1
|
Ge J, Zhang Y, Han L, Zhao L, Zhao H, Qiao D, Cheng Y. Photobiomodulation inhibits retinal degeneration in diabetic mice through modulation of stem cell mobilization and gene expression. Exp Eye Res 2025; 251:110218. [PMID: 39716680 DOI: 10.1016/j.exer.2024.110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/30/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
The number of people suffering from type 2 diabetes (DM2) is increasing and over 30 percent of DM2 patients will develop diabetic retinopathy (DR). Available therapeutic approaches for DR have their limitations. It is of great significance to search for other effective alternate therapeutic approaches. The present study aimed to explore the beneficial effects of photobiomodulation (PBM) on the diabetic retinopathy and underlying mechanisms. Streptozotocin was administered to male mice to establish diabetic model. The mice in the diabetic group (DM) received no treatment, and the mice in DM + PBM group received LED illumination (wavelength 670 nm) once a day for 20 consecutive weeks. Retinal vessel degenerate changes, the expression levels of E-Cadherin, N-Cadherin and the mRNA levels of c-kit, CXCR4, MYPT1, SCF, SDF1-α in retina, the levels of SDF-1α and SCF in the peripheral blood and the number of LSK cells expressing c-kit and sca-1 were determined. PBM could significantly inhibit the degenerative change of diabetic retinal vessels, decrease the expression levels of E-Cadherin and N-Cadherin and the mRNA levels of c-kit, CXCR4, MYPT1, SCF, SDF1-α and increase VEGF mRNA levels in retina. PBM could also increase the levels of SDF-1α and SCF in the peripheral blood and the number of LSK cells expressing c-kit and sca-1 in diabetic mice. PBM at 4 min/day for 20 consecutive weeks significantly inhibit the degenerative change of diabetic retinal vessels, and PBM is likely to produce its beneficial effects on the retina through promoting the migration of bone marrow stem cells to circulation and diabetic retinal tissue. The present study provides a new therapeutic direction and experimental foundation for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Jingyan Ge
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Yinan Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ling Han
- Department of Pulmonary & Critical Care Medicine, Jilin Provincial People's Hospital, Changchun, Jilin Province, China
| | - Liangliang Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hongwei Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Dan Qiao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
2
|
Madkor HR, Abd El-Aziz MK, Abd El-Maksoud MS, Ibrahim IM, Ali FEM. Stem Cells Reprogramming in Diabetes Mellitus and Diabetic Complications: Recent Advances. Curr Diabetes Rev 2025; 21:21-37. [PMID: 38173073 DOI: 10.2174/0115733998275428231210055650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The incidence of diabetes mellitus (DM) is dramatically increasing worldwide, and it is expected to affect 700 million cases by 2045. Diabetes influences health care economics, human quality of life, morbidity, and mortality, which were primarily seen extensively in developing countries. Uncontrolled DM, which results in consistent hyperglycemia, may lead to severe life-threatening complications such as nephropathy, retinopathy, neuropathy, and cardiovascular complications. METHODOLOGY In addition to traditional therapies with insulin and oral anti-diabetics, researchers have developed new approaches for treatment, including stem cell (SC) therapy, which exhibits promising outcomes. Besides its significant role in treating type one DM (T1DM) and type two DM (T2DM), it can also attenuate diabetic complications. Furthermore, the development of insulin- producing cells can be achieved by using the different types of SCs, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and multiple types of adult stem cells, such as pancreatic, hepatic, and mesenchymal stem cells (MSC). All these types have been extensively studied and proved their ability to develop insulin-producing cells, but every type has limitations. CONCLUSION This review aims to enlighten researchers about recent advances in stem cell research and their potential benefits in DM and diabetic complications.
Collapse
Affiliation(s)
- Hafez R Madkor
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | | | | | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
3
|
Daskalova E, Pencheva M, Delchev S, Vladimirova-Kitova L, Kitov S, Markov S, Baruh D, Denev P. Black Chokeberry ( Aronia melanocarpa) Juice Supplementation Affects Age-Related Myocardial Remodeling in Rats. Life (Basel) 2024; 15:23. [PMID: 39859963 PMCID: PMC11766457 DOI: 10.3390/life15010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Cardiac aging is associated with myocardial remodeling and reduced angiogenesis. Counteracting these changes with natural products is a preventive strategy with great potential. The aim of this study was to evaluate the effect of Aronia melanocarpa fruit juice (AMJ) supplementation on age-related myocardial remodeling in aged rat hearts. METHODS Healthy male Wistar rats (n = 24) were divided into three groups: (1) young controls (CY)-age 2 months; (2) old controls (CO)-age 27 months; (3) AMJ group-27-month-old animals, supplemented with Aronia melanocarpa juice (AMJ) at a dose of 10 mL∙kg-1 for 105 days. After this period, the hearts of the animals were fixed, embedded in paraffin, and immunohistochemical and morphometric analyses were performed. RESULTS A higher vascular and capillary density was found in the hearts of the AMJ group, as compared to CO. The mean number of CD34+ cells in the myocardium increased by 18.6% in the AMJ group, as compared to CO (p < 0.05). Furthermore, the angiotensin converting enzyme 2 (ACE2) immunoexpression in the myocardium increased by 37% (p < 0.05) and the Proto-oncogene Mas receptor (MAS1) immunoexpression increased by 6% (p < 0.05) in the AMJ group, as compared to CO. CONCLUSIONS As a result of the application of AMJ, noticeable neovascularization was found, which indicates improved myocardial nourishment. The present study demonstrates for the first time that polyphenol-rich AMJ can positively influence age-related microvascular myocardial remodeling in rats, thus outlining its potential as a preventive agent for healthy cardiac aging.
Collapse
Affiliation(s)
- Elena Daskalova
- Department of Anatomy, Histology and Embryology, Medical Faculty, Medical University, 4000 Plovdiv, Bulgaria;
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University, 4000 Plovdiv, Bulgaria
| | - Slavi Delchev
- Department of Anatomy, Histology and Embryology, Medical Faculty, Medical University, 4000 Plovdiv, Bulgaria;
| | - Lyudmila Vladimirova-Kitova
- I-st Department of Internal Diseases, Cardiology Section Medical Faculty, Medical University, 4000 Plovdiv, Bulgaria; (L.V.-K.); (S.K.)
| | - Spas Kitov
- I-st Department of Internal Diseases, Cardiology Section Medical Faculty, Medical University, 4000 Plovdiv, Bulgaria; (L.V.-K.); (S.K.)
| | - Stoyan Markov
- Department of Otorhinolaryngology, Medical Faculty, Medical University, 4000 Plovdiv, Bulgaria;
| | - David Baruh
- Department of Software Engineering, Faculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria;
| | - Petko Denev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Laboratory of Biologically Active Substances, 4000 Plovdiv, Bulgaria
| |
Collapse
|
4
|
Jahan J, Joshi S, Oca IMD, Toelle A, Lopez-Yang C, Chacon CV, Beyer AM, Garcia CA, Jarajapu YP. The role of telomerase reverse transcriptase in the mitochondrial protective functions of Angiotensin-(1-7) in diabetic CD34 + cells. Biochem Pharmacol 2024; 222:116109. [PMID: 38458330 PMCID: PMC11007670 DOI: 10.1016/j.bcp.2024.116109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/08/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Angiotensin (Ang)-(1-7) stimulates vasoprotective functions of diabetic (DB) CD34+ hematopoietic stem/progenitor cells partly by decreasing reactive oxygen species (ROS), increasing nitric oxide (NO) levels and decreasing TGFβ1 secretion. Telomerase reverse transcriptase (TERT) translocates to mitochondria and regulates ROS generation. Alternative splicing of TERT results in variants α-, β- and α-β-TERT, which may oppose functions of full-length (FL) TERT. This study tested if the protective functions of Ang-(1-7) or TGFβ1-silencing are mediated by mitoTERT and that diabetes decreases FL-TERT expression by inducing splicing. CD34+ cells were isolated from the peripheral blood mononuclear cells of nondiabetic (ND, n = 68) or DB (n = 74) subjects. NO and mitoROS levels were evaluated by flow cytometry. TERT splice variants and mitoDNA-lesions were characterized by qPCR. TRAP assay was used for telomerase activity. Decoy peptide was used to block mitochondrial translocation (mitoXTERT). TERT inhibitor or mitoXTERT prevented the effects of Ang-(1-7) on NO or mitoROS levels in DB-CD34+ cells. FL-TERT expression and telomerase activity were lower and mitoDNA-lesions were higher in DB cells compared to ND and were reversed by Ang-(1-7) or TGFβ1-silencing. The prevalence of TERT splice variants, with predominant β-TERT expression, was higher and the expression of FL-TERT was lower in DB cells (n = 25) compared to ND (n = 30). Ang-(1-7) or TGFβ1-silencing decreased TERT-splicing and increased FL-TERT. Blocking of β-splicing increased FL-TERT and protected mitoDNA in DB-cells. The findings suggest that diabetes induces TERT-splicing in CD34+ cells and that β-TERT splice variant largely contributes to the mitoDNA oxidative damage.
Collapse
Affiliation(s)
- Jesmin Jahan
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Shrinidh Joshi
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | | | - Andrew Toelle
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | | | | | - Andreas M Beyer
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Yagna Pr Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
5
|
Ertlen C, Seblani M, Bonnet M, Brezun JM, Coyle T, Sabatier F, Fuentes S, Decherchi P, Serratrice N, Marqueste T. Efficacy of the immediate adipose-derived stromal vascular fraction autograft on functional sensorimotor recovery after spinal cord contusion in rats. Stem Cell Res Ther 2024; 15:29. [PMID: 38303017 PMCID: PMC10835949 DOI: 10.1186/s13287-024-03645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Spinal cord injuries (SCI) lead to functional alteration with important consequences such as motor and sensory disorders. The repair strategies developed to date remain ineffective. The adipose tissue-derived stromal vascular fraction (SVF) is composed of a cocktail of cells with trophic, pro-angiogenic and immunomodulatory effects. Numerous therapeutic benefits were shown for tissue reconstitution, peripheral neuropathy and for the improvement of neurodegenerative diseases. Here, the therapeutic efficacy of SVF on sensorimotor recovery after an acute thoracic spinal cord contusion in adult rats was determined. METHOD Male Sprague Dawley rats (n = 45) were divided into 3 groups: SHAM (without SCI and treatment), NaCl (animals with a spinal lesion and receiving a saline injection through the dura mater) and SVF (animals with a spinal lesion and receiving a fraction of fat removed from adipocytes through the dura mater). Some animals were sacrificed 14 days after the start of the experiment to determine the inflammatory reaction by measuring the interleukin-1β, interleukin-6 and Tumor Necrosis Factor-α in the lesion area. Other animals were followed once a week for 12 weeks to assess functional recovery (postural and locomotor activities, sensorimotor coordination). At the end of this period, spinal reflexivity (rate-dependent depression of the H-reflex) and physiological adjustments (ventilatory response to metabosensitive muscle activation following muscle fatigue) were measured with electrophysiological tools. RESULTS Compared to non-treated animals, results indicated that the SVF reduced the endogenous inflammation and increased the behavioral recovery in treated animals. Moreover, H-reflex depression and ventilatory adjustments to muscle fatigue were found to be comparable between SHAM and SVF groups. CONCLUSION Our results highlight the effectiveness of SVF and its high therapeutic potential to improve sensorimotor functions and to restore the segmental sensorimotor loop and the communication between supra- and sub-lesional spinal cord regions after traumatic contusion.
Collapse
Affiliation(s)
- Céline Ertlen
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Mostafa Seblani
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Maxime Bonnet
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Jean-Michel Brezun
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Thelma Coyle
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Florence Sabatier
- Assistance Publique - Hôpitaux de Marseille (AP-HM), INSERM 1409 Centre d'Investigation Clinique en Biothérapies, Unité de Culture Et Thérapie Cellulaire, Hôpital de La Conception, 147, Boulevard Baille, 13385, Marseille Cedex 05, France
| | - Stéphane Fuentes
- Assistance Publique - Hôpitaux de Marseille (AP-HM), Service de Neurochirurgie, Hôpital de La Timone, 264, Rue Saint-Pierre, 13005, Marseille, France
| | - Patrick Decherchi
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France.
| | - Nicolas Serratrice
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
- Assistance Publique - Hôpitaux de Marseille (AP-HM), Service de Neurochirurgie, Hôpital de La Timone, 264, Rue Saint-Pierre, 13005, Marseille, France
| | - Tanguy Marqueste
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France.
| |
Collapse
|
6
|
Prescher H, Froimson JR, Hanson SE. Deconstructing Fat to Reverse Radiation Induced Soft Tissue Fibrosis. Bioengineering (Basel) 2023; 10:742. [PMID: 37370673 PMCID: PMC10295516 DOI: 10.3390/bioengineering10060742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Adipose tissue is composed of a collection of cells with valuable structural and regenerative function. Taken as an autologous graft, these cells can be used to address soft tissue defects and irregularities, while also providing a reparative effect on the surrounding tissues. Adipose-derived stem or stromal cells are primarily responsible for this regenerative effect through direct differentiation into native cells and via secretion of numerous growth factors and cytokines that stimulate angiogenesis and disrupt pro-inflammatory pathways. Separating adipose tissue into its component parts, i.e., cells, scaffolds and proteins, has provided new regenerative therapies for skin and soft tissue pathology, including that resulting from radiation. Recent studies in both animal models and clinical trials have demonstrated the ability of autologous fat grafting to reverse radiation induced skin fibrosis. An improved understanding of the complex pathologic mechanism of RIF has allowed researchers to harness the specific function of the ASCs to engineer enriched fat graft constructs to improve the therapeutic effect of AFG.
Collapse
Affiliation(s)
| | | | - Summer E. Hanson
- Section of Plastic & Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL 60615, USA
| |
Collapse
|
7
|
Fu R, Cui K, Yang J, Xu H, Yin D, Song W, Wang H, Zhu C, Feng L, Wang Z, Wang Q, Lu Y, Dou K, Yang Y. Fasting stress hyperglycemia ratio and in-hospital mortality after acute myocardial infarction in patients with different glucose metabolism status: Results from China acute myocardial infarction registry. Diabetes Res Clin Pract 2023; 196:110241. [PMID: 36623641 DOI: 10.1016/j.diabres.2023.110241] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
AIMS To evaluate the predictive value of fasting stress hyperglycemia ratio (SHR) for in-hospital mortality in patients with acute myocardial infarction (AMI) under different glucose metabolism status. METHODS We evaluated 5,308 AMI patients from the prospective, nationwide, multicenter China Acute Myocardial Infarction (CAMI) registry, of which 2,081 had diabetes. Fasting SHR was calculated by the formula [(first fasting plasma glucose (mmol/l))/(1.59 × HbA1c (%)-2.59)]. Patients were divided into high and low fasting SHR groups according to the optimal fasting SHR thresholds to predict in-hospital mortality for patients with and without diabetes, respectively. The primary endpoint was in-hospital mortality. RESULTS The optimal cutoff values of SHR were 1.06 and 1.26 for patients with and without diabetes. Patients with high fasting SHR presented higher in-hospital mortality than those with low fasting SHR in both cohorts with diabetes (7.9% vs 2.2%; OR adjusted 3.159, 95% CI 1.932-5.165; OR IPTW 3.311, 95%CI 2.326-4.713) and without diabetes (10.1% vs 2.5%; OR adjusted 3.189, 95%CI 2.161-4.705; OR IPTW 3.224, 95%CI 2.465-4.217). The prognostic powers of fasting SHR for in-hospital mortality were similar in patients with different glucose metabolism status. Moreover, adding fasting SHR to the original model led to a significant improvement in C-statistic, net reclassification, and integrated discrimination regardless of diabetes status. CONCLUSIONS This study firstly demonstrated a strong positive association between fasting SHR and in-hospital mortality in AMI patients with and without diabetes. Fasting SHR should be considered as a useful marker for risk stratification in AMI patients regardless of glucose metabolism status. TRIAL REGISTRATION ClinicalTrials.gov NCT01874691.
Collapse
Affiliation(s)
- Rui Fu
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kongyong Cui
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingang Yang
- Coronary Heart Disease Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyan Xu
- Coronary Heart Disease Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Yin
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihua Song
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongjian Wang
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenggang Zhu
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Feng
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhifang Wang
- Department of Cardiology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Henan Province, China
| | - Qingsheng Wang
- Department of Cardiology, Qinhuangdao First Hospital, Hebei Province, China
| | - Ye Lu
- Medical Research & Biometrics Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kefei Dou
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yuejin Yang
- Coronary Heart Disease Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Cai Y, Zang GY, Huang Y, Sun Z, Zhang LL, Qian YJ, Yuan W, Wang ZQ. Advances in neovascularization after diabetic ischemia. World J Diabetes 2022; 13:926-939. [PMID: 36437864 PMCID: PMC9693741 DOI: 10.4239/wjd.v13.i11.926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
With the high incidence of diabetes around the world, ischemic complications cause a serious influence on people's production and living. Neovascularization plays a significant role in its development. Therefore, neovascularization after diabetic ischemia has aroused attention and has become a hot spot in recent years. Neovascularization is divided into angiogenesis represented by atherosclerosis and arteriogenesis characterized by coronary collateral circulation. When mononuclear macrophages successively migrate to the ischemia anoxic zone after ischemia or hypoxia, they induce the secretion of cytokines, such as vascular endothelial growth factor and hypoxia-inducible factor, activate signaling pathways such as classic Wnt and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathways, trigger oxidative stress response, activate endothelial progenitor cells or enter the glycolysis or lactic acid process and promote the formation of new blood vessels, remodeling them into mature blood vessels and restoring blood supply. However, the hypoglycemic condition has different impacts on neovascularization. Consequently, this review aimed to introduce the mechanisms of neovascularization after diabetic ischemia, increase our un-derstanding of diabetic ischemic complications and their therapies and provide more treatment options for clinical practice and effectively relieve patients' pain. It is believed that in the near future, neovascularization will bring more benefits and hope to patients with diabetes.
Collapse
Affiliation(s)
- Yue Cai
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Guang-Yao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Yan Huang
- Department of Ophthalmology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Li-Li Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Yong-Jiang Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Zhong-Qun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| |
Collapse
|
9
|
Dai X, Wang K, Fan J, Liu H, Fan X, Lin Q, Chen Y, Chen H, Li Y, Liu H, Chen O, Chen J, Li X, Ren D, Li J, Conklin DJ, Wintergerst KA, Li Y, Cai L, Deng Z, Yan X, Tan Y. Nrf2 transcriptional upregulation of IDH2 to tune mitochondrial dynamics and rescue angiogenic function of diabetic EPCs. Redox Biol 2022; 56:102449. [PMID: 36063728 PMCID: PMC9463384 DOI: 10.1016/j.redox.2022.102449] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 07/30/2022] [Accepted: 08/15/2022] [Indexed: 01/11/2023] Open
Abstract
Endothelial progenitor cells (EPCs) are reduced in number and impaired in function in diabetic patients. Whether and how Nrf2 regulates the function of diabetic EPCs remains unclear. In this study, we found that the expression of Nrf2 and its downstream genes were decreased in EPCs from both diabetic patients and db/db mice. Survival ability and angiogenic function of EPCs from diabetic patients and db/db mice also were impaired. Gain- and loss-of-function studies, respectively, showed that knockdown of Nrf2 increased apoptosis and impaired tube formation in EPCs from healthy donors and wild-type mice, while Nrf2 overexpression decreased apoptosis and rescued tube formation in EPCs from diabetic patients and db/db mice. Additionally, proangiogenic function of Nrf2-manipulated mouse EPCs was validated in db/db mice with hind limb ischemia. Mechanistic studies demonstrated that diabetes induced mitochondrial fragmentation and dysfunction of EPCs by dysregulating the abundance of proteins controlling mitochondrial dynamics; upregulating Nrf2 expression attenuated diabetes-induced mitochondrial fragmentation and dysfunction and rectified the abundance of proteins controlling mitochondrial dynamics. Further RNA-sequencing analysis demonstrated that Nrf2 specifically upregulated the transcription of isocitrate dehydrogenase 2 (IDH2), a key enzyme regulating tricarboxylic acid cycle and mitochondrial function. Overexpression of IDH2 rectified Nrf2 knockdown- or diabetes-induced mitochondrial fragmentation and EPC dysfunction. In a therapeutic approach, supplementation of an Nrf2 activator sulforaphane enhanced angiogenesis and blood perfusion recovery in db/db mice with hind limb ischemia. Collectively, these findings indicate that Nrf2 is a potential therapeutic target for improving diabetic EPC function. Thus, elevating Nrf2 expression enhances EPC resistance to diabetes-induced oxidative damage and improves therapeutic efficacy of EPCs in treating diabetic limb ischemia likely via transcriptional upregulating IDH2 expression and improving mitochondrial function of diabetic EPCs.
Collapse
Affiliation(s)
- Xiaozhen Dai
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, Sichuan, China; Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kai Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiawei Fan
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, Sichuan, China
| | - Hanjie Liu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Xia Fan
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qian Lin
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Yuhang Chen
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Hu Chen
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yao Li
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Hairong Liu
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Oscar Chen
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jing Chen
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Xiaohong Li
- Kentucky IDeA Network for Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY, USA
| | - Di Ren
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Daniel J Conklin
- Department of Medicine and Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Kupper A Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA; Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children's Hospital, Louisville, KY, USA; Wendy L. Novak Diabetes Care Center, Norton Children's Hospital, Louisville, KY, USA
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA; Wendy L. Novak Diabetes Care Center, Norton Children's Hospital, Louisville, KY, USA
| | - Zhongbin Deng
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA
| | - Xiaoqing Yan
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA; Wendy L. Novak Diabetes Care Center, Norton Children's Hospital, Louisville, KY, USA.
| |
Collapse
|
10
|
Jahan J, Monte de Oca I, Meissner B, Joshi S, Maghrabi A, Quiroz-Olvera J, Lopez-Yang C, Bartelmez SH, Garcia C, Jarajapu YP. Transforming growth factor-β1/Thrombospondin-1/CD47 axis mediates dysfunction in CD34 + cells derived from diabetic older adults. Eur J Pharmacol 2022; 920:174842. [PMID: 35217004 PMCID: PMC8967481 DOI: 10.1016/j.ejphar.2022.174842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
Aging with diabetes is associated with impaired vasoprotective functions and decreased nitric oxide (NO) generation in CD34+ cells. Transforming growth factor- β1 (TGF-β1) is known to regulate hematopoietic functions. This study tested the hypothesis that transforming growth factor- β1 (TGF-β1) is upregulated in diabetic CD34+ cells and impairs NO generation via thrombospondin-1 (TSP-1)/CD47/NO pathway. CD34+ cells from nondiabetic (ND) (n=58) or diabetic older adults (DB) (both type 1 and type 2) (n=62) were isolated from peripheral blood. TGF-β1 was silenced by using an antisense delivered as phosphorodiamidate morpholino oligomer (PMO-TGF-β1). Migration and proliferation in response to stromal-derived factor-1α (SDF-1α) were evaluated. NO generation and eNOS phosphorylation were determined by flow cytometry. CD34+ cells from older, but not younger, diabetics have higher expression of TGF-β1 compared to that observed in cells derived from healthy individuals (P<0.05, n=14). TSP-1 expression was higher (n=11) in DB compared to ND cells. TGFβ1-PMO decreased the secretion of TGF-β1, which was accompanied with decreased TSP-1 expression. Impaired proliferation, migration and NO generation in response to SDF-1α in DB cells were reversed by TGF-β1-PMO (n=6). TSP-1 inhibited migration and proliferation of nondiabetic CD34+ cells that was reversed by CD47-siRNA, which also restored these responses in diabetic CD34+ cells. TSP-1 opposed SDF-1α-induced eNOS phosphorylation at Ser1177 that was reversed by CD47-siRNA. These results infer that increased TGF-β1 expression in CD34+ cells induces dysfunction in CD34+ cells from diabetic older adults via TSP-1/CD47-dependent inhibition of NO generation.
Collapse
Affiliation(s)
- Jesmin Jahan
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | | | - Brian Meissner
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Shrinidh Joshi
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | | | | | | | | | | | - Yagna P Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
11
|
Hendawy H, Kaneda M, Yoshida T, Metwally E, Hambe L, Yoshida T, Shimada K, Tanaka R. Heterogeneity of Adipose Stromal Vascular Fraction Cells from the Different Harvesting Sites in Rats. Anat Rec (Hoboken) 2022; 305:3410-3421. [PMID: 35332993 DOI: 10.1002/ar.24915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/09/2022]
Abstract
In both veterinary and human health, regenerative medicine offers a promising cure for various disorders. One of the rate-limiting challenges in regenerative medicine is the considerable time and technique required to expand and grow cells in culture. Therefore, the stromal vascular fraction (SVF) shows a significant promise for various cell therapy approaches. The present study aimed to define and investigate the optimal harvest site of freshly isolated SVF cells from various adipose tissue (AT) depot sites in the female Sprague-Dawley (S.D.) rat. First, Hematoxylin and eosin (H&E) were used to analyze the morphological variations in AT samples from peri-ovarian, peri-renal, mesenteric, and omental sites. The presence of putative stromal cells positive CD34 was detected using immunohistochemistry. Then, the isolated SVF cells were examined for cell viability and cellular yield differences. Finally, the expression of mesenchymal stem cells and hematopoietic markers in the SVF cells subpopulation was studied using flow cytometry. The pluripotent gene expression profile was also evaluated. CD34 staining of the omental AT was substantially higher than those of other anatomical sites. Despite having the least quantity of fat, omental AT has the highest SVF cell fraction and viable cells. Along with CD90 and CD44 higher expression, Oct4, Sox2, and Rex-1 genes levels were higher in SVF cells isolated from the omental AT. To conclude, omental fat is the best candidate for SVF cell isolation in female S.D. rats with the highest SVF cell fraction with higher MSCs phenotypes and pluripotency gene expression.
Collapse
Affiliation(s)
- Hanan Hendawy
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo183-8509, Japan.,Department of Veterinary Surgery, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tadashi Yoshida
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Elsayed Metwally
- Department of cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Lina Hambe
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo183-8509, Japan
| | - Tomohiko Yoshida
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo183-8509, Japan
| | - Kazumi Shimada
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo183-8509, Japan
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo183-8509, Japan
| |
Collapse
|
12
|
Isacco CG, Nguyen KC, Pham VH, Di Palma G, Aityan SK, Tomassone D, Distratis P, Lazzaro R, Balzanelli MG, Inchingolo F. Bone decay and diabetes type 2 in searching for a link. Endocr Metab Immune Disord Drug Targets 2022; 22:904-910. [PMID: 35331127 DOI: 10.2174/1871530322666220324150327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/17/2022] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine (D.I.M.) of Bari University of Medicine Aldo Moro, Bari City Italy
| | - Kieu Cd Nguyen
- 118 Pre-Hospital and Emergency Department, SG Moscati Hospital, ASL Taranto, Italy
| | - Van H Pham
- Phan Chau Trinh University of Medicine Hoi An City Vietnam
| | - Gianna Di Palma
- Department of Interdisciplinary Medicine (D.I.M.) of Bari University of Medicine Aldo Moro, Bari City Italy
| | | | - Diego Tomassone
- Foundation of Physics Research Center (FoPRC), Celico-CS, Italy
| | - Pietro Distratis
- 118 Pre-Hospital and Emergency Department, SG Moscati Hospital, ASL Taranto, Italy
| | - Rita Lazzaro
- 118 Pre-Hospital and Emergency Department, SG Moscati Hospital, ASL Taranto, Italy
| | - Mario G Balzanelli
- 118 Pre-Hospital and Emergency Department, SG Moscati Hospital, ASL Taranto, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine (D.I.M.) of Bari University of Medicine Aldo Moro, Bari City Italy
| |
Collapse
|
13
|
Zimmerlin L, Park TS, Bhutto I, Lutty G, Zambidis ET. Generation of Pericytic-Vascular Progenitors from Tankyrase/PARP-Inhibitor-Regulated Naïve (TIRN) Human Pluripotent Stem Cells. Methods Mol Biol 2022; 2416:133-156. [PMID: 34870835 PMCID: PMC9529319 DOI: 10.1007/978-1-0716-1908-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tankyrase/PARP inhibitor-regulated naïve human pluripotent stem cells (TIRN-hPSC) represent a new class of human stem cells for regenerative medicine that can differentiate into multi-lineage progenitors with improved in vivo functionality. Chemical reversion of conventional, primed hPSC to a TIRN-hPSC state alleviates dysfunctional epigenetic donor cell memory, lineage-primed gene expression, and potentially disease-associated aberrations in their differentiated progeny. Here, we provide methods for the reversion of normal or diseased patient-specific primed hPSC to TIRN-hPSC and describe their subsequent differentiation into embryonic-like pericytic-endothelial "naïve" vascular progenitors (N-VP). N-VP possess improved vascular functionality, high epigenetic plasticity, maintain greater genomic stability, and are more efficient in migrating to and re-vascularizing ischemic tissues than those generated from primed isogenic hPSC. We also describe detailed methods for the ocular transplantation and quantitation of vascular engraftment of N-VP into the ischemia-damaged neural retina of a humanized mouse model of ischemic retinopathy. The application of TIRN-hPSC-derived N-VP will advance vascular cell therapies of ischemic retinopathy, myocardial infarction, and cerebral vascular stroke.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tea Soon Park
- Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Imran Bhutto
- Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerard Lutty
- Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elias T Zambidis
- Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Vasam G, S SJ, Miyat SY, Adam H, Jarajapu YP. Early onset of aging phenotype in vascular repair by Mas receptor deficiency. GeroScience 2021; 44:311-327. [PMID: 34661816 DOI: 10.1007/s11357-021-00473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022] Open
Abstract
Aging is associated with impaired vascular repair following ischemic insult, largely due to reparative dysfunctions of progenitor cells. Activation of Mas receptor (MasR) was shown to reverse aging-associated vasoreparative dysfunction. This study tested the impact of MasR-deficiency on mobilization and vasoreparative functions with aging. Wild type (WT) or MasR-deficient mice (MasR-/- or MasR+/-) at 12-14 weeks (young) or middle age (11-12 months) (MA) were used in the study. Mobilization of lineage-negative, Sca-1-positive cKit-positive (LSK) cells in response to G-CSF or plerixafor was determined. Hindlimb ischemia (HLI) was induced by femoral artery ligation. Mobilization and blood flow recovery were monitored post-HLI. Radiation chimeras were made by lethal irradiation of WT or MasR-/- mice followed by administration of bone marrow cells from MasR-/- or WT mice, respectively. Nitric oxide (NO) generation by stromal-derived factor-1α (SDF) and mitochondrial reactive oxygen species (mitoROS) levels were determined by flow cytometry. Effect of A779 treatment on mobilization, blood flow recovery, and NO and ROS levels were determined in young WT and MasR+/- mice. Circulating LSK cells in basal or in response to plerixafor or G-CSF or in response to ischemic injury were lower in MasR-/- mice compared to the WT. Responses in MasR+/- mice were similar to the WT at young age but at the middle age, impairments were observed. Impaired mobilization to ischemia or G-CSF was rescued in WT → MasR-/- chimeras. NO levels were lower and mitoROS were higher in MasR-/- LSK cells compared to WT cells. A779 precipitated dysfunctions in young-MasR+/- mice similar to that observed in MA-MasR+/-, and this accompanied decreased NO generation by SDF and enhanced mitoROS levels. This study shows that mice at MA do not exhibit vasoreparative dysfunction. Either partial or total loss of MasR precipitates advanced-aging phenotype likely due to lack of NO and oxidative stress.
Collapse
Affiliation(s)
- Goutham Vasam
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Shrinidh Joshi S
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Su Yamin Miyat
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Hashim Adam
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Yagna P Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
15
|
Ali A, Shibu MA, Kuo CH, Lo JF, Chen RJ, Day CH, Ho TJ, PadmaViswanadha V, Kuo WW, Huang CY. CHIP-overexpressing Wharton's jelly-derived mesenchymal stem cells attenuate hyperglycemia-induced oxidative stress-mediated kidney injuries in diabetic rats. Free Radic Biol Med 2021; 173:70-80. [PMID: 34298092 DOI: 10.1016/j.freeradbiomed.2021.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022]
Abstract
Accumulating studies have demonstrated the protective roles of mesenchymal stem cells against several disorders. However, one of their crucial limitations is reduced viability under stress conditions, including the hyperglycemia induced by diabetes. The molecular mechanisms involved in diabetes-induced kidney injuries are not fully elucidated. In this study, we found that high glucose (HG) reduced human proximal tubular epithelial cell viability. Further, hyperglycemia induced oxidative stress-mediated apoptosis and fibrosis in HK-2 cells via activation of the mitogen-activated protein kinases (MAPKs) including c-Jun N-terminal kinase JNK and p38 kinase. Carboxyl terminus of HSP70 interacting protein (CHIP) overactivation considerably rescued cell viability under HG stress. Moreover, Western blot analysis, flow cytometry, and MitoSOX staining revealed that hyperglycemia-induced mitochondrial oxidative stress production and apoptosis were attenuated in CHIP-overexpressing Wharton's jelly-derived mesenchymal stem cells (WJMSCs). Co-culture with CHIP-expressing WJMSCs maintained HK-2 cell viability, and inhibited apoptosis and fibrosis by attenuating HG-induced ROS-mediated MAPK activation. CHIP-overexpressing WJMSCs also rescued the decreased kidney weight and hyperglycemia-induced kidney damage observed in streptozotocin-induced diabetic rats. Cumulatively, the current research findings demonstrate that CHIP suppresses hyperglycemia-induced oxidative stress and confers resistance to MAPK-induced apoptosis and fibrosis, and suggests that CHIP protects WJMSCs and the high quality WJMSCs have therapeutic effects against diabetes-induced kidney injuries.
Collapse
Affiliation(s)
- Ayaz Ali
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Since Medical Foundation, Hualien, 970, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Jeng-Feng Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | | | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan; Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, 406, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Since Medical Foundation, Hualien, 970, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan.
| |
Collapse
|
16
|
Cannula Size Effect on Stromal Vascular Fraction Content of Fat Grafts. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3471. [PMID: 33907655 PMCID: PMC8062151 DOI: 10.1097/gox.0000000000003471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022]
Abstract
Background Fat is an active and dynamic tissue composed of adipocytes supported by a structural framework known as the stromal vascular fraction (SVF). SVF is traditionally isolated by enzymatic processing, but new methods are being investigated to isolate it mechanically. Recent studies propose that fat harvested with larger cannulas has a higher survival rate, most likely due to a higher concentration of SVF. Methods Lipoaspirates were obtained from 10 patients who underwent elective liposuction using a 5-mm and a 1-mm cannula attached to a syringe using standard pressure. The fat was aspirated from the same area at adjacent sites. An estimated 5-mm fat particles were also cut down to 1-mm using a micronizer (Marina Medical). A 5-cm3 volume of each sample was compressed through a 0.5-mm opening strainer and rinsed with normal saline to extrude the oil. The resultant SVF left on the strainer was then measured in a 1-cm3 syringe. Results The volume extracted from a 5-mm cannula (mean, 0.23 cm3; SD, 0.10) versus a 1-mm cannula (mean, 0.11 cm3; SD, 0.06) was statistically significant (P = 0.009). An H&E-stained slide from the SVF was obtained for confirmation. Finally, 5-mm fat particles cut down to 1-mm particles using the micronizer resulted in an average volume of 0.20 cm3, which was higher than the average volume harvested with a 1-mm cannula. Conclusions Harvesting with a 5-mm cannula resulted in significantly more SVF than harvesting with a 1-mm cannula. Resizing fat particles harvested with a larger cannula down to 1-mm resulted in higher SVF than SVF obtained with a 1-mm cannula directly.
Collapse
|
17
|
Tanaka R, Ito-Hirano R, Fujimura S, Arita K, Hagiwara H, Mita T, Itoh M, Kawaji H, Ogawa T, Watada H, Masuda H, Asahara T, Mizuno H. Ex vivo conditioning of peripheral blood mononuclear cells of diabetic patients promotes vasculogenic wound healing. Stem Cells Transl Med 2021; 10:895-909. [PMID: 33599112 PMCID: PMC8133343 DOI: 10.1002/sctm.20-0309] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/16/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
The quality and quantity of endothelial progenitor cells (EPCs) are impaired in patients with diabetes mellitus patients, leading to reduced tissue repair during autologous EPC therapy. This study aimed to address the limitations of the previously described serum-free Quantity and Quality Control Culture System (QQc) using CD34+ cells by investigating the therapeutic potential of a novel mononuclear cell (MNC)-QQ. MNCs were isolated from 50 mL of peripheral blood of patients with diabetes mellitus and healthy volunteers (n = 13 each) and subjected to QQc for 7 days in serum-free expansion media with VEGF, Flt-3 ligand, TPO, IL-6, and SCF. The vascular regeneration capability of MNC-QQ cells pre- or post-QQc was evaluated with an EPC colony-forming assay, FACS, EPC culture, tube formation assay, and quantitative real time PCR. For in vivo assessment, 1 × 104 pre- and post-MNC-QQc cells from diabetic donors were injected into a murine wound-healing model using Balb/c nude mice. The percentage of wound closure and angio-vasculogenesis was then assessed. This study revealed vasculogenic, anti-inflammatory, and wound-healing effects of MNC-QQ therapy in both in vitro and in vivo models. This system addresses the low efficiency and efficacy of the current naïve MNC therapy for wound-healing in diabetic patients. As this technique requires a simple blood draw, isolation, and peripheral blood MNC suspension culture for only a week, it can be used as a simple and effective outpatient-based vascular and regenerative therapy for patients with diabetes mellitus.
Collapse
Affiliation(s)
- Rica Tanaka
- Division of Regenerative Therapy, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan.,Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Rie Ito-Hirano
- Division of Regenerative Therapy, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Fujimura
- Division of Regenerative Therapy, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kayo Arita
- Division of Regenerative Therapy, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroko Hagiwara
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan.,Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoya Mita
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masayoshi Itoh
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Japan
| | - Hideya Kawaji
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Japan.,Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takasuke Ogawa
- Department of Dermatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Haruchika Masuda
- Department of Basic Clinical Science, Division of Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Takayuki Asahara
- Department of Basic Clinical Science, Division of Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Hiroshi Mizuno
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan.,Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Joshi S, Montes de Oca I, Maghrabi A, Lopez-Yang C, Quiroz-Olvera J, Garcia CA, Jarajapu YPR. ACE2 gene transfer ameliorates vasoreparative dysfunction in CD34+ cells derived from diabetic older adults. Clin Sci (Lond) 2021; 135:367-385. [PMID: 33409538 PMCID: PMC7843404 DOI: 10.1042/cs20201133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 01/02/2023]
Abstract
Diabetes increases the risk for ischemic vascular diseases, which is further elevated in older adults. Bone marrow-derived hematopoietic CD34+ stem/progenitor cells have the potential of revascularization; however, diabetes attenuates vasoreparative functions. Angiotensin-converting enzyme 2 (ACE2) is the vasoprotective enzyme of renin-angiotensin system in contrast with the canonical angiotensin-converting enzyme (ACE). The present study tested the hypothesis that diabetic dysfunction is associated with ACE2/ACE imbalance in hematopoietic stem/progenitor cells (HSPCs) and that increasing ACE2 expression would restore reparative functions. Blood samples from male and female diabetic (n=71) or nondiabetic (n=62) individuals were obtained and CD34+ cells were enumerated by flow cytometry. ACE and ACE2 enzyme activities were determined in cell lysates. Lentiviral (LV) approach was used to increase the expression of soluble ACE2 protein. Cells from diabetic older adults (DB) or nondiabetic individuals (Control) were evaluated for their ability to stimulate revascularization in a mouse model of hindlimb ischemia (HLI). DB cells attenuated the recovery of blood flow to ischemic areas in nondiabetic mice compared with that observed with Control cells. Administration of DB cells modified with LV-ACE2 resulted in complete restoration of blood flow. HLI in diabetic mice resulted in poor recovery with amputations, which was not reversed by either Control or DB cells. LV-ACE2 modification of Control or DB cells resulted in blood flow recovery in diabetic mice. In vitro treatment with Ang-(1-7) modified paracrine profile in diabetic CD34+ cells. The present study suggests that vasoreparative dysfunction in CD34+ cells from diabetic older adults is associated with ACE2/ACE imbalance and that increased ACE2 expression enhances the revascularization potential.
Collapse
Affiliation(s)
- Shrinidh Joshi
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND 58108, U.S.A
| | | | | | | | | | | | - Yagna Prasada Rao Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND 58108, U.S.A
| |
Collapse
|
19
|
Jarajapu YPR. Targeting Angiotensin-Converting Enzyme-2/Angiotensin-(1-7)/Mas Receptor Axis in the Vascular Progenitor Cells for Cardiovascular Diseases. Mol Pharmacol 2021; 99:29-38. [PMID: 32321734 PMCID: PMC7725063 DOI: 10.1124/mol.119.117580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Bone marrow-derived hematopoietic stem/progenitor cells are vasculogenic and play an important role in endothelial health and vascular homeostasis by participating in postnatal vasculogenesis. Progenitor cells are mobilized from bone marrow niches in response to remote ischemic injury and migrate to the areas of damage and stimulate revascularization largely by paracrine activation of angiogenic functions in the peri-ischemic vasculature. This innate vasoprotective mechanism is impaired in certain chronic clinical conditions, which leads to the development of cardiovascular complications. Members of the renin-angiotensin system-angiotensin-converting enzymes (ACEs) ACE and ACE2, angiotensin II (Ang II), Ang-(1-7), and receptors AT1 and Mas-are expressed in vasculogenic progenitor cells derived from humans and rodents. Ang-(1-7), generated by ACE2, is known to produce cardiovascular protective effects by acting on Mas receptor and is considered as a counter-regulatory mechanism to the detrimental effects of Ang II. Evidence has now been accumulating in support of the activation of the ACE2/Ang-(1-7)/Mas receptor pathway by pharmacologic or molecular maneuvers, which stimulates mobilization of progenitor cells from bone marrow, migration to areas of vascular damage, and revascularization of ischemic areas in pathologic conditions. This minireview summarizes recent studies that have enhanced our understanding of the physiology and pharmacology of vasoprotective axis in bone marrow-derived progenitor cells in health and disease. SIGNIFICANCE STATEMENT: Hematopoietic stem progenitor cells (HSPCs) stimulate revascularization of ischemic areas. However, the reparative potential is diminished in certain chronic clinical conditions, leading to the development of cardiovascular diseases. ACE2 and Mas receptor are key members of the alternative axis of the renin-angiotensin system and are expressed in HSPCs. Accumulating evidence points to activation of ACE2 or Mas receptor as a promising approach for restoring the reparative potential, thereby preventing the development of ischemic vascular diseases.
Collapse
Affiliation(s)
- Yagna P R Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
20
|
Joshi S, Chittimalli K, Jahan J, Vasam G, Jarajapu YP. ACE2/ACE imbalance and impaired vasoreparative functions of stem/progenitor cells in aging. GeroScience 2020; 43:1423-1436. [PMID: 33247425 PMCID: PMC7694587 DOI: 10.1007/s11357-020-00306-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Aging increases risk for ischemic vascular diseases. Bone marrow–derived hematopoietic stem/progenitor cells (HSPCs) are known to stimulate vascular regeneration. Activation of either the Mas receptor (MasR) by angiotensin-(1-7) (Ang-(1-7)) or angiotensin-converting enzyme-2 (ACE2) stimulates vasoreparative functions in HSPCs. This study tested if aging is associated with decreased ACE2 expression in HSPCs and if Ang-(1-7) restores vasoreparative functions. Flow cytometric enumeration of Lin−CD45lowCD34+ cells was carried out in peripheral blood of male or female individuals (22–83 years of age). Activity of ACE2 or the classical angiotensin-converting enzyme (ACE) was determined in lysates of HSPCs. Lin−Sca-1+cKit+ (LSK) cells were isolated from young (3–5 months) or old (20–22 months) mice, and migration and proliferation were evaluated. Old mice were treated with Ang-(1-7), and mobilization of HSPCs was determined following ischemia induced by femoral ligation. A laser Doppler blood flow meter was used to determine blood flow. Aging was associated with decreased number (Spearman r = − 0.598, P < 0.0001, n = 56), decreased ACE2 (r = − 0.677, P < 0.0004), and increased ACE activity (r = 0.872, P < 0.0001) (n = 23) in HSPCs. Migration or proliferation of LSK cells in basal or in response to stromal-derived factor-1α in old cells is attenuated compared to young, and these dysfunctions were reversed by Ang-(1-7). Ischemia increased the number of circulating LSK cells in young mice, and blood flow to ischemic areas was recovered. These responses were impaired in old mice but were restored by treatment with Ang-(1-7). These results suggest that activation of ACE2 or MasR would be a promising approach for enhancing ischemic vascular repair in aging.
Collapse
Affiliation(s)
- S Joshi
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Sudro-16, Albrecht Blvd., Fargo, ND, 58108, USA
| | - K Chittimalli
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Sudro-16, Albrecht Blvd., Fargo, ND, 58108, USA
| | - J Jahan
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Sudro-16, Albrecht Blvd., Fargo, ND, 58108, USA
| | - G Vasam
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Sudro-16, Albrecht Blvd., Fargo, ND, 58108, USA
| | - Y P Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Sudro-16, Albrecht Blvd., Fargo, ND, 58108, USA.
| |
Collapse
|
21
|
Joshi S, Mahoney S, Jahan J, Pitts L, Hackney KJ, Jarajapu YP. Blood flow restriction exercise stimulates mobilization of hematopoietic stem/progenitor cells and increases the circulating ACE2 levels in healthy adults. J Appl Physiol (1985) 2020; 128:1423-1431. [PMID: 32324479 DOI: 10.1152/japplphysiol.00109.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adult CD34+ hematopoietic stem/progenitor cells (HSPC) in the systemic circulation are bone marrow-derived and have the propensity of maintaining cardiovascular health. Activation of angiotensin-converting enzyme-2 (ACE2)-angiotensin-(1-7)-Mas receptor pathway, the vascular protective axis of the renin-angiotensin system (RAS), stimulates vasculogenic functions of HSPCs. In a previous study, exposure to hypoxia increased the expressions of ACE2 and Mas, and stimulated ACE2 shedding. The current study tested if blood flow restriction exercise (BFR)-induced regional hypoxia recapitulates the in vitro observations in healthy adults. Hypoxia was induced by 80% limb occlusion pressure (LOP) via inflation cuff. Muscle oxygen saturation was determined using near-infrared spectroscopy. Peripheral blood was collected 30 min after quiet sitting (control) or after BFR. Lin-CD45lowCD34+ HSPCs were enumerated by flow cytometry, and ACE and ACE2 activities were determined in plasma and cell lysates and supernatants. Regional hypoxia resulted in muscle oxygen saturation of 17.5% compared with 49.7% in the control condition (P < 0.0001, n = 9). Circulating HSPCs were increased following BFR (834.8 ± 62.1/mL) compared with control (365 ± 59, P < 0.001, n = 7), which was associated with increased stromal-derived factor 1α and vascular endothelial growth factor receptor levels by four- and threefold, respectively (P < 0.001). ACE2 activity was increased in the whole cell lysates of HSPCs, resulting in an ACE2-to-ACE ratio of 11.7 ± 0.5 in BFR vs 9.1 ± 0.9 in control (P < 0.05). Cell supernatants have threefold increase in the ACE2-to-ACE ratio following BFR compared with control (P < 0.001). Collectively, these findings provide strong evidence for the upregulation of ACE2 by acute regional hypoxia in vivo. Hypoxic exercise regimens appear to be promising means of enhancing vascular regenerative capacity.NEW & NOTEWORTHY Although many studies have explored the mechanisms of skeletal muscle growth and adaptation with hypoxia exercise interventions, less attention has been given to the potential for vascular adaptation and regenerative capacity. This study shows for the first time an acute upregulation of the angiotensin-converting enzyme 2 and increase in CD34+ vasculogenic cells following an acute bout of blood flow restriction with low-intensity exercise. These rapid changes collectively promote skeletal muscle angiogenesis. Therefore, this study supports the potential of hypoxic exercise interventions with low intensity for vascular and muscle health.
Collapse
Affiliation(s)
- Shrinidh Joshi
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, North Dakota
| | - Sean Mahoney
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, North Dakota
| | - Jesmin Jahan
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, North Dakota
| | - Logan Pitts
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, North Dakota
| | - Kyle J Hackney
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, North Dakota
| | - Yagna Pr Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
22
|
Hu C, Sun Y, Yang X. Pioglitazone up-regulates MALAT1 and promotes the proliferation of endothelial progenitor cells through increasing c-Myc expression in type 2 diabetes mellitus. ACTA ACUST UNITED AC 2020. [DOI: 10.31491/apt.2020.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Park TS, Zimmerlin L, Evans-Moses R, Thomas J, Huo JS, Kanherkar R, He A, Ruzgar N, Grebe R, Bhutto I, Barbato M, Koldobskiy MA, Lutty G, Zambidis ET. Vascular progenitors generated from tankyrase inhibitor-regulated naïve diabetic human iPSC potentiate efficient revascularization of ischemic retina. Nat Commun 2020; 11:1195. [PMID: 32139672 PMCID: PMC7058090 DOI: 10.1038/s41467-020-14764-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/28/2020] [Indexed: 01/15/2023] Open
Abstract
Here, we report that the functionality of vascular progenitors (VP) generated from normal and disease-primed conventional human induced pluripotent stem cells (hiPSC) can be significantly improved by reversion to a tankyrase inhibitor-regulated human naïve epiblast-like pluripotent state. Naïve diabetic vascular progenitors (N-DVP) differentiated from patient-specific naïve diabetic hiPSC (N-DhiPSC) possessed higher vascular functionality, maintained greater genomic stability, harbored decreased lineage-primed gene expression, and were more efficient in migrating to and re-vascularizing the deep neural layers of the ischemic retina than isogenic diabetic vascular progenitors (DVP). These findings suggest that reprogramming to a stable naïve human pluripotent stem cell state may effectively erase dysfunctional epigenetic donor cell memory or disease-associated aberrations in patient-specific hiPSC. More broadly, tankyrase inhibitor-regulated naïve hiPSC (N-hiPSC) represent a class of human stem cells with high epigenetic plasticity, improved multi-lineage functionality, and potentially high impact for regenerative medicine.
Collapse
Affiliation(s)
- Tea Soon Park
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ludovic Zimmerlin
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rebecca Evans-Moses
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Justin Thomas
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jeffrey S Huo
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Riya Kanherkar
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alice He
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nensi Ruzgar
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rhonda Grebe
- Wilmer Eye Institute, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Imran Bhutto
- Wilmer Eye Institute, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael Barbato
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael A Koldobskiy
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gerard Lutty
- Wilmer Eye Institute, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elias T Zambidis
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
24
|
The Roles of Podoplanin-Positive/Podoplanin-Negative Cells from Adipose-Derived Stem Cells in Lymphatic Regeneration. Plast Reconstr Surg 2020; 145:420-431. [DOI: 10.1097/prs.0000000000006474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Zhang S, Chen L, Zhang G, Zhang B. Umbilical cord-matrix stem cells induce the functional restoration of vascular endothelial cells and enhance skin wound healing in diabetic mice via the polarized macrophages. Stem Cell Res Ther 2020; 11:39. [PMID: 31992364 PMCID: PMC6986138 DOI: 10.1186/s13287-020-1561-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 01/12/2020] [Indexed: 12/24/2022] Open
Abstract
Background Chronic nonhealing wounds represent one of the most common complications of diabetes and require advanced treatment strategies. Increasing evidence supports the important role of mesenchymal stem cells in diabetic wound healing; however, the underlying mechanism remains unclear. Here, we explored the effects of umbilical cord-matrix stem cells (UCMSCs) on diabetic wound healing and the underlying mechanism. Methods UCMSCs or conditioned medium (UCMSC-CM) were injected into the cutaneous wounds of streptozotocin-induced diabetic mice. The effects of this treatment on macrophages and diabetic vascular endothelial cells were investigated in vivo and in vitro. Results Our results reveal that UCMSCs or UCMSC-CM accelerated wound healing by enhancing angiogenesis. The number of host macrophages recruited to the wound tissue by local infusion of UCMSCs was greater than that recruited by fibroblast transplantation or control. The frequency of M2 macrophages was increased by UCMSC transplantation or UCMSC-CM injection, which promoted the expression of cytokines derived from M2 macrophages. Furthermore, when cocultured with UCMSCs or UCMSC-CM, lipopolysaccharide-induced macrophages acquired an anti-inflammatory M2 phenotype characterized by the increased secretion of the cytokines interleukin (IL)-10 and vascular endothelial growth factor and the suppressed production of tumor necrosis factor-α and IL-6. UCMSC-CM-activated macrophages significantly enhanced diabetic vascular endothelial cell functions, including angiogenesis, migration, and chemotaxis. Moreover, the action of UCMSC-CM on macrophages or vascular endothelial cells was abrogated by the administration of neutralizing antibodies against prostaglandin E2 (PGE2) or by the inhibition of PGE2 secretion from UCMSCs. Conclusions Our findings demonstrate that UCMSCs can induce the functional restoration of vascular endothelial cells via the remodeling of macrophage phenotypes, which might contribute to the marked acceleration of wound healing in diabetic mice. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Shichang Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. .,Department 4, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Li Chen
- Department of Obstetrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Guoying Zhang
- Department of Obstetrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Bo Zhang
- Department 4, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
26
|
Yao Y, Li Y, Song Q, Hu C, Xie W, Xu C, Chen Q, Wang QK. Angiogenic Factor AGGF1-Primed Endothelial Progenitor Cells Repair Vascular Defect in Diabetic Mice. Diabetes 2019; 68:1635-1648. [PMID: 31092480 PMCID: PMC6905488 DOI: 10.2337/db18-1178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/06/2019] [Indexed: 12/12/2022]
Abstract
Hyperglycemia-triggered vascular abnormalities are the most serious complications of diabetes mellitus (DM). The major cause of vascular dysfunction in DM is endothelial injury and dysfunction associated with the reduced number and dysfunction of endothelial progenitor cells (EPCs). A major challenge is to identify key regulators of EPCs to restore DM-associated vascular dysfunction. We show that EPCs from heterozygous knockout Aggf1+/- mice presented with impairment of proliferation, migration, angiogenesis, and transendothelial migration as in hyperglycemic mice fed a high-fat diet (HFD) or db/db mice. The number of EPCs from Aggf1+/- mice was significantly reduced. Ex vivo, AGGF1 protein can fully reverse all damaging effects of hyperglycemia on EPCs. In vivo, transplantation of AGGF1-primed EPCs successfully restores blood flow and blocks tissue necrosis and ambulatory impairment in HFD-induced hyperglycemic mice or db/db mice with diabetic hindlimb ischemia. Mechanistically, AGGF1 activates AKT, reduces nuclear localization of Fyn, which increases the nuclear level of Nrf2 and expression of antioxidative genes, and inhibits reactive oxygen species generation. These results suggest that Aggf1 is required for essential function of EPCs, AGGF1 fully reverses the damaging effects of hyperglycemia on EPCs, and AGGF1 priming of EPCs is a novel treatment modality for vascular complications in DM.
Collapse
Affiliation(s)
- Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yong Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qixue Song
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Changqin Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Wen Xie
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qiuyun Chen
- Department of Cardiovascular and Metabolic Sciences, NB50, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Qing K. Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Cardiovascular and Metabolic Sciences, NB50, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH
- Corresponding author: Qing K. Wang, , or Qiuyun Chen,
| |
Collapse
|
27
|
Schuster S, Rubil S, Endres M, Princen HMG, Boeckel JN, Winter K, Werner C, Laufs U. Anti-PCSK9 antibodies inhibit pro-atherogenic mechanisms in APOE*3Leiden.CETP mice. Sci Rep 2019; 9:11079. [PMID: 31366894 PMCID: PMC6668462 DOI: 10.1038/s41598-019-47242-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022] Open
Abstract
LDL-cholesterol (LDL-C) is a causal pathogenic factor in atherosclerosis. Monoclonal anti-proprotein convertase subtilisin/kexin type 9 (PCSK9) neutralizing antibodies are novel potent LDL-lowering drugs which reduce cardiovascular events. To characterize their effect on atherogenesis, APOE*3Leiden.CETP mice were fed a high cholesterol/high fat diet (WTD) or normal chow (NC) for 18 weeks. Mice on WTD were injected with the human anti-PCSK9 antibody mAb1 (PL-45134, 10 mg*kg-1 s.c.) or 0.9% saline every 10 days. PCSK9 inhibition decreased total cholesterol in serum of APOE*3Leiden.CETP mice and prevented the development of atherosclerosis. The plaque area in the aortic root was reduced by half and macrophage infiltration determined by Ly6c and Mac-3 staining was ameliorated. PCSK9 inhibition decreased markers of inflammation in mononuclear cells (Il-6, Tnfa mRNA), and in serum (CXCL-1,-10,-13; complement factor C5a) compared to control WTD fed animals. The number of circulating Sca-1/VEGF-R2 positive endothelial progenitor cells of the peripheral blood and spleen-derived diLDL/lectin double positive circulating angiogenic cells was increased. To conclude, the PCSK9-mediated anti-atherosclerotic effect involves the upregulation of pro-regeneratory endothelial progenitor cells, a reduction of inflammation and change of plaque composition.
Collapse
Affiliation(s)
- Susanne Schuster
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.
| | - Sandra Rubil
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Matthias Endres
- Department of Neurology with Experimental Neurology, Center for Stroke Research Berlin (CSB), and NeuroCure, Charité University Medicine Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK) and German Center for Neurodegenerative Diseases (DZNE), partner site Berlin, Berlin, Germany
| | - Hans M G Princen
- TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Jes-Niels Boeckel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Christian Werner
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| |
Collapse
|
28
|
Asadian S, Alibabrdel M, Daei N, Cheraghi H, Maedeh Jafari S, Noshadirad E, Jabarpour M, Siavashi V, Nassiri SM. Improved angiogenic activity of endothelial progenitor cell in diabetic patients treated with insulin plus metformin. J Cell Biochem 2019; 120:7115-7124. [PMID: 30378162 DOI: 10.1002/jcb.27985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023]
Abstract
Type 2 diabetes (T2DM) is associated with an increased vascular disease. Moreover, endothelial progenitor cell (EPC) function is impaired in diabetic patients. Decreased EPC number plays a critical role in reduced endothelial repair and development of the vascular disorder. To determine the effect of metformin and insulin plus metformin on functional activity of EPCs, 130 participants were divided into three groups (group 1: healthy control; group 2: metformin; group 3: insulin plus metformin). The concentration of EPCs in the circulation was first quantified. Thereafter, circulating EPCs (cEPCs) were harvested and the biological features of these cells including proliferative, clonogenicity, tubulogenic, and migratory properties were analyzed after expansion. The serum protein levels of some proangiogenic factors were also measured. Our results showed greater numbers of cEPCs in control and in diabetic patients treated with insulin plus metformin than in metformin-treated patients. Insulin plus metformin therapy was associated with augmented proliferative, clonogenicity, migratory, and tubulogenic activity of cEPCs in patients with T2DM. Increased serum concentrations of angiogenic factors were also observed in patients treated with insulin plus metformin. Western blot analysis showed increased protein levels of pTie-2/Tie2 and Pakt/AKT in cEPCs harvested from T2DM, treated with insulin metformin plus. This study showed that treatment with insulin plus metformin in diabetic patients is associated with increased mobilization of EPCs into the circulation, with potential beneficial effect in vascular protection in diabetic patients.
Collapse
Affiliation(s)
- Simin Asadian
- Department of Pediatrics, Imam Reza Hospital, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Mahdi Alibabrdel
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Nazanin Daei
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hadi Cheraghi
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyedeh Maedeh Jafari
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Elnaz Noshadirad
- Department of Biology, Science and Research Branch´, Islamic Azad University, Tehran, Iran
| | - Masoome Jabarpour
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Vahid Siavashi
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyed Mahdi Nassiri
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
29
|
Joshi S, Wollenzien H, Leclerc E, Jarajapu YP. Hypoxic regulation of angiotensin-converting enzyme 2 and Mas receptor in human CD34 + cells. J Cell Physiol 2019; 234:20420-20431. [PMID: 30989646 DOI: 10.1002/jcp.28643] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/16/2022]
Abstract
CD34+ hematopoietic stem/progenitor cells (HSPCs) are vasculogenic and hypoxia is a strong stimulus for the vasoreparative functions of these cells. Angiotensin-converting enzyme 2 (ACE2)/angiotensin-(1-7)/Mas receptor (MasR) pathway stimulates vasoprotective functions of CD34+ cells. This study tested if ACE2 and MasR are involved in the hypoxic stimulation of CD34+ cells. Cells were isolated from circulating mononuclear cells derived from healthy subjects (n = 46) and were exposed to normoxia (20% O2 ) or hypoxia (1% O2 ). Luciferase reporter assays were carried out in cells transduced with lentivirus carrying ACE2- or MasR- or a scramble-3'-untranslated region gene with a firefly luciferase reporter. Expressions or activities of ACE, angiotensin receptor Type 1 (AT1R), ACE2, and MasR were determined. In vitro observations were verified in HSPCs derived from mice undergoing hindlimb ischemia (HLI). In vitro exposure to hypoxia-increased proliferation and migration of CD34+ cells in basal conditions or in response to vascular endothelial growth factor (VEGF) or stromal-derived factor 1α (SDF) compared with normoxia. Expression of ACE2 or MasR was increased relative to normoxia while ACE or AT1R expressions were unaltered. Luciferase activity was increased by hypoxia in cells transfected with the luciferase reporter plasmids coding for the ACE2- or MasR promoters relatively to the control. The effects of hypoxia were mimicked by VEGF or SDF under normoxia. Hypoxia-induced ADAM17-dependent shedding of functional ACE2 fragments. In mice undergoing HLI, increased expression/activity of ACE2 and MasR were observed in the circulating HSPCs. This study provides compelling evidence for the hypoxic upregulation of ACE2 and MasR in CD34+ cells, which likely contributes to vascular repair.
Collapse
Affiliation(s)
- Shrinidh Joshi
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, North Dakota
| | - Hannah Wollenzien
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, North Dakota
| | - Estelle Leclerc
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, North Dakota
| | - Yagna Pr Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
30
|
Joshi S, Jarajapu YPR. Mitochondrial depolarization stimulates vascular repair-relevant functions of CD34 + cells via reactive oxygen species-induced nitric oxide generation. Br J Pharmacol 2018; 176:4373-4387. [PMID: 30367728 DOI: 10.1111/bph.14529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/23/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE CD34+ haematopoietic stem/progenitor cells have revascularization potential and are now being tested for the treatment of ischaemic vascular diseases in clinical trials. We tested the hypothesis that mitochondrial depolarization stimulates the reparative functions of CD34+ cells. EXPERIMENTAL APPROACH Peripheral blood was obtained from healthy individuals (n = 63), and mononuclear cells (MNCs) were separated. MNCs were enriched for lineage negative cells, followed by isolation of CD34+ cells. Vascular repair-relevant functions of CD34+ cells, proliferation and migration, were evaluated in the presence and absence of diazoxide. Mitochondrial membrane potential, ROS and NO levels were evaluated by flow cytometry by using JC-1, mitoSOX and DAF-FM respectively. KEY RESULTS Diazoxide stimulated the proliferation and migration of CD34+ cells that were comparable to the responses induced by stromal-derived factor-1α (SDF) or VEGF. Effects of diazoxide were blocked by either 5-hydroxydecanoate (5HD), a selective mitochondrial ATP-sensitive potassium channel (mitoKATP ) inhibitor, or by L-NAME. Diazoxide induced mitochondrial depolarization, and NO and cGMP generation that were 5HD-sensitive. The generation of NO and cGMP by diazoxide was blocked by an endothelial NOS (eNOS)-selective inhibitor, NIO, but not by a neuronal (n)NOS-selective inhibitor, Nω -propyl-L-arginine (NPA). A Ca2+ chelator, BAPTA, Akt inhibitor, triciribine, or PI3K inhibitor, LY294002, inhibited the NO release induced by diazoxide. Phosphorylation of eNOS at Ser1177 and dephosphorylation at Thr495 were increased. Diazoxide-induced ROS generation and phosphorylation of eNOS at Ser1177 were reduced by NPA. CONCLUSION AND IMPLICATIONS Diazoxide stimulates vascular repair-relevant functions of CD34+ cells via the mitoKATP -dependent release of NO and ROS. LINKED ARTICLES This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Shrinidh Joshi
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Yagna P R Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
31
|
Abdul Wahid SF, Ismail NA, Wan Jamaludin WF, Muhamad NA, Abdul Hamid MKA, Harunarashid H, Lai NM. Autologous cells derived from different sources and administered using different regimens for 'no-option' critical lower limb ischaemia patients. Cochrane Database Syst Rev 2018; 8:CD010747. [PMID: 30155883 PMCID: PMC6513643 DOI: 10.1002/14651858.cd010747.pub2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Revascularisation is the gold standard therapy for patients with critical limb ischaemia (CLI). In over 30% of patients who are not suitable for or have failed previous revascularisation therapy (the 'no-option' CLI patients), limb amputation is eventually unavoidable. Preliminary studies have reported encouraging outcomes with autologous cell-based therapy for the treatment of CLI in these 'no-option' patients. However, studies comparing the angiogenic potency and clinical effects of autologous cells derived from different sources have yielded limited data. Data regarding cell doses and routes of administration are also limited. OBJECTIVES To compare the efficacy and safety of autologous cells derived from different sources, prepared using different protocols, administered at different doses, and delivered via different routes for the treatment of 'no-option' CLI patients. SEARCH METHODS The Cochrane Vascular Information Specialist (CIS) searched the Cochrane Vascular Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE Ovid, Embase Ovid, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Allied and Complementary Medicine Database (AMED), and trials registries (16 May 2018). Review authors searched PubMed until February 2017. SELECTION CRITERIA We included randomised controlled trials (RCTs) involving 'no-option' CLI patients comparing a particular source or regimen of autologous cell-based therapy against another source or regimen of autologous cell-based therapy. DATA COLLECTION AND ANALYSIS Three review authors independently assessed the eligibility and methodological quality of the trials. We extracted outcome data from each trial and pooled them for meta-analysis. We calculated effect estimates using a risk ratio (RR) with 95% confidence interval (CI), or a mean difference (MD) with 95% CI. MAIN RESULTS We included seven RCTs with a total of 359 participants. These studies compared bone marrow-mononuclear cells (BM-MNCs) versus mobilised peripheral blood stem cells (mPBSCs), BM-MNCs versus bone marrow-mesenchymal stem cells (BM-MSCs), high cell dose versus low cell dose, and intramuscular (IM) versus intra-arterial (IA) routes of cell implantation. We identified no other comparisons in these studies. We considered most studies to be at low risk of bias in random sequence generation, incomplete outcome data, and selective outcome reporting; at high risk of bias in blinding of patients and personnel; and at unclear risk of bias in allocation concealment and blinding of outcome assessors. The quality of evidence was most often low to very low, with risk of bias, imprecision, and indirectness of outcomes the major downgrading factors.Three RCTs (100 participants) reported a total of nine deaths during the study follow-up period. These studies did not report deaths according to treatment group.Results show no clear difference in amputation rates between IM and IA routes (RR 0.80, 95% CI 0.54 to 1.18; three RCTs, 95 participants; low-quality evidence). Single-study data show no clear difference in amputation rates between BM-MNC- and mPBSC-treated groups (RR 1.54, 95% CI 0.45 to 5.24; 150 participants; low-quality evidence) and between high and low cell dose (RR 3.21, 95% CI 0.87 to 11.90; 16 participants; very low-quality evidence). The study comparing BM-MNCs versus BM-MSCs reported no amputations.Single-study data with low-quality evidence show similar numbers of participants with healing ulcers between BM-MNCs and mPBSCs (RR 0.89, 95% CI 0.44 to 1.83; 49 participants) and between IM and IA routes (RR 1.13, 95% CI 0.73 to 1.76; 41 participants). In contrast, more participants appeared to have healing ulcers in the BM-MSC group than in the BM-MNC group (RR 2.00, 95% CI 1.02 to 3.92; one RCT, 22 participants; moderate-quality evidence). Researchers comparing high versus low cell doses did not report ulcer healing.Single-study data show similar numbers of participants with reduction in rest pain between BM-MNCs and mPBSCs (RR 0.99, 95% CI 0.93 to 1.06; 104 participants; moderate-quality evidence) and between IM and IA routes (RR 1.22, 95% CI 0.91 to 1.64; 32 participants; low-quality evidence). One study reported no clear difference in rest pain scores between BM-MNC and BM-MSC (MD 0.00, 95% CI -0.61 to 0.61; 37 participants; moderate-quality evidence). Trials comparing high versus low cell doses did not report rest pain.Single-study data show no clear difference in the number of participants with increased ankle-brachial index (ABI; increase of > 0.1 from pretreatment), between BM-MNCs and mPBSCs (RR 1.00, 95% CI 0.71 to 1.40; 104 participants; moderate-quality evidence), and between IM and IA routes (RR 0.93, 95% CI 0.43 to 2.00; 35 participants; very low-quality evidence). In contrast, ABI scores appeared higher in BM-MSC versus BM-MNC groups (MD 0.05, 95% CI 0.01 to 0.09; one RCT, 37 participants; low-quality evidence). ABI was not reported in the high versus low cell dose comparison.Similar numbers of participants had improved transcutaneous oxygen tension (TcO₂) with IM versus IA routes (RR 1.22, 95% CI 0.86 to 1.72; two RCTs, 62 participants; very low-quality evidence). Single-study data with low-quality evidence show a higher TcO₂ reading in BM-MSC versus BM-MNC groups (MD 8.00, 95% CI 3.46 to 12.54; 37 participants) and in mPBSC- versus BM-MNC-treated groups (MD 1.70, 95% CI 0.41 to 2.99; 150 participants). TcO₂ was not reported in the high versus low cell dose comparison.Study authors reported no significant short-term adverse effects attributed to autologous cell implantation. AUTHORS' CONCLUSIONS Mostly low- and very low-quality evidence suggests no clear differences between different stem cell sources and different treatment regimens of autologous cell implantation for outcomes such as all-cause mortality, amputation rate, ulcer healing, and rest pain for 'no-option' CLI patients. Pooled analyses did not show a clear difference in clinical outcomes whether cells were administered via IM or IA routes. High-quality evidence is lacking; therefore the efficacy and long-term safety of autologous cells derived from different sources, prepared using different protocols, administered at different doses, and delivered via different routes for the treatment of 'no-option' CLI patients, remain to be confirmed.Future RCTs with larger numbers of participants are needed to determine the efficacy of cell-based therapy for CLI patients, along with the optimal cell source, phenotype, dose, and route of implantation. Longer follow-up is needed to confirm the durability of angiogenic potential and the long-term safety of cell-based therapy.
Collapse
Affiliation(s)
- S Fadilah Abdul Wahid
- Universiti Kebangsaan Malaysia Medical CentreCell Therapy CenterJalan Yaacob LatifKuala LumpurMalaysia56000
- Universiti Kebangsaan Malaysia Medical CentreClinical Haematology & Stem Cell Transplantation Services, Department of MedicineKuala LumpurMalaysia
| | - Nor Azimah Ismail
- Universiti Kebangsaan Malaysia Medical CentreCell Therapy CenterJalan Yaacob LatifKuala LumpurMalaysia56000
| | - Wan Fariza Wan Jamaludin
- Universiti Kebangsaan Malaysia Medical CentreCell Therapy CenterJalan Yaacob LatifKuala LumpurMalaysia56000
| | - Nor Asiah Muhamad
- Ministry of HealthInstitute for Public HealthKuala LumpurFederal TeritoryMalaysia50590
| | | | - Hanafiah Harunarashid
- Universiti Kebangsaan Malaysia Medical CentreUnit of Vascular Surgery, Department of SurgeryJalan Yaacob LatifKuala LumpurKuala LumpurMalaysia56000
| | - Nai Ming Lai
- Taylor's UniversitySchool of MedicineSubang JayaMalaysia
| | | |
Collapse
|
32
|
Vyas B, Shah A, Marathe A, Ansarullah, Vyas R, Bhonde R. Adipose tissue: A natural resource for multipotent mesenchymal stem cells with potential translation to trigerminal layers. Indian J Plast Surg 2018; 51:177-181. [PMID: 30505088 PMCID: PMC6219375 DOI: 10.4103/ijps.ijps_150_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The article reports basic science research that establishes that adipose tissue (AT)-derived mesenchymal stem cells (MSCs) have a potential to transgerminal translation. STUDY DESIGN MSC confirmation was obtained by phenotypic spindle-shaped cells as well as with four positive and three negative markers. The translineage translation of adipose-derived MSCs (ADMSCs) was established. MATERIALS AND METHODS The lipoaspirate was subjected to enzymatic digestion with collagenase. Stromal vascular factor (SVF) was isolated. With two passages, pure culture of ADMSCs was obtained. They were translated to all the three germinal layers. RESULTS AT-derived SVF contains ~30% MSCs. They are capable of being translated into endoderm, mesoderm and ectoderm. CONCLUSION AT is a rich source for MSCs, with immense research possibilities for regeneration and rejuvenation.
Collapse
Affiliation(s)
| | - Atul Shah
- Samanvaya Trust, Vadodara, Gujarat, India
| | | | - Ansarullah
- Samanvaya Trust, Vadodara, Gujarat, India
| | - Rajni Vyas
- Samanvaya Trust, Vadodara, Gujarat, India
| | - Ramesh Bhonde
- Manipal Institute of Regenerative Medicine, Bengaluru, Karnataka, India
| |
Collapse
|
33
|
Reduction of Endoplasmic Reticulum Stress Improves Angiogenic Progenitor Cell function in a Mouse Model of Type 1 Diabetes. Cell Death Dis 2018; 9:467. [PMID: 29700294 PMCID: PMC5920101 DOI: 10.1038/s41419-018-0501-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/08/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022]
Abstract
Persistent vascular injury and degeneration in diabetes are attributed in part to defective reparatory function of angiogenic cells. Our recent work implicates endoplasmic reticulum (ER) stress in high-glucose-induced bone marrow (BM) progenitor dysfunction. Herein, we investigated the in vivo role of ER stress in angiogenic abnormalities of streptozotocin-induced diabetic mice. Our data demonstrate that ER stress markers and inflammatory gene expression in BM mononuclear cells and hematopoietic progenitor cells increase dynamically with disease progression. Increased CHOP and cleaved caspase 3 levels were observed in BM-derived early outgrowth cells (EOCs) after 3 months of diabetes. Inhibition of ER stress by ex vivo or in vivo chemical chaperone treatment significantly improved the generation and migration of diabetic EOCs while reducing apoptosis of these cells. Chemical chaperone treatment also increased the number of circulating angiogenic cells in peripheral blood, alleviated BM pathology, and enhanced retinal vascular repair following ischemia/reperfusion in diabetic mice. Mechanistically, knockdown of CHOP alleviated high-glucose-induced EOC dysfunction and mitigated apoptosis, suggesting a pivotal role of CHOP in mediating ER stress-associated angiogenic cell injury in diabetes. Together, our study suggests that targeting ER signaling may provide a promising and novel approach to enhancing angiogenic function in diabetes.
Collapse
|
34
|
Tanaka R, Masuda H, Fujimura S, Ito-Hirano R, Arita K, Kakinuma Y, Hagiwara H, Kado M, Hayashi A, Mita T, Ogawa T, Watada H, Mizuno H, Sawada N, Asahara T. Quality-Quantity Control Culture Enhances Vasculogenesis and Wound Healing Efficacy of Human Diabetic Peripheral Blood CD34+ Cells. Stem Cells Transl Med 2018; 7:428-438. [PMID: 29573563 PMCID: PMC5905232 DOI: 10.1002/sctm.17-0043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 01/17/2018] [Indexed: 01/16/2023] Open
Abstract
Autologous endothelial progenitor cell (EPC) therapy is commonly used to stimulate angiogenesis in ischemic repair and wound healing. However, low total numbers and functional deficits of EPCs make autologous EPC therapy ineffective in diabetes. Currently, no known ex vivo culture techniques can expand and/or ameliorate the functional deficits of EPCs for clinical usage. Recently, we showed that a quality‐quantity culture (QQc) system restores the vasculogenic and wound‐healing efficacy of murine diabetic EPCs. To validate these results and elucidate the mechanism in a translational study, we evaluated the efficacy of this QQc system to restore the vasculogenic potential of diabetic human peripheral blood (PB) CD34+ cells. CD34+ cells purified from PB of diabetic and healthy patients were subjected to QQc. Gene expression, vascular regeneration, and expression of cytokines and paracrine mediators were analyzed. Pre‐ or post‐QQc diabetic human PB‐CD34+ cells were transplanted into wounded BALB/c nude mice and streptozotocin‐induced diabetic mice to assess functional efficacy. Post‐QQc diabetic human PB‐CD34+ cell therapy significantly accelerated wound closure, re‐epithelialization, and angiogenesis. The higher therapeutic efficacy of post‐QQc diabetic human PB‐CD34+ cells was attributed to increased differentiation ability of diabetic CD34+ cells, direct vasculogenesis, and enhanced expression of angiogenic factors and wound‐healing genes. Thus, QQc can significantly enhance the therapeutic efficacy of human PB‐CD34+ cells in diabetic wounds, overcoming the inherent limitation of autologous cell therapy in diabetic patients, and could be useful for treatment of not only wounds but also other ischemic diseases. Stem Cells Translational Medicine2018;7:428–438
Collapse
Affiliation(s)
- Rica Tanaka
- Department of Plastic and Reconstructive Surgery, Tokyo, Japan
| | - Haruchika Masuda
- Department of Basic Clinical Science, Division of Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | | | - Rie Ito-Hirano
- Department of Plastic and Reconstructive Surgery, Tokyo, Japan
| | - Kayo Arita
- Department of Plastic and Reconstructive Surgery, Tokyo, Japan
| | - Yusuke Kakinuma
- Department of Plastic and Reconstructive Surgery, Tokyo, Japan
| | - Hiroko Hagiwara
- Department of Plastic and Reconstructive Surgery, Tokyo, Japan
| | - Makiko Kado
- Department of Plastic and Reconstructive Surgery, Tokyo, Japan
| | - Ayato Hayashi
- Department of Plastic and Reconstructive Surgery, Tokyo, Japan
| | - Tomoya Mita
- Department of Internal Medicine, Division of Diabetes and Metabolism, Tokyo, Japan
| | - Takasuke Ogawa
- Department of Dermatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Internal Medicine, Division of Diabetes and Metabolism, Tokyo, Japan
| | - Hiroshi Mizuno
- Department of Plastic and Reconstructive Surgery, Tokyo, Japan
| | - Naoki Sawada
- Global COE Program, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayuki Asahara
- Department of Basic Clinical Science, Division of Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
35
|
Hassanpour M, Cheraghi O, Brazvan B, Hiradfar A, Aghamohammadzadeh N, Rahbarghazi R, Nouri M. Chronic Exposure of Human Endothelial Progenitor Cells to Diabetic Condition Abolished the Regulated Kinetics Activity of Exosomes. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:1068-1080. [PMID: 30127829 PMCID: PMC6094433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By virtue of lifestyle change, incidence of diabetes mellitus type 2 is increasingly being raised with different up-surging pathologies. It was showed that endothelial progenitor cells (EPCs) were disqualified in neo-angiogenesis induction. Besides, to an aborted differentiation property, malfunctioned paracrine activities worsen off vascular abnormality. Nano-scaled exosomes play essential roles in reciprocal cell-cell crosstalk via bioactive molecules. To address the effect of diabetic serum on exosome secretion capacity, EPCs were exposed to diabetic condition for seven days. In addition to in-vitro tubulogenesis, migration and LDL uptake assessment, exosome release capacity, and expression profiles of three genes participating in exosome kinetics, including CD63, Alix and Rab27a, revealed by Real-time PCR method. Data showed diabetic sera not only abolished the in-vitro tubulogenesis, migration and LDL uptake properties but also decreased exosome release and expression of related genes. This study sheds lights on the adverse effect of diabetic condition on exosome kinetics in EPCs.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. ,Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran.
| | - Omid Cheraghi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Belal Brazvan
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran.
| | - Amirataollah Hiradfar
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nasser Aghamohammadzadeh
- Endocrine and Metabolism Section, Department of Internal Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran. ,1R.R and M.M. contributed equally to this work,Corresponding authors:E-mail: ;
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran. ,1R.R and M.M. contributed equally to this work,Corresponding authors:E-mail: ;
| |
Collapse
|
36
|
Peng BY, Dubey NK, Mishra VK, Tsai FC, Dubey R, Deng WP, Wei HJ. Addressing Stem Cell Therapeutic Approaches in Pathobiology of Diabetes and Its Complications. J Diabetes Res 2018; 2018:7806435. [PMID: 30046616 PMCID: PMC6036791 DOI: 10.1155/2018/7806435] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/19/2018] [Accepted: 05/27/2018] [Indexed: 12/14/2022] Open
Abstract
High morbidity and mortality of diabetes mellitus (DM) throughout the human population is a serious threat which needs to be addressed cautiously. Type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) are most prevalent forms. Disruption in insulin regulation and resistance leads to increased formation and accumulation of advanced end products (AGEs), which further enhance oxidative and nitrosative stress leading to microvascular (retinopathy, neuropathy, and nephropathy) and macrovascular complications. These complications affect the normal function of organ and tissues and may cause life-threatening disorders, if hyperglycemia persists and improperly controlled. Current and traditional treatment procedures are only focused on to regulate the insulin level and do not cure the diabetic complications. Pancreatic transplantation seemed a viable alternative; however, it is limited due to lack of donors. Cell-based therapy such as stem cells is considered as a promising therapeutic agent against DM and diabetic complications owing to their multilineage differentiation and regeneration potential. Previous studies have demonstrated the various impacts of both pluripotent and multipotent stem cells on DM and its micro- and macrovascular complications. Therefore, this review summarizes the potential of stem cells to treat DM and its related complications.
Collapse
Affiliation(s)
- Bou-Yue Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Department of Dentistry, Taipei Medical University Hospital, Taipei City 110, Taiwan
| | - Navneet Kumar Dubey
- Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Viraj Krishna Mishra
- Applied Biotech Engineering Centre (ABEC), Department of Biotechnology, Ambala College of Engineering and Applied Research, Ambala, India
| | - Feng-Chou Tsai
- Department of Stem Cell Research, Cosmetic Clinic Group, Taipei City 110, Taiwan
| | - Rajni Dubey
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei City 106, Taiwan
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Hong-Jian Wei
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
| |
Collapse
|
37
|
Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, Hughes TM, Craft S, Freedman BI, Bowden DW, Vinik AI, Casellini CM. Diabetic Microvascular Disease: An Endocrine Society Scientific Statement. J Clin Endocrinol Metab 2017; 102:4343-4410. [PMID: 29126250 PMCID: PMC5718697 DOI: 10.1210/jc.2017-01922] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 01/18/2023]
Abstract
Both type 1 and type 2 diabetes adversely affect the microvasculature in multiple organs. Our understanding of the genesis of this injury and of potential interventions to prevent, limit, or reverse injury/dysfunction is continuously evolving. This statement reviews biochemical/cellular pathways involved in facilitating and abrogating microvascular injury. The statement summarizes the types of injury/dysfunction that occur in the three classical diabetes microvascular target tissues, the eye, the kidney, and the peripheral nervous system; the statement also reviews information on the effects of diabetes and insulin resistance on the microvasculature of skin, brain, adipose tissue, and cardiac and skeletal muscle. Despite extensive and intensive research, it is disappointing that microvascular complications of diabetes continue to compromise the quantity and quality of life for patients with diabetes. Hopefully, by understanding and building on current research findings, we will discover new approaches for prevention and treatment that will be effective for future generations.
Collapse
Affiliation(s)
- Eugene J. Barrett
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Zhenqi Liu
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Mogher Khamaisi
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - George L. King
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Barbara E. K. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Timothy M. Hughes
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Suzanne Craft
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Barry I. Freedman
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Donald W. Bowden
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Aaron I. Vinik
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| | - Carolina M. Casellini
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| |
Collapse
|
38
|
Bhatwadekar AD, Duan Y, Korah M, Thinschmidt JS, Hu P, Leley SP, Caballero S, Shaw L, Busik J, Grant MB. Hematopoietic stem/progenitor involvement in retinal microvascular repair during diabetes: Implications for bone marrow rejuvenation. Vision Res 2017; 139:211-220. [PMID: 29042190 DOI: 10.1016/j.visres.2017.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
Abstract
The widespread nature of diabetes affects all organ systems of an individual including the bone marrow. Long-term damage to the cellular and extracellular components of the bone marrow leads to a rapid decline in the bone marrow-hematopoietic stem/progenitor cells (HS/PCs) compartment. This review will highlight the importance of bone marrow microenvironment in maintaining bone marrow HS/PC populations and the contribution of these key populations in microvascular repair during the natural history of diabetes. The autonomic nervous system can initiate and propagate bone marrow dysfunction in diabetes. Systemic pharmacological strategies designed to protect the bone marrow-HS/PC population from diabetes induced-oxidative stress and advanced glycation end product accumulation represent a new approach to target diabetic retinopathy progression. Protecting HS/PCs ensures their participation in vascular repair and reduces the risk of vasogdegeneration occurring in the retina.
Collapse
Affiliation(s)
- Ashay D Bhatwadekar
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA.
| | - Yaqian Duan
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA
| | - Maria Korah
- Department of Pharmacology, University of Florida, Gainesville, FL 32610, USA
| | | | - Ping Hu
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA
| | - Sameer P Leley
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA
| | - Sergio Caballero
- Department of Pharmacology, University of Florida, Gainesville, FL 32610, USA
| | - Lynn Shaw
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA
| | - Julia Busik
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Maria B Grant
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
39
|
Vergori L, Lauret E, Soleti R, Andriantsitohaina R, Carmen Martinez M. Microparticles Carrying Peroxisome Proliferator-Activated Receptor Alpha Restore the Reduced Differentiation and Functionality of Bone Marrow-Derived Cells Induced by High-Fat Diet. Stem Cells Transl Med 2017; 7:135-145. [PMID: 29080294 PMCID: PMC5746153 DOI: 10.1002/sctm.17-0098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/21/2017] [Indexed: 01/17/2023] Open
Abstract
Metabolic pathologies such as diabetes and obesity are associated with decreased level of circulating and bone marrow (BM)-derived endothelial progenitor cells (EPCs). It is known that activation of peroxisome proliferator-activated receptor alpha (PPARα) may stimulate cell differentiation. In addition, microparticles (MPs), small membrane vesicles produced by activated and apoptotic cells, are able to reprogram EPCs. Here, we evaluated the role of MPs carrying PPARα on both phenotype and function of progenitor cells from mice fed with a high-fat diet (HFD). HFD reduced circulating EPCs and, after 7 days of culture, BM-derived EPCs and monocytic progenitor cells from HFD-fed mice displayed impaired differentiation. At the same time, we show that MPs bearing PPARα, MPsPPARα+/+ , increased the differentiation of EPCs and monocytic progenitors from HFD-fed mice, whereas MPs taken from PPARα knockout mice (MPsPPARα-/- ) had no effect on the differentiation of all types of progenitor cells. Furthermore, MPsPPARα+/+ increased the ability of progenitor cells to promote in vivo angiogenesis in mice fed with HFD. The in vitro and in vivo effects of MPsPPARα+/+ were abolished in presence of MK886, a specific inhibitor of PPARα. Collectively, these data highlight the ability of MPs carrying PPARα to restore the failed differentiation and functionality of BM-derived cells induced by HFD. Stem Cells Translational Medicine 2018;7:135-145.
Collapse
Affiliation(s)
- Luisa Vergori
- INSERM U1063, Stress oxydant et pathologies métaboliques, Faculté de Médecine, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Emilie Lauret
- INSERM U1063, Stress oxydant et pathologies métaboliques, Faculté de Médecine, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Raffaella Soleti
- INSERM U1063, Stress oxydant et pathologies métaboliques, Faculté de Médecine, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Ramaroson Andriantsitohaina
- INSERM U1063, Stress oxydant et pathologies métaboliques, Faculté de Médecine, UNIV Angers, Université Bretagne Loire, Angers, France.,Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - M Carmen Martinez
- INSERM U1063, Stress oxydant et pathologies métaboliques, Faculté de Médecine, UNIV Angers, Université Bretagne Loire, Angers, France.,Centre Hospitalo-Universitaire d'Angers, Angers, France
| |
Collapse
|
40
|
Endothelial Progenitor Cells' Classification and Application in Neurological Diseases. Tissue Eng Regen Med 2017; 14:327-332. [PMID: 30603489 DOI: 10.1007/s13770-017-0043-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/15/2016] [Accepted: 09/25/2016] [Indexed: 12/31/2022] Open
Abstract
The therapeutic effects of endothelial progenitor cells (EPCs) on ischemic stroke have been extensively studied in recent years. However, the differences in early EPCs and endothelial outgrowth cells (EOCs) are still unclear. Clarifications of their respective properties and specific functioning characteristics contribute to better applications of EPCs in ischemic diseases. In this review, we discuss cellular origin, isolation, culture, surface markers of early EPCs and EOCs and relevant applications in neurological diseases. We conclude that EOCs possess all characteristics of true endothelial progenitors and have potent advantages in EPC-based therapies for ischemic diseases. A number of preclinical and clinical applications of EPCs in neurological diseases are under study. More studies are needed to determine the specific characteristics of EPCs and the relevant mechanisms of EPCs for neurological diseases.
Collapse
|
41
|
Das SK, Yuan YF, Li MQ. An Overview on Current Issues and Challenges of Endothelial Progenitor Cell-Based Neovascularization in Patients with Diabetic Foot Ulcer. Cell Reprogram 2017; 19:75-87. [PMID: 28266867 DOI: 10.1089/cell.2016.0050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diabetic foot ulcer's impaired wound healing, which leads to the development of chronic non-healing wounds and ultimately amputation, is a major problem worldwide. Although recently endothelial progenitor cell-derived cell therapy has been used as a therapeutic intervention to treat diabetic wounds, thereby promoting neovascularization, the results, however, are not satisfactory. In this article, we have discussed the several steps that are involved in the neovascularization process, which might be impaired during diabetes. In addition, we have also discussed the reported possible interventions to correct these impairments. Thus, we have summarized neovascularization as a process with a coordinated sequence of multiple steps and thus, there is the need of a combined therapeutic approach to achieve better treatment outcomes.
Collapse
Affiliation(s)
- Sushant Kumar Das
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University , Shanghai, People's Republic of China
| | - Yi Feng Yuan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University , Shanghai, People's Republic of China
| | - Mao Quan Li
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University , Shanghai, People's Republic of China
| |
Collapse
|
42
|
Campesi I, Franconi F, Seghieri G, Meloni M. Sex-gender-related therapeutic approaches for cardiovascular complications associated with diabetes. Pharmacol Res 2017; 119:195-207. [PMID: 28189784 DOI: 10.1016/j.phrs.2017.01.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/14/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
Diabetes is a chronic disease associated with micro- and macrovascular complications and is a well-established risk factor for cardiovascular disease. Cardiovascular complications associated with diabetes are among the most important causes of death in diabetic patients. Interestingly, several sex-gender differences have been reported to significantly impact in the pathophysiology of diabetes. In particular, sex-gender differences have been reported to affect diabetes epidemiology, risk factors, as well as cardiovascular complications associated with diabetes. This suggests that different therapeutic approaches are needed for managing diabetes-associated cardiovascular complications in men and women. In this review, we will discuss about the sex-gender differences that are known to impact on diabetes, mainly focusing on the cardiovascular complications associated with the disease. We will then discuss the therapeutic approaches for managing diabetes-associated cardiovascular complications and how differences in sex-gender can influence the existing therapeutic approaches.
Collapse
Affiliation(s)
- Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| | - Flavia Franconi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Dipartimento Politiche della Persona, Regione Basilicata, Italy.
| | | | - Marco Meloni
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, UK.
| |
Collapse
|
43
|
Vasam G, Joshi S, Thatcher SE, Bartelmez SH, Cassis LA, Jarajapu YPR. Reversal of Bone Marrow Mobilopathy and Enhanced Vascular Repair by Angiotensin-(1-7) in Diabetes. Diabetes 2017; 66:505-518. [PMID: 27856608 PMCID: PMC5248994 DOI: 10.2337/db16-1039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022]
Abstract
The angiotensin (ANG)-(1-7)/Mas receptor (MasR) pathway activates vascular repair-relevant functions of bone marrow progenitor cells. We tested the effects of ANG-(1-7) on mobilization and vasoreparative functions of progenitor cells that are impaired in diabetes. The study was performed in streptozotocin-induced diabetic (db/db) mice. Diabetes resulted in a decreased number of Lineage-Sca-1+c-Kit+ (LSK) cells in the circulation, which was normalized by ANG-(1-7). Diabetes-induced depletion of LSK cells in the bone marrow was reversed by ANG-(1-7). ρ-Kinase (ROCK) activity was increased specifically in bone marrow LSK cells by ANG-(1-7) in diabetes, and the beneficial effects of ANG-(1-7) were prevented by fasudil. ANG-(1-7) increased Slit3 levels in the bone marrow supernatants, which activated ROCK in LSK cells and sensitized them for stromal-derived factor-1α (SDF)-induced migration. Diabetes prevented the mobilization of LSK cells in response to ischemia and impaired the recovery of blood flow, both of which were reversed by ANG-(1-7) in both models of diabetes. Genetic ablation of MasR prevented ischemia-induced mobilization of LSK cells and impaired blood flow recovery, which was associated with decreased proliferation and migration of LSK cells in response to SDF or vascular endothelial growth factor. These results suggest that MasR is a promising target for the treatment of diabetic bone marrow mobilopathy and vascular disease.
Collapse
Affiliation(s)
- Goutham Vasam
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND
| | - Shrinidh Joshi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND
| | - Sean E Thatcher
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | | | - Lisa A Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Yagna P R Jarajapu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|
44
|
Abstract
Long-standing diabetes leads to structural and functional alterations in both the micro- and the macrovasculature. Designing therapies to repair these abnormalities present unique and sophisticated challenges. Vascular endothelial cells are the primary cells damaged by hyperglycemia-induced adverse effects. Vascular stem cells that give rise to endothelial progenitor cells and mesenchymal progenitor cells represent an attractive target for cell therapy for diabetic patients. In this review, we shed light on challenges and recent advances surrounding stem cell therapies for diabetes vascular complications and discuss limitations for their clinical adoption.
Collapse
Affiliation(s)
- Mogher Khamaisi
- Internal Medicine D, Rambam Health Care Campus and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Institute of Endocrinology, Diabetes & Metabolism, Rambam Health Care Campus and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sarit Ella Balanson
- Internal Medicine D, Rambam Health Care Campus and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
45
|
Progenitor Cells for Arterial Repair: Incremental Advancements towards Therapeutic Reality. Stem Cells Int 2017; 2017:8270498. [PMID: 28232850 PMCID: PMC5292398 DOI: 10.1155/2017/8270498] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/18/2016] [Indexed: 02/08/2023] Open
Abstract
Coronary revascularization remains the standard treatment for obstructive coronary artery disease and can be accomplished by either percutaneous coronary intervention (PCI) or coronary artery bypass graft surgery. Considerable advances have rendered PCI the most common form of revascularization and improved clinical outcomes. However, numerous challenges to modern PCI remain, namely, in-stent restenosis and stent thrombosis, underscoring the importance of understanding the vessel wall response to injury to identify targets for intervention. Among recent promising discoveries, endothelial progenitor cells (EPCs) have garnered considerable interest given an increasing appreciation of their role in vascular homeostasis and their ability to promote vascular repair after stent placement. Circulating EPC numbers have been inversely correlated with cardiovascular risk, while administration of EPCs in humans has demonstrated improved clinical outcomes. Despite these encouraging results, however, advancing EPCs as a therapeutic modality has been hampered by a fundamental roadblock: what constitutes an EPC? We review current definitions and sources of EPCs as well as the proposed mechanisms of EPC-mediated vascular repair. Additionally, we discuss the current state of EPCs as therapeutic agents, focusing on endogenous augmentation and transplantation.
Collapse
|
46
|
Arcangeli A, Lastraioli E, Piccini B, D’Amico M, Lenzi L, Pillozzi S, Calabrese M, Toni S, Arcangeli A. Circulating Endothelial Progenitor Cells in Type 1 Diabetic Patients: Relation with Patients' Age and Disease Duration. Front Endocrinol (Lausanne) 2017; 8:278. [PMID: 29109697 PMCID: PMC5660067 DOI: 10.3389/fendo.2017.00278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/04/2017] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Circulating endothelial progenitor cells (cEPCs) have been reported to be dysfunctional in diabetes mellitus (DM) patients, accounting for the vascular damage and the ensuing high risk for cardiovascular disease (CVD) characteristic of this disease. The aim of the present study was to evaluate the number of circulating cEPCs in type 1 DM (T1DM) patients, without clinical vascular damage, of different ages and with different disease duration. METHODS An observational, clinical-based prospective study was performed on T1DM patients enrolled in two clinical centers. cEPCs were determined by flow cytometry, determining the number of CD34/CD133/VEGFR2-positive cells within peripheral blood mononuclear cells (PBMCs). RESULTS The number of cEPCs was lower in adult T1DM patients, whilst higher in childhood/young patients, compared to controls of the same age range. When patients were grouped into two age groups (≥ or <20 years) (and categorized on the basis of the duration of the disease), the number of cEPCs in young (<20 years) patients was higher compared with older subjects, regardless of disease duration. A subset of patients with very high cEPCs was identified in the <20 years group. CONCLUSION There is an association between the number of cEPCs and patients' age: childhood/young T1DM patients have significantly higher levels of cEPCs, respect to adult T1DM patients. Such difference is maintained also when the disease lasts for more than 10 years. The very high levels of cEPCs, identified in a subset of childhood/young patients, might protect vessels against endothelial dysfunction and damage. Such protection would be less operative in older subjects, endowed with lower cEPC numbers, in which complications are known to develop more easily.
Collapse
Affiliation(s)
| | - Elena Lastraioli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Barbara Piccini
- Diabetology Unit, Azienda Ospedaliero Universitaria Meyer, Florence, Italy
| | | | - Lorenzo Lenzi
- Diabetology Unit, Azienda Ospedaliero Universitaria Meyer, Florence, Italy
| | - Serena Pillozzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Sonia Toni
- DI.V.A.L Toscana Srl, Sesto Fiorentino, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- *Correspondence: Annarosa Arcangeli,
| |
Collapse
|
47
|
Methods for Studying the Role of RAAS in the Modulation of Vascular Repair-Relevant Functions of Stem/Progenitor Cells. Methods Mol Biol 2017; 1614:47-59. [PMID: 28500594 DOI: 10.1007/978-1-4939-7030-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In recent years, previously unknown functions have been conferred to the RAAS and have been explored in mechanistic studies and disease models. Implication of bone marrow stem/progenitor cells in the cardiovascular protective or detrimental effects of RAAS is a prominent advancement because of the translational significance. Selected members of RAAS are now known to modulate migration, proliferation, and mobilization of bone marrow cells in response to ischemic insult, which are sensitive indicators of vascular repair-relevant functions. In this Chapter, protocols for most frequently used, in vitro, ex vivo, and in vivo assays to explore the potential of RAAS members to stimulate vascular repair-relevant functions of bone marrow stem/progenitor cells of human and murine origin.
Collapse
|
48
|
Das A. Diabetic Retinopathy: Battling the Global Epidemic. Invest Ophthalmol Vis Sci 2016; 57:6669-6682. [PMID: 27936469 PMCID: PMC5152562 DOI: 10.1167/iovs.16-21031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 12/23/2022] Open
Affiliation(s)
- Arup Das
- Department of Surgery, Division of Ophthalmology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States
| |
Collapse
|
49
|
Patel VB, Zhong JC, Grant MB, Oudit GY. Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure. Circ Res 2016; 118:1313-26. [PMID: 27081112 DOI: 10.1161/circresaha.116.307708] [Citation(s) in RCA: 611] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/19/2016] [Indexed: 11/16/2022]
Abstract
Heart failure (HF) remains the most common cause of death and disability, and a major economic burden, in industrialized nations. Physiological, pharmacological, and clinical studies have demonstrated that activation of the renin-angiotensin system is a key mediator of HF progression. Angiotensin-converting enzyme 2 (ACE2), a homolog of ACE, is a monocarboxypeptidase that converts angiotensin II into angiotensin 1-7 (Ang 1-7) which, by virtue of its actions on the Mas receptor, opposes the molecular and cellular effects of angiotensin II. ACE2 is widely expressed in cardiomyocytes, cardiofibroblasts, and coronary endothelial cells. Recent preclinical translational studies confirmed a critical counter-regulatory role of ACE2/Ang 1-7 axis on the activated renin-angiotensin system that results in HF with preserved ejection fraction. Although loss of ACE2 enhances susceptibility to HF, increasing ACE2 level prevents and reverses the HF phenotype. ACE2 and Ang 1-7 have emerged as a key protective pathway against HF with reduced and preserved ejection fraction. Recombinant human ACE2 has been tested in phase I and II clinical trials without adverse effects while lowering and increasing plasma angiotensin II and Ang 1-7 levels, respectively. This review discusses the transcriptional and post-transcriptional regulation of ACE2 and the role of the ACE2/Ang 1-7 axis in cardiac physiology and in the pathophysiology of HF. The pharmacological and therapeutic potential of enhancing ACE2/Ang 1-7 action as a novel therapy for HF is highlighted.
Collapse
Affiliation(s)
- Vaibhav B Patel
- From the Division of Cardiology, Department of Medicine (V.B.P., G.Y.O.), Mazankowski Alberta Heart Institute (V.B.P., G.Y.O.), and Department of Physiology (G.Y.O.), University of Alberta, Edmonton, Canada; State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.-C.Z.); Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China (J.-C.Z.); and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis (M.B.G.)
| | - Jiu-Chang Zhong
- From the Division of Cardiology, Department of Medicine (V.B.P., G.Y.O.), Mazankowski Alberta Heart Institute (V.B.P., G.Y.O.), and Department of Physiology (G.Y.O.), University of Alberta, Edmonton, Canada; State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.-C.Z.); Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China (J.-C.Z.); and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis (M.B.G.)
| | - Maria B Grant
- From the Division of Cardiology, Department of Medicine (V.B.P., G.Y.O.), Mazankowski Alberta Heart Institute (V.B.P., G.Y.O.), and Department of Physiology (G.Y.O.), University of Alberta, Edmonton, Canada; State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.-C.Z.); Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China (J.-C.Z.); and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis (M.B.G.)
| | - Gavin Y Oudit
- From the Division of Cardiology, Department of Medicine (V.B.P., G.Y.O.), Mazankowski Alberta Heart Institute (V.B.P., G.Y.O.), and Department of Physiology (G.Y.O.), University of Alberta, Edmonton, Canada; State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.-C.Z.); Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China (J.-C.Z.); and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis (M.B.G.).
| |
Collapse
|
50
|
Ismail AM, Abdou SM, Aty HA, Kamhawy AH, Elhinedy M, Elwageh M, Taha A, Ezzat A, Salem HA, Youssif S, Salem ML. Autologous transplantation of CD34(+) bone marrow derived mononuclear cells in management of non-reconstructable critical lower limb ischemia. Cytotechnology 2016; 68:771-781. [PMID: 25511801 PMCID: PMC4960127 DOI: 10.1007/s10616-014-9828-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
Patients with a decrease in limb perfusion with a potential threat to limb viability manifested by ischemic rest pain, ischemic ulcers, and/or gangrene are considered to have critical limb ischemia (CLI). Because of this generally poor outcome, there is a strong need for attempting any procedure to save the affected limb. The aim of this work is to evaluate the possibility to use stem cell therapy as a treatment option for patients with chronic critical lower limb ischemia with no distal run off. This study includes 20 patients with chronic critical lower limb ischemia with no distal run off who are unsuitable for vascular or endovascular option. These patients underwent stem cell therapy (SCT) by autologous transplantation of bone marrow derived mononuclear cells. 55 % of patients treated with SCT showed improvement of the rest pain after the first month, 60 % continued improvement of the rest pain after 6 months, 75 % after 1 year and 80 % after 2 years and continued without any deterioration till the third year. Limb salvage rate after STC was 80 % after the first year till the end of the second and third years. SCT can result in angiogenesis in patients with no-option CLI, providing a foundation for the application of this therapy to leg ischemia.
Collapse
Affiliation(s)
| | - Said M Abdou
- Clinical Pathology Department, Tanta University, Tanta, Egypt
| | | | | | | | | | - Atef Taha
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amal Ezzat
- Clinical Pathology Department, Tanta University, Tanta, Egypt
| | - Hoda A Salem
- Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Said Youssif
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed L Salem
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Center of Excellence in Cancer Research, Tanta University, Tanta, Egypt.
| |
Collapse
|