1
|
He F, Andrabi SM, Shi H, Son Y, Qiu H, Xie J, Zhu W. Sequential delivery of cardioactive drugs via microcapped microneedle patches for improved heart function in post myocardial infarction rats. Acta Biomater 2025; 192:235-247. [PMID: 39643223 PMCID: PMC11735313 DOI: 10.1016/j.actbio.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
After myocardial infarction, the heart undergoes adverse remodeling characterized by a series of pathological changes, including inflammation, apoptosis, fibrosis, and hypertrophy. In addition to cardiac catheter-based re-establishment of blood flow, patients typically receive multiple medications that aim to address these different mechanisms underlying left ventricular remodeling. The current study aims to establish a versatile multi-drug delivery platform for the controlled and sequential delivery of multiple therapeutic agents in a single treatment. Toward this goal, we generated a microcapped microneedle patch carrying methylprednisolone, interleukin-10, and vascular endothelial growth factor. In vitro characterization demonstrated a time-sequenced release pattern of these drug: methylprednisolone for the first 3 days, interleukin-10 from day 1 to 15, and vascular endothelial growth factor from day 3 to 25. The therapeutic effects of the microneedle patch were evaluated in a rat model of acute myocardial infarction induced by permanent ligation of left anterior descending coronary artery. Heart function was measured using trans-thoracic echocardiography. Heart inflammation, apoptosis, hypertrophy and angiogenesis were evaluated using histology. Our data indicated that, at 28 days after patch transplantation, animals receiving the microneedle patch with sequential release of these three agents showed reduced inflammation, apoptosis and cardiac hypertrophy compared to the animals receiving control patch without sequential release of these agents, which is associated with the improved angiogenesis and heart function. In conclusion, the microneedle patch can be utilized to deliver multiple therapeutic agents in a controlled and sequential manner that aligns with the pathological phases following myocardial infarction. STATEMENT OF SIGNIFICANCE: The post-myocardial infarction heart remodeling is characterized by a series of pathological events including acute inflammation, apoptosis, fibrosis, cardiac hypertrophy, and depressed heart function. In current clinical practice, multiple procedures and drugs given at different time points are necessary to combat these series of pathological events. In this study, we developed a novel microcapped microneedle patch for the controlled sequential delivery of triple cardioprotective drugs aiming to combat acute inflammation and cardiac hypertrophy, and promote angiogenesis. This study presents a comprehensive therapeutic approach, with the microneedle patch addressing multifaceted pathological processes during post-myocardial infarction left ventricular remodeling. This cardiac drug delivery system has the potential to improve patient treatment by delivering drugs in alignment with the series of time-dependent pathological phases following myocardial infarction, ultimately improving clinical outcomes.
Collapse
Affiliation(s)
- Fengpu He
- Department of Cardiovascular Medicine, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Syed Muntazir Andrabi
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Haiwang Shi
- Department of Cardiovascular Medicine, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Yura Son
- Department of Cardiovascular Medicine, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Huiliang Qiu
- Department of Cardiovascular Medicine, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Wuqiang Zhu
- Department of Cardiovascular Medicine, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA.
| |
Collapse
|
2
|
Li Y, Hunter A, Wakeel MM, Sun G, Lau RWK, Broughton BRS, Pino IEO, Deng Z, Zhang T, Murthi P, Del Borgo MP, Widdop RE, Polo JM, Ricardo SD, Samuel CS. The renoprotective efficacy and safety of genetically-engineered human bone marrow-derived mesenchymal stromal cells expressing anti-fibrotic cargo. Stem Cell Res Ther 2024; 15:375. [PMID: 39443975 PMCID: PMC11515549 DOI: 10.1186/s13287-024-03992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Kidney fibrosis is a hallmark of chronic kidney disease (CKD) and compromises the viability of transplanted human bone marrow-derived mesenchymal stromal cells (BM-MSCs). Hence, BM-MSCs were genetically-engineered to express the anti-fibrotic and renoprotective hormone, human relaxin-2 (RLX) and green fluorescent protein (BM-MSCs-eRLX + GFP), which enabled BM-MSCs-eRLX + GFP delivery via a single intravenous injection. METHODS BM-MSCs were lentiviral-transduced with human relaxin-2 cDNA and GFP, under a eukaryotic translation elongation factor-1α promoter (BM-MSCs-eRLX + GFP) or GFP alone (BM-MSCs-eGFP). The ability of BM-MSCs-eRLX + GFP to differentiate, proliferate, migrate, produce RLX and cytokines was evaluated in vitro, whilst BM-MSC-eRLX + GFP vs BM-MSCs-eGFP homing to the injured kidney and renoprotective effects were evaluated in preclinical models of ischemia reperfusion injury (IRI) and high salt (HS)-induced hypertensive CKD in vivo. The long-term safety of BM-MSCs-RLX + GFP was also determined 9-months after treatment cessation in vivo. RESULTS When cultured for 3- or 7-days in vitro, 1 × 106 BM-MSCs-eRLX + GFP produced therapeutic RLX levels, and secreted an enhanced but finely-tuned cytokine profile without compromising their proliferation or differentiation capacity compared to naïve BM-MSCs. BM-MSCs-eRLX + GFP were identified in the kidney 2-weeks post-administration and retained the therapeutic effects of RLX in vivo. 1-2 × 106 BM-MSCs-eRLX + GFP attenuated the IRI- or therapeutically abrogated the HS-induced tubular epithelial damage and interstitial fibrosis, and significantly reduced the HS-induced hypertension, glomerulosclerosis and proteinuria. This was to an equivalent extent as RLX and BM-MSCs administered separately but to a broader extent than BM-MSCs-eGFP or the angiotensin-converting enzyme inhibitor, perindopril. Additionally, these renoprotective effects of BM-MSCs-eRLX + GFP were maintained in the presence of perindopril co-treatment, highlighting their suitability as adjunct therapies to ACE inhibition. Importantly, no major long-term adverse effects of BM-MSCs-eRLX + GFP were observed. CONCLUSIONS BM-MSCs-eRLX + GFP produced greater renoprotective and therapeutic efficacy over that of BM-MSCs-eGFP or ACE inhibition, and may represent a novel and safe treatment option for acute kidney injury and hypertensive CKD.
Collapse
Affiliation(s)
- Yifang Li
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Alex Hunter
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Miqdad M Wakeel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Guizhi Sun
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Ricky W K Lau
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Brad R S Broughton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Ivan E Oyarce Pino
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Zihao Deng
- Department of Medicine (Alfred Hospital), Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Tingfang Zhang
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Padma Murthi
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Mark P Del Borgo
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Jose M Polo
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Adelaide Centre for Epigenetics, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- The South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sharon D Ricardo
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia.
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia.
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
3
|
Napiórkowska-Baran K, Doligalska A, Drozd M, Czarnowska M, Łaszczych D, Dolina M, Szymczak B, Schmidt O, Bartuzi Z. Management of a Patient with Cardiovascular Disease Should Include Assessment of Primary and Secondary Immunodeficiencies: Part 2-Secondary Immunodeficiencies. Healthcare (Basel) 2024; 12:1977. [PMID: 39408157 PMCID: PMC11477378 DOI: 10.3390/healthcare12191977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Cardiovascular diseases are among the most common chronic diseases, generating high social and economic costs. Secondary immunodeficiencies occur more often than primary ones and may result from the co-occurrence of specific diseases, treatment, nutrient deficiencies and non-nutritive bio-active compounds that result from the industrial nutrient practices. OBJECTIVES The aim of this article is to present selected secondary immunodeficiencies and their impact on the cardiovascular system. RESULTS The treatment of a patient with cardiovascular disease should include an assess-ment for immunodeficiencies, because the immune and cardiovascular systems are closely linked. CONCLUSIONS Immune system dysfunctions can significantly affect the course of cardiovascular diseases and their treatment. For this reason, comprehensive care for a patient with cardiovascular disease requires taking into account potential immunodeficiencies, which can have a significant impact on the patient's health.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| | - Agata Doligalska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Magdalena Drozd
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Marta Czarnowska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Dariusz Łaszczych
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Marcin Dolina
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
4
|
Daley AD, Bénézech C. Fat-associated lymphoid clusters: Supporting visceral adipose tissue B cell function in immunity and metabolism. Immunol Rev 2024; 324:78-94. [PMID: 38717136 DOI: 10.1111/imr.13339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/09/2024] [Indexed: 07/23/2024]
Abstract
It is now widely understood that visceral adipose tissue (VAT) is a highly active and dynamic organ, with many functions beyond lipid accumulation and storage. In this review, we discuss the immunological role of this tissue, underpinned by the presence of fat-associated lymphoid clusters (FALCs). FALC's distinctive structure and stromal cell composition support a very different immune cell mix to that found in classical secondary lymphoid organs, which underlies their unique functions of filtration, surveillance, innate-like immune responses, and adaptive immunity within the serous cavities. FALCs are important B cell hubs providing B1 cell-mediated frontline protection against infection and supporting B2 cell-adaptative immune responses. Beyond these beneficial immune responses orchestrated by FALCs, immune cells within VAT play important homeostatic role. Dysregulation of immune cells during obesity and aging leads to chronic pathological "metabolic inflammation", which contributes to the development of cardiometabolic diseases. Here, we examine the emerging and complex functions of B cells in VAT homeostasis and the metabolic complications of obesity, highlighting the potential role that FALCs play and emphasize the areas where further research is needed.
Collapse
Affiliation(s)
- Alexander D Daley
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Cécile Bénézech
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
6
|
Guan H, Chen Y, Liu X, Huang L. Research and application of hydrogel-encapsulated mesenchymal stem cells in the treatment of myocardial infarction. Colloids Surf B Biointerfaces 2024; 239:113942. [PMID: 38729022 DOI: 10.1016/j.colsurfb.2024.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Myocardial infarction (MI) stands out as a highly lethal disease that poses a significant threat to global health. Worldwide, heart failure resulting from MI remains a leading cause of human mortality. Mesenchymal stem cell (MSC) therapy has emerged as a promising therapeutic approach, leveraging its intrinsic healing properties. Nevertheless, pervasive issues, including a low cell retention rate, suboptimal survival rate, and incomplete differentiation of MSCs, present formidable challenges for further research. The introduction and advancement of biomaterials have offered a novel avenue for the exploration of MSC therapy in MI, marking considerable progress thus far. Notably, hydrogels, among the representative biomaterials, have garnered extensive attention within the biomedical field. This review delves into recent advancements, specifically focusing on the application of hydrogels to augment MSC therapy for cardiac tissue regeneration in MI.
Collapse
Affiliation(s)
- Haien Guan
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China
| | - Yuehua Chen
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China
| | - Xuanyu Liu
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou 525200, China.
| |
Collapse
|
7
|
Trinh VH, Nguyen Huu T, Sah DK, Choi JM, Yoon HJ, Park SC, Jung YS, Lee SR. Redox Regulation of PTEN by Reactive Oxygen Species: Its Role in Physiological Processes. Antioxidants (Basel) 2024; 13:199. [PMID: 38397797 PMCID: PMC10886030 DOI: 10.3390/antiox13020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumor suppressor due to its ability to regulate cell survival, growth, and proliferation by downregulating the PI3K/AKT signaling pathway. In addition, PTEN plays an essential role in other physiological events associated with cell growth demands, such as ischemia-reperfusion, nerve injury, and immune responsiveness. Therefore, recently, PTEN inhibition has emerged as a potential therapeutic intervention in these situations. Increasing evidence demonstrates that reactive oxygen species (ROS), especially hydrogen peroxide (H2O2), are produced and required for the signaling in many important cellular processes under such physiological conditions. ROS have been shown to oxidize PTEN at the cysteine residue of its active site, consequently inhibiting its function. Herein, we provide an overview of studies that highlight the role of the oxidative inhibition of PTEN in physiological processes.
Collapse
Affiliation(s)
- Vu Hoang Trinh
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
- Department of Oncology, Department of Medical Sciences, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 700000, Vietnam
| | - Thang Nguyen Huu
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Dhiraj Kumar Sah
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Jin Myung Choi
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Hyun Joong Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea;
| | - Yu Seok Jung
- Chonnam National University Medical School, Gwangju 501190, Republic of Korea;
| | - Seung-Rock Lee
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| |
Collapse
|
8
|
Li J, Wang P, Zhou T, Jiang W, Wu H, Zhang S, Deng L, Wang H. Neuroprotective effects of interleukin 10 in spinal cord injury. Front Mol Neurosci 2023; 16:1214294. [PMID: 37492521 PMCID: PMC10363608 DOI: 10.3389/fnmol.2023.1214294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Spinal cord injury (SCI) starts with a mechanical and/or bio-chemical insult, followed by a secondary phase, leading progressively to severe collapse of the nerve tissue. Compared to the peripheral nervous system, injured spinal cord is characterized by weak axonal regeneration, which leaves most patients impaired or paralyzed throughout lifetime. Therefore, confining, alleviating, or reducing the expansion of secondary injuries and promoting functional connections between rostral and caudal regions of lesion are the main goals of SCI therapy. Interleukin 10 (IL-10), as a pivotal anti-inflammatory and immunomodulatory cytokine, exerts a wide spectrum of positive effects in the treatment of SCI. The mechanisms underlying therapeutic effects mainly include anti-oxidative stress, limiting excessive inflammation, anti-apoptosis, antinociceptive effects, etc. Furthermore, IL-10 displays synergistic effects when combined with cell transplantation or neurotrophic factor, enhancing treatment outcomes. This review lists pleiotropic mechanisms underlying IL-10-mediated neuroprotection after SCI, which may offer fresh perspectives for clinical translation.
Collapse
Affiliation(s)
- Juan Li
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Pei Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Ting Zhou
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Wenwen Jiang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Hang Wu
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Shengqi Zhang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Lingxiao Deng
- Department of Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hongxing Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| |
Collapse
|
9
|
Provitera L, Tomaselli A, Raffaeli G, Crippa S, Arribas C, Amodeo I, Gulden S, Amelio GS, Cortesi V, Manzoni F, Cervellini G, Cerasani J, Menis C, Pesenti N, Tripodi M, Santi L, Maggioni M, Lonati C, Oldoni S, Algieri F, Garrido F, Bernardo ME, Mosca F, Cavallaro G. Human Bone Marrow-Derived Mesenchymal Stromal Cells Reduce the Severity of Experimental Necrotizing Enterocolitis in a Concentration-Dependent Manner. Cells 2023; 12:cells12050760. [PMID: 36899900 PMCID: PMC10000931 DOI: 10.3390/cells12050760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating gut disease in preterm neonates. In NEC animal models, mesenchymal stromal cells (MSCs) administration has reduced the incidence and severity of NEC. We developed and characterized a novel mouse model of NEC to evaluate the effect of human bone marrow-derived MSCs (hBM-MSCs) in tissue regeneration and epithelial gut repair. NEC was induced in C57BL/6 mouse pups at postnatal days (PND) 3-6 by (A) gavage feeding term infant formula, (B) hypoxia/hypothermia, and (C) lipopolysaccharide. Intraperitoneal injections of PBS or two hBM-MSCs doses (0.5 × 106 or 1 × 106) were given on PND2. At PND 6, we harvested intestine samples from all groups. The NEC group showed an incidence of NEC of 50% compared with controls (p < 0.001). Severity of bowel damage was reduced by hBM-MSCs compared to the PBS-treated NEC group in a concentration-dependent manner, with hBM-MSCs (1 × 106) inducing a NEC incidence reduction of up to 0% (p < 0.001). We showed that hBM-MSCs enhanced intestinal cell survival, preserving intestinal barrier integrity and decreasing mucosal inflammation and apoptosis. In conclusion, we established a novel NEC animal model and demonstrated that hBM-MSCs administration reduced the NEC incidence and severity in a concentration-dependent manner, enhancing intestinal barrier integrity.
Collapse
Affiliation(s)
- Livia Provitera
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Tomaselli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Genny Raffaeli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
- Correspondence: (G.R.); (G.C.); Tel.: +39-(02)-55032234 (G.C.); Fax: +39-(02)-55032217 (G.R. & G.C.)
| | - Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cristina Arribas
- Department of Pediatrics, Clínica Universidad de Navarra, 28027 Madrid, Spain
| | - Ilaria Amodeo
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Silvia Gulden
- Neonatal Intensive Care Unit, Sant’Anna Hospital, 22042 Como, Italy
| | - Giacomo Simeone Amelio
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valeria Cortesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Francesca Manzoni
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Gaia Cervellini
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Jacopo Cerasani
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Camilla Menis
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Nicola Pesenti
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Statistics and Quantitative Methods, Division of Biostatistics, Epidemiology and Public Health, University of Milano-Bicocca, 20126 Milan, Italy
- Revelo Datalabs S.R.L., 20142 Milan, Italy
| | - Matteo Tripodi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco Maggioni
- Department of Pathology, Fondazione Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Caterina Lonati
- Center for Preclinical Investigation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Samanta Oldoni
- Center for Preclinical Investigation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesca Algieri
- Research and Development Unit, Postbiotica S.R.L., 20123 Milan, Italy
| | - Felipe Garrido
- Department of Pediatrics, Clínica Universidad de Navarra, 28027 Madrid, Spain
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Pediatric Immunohematology Unit, BMT Program, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Maternal and Child Department, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence: (G.R.); (G.C.); Tel.: +39-(02)-55032234 (G.C.); Fax: +39-(02)-55032217 (G.R. & G.C.)
| |
Collapse
|
10
|
Frljak S, Gozdowska R, Klimczak-Tomaniak D, Kucia M, Kuch M, Jadczyk T, Vrtovec B, Sanz-Ruiz R. Stem Cells in Heart Failure: Future Perspective. CARDIOVASCULAR APPLICATIONS OF STEM CELLS 2023:491-514. [DOI: 10.1007/978-981-99-0722-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Abstract
Heart regenerative medicine has been gradually evolving from a view of the heart as a nonregenerative organ with terminally differentiated cardiac muscle cells. Understanding the biology of the heart during homeostasis and in response to injuries has led to the realization that cellular communication between all cardiac cell types holds great promise for treatments. Indeed, recent studies highlight new disease-reversion concepts in addition to cardiomyocyte renewal, such as matrix- and vascular-targeted therapies, and immunotherapy with a focus on inflammation and fibrosis. In this review, we will discuss the cross-talk within the cardiac microenvironment and how specific therapies aim to target the hostile cardiac milieu under pathological conditions.
Collapse
Affiliation(s)
- Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, 60594 Frankfurt, Germany.,Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany.,German Center for Cardiovascular Research, RheinMain, Frankfurt, Germany
| |
Collapse
|
12
|
Commentary: What’s on the inside counts. J Thorac Cardiovasc Surg 2022; 165:e237-e238. [PMID: 35987867 DOI: 10.1016/j.jtcvs.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022]
|
13
|
Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduct Target Ther 2022; 7:134. [PMID: 35461308 PMCID: PMC9035186 DOI: 10.1038/s41392-022-00972-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure is the end stage of cardiac diseases. With a high prevalence and a high mortality rate worldwide, chronic heart failure is one of the heaviest health-related burdens. In addition to the standard neurohormonal blockade therapy, several medications have been developed for chronic heart failure treatment, but the population-wide improvement in chronic heart failure prognosis over time has been modest, and novel therapies are still needed. Mechanistic discovery and technical innovation are powerful driving forces for therapeutic development. On the one hand, the past decades have witnessed great progress in understanding the mechanism of chronic heart failure. It is now known that chronic heart failure is not only a matter involving cardiomyocytes. Instead, chronic heart failure involves numerous signaling pathways in noncardiomyocytes, including fibroblasts, immune cells, vascular cells, and lymphatic endothelial cells, and crosstalk among these cells. The complex regulatory network includes protein-protein, protein-RNA, and RNA-RNA interactions. These achievements in mechanistic studies provide novel insights for future therapeutic targets. On the other hand, with the development of modern biological techniques, targeting a protein pharmacologically is no longer the sole option for treating chronic heart failure. Gene therapy can directly manipulate the expression level of genes; gene editing techniques provide hope for curing hereditary cardiomyopathy; cell therapy aims to replace dysfunctional cardiomyocytes; and xenotransplantation may solve the problem of donor heart shortages. In this paper, we reviewed these two aspects in the field of failing heart signaling cascades and emerging therapeutic strategies based on modern biological techniques.
Collapse
|
14
|
Frljak S, Poglajen G, Vrtovec B. Cell Therapy in Heart Failure with Preserved Ejection Fraction. Card Fail Rev 2022; 8:e08. [PMID: 35399548 PMCID: PMC8977993 DOI: 10.15420/cfr.2021.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is the most common cause of hospitalisation for heart failure. However, only limited effective treatments are available. Recent evidence suggests that HFpEF may result from a systemic proinflammatory state, microvascular endothelial inflammation and microvascular rarefaction. Formation of new microvasculature in ischaemic tissues is dependent on CD34+ cells, which incorporate into the newly developing vasculature and produce pro-angiogenic cytokines. In HFpEF patients, worsening of diastolic function appears to correlate with decreased numbers of CD34+ cells. Therefore, it is plausible that increasing the myocardial numbers of CD34+ cells could theoretically lead to improved microvascular function and improved diastolic parameters in HFpEF. In accordance with this hypothesis, recent pilot clinical data suggest that CD34+ cell therapy may indeed be associated with improved diastolic function and better functional capacity in HFpEF patients and could thus represent a promising novel therapeutic modality for this patient population.
Collapse
Affiliation(s)
- Sabina Frljak
- Advanced Heart Failure and Transplantation Center, UMC Ljubljana, Slovenia
| | - Gregor Poglajen
- Advanced Heart Failure and Transplantation Center, UMC Ljubljana, Slovenia
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Center, UMC Ljubljana, Slovenia
| |
Collapse
|
15
|
Hawkins RB, Salmon M, Su G, Lu G, Leroy V, Bontha SV, Mas VR, Jr GRU, Ailawadi G, Sharma AK. Mesenchymal Stem Cells Alter MicroRNA Expression and Attenuate Thoracic Aortic Aneurysm Formation. J Surg Res 2021; 268:221-231. [PMID: 34371281 PMCID: PMC11044812 DOI: 10.1016/j.jss.2021.06.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/13/2021] [Accepted: 06/11/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Thoracic aortic aneurysms (TAA) are a progressive disease characterized by inflammation, smooth muscle cell activation and matrix degradation. We hypothesized that mesenchymal stem cells (MSCs) can immunomodulate vascular inflammation and remodeling via altered microRNA (miRNAs) expression profile to attenuate TAA formation. MATERIALS AND METHODS C57BL/6 mice underwent topical elastase application to form descending TAAs. Mice were also treated with MSCs on days 1 and 5 and aortas were analyzed on day 14 for aortic diameter. Cytokine array was performed in aortic tissue and total RNA was tagged and hybridized for miRNAs microarray analysis. Immunohistochemistry was performed for elastin degradation and leukocyte infiltration. RESULTS Treatment with MSCs significantly attenuated aortic diameter and TAA formation compared to untreated mice. MSC administration also attenuated T-cell, neutrophil and macrophage infiltration and prevented elastic degradation to mitigate vascular remodeling. MSC treatment also attenuated aortic inflammation by decreasing proinflammatory cytokines (CXCL13, IL-27, CXCL12 and RANTES) and upregulating anti-inflammatory interleukin-10 expression in aortic tissue of elastase-treated mice. TAA formation demonstrated activation of specific miRNAs that are associated with aortic inflammation and vascular remodeling. Our results also demonstrated that MSCs modulate a different set of miRNAs that are associated with decrease leukocyte infiltration and vascular inflammation to attenuate the aortic diameter and TAA formation. CONCLUSIONS These results indicate that MSCs immunomodulate specific miRNAs that are associated with modulating hallmarks of aortic inflammation and vascular remodeling of aortic aneurysms. Targeted therapies designed using MSCs and miRNAs have the potential to regulate the growth and development of TAAs.
Collapse
Affiliation(s)
- Robert B Hawkins
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Morgan Salmon
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Gang Su
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Guanyi Lu
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Victoria Leroy
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Sai Vineela Bontha
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Valeria R Mas
- Department of Surgery, University of Maryland, Baltimore, Maryland
| | | | - Gorav Ailawadi
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Ashish K Sharma
- Department of Surgery, University of Florida, Gainesville, Florida.
| |
Collapse
|
16
|
Zhang J, Bolli R, Garry DJ, Marbán E, Menasché P, Zimmermann WH, Kamp TJ, Wu JC, Dzau VJ. Basic and Translational Research in Cardiac Repair and Regeneration: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 78:2092-2105. [PMID: 34794691 PMCID: PMC9116459 DOI: 10.1016/j.jacc.2021.09.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022]
Abstract
This paper aims to provide an important update on the recent preclinical and clinical trials using cell therapy strategies and engineered heart tissues for the treatment of postinfarction left ventricular remodeling and heart failure. In addition to the authors’ own works and opinions on the roadblocks of the field, they discuss novel approaches for cardiac remuscularization via the activation of proliferative mechanisms in resident cardiomyocytes or direct reprogramming of somatic cells into cardiomyocytes. This paper’s main mindset is to present current and future strategies in light of their implications for the design of future patient trials with the ultimate objective of facilitating the translation of discoveries in regenerative myocardial therapies to the clinic.
Collapse
Affiliation(s)
- Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Daniel J Garry
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles California, USA
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, University of Paris, PARCC, INSERM, F-75015, Paris, France
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, and DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Timothy J Kamp
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Victor J Dzau
- Mandel Center for Hypertension Research, Duke Cardiovascular Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
17
|
Ferhat E, Karabekir E, Gultekin K, Orhan K, Onur Y, Nilnur E. Evaluation of the relationship between anti-inflammatory cytokines and adverse cardiac remodeling after myocardial infarction. KARDIOLOGIIA 2021; 61:61-70. [PMID: 34763640 DOI: 10.18087/cardio.2021.10.n1749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Aim To clarify the role of interleukin (IL) - 10 and members of its subfamily (IL-19 and IL-26) in cardiac remodeling during the post-myocardial infarction (MI) period.Material and methods A total of 45 patients with ST-segment elevation MI were enrolled. Serum cytokine concentrations were measured at the first day and 14 days post-MI. Left ventricular (LV) reverse remodeling (RR) was defined as the reduction of LV end-diastolic volume or LV end-systolic volume by ≥ 12 % in cardiac magnetic resonance images at 6‑mo follow-up. A 12 % increase was defined as adverse remodeling (AR).Results The post-MI first-day median IL-10 (9.7 pg / ml vs. 17.6 pg / ml, p<0.001), median IL-19 (28.7 pg / ml vs. 36.9 pg / ml, p<0.001), and median IL-26 (47.8 pg / ml vs. 90.7 pg / ml, p<0.001) were lower in the RR group compared to the AR group. There was a significant decrease in the concentration of anti-inflammatory cytokines in the AR group from the first to the 14 days post-MI. However, no significant change was observed in the RR group. Regression analysis revealed that a low IL-10 concentration on the post-MI first day was related to RR (OR=0.76, p=0.035). A 1 % increase in change of IL-10 concentration increased the probability of RR by 1.07 times.Conclusion The concentrations of cytokines were higher in the AR group, but this elevation was not sustained and significantly decreased for the 14 days post-MI. In the RR group, the concentrations of cytokines did not change and stable for the 14 days post-MI. As a reflection of this findings, stable IL-10 concentration may play a role the improvement of cardiac functions.
Collapse
Affiliation(s)
- Eyyupkoca Ferhat
- Dr.Nafiz Korez Sincan State Hospital, Department of Cardiology, Ankara, Turkey
| | - Ercan Karabekir
- Ankara Bilkent City Hospital, Department of Radiology, Ankara, Turkey
| | - Karakus Gultekin
- Acibadem Mehmet Ali Aydinlar University School of Medicine, Department of Cardiology, Istanbul, Turkey
| | - Karayigit Orhan
- Ministry of Health Yozgat City Hospital, Department of Cardiology, Yozgat, Turkey
| | - Yildirim Onur
- Dr.Nafiz Korez Sincan State Hospital, Department of Cardiology, Ankara, Turkey
| | - Eyerci Nilnur
- Faculty of Medicine, Ataturk University, Department of Medical Biology, Erzurum, Turkey
| |
Collapse
|
18
|
Goswami SK, Ranjan P, Dutta RK, Verma SK. Management of inflammation in cardiovascular diseases. Pharmacol Res 2021; 173:105912. [PMID: 34562603 DOI: 10.1016/j.phrs.2021.105912] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality world-wide. Recently, the role of inflammation in the progression of diseases has significantly attracted considerable attention. In addition, various comorbidities, including diabetes, obesity, etc. exacerbate inflammation in the cardiovascular system, which ultimately leads to heart failure. Furthermore, cytokines released from specialized immune cells are key mediators of cardiac inflammation. Here, in this review article, we focused on the role of selected immune cells and cytokines (both pro-inflammatory and anti-inflammatory) in the regulation of cardiac inflammation and ultimately in cardiovascular diseases. While IL-1β, IL-6, TNFα, and IFNγ are associated with cardiac inflammation; IL-10, TGFβ, etc. are associated with resolution of inflammation and cardiac repair. IL-10 reduces cardiovascular inflammation and protects the cardiovascular system via interaction with SMAD2, p53, HuR, miR-375 and miR-21 pathway. In addition, we also highlighted recent advancements in the management of cardiac inflammation, including clinical trials of anti-inflammatory molecules to alleviate cardiovascular diseases.
Collapse
Affiliation(s)
- Sumanta Kumar Goswami
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Prabhat Ranjan
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Roshan Kumar Dutta
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Suresh Kumar Verma
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
19
|
Role of IL-37- and IL-37-Treated Dendritic Cells in Acute Coronary Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6454177. [PMID: 34471467 PMCID: PMC8405329 DOI: 10.1155/2021/6454177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
As a chronic inflammatory disease, atherosclerosis is a leading cause of morbidity and mortality in most countries. Inflammation is responsible for plaque instability and the subsequent onset of acute coronary syndrome (ACS), which is one of the leading causes of hospitalization. Therefore, exploring the potential mechanism underlying ACS is of considerable concern, and searching for alternative therapeutic targets is very urgent. Interleukin-37 (IL-37) inhibits the production of proinflammatory chemokines and cytokines and acts as a natural inhibitor of innate and adaptive immunity. Interestingly, our previous study with murine models showed that IL-37 alleviated cardiac remodeling and myocardial ischemia/reperfusion injury. Of note, our clinical study revealed that IL-37 is elevated and plays a beneficial role in patients with ACS. Moreover, dendritic cells (DCs) orchestrate both immunity and tolerance, and tolerogenic DCs (tDCs) are characterized by more secretion of immunosuppressive cytokines. As expected, IL-37-treated DCs are tolerogenic. Hence, we speculate that IL-37- or IL-37-treated DCs is a novel therapeutic possibility for ACS, and the precise mechanism of IL-37 requires further study.
Collapse
|
20
|
Daiber A, Steven S, Euler G, Schulz R. Vascular and Cardiac Oxidative Stress and Inflammation as Targets for Cardioprotection. Curr Pharm Des 2021; 27:2112-2130. [PMID: 33550963 DOI: 10.2174/1381612827666210125155821] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022]
Abstract
Cardiac and vascular diseases are often associated with increased oxidative stress and inflammation, and both may contribute to the disease progression. However, successful applications of antioxidants in the clinical setting are very rare and specific anti-inflammatory therapeutics only emerged recently. Reasons for this rely on the great diversity of oxidative stress and inflammatory cells that can either act as cardioprotective or cause tissue damage in the heart. Recent large-scale clinical trials found that highly specific anti-inflammatory therapies using monoclonal antibodies against cytokines resulted in lower cardiovascular mortality in patients with pre-existing atherosclerotic disease. In addition, unspecific antiinflammatory medication and established cardiovascular drugs with pleiotropic immunomodulatory properties such as angiotensin converting enzyme (ACE) inhibitors or statins have proven beneficial cardiovascular effects. Normalization of oxidative stress seems to be a common feature of these therapies, which can be explained by a close interaction/crosstalk of the cellular redox state and inflammatory processes. In this review, we give an overview of cardiac reactive oxygen species (ROS) sources and processes of cardiac inflammation as well as the connection of ROS and inflammation in ischemic cardiomyopathy in order to shed light on possible cardioprotective interventions.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Gerhild Euler
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
21
|
Liberale L, Ministrini S, Carbone F, Camici GG, Montecucco F. Cytokines as therapeutic targets for cardio- and cerebrovascular diseases. Basic Res Cardiol 2021; 116:23. [PMID: 33770265 PMCID: PMC7997823 DOI: 10.1007/s00395-021-00863-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Despite major advances in prevention and treatment, cardiac and cerebral atherothrombotic complications still account for substantial morbidity and mortality worldwide. In this context, inflammation is involved in the chronic process leading atherosclerotic plaque formation and its complications, as well as in the maladaptive response to acute ischemic events. For this reason, modulation of inflammation is nowadays seen as a promising therapeutic strategy to counteract the burden of cardio- and cerebrovascular disease. Being produced and recognized by both inflammatory and vascular cells, the complex network of cytokines holds key functions in the crosstalk of these two systems and orchestrates the progression of atherothrombosis. By binding to membrane receptors, these soluble mediators trigger specific intracellular signaling pathways eventually leading to the activation of transcription factors and a deep modulation of cell function. Both stimulatory and inhibitory cytokines have been described and progressively reported as markers of disease or interesting therapeutic targets in the cardiovascular field. Nevertheless, cytokine inhibition is burdened by harmful side effects that will most likely prevent its chronic use in favor of acute administrations in well-selected subjects at high risk. Here, we summarize the current state of knowledge regarding the modulatory role of cytokines on atherosclerosis, myocardial infarction, and stroke. Then, we discuss evidence from clinical trials specifically targeting cytokines and the potential implication of these advances into daily clinical practice.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952, Schlieren, Switzerland.
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.
| | - Stefano Ministrini
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Genoa, Italy
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| |
Collapse
|
22
|
Suda S, Nito C, Yokobori S, Sakamoto Y, Nakajima M, Sowa K, Obinata H, Sasaki K, Savitz SI, Kimura K. Recent Advances in Cell-Based Therapies for Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21186718. [PMID: 32937754 PMCID: PMC7555943 DOI: 10.3390/ijms21186718] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Stroke is the most prevalent cardiovascular disease worldwide, and is still one of the leading causes of death and disability. Stem cell-based therapy is actively being investigated as a new potential treatment for certain neurological disorders, including stroke. Various types of cells, including bone marrow mononuclear cells, bone marrow mesenchymal stem cells, dental pulp stem cells, neural stem cells, inducible pluripotent stem cells, and genetically modified stem cells have been found to improve neurological outcomes in animal models of stroke, and there are some ongoing clinical trials assessing their efficacy in humans. In this review, we aim to summarize the recent advances in cell-based therapies to treat stroke.
Collapse
Affiliation(s)
- Satoshi Suda
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
- Correspondence: ; Tel.: +81-3-3822-2131; Fax: +81-3-3822-4865
| | - Chikako Nito
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| | - Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan; (S.Y.); (H.O.); (K.S.)
| | - Yuki Sakamoto
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| | - Masataka Nakajima
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| | - Kota Sowa
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| | - Hirofumi Obinata
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan; (S.Y.); (H.O.); (K.S.)
| | - Kazuma Sasaki
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan; (S.Y.); (H.O.); (K.S.)
| | - Sean I. Savitz
- Institute for Stroke and Cerebrovascular Disease, UTHealth, Houston, TX 77030, USA;
| | - Kazumi Kimura
- Department of Neurology, Nippon Medical School, Tokyo 113-8602, Japan; (C.N.); (Y.S.); (M.N.); (K.S.); (K.K.)
| |
Collapse
|
23
|
Aspirin enhances regulatory functional activities of monocytes and downregulates CD16 and CD40 expression in myocardial infarction autoinflammatory disease. Int Immunopharmacol 2020; 83:106349. [DOI: 10.1016/j.intimp.2020.106349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
|
24
|
Decellularized Aortic Scaffold Alleviates H 2O 2-Induced Inflammation and Apoptosis in CD34+ Progenitor Cells While Driving Neovasculogenesis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6782072. [PMID: 32104703 PMCID: PMC7035506 DOI: 10.1155/2020/6782072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/20/2019] [Accepted: 01/06/2020] [Indexed: 01/22/2023]
Abstract
Bone marrow-derived stem/progenitor cells have been utilized for cardiac or vascular repair after ischemic injury, but they are subject to apoptosis and immune rejection in the ischemic site. Multiple scaffolds were used as delivery tools to transplant stem/progenitor cells; however, these scaffolds did not show intrinsically antiapoptotic or anti-inflammatory properties. Decellularized aortic scaffolds that facilitate cell delivery and tissue repair were prepared by removing cells of patient-derived aortic tissues. Scanning electron microscopy (SEM) showed cells attached well to the scaffold after culturing for 5 days. Live/dead staining showed most seeded cells survived at day 7 on a decellularized aortic scaffold. Ki67 staining demonstrated that decellularized aortic scaffold promoted proliferation of bone marrow-derived CD34+ progenitor cells. Apoptosis of CD34+ progenitor cells induced by H2O2 at high concentration was significantly alleviated in the presence of decellularized aortic scaffolds, demonstrating a protective effect against oxidative stress-induced apoptosis. Furthermore, decellularized aortic scaffolds significantly reduced the expression of proinflammatory cytokines (IL-8, GM-CSF, MIP-1β, GRO-α, Entoxin, and GRO) concurrently with an increase in anti-inflammatory cytokines (IL-2 and TGF-β) released from CD34+ progenitor cells when exposed to H2O2 at low concentration. Finally, neovascularization was observed by H&E and immunohistochemical staining 14 days after the decellularized aortic scaffolds were subcutaneously implanted in nude mice. This preclinical study demonstrates that the use of a decellularized aortic scaffold possessing antiapoptotic and anti-inflammatory properties may represent a promising strategy for cardiovascular repair after ischemic injury.
Collapse
|
25
|
Abdelrazik H, Giordano E, Barbanti Brodano G, Griffoni C, De Falco E, Pelagalli A. Substantial Overview on Mesenchymal Stem Cell Biological and Physical Properties as an Opportunity in Translational Medicine. Int J Mol Sci 2019; 20:5386. [PMID: 31671788 PMCID: PMC6862078 DOI: 10.3390/ijms20215386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSC) have piqued worldwide interest for their extensive potential to treat a large array of clinical indications, their unique and controversial immunogenic and immune modulatory properties allowing ample discussions and debates for their possible applications. Emerging data demonstrating that the interaction of biomaterials and physical cues with MSC can guide their differentiation into specific cell lineages also provide new interesting insights for further MSC manipulation in different clinical applications. Moreover, recent discoveries of some regulatory molecules and signaling pathways in MSC niche that may regulate cell fate to distinct lineage herald breakthroughs in regenerative medicine. Although the advancement and success in the MSC field had led to an enormous increase in the amount of ongoing clinical trials, we still lack defined clinical therapeutic protocols. This review will explore the exciting opportunities offered by human and animal MSC, describing relevant biological properties of these cells in the light of the novel emerging evidence mentioned above while addressing the limitations and challenges MSC are still facing.
Collapse
Affiliation(s)
- Heba Abdelrazik
- Department of Clinical Pathology, Cairo University, Cairo 1137, Egypt.
- Department of Diagnosis, central laboratory department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16131 Genoa, Italy.
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, 47522 Cesena, Italy.
| | - Giovanni Barbanti Brodano
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Cristiana Griffoni
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- Mediterranea Cardiocentro, 80122 Napoli, Italy.
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy.
- Institute of Biostructures and Bioimages (IBB), National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
26
|
Wu L, Dalal R, Cao CD, Postoak JL, Yang G, Zhang Q, Wang Z, Lal H, Van Kaer L. IL-10-producing B cells are enriched in murine pericardial adipose tissues and ameliorate the outcome of acute myocardial infarction. Proc Natl Acad Sci U S A 2019; 116:21673-21684. [PMID: 31591231 PMCID: PMC6815157 DOI: 10.1073/pnas.1911464116] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acute myocardial infarction (MI) provokes an inflammatory response in the heart that removes damaged tissues to facilitate tissue repair/regeneration. However, overactive and prolonged inflammation compromises healing, which may be counteracted by antiinflammatory mechanisms. A key regulatory factor in an inflammatory response is the antiinflammatory cytokine IL-10, which can be produced by a number of immune cells, including subsets of B lymphocytes. Here, we investigated IL-10-producing B cells in pericardial adipose tissues (PATs) and their role in the healing process following acute MI in mice. We found that IL-10-producing B cells were enriched in PATs compared to other adipose depots throughout the body, with the majority of them bearing a surface phenotype consistent with CD5+ B-1a cells (CD5+ B cells). These cells were detected early in life, maintained a steady presence during adulthood, and resided in fat-associated lymphoid clusters. The cytokine IL-33 and the chemokine CXCL13 were preferentially expressed in PATs and contributed to the enrichment of IL-10-producing CD5+ B cells. Following acute MI, the pool of CD5+ B cells was expanded in PATs. These cells accumulated in the infarcted heart during the resolution of MI-induced inflammation. B cell-specific deletion of IL-10 worsened cardiac function, exacerbated myocardial injury, and delayed resolution of inflammation following acute MI. These results revealed enrichment of IL-10-producing B cells in PATs and a significant contribution of these cells to the antiinflammatory processes that terminate MI-induced inflammation. Together, these findings have identified IL-10-producing B cells as therapeutic targets to improve the outcome of MI.
Collapse
Affiliation(s)
- Lan Wu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232;
| | - Rajeev Dalal
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Connie D Cao
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - J Luke Postoak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Guan Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Qinkun Zhang
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Zhizhang Wang
- Vanderbilt-NIH Mouse Metabolic Phenotyping Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Hind Lal
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232;
| |
Collapse
|
27
|
Poglajen G, Gregoric ID, Radovancevic R, Vrtovec B. Stem Cell and Left Ventricular Assist Device Combination Therapy. Circ Heart Fail 2019; 12:e005454. [PMID: 30759999 DOI: 10.1161/circheartfailure.118.005454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ventricular assist device (VAD) technology has evolved significantly over the past decades and currently represents one of the most important treatment strategies for patients with advanced chronic heart failure. There is increasing evidence that in selected patients undergoing long-term VAD support, improvement of myocardial structure and function may occur. However, there seems to be a significant discrepancy between structural and functional recovery of the failing myocardium, as only a small fraction of VAD-supported patients demonstrate reverse structural remodeling and eventually reach clinically significant and stable, functional improvement. More recently, cell therapy has gained a growing interest in the heart failure community because of its potential to augment reverse remodeling of the failing myocardium. Although theoretically the combination of long-term VAD support and cell therapy may offer significant advantages over using these therapeutic modalities separately, it remains largely unexplored. This review aims to summarize the current state of the art of the effects of VAD support and cell therapy on the reverse remodeling of the failing myocardium and to discuss the rationale for using a combined treatment strategy to further promote myocardial recovery in patients with advanced chronic heart failure.
Collapse
Affiliation(s)
- Gregor Poglajen
- Advanced Heart Failure and Transplantation Center, University Medical Center Ljubljana, Slovenia (G.P., B.V.).,Department of Advanced Cardiopulmonary Therapies and Transplantation, Center for Advanced Heart Failure, University of Texas Health Science Center at Houston (G.P., I.D.G., R.R.)
| | - Igor D Gregoric
- Department of Advanced Cardiopulmonary Therapies and Transplantation, Center for Advanced Heart Failure, University of Texas Health Science Center at Houston (G.P., I.D.G., R.R.)
| | - Rajko Radovancevic
- Department of Advanced Cardiopulmonary Therapies and Transplantation, Center for Advanced Heart Failure, University of Texas Health Science Center at Houston (G.P., I.D.G., R.R.)
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Center, University Medical Center Ljubljana, Slovenia (G.P., B.V.)
| |
Collapse
|
28
|
Pan Y, Zhou Z, Zhang H, Zhou Y, Li Y, Li C, Chen X, Yang S, Liao Y, Qiu Z. The ATRQβ-001 vaccine improves cardiac function and prevents postinfarction cardiac remodeling in mice. Hypertens Res 2018; 42:329-340. [PMID: 30587854 DOI: 10.1038/s41440-018-0185-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/09/2018] [Accepted: 09/09/2018] [Indexed: 11/09/2022]
Abstract
We invented the ATRQβ-001 hypertension vaccine, which targeted angiotensin II type 1 receptor (AT1R) and showed a desirable blocking effect for AT1R. The purpose of this study was to investigate whether the ATRQβ-001 vaccine could improve cardiac function and prevent cardiac remodeling after acute myocardial infarction (AMI). C57BL/6 male mice were randomly assigned into four groups: sham + VLP, MI + VLP, MI + ATRQβ-001, and MI + valsartan. Mice were administered Qβ virus-like particle (Qβ-VLP, 100 μg/time), ATRQβ-001 vaccine (100 μg/time), and valsartan (6 mg/kg/day) before AMI, which was induced by permanently ligating the left anterior descending coronary artery. The effect of the ATRQβ-001 vaccine on cardiac function and cardiac remodeling was observed by following up for 1 week, 4 weeks, and 12 weeks post MI. The ATRQβ-001 vaccine significantly reduced sudden cardiac death and increased survival rates (compared with MI + VLP, 80% versus 55% and mean estimate (days) 68.4 ± 7.0 versus 47.8 ± 8.9, respectively; p = 0.046) post MI. Echocardiography showed that the ATRQβ-001 vaccine remarkably improved cardiac function (left ventricular ejection fraction, 24.8 ± 7.0% versus 13.2 ± 3.8%, p = 0.005) post MI. Histological analysis revealed that the ATRQβ-001 vaccine obviously mitigated myocardial inflammation, apoptosis, and fibrosis after AMI. Further, the ATRQβ-001 vaccine significantly inhibited the TGF-β1/Smad2/3 signaling pathway. Assessment of the renin-angiotensin system (RAS) demonstrated that the ATRQβ-001 vaccine did not cause obvious feedback of circulating RAS, but prominently attenuated the expression of AT1R, compared with the other groups at 4 and 12 weeks after AMI. In conclusion, the ATRQβ-001 vaccine decreased mortality and improved cardiac function and remodeling after AMI.
Collapse
Affiliation(s)
- Yajie Pan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongrong Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanzhao Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yingying Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chang Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shijun Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhihua Qiu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
29
|
Zhou L, Miao K, Yin B, Li H, Fan J, Zhu Y, Ba H, Zhang Z, Chen F, Wang J, Zhao C, Li Z, Wang DW. Cardioprotective Role of Myeloid-Derived Suppressor Cells in Heart Failure. Circulation 2018; 138:181-197. [PMID: 29437117 DOI: 10.1161/circulationaha.117.030811] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/16/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that expand in cancer, inflammation, and infection and negatively regulate inflammation and the immune response. Heart failure (HF) is a complex clinical syndrome wherein inflammation induction and incomplete resolution can potentially contribute to HF development and progression. However, the role of MDSCs in HF remains unclear. METHODS The percentage of MDSCs in patients with HF and in mice with pressure overload-induced HF using isoproterenol infusion or transverse aortic constriction (TAC) was detected by flow cytometry. The effects of MDSCs on isoproterenol- or TAC-induced HF were observed on depleting MDSCs with 5-fluorouracil (50 mg/kg) or gemcitabine (120 mg/kg), transferring purified MDSCs, or enhancing endogenous MDSCs with rapamycin (2 mg·kg-1·d-1). Hypertrophic markers and inflammatory factors were detected by ELISA, real-time polymerase chain reaction, or Western blot. Cardiac functions were determined by echocardiography and hemodynamic analysis. RESULTS The percentage of human leukocyte antigen-D-related (HLA-DR)-CD33+CD11b+ MDSCs in the blood of patients with HF was significantly increased and positively correlated with disease severity and increased plasma levels of cytokines, including interleukin-6, interleukin-10, and transforming growth factor-β. Furthermore, MDSCs derived from patients with HF inhibited T-cell proliferation and interferon-γ secretion. Similar results were observed in TAC- and isoproterenol-induced HF in mice. Pharmaceutical depletion of MDSCs significantly exacerbated isoproterenol- and TAC-induced pathological cardiac remodeling and inflammation, whereas adoptive transfer of MDSCs prominently rescued isoproterenol- and TAC-induced HF. Consistently, administration of rapamycin significantly increased endogenous MDSCs by suppressing their differentiation and improved isoproterenol- and TAC-induced HF, but MDSC depletion mostly blocked beneficial rapamycin-mediated effects. Mechanistically, MDSC-secreted molecules suppressed isoproterenol-induced hypertrophy and proinflammatory gene expression in cardiomyocytes in a coculture system. Neutralization of interleukin-10 blunted both monocytic MDSC- and granulocytic MDSC-mediated anti-inflammatory and antihypertrophic effects, but treatment with a nitric oxide inhibitor only partially blocked the antihypertrophic effect of monocytic MDSCs. CONCLUSIONS Our findings revealed a cardioprotective role of MDSCs in HF by their antihypertrophic effects on cardiomyocytes and anti-inflammatory effects through interleukin-10 and nitric oxide. Pharmacological targeting of MDSCs by rapamycin constitutes a promising therapeutic strategy for HF.
Collapse
Affiliation(s)
- Ling Zhou
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital (L.Z., K.M., H.L., J.F., C.Z., D.W.W.)
| | - Kun Miao
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital (L.Z., K.M., H.L., J.F., C.Z., D.W.W.)
| | - Bingjiao Yin
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital (L.Z., K.M., H.L., J.F., C.Z., D.W.W.).,Department of Immunology, School of Basic Medicine (B.Y., Y.Z., H.B., Z.Z., F.C., J.W., and Z.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaping Li
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital (L.Z., K.M., H.L., J.F., C.Z., D.W.W.)
| | - Jiahui Fan
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital (L.Z., K.M., H.L., J.F., C.Z., D.W.W.)
| | - Yazhen Zhu
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital (L.Z., K.M., H.L., J.F., C.Z., D.W.W.).,Department of Immunology, School of Basic Medicine (B.Y., Y.Z., H.B., Z.Z., F.C., J.W., and Z.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongping Ba
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital (L.Z., K.M., H.L., J.F., C.Z., D.W.W.).,Department of Immunology, School of Basic Medicine (B.Y., Y.Z., H.B., Z.Z., F.C., J.W., and Z.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zunyue Zhang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital (L.Z., K.M., H.L., J.F., C.Z., D.W.W.).,Department of Immunology, School of Basic Medicine (B.Y., Y.Z., H.B., Z.Z., F.C., J.W., and Z.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Chen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital (L.Z., K.M., H.L., J.F., C.Z., D.W.W.).,Department of Immunology, School of Basic Medicine (B.Y., Y.Z., H.B., Z.Z., F.C., J.W., and Z.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital (L.Z., K.M., H.L., J.F., C.Z., D.W.W.).,Department of Immunology, School of Basic Medicine (B.Y., Y.Z., H.B., Z.Z., F.C., J.W., and Z.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunxia Zhao
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital (L.Z., K.M., H.L., J.F., C.Z., D.W.W.)
| | - Zhuoya Li
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital (L.Z., K.M., H.L., J.F., C.Z., D.W.W.) .,Department of Immunology, School of Basic Medicine (B.Y., Y.Z., H.B., Z.Z., F.C., J.W., and Z.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Tongji Hospital (L.Z., K.M., H.L., J.F., C.Z., D.W.W.)
| |
Collapse
|
30
|
Puddighinu G, D'Amario D, Foglio E, Manchi M, Siracusano A, Pontemezzo E, Cordella M, Facchiano F, Pellegrini L, Mangoni A, Tafani M, Crea F, Germani A, Russo MA, Limana F. Molecular mechanisms of cardioprotective effects mediated by transplanted cardiac ckit + cells through the activation of an inflammatory hypoxia-dependent reparative response. Oncotarget 2017; 9:937-957. [PMID: 29416668 PMCID: PMC5787525 DOI: 10.18632/oncotarget.22946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/12/2017] [Indexed: 12/16/2022] Open
Abstract
The regenerative effects of cardiac ckit+ stem cells (ckit+CSCs) in acute myocardial infarction (MI) have been studied extensively, but how these cells exert a protective effect on cardiomyocytes is not well known. Growing evidences suggest that in adult stem cells injury triggers inflammatory signaling pathways which control tissue repair and regeneration. Aim of the present study was to determine the mechanisms underlying the cardioprotective effects of ckit+CSCs following transplantation in a murine model of MI. Following isolation and in vitro expansion, cardiac ckit+CSCs were subjected to normoxic and hypoxic conditions and assessed at different time points. These cells adapted to hypoxia as showed by the activation of HIF-1α and the expression of a number of genes, such as VEGF, GLUT1, EPO, HKII and, importantly, of alarmin receptors, such as RAGE, P2X7R, TLR2 and TLR4. Activation of these receptors determined an NFkB-dependent inflammatory and reparative gene response (IRR). Importantly, hypoxic ckit+CSCs increased the secretion of the survival growth factors IGF-1 and HGF. To verify whether activation of the IRR in a hypoxic microenvironment could exert a beneficial effect in vivo, autologous ckit+CSCs were transplanted into mouse heart following MI. Interestingly, transplantation of ckit+CSCs lowered apoptotic rates and induced autophagy in the peri-infarct area; further, it reduced hypertrophy and fibrosis and, most importantly, improved cardiac function. ckit+CSCs are able to adapt to a hypoxic environment and activate an inflammatory and reparative response that could account, at least in part, for a protective effect on stressed cardiomyocytes following transplantation in the infarcted heart.
Collapse
Affiliation(s)
- Giovanni Puddighinu
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Domenico D'Amario
- Department of Cardiovascular Sciences, Catholic University of The Sacred Heart, Rome, Italy
| | - Eleonora Foglio
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Melissa Manchi
- Department of Cardiovascular Sciences, Catholic University of The Sacred Heart, Rome, Italy
| | - Andrea Siracusano
- Department of Cardiovascular Sciences, Catholic University of The Sacred Heart, Rome, Italy
| | - Elena Pontemezzo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Martina Cordella
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Pellegrini
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico (CCP), Milan, Italy
| | - Antonella Mangoni
- Department of Pathological Anatomy, Catholic University of The Sacred Heart, Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular Sciences, Catholic University of The Sacred Heart, Rome, Italy
| | - Antonia Germani
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, Rome, Italy
| | - Matteo Antonio Russo
- IRCCS San Raffaele Pisana, Rome, Italy.,MEBIC Consortium, San Raffaele Roma Open University, Rome, Italy
| | - Federica Limana
- IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele Roma Open University, Rome, Italy
| |
Collapse
|
31
|
Cambier L, de Couto G, Ibrahim A, Echavez AK, Valle J, Liu W, Kreke M, Smith RR, Marbán L, Marbán E. Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Mol Med 2017; 9:337-352. [PMID: 28167565 PMCID: PMC5331234 DOI: 10.15252/emmm.201606924] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cardiosphere‐derived cells (CDCs) reduce myocardial infarct size via secreted extracellular vesicles (CDC‐EVs), including exosomes, which alter macrophage polarization. We questioned whether short non‐coding RNA species of unknown function within CDC‐EVs contribute to cardioprotection. The most abundant RNA species in CDC‐EVs is a Y RNA fragment (EV‐YF1); its relative abundance in CDC‐EVs correlates with CDC potency in vivo. Fluorescently labeled EV‐YF1 is actively transferred from CDCs to target macrophages via CDC‐EVs. Direct transfection of macrophages with EV‐YF1 induced transcription and secretion of IL‐10. When cocultured with rat cardiomyocytes, EV‐YF1‐primed macrophages were potently cytoprotective toward oxidatively stressed cardiomyocytes through induction of IL‐10. In vivo, intracoronary injection of EV‐YF1 following ischemia/reperfusion reduced infarct size. A fragment of Y RNA, highly enriched in CDC‐EVs, alters Il10 gene expression and enhances IL‐10 protein secretion. The demonstration that EV‐YF1 confers cardioprotection highlights the potential importance of diverse exosomal contents of unknown function, above and beyond the usual suspects (e.g., microRNAs and proteins).
Collapse
Affiliation(s)
- Linda Cambier
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Geoffrey de Couto
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Antonio K Echavez
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jackelyn Valle
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Weixin Liu
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | | | - Eduardo Marbán
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
32
|
Gao P, Niu N, Wei T, Tozawa H, Chen X, Zhang C, Zhang J, Wada Y, Kapron CM, Liu J. The roles of signal transducer and activator of transcription factor 3 in tumor angiogenesis. Oncotarget 2017; 8:69139-69161. [PMID: 28978186 PMCID: PMC5620326 DOI: 10.18632/oncotarget.19932] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is the development of new blood vessels, which is required for tumor growth and metastasis. Signal transducer and activator of transcription factor 3 (STAT3) is a transcription factor that regulates a variety of cellular events including proliferation, differentiation and apoptosis. Previous studies revealed that activation of STAT3 promotes tumor angiogenesis. In this review, we described the activities of STAT3 signaling in different cell types involved in angiogenesis. Particularly, we elucidated the molecular mechanisms of STAT3-mediated gene regulation in angiogenic endothelial cells in response to external stimulations such as hypoxia and inflammation. The potential for STAT3 as a therapeutic target was also discussed. Overall, this review provides mechanistic insights for the roles of STAT3 signaling in tumor angiogenesis.
Collapse
Affiliation(s)
- Peng Gao
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Na Niu
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Tianshu Wei
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Hideto Tozawa
- The Research Center for Advanced Science and Technology, Isotope Science Center, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Xiaocui Chen
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Caiqing Zhang
- Department of Respiratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Jiandong Zhang
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Youichiro Wada
- The Research Center for Advanced Science and Technology, Isotope Science Center, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Carolyn M Kapron
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
33
|
Bortolotti F, Ruozi G, Falcione A, Doimo S, Dal Ferro M, Lesizza P, Zentilin L, Banks L, Zacchigna S, Giacca M. In Vivo Functional Selection Identifies Cardiotrophin-1 as a Cardiac Engraftment Factor for Mesenchymal Stromal Cells. Circulation 2017; 136:1509-1524. [PMID: 28754835 DOI: 10.1161/circulationaha.117.029003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/12/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Transplantation of cells into the infarcted heart has significant potential to improve myocardial recovery; however, low efficacy of cell engraftment still limits therapeutic benefit. Here, we describe a method for the unbiased, in vivo selection of cytokines that improve mesenchymal stromal cell engraftment into the heart both in normal conditions and after myocardial infarction. METHODS An arrayed library of 80 secreted factors, including most of the currently known interleukins and chemokines, were individually cloned into adeno-associated viral vectors. Pools from this library were then used for the batch transduction of bone marrow-derived mesenchymal stromal cells ex vivo, followed by intramyocardial cell administration in normal and infarcted mice. Three weeks after injection, vector genomes were recovered from the few persisting cells and identified by sequencing DNA barcodes uniquely labeling each of the tested cytokines. RESULTS The most effective molecule identified by this competitive engraftment screening was cardiotrophin-1, a member of the interleukin-6 family. Intracardiac injection of mesenchymal stromal cells transiently preconditioned with cardiotrophin-1 preserved cardiac function and reduced infarct size, parallel to the persistence of the transplanted cells in the healing hearts for at least 2 months after injection. Engraftment of cardiotrophin-1-treated mesenchymal stromal cells was consequent to signal transducer and activator of transcription 3-mediated activation of the focal adhesion kinase and its associated focal adhesion complex and the consequent acquisition of adhesive properties by the cells. CONCLUSIONS These results support the feasibility of selecting molecules in vivo for their functional properties with adeno-associated viral vector libraries and identify cardiotrophin-1 as a powerful cytokine promoting cell engraftment and thus improving cell therapy of the infarcted myocardium.
Collapse
Affiliation(s)
- Francesca Bortolotti
- From Molecular Medicine (F.B., G.R., A.F., L.Z., M.G.), Tumour Biology (L.B.), and Cardiovascular Biology (S.Z.) Laboratories, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Italy (S.D., M.D.F., P.L., S.Z., M.G.); and Center for Translational Cardiology, Azienda Sanitaria Integrata di Trieste, Italy (S.D., M.D.F., P.L., S.Z., M.G.)
| | - Giulia Ruozi
- From Molecular Medicine (F.B., G.R., A.F., L.Z., M.G.), Tumour Biology (L.B.), and Cardiovascular Biology (S.Z.) Laboratories, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Italy (S.D., M.D.F., P.L., S.Z., M.G.); and Center for Translational Cardiology, Azienda Sanitaria Integrata di Trieste, Italy (S.D., M.D.F., P.L., S.Z., M.G.)
| | - Antonella Falcione
- From Molecular Medicine (F.B., G.R., A.F., L.Z., M.G.), Tumour Biology (L.B.), and Cardiovascular Biology (S.Z.) Laboratories, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Italy (S.D., M.D.F., P.L., S.Z., M.G.); and Center for Translational Cardiology, Azienda Sanitaria Integrata di Trieste, Italy (S.D., M.D.F., P.L., S.Z., M.G.)
| | - Sara Doimo
- From Molecular Medicine (F.B., G.R., A.F., L.Z., M.G.), Tumour Biology (L.B.), and Cardiovascular Biology (S.Z.) Laboratories, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Italy (S.D., M.D.F., P.L., S.Z., M.G.); and Center for Translational Cardiology, Azienda Sanitaria Integrata di Trieste, Italy (S.D., M.D.F., P.L., S.Z., M.G.)
| | - Matteo Dal Ferro
- From Molecular Medicine (F.B., G.R., A.F., L.Z., M.G.), Tumour Biology (L.B.), and Cardiovascular Biology (S.Z.) Laboratories, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Italy (S.D., M.D.F., P.L., S.Z., M.G.); and Center for Translational Cardiology, Azienda Sanitaria Integrata di Trieste, Italy (S.D., M.D.F., P.L., S.Z., M.G.)
| | - Pierluigi Lesizza
- From Molecular Medicine (F.B., G.R., A.F., L.Z., M.G.), Tumour Biology (L.B.), and Cardiovascular Biology (S.Z.) Laboratories, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Italy (S.D., M.D.F., P.L., S.Z., M.G.); and Center for Translational Cardiology, Azienda Sanitaria Integrata di Trieste, Italy (S.D., M.D.F., P.L., S.Z., M.G.)
| | - Lorena Zentilin
- From Molecular Medicine (F.B., G.R., A.F., L.Z., M.G.), Tumour Biology (L.B.), and Cardiovascular Biology (S.Z.) Laboratories, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Italy (S.D., M.D.F., P.L., S.Z., M.G.); and Center for Translational Cardiology, Azienda Sanitaria Integrata di Trieste, Italy (S.D., M.D.F., P.L., S.Z., M.G.)
| | - Lawrence Banks
- From Molecular Medicine (F.B., G.R., A.F., L.Z., M.G.), Tumour Biology (L.B.), and Cardiovascular Biology (S.Z.) Laboratories, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Italy (S.D., M.D.F., P.L., S.Z., M.G.); and Center for Translational Cardiology, Azienda Sanitaria Integrata di Trieste, Italy (S.D., M.D.F., P.L., S.Z., M.G.)
| | - Serena Zacchigna
- From Molecular Medicine (F.B., G.R., A.F., L.Z., M.G.), Tumour Biology (L.B.), and Cardiovascular Biology (S.Z.) Laboratories, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Italy (S.D., M.D.F., P.L., S.Z., M.G.); and Center for Translational Cardiology, Azienda Sanitaria Integrata di Trieste, Italy (S.D., M.D.F., P.L., S.Z., M.G.)
| | - Mauro Giacca
- From Molecular Medicine (F.B., G.R., A.F., L.Z., M.G.), Tumour Biology (L.B.), and Cardiovascular Biology (S.Z.) Laboratories, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Italy (S.D., M.D.F., P.L., S.Z., M.G.); and Center for Translational Cardiology, Azienda Sanitaria Integrata di Trieste, Italy (S.D., M.D.F., P.L., S.Z., M.G.).
| |
Collapse
|
34
|
Wang B, Zhang L, Cao H, Yang J, Wu M, Ma Y, Fan H, Zhan Z, Liu Z. Myoblast transplantation improves cardiac function after myocardial infarction through attenuating inflammatory responses. Oncotarget 2017; 8:68780-68794. [PMID: 28978156 PMCID: PMC5620296 DOI: 10.18632/oncotarget.18244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/15/2017] [Indexed: 01/13/2023] Open
Abstract
Myocardial infarction (MI) is a highly prevalent cardiac emergency, which results in adverse cardiac remodeling and then exacerbates progressive heart failure. Inflammatory responses in cardiac tissue after MI is necessary for myocardium repair and wound healing. However, the excessive inflammation is also a key component of subsequent heart failure pathology. Myoblast transplantation after MI have been fulfilled attractive effects on cardiac repair, but the complications of transplantation and the underlying mechanisms have not been fully elucidated. Here, we found that human myoblast transplantation into minipig myocardium decreased the infiltration of inflammatory cells, the expression levels of many pro-inflammatory genes and the activation of inflammation-related signal pathways, while upregulated the expression levels of anti-inflammatory genes such as IL-10 in cardiac tissue of minipig post-MI, which was contributed to the improved cardiac function, the decreased infarct area and the attenuated myocardial fibrosis. Moreover, co-culture of human myoblasts inhibited the production of IL-1β and TNF-α as well as activation of MAPK and NF-κB signaling pathway induced by damage-associated molecular patterns such as HMGB1 and HSP60 in human THP-1 cells, which was partially attributed to the up-regulated production of IL-10. Collectively, these results indicate that myoblast transplantation ameliorates heart injury and improves cardiac function post-MI through inhibiting the inflammatory response, which provides the novel mechanism for myoblast transplantation therapy of MI.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China and Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Likui Zhang
- Department of Cardiac Surgery and Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hao Cao
- Department of Cardiac Surgery and Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Junqi Yang
- Key Laboratory of Arrhythmias of the Ministry of Education of China and Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Manya Wu
- Key Laboratory of Arrhythmias of the Ministry of Education of China and Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yali Ma
- Key Laboratory of Arrhythmias of the Ministry of Education of China and Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Huimin Fan
- Department of Cardiac Surgery and Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhenzhen Zhan
- Key Laboratory of Arrhythmias of the Ministry of Education of China and Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhongmin Liu
- Department of Cardiac Surgery and Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
35
|
Meng X, Li J, Yu M, Yang J, Zheng M, Zhang J, Sun C, Liang H, Liu L. Transplantation of mesenchymal stem cells overexpressing IL10 attenuates cardiac impairments in rats with myocardial infarction. J Cell Physiol 2017; 233:587-595. [DOI: 10.1002/jcp.25919] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/17/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Xin Meng
- Department of UltrasonographyXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Jianping Li
- Department of Radiation OncologyXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Ming Yu
- Department of UltrasonographyXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Jian Yang
- Department of Cardiovascular SurgeryXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Minjuan Zheng
- Department of UltrasonographyXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Jinzhou Zhang
- Department of Cardiovascular SurgeryXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Chao Sun
- Department of UltrasonographyXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Hongliang Liang
- Department of Cardiovascular SurgeryXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Liwen Liu
- Department of UltrasonographyXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
36
|
Zhu R, Sun H, Yu K, Zhong Y, Shi H, Wei Y, Su X, Xu W, Luo Q, Zhang F, Zhu Z, Meng K, Zhao X, Liu Y, Mao Y, Cheng P, Mao X, Zeng Q. Interleukin-37 and Dendritic Cells Treated With Interleukin-37 Plus Troponin I Ameliorate Cardiac Remodeling After Myocardial Infarction. J Am Heart Assoc 2016; 5:e004406. [PMID: 27919929 PMCID: PMC5210436 DOI: 10.1161/jaha.116.004406] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Excessive immune-mediated inflammatory reactions play a deleterious role in postinfarction ventricular remodeling. Interleukin-37 (IL-37) emerges as an inhibitor of both innate and adaptive immunity. However, the exact role of IL-37 and IL-37 plus troponin I (TnI)-treated dendritic cells (DCs) in ventricular remodeling after myocardial infarction (MI) remains elusive. METHODS AND RESULTS MI was induced by permanent ligation of the left anterior descending artery. Our results showed that treatment with recombinant human IL-37 significantly ameliorated ventricular remodeling after MI, as demonstrated by decreased infarct size, better cardiac function, lower mortality, restricted inflammatory responses, decreased myocardial fibrosis, and inhibited cardiomyocyte apoptosis. In vitro, we examined the phenotype of IL-37 plus TnI-conditioned DCs of male C57BL/6 mice and their capacity to influence the number of regulatory T cells. Our results revealed that IL-37 plus TnI-conditioned DCs obtained the characteristics of tolerogenic DCs (tDCs) and expanded the number of regulatory T cells when co-cultured with splenic CD4+ T cells. Interestingly, we also found that adoptive transfer of these antigen-loaded tDCs markedly increased the number of regulatory T cells in the spleen, attenuated the infiltration of inflammatory cells in the infarct hearts, decreased myocardial fibrosis, and improved cardiac function. CONCLUSIONS Our results reveal a beneficial role of IL-37 or tDCs treated with IL-37 plus TnI in post-MI remodeling that is possibly mediated by reestablishing a tolerogenic immune response, indicating that IL-37 or adoptive transfer of IL-37 plus TnI-treated tDCs may be a novel therapeutic strategy for ventricular remodeling after MI.
Collapse
Affiliation(s)
- Ruirui Zhu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haitao Sun
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunwu Yu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yucheng Zhong
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huairui Shi
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzhen Wei
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Su
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbin Xu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Luo
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangyuan Zhang
- Department of Dermatology, Wuhan Union Hospital West Campus, Wuhan, China
| | - Zhengfeng Zhu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Meng
- Department of Cardiology, Wuhan Union Hospital West Campus, Wuhan, China
| | - Xiaoqi Zhao
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzhou Liu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Mao
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Cheng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Mao
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiutang Zeng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Zlatanova I, Pinto C, Silvestre JS. Immune Modulation of Cardiac Repair and Regeneration: The Art of Mending Broken Hearts. Front Cardiovasc Med 2016; 3:40. [PMID: 27790620 PMCID: PMC5063859 DOI: 10.3389/fcvm.2016.00040] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/30/2016] [Indexed: 12/15/2022] Open
Abstract
The accumulation of immune cells is among the earliest responses that manifest in the cardiac tissue after injury. Both innate and adaptive immunity coordinate distinct and mutually non-exclusive events governing cardiac repair, including elimination of the cellular debris, compensatory growth of the remaining cardiac tissue, activation of resident or circulating precursor cells, quantitative and qualitative modifications of the vascular network, and formation of a fibrotic scar. The present review summarizes the mounting evidence suggesting that the inflammatory response also guides the regenerative process following cardiac damage. In particular, recent literature has reinforced the central role of monocytes/macrophages in poising the refreshment of cardiomyocytes in myocardial infarction- or apical resection-induced cardiac insult. Macrophages dictate cardiac myocyte renewal through stimulation of preexisting cardiomyocyte proliferation and/or neovascularization. Nevertheless, substantial efforts are required to identify the nature of these macrophage-derived factors as well as the molecular mechanisms engendered by the distinct subsets of macrophages pertaining in the cardiac tissue. Among the growing inflammatory intermediaries that have been recognized as essential player in heart regeneration, we will focus on the role of interleukin (IL)-6 and IL-13. Finally, it is likely that within the mayhem of the injured cardiac tissue, additional types of inflammatory cells, such as neutrophils, will enter the dance to ignite and refresh the broken heart. However, the protective and detrimental inflammatory pathways have been mainly deciphered in animal models. Future research should be focused on understanding the cellular effectors and molecular signals regulating inflammation in human heart to pave the way for the development of factual therapies targeting the inflammatory compartment in cardiac diseases.
Collapse
Affiliation(s)
- Ivana Zlatanova
- UMRS-970, Paris Centre de Recherche Cardiovasculaire, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cité, Université Paris Descartes , Paris , France
| | - Cristina Pinto
- UMRS-970, Paris Centre de Recherche Cardiovasculaire, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cité, Université Paris Descartes , Paris , France
| | - Jean-Sébastien Silvestre
- UMRS-970, Paris Centre de Recherche Cardiovasculaire, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cité, Université Paris Descartes , Paris , France
| |
Collapse
|
38
|
Sammour I, Somashekar S, Huang J, Batlahally S, Breton M, Valasaki K, Khan A, Wu S, Young KC. The Effect of Gender on Mesenchymal Stem Cell (MSC) Efficacy in Neonatal Hyperoxia-Induced Lung Injury. PLoS One 2016; 11:e0164269. [PMID: 27711256 PMCID: PMC5053475 DOI: 10.1371/journal.pone.0164269] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/22/2016] [Indexed: 12/28/2022] Open
Abstract
Background Mesenchymal stem cells (MSC) improve alveolar and vascular structures in experimental models of bronchopulmonary dysplasia (BPD). Female MSC secrete more anti-inflammatory and pro-angiogenic factors as compared to male MSC. Whether the therapeutic efficacy of MSC in attenuating lung injury in an experimental model of BPD is influenced by the sex of the donor MSC or recipient is unknown. Here we tested the hypothesis that female MSC would have greater lung regenerative properties than male MSC in experimental BPD and this benefit would be more evident in males. Objective To determine whether intra-tracheal (IT) administration of female MSC to neonatal rats with experimental BPD has more beneficial reparative effects as compared to IT male MSC. Methods Newborn Sprague-Dawley rats exposed to normoxia (RA) or hyperoxia (85% O2) from postnatal day (P) 2- P21 were randomly assigned to receive male or female IT bone marrow (BM)-derived green fluorescent protein (GFP+) MSC (1 x 106 cells/50 μl), or Placebo on P7. Pulmonary hypertension (PH), vascular remodeling, alveolarization, and angiogenesis were assessed at P21. PH was determined by measuring right ventricular systolic pressure (RVSP) and pulmonary vascular remodeling was evaluated by quantifying the percentage of muscularized peripheral pulmonary vessels. Alveolarization was evaluated by measuring mean linear intercept (MLI) and radial alveolar count (RAC). Angiogenesis was determined by measuring vascular density. Data are expressed as mean ± SD, and analyzed by ANOVA. Results There were no significant differences in the RA groups. Exposure to hyperoxia resulted in a decrease in vascular density and RAC, with a significant increase in MLI, RVSP, and the percentage of partially and fully muscularized pulmonary arterioles. Administration of both male and female MSC significantly improved vascular density, alveolarization, RVSP, percent of muscularized vessels and alveolarization. Interestingly, the improvement in PH and vascular remodeling was more robust in the hyperoxic rodents who received MSC from female donors. In keeping with our hypothesis, male animals receiving female MSC, had a greater improvement in vascular remodeling. This was accompanied by a more significant decrease in lung pro-inflammatory markers and a larger increase in anti-inflammatory and pro-angiogenic markers in male rodents that received female MSC. There were no significant differences in MSC engraftment among groups. Conclusions Female BM-derived MSC have greater therapeutic efficacy than male MSC in reducing neonatal hyperoxia-induced lung inflammation and vascular remodeling. Furthermore, the beneficial effects of female MSC were more pronounced in male animals. Together, these findings suggest that female MSC maybe the most potent BM-derived MSC population for lung repair in severe BPD complicated by PH.
Collapse
Affiliation(s)
- Ibrahim Sammour
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Santhosh Somashekar
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Jian Huang
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Sunil Batlahally
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Matthew Breton
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Krystalenia Valasaki
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Aisha Khan
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Shu Wu
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Karen C. Young
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
- * E-mail:
| |
Collapse
|
39
|
Bhatnagar A, Bolli R, Johnstone BH, Traverse JH, Henry TD, Pepine CJ, Willerson JT, Perin EC, Ellis SG, Zhao DXM, Yang PC, Cooke JP, Schutt RC, Trachtenberg BH, Orozco A, Resende M, Ebert RF, Sayre SL, Simari RD, Moyé L, Cogle CR, Taylor DA. Bone marrow cell characteristics associated with patient profile and cardiac performance outcomes in the LateTIME-Cardiovascular Cell Therapy Research Network (CCTRN) trial. Am Heart J 2016; 179:142-50. [PMID: 27595689 PMCID: PMC5014395 DOI: 10.1016/j.ahj.2016.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 06/25/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Although several preclinical studies have shown that bone marrow cell (BMC) transplantation promotes cardiac recovery after myocardial infarction, clinical trials with unfractionated bone marrow have shown variable improvements in cardiac function. METHODS To determine whether in a population of post-myocardial infarction patients, functional recovery after BM transplant is associated with specific BMC subpopulation, we examined the association between BMCs with left ventricular (LV) function in the LateTIME-CCTRN trial. RESULTS In this population, we found that older individuals had higher numbers of BM CD133(+) and CD3(+) cells. Bone marrow from individuals with high body mass index had lower CD45(dim)/CD11b(dim) levels, whereas those with hypertension and higher C-reactive protein levels had higher numbers of CD133(+) cells. Smoking was associated with higher levels of CD133(+)/CD34(+)/VEGFR2(+) cells and lower levels of CD3(+) cells. Adjusted multivariate analysis indicated that CD11b(dim) cells were negatively associated with changes in LV ejection fraction and wall motion in both the infarct and border zones. Change in LV ejection fraction was positively associated with CD133(+), CD34(+), and CD45(+)/CXCR4(dim) cells as well as faster BMC growth rates in endothelial colony forming assays. CONCLUSIONS In the LateTIME population, BM composition varied with patient characteristics and treatment. Irrespective of cell therapy, recovery of LV function was greater in patients with greater BM abundance of CD133(+) and CD34(+) cells and worse in those with higher levels of CD11b(dim) cells. Bone marrow phenotype might predict clinical response before BMC therapy and administration of selected BM constituents could potentially improve outcomes of other future clinical trials.
Collapse
Affiliation(s)
| | | | | | - Jay H Traverse
- Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, Minneapolis, MN
| | | | - Carl J Pepine
- University of Florida College of Medicine, Gainesville, FL
| | - James T Willerson
- Texas Heart Institute, CHI St. Luke's Health Baylor College of Medicine Medical Center, Houston, TX
| | - Emerson C Perin
- Texas Heart Institute, CHI St. Luke's Health Baylor College of Medicine Medical Center, Houston, TX
| | | | | | | | - John P Cooke
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX
| | - Robert C Schutt
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX
| | | | - Aaron Orozco
- Texas Heart Institute, CHI St. Luke's Health Baylor College of Medicine Medical Center, Houston, TX
| | - Micheline Resende
- Texas Heart Institute, CHI St. Luke's Health Baylor College of Medicine Medical Center, Houston, TX
| | - Ray F Ebert
- National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Shelly L Sayre
- University of Texas School of Public Health, Houston, TX
| | | | - Lem Moyé
- University of Texas School of Public Health, Houston, TX.
| | | | - Doris A Taylor
- Texas Heart Institute, CHI St. Luke's Health Baylor College of Medicine Medical Center, Houston, TX
| |
Collapse
|
40
|
Miteva K, Van Linthout S, Pappritz K, Müller I, Spillmann F, Haag M, Stachelscheid H, Ringe J, Sittinger M, Tschöpe C. Human Endomyocardial Biopsy Specimen-Derived Stromal Cells Modulate Angiotensin II-Induced Cardiac Remodeling. Stem Cells Transl Med 2016; 5:1707-1718. [PMID: 27460853 DOI: 10.5966/sctm.2016-0031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/13/2016] [Indexed: 12/17/2022] Open
Abstract
: Cardiac-derived adherent proliferating cells (CardAPs) are cells derived from human endomyocardial biopsy specimens; they share several properties with mesenchymal stromal cells. The aims of this study were to evaluate whether intramyocardial injection of CardAPs modulates cardiac fibrosis and hypertrophy in a mouse model of angiotensin II (Ang II)-induced systolic heart failure and to analyze underlying mechanisms. Intramyocardial application of 200,000 CardAPs improved left ventricular function. This was paralleled by a decline in left ventricular remodeling, as indicated by a reduction in cardiac fibrosis and hypertrophy. CardAPs reduced the ratio of the left ventricle to body weight and cardiac myosin expression (heavy chain), and decreased the Ang II-induced phosphorylation state of the cardiomyocyte hypertrophy mediators Akt, extracellular-signal regulated kinase (ERK) 1, and ERK2. In accordance with the antifibrotic and antihypertrophic effects of CardAPs shown in vivo, CardAP supplementation with cardiac fibroblasts decreased the Ang II-induced reactive oxygen species production, α-SMA expression, fibroblast proliferation, and collagen production. Coculture of CardAPs with HL-1 cardiomyocytes downregulated the Ang II-induced expression of myosin in HL-1. All antifibrotic and antihypertrophic features of CardAPs were mediated in a nitric oxide- and interleukin (IL)-10-dependent manner. Moreover, CardAPs induced a systemic immunomodulation, as indicated by a decrease in the activity of splenic mononuclear cells and an increase in splenic CD4CD25FoxP3, CD4-IL-10, and CD8-IL-10 T-regulatory cells in Ang II mice. Concomitantly, splenocytes from Ang II CardAPs mice induced less collagen in fibroblasts compared with splenocytes from Ang II mice. We conclude that CardAPs improve Ang II-induced cardiac remodeling involving antifibrotic and antihypertrophic effects via paracrine actions and immunomodulatory properties. SIGNIFICANCE Despite effective pharmacological treatment with angiotensin II type I receptor antagonists or angiotensin II-converting enzyme inhibitors, morbidity and mortality associated with heart failure are still substantial, prompting the search of novel therapeutic strategies. There is accumulating evidence supporting the use of cell therapy for cardiac repair. This study demonstrates that cells derived from human endomyocardial biopsies, cardiac-derived adherent proliferating cells (CardAPs), have the potential to reduce angiotensin II-induced cardiac remodeling and improve left ventricular function in angiotensin II mice. The mechanism involves antifibrotic and antihypertrophic effects via paracrine actions and immunomodulatory properties. These findings support the potential of CardAPs for the treatment of heart failure.
Collapse
Affiliation(s)
- Kapka Miteva
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Kathleen Pappritz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Irene Müller
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Frank Spillmann
- Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Marion Haag
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- Laboratory for Tissue Engineering, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Harald Stachelscheid
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Jochen Ringe
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Michael Sittinger
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- Laboratory for Tissue Engineering, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Carsten Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
41
|
Abstract
As a greater proportion of patients survive their initial cardiac insult, medical systems worldwide are being faced with an ever-growing need to understand the mechanisms behind the pathogenesis of chronic heart failure (HF). There is a wealth of information about the role of inflammatory cells and pathways during acute injury and the reparative processes that are subsequently activated. We discuss the different causes that lead to chronic HF development and how the sum of initial inflammatory and reparative responses only sets the trajectory for disease progression. Unfortunately, comparatively little is known about the contribution of the immune system once the trajectory has been set, and chronic HF has been established—which clinically represents the majority of patients. It is known that chronic HF is associated with circulating inflammatory cytokines that can predict clinical outcomes, yet the causative role inflammation plays in disease progression is not well defined, and the majority of clinical trials that target aspects of inflammation in patients with chronic HF have largely been negative. This review will present what is currently known about inflammation in chronic HF in both humans and animal models as a means to highlight the gap in our knowledge base that requires further examination.
Collapse
Affiliation(s)
- Sarah A. Dick
- From the Division of Cardiology, Department of Medicine, University Health Network, Toronto, Ontario, Canada (S.A.D, S.E.); University of Toronto, Toronto, Ontario, Canada (S.E); Peter Munk Cardiac Centre, Toronto, Ontario, Canada (S.A.D, S.E.); and Toronto General Hospital Research Institute, Toronto, Ontario, Canada (S.A.D, S.E.)
| | - Slava Epelman
- From the Division of Cardiology, Department of Medicine, University Health Network, Toronto, Ontario, Canada (S.A.D, S.E.); University of Toronto, Toronto, Ontario, Canada (S.E); Peter Munk Cardiac Centre, Toronto, Ontario, Canada (S.A.D, S.E.); and Toronto General Hospital Research Institute, Toronto, Ontario, Canada (S.A.D, S.E.)
| |
Collapse
|
42
|
Hodgkinson CP, Bareja A, Gomez JA, Dzau VJ. Emerging Concepts in Paracrine Mechanisms in Regenerative Cardiovascular Medicine and Biology. Circ Res 2016; 118:95-107. [PMID: 26837742 DOI: 10.1161/circresaha.115.305373] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the past decade, substantial evidence supports the paradigm that stem cells exert their reparative and regenerative effects, in large part, through the release of biologically active molecules acting in a paracrine fashion on resident cells. The data suggest the existence of a tissue microenvironment where stem cell factors influence cell survival, inflammation, angiogenesis, repair, and regeneration in a temporal and spatial manner.
Collapse
Affiliation(s)
- Conrad P Hodgkinson
- From the Department of Medicine, Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC
| | - Akshay Bareja
- From the Department of Medicine, Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC
| | - José A Gomez
- From the Department of Medicine, Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC
| | - Victor J Dzau
- From the Department of Medicine, Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC.
| |
Collapse
|
43
|
Badner A, Vawda R, Laliberte A, Hong J, Mikhail M, Jose A, Dragas R, Fehlings M. Early Intravenous Delivery of Human Brain Stromal Cells Modulates Systemic Inflammation and Leads to Vasoprotection in Traumatic Spinal Cord Injury. Stem Cells Transl Med 2016; 5:991-1003. [PMID: 27245367 DOI: 10.5966/sctm.2015-0295] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/07/2016] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED : Spinal cord injury (SCI) is a life-threatening condition with multifaceted complications and limited treatment options. In SCI, the initial physical trauma is closely followed by a series of secondary events, including inflammation and blood spinal cord barrier (BSCB) disruption, which further exacerbate injury. This secondary pathology is partially mediated by the systemic immune response to trauma, in which cytokine production leads to the recruitment/activation of inflammatory cells. Because early intravenous delivery of mesenchymal stromal cells (MSCs) has been shown to mitigate inflammation in various models of neurologic disease, this study aimed to assess these effects in a rat model of SCI (C7-T1, 35-gram clip compression) using human brain-derived stromal cells. Quantitative polymerase chain reaction for a human-specific DNA sequence was used to assess cell biodistribution/clearance and confirmed that only a small proportion (approximately 0.001%-0.002%) of cells are delivered to the spinal cord, with the majority residing in the lung, liver, and spleen. Intriguingly, although cell populations drastically declined in all aforementioned organs, there remained a persistent population in the spleen at 7 days. Furthermore, the cell infusion significantly increased splenic and circulating levels of interleukin-10-a potent anti-inflammatory cytokine. Through this suppression of the systemic inflammatory response, the cells also reduced acute spinal cord BSCB permeability, hemorrhage, and lesion volume. These early effects further translated into enhanced functional recovery and tissue sparing 10 weeks after SCI. This work demonstrates an exciting therapeutic approach whereby a minimally invasive cell-transplantation procedure can effectively reduce secondary damage after SCI through systemic immunomodulation. SIGNIFICANCE Central nervous system pericytes (perivascular stromal cells) have recently gained significant attention within the scientific community. In addition to being recognized as major players in neurotrauma, pericytes have been discovered to share a common origin and potentially function with traditionally defined mesenchymal stromal cells (MSCs). Although there have been several in vitro comparisons, the in vivo therapeutic application of human brain-derived stromal cells has not been previously evaluated. This study demonstrates that these cells not only display a MSC phenotype in vitro but also have similar in vivo immunomodulatory effects after spinal cord injury that are more potent than those of non-central nervous system tissue-derived cells. Therefore, these cells are of great interest for therapeutic use in spinal cord injury.
Collapse
Affiliation(s)
- Anna Badner
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Toronto, Ontario, Canada Institute of Medical Science, University of Toronto, Ontario, Canada
| | - Reaz Vawda
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Toronto, Ontario, Canada
| | - Alex Laliberte
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Toronto, Ontario, Canada Institute of Medical Science, University of Toronto, Ontario, Canada
| | - James Hong
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Toronto, Ontario, Canada Institute of Medical Science, University of Toronto, Ontario, Canada
| | - Mirriam Mikhail
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Toronto, Ontario, Canada
| | - Alejandro Jose
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Toronto, Ontario, Canada
| | - Rachel Dragas
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Toronto, Ontario, Canada Institute of Medical Science, University of Toronto, Ontario, Canada
| | - Michael Fehlings
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Toronto, Ontario, Canada Institute of Medical Science, University of Toronto, Ontario, Canada Spinal Program, University Health Network, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Oxygen cycling to improve survival of stem cells for myocardial repair: A review. Life Sci 2016; 153:124-31. [PMID: 27091653 DOI: 10.1016/j.lfs.2016.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/28/2016] [Accepted: 04/08/2016] [Indexed: 02/08/2023]
Abstract
Heart disease represents the leading cause of death among Americans. There is currently no clinical treatment to regenerate viable myocardium following myocardial infarction, and patients may suffer progressive deterioration and decreased myocardial function from the effects of remodeling of the necrotic myocardium. New therapeutic strategies hold promise for patients who suffer from ischemic heart disease by directly addressing the restoration of functional myocardium following death of cardiomyocytes. Therapeutic stem cell transplantation has shown modest benefit in clinical human trials with decreased fibrosis and increased functional myocardium. Moreover, autologous transplantation holds the potential to implement these therapies while avoiding the immunomodulation concerns of heart transplantation. Despite these benefits, stem cell therapy has been characterized by poor survival and low engraftment of injected stem cells. The hypoxic tissue environment of the ischemic/infracting myocardium impedes stem cell survival and engraftment in myocardial tissue. Hypoxic preconditioning has been suggested as a viable strategy to increase hypoxic tolerance of stem cells. A number of in vivo and in vitro studies have demonstrated improved stem cell viability by altering stem cell secretion of protein signals and up-regulation of numerous paracrine signaling pathways that affect inflammatory, survival, and angiogenic signaling pathways. This review will discuss both the mechanisms of hypoxic preconditioning as well as the effects of hypoxic preconditioning in different cell and animal models, examining the pitfalls in current research and the next steps into potentially implementing this methodology in clinical research trials.
Collapse
|
45
|
Indoxyl sulfate suppresses endothelial progenitor cell–mediated neovascularization. Kidney Int 2016; 89:574-85. [DOI: 10.1016/j.kint.2015.11.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 10/29/2015] [Accepted: 11/12/2015] [Indexed: 11/18/2022]
|
46
|
Alestalo K, Miettinen JA, Vuolteenaho O, Huikuri H, Lehenkari P. Bone Marrow Mononuclear Cell Transplantation Restores Inflammatory Balance of Cytokines after ST Segment Elevation Myocardial Infarction. PLoS One 2015; 10:e0145094. [PMID: 26690350 PMCID: PMC4687062 DOI: 10.1371/journal.pone.0145094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/29/2015] [Indexed: 01/10/2023] Open
Abstract
Background Acute myocardial infarction (AMI) launches an inflammatory response and a repair process to compensate cardiac function. During this process, the balance between proinflammatory and anti-inflammatory cytokines is important for optimal cardiac repair. Stem cell transplantation after AMI improves tissue repair and increases the ventricular ejection fraction. Here, we studied in detail the acute effect of bone marrow mononuclear cell (BMMNC) transplantation on proinflammatory and anti-inflammatory cytokines in patients with ST segment elevation myocardial infarction (STEMI). Methods Patients with STEMI treated with thrombolysis followed by percutaneous coronary intervention (PCI) were randomly assigned to receive either BMMNC or saline as an intracoronary injection. Cardiac function was evaluated by left ventricle angiogram during the PCI and again after 6 months. The concentrations of 27 cytokines were measured from plasma samples up to 4 days after the PCI and the intracoronary injection. Results Twenty-six patients (control group, n = 12; BMMNC group, n = 14) from the previously reported FINCELL study (n = 80) were included to this study. At day 2, the change in the proinflammatory cytokines correlated with the change in the anti-inflammatory cytokines in both groups (Kendall’s tau, control 0.6; BMMNC 0.7). At day 4, the correlation had completely disappeared in the control group but was preserved in the BMMNC group (Kendall’s tau, control 0.3; BMMNC 0.7). Conclusions BMMNC transplantation is associated with preserved balance between pro- and anti-inflammatory cytokines after STEMI in PCI-treated patients. This may partly explain the favorable effect of stem cell transplantation after AMI.
Collapse
Affiliation(s)
- Kirsi Alestalo
- Surgery Clinic, Medical Research Center, Oulu University Hospital, Oulu, Finland
- Department of Anatomy and Cell Biology, Medical Research Center, University of Oulu, Oulu, Finland
- * E-mail:
| | - Johanna A. Miettinen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Olli Vuolteenaho
- Department of Physiology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Heikki Huikuri
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Petri Lehenkari
- Surgery Clinic, Medical Research Center, Oulu University Hospital, Oulu, Finland
- Department of Anatomy and Cell Biology, Medical Research Center, University of Oulu, Oulu, Finland
| |
Collapse
|
47
|
The Evolution of the Stem Cell Theory for Heart Failure. EBioMedicine 2015; 2:1871-9. [PMID: 26844266 PMCID: PMC4703721 DOI: 10.1016/j.ebiom.2015.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/16/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022] Open
Abstract
Various stem cell-based approaches for cardiac repair have achieved encouraging results in animal experiments, often leading to their rapid proceeding to clinical testing. However, freewheeling evolutionary developments of the stem cell theory might lead to dystopian scenarios where heterogeneous sources of therapeutic cells could promote mixed clinical outcomes in un-stratified patient populations. This review focuses on the lessons that should be learnt from the first generation of stem cell-based strategies and emphasizes the absolute requirement to better understand the basic mechanisms of stem cell biology and cardiogenesis. We will also discuss about the unexpected “big bang” in the stem cell theory, “blasting” the therapeutic cells to their unchallenged ability to release paracrine factors such as extracellular membrane vesicles. Paradoxically, the natural evolution of the stem cell theory for cardiac regeneration may end with the development of cell-free strategies with multiple cellular targets including cardiomyocytes but also other infiltrating or resident cardiac cells. Varied sources of therapeutic cells and low repair ability of the failing heart contribute to mixed results in clinical trials. Consensus is still lacking concerning the appropriate type of therapeutic stem cells. A clear understanding of cardiac development and adult cardiogenesis might increase the efficiency of regenerative therapies. Delivery of stem cell-derived paracrine factor alone to the damaged heart may be sufficient to activate repair mechanisms.
Collapse
|
48
|
Abstract
Heart failure remains a major cause of death and disability, requiring rapid development of new therapies. Bone marrow-derived mesenchymal stem cell (MSC)-based therapy is an emerging approach for the treatment of both acute and chronic heart failure. Following successful experimental studies in a range of models, more than 40 clinical trials of MSC-based therapy for heart failure have now been registered, and the results of completed clinical trials so far have shown feasibility and safety of this approach with therapeutic potential suggested (though preliminarily). However, there appear to be several critical issues to be solved before this treatment could become a widespread standard therapy for heart failure. In this review, we comprehensively and systemically summarize a total of 73 preclinical studies and 11 clinical trial reports published to date. By analyzing the data in these reports, (1) improvement in the cell delivery method to the heart in order to enhance donor cell engraftment, (2) elucidation of mechanisms underpinning the therapeutic effects of the treatment differentiation and/or treatment secretion, and (3) validation of the utility of allogeneic MSCs which could enhance the efficacy and expand the application/indication of this therapeutic approach are highlighted as future perspectives. These important respects are further discussed in this review article with referencing latest scientific and clinical information.
Collapse
Affiliation(s)
- Takuya Narita
- Cardiothoracic Surgery, National Heart Centre, Singapore, Singapore
| | | |
Collapse
|
49
|
Rap1-mediated nuclear factor-kappaB (NF-κB) activity regulates the paracrine capacity of mesenchymal stem cells in heart repair following infarction. Cell Death Discov 2015; 1:15007. [PMID: 27551443 PMCID: PMC4981000 DOI: 10.1038/cddiscovery.2015.7] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 12/18/2022] Open
Abstract
Paracrine effect is the major mechanism that underlies mesenchymal stem cells (MSC)-based therapy. This study aimed to examine how Rap1, telomeric repeat-binding factor 2-interacting protein 1 (Terf2IP), which is a novel modulator involved in the nuclear factor-kappaB (NF-κB) pathway, regulates the paracrine effects of MSC-mediated heart repair following infarction. NF-κB activity of stromal cells was increased by Rap1 as measured by pNF-κB-luciferase reporter activity, and this was abolished by IkB-dominant-negative protein. Knockdown of Rap1 with shRap1 resulted in diminished translocation of p65-NF-κB from the cytoplasm to nuclei in response to tumor necrosis factor-α (TNF-α) stimulation. Compared with BM-MSCs, Rap1−/−-BM-MSCs displayed a significantly reduced ratio of phosphorylated NF-κB to NF-κB-p65 and of Bax to Bcl-2, and increased resistance to hypoxia-induced apoptosis by the terminal deoxynucleotidal transferase-mediated dUTP nick end labeling (TUNEL) assay. In contrast, re-expression of Rap1 in Rap1−/−-BM-MSCs resulted in loss of resistance to apoptosis in the presence of hypoxia. Moreover, absence of Rap1 in BM-MSCs led to downregulation of NF-κB activity accompanied by reduced pro-inflammatory paracrine cytokines TNF-α, IL (interleukin)-6 and monocyte chemotactic protein-1 in Rap1−/−-BM-MSCs compared with BM-MSCs. The apoptosis of neonatal cardiomyocytes (NCMCs) induced by hypoxia was significantly reduced when cocultured with Rap1−/−-BM-MSC hypoxic-conditioned medium (CdM). The increased cardioprotective effects of Rap1−/−-BM-MSCs were reduced when Rap1−/−-BM-MSCs were reconstituted with Rap1 re-expression. Furthermore, in vivo study showed that transplantation of Rap1−/−-BM-MSCs significantly improved heart function, decreased infarct size, prevented cardiomyocyte apoptosis and inhibited inflammation compared with controls and BM-MSCs (P<0.01). This study reveals that Rap1 has a critical role in the regulation of MSC paracrine actions. Compared with BM-MSCs, Rap1−/−-BM-MSCs decreased NF-κB sensitivity to stress-induced pro-inflammatory cytokine production and reduced apoptosis. Selective inhibition of Rap1 in BM-MSCs may be a novel strategy to enhance MSC-based therapeutic efficacy in myocardial infarction.
Collapse
|
50
|
Yao Y, Huang J, Geng Y, Qian H, Wang F, Liu X, Shang M, Nie S, Liu N, Du X, Dong J, Ma C. Paracrine action of mesenchymal stem cells revealed by single cell gene profiling in infarcted murine hearts. PLoS One 2015; 10:e0129164. [PMID: 26043119 PMCID: PMC4456391 DOI: 10.1371/journal.pone.0129164] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 05/05/2015] [Indexed: 11/30/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been recently demonstrated as a promising stem cell type to rescue damaged myocardium after acute infarction. One of the most important mechanisms underlying their therapeutic effects is the secretion of paracrine factors. However, the expression profile of paracrine factors of MSCs in infarcted hearts, especially at single cell level, is poorly defined. Methods and Results We aimed to depict the transcriptional profile of paracrine factors secreted by MSCs in vivo, with particular interest in the comparison between normal and infarcted hearts. Bone marrow mesenchymal stem cells were isolated and injected into mice hearts immediately after infarction surgery. Bioluminescence imaging (BLI) indicated a proportion of cells still alive even up to 10 days post surgery. Paralleled with survived cells, cardiac function was significantly improved after MSC injection compared to that in PBS-injected mice, indicated by MRI and histology. Despite increased number of vessels in MSC-injected hearts, endothelial cells and cardiomyocytes transdifferentiation were not observed in infarcted hearts 5 days after infarction. Furthermore, laser capture microdissection (LCM) followed by high through-put real time PCR was employed in our study, uncovering that the injected MSCs, compared to local cardiomyocytes, displayed elevated levels of secreted factors. To further investigate the regulation of those factors, we performed single cell analysis to dissect the gene expression profile of MSCs at single cell level in infarcted and normal hearts, respectively. Consistent with the in vivo observation, a similar regulation pattern of those factors was detected in cultured MSCs under hypoxia. Conclusions Our study, for the first time, elucidated gene expression profiles, as well as regulation of paracrine factors, of MSCs at single cell level in vivo, indicating that paracrine factors from MSCs account for the improvement of cardiac function after infarction.
Collapse
Affiliation(s)
- Yan Yao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P. R. China
- * E-mail:
| | - Ji Huang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P. R. China
| | - Yongjian Geng
- Center for Cardiovascular Biology and Atherosclerosis, Department of Internal Medicine, The University of Texas, Health Science Center at Houston, Medical School, Texas Heart Institute, Houston, TX, United States of America
| | - Haiyan Qian
- Center for Coronary Heart Disease, Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Fan Wang
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Xiaohui Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P. R. China
| | - Meisheng Shang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P. R. China
| | - Shaoping Nie
- Emergency and Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P. R. China
| | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P. R. China
| | - Xin Du
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P. R. China
| | - Jianzeng Dong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P. R. China
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P. R. China
| |
Collapse
|