1
|
Zhang Y, Li Z, Zhang J, Mafa T, Zhang J, Zhu H, Chen L, Zong Z, Yang L. Fibrinogen: A new player and target on the formation of pre-metastatic niche in tumor metastasis. Crit Rev Oncol Hematol 2025; 207:104625. [PMID: 39826884 DOI: 10.1016/j.critrevonc.2025.104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
Tumor metastasis involves a series of complex and coordinated processes, which is the main cause of patient death and still a significant challenge in cancer treatment. Pre-metastatic niches (PMN), a specialized microenvironment that develops in distant organs prior to the arrival of metastatic cancer cells, plays a crucial role in driving tumor metastasis. The development of PMN depends on a complex series of cellular and molecular components including tumor-derived factors, bone marrow-derived cells, resident immune cells, and extracellular matrix. Fibrinogen, a key factor in the typical blood clotting process, is related to tumor metastasis and prognosis, according to a growing body of evidence in recent years. Fibrinogen has emerged as an important factor in mediating the formation of tumor microenvironment. Nevertheless, a clear and detailed mechanism by which fibrinogen promotes tumor metastasis remains unknown. In this review, we first explore the roles of fibrinogen in the development of PMN from four perspectives: immunosuppression, inflammation, angiogenesis, and extracellular matrix remodeling. We highlight the significance of fibrinogen in shaping PMN and discuss its potential therapeutic values, opening new avenues for targeting fibrinogen to prevent or treat metastasis.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Rd, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College, Nanchang University, No. 1299 Xuefu Ave, Nanchang, Jiangxi 330031, China
| | - Zelin Li
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Rd, Nanchang, Jiangxi 330006, China; The First Clinical Medical College, Nanchang University, No. 1299 Xuefu Ave, Nanchang, Jiangxi 330031, China
| | - Jiamao Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Rd, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College, Nanchang University, No. 1299 Xuefu Ave, Nanchang, Jiangxi 330031, China
| | - Tatenda Mafa
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Jingyu Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang, Jiangxi 330006, China
| | - Hui Zhu
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Rd, Nanchang, Jiangxi 330006, China
| | - Lifang Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Rd, Nanchang, Jiangxi 330006, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang, Jiangxi 330006, China
| | - Lingling Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Rd, Nanchang, Jiangxi 330006, China; Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
2
|
Dong F, Zhou P, Kong F, Cao S, Pan X, Cai S, Chen X, Wang S, Li N, He B, Zhao R, Zhang B, Bie Q. PCDH17 induces colorectal cancer metastasis by destroying the vascular endothelial barrier. Cell Death Dis 2025; 16:36. [PMID: 39837826 PMCID: PMC11750977 DOI: 10.1038/s41419-025-07355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/03/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Compromised vascular integrity facilitates the cancer cells extravasation and metastasis. However, the mechanisms leading to a disruption in vascular integrity in colorectal cancer (CRC) remain unclear. In this study, PCDH17 expression was higher in the vascular endothelial cells of colon cancer with distant metastasis, and the rates of PCDH17+ endothelial cells (ECs) was associated with the M stage in clinical pathological characteristics analysis and correlated with a poor survival prognosis. The liver and lung metastatic dissemination of MC-38 was significantly decreased in PCDH17-/-mice. The ubiquitination and degradation of VEGFR2 was prevented by the interaction between PCDH17 and the E3 ubiquitin ligase MARCH5, which causing the separation of internalized VE-cadherin, and increased the vascular permeability and metastasis of CRC. These results highlight the importance of PCDH17 in maintaining vascular integrity, which has emphasis for endothelial barrier function in metastatic cancer. PCDH17 has the potential to be a marker for predicting tumor metastasis as well as a viable treatment target for CRC.
Collapse
Affiliation(s)
- Fengyun Dong
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Postdoctoral Mobile Station of Shandong University, Jinan, Shandong, China
| | - Pinghui Zhou
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Feifei Kong
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Sijie Cao
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Xiaozao Pan
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Shujing Cai
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Xinke Chen
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Sen Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Na Li
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Baoyu He
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Rou Zhao
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, Shandong, China.
| | - Qingli Bie
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
3
|
Zhao H, Jin L, Huang K, Zhong K, Zhou Y, Xu Y, Zhu Q, Zhou J, Tang J, Luo Q, Guo J, Zhang D, Chen G. Associations between metal/metalloid exposure during pregnancy and placental growth characteristics: Findings from the Hangzhou birth cohort study II. Int J Hyg Environ Health 2025; 263:114470. [PMID: 39342751 DOI: 10.1016/j.ijheh.2024.114470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Previous studies have suggested that metal/metalloid (hereafter referred to as metal) exposure may influence placental growth by affecting gene expression in the placenta. However, no epidemiological studies have been conducted to validate the relationships between metals exposure, placental gene expression, and placental growth at the population level. This study aims to investigate these relationships based on Hangzhou birth cohort study II (HBCS-II). Totally, 1025 participants were derived from HBCS-II. Thirteen metals levels in the placenta were measured using inductively coupled plasma mass spectrometry. Placental growth characteristics were assessed, including placental weight, chorionic disc area, placental eccentricity, and distance from cord insertion site to the nearest edge of placenta (DCIEP). The relationships between metals exposure and placental growth characteristics were examined using the elastic net model combined unpenalized linear regression model. Placental gene expression levels were analyzed through RNA sequencing and real-time polymerase chain reaction (RT-qPCR), and mediation analysis was conducted to investigate whether placental gene expression could mediate the relationship between metal exposure and placental growth. Notably, the results showed that a unite increase in Ln-transformed cadmium (Cd) levels was associated with a reduction of 16.4 g [95% confidence interval (CI): 31.2, -1.5] in placental weight, 13.9 cm2 (95%CI: 20.0, -7.8) in chorionic disc area, and 0.3 cm (95%CI: 0.55, -0.06) in DCIEP. Through RNA sequencing followed by validation, significant associations were observed between placental Cd level and increased expression of placental genes, including TNFAIP2, OLAH, FLT4, SH3PXD2A, LIMCH1, BCL6, SLCO2A1, and CPSF1. Additionally, increased placental TNFAIP2, OLAH, FLT4, SH3PXD2A and LIMCH1 expression was linked to reduced placental weight. Moreover, SH3PXD2A was associated with decreased chorionic disc area. Mediation analysis showed that placental Cd level was associated with a 12.0 g (95%CI: 23.8, -2.7) decrease in placental weight mediated through the upregulation of FTL4 gene expression. The study provides evidence of the association between placental Cd exposure and decreased placental weight, and the FLT4 gene may play a mediating role in this relationship. Future experiment studies should be performed to validate the results.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Social Medicine and Public Health, School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Lanfei Jin
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kegui Huang
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kunhong Zhong
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yexinyi Zhou
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Xu
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qinheng Zhu
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiena Zhou
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Tang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Qiong Luo
- Key Laboratory of Reproductive Genetics (Ministry of Education), and Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Guo
- Key Laboratory of Reproductive Genetics (Ministry of Education), and Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), and Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guangdi Chen
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Reproductive Genetics (Ministry of Education), and Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Bioelectromagnetics Laboratory, Zhejiang University School of Public Health, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Skrzyńska K, Zachurzok A, Pietrusik A, Jakubowska-Kowal K, Gawlik-Starzyk A. Visfatin and VEGF levels are not increased in adolescent girls with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2024; 15:1488249. [PMID: 39600944 PMCID: PMC11588468 DOI: 10.3389/fendo.2024.1488249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction PCOS is one of the most commonly occurring endocrinopathies among women and increasingly affects adolescent populations. The connection between PCOS and various endocrinological, psychological, and CVD is increasingly recognized. Some studies have shown elevated levels of visfatin and VEGF among patients with PCOS, which are markers of vascular endothelial dysfunction. In our study, we evaluated the concentration of these parameters, focusing solely on a group of adolescents with PCOS, to assess whether these early markers of CVD are present at an early stage of diagnosis. Material and methods In total, 80 adolescent girls participated in the study. 47 adolescents diagnosed with PCOS were included in the study group (mean age 15.68 ± 1.18 years, BMI 26.66 ± 6.41 kg/m2), while the remaining 33 regularly menstruating individuals (mean age 15.79 ± 1.22 years, BMI 25.44 ± 7.24 kg/m2) were assigned to the control group. Each participant underwent imaging, biochemical, and hormonal tests. Additionally, markers of endothelial dysfunction: VEGF and visfatin, were measured in all adolescents. Results Both VEGF and visfatin levels did not differ significantly between PCOS and control group (p=0.30 and p=0.15, respectively). In the group of adolescent girls with PCOS, visfatin was significantly correlated with HDL, FSH, cortisol, and testosterone levels >55 ng/dl. VEGF was significantly correlated with fasting glucose, glucose levels after OGTT, estradiol, and waist circumference >80 cm. Conclusion It can be indirectly inferred that both visfatin and VEGF should not be used as early markers for cardiometabolic complications among adolescent patients with PCOS. On the other hand, low visfatin levels, through their negative correlation with HDL, may have a protective effect on cardiovascular complications, while low VEGF levels, through their positive correlation with glucose levels, may have a protective influence on carbohydrate metabolism disorders.
Collapse
Affiliation(s)
- Karolina Skrzyńska
- Department of Pediatrics and Pediatric Endocrinology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Zachurzok
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Agnieszka Pietrusik
- Department of Pediatrics and Pediatric Endocrinology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Karolina Jakubowska-Kowal
- Department of Pediatrics and Pediatric Endocrinology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aneta Gawlik-Starzyk
- Department of Pediatrics and Pediatric Endocrinology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
5
|
Ishiyama A, Suda K, Rao X, Sun M, Lane GJ, Yamataka A, Koga H. Angiopoietin-1 attenuates lipopolysaccharide-induced endotoxemia in a Hirschsprung's disease murine model by improving intestinal vascular integrity: implications for treating postoperative Hirschsprung-associated enterocolitis. Pediatr Surg Int 2024; 40:277. [PMID: 39466437 DOI: 10.1007/s00383-024-05867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE Angiopoietin-1 (Ang1) mitigates inflammation as a proangiogenic growth factor. Action of Ang1 on lipopolysaccharide (LPS)-induced endotoxemic inflammation was investigated in endothelin receptor-B null Hirschsprung's disease mice (KO). METHODS LPS or saline was injected intraperitoneally in KO (KO-LPS; n = 9, KO-sal; n = 5) and wild-type (WT) (WT-LPS; n = 6, WT-sal; n = 6) pups obtained within 24 h of birth. Normoganglionic terminal ileum harvested 6 h after LPS was used for RNA extraction and histology. IL-1β, SELE, VEGFA, Ang1, Angiopoietin-2 (Ang2), and TIE2 expression analyzed by quantitative polymerase chain reaction (qPCR), vascular permeability assessed by the Miles assay, severity of inflammation, and immunofluorescence for phospho-TIE2 and VE-cadherin were used to assess endothelial cell contact integrity and compared with KO pups pretreated with intraperitoneal Ang1 [Ang1(KO-LPS); n = 5] or saline [sal(KO-LPS); n = 6] 2 h before LPS. RESULTS KO-LPS pups showed significantly increased inflammation (p < 0.05) and expression of IL-1β, SELE, VEGFA, and Ang2 (p = 0.019, 0.003, 0.008 and < 0.0001, respectively); expression of Ang1 and TIE2 remained unchanged when compared with KO-saline. In Ang1(KO-LPS) ileum, changes seen in sal(KO-LPS) were eliminated and phospho-TIE2 and VE-cadherin fluorescence increased. CONCLUSION Ang1 successfully attenuated LPS-induced normoganglionic intestinal inflammation, downregulated pro-inflammatory genes, and improved vascular barrier integrity in KO pups.
Collapse
Affiliation(s)
- Asuka Ishiyama
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kazuto Suda
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Xuxuan Rao
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Minhua Sun
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Geoffrey J Lane
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Atsuyuki Yamataka
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hiroyuki Koga
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
6
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
7
|
He Y, Hu J, Freitas R, Gu J, Ji G, Zhang Y. Trace-level Gabapentin can induce cardiovascular developmental toxicity through apoptosis in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124526. [PMID: 38992826 DOI: 10.1016/j.envpol.2024.124526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Gabapentin (GBP), an antiepileptic drug to treat epilepsy and neuropathic pain, has become an emerging pollutant in aquatic environments. Previous results suggested that GBP can cause a potential toxicity on the heart development of zebrafish but its cardiovascular effects are still not clear. In the current study, zebrafish embryos were exposed to GBP at environmental relevant concentrations (0, 0.1, 10 and 1000 μg/L) to assess its impact on cardiovascular systems during the early life stage of zebrafish. GBP exposure induced an increase in heartbeat rate and blood flow. The development of blood vessels was also affected with the vascular width significantly decreased at 10 μg/L and higher concentration of GBP. GBP exposure led to an abnormal vascular development by inhibiting the expression of relevant genes (flk1, vegfr-3, gata1, vegfα, and vegfr-2). Furthermore, GBP at 0.1 μg/L elevated the levels of reactive oxygen species and antioxidant enzyme. The vascular cell apoptosis was promoted through genes like p53, bad, and bcl2. However, these adverse effects were reversible with the antioxidant N-acetyl-L-cysteine, highlighting the crucial role of oxidative damage in GBP induced vascular toxicity. This research offers new perspectives on the adverse outcome pathways of antiepileptic drugs in non-target aquatic organisms.
Collapse
Affiliation(s)
- Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, Jiangsu Province, PR China
| | - Jun Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, Jiangsu Province, PR China
| | - Rosa Freitas
- Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; Department of Biology & CESAM, University of Aveiro, Aveiro, 3810193, Portugal
| | - Jie Gu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, Jiangsu, PR China
| | - Guixiang Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, Jiangsu, PR China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, Jiangsu Province, PR China.
| |
Collapse
|
8
|
Wang C, Gong S, Liu H, Cui L, Ye Y, Liu D, Liu T, Xie S, Li S. Angiogenesis unveiled: Insights into its role and mechanisms in cartilage injury. Exp Gerontol 2024; 195:112537. [PMID: 39111547 DOI: 10.1016/j.exger.2024.112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024]
Abstract
Osteoarthritis (OA) commonly results in compromised mobility and disability, thereby imposing a significant burden on healthcare systems. Cartilage injury is a prevalent pathological manifestation in OA and constitutes a central focus for the development of treatment strategies. Despite the considerable number of studies aimed at delaying this degenerative process, their outcomes remain unvalidated in preclinical settings. Recently, therapeutic strategies focused on angiogenesis have attracted the growing interest from researchers. Thus, we conducted a comprehensive literature review to elucidate the current progress in research and pinpoint research gaps in this domain. Additionally, it provides theoretical guidance for future research endeavors and the development of treatment strategies.
Collapse
Affiliation(s)
- Chenglong Wang
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Shuangquan Gong
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Hongjun Liu
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Liqiang Cui
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Yu Ye
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Dengshang Liu
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Tianzhu Liu
- Neurological Disease Center, Zigong Fourth People's Hospital, Zigong, 643000, Sichuan, China
| | - Shiming Xie
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China.
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210003, China.
| |
Collapse
|
9
|
Zhang Y, Dong X, Zhang J, Zhao M, Wang J, Chu J, Yang Z, Ma S, Lin K, Sun H, Luo Z. FLT4 gene polymorphisms influence isolated ventricular septal defect predisposition in a Southwest China population. BMC Med Genomics 2024; 17:197. [PMID: 39107825 PMCID: PMC11302092 DOI: 10.1186/s12920-024-01971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Ventricular septal defect (VSD) is the most common congenital heart disease. Although a small number of genes associated with VSD have been found, the genetic factors of VSD remain unclear. In this study, we evaluated the association of 10 candidate single nucleotide polymorphisms (SNPs) with isolated VSD in a population from Southwest China. METHODS Based on the results of 34 congenital heart disease whole-exome sequencing and 1000 Genomes databases, 10 candidate SNPs were selected. A total of 618 samples were collected from the population of Southwest China, including 285 VSD samples and 333 normal samples. Ten SNPs in the case group and the control group were identified by SNaPshot genotyping. The chi-square (χ2) test was used to evaluate the relationship between VSD and each candidate SNP. The SNPs that had significant P value in the initial stage were further analysed using linkage disequilibrium, and haplotypes were assessed in 34 congenital heart disease whole-exome sequencing samples using Haploview software. The bins of SNPs that were in very strong linkage disequilibrium were further used to predict haplotypes by Arlequin software. ViennaRNA v2.5.1 predicted the haplotype mRNA secondary structure. We evaluated the correlation between mRNA secondary structure changes and ventricular septal defects. RESULTS The χ2 results showed that the allele frequency of FLT4 rs383985 (P = 0.040) was different between the control group and the case group (P < 0.05). FLT4 rs3736061 (r2 = 1), rs3736062 (r2 = 0.84), rs3736063 (r2 = 0.84) and FLT4 rs383985 were in high linkage disequilibrium (r2 > 0.8). Among them, rs3736061 and rs3736062 SNPs in the FLT4 gene led to synonymous variations of amino acids, but predicting the secondary structure of mRNA might change the secondary structure of mRNA and reduce the free energy. CONCLUSIONS These findings suggest a possible molecular pathogenesis associated with isolated VSD, which warrants investigation in future studies.
Collapse
Affiliation(s)
- Yunhan Zhang
- The Department of Ultrasound Imaging, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, China
- The Department of Ultrasound Imaging, Fuwai Yunnan Cardiovascular Hospital, Chinese Academy of Medical Sciences, 528 Shahe Road, Kunming, Yunnan, 650032, China
| | - Xiaoli Dong
- The Department of Ultrasound Imaging, Fuwai Yunnan Cardiovascular Hospital, Chinese Academy of Medical Sciences, 528 Shahe Road, Kunming, Yunnan, 650032, China
| | - Jun Zhang
- The Department of Ultrasound Imaging, Fuwai Yunnan Cardiovascular Hospital, Chinese Academy of Medical Sciences, 528 Shahe Road, Kunming, Yunnan, 650032, China
| | - Miao Zhao
- The Department of Ultrasound Imaging, Fuwai Yunnan Cardiovascular Hospital, Chinese Academy of Medical Sciences, 528 Shahe Road, Kunming, Yunnan, 650032, China
| | - Jiang Wang
- The Department of Ultrasound Imaging, Fuwai Yunnan Cardiovascular Hospital, Chinese Academy of Medical Sciences, 528 Shahe Road, Kunming, Yunnan, 650032, China
| | - Jiayou Chu
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Zhaoqing Yang
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Shaohui Ma
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Keqin Lin
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Hao Sun
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan, 650118, China.
| | - Zhiling Luo
- The Department of Ultrasound Imaging, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, China.
- The Department of Ultrasound Imaging, Fuwai Yunnan Cardiovascular Hospital, Chinese Academy of Medical Sciences, 528 Shahe Road, Kunming, Yunnan, 650032, China.
| |
Collapse
|
10
|
Raza Q, Nadeem T, Youn SW, Swaminathan B, Gupta A, Sargis T, Du J, Cuervo H, Eichmann A, Ackerman SL, Naiche LA, Kitajewski J. Notch signaling regulates UNC5B to suppress endothelial proliferation, migration, junction activity, and retinal plexus branching. Sci Rep 2024; 14:13603. [PMID: 38866944 PMCID: PMC11169293 DOI: 10.1038/s41598-024-64375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
Notch signaling guides vascular development and function by regulating diverse endothelial cell behaviors, including migration, proliferation, vascular density, endothelial junctions, and polarization in response to flow. Notch proteins form transcriptional activation complexes that regulate endothelial gene expression, but few of the downstream effectors that enable these phenotypic changes have been characterized in endothelial cells, limiting our understanding of vascular Notch activities. Using an unbiased screen of translated mRNA rapidly regulated by Notch signaling, we identified novel in vivo targets of Notch signaling in neonatal mouse brain endothelium, including UNC5B, a member of the netrin family of angiogenic-regulatory receptors. Endothelial Notch signaling rapidly upregulates UNC5B in multiple endothelial cell types. Loss or gain of UNC5B recapitulated specific Notch-regulated phenotypes. UNC5B expression inhibited endothelial migration and proliferation and was required for stabilization of endothelial junctions in response to shear stress. Loss of UNC5B partially or wholly blocked the ability of Notch activation to regulate these endothelial cell behaviors. In the developing mouse retina, endothelial-specific loss of UNC5B led to excessive vascularization, including increased vascular outgrowth, density, and branchpoint count. These data indicate that Notch signaling upregulates UNC5B as an effector protein to control specific endothelial cell behaviors and inhibit angiogenic growth.
Collapse
Affiliation(s)
- Qanber Raza
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Taliha Nadeem
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Seock-Won Youn
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Bhairavi Swaminathan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Ahana Gupta
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Timothy Sargis
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Jing Du
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Henar Cuervo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III- CNIC- (F.S.P), Madrid, Spain
| | | | | | - L A Naiche
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA.
| | - Jan Kitajewski
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
- University of Illinois Cancer Center, Chicago, USA
| |
Collapse
|
11
|
Wakasugi R, Suzuki K, Kaneko-Kawano T. Molecular Mechanisms Regulating Vascular Endothelial Permeability. Int J Mol Sci 2024; 25:6415. [PMID: 38928121 PMCID: PMC11203514 DOI: 10.3390/ijms25126415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Vascular endothelial cells form a monolayer in the vascular lumen and act as a selective barrier to control the permeability between blood and tissues. To maintain homeostasis, the endothelial barrier function must be strictly integrated. During acute inflammation, vascular permeability temporarily increases, allowing intravascular fluid, cells, and other components to permeate tissues. Moreover, it has been suggested that the dysregulation of endothelial cell permeability may cause several diseases, including edema, cancer, and atherosclerosis. Here, we reviewed the molecular mechanisms by which endothelial cells regulate the barrier function and physiological permeability.
Collapse
Affiliation(s)
| | | | - Takako Kaneko-Kawano
- Graduate School of Pharmacy, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu 525-8577, Shiga, Japan; (R.W.); (K.S.)
| |
Collapse
|
12
|
Fowler JWM, Song L, Tam K, Roth Flach RJ. Targeting lymphatic function in cardiovascular-kidney-metabolic syndrome: preclinical methods to analyze lymphatic function and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1412857. [PMID: 38915742 PMCID: PMC11194411 DOI: 10.3389/fcvm.2024.1412857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
The lymphatic vascular system spans nearly every organ in the body and serves as an important network that maintains fluid, metabolite, and immune cell homeostasis. Recently, there has been a growing interest in the role of lymphatic biology in chronic disorders outside the realm of lymphatic abnormalities, lymphedema, or oncology, such as cardiovascular-kidney-metabolic syndrome (CKM). We propose that enhancing lymphatic function pharmacologically may be a novel and effective way to improve quality of life in patients with CKM syndrome by engaging multiple pathologies at once throughout the body. Several promising therapeutic targets that enhance lymphatic function have already been reported and may have clinical benefit. However, much remains unclear of the discreet ways the lymphatic vasculature interacts with CKM pathogenesis, and translation of these therapeutic targets to clinical development is challenging. Thus, the field must improve characterization of lymphatic function in preclinical mouse models of CKM syndrome to better understand molecular mechanisms of disease and uncover effective therapies.
Collapse
Affiliation(s)
| | | | | | - Rachel J. Roth Flach
- Internal Medicine Research Unit, Pfizer Research and Development, Cambridge, MA, United States
| |
Collapse
|
13
|
Choi YJ, An J, Kim JH, Lee SB, Lee BS, Eom CY, Lee H, Kwon N, Kim IS, Park KS, Park S, Shin JW, Yun S. Mexenone protects mice from LPS-induced sepsis by EC barrier stabilization. PLoS One 2024; 19:e0302628. [PMID: 38723000 PMCID: PMC11081322 DOI: 10.1371/journal.pone.0302628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 04/05/2024] [Indexed: 05/13/2024] Open
Abstract
Blood vessels permit the selective passage of molecules and immune cells between tissues and circulation. Uncontrolled inflammatory responses from an infection can increase vascular permeability and edema, which can occasionally lead to fatal organ failure. We identified mexenone as a vascular permeability blocker by testing 2,910 compounds in the Clinically Applied Compound Library using the lipopolysaccharide (LPS)-induced vascular permeability assay. Mexenone suppressed the LPS-induced downregulation of junctional proteins and phosphorylation of VE-cadherin in Bovine Aortic Endothelial Cells (BAECs). The injection of mexenone 1 hr before LPS administration completely blocked LPS-induced lung vascular permeability and acute lung injury in mice after 18hr. Our results suggest that mexenone-induced endothelial cell (EC) barrier stabilization could be effective in treating sepsis patients.
Collapse
Affiliation(s)
- Yoon Ji Choi
- In Vivo Research Center (IVRC), UCRF, UNIST, Ulsan, Korea
| | - Jimin An
- Department of Biotechnology, Inje University, Gimhae, Korea
| | - Ji Hye Kim
- Department of Biotechnology, Inje University, Gimhae, Korea
| | - Sa Bin Lee
- Department of Biotechnology, Inje University, Gimhae, Korea
| | - Bo Seok Lee
- Department of Biotechnology, Inje University, Gimhae, Korea
| | - Chae Young Eom
- Department of Biotechnology, Inje University, Gimhae, Korea
| | - Hyohi Lee
- Department of Biotechnology, Inje University, Gimhae, Korea
| | - Nayeong Kwon
- Department of Biotechnology, Inje University, Gimhae, Korea
| | - Il Shin Kim
- In Vivo Research Center (IVRC), UCRF, UNIST, Ulsan, Korea
| | - Kyoung-Su Park
- In Vivo Research Center (IVRC), UCRF, UNIST, Ulsan, Korea
| | - Sooah Park
- In Vivo Research Center (IVRC), UCRF, UNIST, Ulsan, Korea
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Gimhae, Korea
| | - Sanguk Yun
- Department of Biotechnology, Inje University, Gimhae, Korea
| |
Collapse
|
14
|
Wu X, Yu X, Chen C, Chen C, Wang Y, Su D, Zhu L. Fibrinogen and tumors. Front Oncol 2024; 14:1393599. [PMID: 38779081 PMCID: PMC11109443 DOI: 10.3389/fonc.2024.1393599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Elevated plasma fibrinogen (Fg) levels consistently correlate with an unfavorable prognosis in various tumor patient cohorts. Within the tumor microenvironment, aberrant deposition and expression of Fg have been consistently observed, interacting with multiple cellular receptors and thereby accentuating its role as a regulator of inflammatory processes. Specifically, Fg serves to stimulate and recruit immune cells and pro-inflammatory cytokines, thereby contributing to the promotion of tumor progression. Additionally, Fg and its fragments exhibit dichotomous effects on tumor angiogenesis. Notably, Fg also facilitates tumor migration through both platelet-dependent and platelet-independent mechanisms. Recent studies have illuminated several tumor-related signaling pathways influenced by Fg. This review provides a comprehensive summary of the intricate involvement of Fg in tumor biology, elucidating its multifaceted role and the underlying mechanisms.
Collapse
Affiliation(s)
- Xinyuan Wu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaomin Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng Chen
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenlu Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuxin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dongyan Su
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liqing Zhu
- Department of Clinical Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
15
|
Préau L, Lischke A, Merkel M, Oegel N, Weissenbruch M, Michael A, Park H, Gradl D, Kupatt C, le Noble F. Parenchymal cues define Vegfa-driven venous angiogenesis by activating a sprouting competent venous endothelial subtype. Nat Commun 2024; 15:3118. [PMID: 38600061 PMCID: PMC11006894 DOI: 10.1038/s41467-024-47434-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Formation of organo-typical vascular networks requires cross-talk between differentiating parenchymal cells and developing blood vessels. Here we identify a Vegfa driven venous sprouting process involving parenchymal to vein cross-talk regulating venous endothelial Vegfa signaling strength and subsequent formation of a specialized angiogenic cell, prefabricated with an intact lumen and pericyte coverage, termed L-Tip cell. L-Tip cell selection in the venous domain requires genetic interaction between vascular Aplnra and Kdrl in a subset of venous endothelial cells and exposure to parenchymal derived Vegfa and Apelin. Parenchymal Esm1 controls the spatial positioning of venous sprouting by fine-tuning local Vegfa availability. These findings may provide a conceptual framework for understanding how Vegfa generates organo-typical vascular networks based on the selection of competent endothelial cells, induced via spatio-temporal control of endothelial Kdrl signaling strength involving multiple parenchymal derived cues generated in a tissue dependent metabolic context.
Collapse
Affiliation(s)
- Laetitia Préau
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
- Institute for Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021, Karlsruhe, Germany
| | - Anna Lischke
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Melanie Merkel
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Neslihan Oegel
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Maria Weissenbruch
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Andria Michael
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Hongryeol Park
- Dept. Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Roentgen Strasse 20, 48149, Muenster, Germany
| | - Dietmar Gradl
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, and DZHK (German Center for Cardiovascular Research), partner site Munich, Munich, Germany
| | - Ferdinand le Noble
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany.
- Institute for Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021, Karlsruhe, Germany.
- Institute of Experimental Cardiology, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany and DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
16
|
Yang Y, Li C, Yang S, Zhang Z, Bai X, Tang H, Huang J. Cepharanthine maintains integrity of the blood-brain barrier (BBB) in stroke via the VEGF/VEGFR2/ZO-1 signaling pathway. Aging (Albany NY) 2024; 16:5905-5915. [PMID: 38517394 PMCID: PMC11042958 DOI: 10.18632/aging.205678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/21/2023] [Indexed: 03/23/2024]
Abstract
Dysfunction of tight junctions such as zonula occludens protein-1 (ZO-1)-associated aggravation of blood-brain barrier (BBB) permeability plays an important role in the progression of stroke. Cepharanthine (CEP) is an extract from the plant Stephania cepharantha. However, the effects of CEP on stroke and BBB dysfunction have not been previously reported. In this study, we report that CEP improved dysfunction in neurological behavior in a middle cerebral artery occlusion (MCAO) mouse model. Importantly, CEP suppressed blood-brain barrier (BBB) hyperpermeability by increasing the expression of ZO-1. Notably, we found that CEP inhibited the expression of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (VEGFR2) in the cortex of MCAO mice. Additionally, the results of in vitro experiments demonstrate that treatment with CEP ameliorated cytotoxicity of human bEnd.3 brain microvascular endothelial cells against hypoxia/reperfusion (H/R). Also, CEP attenuated H/R-induced aggravation of endothelial permeability in bEND.3 cells by restoring the expression of ZO-1. Further study proved that the protective effects of CEP are mediated by inhibition of VEGF-A and VEGFR2. Based on the results, we conclude that CEP might possess a therapeutic prospect in stroke through protecting the integrity of the BBB mediated by the VEGF/VEGFR2/ZO-1 axis.
Collapse
Affiliation(s)
- Yunfang Yang
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Changjiang Li
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Sijin Yang
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhuo Zhang
- Department of Pharmacology, Southwest Medical University, Luzhou 646099, Sichuan, China
| | - Xue Bai
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Hongmei Tang
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jiang Huang
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| |
Collapse
|
17
|
Michki SN, Singer BD, Perez JV, Thomas AJ, Natale V, Helmin KA, Wright J, Cheng L, Young LR, Lederman HM, McGrath-Morrow SA. Transcriptional profiling of peripheral blood mononuclear cells identifies inflammatory phenotypes in Ataxia Telangiectasia. Orphanet J Rare Dis 2024; 19:67. [PMID: 38360726 PMCID: PMC10870445 DOI: 10.1186/s13023-024-03073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/03/2024] [Indexed: 02/17/2024] Open
Abstract
INTRODUCTION Ataxia telangiectasia (A-T) is an autosomal recessive neurodegenerative disease with widespread systemic manifestations and marked variability in clinical phenotypes. In this study, we sought to determine whether transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) defines subsets of individuals with A-T beyond mild and classic phenotypes, enabling identification of novel features for disease classification and treatment response to therapy. METHODS Participants with classic A-T (n = 77), mild A-T (n = 13), and unaffected controls (n = 15) were recruited from two outpatient clinics. PBMCs were isolated and bulk RNAseq was performed. Plasma was also isolated in a subset of individuals. Affected individuals were designated mild or classic based on ATM mutations and clinical and laboratory features. RESULTS People with classic A-T were more likely to be younger and IgA deficient and to have higher alpha-fetoprotein levels and lower % forced vital capacity compared to individuals with mild A-T. In classic A-T, the expression of genes required for V(D)J recombination was lower, and the expression of genes required for inflammatory activity was higher. We assigned inflammatory scores to study participants and found that inflammatory scores were highly variable among people with classic A-T and that higher scores were associated with lower ATM mRNA levels. Using a cell type deconvolution approach, we inferred that CD4 + T cells and CD8 + T cells were lower in number in people with classic A-T. Finally, we showed that individuals with classic A-T exhibit higher SERPINE1 (PAI-1) mRNA and plasma protein levels, irrespective of age, and higher FLT4 (VEGFR3) and IL6ST (GP130) plasma protein levels compared with mild A-T and controls. CONCLUSION Using a transcriptomic approach, we identified novel features and developed an inflammatory score to identify subsets of individuals with different inflammatory phenotypes in A-T. Findings from this study could be used to help direct treatment and to track treatment response to therapy.
Collapse
Affiliation(s)
- Sylvia N Michki
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Javier V Perez
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron J Thomas
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Valerie Natale
- Forgotten Diseases Research Foundation, Santa Clara, CA, USA
| | - Kathryn A Helmin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jennifer Wright
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Leon Cheng
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Lisa R Young
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Howard M Lederman
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sharon A McGrath-Morrow
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Lian Z, Yu SR, Cui YX, Li SF, Su L, Song JX, Lee CY, Chen QX, Chen H. Rosuvastatin Enhances Lymphangiogenesis after Myocardial Infarction by Regulating the miRNAs/Vascular Endothelial Growth Factor Receptor 3 (miRNAs/VEGFR3) Pathway. ACS Pharmacol Transl Sci 2024; 7:335-347. [PMID: 38357274 PMCID: PMC10863446 DOI: 10.1021/acsptsci.3c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/24/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Several clinical studies have suggested that the early administration of statins could reduce the risk of in-hospital mortality in acute myocardial infarction (AMI) patients. Recently, some studies have identified that stimulating lymphangiogenesis after AMI could improve cardiac function by reducing myocardial edema and inflammation. This study aimed to identify the effect of rosuvastatin on postinfarct lymphangiogenesis and to identify the underlying mechanism of this effect. METHOD Myocardial infarction (MI) was induced by ligation of the left anterior descending coronary artery in mice orally administered rosuvastatin for 7 days. The changes in cardiac function, pathology, and lymphangiogenesis following MI were measured by echocardiography and immunostaining. EdU, Matrigel tube formation, and scratch wound assays were used to evaluate the effect of rosuvastatin on the proliferation, tube formation, and migration of the lymphatic endothelial cell line SVEC4-10. The expression of miR-107-3p, miR-491-5p, and VEGFR3 was measured by polymerase chain reaction (PCR) and Western blotting. A gain-of-function study was performed using miR-107-3p and miR-491-5p mimics. RESULTS The rosuvastatin-treated mice had a significantly improved ejection fraction and increased lymphatic plexus density 7 days after MI. Rosuvastatin also reduced myocardial edema and inflammatory response after MI. We used a VEGFR3 inhibitor to partially reverse these effects. Rosuvastatin promoted the proliferation, migration, and tube formation of SVEC4-10 cells. PCR and Western blot analyses revealed that rosuvastatin intervention downregulated miR-107-3p and miR-491-5p and promoted VEGFR3 expression. The gain-of-function study showed that miR-107-3p and miR-491-5p could inhibit the proliferation, migration, and tube formation of SVEC4-10 cells. CONCLUSION Rosuvastatin could improve heart function by promoting lymphangiogenesis after MI by regulating the miRNAs/VEGFR3 pathway.
Collapse
Affiliation(s)
- Zheng Lian
- Cardiovascular
Center, Beijing Tongren Hospital, Capital
Medical University, Xihuan South Road No. 2, Economic-Technological
Development Area, Beijing 100176, China
- Department
of Cardiology, Peking University People’s
Hospital, Xizhimen South Road No. 11, Xicheng District, Beijing 100044, China
- Beijing
Key Laboratory of Early Prediction and Intervention of Acute Myocardial
Infarction, Peking University People’s
Hospital, Xizhimen South
Road No. 11, Xicheng District, Beijing 100044, China
- Center
for Cardiovascular Translational Research, Peking University People’s Hospital, Xizhimen South Road No. 11, Xicheng
District, Beijing 100044, China
| | - Shi-Ran Yu
- Department
of Cardiology, Peking University People’s
Hospital, Xizhimen South Road No. 11, Xicheng District, Beijing 100044, China
- Beijing
Key Laboratory of Early Prediction and Intervention of Acute Myocardial
Infarction, Peking University People’s
Hospital, Xizhimen South
Road No. 11, Xicheng District, Beijing 100044, China
- Center
for Cardiovascular Translational Research, Peking University People’s Hospital, Xizhimen South Road No. 11, Xicheng
District, Beijing 100044, China
| | - Yu-Xia Cui
- Department
of Cardiology, Peking University People’s
Hospital, Xizhimen South Road No. 11, Xicheng District, Beijing 100044, China
- Beijing
Key Laboratory of Early Prediction and Intervention of Acute Myocardial
Infarction, Peking University People’s
Hospital, Xizhimen South
Road No. 11, Xicheng District, Beijing 100044, China
- Center
for Cardiovascular Translational Research, Peking University People’s Hospital, Xizhimen South Road No. 11, Xicheng
District, Beijing 100044, China
| | - Su-Fang Li
- Department
of Cardiology, Peking University People’s
Hospital, Xizhimen South Road No. 11, Xicheng District, Beijing 100044, China
- Beijing
Key Laboratory of Early Prediction and Intervention of Acute Myocardial
Infarction, Peking University People’s
Hospital, Xizhimen South
Road No. 11, Xicheng District, Beijing 100044, China
- Center
for Cardiovascular Translational Research, Peking University People’s Hospital, Xizhimen South Road No. 11, Xicheng
District, Beijing 100044, China
| | - Li−Na Su
- Department
of Cardiology, Peking University People’s
Hospital, Xizhimen South Road No. 11, Xicheng District, Beijing 100044, China
- Beijing
Key Laboratory of Early Prediction and Intervention of Acute Myocardial
Infarction, Peking University People’s
Hospital, Xizhimen South
Road No. 11, Xicheng District, Beijing 100044, China
- Center
for Cardiovascular Translational Research, Peking University People’s Hospital, Xizhimen South Road No. 11, Xicheng
District, Beijing 100044, China
| | - Jun-Xian Song
- Department
of Cardiology, Peking University People’s
Hospital, Xizhimen South Road No. 11, Xicheng District, Beijing 100044, China
- Beijing
Key Laboratory of Early Prediction and Intervention of Acute Myocardial
Infarction, Peking University People’s
Hospital, Xizhimen South
Road No. 11, Xicheng District, Beijing 100044, China
- Center
for Cardiovascular Translational Research, Peking University People’s Hospital, Xizhimen South Road No. 11, Xicheng
District, Beijing 100044, China
| | - Chong-Yoo Lee
- Department
of Cardiology, Peking University People’s
Hospital, Xizhimen South Road No. 11, Xicheng District, Beijing 100044, China
- Beijing
Key Laboratory of Early Prediction and Intervention of Acute Myocardial
Infarction, Peking University People’s
Hospital, Xizhimen South
Road No. 11, Xicheng District, Beijing 100044, China
- Center
for Cardiovascular Translational Research, Peking University People’s Hospital, Xizhimen South Road No. 11, Xicheng
District, Beijing 100044, China
| | - Qi-Xin Chen
- Department
of Cardiology, Peking University People’s
Hospital, Xizhimen South Road No. 11, Xicheng District, Beijing 100044, China
- Beijing
Key Laboratory of Early Prediction and Intervention of Acute Myocardial
Infarction, Peking University People’s
Hospital, Xizhimen South
Road No. 11, Xicheng District, Beijing 100044, China
- Center
for Cardiovascular Translational Research, Peking University People’s Hospital, Xizhimen South Road No. 11, Xicheng
District, Beijing 100044, China
| | - Hong Chen
- Department
of Cardiology, Peking University People’s
Hospital, Xizhimen South Road No. 11, Xicheng District, Beijing 100044, China
- Beijing
Key Laboratory of Early Prediction and Intervention of Acute Myocardial
Infarction, Peking University People’s
Hospital, Xizhimen South
Road No. 11, Xicheng District, Beijing 100044, China
- Center
for Cardiovascular Translational Research, Peking University People’s Hospital, Xizhimen South Road No. 11, Xicheng
District, Beijing 100044, China
| |
Collapse
|
19
|
Ahmad A, Tiwari RK, Siddiqui S, Chadha M, Shukla R, Srivastava V. Emerging trends in gastrointestinal cancers: Targeting developmental pathways in carcinogenesis and tumor progression. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:41-99. [PMID: 38663962 DOI: 10.1016/bs.ircmb.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Gastrointestinal carcinomas are a group of cancers associated with the digestive system and its accessory organs. The most prevalent cancers related to the gastrointestinal tract are colorectal, gall bladder, gastric, hepatocellular, and esophageal cancers, respectively. Molecular aberrations in different signaling pathways, such as signal transduction systems or developmental pathways are the chief triggering mechanisms in different cancers Though a massive advancement in diagnostic and therapeutic interventions results in improved survival of patients with gastrointestinal cancer; the lower malignancy stages of these carcinomas are comparatively asymptomatic. Various gastrointestinal-related cancers are detected at advanced stages, leading to deplorable prognoses and increased rates of recurrence. Recent molecular studies have elucidated the imperative roles of several signaling pathways, namely Wnt, Hedgehog, and Notch signaling pathways, play in the progression, therapeutic responsiveness, and metastasis of gastrointestinal-related cancers. This book chapter gives an interesting update on recent findings on the involvement of developmental signaling pathways their mechanistic insight in gastrointestinalcancer. Subsequently, evidences supporting the exploration of gastrointestinal cancer related molecular mechanisms have also been discussed for developing novel therapeutic strategies against these debilitating carcinomas.
Collapse
Affiliation(s)
- Afza Ahmad
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Rohit Kumar Tiwari
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Saleha Siddiqui
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Muskan Chadha
- Department of Nutrition and Dietetics, Sharda School of Allied Health Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Ratnakar Shukla
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Vivek Srivastava
- Department of Chemistry & Biochemistry, Sharda School of Basic Sciences & Research, Sharda University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
20
|
Wang L, Liu WQ, Broussy S, Han B, Fang H. Recent advances of anti-angiogenic inhibitors targeting VEGF/VEGFR axis. Front Pharmacol 2024; 14:1307860. [PMID: 38239196 PMCID: PMC10794590 DOI: 10.3389/fphar.2023.1307860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Vascular endothelial growth factors (VEGF), Vascular endothelial growth factor receptors (VEGFR) and their downstream signaling pathways are promising targets in anti-angiogenic therapy. They constitute a crucial system to regulate physiological and pathological angiogenesis. In the last 20 years, many anti-angiogenic drugs have been developed based on VEGF/VEGFR system to treat diverse cancers and retinopathies, and new drugs with improved properties continue to emerge at a fast rate. They consist of different molecular structures and characteristics, which enable them to inhibit the interaction of VEGF/VEGFR, to inhibit the activity of VEGFR tyrosine kinase (TK), or to inhibit VEGFR downstream signaling. In this paper, we reviewed the development of marketed anti-angiogenic drugs involved in the VEGF/VEGFR axis, as well as some important drug candidates in clinical trials. We discuss their mode of action, their clinical benefits, and the current challenges that will need to be addressed by the next-generation of anti-angiogenic drugs. We focus on the molecular structures and characteristics of each drug, including those approved only in China.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wang-Qing Liu
- CiTCoM, CNRS, INSERM, Université Paris Cité, Paris, France
| | | | - Bingnan Han
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongming Fang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou, China
| |
Collapse
|
21
|
Banerjee K, Kerzel T, Bekkhus T, de Souza Ferreira S, Wallmann T, Wallerius M, Landwehr LS, Agardy DA, Schauer N, Malmerfeldt A, Bergh J, Bartish M, Hartman J, Östman A, Squadrito ML, Rolny C. VEGF-C-expressing TAMs rewire the metastatic fate of breast cancer cells. Cell Rep 2023; 42:113507. [PMID: 38041815 DOI: 10.1016/j.celrep.2023.113507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023] Open
Abstract
The expression of pro-lymphangiogenic VEGF-C in primary tumors is associated with sentinel lymph node metastasis in most solid cancer types. However, the impact of VEGF-C on distant organ metastasis remains unclear. Perivascular tumor-associated macrophages (TAMs) play a crucial role in guiding hematogenous spread of cancer cells by establishing metastatic pathways within the tumor microenvironment. This process supports breast cancer cell intravasation and metastatic dissemination. We show here that VEGF-C-expressing TAMs reduce the dissemination of mammary cancer cells to the lungs while concurrently increasing lymph node metastasis. These TAMs express podoplanin and interact with normalized tumor blood vessels expressing VEGFR3. Moreover, clinical data suggest inverse association between VEGF-C-expressing TAMs and breast cancer malignancy. Thus, our study elucidates the paradoxical role of VEGF-C-expressing TAMs in redirecting cancer cells to preferentially disseminate to lymph nodes rather than to lungs, partially achieved by normalizing tumor blood vessels and promoting lymphangiogenesis.
Collapse
Affiliation(s)
- Kaveri Banerjee
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Thomas Kerzel
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Tove Bekkhus
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | | | - Tatjana Wallmann
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Majken Wallerius
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | | | | | - Nele Schauer
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Anna Malmerfeldt
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; Breast Center, Karolinska Comprehensive Cancer Center and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Margarita Bartish
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; Gerald Bronfman Department of Oncology, Segal Cancer Centre, Lady Davis Institute and Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Mario Leonardo Squadrito
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy.
| | - Charlotte Rolny
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden.
| |
Collapse
|
22
|
Jorgensen R, Gao H, Arul Arasan TS, Van Antwerp C, Sundar V, Ng PKW, Gangur V. Is Wheat Glutenin Extract Intrinsically Allergenic? Evaluation Using a Novel Adjuvant-Free Mouse Model of Systemic Anaphylaxis. Int J Mol Sci 2023; 24:17247. [PMID: 38139075 PMCID: PMC10743909 DOI: 10.3390/ijms242417247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Wheat is a prominent allergenic food that can trigger life-threatening anaphylaxis. Presently, it remains unclear whether wheat glutenin (WG) extract possesses inherent sensitization potential independently, without the use of adjuvants, and whether it can sensitize mice to the extent of inducing life-threatening systemic anaphylaxis. In this study, we tested the hypothesis that repeated skin exposures to WG extract without adjuvant will sensitize mice with the resultant anaphylactic reaction upon systemic WG challenge. Balb/c mice were bred and maintained on a strict plant protein-free diet and were repeatedly exposed to a WG extract or vehicle once a week for 9 weeks. WG-specific (s)IgE and total (t)IgE levels were quantified. Mice were challenged with WG extract to induce anaphylactic reactions as measured by hypothermic shock response (HSR) and mucosal mast cell degranulation response (MMCR). We also conducted proteomic analysis of 120 spleen immune markers. These skin-sensitized mice exhibited exposure-dependent IgE responses and near-fatal anaphylaxis upon challenge. Proteomic analysis identified seven dramatically elevated immune biomarkers in anaphylactic mice. These data reveal that WG is intrinsically allergenic, and that chronic skin exposure to WG extract can prime the mice for potentially fatal anaphylaxis.
Collapse
Affiliation(s)
- Rick Jorgensen
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA; (R.J.); (H.G.); (T.S.A.A.); (C.V.A.); (V.S.)
| | - Haoran Gao
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA; (R.J.); (H.G.); (T.S.A.A.); (C.V.A.); (V.S.)
| | - Tamil Selvan Arul Arasan
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA; (R.J.); (H.G.); (T.S.A.A.); (C.V.A.); (V.S.)
| | - Chris Van Antwerp
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA; (R.J.); (H.G.); (T.S.A.A.); (C.V.A.); (V.S.)
| | - Vaisheswini Sundar
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA; (R.J.); (H.G.); (T.S.A.A.); (C.V.A.); (V.S.)
| | - Perry K. W. Ng
- Cereal Science Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA;
| | - Venu Gangur
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA; (R.J.); (H.G.); (T.S.A.A.); (C.V.A.); (V.S.)
| |
Collapse
|
23
|
Corano Scheri K, Lavine JA, Tedeschi T, Thomson BR, Fawzi AA. Single-cell transcriptomics analysis of proliferative diabetic retinopathy fibrovascular membranes reveals AEBP1 as fibrogenesis modulator. JCI Insight 2023; 8:e172062. [PMID: 37917183 PMCID: PMC10896003 DOI: 10.1172/jci.insight.172062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023] Open
Abstract
The management of preretinal fibrovascular membranes, a devastating complication of advanced diabetic retinopathy (DR), remains challenging. We characterized the molecular profile of cell populations in these fibrovascular membranes to identify potentially new therapeutic targets. Preretinal fibrovascular membranes were surgically removed from patients and submitted for single-cell RNA-Seq (scRNA-Seq). Differential gene expression was implemented to define the transcriptomics profile of these cells and revealed the presence of endothelial, inflammatory, and stromal cells. Endothelial cell reclustering identified subclusters characterized by noncanonical transcriptomics profile and active angiogenesis. Deeper investigation of the inflammatory cells showed a subcluster of macrophages expressing proangiogenic cytokines, presumably contributing to angiogenesis. The stromal cell cluster included a pericyte-myofibroblast transdifferentiating subcluster, indicating the involvement of pericytes in fibrogenesis. Differentially expressed gene analysis showed that Adipocyte Enhancer-binding Protein 1, AEBP1, was significantly upregulated in myofibroblast clusters, suggesting that this molecule may have a role in transformation. Cell culture experiments with human retinal pericytes (HRP) in high-glucose condition confirmed the molecular transformation of pericytes toward myofibroblastic lineage. AEBP1 siRNA transfection in HRP reduced the expression of profibrotic markers in high glucose. In conclusion, AEBP1 signaling modulates pericyte-myofibroblast transformation, suggesting that targeting AEBP1 could prevent scar tissue formation in advanced DR.
Collapse
Affiliation(s)
| | | | | | - Benjamin R. Thomson
- Department of Ophthalmology and
- Cardiovascular and Renal Research Institute, Center for Kidney Research and Therapeutics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
24
|
Niu M, Yi M, Wu Y, Lyu L, He Q, Yang R, Zeng L, Shi J, Zhang J, Zhou P, Zhang T, Mei Q, Chu Q, Wu K. Synergistic efficacy of simultaneous anti-TGF-β/VEGF bispecific antibody and PD-1 blockade in cancer therapy. J Hematol Oncol 2023; 16:94. [PMID: 37573354 PMCID: PMC10423429 DOI: 10.1186/s13045-023-01487-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/26/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Recently, therapeutic antibodies against programmed cell death 1 (PD-1) and its ligand (PD-L1) have exerted potent anticancer effect in a variety of tumors. However, blocking the PD-1/PD-L1 axis alone is not sufficient to restore normal immune response. Other negative regulators of antitumor immunity, like TGF-β and VEGFA, are also involved in immune escape of tumor cells and induce immunotherapy resistance. METHODS We developed a novel anti-TGF-β/VEGF bispecific antibody Y332D based on the Nano-YBODY™ technology platform. The CCK-8, flow cytometry, SBE4 luciferase reporter assay, western blotting and transwell assays were used to measure the biological activities of the anti-TGF-β moiety. The NFAT luciferase reporter assay, luminescent cell viability assay and tube formation assay were used to measure the biological activities of the anti-VEGF moiety. The in vivo anticancer efficacy of Y332D alone or in combination with PD-1 blockade was evaluated in H22, EMT-6, 4T1, and AKT/Ras-driven murine hepatocellular carcinoma tumor models. Immunofluorescent staining, flow cytometry, RNA-seq and quantitative RT-PCR were adopted to analyze the alterations in the tumor microenvironment. RESULTS Y332D could maintain specific binding affinities for TGF-β and VEGFA. Y332D almost entirely counteracted the in vitro biological functions of TGF-β and VEGFA, including immunosuppression, activated TGF-β signaling, epithelial-mesenchymal transition (EMT), activated VEGF/VEGFR signaling, HUVEC proliferation and tube formation. The in vivo experiment data demonstrated that Y332D was more effective in inhibiting tumor growth and metastasis than anti-TGF-β and anti-VEGF monotherapies. In combination therapies, Y332D plus PD-1 blockade exhibited the most potent and durable anticancer effect. Mechanistically, Y332D plus PD-1 blockade upregulated the density and function of tumor-infiltrating lymphocytes and exerted reinvigorated antitumor immunity. CONCLUSION Y332D could simultaneously block TGF-β and VEGF signalings. In comparison with the monotherapies, Y332D combined with PD-1 blockade exerts superior antitumor effect through improving immune microenvironment.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000 China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Lijuan Lyu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710000 China
| | - Qing He
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075 People’s Republic of China
| | - Rui Yang
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075 People’s Republic of China
| | - Liang Zeng
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075 People’s Republic of China
| | - Jian Shi
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075 People’s Republic of China
| | - Jing Zhang
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075 People’s Republic of China
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075 People’s Republic of China
| | - Tingting Zhang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Qi Mei
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
25
|
Jannaway M, Iyer D, Mastrogiacomo DM, Li K, Sung DC, Yang Y, Kahn ML, Scallan JP. VEGFR3 is required for button junction formation in lymphatic vessels. Cell Rep 2023; 42:112777. [PMID: 37454290 PMCID: PMC10503778 DOI: 10.1016/j.celrep.2023.112777] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 06/01/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
Lymphatic capillaries develop discontinuous cell-cell junctions that permit the absorption of large macromolecules, chylomicrons, and fluid from the interstitium. While excessive vascular endothelial growth factor 2 (VEGFR2) signaling can remodel and seal these junctions, whether and how VEGFR3 can alter lymphatic junctions remains incompletely understood. Here, we use lymphatic-specific Flt4 knockout mice to investigate VEGFR3 signaling in lymphatic junctions. We show that loss of Flt4 prevents specialized button junction formation in multiple tissues and impairs interstitial absorption. Knockdown of FLT4 in human lymphatic endothelial cells results in impaired NOTCH1 expression and activation, and overexpression of the NOTCH1 intracellular domain in Flt4 knockout vessels rescues the formation of button junctions and absorption of interstitial molecules. Together, our data reveal a requirement for VEGFR3 and NOTCH1 signaling in the development of button junctions during postnatal development and may hold clinical relevance to lymphatic diseases with impaired VEGFR3 signaling.
Collapse
Affiliation(s)
- Melanie Jannaway
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Drishya Iyer
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Diandra M Mastrogiacomo
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Kunyu Li
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Derek C Sung
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Mark L Kahn
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua P Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
26
|
Xu D, Luo Y, Wang P, Li J, Ma L, Huang J, Zhang H, Yang X, Li L, Zheng Y, Fang G, Yan P. Clinical progress of anti-angiogenic targeted therapy and combination therapy for gastric cancer. Front Oncol 2023; 13:1148131. [PMID: 37384288 PMCID: PMC10295723 DOI: 10.3389/fonc.2023.1148131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023] Open
Abstract
The incidence of gastric cancer is increasing year by year. Most gastric cancers are already in the advanced stage with poor prognosis when diagnosed, which means the current treatment is not satisfactory. Angiogenesis is an important link in the occurrence and development of tumors, and there are multiple anti-angiogenesis targeted therapies. To comprehensively evaluate the efficacy and safety of anti-angiogenic targeted drugs alone and in combination against gastric cancer, we systematically searched and sorted out relevant literature. In this review, we summarized the efficacy and safety of Ramucirumab, Bevacizumab, Apatinib, Fruquintinib, Sorafenib, Sunitinib, Pazopanib on gastric cancer when used alone or in combination based on prospective clinical trials reported in the literature, and sorted response biomarkers. We also summarized the challenges faced by anti-angiogenesis therapy for gastric cancer and available solutions. Finally, the characteristics of the current clinical research are summarized and suggestions and prospects are raised. This review will serve as a good reference for the clinical research of anti-angiogenic targeted drugs in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Donghan Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yehao Luo
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jiaxin Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Linrui Ma
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jie Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Hao Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Xiaoman Yang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Liqi Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yuhong Zheng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Gang Fang
- Guangxi Key Laboratory of Applied Fundamental Research of Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyu Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
27
|
Peluzzo AM, Bkhache M, Do LNH, Autieri MV, Liu X. Differential regulation of lymphatic junctional morphology and the potential effects on cardiovascular diseases. Front Physiol 2023; 14:1198052. [PMID: 37187962 PMCID: PMC10175597 DOI: 10.3389/fphys.2023.1198052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The lymphatic vasculature provides an essential route to drain fluid, macromolecules, and immune cells from the interstitium as lymph, returning it to the bloodstream where the thoracic duct meets the subclavian vein. To ensure functional lymphatic drainage, the lymphatic system contains a complex network of vessels which has differential regulation of unique cell-cell junctions. The lymphatic endothelial cells lining initial lymphatic vessels form permeable "button-like" junctions which allow substances to enter the vessel. Collecting lymphatic vessels form less permeable "zipper-like" junctions which retain lymph within the vessel and prevent leakage. Therefore, sections of the lymphatic bed are differentially permeable, regulated in part by its junctional morphology. In this review, we will discuss our current understanding of regulating lymphatic junctional morphology, highlighting how it relates to lymphatic permeability during development and disease. We will also discuss the effect of alterations in lymphatic permeability on efficient lymphatic flux in health and how it may affect cardiovascular diseases, with a focus on atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | - Xiaolei Liu
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
28
|
von Atzigen J, Burger A, Grünherz L, Barbon C, Felmerer G, Giovanoli P, Lindenblatt N, Wolf S, Gousopoulos E. A Comparative Analysis to Dissect the Histological and Molecular Differences among Lipedema, Lipohypertrophy and Secondary Lymphedema. Int J Mol Sci 2023; 24:ijms24087591. [PMID: 37108757 PMCID: PMC10144050 DOI: 10.3390/ijms24087591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Lipedema, lipohypertrophy and secondary lymphedema are three conditions characterized by disproportionate subcutaneous fat accumulation affecting the extremities. Despite the apparent similarities and differences among their phenotypes, a comprehensive histological and molecular comparison does not yet exist, supporting the idea that there is an insufficient understanding of the conditions and particularly of lipohypertrophy. In our study, we performed histological and molecular analysis in anatomically-, BMI- and gender-matched samples of lipedema, lipohypertrophy and secondary lymphedema versus healthy control patients. Hereby, we found a significantly increased epidermal thickness only in patients with lipedema and secondary lymphedema, while significant adipocyte hypertrophy was identified in both lipedema and lipohypertrophy. Interestingly, the assessment of lymphatic vessel morphology showed significantly decreased total area coverage in lipohypertrophy versus the other conditions, while VEGF-D expression was significantly decreased across all conditions. The analysis of junctional genes often associated with permeability indicated a distinct and higher expression only in secondary lymphedema. Finally, the evaluation of the immune cell infiltrate verified the increased CD4+ cell and macrophage infiltration in lymphedema and lipedema respectively, without depicting a distinct immune cell profile in lipohypertrophy. Our study describes the distinct histological and molecular characteristics of lipohypertrophy, clearly distinguishing it from its two most important differential diagnoses.
Collapse
Affiliation(s)
- Julia von Atzigen
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Anna Burger
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Lisanne Grünherz
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Carlotta Barbon
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Gunther Felmerer
- Division of Plastic Surgery, Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Georg-August-University, 37075 Göttingen, Germany
| | - Pietro Giovanoli
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Stefan Wolf
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Epameinondas Gousopoulos
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
29
|
Agarwal M, Sharma A, Kagoo R A, Bhargava A. Interactions between genes altered during cardiotoxicity and neurotoxicity in zebrafish revealed using induced network modules analysis. Sci Rep 2023; 13:6257. [PMID: 37069190 PMCID: PMC10110561 DOI: 10.1038/s41598-023-33145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/07/2023] [Indexed: 04/19/2023] Open
Abstract
As the manufacturing and development of new synthetic compounds increase to keep pace with the expanding global demand, adverse health effects due to these compounds are emerging as critical public health concerns. Zebrafish have become a prominent model organism to study toxicology due to their genomic similarity to humans, optical clarity, well-defined developmental stages, short generation time, and cost-effective maintenance. It also provides a shorter time frame for in vivo toxicology evaluation compared to the mammalian experimental systems. Here, we used meta-analysis to examine the alteration in genes during cardiotoxicity and neurotoxicity in zebrafish, caused by chemical exposure of any kind. First, we searched the literature comprehensively for genes that are altered during neurotoxicity and cardiotoxicity followed by meta-analysis using ConsensusPathDB. Since constant communication between the heart and the brain is an important physiological phenomenon, we also analyzed interactions among genes altered simultaneously during cardiotoxicity and neurotoxicity using induced network modules analysis in ConsensusPathDB. We observed inflammation and regeneration as the major pathways involved in cardiotoxicity and neurotoxicity. A large number of intermediate genes and input genes anchored in these pathways are molecular regulators of cell cycle progression and cell death and are implicated in tumor manifestation. We propose potential predictive biomarkers for neurotoxicity and cardiotoxicity and the major pathways potentially implicated in the manifestation of a particular toxicity phenotype.
Collapse
Affiliation(s)
- Manusmriti Agarwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, 502284, India
| | - Ankush Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, 502284, India
| | - Andrea Kagoo R
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, 502284, India
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, 502284, India.
| |
Collapse
|
30
|
Long Y, Liu S, Wan J, Zhang Y, Li D, Yu S, Shi A, Li N, He F. Brain targeted borneol-baicalin liposome improves blood-brain barrier integrity after cerebral ischemia-reperfusion injury via inhibiting HIF-1α/VEGF/eNOS/NO signal pathway. Biomed Pharmacother 2023; 160:114240. [PMID: 36731339 DOI: 10.1016/j.biopha.2023.114240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Baicalin (BA) is widely used in the treatment of cerebral ischemia-reperfusion injury (CIRI). The key to treating encephalopathy is to increase the amounts of drugs entering the brain. Borneol-baicalin liposome (BO-BA-LP) was prepared in previous research based on the characteristics of borneol (BO) in promoting drug brain entry. In this study, the effect of BO-BA-LP on improving blood-brain barrier (BBB) integrity was researched. Results showed BO-BA-LP may increase ability of BA to penetrate the cell membrane in vitro. Pharmacokinetic results showed the BO-BA-LP could increase concentrations of BA in plasma and brain tissues of normal and CIRI mice. Pharmacological results revealed BO-BA-LP could improve the neurological function, brain edema, and histopathology of CIRI mice. Besides, BO-BA-LP could protect BBB by regulating hypoxia inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF)/endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) pathway. The research showed that BO in BO-BA-LP could increase the absorption of BA by increasing BBB permeability, leading to a better therapeutic effect of BO-BA-LP on CIRI mice.
Collapse
Affiliation(s)
- Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China.
| | - Songyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China.
| | - Jinyan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China.
| | - Yulu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China.
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China.
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China.
| | - Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China.
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, PR China.
| | - Fei He
- Yongchuan Hospital of Chongqing Medical University, No. 439, Xuanhua Road, Yongchuan Dist., Chongqing 402160, PR China.
| |
Collapse
|
31
|
Jackson TL, Slakter J, Buyse M, Wang K, Dugel PU, Wykoff CC, Boyer DS, Gerometta M, Baldwin ME, Price CF. A randomized controlled trial of OPT-302, a VEGF-C/D inhibitor for neovascular age-related macular degeneration. Ophthalmology 2023; 130:588-597. [PMID: 36754174 DOI: 10.1016/j.ophtha.2023.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Neovascular (wet) age-related macular degeneration (nAMD) is driven by vascular endothelial growth factors (VEGF)-A, -C and -D, which promote angiogenesis and vascular permeability. Intravitreal injections of anti-VEGF-A drugs are the standard of care, but these do not inhibit VEGF-C and -D, which may explain why many patients fail to respond fully. This trial aimed to test the safety and efficacy of OPT-302, a biologic inhibitor of VEGF-C and -D, in combination with the anti-VEGF-A inhibitor ranibizumab. DESIGN Dose-ranging, phase 2b, randomized, double-masked, sham-controlled trial. PARTICIPANTS Participants with treatment-naïve nAMD were enrolled from 109 sites across Europe, Israel, and USA. METHODS Participants were randomized to six, 4-weekly, intravitreal injections of 0.5 mg OPT-302, 2.0 mg OPT-302, or sham; plus intravitreal 0.5 mg ranibizumab. OUTCOME MEASURES The primary outcome was mean change in Early Treatment Diabetic Retinopathy Study (ETDRS) best-corrected visual acuity (BCVA) at 24 weeks. Secondary outcomes (comparing baseline to week 24) were the proportion of participants gaining or losing ≥15 ETDRS BCVA letters; area under the ETDRS BCVA over time curve; change in spectral-domain optical coherence tomography (SD-OCT) central subfield thickness (CST); and change in intra-retinal fluid and sub-retinal fluid on SD-OCT. RESULTS Of 366 participants recruited 1st December 2017 to 30th November 2018, 122, 123 and 121 were randomized to 0.5 mg OPT-302, 2.0 mg OPT-302 or sham respectively. Mean (± standard deviation) visual acuity gain in the 2.0 mg OPT-302 group was significantly superior to sham (+14.2 ± 11.61 versus +10.8 ± 11.52 letters; p=0.01). The 0.5 mg OPT-302 group was not significantly different to sham (+9.44 ± 11.32 letters; p=0.83). Compared to sham, the secondary BCVA outcomes favored the 2.0 mg OPT-302 group, with structural outcomes favoring both OPT-302 dosage groups. Adverse events were similar across groups, with 16 (13.3%), 7 (5.6%) and 10 (8.3%) participants in the lower dose, higher dose and sham group developing at least one serious adverse event. Two unrelated deaths both occurred in the sham arm. CONCLUSIONS Significantly superior vision gain was observed with OPT-302 2.0 mg combination therapy, versus standard of care, with favorable safety (ClinicalTrials.gov identifier: NCT03345082).
Collapse
Affiliation(s)
- Timothy L Jackson
- Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Jason Slakter
- The Digital Angiographic Reading Center (DARC), New York, New York, USA
| | - Marc Buyse
- International Drug Development Institute (IDDI), Louvain-la-Neuve, Belgium
| | - Kun Wang
- International Drug Development Institute (IDDI), Louvain-la-Neuve, Belgium
| | - Pravin U Dugel
- Retinal Consultants of Arizona, Phoenix, Arizona; University of Southern California, Los Angeles, CA, USA
| | | | - David S Boyer
- Retina-Vitreous Associates Medical Group, Beverly Hills, California, USA
| | | | | | | |
Collapse
|
32
|
Qi Y, Song Y, Cai M, Li J, Yu Z, Li Y, Huang J, Jiang Y, Peng C, Jiang B, Liu S. Vascular endothelial growth factor A is a potential prognostic biomarker and correlates with immune cell infiltration in hepatocellular carcinoma. J Cell Mol Med 2023; 27:538-552. [PMID: 36729917 PMCID: PMC9930434 DOI: 10.1111/jcmm.17678] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/30/2022] [Accepted: 01/06/2023] [Indexed: 02/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths among cancer patients. Vascular endothelial growth factor A (VEGFA) is involved in regulating biological processes, such as angiogenesis and vascular permeability, and is very closely related to the pathogenesis of various tumours, especially vascular-rich, solid tumours. Clinical data of patients with HCC and other tumours were analysed through public databases, such as the TCGA database, Gene Expression Omnibus database, Human Protein Atlas database, STRING, Tumour Immune Estimation Resource and Kaplan-Meier Plotter. The tumour tissues and adjacent normal tissues of patients with HCC from Hunan Provincial People's Hospital were collected to verify the expression of VEGFA by immunohistochemistry, immunofluorescence, Western blotting and qPCR. VEGFA expression is elevated in multiple tumour types and correlates with the prognosis of tumour patients. VEGFA is involved in regulating the tumour microenvironment and immune cell function in tumour development. Inhibition of VEGFA reduces proliferation, invasion, and migration and promotes apoptosis in HCC cells. VEGFA is a potential predictive biomarker for the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Yuchen Qi
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
- Department of CardiologyXiangdong Hospital Affiliated to Hunan Normal UniversityLilingChina
- Central Laboratory of Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Yinghui Song
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
- Central Laboratory of Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Mengting Cai
- Department of Nuclear MedicineHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Jianwen Li
- Department of CardiologyXiangdong Hospital Affiliated to Hunan Normal UniversityLilingChina
| | - Zhangtao Yu
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Yuhang Li
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Junkai Huang
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Yu Jiang
- Institute of Emergency Medicine/Hunan Provincial Key Laboratory of Emergency and Critical Care MetabonomicsHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Chuang Peng
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Bo Jiang
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Sulai Liu
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
- Central Laboratory of Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| |
Collapse
|
33
|
Donnan MD, Deb DK, Onay T, Scott RP, Ni E, Zhou Y, Quaggin SE. Formation of the glomerular microvasculature is regulated by VEGFR-3. Am J Physiol Renal Physiol 2023; 324:F91-F105. [PMID: 36395385 PMCID: PMC9836230 DOI: 10.1152/ajprenal.00066.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 10/12/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Microvascular dysfunction is a key driver of kidney disease. Pathophysiological changes in the kidney vasculature are regulated by vascular endothelial growth factor receptors (VEGFRs), supporting them as potential therapeutic targets. The tyrosine kinase receptor VEGFR-3, encoded by FLT4 and activated by the ligands VEGF-C and VEGF-D, is best known for its role in lymphangiogenesis. Therapeutically targeting VEGFR-3 to modulate lymphangiogenesis has been proposed as a strategy to treat kidney disease. However, outside the lymphatics, VEGFR-3 is also expressed in blood vascular endothelial cells in several tissues including the kidney. Here, we show that Vegfr-3 is expressed in fenestrated microvascular beds within the developing and adult mouse kidney, which include the glomerular capillary loops. We found that expression levels of VEGFR-3 are dynamic during glomerular capillary loop development, with the highest expression observed during endothelial cell migration into the S-shaped glomerular body. We developed a conditional knockout mouse model for Vegfr-3 and found that loss of Vegfr-3 resulted in a striking glomerular phenotype characterized by aneurysmal dilation of capillary loops, absence of mesangial structure, abnormal interendothelial cell junctions, and poor attachment between glomerular endothelial cells and the basement membrane. In addition, we demonstrated that expression of the VEGFR-3 ligand VEGF-C by podocytes and mesangial cells is dispensable for glomerular development. Instead, VEGFR-3 in glomerular endothelial cells attenuates VEGFR-2 phosphorylation. Together, the results of our study support a VEGF-C-independent functional role for VEGFR-3 in the kidney microvasculature outside of lymphatic vessels, which has implications for clinical therapies that target this receptor.NEW & NOTEWORTHY Targeting VEGFR-3 in kidney lymphatics has been proposed as a method to treat kidney disease. However, expression of VEGFR-3 is not lymphatic-specific. We demonstrated developmental expression of VEGFR-3 in glomerular endothelial cells, with loss of Vegfr-3 leading to malformation of glomerular capillary loops. Furthermore, we showed that VEGFR-3 attenuates VEGFR-2 activity in glomerular endothelial cells independent of paracrine VEGF-C signaling. Together, these data provide valuable information for therapeutic development targeting these pathways.
Collapse
Affiliation(s)
- Michael D Donnan
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Dilip K Deb
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Tuncer Onay
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Rizaldy P Scott
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Eric Ni
- Lake Erie College of Osteopathic Medicine, Greensburg, Pennsylvania
| | - Yalu Zhou
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Susan E Quaggin
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| |
Collapse
|
34
|
Deng YY, Zhang XY, Zhu PF, Lu HR, Liu Q, Pan SY, Chen ZL, Yang L. Comparison of the efficacy and safety of fruquintinib and regorafenib in the treatment of metastatic colorectal cancer: A real-world study. Front Oncol 2023; 13:1097911. [PMID: 36937443 PMCID: PMC10020225 DOI: 10.3389/fonc.2023.1097911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Background Fruquintinib and regorafenib have been approved for the third-line therapy of metastatic colorectal cancer (mCRC) in China. However, at present, there is a lack of head-to-head clinical trials on the comparison of efficacy and safety between the two drugs. Materials and methods The data of patients with mCRC who were treated with fruquintinib or regorafenib after the standard chemotherapy in Zhejiang Provincial People's Hospital from October 2018 to November 2021 were collected and analyzed. The primary endpoints were overall survival (OS), progression-free survival (PFS) and adverse events. The secondary endpoints were the appropriate sequence, objective remission rate (ORR) and disease control rate (DCR) of fruquintinib and regorafenib. Results A total of 105 patients were enrolled in this study. The ORR of fruquintinib group (n=55) and regorafenib group (n=50) were 6.1% and 2.0%; the DCR were 65.3% and 54.2%, respectively. There was no significant difference in median OS (mOS) and PFS (mPFS) between the two groups (mOS:14.2 vs12.0 months, p=0.057; mPFS:4.4 vs 3.5 months, p=0.150). Combined immunotherapy showed a synergistic effect. The mPFS and mOS of fruquintinib combined with anti-PD-1 therapy were longer than those of fruquintinib monotherapy (mPFS:5.9 vs 3.0 months, p=0.009; mOS:17.5 vs 11.3 months, p=0.008). The mOS of patients treated with regorafenib combined with anti-PD-1 therapy was 14.8 months higher than that of regorafenib monotherapy (p=0.045). When combined with anti-PD-1 therapy, the mPFS and mOS of fruquintinib was significantly longer than regorafenib (mPFS:5.9 vs 3.8 months, p=0.018; mOS:17.5 vs 14.8 months, p=0.044). In the treatment sequence, the OS of patients treated with regorafenib and then fruquintinib was significantly longer than that of the reverse treatment sequence (15.0 vs 8.3 months, p=0.019). The adverse reactions were generally similar, but the incidence of hand-foot syndrome of regorafenib was higher than that of fruquintinib, while fruquintinib was more prone to grade 3 hypertension. Conclusion Fruquintinib monotherapy showed better disease control rate and objective remission rate in the post-line therapy of metastasis colorectal cancer. Notably, the combination of PD-1 immunotherapy brought the additional effect, especially in the fruquintinib combined with anti-PD-1 therapy. Patients treated with regorafenib and then fruquintinib was significantly longer than that of the reverse treatment sequence. The toxicity of fruquintinib and regorafenib are similar.
Collapse
Affiliation(s)
- Ya-Ya Deng
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Graduate School of Clinical Medicine, The Qingdao University Medical College, Qingdao, Shandong, China
| | - Xin-Yue Zhang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Graduate School of Clinical Medicine, The Qingdao University Medical College, Qingdao, Shandong, China
| | - Peng-Fei Zhu
- Graduate School of Clinical Medicine, The Qingdao University Medical College, Qingdao, Shandong, China
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, Anhui, China
| | - Hong-Rui Lu
- Graduate School of Clinical Medicine, The Qingdao University Medical College, Qingdao, Shandong, China
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, Anhui, China
| | - Qian Liu
- Graduate School of Clinical Medicine, The Qingdao University Medical College, Qingdao, Shandong, China
| | - Shuang-Yue Pan
- Graduate School of Clinical Medicine, The Qingdao University Medical College, Qingdao, Shandong, China
- Graduate School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhe-Ling Chen
- Graduate School of Clinical Medicine, The Qingdao University Medical College, Qingdao, Shandong, China
- *Correspondence: Liu Yang, ; Zhe-Ling Chen,
| | - Liu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Graduate School of Clinical Medicine, The Qingdao University Medical College, Qingdao, Shandong, China
- *Correspondence: Liu Yang, ; Zhe-Ling Chen,
| |
Collapse
|
35
|
The Lymphatic Endothelium in the Context of Radioimmuno-Oncology. Cancers (Basel) 2022; 15:cancers15010021. [PMID: 36612017 PMCID: PMC9817924 DOI: 10.3390/cancers15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The study of lymphatic tumor vasculature has been gaining interest in the context of cancer immunotherapy. These vessels constitute conduits for immune cells' transit toward the lymph nodes, and they endow tumors with routes to metastasize to the lymph nodes and, from them, toward distant sites. In addition, this vasculature participates in the modulation of the immune response directly through the interaction with tumor-infiltrating leukocytes and indirectly through the secretion of cytokines and chemokines that attract leukocytes and tumor cells. Radiotherapy constitutes the therapeutic option for more than 50% of solid tumors. Besides impacting transformed cells, RT affects stromal cells such as endothelial and immune cells. Mature lymphatic endothelial cells are resistant to RT, but we do not know to what extent RT may affect tumor-aberrant lymphatics. RT compromises lymphatic integrity and functionality, and it is a risk factor to the onset of lymphedema, a condition characterized by deficient lymphatic drainage and compromised tissue homeostasis. This review aims to provide evidence of RT's effects on tumor vessels, particularly on lymphatic endothelial cell physiology and immune properties. We will also explore the therapeutic options available so far to modulate signaling through lymphatic endothelial cell receptors and their repercussions on tumor immune cells in the context of cancer. There is a need for careful consideration of the RT dosage to come to terms with the participation of the lymphatic vasculature in anti-tumor response. Here, we provide new approaches to enhance the contribution of the lymphatic endothelium to radioimmuno-oncology.
Collapse
|
36
|
Zhou W, Liu K, Zeng L, He J, Gao X, Gu X, Chen X, Jing Li J, Wang M, Wu D, Cai Z, Claesson-Welsh L, Ju R, Wang J, Zhang F, Chen Y. Targeting VEGF-A/VEGFR2 Y949 Signaling-Mediated Vascular Permeability Alleviates Hypoxic Pulmonary Hypertension. Circulation 2022; 146:1855-1881. [PMID: 36384284 DOI: 10.1161/circulationaha.122.061900] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is associated with increased expression of VEGF-A (vascular endothelial growth factor A) and its receptor, VEGFR2 (vascular endothelial growth factor 2), but whether and how activation of VEGF-A signal participates in the pathogenesis of PH is unclear. METHODS VEGF-A/VEGFR2 signal activation and VEGFR2 Y949-dependent vascular leak were investigated in lung samples from patients with PH and mice exposed to hypoxia. To study their mechanistic roles in hypoxic PH, we examined right ventricle systolic pressure, right ventricular hypertrophy, and pulmonary vasculopathy in mutant mice carrying knock-in of phenylalanine that replaced the tyrosine at residual 949 of VEGFR2 (Vefgr2Y949F) and mice with conditional endothelial deletion of Vegfr2 after chronic hypoxia exposure. RESULTS We show that PH leads to excessive pulmonary vascular leak in both patients and hypoxic mice, and this is because of an overactivated VEGF-A/VEGFR2 Y949 signaling axis. In the context of hypoxic PH, activation of Yes1 and c-Src and subsequent VE-cadherin phosphorylation in endothelial cells are involved in VEGFR2 Y949-induced vascular permeability. Abolishing VEGFR2 Y949 signaling by Vefgr2Y949F point mutation was sufficient to prevent pulmonary vascular permeability and inhibit macrophage infiltration and Rac1 activation in smooth muscle cells under hypoxia exposure, thereby leading to alleviated PH manifestations, including muscularization of distal pulmonary arterioles, elevated right ventricle systolic pressure, and right ventricular hypertrophy. It is important that we found that VEGFR2 Y949 signaling in myeloid cells including macrophages was trivial and dispensable for hypoxia-induced vascular abnormalities and PH. In contrast with selective blockage of VEGFR2 Y949 signaling, disruption of the entire VEGFR2 signaling by conditional endothelial deletion of Vegfr2 promotes the development of PH. CONCLUSIONS Our results support the notion that VEGF-A/VEGFR2 Y949-dependent vascular permeability is an important determinant in the pathogenesis of PH and might serve as an attractive therapeutic target pathway for this disease.
Collapse
Affiliation(s)
- Weibin Zhou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.).,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (W.Z., J.H., J.W., Y.C.)
| | - Keli Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Lei Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Jiaqi He
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (W.Z., J.H., J.W., Y.C.)
| | - Xinbo Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Xinyu Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Xun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Jing Jing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Minghui Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.)
| | - Duoguang Wu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.)
| | - Zhixiong Cai
- Department of Cardiology, Shantou Central Hospital, China (Z.C.)
| | - Lena Claesson-Welsh
- Rudbeck, SciLifeLab and Beijer Laboratories, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (L.C.-W.)
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Jingfeng Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (W.Z., J.H., J.W., Y.C.)
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Yangxin Chen
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (W.Z., J.H., J.W., Y.C.)
| |
Collapse
|
37
|
Suda K, Yamada S, Miyahara K, Fujiwara N, Kosaka S, Abe K, Seo S, Nakamura S, Lane GJ, Yamataka A. High intestinal vascular permeability in a murine model for Hirschsprung’s disease: implications for postoperative Hirschsprung-associated enterocolitis. Pediatr Surg Int 2022; 39:15. [PMID: 36449111 PMCID: PMC9713090 DOI: 10.1007/s00383-022-05308-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 12/02/2022]
Abstract
PURPOSE Intestinal vascular permeability (VP) in a murine model for Hirschsprung's disease (HD) and postoperative Hirschsprung-associated enterocolitis (HAEC) were investigated. METHODS Intestinal VP was determined using a Miles assay using 1% Evans blue injected into a superficial temporal vein of newborn endothelin receptor-B KO HD model (KO) and syngeneic wild-type (WT) mice (n = 5, respectively). Extravasated Evans blue in normoganglionic ileum (Ng-I), normoganglionic proximal colon (Ng-PC) and aganglionic distal colon (Ag-DC) was quantified by absorbance at 620 nm. Quantitative polymerase chain reaction (qPCR) for Vascular Endothelial Growth Factor A (VEGF-A), VEGF-B, CDH5, SELE and CD31, and immunofluorescence for CD31 were performed. RESULTS VP was significantly higher in Ng-I, Ng-PC, and Ag-DC from KO than WT (p < 0.01, p < 0.05, and p < 0.05, respectively). qPCR demonstrated upregulated VEGF-A in Ng-I and Ag-DC, VEGF-B in Ng-I, and SELE in Ng-I and Ng-PC (p < 0.05, p < 0.05, p < 0.05, p < 0.01 and p < 0.05, respectively), and downregulated CDH5 in Ng-I and Ng-PC from KO (p < 0.05, respectively). Expression of CD31 mRNA in Ng-I and Ag-DC from KO was significantly higher on qPCR (p < 0.05) but differences on immunofluorescence were not significant. CONCLUSIONS VP may be etiologic for postoperative HAEC throughout the intestinal tract even after excision of aganglionic bowel.
Collapse
Affiliation(s)
- Kazuto Suda
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Shunsuke Yamada
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Katsumi Miyahara
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Naho Fujiwara
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Seitaro Kosaka
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kumpei Abe
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shogo Seo
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, and Division of Ultrastructural Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Geoffrey J Lane
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Atsuyuki Yamataka
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
38
|
Sung DC, Chen M, Dominguez MH, Mahadevan A, Chen X, Yang J, Gao S, Ren AA, Tang AT, Mericko P, Patton R, Lee M, Jannaway M, Nottebaum A, Vestweber D, Scallan JP, Kahn ML. Sinusoidal and lymphatic vessel growth is controlled by reciprocal VEGF-C-CDH5 inhibition. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1006-1021. [PMID: 36910472 PMCID: PMC9997205 DOI: 10.1038/s44161-022-00147-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/14/2022] [Indexed: 11/12/2022]
Abstract
Sinusoids are specialized, low pressure blood vessels in the liver, bone marrow, and spleen required for definitive hematopoiesis. Unlike other blood endothelial cells (ECs), sinusoidal ECs express high levels of VEGFR3. VEGFR3 and its ligand VEGF-C are known to support lymphatic growth, but their function in sinusoidal vessels is unknown. In this study, we define a reciprocal VEGF-C/VEGFR3-CDH5 (VE-cadherin) signaling axis that controls growth of both sinusoidal and lymphatic vessels. Loss of VEGF-C or VEGFR3 resulted in cutaneous edema, reduced fetal liver size, and bloodless bone marrow due to impaired lymphatic and sinusoidal vessel growth. Mice with membrane-retained VE-cadherin conferred identical lymphatic and sinusoidal defects, suggesting that VE-cadherin opposes VEGF-C/VEGFR3 signaling. In developing mice, loss of VE-cadherin rescued defects in sinusoidal and lymphatic growth caused by loss of VEGFR3 but not loss of VEGF-C, findings explained by potentiated VEGF-C/VEGFR2 signaling in VEGFR3-deficient lymphatic ECs. Mechanistically, VEGF-C/VEGFR3 signaling induces VE-cadherin endocytosis and loss of function via SRC-mediated phosphorylation, while VE-cadherin prevents VEGFR3 endocytosis required for optimal receptor signaling. These findings establish an essential role for VEGF-C/VEGFR3 signaling during sinusoidal vascular growth, identify VE-cadherin as a powerful negative regulator of VEGF-C signaling that acts through both VEGFR3 and VEGFR2 receptors, and suggest that negative regulation of VE-cadherin is required for effective VEGF-C/VEGFR3 signaling during growth of sinusoidal and lymphatic vessels. Manipulation of this reciprocal negative regulatory mechanism, e.g. by reducing VE-cadherin function, may be used to stimulate therapeutic sinusoidal or lymphatic vessel growth.
Collapse
Affiliation(s)
- Derek C. Sung
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mei Chen
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Martin H. Dominguez
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aparna Mahadevan
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaowen Chen
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jisheng Yang
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Siqi Gao
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aileen A. Ren
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alan T. Tang
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patricia Mericko
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Raiyah Patton
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michelle Lee
- University Laboratory Animal Resources, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Melanie Jannaway
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Astrid Nottebaum
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Mark L. Kahn
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Henneghan AM, Fico BG, Wright ML, Kesler SR, Harrison ML. Effects of meditation compared to music listening on biomarkers in breast cancer survivors with cognitive complaints: secondary outcomes of a pilot randomized control trial. Explore (NY) 2022; 18:657-662. [PMID: 34802955 PMCID: PMC9085959 DOI: 10.1016/j.explore.2021.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
CONTEXT We previously reported positive behavioral effects of both daily mantra meditation and classical music listening interventions in breast cancer survivors with cancer related cognitive complaints. OBJECTIVE The objective of this pilot study was to compare the effects of the meditation intervention to a music listening intervention on biomarkers of inflammation and cellular aging (secondary outcomes) in breast cancer survivors. DESIGN Randomized control trial, baseline data collection (time 1), post intervention data collection (time 2) SETTING: Community-based, Central Texas PARTICIPANTS: 25 breast cancer survivors (BCS) who were 3 months to 6 years post chemotherapy completion and reported cognitive changes. INTERVENTION(S) Kirtan Kriya meditation (KK) or classical music listening (ML), 8 weeks, 12 min a day MAIN OUTCOME: Telomerase activity [TA], c-reactive protein [CRP], soluble IL-2 receptor alpha [sIL-2Rα], soluble IL-4 receptor [sIL-4R], soluble IL-6 receptor [sIL-6R], soluble tumor necrosis factor receptor II [sTNF-RII], VEGF receptor 2 [sVEGF-R2], and VEGF receptor 3 [sVEGF-R3] RESULTS: Repeated measures analysis of variance models were analyzed from time 1 to time 2 by group for each biomarker. A pattern of greater telomerase activity across time in both groups (F (1,15) = 3.98, p = .06, ω2 = 0.04); significant decreases in sIL-4R across time for both groups (F (1,22) = 6.28, p = .02, ω2 = .003); group*time effect was nominally different but not statistically different for sIL-4R (F(1,22) = 3.82, p = .06, ω2 = .001); and a pattern for a group*time effect with ML group showing higher levels of sVEGF-R3 at time 2 (F (1,20) = 2.59, p = .12, ω2 = .009). No significant effects were found for CRP, sIL-2Rα, sIL-6R, sTNF-RII, or sVEGF-R2.
Collapse
Affiliation(s)
- Ashley M Henneghan
- The University of Texas at Austin, School of Nursing. 1710 Red River St., Austin, TX 78712, United States; The University of Texas at Austin, Department of Oncology, 1601 Trinity St., Austin, TX 78712, United States.
| | - Brandon G Fico
- The University of Texas at Austin, Department of Kinesiology and Health Education, 2109, San Jacinto Blvd., Austin, TX 78712, United States
| | - Michelle L Wright
- The University of Texas at Austin, School of Nursing. 1710 Red River St., Austin, TX 78712, United States; The University of Texas at Austin, Dell Medical School, Department of Women's Health, 1601, Trinity St., Austin, TX 78712, United States
| | - Shelli R Kesler
- The University of Texas at Austin, School of Nursing. 1710 Red River St., Austin, TX 78712, United States; The University of Texas at Austin, Department of Oncology, 1601 Trinity St., Austin, TX 78712, United States; The University of Texas at Austin, Department of Diagnostic Medicine, 1601 Trinity St., Austin, TX 78712, United States
| | - Michelle L Harrison
- The University of Texas at Austin, Department of Kinesiology and Health Education, 2109, San Jacinto Blvd., Austin, TX 78712, United States
| |
Collapse
|
40
|
Bautch VL, Mukouyama YS. The Beauty and Complexity of Blood Vessel Patterning. Cold Spring Harb Perspect Med 2022; 12:a041167. [PMID: 35379659 PMCID: PMC9619359 DOI: 10.1101/cshperspect.a041167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review highlights new concepts in vascular patterning in the last 10 years, with emphasis on its beauty and complexity. Endothelial cell signaling pathways that respond to molecular or mechanical signals are described, and examples of vascular patterning that use these pathways in brain, skin, heart, and kidney are highlighted. The pathological consequences of patterning loss are discussed in the context of arteriovenous malformations (AVMs), and prospects for the next 10 years presented.
Collapse
Affiliation(s)
- Victoria L Bautch
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Development Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
41
|
Mineralocorticoid Receptor Pathway Is a Key Mediator of Carfilzomib-induced Nephrotoxicity: Preventive Role of Eplerenone. Hemasphere 2022; 6:e791. [PMID: 36285072 PMCID: PMC9584194 DOI: 10.1097/hs9.0000000000000791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
Carfilzomib is an irreversible proteasome inhibitor indicated for relapsed/refractory multiple myeloma. Carfilzomib toxicity includes renal adverse effects (RAEs) of obscure pathobiology. Therefore, we investigated the mechanisms of nephrotoxicity developed by Carfilzomib. In a first experimental series, we used our previously established in vivo mouse models of Carfilzomib cardiotoxicity, that incorporated 2 and 4 doses of Carfilzomib, to identify whether Carfilzomib affects renal pathways. Hematology and biochemical analyses were performed, while kidneys underwent histological and molecular analyses. In a second and third experimental series, the 4 doses protocol was repeated for 24 hours urine collection and proteomic/metabolomic analyses. To test an experimental intervention, primary murine collecting duct tubular epithelial cells were treated with Carfilzomib and/or Eplerenone and Metformin. Finally, Eplerenone was orally co-administered with Carfilzomib daily (165 mg/kg) in the 4 doses protocol. We additionally used material from 7 patients to validate our findings and patients underwent biochemical analysis and assessment of renal mineralocorticoid receptor (MR) axis activation. In vivo screening showed that Carfilzomib-induced renal histological deficits and increased serum creatinine, urea, NGAL levels, and proteinuria only in the 4 doses protocol. Carfilzomib decreased diuresis, altered renal metabolism, and activated MR axis. This was consistent with the cytotoxicity found in primary murine collecting duct tubular epithelial cells, whereas Carfilzomib + Eplerenone co-administration abrogated Carfilzomib-related nephrotoxic effects in vitro and in vivo. Renal SGK-1, a marker of MR activation, increased in patients with Carfilzomib-related RAEs. Conclusively, Carfilzomib-induced renal MR/SGK-1 activation orchestrates RAEs and water retention both in vivo and in the clinical setting. MR blockade emerges as a potential therapeutic approach against Carfilzomib-related nephrotoxicity.
Collapse
|
42
|
Sun B, Zhang L, Sun T, Ren Y, Cao Y, Zhang W, Zhu L, Guo Y, Gui Y, Liu F, Chen L, Xiong F, Zheng C. Safety and efficacy of lenvatinib combined with camrelizumab plus transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma: A two-center retrospective study. Front Oncol 2022; 12:982948. [PMID: 36172158 PMCID: PMC9511022 DOI: 10.3389/fonc.2022.982948] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives To compare the safety and efficacy of lenvatinib (LEN) combined with camrelizumab plus transcatheter arterial chemoembolization (TACE-LEN-C) and TACE combined with LEN (TACE-LEN) in patients with unresectable hepatocellular carcinoma (uHCC). Methods Eighty-three patients with uHCC treated with TACE-LEN-C or TACE-LEN from September 2018 to May 2021 were enrolled in this retrospective study. Overall survival (OS), progression-free survival (PFS), local tumor response, and adverse events (AEs) were evaluated. Univariate and multivariate analyses were used to determine the factors affecting survival. Results There were 31 patients in the TACE-LEN-C group and 52 patients in the TACE-LEN group. The median follow-up period was 14.2 months (range 7.2–25.2 months) in the whole study. The combination of triple therapy was found to significantly prolong the PFS (12.5 months vs. 6.6 months, P<0.001) and OS (18.9 months vs. 13.9 months, P<0.001. In terms of tumor response, the combination demonstrated a higher objective response rate (71% vs. 42.3% by the modified Response Evaluation Criteria in Solid Tumors, P=0.023) without a statistically significant difference in the disease control rate (93.5% in TACE-LEN-C, 80.8% in TACE-LEN, P=0.195). In the multivariate analysis, two independent factors affecting PFS were identified: number of tumors and treatment. Three independent factors affected OS: number of tumors, Barcelona Clinic Liver Cancer (BCLC) stage, and treatment. All the AEs were tolerable. Conclusion TACE-LEN-C is a safe and effective treatment for patients with uHCC, and could be a potential treatment option.
Collapse
Affiliation(s)
- Bo Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijie Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiao Ren
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyan Cao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihua Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Licheng Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yusheng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxi Gui
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengyong Liu
- Department of Interventional Radiology, The Fifth Medical Center of Chinese, People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Lei Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Chuansheng Zheng, ; Fu Xiong, ; Lei Chen,
| | - Fu Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Chuansheng Zheng, ; Fu Xiong, ; Lei Chen,
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Imaging of Hubei Province, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Chuansheng Zheng, ; Fu Xiong, ; Lei Chen,
| |
Collapse
|
43
|
The Biomarker Like the Correlation between Vasculogenic Mimicry, Vascular Endothelial Cadherin, Sex-DeterminingRegion on Y-Box Transcription Factor 17, and Cyclin D1 in Oesophageal Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:8915503. [PMID: 36072972 PMCID: PMC9444392 DOI: 10.1155/2022/8915503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022]
Abstract
Background This study aimed to explore the relationships between the sex-determining region on Y (SRY) box transcription factor 17 (SOX17), Cyclin D1, vascular endothelial cadherin (VE-cadherin), and vasculogenic mimicry (VM) in the occurrence and development of esophageal squamous cell carcinoma (ESCC). Methods The expressions of SOX17, Cyclin D1, and VE-cadherin, as well as VM, in tissues, were determined using immunohistochemistry. SOX17, Cyclin D1, and VE-cadherin mRNA in ESCC and their corresponding adjacent normal tissues were quantified using quantitative reverse transcription polymerase chain reaction analysis. Cell invasion, migration, and proliferation were determined after the silencing of VE-cadherin. SOX17, Cyclin D1, and VE-cadherin protein were quantified using Western blotting. Results The expression levels of SOX17, Cyclin D1, and VE-cadherin significantly correlated with the clinical characteristics of ESCC. After the VE-cadherin silencing, cell invasion, migration, and proliferation decreased, along with the Cyclin D1 levels, while the SOX17 levels increased. Conclusion SOX17, Cyclin D1, and VE-cadherin are involved in the development of ESCC.
Collapse
|
44
|
Luo X, Zou W, Wei Z, Yu S, Zhao Y, Wu Y, Wang A, Lu Y. Inducing vascular normalization: A promising strategy for immunotherapy. Int Immunopharmacol 2022; 112:109167. [PMID: 36037653 DOI: 10.1016/j.intimp.2022.109167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Abstract
In solid tumors, the vasculature is highly abnormal in structure and function, resulting in the formation of an immunosuppressive tumor microenvironment by limiting immune cells infiltration into tumors. Vascular normalization is receiving much attention as an alternative strategy to anti-angiogenic therapy, and its potential therapeutic targets include signaling pathways, angiogenesis-related genes, and metabolic pathways. Endothelial cells play an important role in the formation of blood vessel structure and function, and their metabolic processes drive blood vessel sprouting in parallel with the control of genetic signals in cancer. The feedback loop between vascular normalization and immunotherapy has been discussed extensively in many reviews. In this review, we summarize the impact of aberrant tumor vascular structure and function on drug delivery, metastasis, and anti-tumor immune responses. In addition, we present evidences for the mutual regulation of immune vasculature. Based on the importance of endothelial metabolism in controlling angiogenesis, we elucidate the crosstalk between endothelial cells and immune cells from the perspective of metabolic pathways and propose that targeting abnormal endothelial metabolism to achieve vascular normalization can be an alternative strategy for cancer treatment, which provides a new theoretical basis for future research on the combination of vascular normalization and immunotherapy.
Collapse
Affiliation(s)
- Xin Luo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Suyun Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
45
|
Oosterwijk-Wakka JC, de Weijert MCA, Franssen GM, Kolev DR, de Haan TAFJ, Boerman OC, Mulders PFA, Oosterwijk E. Combination of sunitinib and 177Lu-labeled antibody cG250 targeted radioimmunotherapy: A promising new therapeutic strategy for patients with advanced renal cell cancer. Neoplasia 2022; 32:100826. [PMID: 35878454 PMCID: PMC9309230 DOI: 10.1016/j.neo.2022.100826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
Sunitinib is an effective treatment for patients with metastatic Renal Cell Carcinoma (mRCC) but ultimately resistance occurs. The aim of this study was to investigate sunitinib resistance in RCCs and to develop therapeutic combination strategies with targeted radioimmunotherapy (RIT). We studied two RCC models, analyzed Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) and AXL/MET expression and performed therapy studies in Balb/cnu/nu mice combining sunitinib and [177Lu]Lu-cG250 RIT (6.5 MBq/10 μg), specifically targeting RCC cells. pAXL and pMET were expressed in sunitinib-resistant SK-RC-52 and absent in sunitinib-sensitive NU12. NGS evaluation showed that expression of VEGFA, VEGFB, VEGFD, PGF and VEGFR1,2,3 was higher and expression of VEGFC and PDGFA was lower in NU12 than in SK-RC-52. Therapy studies combining sunitinib with [177Lu]Lu-cG250 RIT showed that the best response in mice with “resistant” SK-RC-52 tumors was observed with two cycles of Sunitinib and [177Lu]Lu-cG250 RIT, probably due to increased vascular permeability by sunitinib treatment. In the “sensitive” NU12 model, two cycles of [177Lu]Lu-cG250 RIT and two cycles of combination treatment were equally effective. Enhanced therapeutic efficacy was achieved when two agents ([177Lu]Lu-cG250 RIT and sunitinib) that on their own did not induce satisfactory response levels, are combined. Our findings provide a promising new therapeutic strategy for patients with advanced RCC.
Collapse
Affiliation(s)
- Jeannette C Oosterwijk-Wakka
- Radboud university medical center, Department of Urology, 267 Experimental Urology, PO Box 9101, 6500 HB Nijmegen, the Netherlands.
| | - Mirjam C A de Weijert
- Radboud university medical center, Department of Urology, 267 Experimental Urology, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Gerben M Franssen
- Radboud university medical center, Department of Radiology and Nuclear Medicine, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Dimitar R Kolev
- Radboud university medical center, Department for Health Evidence, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Ton A F J de Haan
- Radboud university medical center, Department for Health Evidence, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Otto C Boerman
- Radboud university medical center, Animal research facility, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Peter F A Mulders
- Radboud university medical center, Department of Urology, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Egbert Oosterwijk
- Radboud university medical center, Department of Urology, 267 Experimental Urology, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| |
Collapse
|
46
|
Bernier-Latmani J, Mauri C, Marcone R, Renevey F, Durot S, He L, Vanlandewijck M, Maclachlan C, Davanture S, Zamboni N, Knott GW, Luther SA, Betsholtz C, Delorenzi M, Brisken C, Petrova TV. ADAMTS18 + villus tip telocytes maintain a polarized VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal blood vessels. Nat Commun 2022; 13:3983. [PMID: 35810168 PMCID: PMC9271081 DOI: 10.1038/s41467-022-31571-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 06/21/2022] [Indexed: 12/17/2022] Open
Abstract
The small intestinal villus tip is the first point of contact for lumen-derived substances including nutrients and microbial products. Electron microscopy studies from the early 1970s uncovered unusual spatial organization of small intestinal villus tip blood vessels: their exterior, epithelial-facing side is fenestrated, while the side facing the villus stroma is non-fenestrated, covered by pericytes and harbors endothelial nuclei. Such organization optimizes the absorption process, however the molecular mechanisms maintaining this highly specialized structure remain unclear. Here we report that perivascular LGR5+ villus tip telocytes (VTTs) are necessary for maintenance of villus tip endothelial cell polarization and fenestration by sequestering VEGFA signaling. Mechanistically, unique VTT expression of the protease ADAMTS18 is necessary for VEGFA signaling sequestration through limiting fibronectin accumulation. Therefore, we propose a model in which LGR5+ ADAMTS18+ telocytes are necessary to maintain a “just-right” level and location of VEGFA signaling in intestinal villus blood vasculature to ensure on one hand the presence of sufficient endothelial fenestrae, while avoiding excessive leakiness of the vessels and destabilization of villus tip epithelial structures. The molecular mechanisms ensuring the specialized structure of small intestinal villus tip blood vessels are incompletely understood. Here the authors show that ADAMTS18+ telocytes maintain a “just-right” level and location of VEGFA signaling on intestinal villus blood vessels, thereby ensuring the presence of endothelial fenestrae for nutrient absorption, while avoiding excessive leakiness and destabilization of villus tip epithelial structures.
Collapse
Affiliation(s)
- Jeremiah Bernier-Latmani
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland.
| | - Cristina Mauri
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Rachel Marcone
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - François Renevey
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland
| | - Stephan Durot
- Institute of Molecular Systems Biology ETH, Zurich, Switzerland
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medicine-Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Catherine Maclachlan
- Bio Electron Microscopy Laboratory, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Suzel Davanture
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology ETH, Zurich, Switzerland
| | - Graham W Knott
- Bio Electron Microscopy Laboratory, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Sanjiv A Luther
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medicine-Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Mauro Delorenzi
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland.,Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Cathrin Brisken
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland. .,Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland.
| |
Collapse
|
47
|
Sung C, Wang S, Hsu J, Yu R, Wong AK. Current Understanding of Pathological Mechanisms of Lymphedema. Adv Wound Care (New Rochelle) 2022; 11:361-373. [PMID: 34521256 PMCID: PMC9051876 DOI: 10.1089/wound.2021.0041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Significance: Lymphedema is a common disease that affects hundreds of millions of people worldwide with significant financial and social burdens. Despite increasing prevalence and associated morbidities, the mainstay treatment of lymphedema is largely palliative without an effective cure due to incomplete understanding of the disease. Recent Advances: Recent studies have described key histological and pathological processes that contribute to the progression of lymphedema, including lymphatic stasis, inflammation, adipose tissue deposition, and fibrosis. This review aims to highlight cellular and molecular mechanisms involved in each of these pathological processes. Critical Issues: Despite recent advances in the understanding of the pathophysiology of lymphedema, cellular and molecular mechanisms underlying the disease remains elusive due to its complex nature. Future Directions: Additional research is needed to gain a better insight into the cellular and molecular mechanisms underlying the pathophysiology of lymphedema, which will guide the development of therapeutic strategies that target specific pathology of the disease.
Collapse
Affiliation(s)
- Cynthia Sung
- Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Sarah Wang
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Jerry Hsu
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Roy Yu
- Keck School of Medicine of USC, Los Angeles, California, USA
| | - Alex K. Wong
- Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Correspondence: Division of Plastic Surgery, City of Hope National Medical Center, 1500 Duarte Road, Familian Science Building 1018, Duarte, CA 91010, USA.
| |
Collapse
|
48
|
Yavvari P, Laporte A, Elomaa L, Schraufstetter F, Pacharzina I, Daberkow AD, Hoppensack A, Weinhart M. 3D-Cultured Vascular-Like Networks Enable Validation of Vascular Disruption Properties of Drugs In Vitro. Front Bioeng Biotechnol 2022; 10:888492. [PMID: 35769106 PMCID: PMC9234334 DOI: 10.3389/fbioe.2022.888492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Vascular-disrupting agents are an interesting class of anticancer compounds because of their combined mode of action in preventing new blood vessel formation and disruption of already existing vasculature in the immediate microenvironment of solid tumors. The validation of vascular disruption properties of these drugs in vitro is rarely addressed due to the lack of proper in vitro angiogenesis models comprising mature and long-lived vascular-like networks. We herein report an indirect coculture model of human umbilical vein endothelial cells (HUVECs) and human dermal fibroblasts (HDFs) to form three-dimensional profuse vascular-like networks. HUVECs embedded and sandwiched in the collagen scaffold were cocultured with HDFs located outside the scaffold. The indirect coculture approach with the vascular endothelial growth factor (VEGF) producing HDFs triggered the formation of progressively maturing lumenized vascular-like networks of endothelial cells within less than 7 days, which have proven to be viably maintained in culture beyond day 21. Molecular weight-dependent Texas red-dextran permeability studies indicated high vascular barrier function of the generated networks. Their longevity allowed us to study the dose-dependent response upon treatment with the three known antiangiogenic and/or vascular disrupting agents brivanib, combretastatin A4 phosphate (CA4P), and 6´-sialylgalactose (SG) via semi-quantitative brightfield and qualitative confocal laser scanning microscopic (CLSM) image analysis. Compared to the reported data on in vivo efficacy of these drugs in terms of antiangiogenic and vascular disrupting effects, we observed similar trends with our 3D model, which are not reflected in conventional in vitro angiogenesis assays. High-vascular disruption under continuous treatment of the matured vascular-like network was observed at concentrations ≥3.5 ng·ml−1 for CA4P and ≥300 nM for brivanib. In contrast, SG failed to induce any significant vascular disruption in vitro. This advanced model of a 3D vascular-like network allows for testing single and combinational antiangiogenic and vascular disrupting effects with optimized dosing and may thus bridge the gap between the in vitro and in vivo experiments in validating hits from high-throughput screening. Moreover, the physiological 3D environment mimicking in vitro assay is not only highly relevant to in vivo studies linked to cancer but also to the field of tissue regeneration.
Collapse
Affiliation(s)
| | - Anna Laporte
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Inga Pacharzina
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Anke Hoppensack
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
- *Correspondence: Marie Weinhart, ,
| |
Collapse
|
49
|
Liu Z, Xu C, Yu Y, Tu D, Peng Y, Zhang B. Twenty Years Development of Tibial Cortex Transverse Transport Surgery in PR China. Orthop Surg 2022; 14:1034-1048. [PMID: 35524654 PMCID: PMC9163800 DOI: 10.1111/os.13214] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 11/22/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
Tibial cortex transverse transport (TTT) surgery is an extension of the Ilizarov technique. Based on the law of tension-stress, its primary function is to rebuild microcirculation which can relieve ischemic symptoms and promote wound healing. It has received more and more scholars' attention and has experienced a series of changes for 20 years since it entered PR China. The mechanisms involved have gradually become clear, such as the reconstruction of the polarization balance of macrophages, the promotion of vascular tissue regeneration, and the mobilization and regulation of bone marrow-derived stem cells. TTT technique is mainly used in the treatment of chronic ischemic diseases of the lower extremities. It has recently been successfully used in the treatment of primary lymphedema of the lower extremities. A series of improvements have been made in the external fixator's style, the size of skin incision and osteotomy, and distraction method. For example, the annular external fixator has been redesigned as a unilateral external fixator, and accordion technology has been introduced. For distraction methods after surgery, there was no uniform standard in the past. The technique can also be used in combination with other treatments to achieve better effects, such as interventional therapy, negative pressure sealed drainage, 3D printing technology, traditional Chinese medicine. Nevertheless, the surgery may bring some complications, such as secondary fracture, nail infection, skin necrosis at the surgical site, etc. Reports of complications and doubts about the technique have made the TTT technique controversial. In 2020, the relevant expert consensus was published with treatment and management principles, which might guide the better application and development of this technique.
Collapse
Affiliation(s)
- Zheng Liu
- The Second Clinical Medical College of Zhejiang Chinese Medical UniversityZhejiangChina
| | - Chao Xu
- The Second Clinical Medical College of Zhejiang Chinese Medical UniversityZhejiangChina
- The Second Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
| | - Yi‐kang Yu
- The Second Clinical Medical College of Zhejiang Chinese Medical UniversityZhejiangChina
| | - Dong‐peng Tu
- The Second Clinical Medical College of Zhejiang Chinese Medical UniversityZhejiangChina
| | - Yi Peng
- The Second Clinical Medical College of Zhejiang Chinese Medical UniversityZhejiangChina
| | - Bin Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical UniversityZhejiangChina
| |
Collapse
|
50
|
Endothelial Cell Metabolism in Vascular Functions. Cancers (Basel) 2022; 14:cancers14081929. [PMID: 35454836 PMCID: PMC9031281 DOI: 10.3390/cancers14081929] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Recent findings in the field of vascular biology are nourishing the idea that targeting the endothelial cell metabolism may be an alternative strategy to antiangiogenic therapy, as well as a novel therapeutic approach for cardiovascular disease. Deepening the molecular mechanisms regulating how ECs re-adapt their metabolic status in response to the changeable conditions of the tissue microenvironment may be beneficial to develop novel innovative treatments to counteract the aberrant growth of vasculature. Abstract The endothelium is the innermost layer of all blood and lymphatic vessels composed of a monolayer of specialized endothelial cells (ECs). It is regarded as a dynamic and multifunctional endocrine organ that takes part in essential processes, such as the control of blood fluidity, the modulation of vascular tone, the regulation of immune response and leukocyte trafficking into perivascular tissues, and angiogenesis. The inability of ECs to perform their normal biological functions, known as endothelial dysfunction, is multi-factorial; for instance, it implicates the failure of ECs to support the normal antithrombotic and anti-inflammatory status, resulting in the onset of unfavorable cardiovascular conditions such as atherosclerosis, coronary artery disease, hypertension, heart problems, and other vascular pathologies. Notably, it is emerging that the ability of ECs to adapt their metabolic status to persistent changes of the tissue microenvironment could be vital for the maintenance of vascular functions and to prevent adverse vascular events. The main purpose of the present article is to shed light on the unique metabolic plasticity of ECs as a prospective therapeutic target; this may lead to the development of novel strategies for cardiovascular diseases and cancer.
Collapse
|