bidirectionally across the plasma membrane. Integrin αIIbβ3 is expressed at a high level in platelets and their progenitors, where it plays a central role in platelet functions, hemostasis, and arterial thrombosis. Integrin αIIbβ3 also participates in cancer progression, such as tumor cell proliferation and metastasis. In resting platelets, integrin αIIbβ3 adopts an inactive conformation. Upon agonist stimulation, the transduction of inside-out signals leads integrin αIIbβ3 to switch from a low- to high-affinity state for fibrinogen and other ligands. Ligand binding causes integrin clustering and subsequently promotes outside-in signaling, which initiates and amplifies a range of cellular events to drive essential platelet functions such as spreading, aggregation, clot retraction, and thrombus consolidation. Regulation of the bidirectional signaling of integrin αIIbβ3 requires the involvement of numerous interacting proteins, which associate with the cytoplasmic tails of αIIbβ3 in particular. Integrin αIIbβ3 and its signaling pathways are considered promising targets for antithrombotic therapy. This review describes the bidirectional signal transduction of integrin αIIbβ3 in platelets, as well as the proteins responsible for its regulation and therapeutic agents that target integrin αIIbβ3 and its signaling pathways.
Collapse
Affiliation(s)
- Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Shi
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mark Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yulan Zhou
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhangbiao Long
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhixin Ma
- Clinical Prenatal Diagnosis Center, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China. .,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
40
|
|
41
|
Li B, Chi X, Song J, Tang Y, Du J, He X, Sun X, Bi Z, Wang Y, Zhan J, Zhang H. Integrin-interacting protein Kindlin-2 induces mammary tumors in transgenic mice. SCIENCE CHINA-LIFE SCIENCES 2018; 62:225-234. [PMID: 30460471 DOI: 10.1007/s11427-018-9336-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 07/23/2018] [Indexed: 11/25/2022]
Abstract
Kindlin-2, an integrin-interacting protein, regulates breast cancer progression. However, currently, no animal model to study the role of Kindlin-2 in the carcinogenesis of mammary gland is available. We established a Kindlin-2 transgenic mouse model using a mammary gland-specific promoter, mammary tumor virus (MMTV) long terminal repeat (LTR). Kindlin-2 was overexpressed in the epithelial cells of the transgenic mice. The mammary gland ductal trees were found to grow faster in MMTV-Kindlin-2 transgenic mice than in control mice during puberty. Kindlin-2 promoted mammary gland growth as indicated by more numerous duct branches and larger lumens, and more alveoli were formed in the mammary glands during pregnancy under Kindlin-2 overexpression. Importantly, mammary gland-specific expression of Kindlin-2 induced tumor formation at the age of 55 weeks on average. Additionally, the levels of estrogen receptor and progesterone receptor were decreased, whereas human epidermal growth factor receptor 2 and β-catenin were upregulated in the Kindlin-2-induced mammary tumors. These findings demonstrated that Kindlin-2 induces mammary tumor formation via activation of the Wnt signaling pathway.
Collapse
MESH Headings
- Animals
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Differentiation
- Cell Proliferation
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Gene Expression
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Transgenic
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Pregnancy
- Promoter Regions, Genetic
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Wnt Signaling Pathway
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Bing Li
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaochun Chi
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Jiagui Song
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Tang
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Juan Du
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaokun He
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaoran Sun
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Zhenwu Bi
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Yunling Wang
- Institute of Cardiovascular Research, Peking University Health Science Center, Beijing, 100191, China
| | - Jun Zhan
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China.
| | - Hongquan Zhang
- Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
42
|
Kawamura E, Hamilton GB, Miskiewicz EI, MacPhee DJ. Fermitin family homolog-2 (FERMT2) is highly expressed in human placental villi and modulates trophoblast invasion. BMC DEVELOPMENTAL BIOLOGY 2018; 18:19. [PMID: 30382829 PMCID: PMC6211606 DOI: 10.1186/s12861-018-0178-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/19/2018] [Indexed: 12/23/2022]
Abstract
Background Integrins are transmembrane receptors that mediate cell–extracellular matrix (ECM) and cell-cell adhesion and trophoblast cells undergo changes in integrin expression as they differentiate. However, the mechanism(s) of integrin activation leading to integrin-mediated signaling in trophoblast cell differentiation is unknown. The Fermitin family proteins are integrin activators that help mediate integrin-mediated signaling, but have never been studied in detail within the human placenta. Thus, we examined the spatiotemporal pattern of expression of Fermitin family homolog-2 (FERMT2) in human chorionic villi throughout gestation and its role in trophoblast-substrate adhesion and invasion. Methods Placental villous tissue was obtained from patients undergoing elective terminations by dilatation and curettage at weeks 8–12 (n = 10), weeks 13–14 (n = 8), as well as from term deliveries at weeks 37–40 (n = 6). Tissues were fixed, processed and sections utilized for immunofluorescence analysis of FERMT2 expression during gestation. Additionally, HTR8-SVneo human trophoblast cells were transfected by electroporation with FERMT2-specific siRNAs or non-targeting siRNAs (control) and used in cell-substrate adhesion as well as invasion assays. Results FERMT2 was more commonly expressed in the basal domain of villous cytotrophoblast cells and prominently localized around the periphery of individual extravillous trophoblast cells. siRNA-mediated knockdown of FERMT2 in HTR8-SVneo cells resulted in significantly decreased trophoblast-substrate attachment (p < 0.05) as well as significantly decreased trophoblast invasion (p < 0.05) relative to control cells. Conclusions The detection of FERMT2 throughout extravillous trophoblast columns and the results of invasion assays demonstrated that this protein is likely an important regulator of integrin activation in extravillous cells to modulate migration and invasion.
Collapse
Affiliation(s)
- Eiko Kawamura
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Gina B Hamilton
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Ewa I Miskiewicz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Daniel J MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada. .,One Reproductive Health Research Group, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
43
|
Ying J, Luan W, Lu L, Zhang S, Qi F. Knockdown of the KINDLIN-2 Gene and Reduced Expression of Kindlin-2 Affects Vascular Permeability in Angiogenesis in a Mouse Model of Wound Healing. Med Sci Monit 2018; 24:5376-5383. [PMID: 30070977 PMCID: PMC6085983 DOI: 10.12659/msm.910059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Angiogenesis is an important component of wound healing and tissue repair. Kindlin-2 is an integrin-associated protein, encoded by the KINDLIN-2 gene, which has been shown to affect cell adhesion and migration of cells, including endothelial cells. The aim of this study was to use a mouse model of wound healing to evaluate the effects of expression of KINDLIN-2 on angiogenesis in wound healing in vivo. Material/Methods Thirty-six male C57BL/6 mice were studied in an established model that used a wound created on the back. Mice were divided randomly into three groups: the normal group (n=12) received injections of normal (0.9%) saline; the KINDLIN-2(−) group (n=12) received injections of adeno-associated virus with small interfering (si)RNA targeting the KINDLIN-2 gene (AAV-KINDLIN-2-siRNA); and the control (group (n=12) received injections of adeno-associated virus containing a scrambled RNA sequence (AAV-control-RNA). Wound healing was analyzed by biochemical examination of the exudates and histology. Evans blue dye was injected into the caudal vein of each mouse, two weeks after wound healing to assess neovascular permeability. Results Wound healing was significantly delayed in the KINDLIN-2 gene knockdown mice (AAV-KINDLIN-2-siRNA) compared with that of the normal group and the control group, and neovascular permeability was increased. In the AAV-KINDLIN-2-siRNA group, blood vessels were shorter and thinner compared with the normal group and the control group. Conclusions In a mouse model of wound healing, KINDLIN-2 gene knockdown inhibited wound healing, and increased neovascular permeability in vivo.
Collapse
Affiliation(s)
- Jianghui Ying
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (mainland)
| | - Wenjie Luan
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (mainland)
| | - Lu Lu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (mainland)
| | - Simin Zhang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (mainland)
| | - Fazhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (mainland)
| |
Collapse
|
44
|
Manring HR, Dorn LE, Ex-Willey A, Accornero F, Ackermann MA. At the heart of inter- and intracellular signaling: the intercalated disc. Biophys Rev 2018; 10:961-971. [PMID: 29876873 PMCID: PMC6082301 DOI: 10.1007/s12551-018-0430-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
Proper cardiac function requires the synchronous mechanical and electrical coupling of individual cardiomyocytes. The intercalated disc (ID) mediates coupling of neighboring myocytes through intercellular signaling. Intercellular communication is highly regulated via intracellular signaling, and signaling pathways originating from the ID control cardiomyocyte remodeling and function. Herein, we present an overview of the inter- and intracellular signaling that occurs at and originates from the intercalated disc in normal physiology and pathophysiology. This review highlights the importance of the intercalated disc as an integrator of signaling events regulating homeostasis and stress responses in the heart and the center of several pathophysiological processes mediating the development of cardiomyopathies.
Collapse
Affiliation(s)
- Heather R Manring
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Lisa E Dorn
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Aidan Ex-Willey
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Maegen A Ackermann
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
45
|
Zhan J, Zhang H. Kindlins: Roles in development and cancer progression. Int J Biochem Cell Biol 2018; 98:93-103. [PMID: 29544897 DOI: 10.1016/j.biocel.2018.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/15/2022]
Abstract
The Kindlins are FERM domain proteins comprising three members (Kindlin-1, -2 and -3) which are evolutionarily conserved. Kindlins bind with β-integrin cytoplasmic tails and execute broad biological functions including directed cell migration, proliferation, differentiation and survival. In light of more and more evidence point to the importance of Kindlin family members in normal development and human diseases especially in cancers, we aim to portrait the profile of Kindlins in the regulation of embryonic development and cancer progression. We first summarize all the known binding proteins for individual member of Kindlin family. We then outline the Kindlin-regulated signaling pathways including Wnt/β-catenin, TGFβ, EGFR, and Hedgehog signalings. Furthermore, we descript the pivotal role of Kindlins in embryonic development in detail with notions that Kindlin-1 is highly expressed in endo/ectodermal originated tissues, Kindlin-2 is highly expressed in mesoderm-derived tissues and Kindlin-3 is highly expressed in mesoderm- and ectoderm-derived tissues. Deregulation of Kindlins is generally reported in cancers from different organs. We also briefly descript the role of Kindlins in other diseases. Finally, we update the recent understanding of how Kindlins are regulated and modified as well as the degradation mechanism of Kindlins, respectively.
Collapse
Affiliation(s)
- Jun Zhan
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Hongquan Zhang
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
| |
Collapse
|
46
|
Abstract
Heart failure places an enormous burden on health and economic systems worldwide. It is a complex disease that is profoundly influenced by both genetic and environmental factors. Neither the molecular mechanisms underlying heart failure nor effective prevention strategies are fully understood. Fortunately, relevant aspects of human heart failure can be experimentally studied in tractable model animals, including the fruit fly, Drosophila, allowing the in vivo application of powerful and sophisticated molecular genetic and physiological approaches. Heart failure in Drosophila, as in humans, can be classified into dilated cardiomyopathies and hypertrophic cardiomyopathies. Critically, many genes and cellular pathways directing heart development and function are evolutionarily conserved from Drosophila to humans. Studies of molecular mechanisms linking aging with heart failure have revealed that genes involved in aging-associated energy homeostasis and oxidative stress resistance influence cardiac dysfunction through perturbation of IGF and TOR pathways. Importantly, ion channel proteins, cytoskeletal proteins, and integrins implicated in aging of the mammalian heart have been shown to play significant roles in heart failure. A number of genes previously described having roles in development of the Drosophila heart, such as genes involved in Wnt signaling pathways, have recently been shown to play important roles in the adult fly heart. Moreover, the fly model presents opportunities for innovative studies that cannot currently be pursued in the mammalian heart because of technical limitations. In this review, we discuss progress in our understanding of genes, proteins, and molecular mechanisms that affect the Drosophila adult heart and heart failure.
Collapse
Affiliation(s)
- Shasha Zhu
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhe Han
- Center for Cancer and Immunology Research, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Yan Luo
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yulin Chen
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Qun Zeng
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Xiushan Wu
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Wuzhou Yuan
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| |
Collapse
|
47
|
Guo L, Cai T, Chen K, Wang R, Wang J, Cui C, Yuan J, Zhang K, Liu Z, Deng Y, Xiao G, Wu C. Kindlin-2 regulates mesenchymal stem cell differentiation through control of YAP1/TAZ. J Cell Biol 2018; 217:1431-1451. [PMID: 29496737 PMCID: PMC5881491 DOI: 10.1083/jcb.201612177] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 10/22/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cell (MSC) fate decision is strongly influenced by cell microenvironment. Guo et al. identify kindlin-2 as a key determinant of MSC lineage commitment and delineate a novel signaling pathway consisting of kindlin-2, RhoA, MLCK, AIP4, and YAP1/TAZ that senses mechanical cues of the cell microenvironment and controls MSC differentiation. Precise control of mesenchymal stem cell (MSC) differentiation is critical for tissue development and regeneration. We show here that kindlin-2 is a key determinant of MSC fate decision. Depletion of kindlin-2 in MSCs is sufficient to induce adipogenesis and inhibit osteogenesis in vitro and in vivo. Mechanistically, kindlin-2 regulates MSC differentiation through controlling YAP1/TAZ at both the transcript and protein levels. Kindlin-2 physically associates with myosin light-chain kinase in response to mechanical cues of cell microenvironment and intracellular signaling events and promotes myosin light-chain phosphorylation. Loss of kindlin-2 inhibits RhoA activation and reduces myosin light-chain phosphorylation, stress fiber formation, and focal adhesion assembly, resulting in increased Ser127 phosphorylation, nuclear exclusion, and ubiquitin ligase atrophin-1 interacting protein 4–mediated degradation of YAP1/TAZ. Our findings reveal a novel kindlin-2 signaling axis that senses the mechanical cues of cell microenvironment and controls MSC fate decision, and they suggest a new strategy to regulate MSC differentiation, tissue repair, and regeneration.
Collapse
Affiliation(s)
- Ling Guo
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Ting Cai
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Keng Chen
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Rong Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jiaxin Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chunhong Cui
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jifan Yuan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Kuo Zhang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zhongzhen Liu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yi Deng
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Department of Biochemistry, Rush University Medical Center, Chicago, IL
| | - Chuanyue Wu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China .,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
48
|
Ou Y, Zhao Z, Zhang W, Wu Q, Wu C, Liu X, Fu M, Ji N, Wang D, Qiu J, Zhang L, Yu C, Song Y, Zhan Q. Kindlin-2 interacts with β-catenin and YB-1 to enhance EGFR transcription during glioma progression. Oncotarget 2018; 7:74872-74885. [PMID: 27713156 PMCID: PMC5342708 DOI: 10.18632/oncotarget.12439] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/11/2016] [Indexed: 11/25/2022] Open
Abstract
Kindlin-2 promotes carcinogenesis through regulation of cell-cell and cell-extracellular matrix adhesion. However, the role of Kindlin-2 in glioma has not been elucidated. We investigated Kindlin-2 expression in 188 human glioma tissue samples. High Kindlin-2 expression was correlated with high pathological grade and a worse prognosis. Kindlin-2 promoted glioma cell motility and proliferation both in vitro and in vivo. Importantly, Kindlin-2 activated the EGFR pathway and increased EGFR mRNA levels. In addition to up-regulating Y-box binding protein-1 (YB-1) and β-catenin expression, Kindlin-2 formed a transcriptional complex with YB-1 and β-catenin that bound to the EGFR promoter and enhanced transcription. The β-catenin/YB-1/EGFR pathway was required for Kindlin-2-mediated functions. Our data provide a better understanding of the mechanisms underlying glioma progression, and suggest that Kindlin-2 may be a biomarker and therapeutic target in glioma.
Collapse
Affiliation(s)
- Yunwei Ou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China.,State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China.,Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China.,China National Clinical Research Center for Neurological Diseases, Beijing 100050, China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weimin Zhang
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qingnan Wu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Xuefeng Liu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ming Fu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Dan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Jiaji Qiu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Chunjiang Yu
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
49
|
Lin J, Lin W, Ye Y, Wang L, Chen X, Zang S, Huang A. Kindlin-2 promotes hepatocellular carcinoma invasion and metastasis by increasing Wnt/β-catenin signaling. J Exp Clin Cancer Res 2017; 36:134. [PMID: 28969700 PMCID: PMC5623973 DOI: 10.1186/s13046-017-0603-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Kindlin-2 is a member of the focal adhesion protein family that regulates invasion and metastasis in multiple malignancies; however, little is known about the role of Kindlin-2 in hepatocellular carcinoma (HCC) progression. METHODS Immunohistochemistry was used to investigate Kindlin-2 expression in 177 pairs of human HCC and adjacent liver tissue samples. The role of Kindlin-2 in the in vitro invasion and migration of HCC cell lines was evaluated in MHCC97H, LM3 and SMMC7721 cells. Microarray expression analysis was applied to explore the molecular mechanism through which Kindlin-2 promoted HCC progression. Quantitative real-time PCR and Western blotting were performed to verify the microarray results. RESULTS High Kindlin-2 expression was found to significantly correlate with aggressive HCC clinicopathological features including tumor encapsulation, microvascular invasion, extrahepatic metastasis and poor prognosis. In vitro, Kindlin-2 knockout or knockdown inhibited HCC cell adhesion, migration and invasion, while ectopic Kindlin-2 expression promoted these processes. Importantly, Kindlin-2 activated Wnt/β-catenin signaling and increased β-catenin expression, especially levels of non-phosphorylated β-catenin, as well as two Wnt/β-catenin signaling pathway targets, Axin2 and MMP7. Kindlin-2 also induced a change in the expression profile of HCC cells, suggesting the cells underwent epithelial-mesenchymal transition. For example, the expression of the epithelial marker E-cadherin was downregulated, while the mesenchymal markers Vimentin, N-cadherin and Snail were upregulated. CONCLUSION Kindlin-2 promotes HCC invasion, metastasis and epithelial-mesenchymal transition through Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Jie Lin
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, No.1, Xuefu North Road, University Town, Fuzhou, 350122 Fujian China
- Department of Pathology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China
| | - Wansong Lin
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer hospital, Fuzhou, 350014 China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014 China
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer hospital, Fuzhou, 350014 China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014 China
| | - Liping Wang
- Department of Pathology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China
| | - Xiaoyan Chen
- Department of Pathology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China
| | - Shengbing Zang
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, No.1, Xuefu North Road, University Town, Fuzhou, 350122 Fujian China
| | - Aimin Huang
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, No.1, Xuefu North Road, University Town, Fuzhou, 350122 Fujian China
| |
Collapse
|
50
|
Gao J, Huang M, Lai J, Mao K, Sun P, Cao Z, Hu Y, Zhang Y, Schulte ML, Jin C, Wang J, White GC, Xu Z, Ma YQ. Kindlin supports platelet integrin αIIbβ3 activation by interacting with paxillin. J Cell Sci 2017; 130:3764-3775. [PMID: 28954813 DOI: 10.1242/jcs.205641] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/18/2017] [Indexed: 12/30/2022] Open
Abstract
Kindlins play an important role in supporting integrin activation by cooperating with talin; however, the mechanistic details remain unclear. Here, we show that kindlins interacted directly with paxillin and that this interaction could support integrin αIIbβ3 activation. An exposed loop in the N-terminal F0 subdomain of kindlins was involved in mediating the interaction. Disruption of kindlin binding to paxillin by structure-based mutations significantly impaired the function of kindlins in supporting integrin αIIbβ3 activation. Both kindlin and talin were required for paxillin to enhance integrin activation. Interestingly, a direct interaction between paxillin and the talin head domain was also detectable. Mechanistically, paxillin, together with kindlin, was able to promote the binding of the talin head domain to integrin, suggesting that paxillin complexes with kindlin and talin to strengthen integrin activation. Specifically, we observed that crosstalk between kindlin-3 and the paxillin family in mouse platelets was involved in supporting integrin αIIbβ3 activation and in vivo platelet thrombus formation. Taken together, our findings uncover a novel mechanism by which kindlin supports integrin αIIbβ3 activation, which might be beneficial for developing safer anti-thrombotic therapies.
Collapse
Affiliation(s)
- Juan Gao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Ming Huang
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Jingjing Lai
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Kaijun Mao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Peisen Sun
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Zhongyuan Cao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Youpei Hu
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Yingying Zhang
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Marie L Schulte
- Blood Research Institute, Blood Center of Wisconsin, Wisconsin, WI 53226, USA
| | - Chaozhi Jin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing 102206, China
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing 102206, China
| | - Gilbert C White
- Blood Research Institute, Blood Center of Wisconsin, Wisconsin, WI 53226, USA.,Department of Biochemistry, Medical College of Milwaukee, Wisconsin, WI 53226, USA
| | - Zhen Xu
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China .,Blood Research Institute, Blood Center of Wisconsin, Wisconsin, WI 53226, USA
| | - Yan-Qing Ma
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China .,Blood Research Institute, Blood Center of Wisconsin, Wisconsin, WI 53226, USA.,Department of Biochemistry, Medical College of Milwaukee, Wisconsin, WI 53226, USA
| |
Collapse
|