1
|
Zhang X, Wang S, Wang S, Long Z, Lu C, Wang J, Yang L, Yao C, He B, Chen X, Zhuang T, Xu X, Zheng Y. A double network composite hydrogel with enhanced transdermal delivery by ultrasound for endometrial injury repair and fertility recovery. Bioact Mater 2025; 50:273-286. [PMID: 40270550 PMCID: PMC12017869 DOI: 10.1016/j.bioactmat.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/09/2025] [Accepted: 04/04/2025] [Indexed: 04/25/2025] Open
Abstract
Endometrial injury and resulting female infertility pose significant clinical challenges due to the notable shortcomings of traditional treatments. Herein, we proposed a double network composite hydrogel, CSMA-RC-Zn-PNS, which forms a physical barrier on damaged tissue through photo-crosslinking while enabling sustained release of the active ingredient PNS. Based on this, we developed a combined strategy to enhance transdermal delivery efficiency using ultrasound cavitation. In vitro experiments demonstrated that CSMA-RC-Zn-PNS exhibits excellent biosafety, biodegradability, and promotes cell proliferation, migration, and tube formation, along with antioxidant and antibacterial properties. In a rat endometrial injury model, the ultrasound cavitation effect was demonstrated to enhance transdermal delivery efficiency, and the ability of CSMA-RC-Zn-PNS to promote endometrial regeneration, anti-fibrosis and fertility restoration was verified. Overall, this strategy combining CSMA-RC-Zn-PNS hydrogel and ultrasound treatment shows promising applications in endometrial regeneration and female reproductive health.
Collapse
Affiliation(s)
- Xin Zhang
- Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
| | - Shufang Wang
- Department of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Siyu Wang
- Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
| | - Zeyi Long
- Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
| | - Cong Lu
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
- Qingdao Blood Center, Qingdao, Shandong, 266071, China
| | - Jianlin Wang
- Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
| | - Lijun Yang
- Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
| | - Cancan Yao
- Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
| | - Bin He
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
| | - Xihua Chen
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
| | - Taifeng Zhuang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Xiangbo Xu
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Nàger M, Larsen KB, Bhujabal Z, Kalstad TB, Rössinger J, Myrmel T, Weinberger F, Birgisdottir AB. Mitophagy is induced in human engineered heart tissue after simulated ischemia and reperfusion. J Cell Sci 2025; 138:jcs263408. [PMID: 39912384 PMCID: PMC11959618 DOI: 10.1242/jcs.263408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
The paradoxical exacerbation of cellular injury and death during reperfusion remains a problem in the treatment of myocardial infarction. Mitochondrial dysfunction plays a key role in the pathogenesis of myocardial ischemia and reperfusion injury. Dysfunctional mitochondria can be removed by mitophagy, culminating in their degradation within acidic lysosomes. Mitophagy is pivotal in maintaining cardiac homeostasis and emerges as a potential therapeutic target. Here, we employed beating human engineered heart tissue (EHT) to assess mitochondrial dysfunction and mitophagy during ischemia and reperfusion simulation. Our data indicate adverse ultrastructural changes in mitochondrial morphology and impairment of mitochondrial respiration. Furthermore, our pH-sensitive mitophagy reporter EHTs, generated by a CRISPR/Cas9 endogenous knock-in strategy, revealed induced mitophagy flux in EHTs after ischemia and reperfusion simulation. The induced flux required the activity of the protein kinase ULK1, a member of the core autophagy machinery. Our results demonstrate the applicability of the reporter EHTs for mitophagy assessment in a clinically relevant setting. Deciphering mitophagy in the human heart will facilitate development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mireia Nàger
- Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Kenneth B. Larsen
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
- Department of Medical Biology, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Zambarlal Bhujabal
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Trine B. Kalstad
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Judith Rössinger
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany
| | - Truls Myrmel
- Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, 9019 Tromsø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Florian Weinberger
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Asa B. Birgisdottir
- Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, 9019 Tromsø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
3
|
Wu Y, Wang Y, Xiao M, Zhang G, Zhang F, Tang M, Lei W, Jiang Z, Li X, Zhang H, Ren X, Xu Y, Zhao X, Guo C, Lan H, Shen Z, Zhang J, Hu S. 3D-Printed Myocardium-Specific Structure Enhances Maturation and Therapeutic Efficacy of Engineered Heart Tissue in Myocardial Infarction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409871. [PMID: 39840547 PMCID: PMC11905000 DOI: 10.1002/advs.202409871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/18/2024] [Indexed: 01/23/2025]
Abstract
Despite advancements in engineered heart tissue (EHT), challenges persist in achieving accurate dimensional accuracy of scaffolds and maturing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), a primary source of functional cardiac cells. Drawing inspiration from cardiac muscle fiber arrangement, a three-dimensional (3D)-printed multi-layered microporous polycaprolactone (PCL) scaffold is created with interlayer angles set at 45° to replicate the precise structure of native cardiac tissue. Compared with the control group and 90° PCL scaffolds, the 45° PCL scaffolds exhibited superior biocompatibility for cell culture and improved hiPSC-CM maturation in calcium handling. RNA sequencing demonstrated that the 45° PCL scaffold promotes the mature phenotype in hiPSC-CMs by upregulating ion channel genes. Using the 45° PCL scaffold, a multi-cellular EHT is successfully constructed, incorporating human cardiomyocytes, endothelial cells, and mesenchymal stem cells. These complex EHTs significantly enhanced hiPSC-CM engraftment in vivo, attenuated ventricular remodeling, and improved cardiac function in mouse myocardial infarction. In summary, the myocardium-specific structured EHT developed in this study represents a promising advancement in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Yong Wu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Yaning Wang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Miao Xiao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Guangming Zhang
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdaoShandong266520China
| | - Feixiang Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Mingliang Tang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsu226001China
| | - Wei Lei
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Ziyun Jiang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Xiaoyun Li
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Huiqi Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Xiaoyi Ren
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Yue Xu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Xiaotong Zhao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Chenxu Guo
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdaoShandong266520China
| | - Hongbo Lan
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdaoShandong266520China
| | - Zhenya Shen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Jianyi Zhang
- Department of Biomedical EngineeringSchool of Medicine and School of EngineeringThe University of Alabama at BirminghamBirminghamAL35233USA
- Department of MedicineDivision of Cardiovascular DiseaseSchool of MedicineThe University of Alabama at BirminghamBirminghamAL35233USA
| | - Shijun Hu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalState Key Laboratory of Radiation Medicine and ProtectionSuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| |
Collapse
|
4
|
Rivera-Arbeláez JM, Dostanić M, Windt LM, Stein JM, Cofiño-Fabres C, Boonen T, Wiendels M, van den Berg A, Segerink LI, Mummery CL, Sarro PM, van Meer BJ, Ribeiro MC, Mastrangeli M, Passier R. FORCETRACKER: A versatile tool for standardized assessment of tissue contractile properties in 3D Heart-on-Chip platforms. PLoS One 2025; 20:e0314985. [PMID: 39946364 PMCID: PMC11825004 DOI: 10.1371/journal.pone.0314985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/19/2024] [Indexed: 02/16/2025] Open
Abstract
Engineered heart tissues (EHTs) have shown great potential in recapitulating tissue organization, functions, and cell-cell interactions of the human heart in vitro. Currently, multiple EHT platforms are used by both industry and academia for different applications, such as drug discovery, disease modelling, and fundamental research. The tissues' contractile force, one of the main hallmarks of tissue function and maturation level of cardiomyocytes, can be read out from EHT platforms by optically tracking the movement of elastic pillars induced by the contractile tissues. However, existing optical tracking algorithms which focus on calculating the contractile force are customized and platform-specific, often not available to the broad research community, and thus hamper head-to-head comparison of the model output. Therefore, there is the need for robust, standardized and platform-independent software for tissues' force assessment. To meet this need, we developed ForceTracker: a standalone and computationally efficient software for analyzing contractile properties of tissues in different EHT platforms. The software uses a shape-detection algorithm to single out and track the movement of pillars' tips for the most common shapes of EHT platforms. In this way, we can obtain information about tissues' contractile performance. ForceTracker is coded in Python and uses a multi-threading approach for time-efficient analysis of large data sets in multiple formats. The software efficiency to analyze circular and rectangular pillar shapes is successfully tested by analyzing different format videos from two EHT platforms, developed by different research groups. We demonstrate robust and reproducible performance of the software in the analysis of tissues over time and in various conditions. ForceTracker's detection and tracking shows low sensitivity to common incidental defects, such as alteration of tissue shape or air bubbles. Detection accuracy is determined via comparison with manual measurements using the software ImageJ. We developed ForceTracker as a tool for standardized analysis of contractile performance in EHT platforms to facilitate research on disease modeling and drug discovery in academia and industry.
Collapse
Affiliation(s)
- José M. Rivera-Arbeláez
- MESA+Institute for Nanotechnology, BIOS Lab on a Chip Group, Technical Medical Centre, Max Planck Center for Com-plex Fluid Dynamics, University of Twente, Enschede, The Netherlands
- Department of Bioengineering Technologies, Applied Stem Cell Technologies Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Milica Dostanić
- Microelectronics, Delft University of Technology, Delft, The Netherlands
| | - Laura M. Windt
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jeroen M. Stein
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Carla Cofiño-Fabres
- Department of Bioengineering Technologies, Applied Stem Cell Technologies Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Tom Boonen
- River BioMedics, Enschede, The Netherlands
| | - Maury Wiendels
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Albert van den Berg
- MESA+Institute for Nanotechnology, BIOS Lab on a Chip Group, Technical Medical Centre, Max Planck Center for Com-plex Fluid Dynamics, University of Twente, Enschede, The Netherlands
| | - Loes I. Segerink
- MESA+Institute for Nanotechnology, BIOS Lab on a Chip Group, Technical Medical Centre, Max Planck Center for Com-plex Fluid Dynamics, University of Twente, Enschede, The Netherlands
| | - Christine L. Mummery
- Department of Bioengineering Technologies, Applied Stem Cell Technologies Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Berend J. van Meer
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | - Robert Passier
- Department of Bioengineering Technologies, Applied Stem Cell Technologies Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
5
|
Li J, Li Y, Song G, Wang H, Zhang Q, Wang M, Zhao M, Wang B, Zhu H, Ranzhi L, Wang Q, Xiong Y. Revolutionizing cardiovascular research: Human organoids as a Beacon of hope for understanding and treating cardiovascular diseases. Mater Today Bio 2025; 30:101396. [PMID: 39802826 PMCID: PMC11719415 DOI: 10.1016/j.mtbio.2024.101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Organoids, exhibiting the capability to undergo differentiation in specific in vitro growth environments, have garnered significant attention in recent years due to their capacity to recapitulate human organs with resemblant in vivo structures and physiological functions. This groundbreaking technology offers a unique opportunity to study human diseases and address the limitations of traditional animal models. Cardiovascular diseases (CVDs), a leading cause of mortality worldwide, have spurred an increasing number of researchers to explore the great potential of human cardiovascular organoids for cardiovascular research. This review initiates by elaborating on the development and manufacture of human cardiovascular organoids, including cardiac organoids and blood vessel organoids. Next, we provide a comprehensive overview of their applications in modeling various cardiovascular disorders. Furthermore, we shed light on the prospects of cardiovascular organoids in CVDs therapy, and unfold an in-depth discussion of the current challenges of human cardiovascular organoids in the development and application for understanding and treating CVDs.
Collapse
Affiliation(s)
- Jinli Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- Department of Orthopaedics, Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Guangming Road, Shenmu, China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Guangtao Song
- Department of Orthopaedics, Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Guangming Road, Shenmu, China
| | - Haiying Wang
- Department of Science and Education, Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shenmu, China
| | - Qing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Min Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Muxue Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Bei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - HuiGuo Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Liu Ranzhi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Qiang Wang
- Department of Orthopaedics, Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Guangming Road, Shenmu, China
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| |
Collapse
|
6
|
Shewale B, Ebrahim T, Samal A, Dubois N. Molecular Regulation of Cardiomyocyte Maturation. Curr Cardiol Rep 2025; 27:32. [PMID: 39836238 DOI: 10.1007/s11886-024-02189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 01/22/2025]
Abstract
PURPOSE OF THE REVIEW This review aims to discuss the process of cardiomyocyte maturation, with a focus on the underlying molecular mechanisms required to form a fully functional heart. We examine both long-standing concepts associated with cardiac maturation and recent developments, and the overall complexity of molecularly integrating all the processes that lead to a mature heart. RECENT FINDINGS Cardiac maturation, defined here as the sequential changes that occurring before the heart reaches full maturity, has been a subject of investigation for decades. Recently, there has been a renewed, highly focused interest in this process, driven by clinically motivated research areas where enhancing maturation may lead to improved therapeutic opportunities. These include using pluripotent stem cell models for cell therapy and disease modeling, as well as recent advancements in adult cardiac regeneration approaches. We highlight key processes underlying maturation of the heart, including cellular and organ growth, and electrophysiological, metabolic, and contractile maturation. We further discuss how these processes integrate and interact to contribute to the overall complexity of the developing heart. Finally, we emphasize the transformative potential for translating relevant maturation concepts to emerging models of heart disease and regeneration.
Collapse
Affiliation(s)
- Bhavana Shewale
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tasneem Ebrahim
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arushi Samal
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nicole Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
7
|
Kim M, Hwang DG, Jang J. Bioprinting approaches in cardiac tissue engineering to reproduce blood-pumping heart function. iScience 2025; 28:111664. [PMID: 39868032 PMCID: PMC11763539 DOI: 10.1016/j.isci.2024.111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
The heart, with its complex structural and functional characteristics, plays a critical role in sustaining life by pumping blood throughout the entire body to supply nutrients and oxygen. Engineered heart tissues have been introduced to reproduce heart functions to understand the pathophysiological properties of the heart and to test and develop potential therapeutics. Although numerous studies have been conducted in various fields to increase the functionality of heart tissue to be similar to reality, there are still many difficulties in reproducing the blood-pumping function of the heart. In this review, we discuss advancements in cells, biomaterials, and biofabrication in cardiac tissue engineering to achieve cardiac models that closely mimic the pumping function. Moreover, we provide insight into future directions by proposing future perspectives to overcome remaining challenges, such as scaling up and biomimetic patterning of blood vessels and nerves through bioprinting.
Collapse
Affiliation(s)
- Minji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Dong Gyu Hwang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| |
Collapse
|
8
|
He X, Good A, Kalou W, Ahmad W, Dutta S, Chen S, Lin CN, Chella Krishnan K, Fan Y, Huang W, Liang J, Wang Y. Current Advances and Future Directions of Pluripotent Stem Cells-Derived Engineered Heart Tissue for Treatment of Cardiovascular Diseases. Cells 2024; 13:2098. [PMID: 39768189 PMCID: PMC11674482 DOI: 10.3390/cells13242098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Cardiovascular diseases resulting from myocardial infarction (MI) remain a leading cause of death worldwide, imposing a substantial burden on global health systems. Current MI treatments, primarily pharmacological and surgical, do not regenerate lost myocardium, leaving patients at high risk for heart failure. Engineered heart tissue (EHT) offers a promising solution for MI and related cardiac conditions by replenishing myocardial loss. However, challenges like immune rejection, inadequate vascularization, limited mechanical strength, and incomplete tissue maturation hinder clinical application. The discovery of human-induced pluripotent stem cells (hiPSCs) has transformed the EHT field, enabling new bioengineering innovations. This review explores recent advancements and future directions in hiPSC-derived EHTs, focusing on innovative materials and fabrication methods like bioprinting and decellularization, and assessing their therapeutic potential through preclinical and clinical studies. Achieving functional integration of EHTs in the heart remains challenging due to the need for synchronized contraction, sufficient vascularization, and mechanical compatibility. Solutions such as genome editing, personalized medicine, and AI technologies offer promising strategies to address these translational barriers. Beyond MI, EHTs also show potential in treating ischemic cardiomyopathy, heart valve engineering, and drug screening, underscoring their promise in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Xingyu He
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (X.H.)
| | - Angela Good
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (X.H.)
| | - Wael Kalou
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (X.H.)
| | - Waqas Ahmad
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (X.H.)
| | - Suchandrima Dutta
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Sophie Chen
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (X.H.)
| | - Charles Noah Lin
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (X.H.)
| | - Karthickeyan Chella Krishnan
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yanbo Fan
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Wei Huang
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (X.H.)
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (X.H.)
| |
Collapse
|
9
|
van Doorn ECH, Amesz JH, Manintveld OC, de Groot NMS, Essers J, Shin SR, Taverne YJHJ. Advancing 3D Engineered In Vitro Models for Heart Failure Research: Key Features and Considerations. Bioengineering (Basel) 2024; 11:1220. [PMID: 39768038 PMCID: PMC11673263 DOI: 10.3390/bioengineering11121220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/06/2025] Open
Abstract
Heart failure is characterized by intricate myocardial remodeling that impairs the heart's pumping and/or relaxation capacity, ultimately reducing cardiac output. It represents a major public health burden, given its high prevalence and associated morbidity and mortality rates, which continue to challenge healthcare systems worldwide. Despite advancements in medical science, there are no treatments that address the disease at its core. The development of three-dimensional engineered in vitro models that closely mimic the (patho)physiology and drug responses of the myocardium has the potential to revolutionize our insights and uncover new therapeutic avenues. Key aspects of these models include the precise replication of the extracellular matrix structure, cell composition, micro-architecture, mechanical and electrical properties, and relevant physiological and pathological stimuli, such as fluid flow, mechanical load, electrical signal propagation, and biochemical cues. Additionally, to fully capture heart failure and its diversity in vivo, it is crucial to consider factors such as age, gender, interactions with other organ systems and external influences-thereby recapitulating unique patient and disease phenotypes. This review details these model features and their significance in heart failure research, with the aim of enhancing future platforms that will deepen our understanding of the disease and facilitate the development of novel, effective therapies.
Collapse
Affiliation(s)
- Elisa C. H. van Doorn
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (E.C.H.v.D.); (J.H.A.)
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (O.C.M.); (N.M.S.d.G.)
| | - Jorik H. Amesz
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (E.C.H.v.D.); (J.H.A.)
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (O.C.M.); (N.M.S.d.G.)
| | - Olivier C. Manintveld
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (O.C.M.); (N.M.S.d.G.)
| | - Natasja M. S. de Groot
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (O.C.M.); (N.M.S.d.G.)
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands;
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA;
| | - Yannick J. H. J. Taverne
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (E.C.H.v.D.); (J.H.A.)
| |
Collapse
|
10
|
Lu F, Liou C, Ma Q, Wu Z, Xue B, Xia Y, Xia S, Trembley MA, Ponek A, Xie W, Shani K, Bortolin RH, Prondzynski M, Berkson P, Zhang X, Naya FJ, Bedi KC, Margulies KB, Zhang D, Parker KK, Pu WT. Virally delivered CMYA5 enhances the assembly of cardiac dyads. Nat Biomed Eng 2024:10.1038/s41551-024-01253-z. [PMID: 39237710 PMCID: PMC11880346 DOI: 10.1038/s41551-024-01253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) lack nanoscale structures essential for efficient excitation-contraction coupling. Such nanostructures, known as dyads, are frequently disrupted in heart failure. Here we show that the reduced expression of cardiomyopathy-associated 5 (CMYA5), a master protein that establishes dyads, contributes to dyad disorganization in heart failure and to impaired dyad assembly in hiPSC-CMs, and that a miniaturized form of CMYA5 suitable for delivery via an adeno-associated virus substantially improved dyad architecture and normalized cardiac function under pressure overload. In hiPSC-CMs, the miniaturized form of CMYA5 increased contractile forces, improved Ca2+ handling and enhanced the alignment of sarcomere Z-lines with ryanodine receptor 2, a protein that mediates the sarcoplasmic release of stored Ca2+. Our findings clarify the mechanisms responsible for impaired dyad structure in diseased cardiomyocytes, and suggest strategies for promoting dyad assembly and stability in heart disease and during the derivation of hiPSC-CMs.
Collapse
Affiliation(s)
- Fujian Lu
- Institutes of Biomedical Sciences, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
| | - Carter Liou
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Qing Ma
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Zexuan Wu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingqing Xue
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yu Xia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Shutao Xia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | | | - Anna Ponek
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Wenjun Xie
- Department of Cardiology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Kevin Shani
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Raul H Bortolin
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | | | - Paul Berkson
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Xiaoran Zhang
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Francisco J Naya
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, MA, USA
| | - Kenneth C Bedi
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Kevin K Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
11
|
Memarian P, Bagher Z, Asghari S, Aleemardani M, Seifalian A. Emergence of graphene as a novel nanomaterial for cardiovascular applications. NANOSCALE 2024; 16:12793-12819. [PMID: 38919053 DOI: 10.1039/d4nr00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Cardiovascular diseases (CDs) are the foremost cause of death worldwide. Several promising therapeutic methods have been developed for this approach, including pharmacological, surgical intervention, cell therapy, or biomaterial implantation since heart tissue is incapable of regenerating and healing on its own. The best treatment for heart failure to date is heart transplantation and invasive surgical intervention, despite their invasiveness, donor limitations, and the possibility of being rejected by the patient's immune system. To address these challenges, research is being conducted on less invasive and efficient methods. Consequently, graphene-based materials (GBMs) have attracted a great deal of interest in the last decade because of their exceptional mechanical, electrical, chemical, antibacterial, and biocompatibility properties. An overview of GBMs' applications in the cardiovascular system has been presented in this article. Following a brief explanation of graphene and its derivatives' properties, the potential of GBMs to improve and restore cardiovascular system function by using them as cardiac tissue engineering, stents, vascular bypass grafts,and heart valve has been discussed.
Collapse
Affiliation(s)
- Paniz Memarian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sheida Asghari
- Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, S3 7HQ, UK.
- Department of Translational Health Science, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK.
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
| |
Collapse
|
12
|
Guo J, Jiang H, Schuftan D, Moreno JD, Ramahdita G, Aryan L, Bhagavan D, Silva J, Huebsch N. Substrate mechanics unveil early structural and functional pathology in iPSC micro-tissue models of hypertrophic cardiomyopathy. iScience 2024; 27:109954. [PMID: 38827401 PMCID: PMC11141149 DOI: 10.1016/j.isci.2024.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/22/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024] Open
Abstract
Hypertension is a major cause of morbidity and mortality in patients with hypertrophic cardiomyopathy (HCM), suggesting a potential role for mechanics in HCM pathogenesis. Here, we developed an in vitro physiological model to investigate how mechanics acts together with HCM-linked myosin binding protein C (MYBPC3) mutations to trigger disease. Micro-heart muscles (μHM) were engineered from induced pluripotent stem cell (iPSC)-derived cardiomyocytes bearing MYBPC3+/- mutations and challenged to contract against substrates of different elasticity. μHMs that worked against substrates with stiffness at or exceeding the stiffness of healthy adult heart muscle exhibited several hallmarks of HCM, including cellular hypertrophy, impaired contractile energetics, and maladaptive calcium handling. Remarkably, we discovered changes in troponin C and T localization in MYBPC3+/- μHM that were entirely absent in 2D culture. Pharmacologic studies suggested that excessive Ca2+ intake through membrane-embedded channels underlie the observed electrophysiological abnormalities. These results illustrate the power of physiologically relevant engineered tissue models to study inherited disease with iPSC technology.
Collapse
Affiliation(s)
- Jingxuan Guo
- Department of Mechanical Engineering and Material Science, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Huanzhu Jiang
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - David Schuftan
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Jonathan D. Moreno
- Division of Cardiology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Ghiska Ramahdita
- Department of Mechanical Engineering and Material Science, Washington University in Saint Louis, Saint Louis, MO 63130, USA
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Lavanya Aryan
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Druv Bhagavan
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Jonathan Silva
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130, USA
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in Saint Louis, Saint Louis, MO 63130, USA
- Center for Cardiovascular Research, Center for Regenerative Medicine, Center for Investigation of Membrane Excitability Diseases, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| |
Collapse
|
13
|
Khodayari H, Khodayari S, Rezaee M, Rezaeiani S, Alipour Choshali M, Erfanian S, Muhammadnejad A, Nili F, Pourmehran Y, Pirjani R, Rajabi S, Aghdami N, Nebigil-Désaubry C, Wang K, Mahmoodzadeh H, Pahlavan S. Promotion of cardiac microtissue assembly within G-CSF-enriched collagen I-cardiogel hybrid hydrogel. Regen Biomater 2024; 11:rbae072. [PMID: 38974665 PMCID: PMC11226883 DOI: 10.1093/rb/rbae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Tissue engineering as an interdisciplinary field of biomedical sciences has raised many hopes in the treatment of cardiovascular diseases as well as development of in vitro three-dimensional (3D) cardiac models. This study aimed to engineer a cardiac microtissue using a natural hybrid hydrogel enriched by granulocyte colony-stimulating factor (G-CSF), a bone marrow-derived growth factor. Cardiac ECM hydrogel (Cardiogel: CG) was mixed with collagen type I (ColI) to form the hybrid hydrogel, which was tested for mechanical and biological properties. Three cell types (cardiac progenitor cells, endothelial cells and cardiac fibroblasts) were co-cultured in the G-CSF-enriched hybrid hydrogel to form a 3D microtissue. ColI markedly improved the mechanical properties of CG in the hybrid form with a ratio of 1:1. The hybrid hydrogel demonstrated acceptable biocompatibility and improved retention of encapsulated human foreskin fibroblasts. Co-culture of three cell types in G-CSF enriched hybrid hydrogel, resulted in a faster 3D structure shaping and a well-cellularized microtissue with higher angiogenesis compared to growth factor-free hybrid hydrogel (control). Immunostaining confirmed the presence of CD31+ tube-like structures as well as vimentin+ cardiac fibroblasts and cTNT+ human pluripotent stem cells-derived cardiomyocytes. Bioinformatics analysis of signaling pathways related to the G-CSF receptor in cardiovascular lineage cells, identified target molecules. The in silico-identified STAT3, as one of the major molecules involved in G-CSF signaling of cardiac tissue, was upregulated in G-CSF compared to control. The G-CSF-enriched hybrid hydrogel could be a promising candidate for cardiac tissue engineering, as it facilitates tissue formation and angiogenesis.
Collapse
Affiliation(s)
- Hamid Khodayari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran 13145-871, Iran
| | - Saeed Khodayari
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Malihe Rezaee
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
| | - Siamak Rezaeiani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
| | - Mahmoud Alipour Choshali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
| | - Saiedeh Erfanian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
| | - Ahad Muhammadnejad
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Fatemeh Nili
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Yasaman Pourmehran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran 13145-871, Iran
| | - Reihaneh Pirjani
- Obstetrics and Gynecology Department, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran 1653915981, Iran
| | - Sarah Rajabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
| | - Naser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran 19395-4644, Iran
| | - Canan Nebigil-Désaubry
- Institute National de le santé et de la recherce médicale, INSERM, University of Strasbourg, UMR 1260-Regenerative Nanomedicine, CRBS, Central of Research in biomedicine of Strasbourg, Strasbourg 90032, France
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Habibollah Mahmoodzadeh
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
| |
Collapse
|
14
|
van Doorn ECH, Amesz JH, Sadeghi AH, de Groot NMS, Manintveld OC, Taverne YJHJ. Preclinical Models of Cardiac Disease: A Comprehensive Overview for Clinical Scientists. Cardiovasc Eng Technol 2024; 15:232-249. [PMID: 38228811 PMCID: PMC11116217 DOI: 10.1007/s13239-023-00707-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
For recent decades, cardiac diseases have been the leading cause of death and morbidity worldwide. Despite significant achievements in their management, profound understanding of disease progression is limited. The lack of biologically relevant and robust preclinical disease models that truly grasp the molecular underpinnings of cardiac disease and its pathophysiology attributes to this stagnation, as well as the insufficiency of platforms that effectively explore novel therapeutic avenues. The area of fundamental and translational cardiac research has therefore gained wide interest of scientists in the clinical field, while the landscape has rapidly evolved towards an elaborate array of research modalities, characterized by diverse and distinctive traits. As a consequence, current literature lacks an intelligible and complete overview aimed at clinical scientists that focuses on selecting the optimal platform for translational research questions. In this review, we present an elaborate overview of current in vitro, ex vivo, in vivo and in silico platforms that model cardiac health and disease, delineating their main benefits and drawbacks, innovative prospects, and foremost fields of application in the scope of clinical research incentives.
Collapse
Affiliation(s)
- Elisa C H van Doorn
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Translational Electrophysiology Laboratory, Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jorik H Amesz
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Translational Electrophysiology Laboratory, Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Amir H Sadeghi
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Natasja M S de Groot
- Translational Electrophysiology Laboratory, Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Yannick J H J Taverne
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Schuftan D, Kooh YKG, Guo J, Sun Y, Aryan L, Stottlemire B, Berkland C, Genin GM, Huebsch N. Dynamic control of contractile resistance to iPSC-derived micro-heart muscle arrays. J Biomed Mater Res A 2024; 112:534-548. [PMID: 37952251 PMCID: PMC10922390 DOI: 10.1002/jbm.a.37642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
Many types of cardiovascular disease are linked to the mechanical forces placed on the heart. However, our understanding of how mechanical forces exactly affect the cellular biology of the heart remains incomplete. In vitro models based on cardiomyocytes derived from human induced pluripotent stem cells (iPSC-CM) enable researchers to develop medium to high-throughput systems to study cardiac mechanobiology at the cellular level. Previous models have been developed to enable the study of mechanical forces, such as cardiac afterload. However, most of these models require exogenous extracellular matrix (ECM) to form cardiac tissues. Recently, a system was developed to simulate changes in afterload by grafting ECM-free micro-heart muscle arrays to elastomeric substrates of discrete stiffnesses. In the present study, we extended this system by combining the elastomer-grafted tissue arrays with a magnetorheological elastomeric substrate. This system allows iPSC-CM based micro-heart muscle arrays to experience dynamic changes in contractile resistance to mimic dynamically altered afterload. Acute changes in substrate stiffness led to acute changes in the calcium dynamics and contractile forces, illustrating the system's ability to dynamically elicit changes in tissue mechanics by dynamically changing contractile resistance.
Collapse
Affiliation(s)
- David Schuftan
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yasaman Kargar Gaz Kooh
- Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jingxuan Guo
- Department of Mechanical Engineering & Materials Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yuwen Sun
- Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lavanya Aryan
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Bryce Stottlemire
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, USA
| | - Cory Berkland
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Guy M. Genin
- Department of Mechanical Engineering & Materials Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- NSF Center for Engineering Mechanobiology, St. Louis, Missouri, USA
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- NSF Center for Engineering Mechanobiology, St. Louis, Missouri, USA
| |
Collapse
|
16
|
Sun H, He Z, Gao Y, Yang Y, Wang Y, Gu A, Xu J, Quan Y, Yang Y. Polyoxyethylene tallow amine and glyphosate exert different developmental toxicities on human pluripotent stem cells-derived heart organoid model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170675. [PMID: 38316312 DOI: 10.1016/j.scitotenv.2024.170675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
The early stage of heart development is highly susceptible to various environmental factors. While the use of animal models has aided in identifying numerous environmental risk factors, the variability between species and the low throughput limit their translational potential. Recently, a type of self-assembling cardiac structures, known as human heart organoids (hHOs), exhibits a remarkable biological consistency with human heart. However, the feasibility of hHOs for assessing cardiac developmental risk factors remains unexplored. Here, we focused on the cardiac developmental effects of core components of Glyphosate-based herbicides (GBHs), the most widely used herbicides, to evaluate the reliability of hHOs for the prediction of possible cardiogenesis toxicity. GBHs have been proven toxic to cardiac development based on multiple animal models, with the mechanism remaining unknown. We found that polyoxyethylene tallow amine (POEA), the most common surfactant in GBHs formulations, played a dominant role in GBHs' heart developmental toxicity. Though there were a few differences in transcriptive features, hHOs exposed to sole POEA and combined POEA and Glyphosate would suffer from both disruption of heart contraction and disturbance of commitment in cardiomyocyte isoforms. By contrast, Glyphosate only caused mild epicardial hyperplasia. This study not only sheds light on the toxic mechanism of GBHs, but also serves as a methodological demonstration, showcasing its effectiveness in recognizing and evaluating environmental risk factors, and deciphering toxic mechanisms.
Collapse
Affiliation(s)
- Hao Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhazheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yao Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanhan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Yachang Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingyi Quan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
17
|
Karakan MÇ, Ewoldt JK, Segarra AJ, Sundaram S, Wang MC, White AE, Chen CS, Ekinci KL. Geometry and length control of 3D engineered heart tissues using direct laser writing. LAB ON A CHIP 2024; 24:1685-1701. [PMID: 38317604 PMCID: PMC10929702 DOI: 10.1039/d3lc00752a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
Geometry and mechanical characteristics of the environment surrounding the Engineered Heart Tissues (EHT) affect their structure and function. Here, we employed a 3D tissue culture platform fabricated using two-photon direct laser writing with a high degree of accuracy to control parameters that are relevant to EHT maturation. Using this platform, we first explore the effects of geometry based on two distinct shapes: a rectangular seeding well with two attachment sites, and a stadium-like seeding well with six attachment sites that are placed symmetrically along hemicylindrical membranes. The former geometry promotes uniaxial contraction of the tissues; the latter additionally induces diagonal fiber alignment. We systematically increase the length of the seeding wells for both configurations and observe a positive correlation between fiber alignment at the center of the EHTs and tissue length. With increasing length, an undesirable thinning and "necking" also emerge, leading to the failure of longer tissues over time. In the second step, we optimize the stiffness of the seeding wells and modify some of the attachment sites of the platform and the seeding parameters to achieve tissue stability for each length and geometry. Furthermore, we use the platform for electrical pacing and calcium imaging to evaluate the functional dynamics of EHTs as a function of frequency.
Collapse
Affiliation(s)
- M Çağatay Karakan
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA.
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jourdan K Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Addianette J Segarra
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Polytechnic University of Puerto Rico, San Juan 00918, Puerto Rico
| | - Subramanian Sundaram
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Miranda C Wang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alice E White
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA.
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, USA
- Department of Physics, Boston University, Boston, MA 02215, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Kamil L Ekinci
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA.
- Photonics Center, Boston University, Boston, MA 02215, USA
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
18
|
Simmons DW, Malayath G, Schuftan DR, Guo J, Oguntuyo K, Ramahdita G, Sun Y, Jordan SD, Munsell MK, Kandalaft B, Pear M, Rentschler SL, Huebsch N. Engineered tissue geometry and Plakophilin-2 regulate electrophysiology of human iPSC-derived cardiomyocytes. APL Bioeng 2024; 8:016118. [PMID: 38476404 PMCID: PMC10932571 DOI: 10.1063/5.0160677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Engineered heart tissues have been created to study cardiac biology and disease in a setting that more closely mimics in vivo heart muscle than 2D monolayer culture. Previously published studies suggest that geometrically anisotropic micro-environments are crucial for inducing "in vivo like" physiology from immature cardiomyocytes. We hypothesized that the degree of cardiomyocyte alignment and prestress within engineered tissues is regulated by tissue geometry and, subsequently, drives electrophysiological development. Thus, we studied the effects of tissue geometry on electrophysiology of micro-heart muscle arrays (μHM) engineered from human induced pluripotent stem cells (iPSCs). Elongated tissue geometries elicited cardiomyocyte shape and electrophysiology changes led to adaptations that yielded increased calcium intake during each contraction cycle. Strikingly, pharmacologic studies revealed that a threshold of prestress and/or cellular alignment is required for sodium channel function, whereas L-type calcium and rapidly rectifying potassium channels were largely insensitive to these changes. Concurrently, tissue elongation upregulated sodium channel (NaV1.5) and gap junction (Connexin 43, Cx43) protein expression. Based on these observations, we leveraged elongated μHM to study the impact of loss-of-function mutation in Plakophilin 2 (PKP2), a desmosome protein implicated in arrhythmogenic disease. Within μHM, PKP2 knockout cardiomyocytes had cellular morphology similar to what was observed in isogenic controls. However, PKP2-/- tissues exhibited lower conduction velocity and no functional sodium current. PKP2 knockout μHM exhibited geometrically linked upregulation of sodium channel but not Cx43, suggesting that post-translational mechanisms, including a lack of ion channel-gap junction communication, may underlie the lower conduction velocity observed in tissues harboring this genetic defect. Altogether, these observations demonstrate that simple, scalable micro-tissue systems can provide the physiologic stresses necessary to induce electrical remodeling of iPS-CM to enable studies on the electrophysiologic consequences of disease-associated genomic variants.
Collapse
Affiliation(s)
- Daniel W. Simmons
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Ganesh Malayath
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - David R. Schuftan
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Jingxuan Guo
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Kasoorelope Oguntuyo
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Ghiska Ramahdita
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Yuwen Sun
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Samuel D. Jordan
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Mary K. Munsell
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Brennan Kandalaft
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Missy Pear
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Stacey L. Rentschler
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| |
Collapse
|
19
|
Ma J, Wang W, Zhang W, Xu D, Ding J, Wang F, Peng X, Wang D, Li Y. The recent advances in cell delivery approaches, biochemical and engineering procedures of cell therapy applied to coronary heart disease. Biomed Pharmacother 2023; 169:115870. [PMID: 37952359 DOI: 10.1016/j.biopha.2023.115870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
Cell therapy is an important topic in the field of regeneration medicine that is gaining attention within the scientific community. However, its potential for treatment in coronary heart disease (CHD) has yet to be established. Several various strategies, types of cells, routes of distribution, and supporting procedures have been tried and refined to trigger heart rejuvenation in CHD. However, only a few of them result in a real considerable promise for clinical usage. In this review, we give an update on techniques and clinical studies of cell treatment as used to cure CHD that are now ongoing or have been completed in the previous five years. We also highlight the emerging efficacy of stem cell treatment for CHD. We specifically examine and comment on current breakthroughs in cell treatment applied to CHD, including the most effective types of cells, transport modalities, engineering, and biochemical approaches used in this context. We believe the current review will be helpful for the researcher to distill this information and design future studies to overcome the challenges faced by this revolutionary approach for CHD.
Collapse
Affiliation(s)
- Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 13000, China
| | - Wenhai Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Wenbin Zhang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Dexin Xu
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Jian Ding
- Department of Electrodiagnosis, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Fang Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Xia Peng
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Dahai Wang
- Department of Rehabilitation, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Yanwei Li
- Department of General Practice and Family Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
20
|
Kang MS, Jang HJ, Jo HJ, Raja IS, Han DW. MXene and Xene: promising frontier beyond graphene in tissue engineering and regenerative medicine. NANOSCALE HORIZONS 2023; 9:93-117. [PMID: 38032647 DOI: 10.1039/d3nh00428g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The emergence of 2D nanomaterials (2D NMs), which was initiated by the isolation of graphene (G) in 2004, revolutionized various biomedical applications, including bioimaging and -sensing, drug delivery, and tissue engineering, owing to their unique physicochemical and biological properties. Building on the success of G, a novel class of monoelemental 2D NMs, known as Xenes, has recently emerged, offering distinct advantages in the fields of tissue engineering and regenerative medicine. In this review, we focus on the comparison of G and Xene materials for use in fabricating tissue engineering scaffolds. After a brief introduction to the basic physicochemical properties of these materials, recent representative studies are classified in terms of the engineered tissue, i.e., bone, cartilage, neural, muscle, and skin tissues. We analyze several methods of improving the clinical potential of Xene-laden scaffolds using state-of-the-art fabrication technologies and innovative biomaterials. Despite the considerable advantages of Xene materials, critical concerns, such as biocompatibility, biodistribution and regulatory challenges, should be considered. This review and collaborative efforts should advance the field of Xene-based tissue engineering and enable innovative, effective solutions for use in future tissue regeneration.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | - Hee Jeong Jang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | - Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | | | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
21
|
Esser TU, Anspach A, Muenzebrock KA, Kah D, Schrüfer S, Schenk J, Heinze KG, Schubert DW, Fabry B, Engel FB. Direct 3D-Bioprinting of hiPSC-Derived Cardiomyocytes to Generate Functional Cardiac Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305911. [PMID: 37655652 DOI: 10.1002/adma.202305911] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/18/2023] [Indexed: 09/02/2023]
Abstract
3D-bioprinting is a promising technology to produce human tissues as drug screening tool or for organ repair. However, direct printing of living cells has proven difficult. Here, a method is presented to directly 3D-bioprint human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes embedded in a collagen-hyaluronic acid ink, generating centimeter-sized functional ring- and ventricle-shaped cardiac tissues in an accurate and reproducible manner. The printed tissues contain hiPSC-derived cardiomyocytes with well-organized sarcomeres and exhibit spontaneous and regular contractions, which persist for several months and are able to contract against passive resistance. Importantly, beating frequencies of the printed cardiac tissues can be modulated by pharmacological stimulation. This approach opens up new possibilities for generating complex functional cardiac tissues as models for advanced drug screening or as tissue grafts for organ repair or replacement.
Collapse
Affiliation(s)
- Tilman U Esser
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), 91054, Erlangen, Germany
| | - Annalise Anspach
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), 91054, Erlangen, Germany
| | - Katrin A Muenzebrock
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), 91054, Erlangen, Germany
| | - Delf Kah
- Department of Physics, University of Erlangen-Nuremberg, 91052, Erlangen, Germany
| | - Stefan Schrüfer
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Joachim Schenk
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg (JMU), 97080, Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg (JMU), 97080, Würzburg, Germany
| | - Dirk W Schubert
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, 91052, Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), 91054, Erlangen, Germany
| |
Collapse
|
22
|
Lancaster JJ, Grijalva A, Fink J, Ref J, Daugherty S, Whitman S, Fox K, Gorman G, Lancaster LD, Avery R, Acharya T, McArthur A, Strom J, Pierce MK, Moukabary T, Borgstrom M, Benson D, Mangiola M, Pandey AC, Zile MR, Bradshaw A, Koevary JW, Goldman S. Biologically derived epicardial patch induces macrophage mediated pathophysiologic repair in chronically infarcted swine hearts. Commun Biol 2023; 6:1203. [PMID: 38007534 PMCID: PMC10676365 DOI: 10.1038/s42003-023-05564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/09/2023] [Indexed: 11/27/2023] Open
Abstract
There are nearly 65 million people with chronic heart failure (CHF) globally, with no treatment directed at the pathologic cause of the disease, the loss of functioning cardiomyocytes. We have an allogeneic cardiac patch comprised of cardiomyocytes and human fibroblasts on a bioresorbable matrix. This patch increases blood flow to the damaged heart and improves left ventricular (LV) function in an immune competent rat model of ischemic CHF. After 6 months of treatment in an immune competent Yucatan mini swine ischemic CHF model, this patch restores LV contractility without constrictive physiology, partially reversing maladaptive LV and right ventricular remodeling, increases exercise tolerance, without inducing any cardiac arrhythmias or a change in myocardial oxygen consumption. Digital spatial profiling in mice with patch placement 3 weeks after a myocardial infarction shows that the patch induces a CD45pos immune cell response that results in an infiltration of dendritic cells and macrophages with high expression of macrophages polarization to the anti-inflammatory reparative M2 phenotype. Leveraging the host native immune system allows for the potential use of immunomodulatory therapies for treatment of chronic inflammatory diseases not limited to ischemic CHF.
Collapse
Affiliation(s)
- J J Lancaster
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - A Grijalva
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - J Fink
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - J Ref
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - S Daugherty
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - S Whitman
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - K Fox
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - G Gorman
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - L D Lancaster
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - R Avery
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - T Acharya
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - A McArthur
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - J Strom
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - M K Pierce
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - T Moukabary
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - M Borgstrom
- Research & Discovery Tech, Research Computing Specialist, Principal, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - D Benson
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
| | - M Mangiola
- Department of Pathology, NYU Grossman School of Medicine, New York City, NY, 11016, USA
| | - A C Pandey
- Section of Cardiology, Tulane University Heart and Vascular Institute, John W. Deming Department of Medicine, Section of Cardiology, Department of Medicine, Southeast Louisiana Veterans Healthcare System, Tulane University School of Medicine, New Orleans, LA, 70122, USA
| | - M R Zile
- Ralph H. Johnson VA Medical Center, Division of Cardiology, Medical University of South Carolina, Thurmond/Gazes Building, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - A Bradshaw
- Ralph H. Johnson VA Medical Center, Division of Cardiology, Medical University of South Carolina, Thurmond/Gazes Building, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - J W Koevary
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA
- Biomedical Engineering, College of Engineering, University of Arizona, 1127 E. James E. Rogers Way, Tucson, AZ, 85721, USA
| | - S Goldman
- Sarver Heart Center, Department of Medicine, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ, 85724, USA.
| |
Collapse
|
23
|
Shi R, Reichardt M, Fiegle DJ, Küpfer LK, Czajka T, Sun Z, Salditt T, Dendorfer A, Seidel T, Bruegmann T. Contractility measurements for cardiotoxicity screening with ventricular myocardial slices of pigs. Cardiovasc Res 2023; 119:2469-2481. [PMID: 37934066 PMCID: PMC10651213 DOI: 10.1093/cvr/cvad141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/22/2023] [Accepted: 07/10/2023] [Indexed: 11/08/2023] Open
Abstract
AIMS Cardiotoxicity is one major reason why drugs do not enter or are withdrawn from the market. Thus, approaches are required to predict cardiotoxicity with high specificity and sensitivity. Ideally, such methods should be performed within intact cardiac tissue with high relevance for humans and detect acute and chronic side effects on electrophysiological behaviour, contractility, and tissue structure in an unbiased manner. Herein, we evaluate healthy pig myocardial slices and biomimetic cultivation setups (BMCS) as a new cardiotoxicity screening approach. METHODS AND RESULTS Pig left ventricular samples were cut into slices and spanned into BMCS with continuous electrical pacing and online force recording. Automated stimulation protocols were established to determine the force-frequency relationship (FFR), frequency dependence of contraction duration, effective refractory period (ERP), and pacing threshold. Slices generated 1.3 ± 0.14 mN/mm2 force at 0.5 Hz electrical pacing and showed a positive FFR and a shortening of contraction duration with increasing pacing rates. Approximately 62% of slices were able to contract for at least 6 days while showing stable ERP, contraction duration-frequency relationship, and preserved cardiac structure confirmed by confocal imaging and X-ray diffraction analysis. We used specific blockers of the most important cardiac ion channels to determine which analysis parameters are influenced. To validate our approach, we tested five drug candidates selected from the Comprehensive in vitro Proarrhythmia Assay list as well as acetylsalicylic acid and DMSO as controls in a blinded manner in three independent laboratories. We were able to detect all arrhythmic drugs and their respective mode of action on cardiac tissue including inhibition of Na+, Ca2+, and hERG channels as well as Na+/Ca2+ exchanger. CONCLUSION We systematically evaluate this approach for cardiotoxicity screening, which is of high relevance for humans and can be upscaled to medium-throughput screening. Thus, our approach will improve the predictive value and efficiency of preclinical cardiotoxicity screening.
Collapse
Affiliation(s)
- Runzhu Shi
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Göttingen, Germany
- International Research Training Group 1816, University Medical Center Göttingen, Göttingen, Germany
| | - Marius Reichardt
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Göttingen, Germany
- Institute for X-ray Physics, University of Göttingen, Göttingen, Germany
| | - Dominik J Fiegle
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Linda K Küpfer
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Titus Czajka
- Institute for X-ray Physics, University of Göttingen, Göttingen, Germany
| | - Zhengwu Sun
- Walter-Brendel-Centre of Experimental Medicine, Hospital of the University Munich, Munich, Germany
| | - Tim Salditt
- Institute for X-ray Physics, University of Göttingen, Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
| | - Andreas Dendorfer
- Walter-Brendel-Centre of Experimental Medicine, Hospital of the University Munich, Munich, Germany
- German Centre of Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Thomas Seidel
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Bruegmann
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Guo J, Jiang H, Schuftan D, Moreno JD, Ramahdita G, Aryan L, Bhagavan D, Silva J, Huebsch N. Mechanical Resistance to Micro-Heart Tissue Contractility unveils early Structural and Functional Pathology in iPSC Models of Hypertrophic Cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564856. [PMID: 37961198 PMCID: PMC10634965 DOI: 10.1101/2023.10.30.564856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Hypertrophic cardiomyopathy is the most common cause of sudden death in the young. Because the disease exhibits variable penetrance, there are likely nongenetic factors that contribute to the manifestation of the disease phenotype. Clinically, hypertension is a major cause of morbidity and mortality in patients with HCM, suggesting a potential synergistic role for the sarcomeric mutations associated with HCM and mechanical stress on the heart. We developed an in vitro physiological model to investigate how the afterload that the heart muscle works against during contraction acts together with HCM-linked MYBPC3 mutations to trigger a disease phenotype. Micro-heart muscle arrays (μHM) were engineered from iPSC-derived cardiomyocytes bearing MYBPC3 loss-of-function mutations and challenged to contract against mechanical resistance with substrates stiffnesses ranging from the of embryonic hearts (0.4 kPa) up to the stiffness of fibrotic adult hearts (114 kPa). Whereas MYBPC3 +/- iPSC-cardiomyocytes showed little signs of disease pathology in standard 2D culture, μHMs that included components of afterload revealed several hallmarks of HCM, including cellular hypertrophy, impaired contractile energetics, and maladaptive calcium handling. Remarkably, we discovered changes in troponin C and T localization in the MYBPC3 +/- μHM that were entirely absent in 2D culture. Pharmacologic studies suggested that excessive Ca 2+ intake through membrane-embedded channels, rather than sarcoplasmic reticulum Ca 2+ ATPase (SERCA) dysfunction or Ca 2+ buffering at myofilaments underlie the observed electrophysiological abnormalities. These results illustrate the power of physiologically relevant engineered tissue models to study inherited disease mechanisms with iPSC technology.
Collapse
|
25
|
Cui H, Yu ZX, Huang Y, Hann SY, Esworthy T, Shen YL, Zhang LG. 3D printing of thick myocardial tissue constructs with anisotropic myofibers and perfusable vascular channels. BIOMATERIALS ADVANCES 2023; 153:213579. [PMID: 37566935 DOI: 10.1016/j.bioadv.2023.213579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Engineering of myocardial tissues has become a promising therapeutic strategy for treating myocardial infarction (MI). However, a significant challenge remains in generating clinically relevant myocardial tissues that possess native microstructural characteristics and fulfill the requirements for implantation within the human body. In this study, a thick 3D myocardial construct with anisotropic myofibers and perfusable branched vascular channels is created with clinically relevant dimensions using a customized beam-scanning stereolithography printing technique. To obtain tissue-specific matrix niches, a decellularized extracellular matrix microfiber-reinforced gelatin-based bioink is developed. The bioink plays a crucial role in facilitating the precise manufacturing of a hierarchical microstructure, enabling us to better replicate the physiological characteristics of the native myocardial tissue matrix in terms of structure, biomechanics, and bioactivity. Through the integration of the tailored bioink with our printing method, we demonstrate a biomimetic architecture, appropriate biomechanical properties, vascularization, and improved functionality of induced pluripotent stem cell-derived cardiomyocytes in the thick tissue construct in vitro. This work not only offers a novel and effective means to generate biomimetic heart tissue in vitro for the treatment of MI, but also introduces a potential methodology for creating clinically relevant tissue products to aid in other complex tissue/organ regeneration and disease model applications.
Collapse
Affiliation(s)
- Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, United States of America
| | - Zu-Xi Yu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Yimin Huang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, United States of America
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, United States of America
| | - Yin-Lin Shen
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, United States of America
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, United States of America; Departments of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, United States of America; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, United States of America; Department of Medicine, The George Washington University, Washington, DC 20052, United States of America.
| |
Collapse
|
26
|
Woodhams LG, Guo J, Schuftan D, Boyle JJ, Pryse KM, Elson EL, Huebsch N, Genin GM. Virtual blebbistatin: A robust and rapid software approach to motion artifact removal in optical mapping of cardiomyocytes. Proc Natl Acad Sci U S A 2023; 120:e2212949120. [PMID: 37695908 PMCID: PMC10515162 DOI: 10.1073/pnas.2212949120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/31/2023] [Indexed: 09/13/2023] Open
Abstract
Fluorescent reporters of cardiac electrophysiology provide valuable information on heart cell and tissue function. However, motion artifacts caused by cardiac muscle contraction interfere with accurate measurement of fluorescence signals. Although drugs such as blebbistatin can be applied to stop cardiac tissue from contracting by uncoupling calcium-contraction, their usage prevents the study of excitation-contraction coupling and, as we show, impacts cellular structure. We therefore developed a robust method to remove motion computationally from images of contracting cardiac muscle and to map fluorescent reporters of cardiac electrophysiological activity onto images of undeformed tissue. When validated on cardiomyocytes derived from human induced pluripotent stem cells (iPSCs), in both monolayers and engineered tissues, the method enabled efficient and robust reduction of motion artifact. As with pharmacologic approaches using blebbistatin for motion removal, our algorithm improved the accuracy of optical mapping, as demonstrated by spatial maps of calcium transient decay. However, unlike pharmacologic motion removal, our computational approach allowed direct analysis of calcium-contraction coupling. Results revealed calcium-contraction coupling to be more uniform across cells within engineered tissues than across cells in monolayer culture. The algorithm shows promise as a robust and accurate tool for optical mapping studies of excitation-contraction coupling in heart tissue.
Collapse
Affiliation(s)
- Louis G Woodhams
- Department of Mechanical Engineering and Material Science, Washington University in Saint Louis, St. Louis, MO 63130
| | - Jingxuan Guo
- Department of Mechanical Engineering and Material Science, Washington University in Saint Louis, St. Louis, MO 63130
| | - David Schuftan
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130
| | - John J Boyle
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130
| | - Kenneth M Pryse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Elliot L Elson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in Saint Louis, St. Louis, MO 63130
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in Saint Louis, St. Louis, MO 63130
| | - Guy M Genin
- Department of Mechanical Engineering and Material Science, Washington University in Saint Louis, St. Louis, MO 63130
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in Saint Louis, St. Louis, MO 63130
| |
Collapse
|
27
|
Allan A, Creech J, Hausner C, Krajcarski P, Gunawan B, Poulin N, Kozlowski P, Clark CW, Dow R, Saraithong P, Mair DB, Block T, Monteiro da Rocha A, Kim DH, Herron TJ. High-throughput longitudinal electrophysiology screening of mature chamber-specific hiPSC-CMs using optical mapping. iScience 2023; 26:107142. [PMID: 37416454 PMCID: PMC10320609 DOI: 10.1016/j.isci.2023.107142] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
hiPSC-CMs are being considered by the Food and Drug Administration and other regulatory agencies for in vitro cardiotoxicity screening to provide human-relevant safety data. Widespread adoption of hiPSC-CMs in regulatory and academic science is limited by the immature, fetal-like phenotype of the cells. Here, to advance the maturation state of hiPSC-CMs, we developed and validated a human perinatal stem cell-derived extracellular matrix coating applied to high-throughput cell culture plates. We also present and validate a cardiac optical mapping device designed for high-throughput functional assessment of mature hiPSC-CM action potentials using voltage-sensitive dye and calcium transients using calcium-sensitive dyes or genetically encoded calcium indicators (GECI, GCaMP6). We utilize the optical mapping device to provide new biological insight into mature chamber-specific hiPSC-CMs, responsiveness to cardioactive drugs, the effect of GCaMP6 genetic variants on electrophysiological function, and the effect of daily β-receptor stimulation on hiPSC-CM monolayer function and SERCA2a expression.
Collapse
Affiliation(s)
- Andrew Allan
- Cairn Research, Graveney Road, Faversham, Kent ME13 8UP UK
| | - Jeffery Creech
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
| | - Christian Hausner
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
| | - Peyton Krajcarski
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
| | - Bianca Gunawan
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
| | - Noah Poulin
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
| | - Paul Kozlowski
- Michigan Medicine, Internal Medicine-Cardiology, Ann Arbor, MI 48109, USA
| | - Christopher Wayne Clark
- University of Michigan, School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI 48109, USA
| | - Rachel Dow
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
| | - Prakaimuk Saraithong
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
- Michigan Medicine, Internal Medicine-Cardiology, Ann Arbor, MI 48109, USA
| | - Devin B. Mair
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Travis Block
- StemBioSys, Inc, 3463 Magic Drive, Suite 110, San Antonio, TX 78229, USA
| | - Andre Monteiro da Rocha
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
- Michigan Medicine, Internal Medicine-Cardiology, Ann Arbor, MI 48109, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Todd J. Herron
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
- Michigan Medicine, Internal Medicine-Cardiology, Ann Arbor, MI 48109, USA
- Michigan Medicine, Molecular & Integrative Physiology, Ann Arbor, MI 48109, USA
| |
Collapse
|
28
|
Vuorenpää H, Björninen M, Välimäki H, Ahola A, Kroon M, Honkamäki L, Koivumäki JT, Pekkanen-Mattila M. Building blocks of microphysiological system to model physiology and pathophysiology of human heart. Front Physiol 2023; 14:1213959. [PMID: 37485060 PMCID: PMC10358860 DOI: 10.3389/fphys.2023.1213959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Microphysiological systems (MPS) are drawing increasing interest from academia and from biomedical industry due to their improved capability to capture human physiology. MPS offer an advanced in vitro platform that can be used to study human organ and tissue level functions in health and in diseased states more accurately than traditional single cell cultures or even animal models. Key features in MPS include microenvironmental control and monitoring as well as high biological complexity of the target tissue. To reach these qualities, cross-disciplinary collaboration from multiple fields of science is required to build MPS. Here, we review different areas of expertise and describe essential building blocks of heart MPS including relevant cardiac cell types, supporting matrix, mechanical stimulation, functional measurements, and computational modelling. The review presents current methods in cardiac MPS and provides insights for future MPS development with improved recapitulation of human physiology.
Collapse
Affiliation(s)
- Hanna Vuorenpää
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Miina Björninen
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Hannu Välimäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Ahola
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mart Kroon
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Honkamäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jussi T. Koivumäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mari Pekkanen-Mattila
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
29
|
Juraski AC, Sharma S, Sparanese S, da Silva VA, Wong J, Laksman Z, Flannigan R, Rohani L, Willerth SM. 3D bioprinting for organ and organoid models and disease modeling. Expert Opin Drug Discov 2023; 18:1043-1059. [PMID: 37431937 DOI: 10.1080/17460441.2023.2234280] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION 3D printing, a versatile additive manufacturing technique, has diverse applications ranging from transportation, rapid prototyping, clean energy, and medical devices. AREAS COVERED The authors focus on how 3D printing technology can enhance the drug discovery process through automating tissue production that enables high-throughput screening of potential drug candidates. They also discuss how the 3D bioprinting process works and what considerations to address when using this technology to generate cell laden constructs for drug screening as well as the outputs from such assays necessary for determining the efficacy of potential drug candidates. They focus on how bioprinting how has been used to generate cardiac, neural, and testis tissue models, focusing on bio-printed 3D organoids. EXPERT OPINION The next generation of 3D bioprinted organ model holds great promises for the field of medicine. In terms of drug discovery, the incorporation of smart cell culture systems and biosensors into 3D bioprinted models could provide highly detailed and functional organ models for drug screening. By addressing current challenges of vascularization, electrophysiological control, and scalability, researchers can obtain more reliable and accurate data for drug development, reducing the risk of drug failures during clinical trials.
Collapse
Affiliation(s)
- Amanda C Juraski
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria BC, Canada
- Department of Chemical Engineering, Polytechnic School, University of Sao Paulo, Sao Paulo, Brazil
| | - Sonali Sharma
- Faculty of Medicine, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Sydney Sparanese
- Faculty of Medicine, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver BC, Canada
| | - Victor A da Silva
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria BC, Canada
| | - Julie Wong
- Department of Urologic Sciences, University of British Columbia, Vancouver BC, Canada
| | - Zachary Laksman
- Faculty of Medicine, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Flannigan
- Department of Urologic Sciences, University of British Columbia, Vancouver BC, Canada
| | - Leili Rohani
- Faculty of Medicine, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie M Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria BC, Canada
- Faculty of Medicine, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| |
Collapse
|
30
|
Osowski A, Hetmaniuk I, Fedchyshyn O, Sas M, Lomakina Y, Tkachuk N, Budarna O, Fik V, Fedoniuk L, Wojtkiewicz J. The Role of Lyophilized Xenodermotransplants in Repairing the Atria's Structure and the Peculiarities of Regenerative Processes after Thermal Trauma in an Experiment. Life (Basel) 2023; 13:1470. [PMID: 37511845 PMCID: PMC10381269 DOI: 10.3390/life13071470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The effects of severe burn injuries on the cardiovascular system, specifically the atria and auricles of the heart, were investigated. The potential benefits of using lyophilized xenodermotransplants as a treatment option were also evaluated. The experiments were conducted on adult guinea pigs divided into three groups: intact animals, animals with burns, and animals with burns who underwent early necrectomy followed by wound closure with lyophilized xenodermotransplants. Third-degree burns caused significant ultrastructural changes in atrial cardiomyocytes, leading to long-term destructive changes in the structural components of the atria. However, the use of lyophilized xenodermotransplants had a positive effect on the atrial ultrastructure over time. This study highlights the complex and varied effects of burn injuries on the body and the potential benefits of lyophilized xenodermotransplants in treating severe burn injuries. By preventing destructive changes in the heart and activating regenerative processes, lyophilized xenodermotransplants can improve the condition of the heart after thermal injury. Further research and development in this area are necessary for understanding the potential of lyophilized xenodermotransplants in tissue repair and regeneration.
Collapse
Affiliation(s)
- Adam Osowski
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, 2 Oczapowskiego Street, 10-719 Olsztyn, Poland
| | - Iryna Hetmaniuk
- Medical Biology Department, Horbachevsky Ternopil National Medical University, 2 Yu. Slovatskyi Street, 46001 Ternopil, Ukraine
| | - Olena Fedchyshyn
- Medical Biology Department, Horbachevsky Ternopil National Medical University, 2 Yu. Slovatskyi Street, 46001 Ternopil, Ukraine
| | - Mykhailo Sas
- Medical Biology Department, Horbachevsky Ternopil National Medical University, 2 Yu. Slovatskyi Street, 46001 Ternopil, Ukraine
| | - Yuliia Lomakina
- Department of Medical Biology and Genetics, Bukovinian State Medical University, 15 Yu. Fedkovich Street, 58000 Chernivtsi, Ukraine
| | - Nataliia Tkachuk
- Medical Biology Department, Horbachevsky Ternopil National Medical University, 2 Yu. Slovatskyi Street, 46001 Ternopil, Ukraine
| | - Olena Budarna
- Medical Biology Department, Horbachevsky Ternopil National Medical University, 2 Yu. Slovatskyi Street, 46001 Ternopil, Ukraine
| | - Volodymyr Fik
- Medical Biology Department, Horbachevsky Ternopil National Medical University, 2 Yu. Slovatskyi Street, 46001 Ternopil, Ukraine
| | - Larisa Fedoniuk
- Medical Biology Department, Horbachevsky Ternopil National Medical University, 2 Yu. Slovatskyi Street, 46001 Ternopil, Ukraine
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, 2 Oczapowskiego Street, 10-719 Olsztyn, Poland
| |
Collapse
|
31
|
Simmons DW, Schuftan DR, Ramahdita G, Huebsch N. Hydrogel-Assisted Double Molding Enables Rapid Replication of Stereolithographic 3D Prints for Engineered Tissue Design. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37200617 DOI: 10.1021/acsami.3c02279] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tissue-engineered in vitro models are an essential tool in biomedical research. Tissue geometry is a key determinant of function, but controlling the geometry of microscale tissues remains challenging. Additive manufacturing approaches have emerged as a promising means for rapid and iterative changes in the geometry of microdevices. However, it has been shown that poly(dimethylsiloxane) (PDMS) cross-linking is often inhibited at the interface of materials printed with stereolithography. While approaches to replica mold stereolithographic three-dimensional (3D) prints have been described, these methods are inconsistent and often lead to print destruction when unsuccessful. Additionally, 3D-printed materials often leach toxic chemicals into directly molded PDMS. Here, we developed a double molding approach that allows precise replication of high-resolution stereolithographic prints into poly(dimethylsiloxane) (PDMS) elastomer, facilitating rapid design iterations and highly parallelized sample production. Inspired by lost wax casting, we used hydrogels as intermediary molds to transfer high-resolution features from high-resolution 3D prints into PDMS, while previously published work focused on enabling direct molding of PDMS onto 3D prints through the use of coatings and post-cross-linking treatments of the 3D print itself. Hydrogel mechanical properties, including cross-link density, predict replication fidelity. We demonstrate the ability of this approach to replicate a variety of shapes that would be impossible to create using photolithography techniques traditionally used to create engineered tissue designs. This method also enabled the replication of 3D-printed features into PDMS that would not be possible with direct molding as the stiffness of these materials leads to material fracture when unmolding, while the increased toughness in the hydrogels can elastically deform around complex features and maintain replication fidelity. Finally, we highlight the ability of this method to minimize the potential for toxic materials to transfer from the original 3D print into the PDMS replica, enhancing its use for biological applications. This minimization of the transfer of toxic materials has not been reported in other previously reported methods describing replication of 3D prints into PDMS, and we demonstrate its use through the creation of stem cell-derived microheart muscles. This method can also be used in future studies to understand the effects of geometry on engineered tissues and their constitutive cells.
Collapse
Affiliation(s)
- Daniel W Simmons
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- NSF Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - David R Schuftan
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ghiska Ramahdita
- NSF Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Mechanical Engineering & Materials Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- NSF Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
32
|
Satta S, Rockwood SJ, Wang K, Wang S, Mozneb M, Arzt M, Hsiai TK, Sharma A. Microfluidic Organ-Chips and Stem Cell Models in the Fight Against COVID-19. Circ Res 2023; 132:1405-1424. [PMID: 37167356 PMCID: PMC10171291 DOI: 10.1161/circresaha.122.321877] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
SARS-CoV-2, the virus underlying COVID-19, has now been recognized to cause multiorgan disease with a systemic effect on the host. To effectively combat SARS-CoV-2 and the subsequent development of COVID-19, it is critical to detect, monitor, and model viral pathogenesis. In this review, we discuss recent advancements in microfluidics, organ-on-a-chip, and human stem cell-derived models to study SARS-CoV-2 infection in the physiological organ microenvironment, together with their limitations. Microfluidic-based detection methods have greatly enhanced the rapidity, accessibility, and sensitivity of viral detection from patient samples. Engineered organ-on-a-chip models that recapitulate in vivo physiology have been developed for many organ systems to study viral pathology. Human stem cell-derived models have been utilized not only to model viral tropism and pathogenesis in a physiologically relevant context but also to screen for effective therapeutic compounds. The combination of all these platforms, along with future advancements, may aid to identify potential targets and develop novel strategies to counteract COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Sandro Satta
- Division of Cardiology and Department of Bioengineering, School of Engineering (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Division of Cardiology, Department of Medicine, School of Medicine (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Department of Medicine, Greater Los Angeles VA Healthcare System, California (S.S., K.W., S.W., T.K.H.)
| | - Sarah J. Rockwood
- Stanford University Medical Scientist Training Program, Palo Alto, CA (S.J.R.)
| | - Kaidong Wang
- Division of Cardiology and Department of Bioengineering, School of Engineering (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Division of Cardiology, Department of Medicine, School of Medicine (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Department of Medicine, Greater Los Angeles VA Healthcare System, California (S.S., K.W., S.W., T.K.H.)
| | - Shaolei Wang
- Division of Cardiology and Department of Bioengineering, School of Engineering (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Division of Cardiology, Department of Medicine, School of Medicine (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Department of Medicine, Greater Los Angeles VA Healthcare System, California (S.S., K.W., S.W., T.K.H.)
| | - Maedeh Mozneb
- Board of Governors Regenerative Medicine Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Smidt Heart Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Cancer Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Madelyn Arzt
- Board of Governors Regenerative Medicine Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Smidt Heart Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Cancer Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Tzung K. Hsiai
- Division of Cardiology and Department of Bioengineering, School of Engineering (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Division of Cardiology, Department of Medicine, School of Medicine (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Department of Medicine, Greater Los Angeles VA Healthcare System, California (S.S., K.W., S.W., T.K.H.)
| | - Arun Sharma
- Board of Governors Regenerative Medicine Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Smidt Heart Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Cancer Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
33
|
Sahara M. Recent Advances in Generation of In Vitro Cardiac Organoids. Int J Mol Sci 2023; 24:ijms24076244. [PMID: 37047216 PMCID: PMC10094119 DOI: 10.3390/ijms24076244] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiac organoids are in vitro self-organizing and three-dimensional structures composed of multiple cardiac cells (i.e., cardiomyocytes, endothelial cells, cardiac fibroblasts, etc.) with or without biological scaffolds. Since cardiac organoids recapitulate structural and functional characteristics of the native heart to a higher degree compared to the conventional two-dimensional culture systems, their applications, in combination with pluripotent stem cell technologies, are being widely expanded for the investigation of cardiogenesis, cardiac disease modeling, drug screening and development, and regenerative medicine. In this mini-review, recent advances in cardiac organoid technologies are summarized in chronological order, with a focus on the methodological points for each organoid formation. Further, the current limitations and the future perspectives in these promising systems are also discussed.
Collapse
|
34
|
Schulz C, Lemoine MD, Mearini G, Koivumäki J, Sani J, Schwedhelm E, Kirchhof P, Ghalawinji A, Stoll M, Hansen A, Eschenhagen T, Christ T. PITX2 Knockout Induces Key Findings of Electrical Remodeling as Seen in Persistent Atrial Fibrillation. Circ Arrhythm Electrophysiol 2023; 16:e011602. [PMID: 36763906 DOI: 10.1161/circep.122.011602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND Electrical remodeling in human persistent atrial fibrillation is believed to result from rapid electrical activation of the atria, but underlying genetic causes may contribute. Indeed, common gene variants in an enhancer region close to PITX2 (paired-like homeodomain transcription factor 2) are strongly associated with atrial fibrillation, but the mechanism behind this association remains unknown. This study evaluated the consequences of PITX2 deletion (PITX2-/-) in human induced pluripotent stem cell-derived atrial cardiomyocytes. METHODS CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) was used to delete PITX2 in a healthy human iPSC line that served as isogenic control. Human induced pluripotent stem cell-derived atrial cardiomyocytes were differentiated with unfiltered retinoic acid and cultured in atrial engineered heart tissue. Force and action potential were measured in atrial engineered heart tissues. Single human induced pluripotent stem cell-derived atrial cardiomyocytes were isolated from atrial engineered heart tissue for ion current measurements. RESULTS PITX2-/- atrial engineered heart tissue beats slightly slower than isogenic control without irregularity. Force was lower in PITX2-/- than in isogenic control (0.053±0.015 versus 0.131±0.017 mN, n=28/3 versus n=28/4, PITX2-/- versus isogenic control; P<0.0001), accompanied by lower expression of CACNA1C and lower L-type Ca2+ current density. Early repolarization was weaker (action potential duration at 20% repolarization; 45.5±13.2 versus 8.6±5.3 ms, n=18/3 versus n=12/4, PITX2-/- versus isogenic control; P<0.0001), and maximum diastolic potential was more negative (-78.3±3.1 versus -69.7±0.6 mV, n=18/3 versus n=12/4, PITX2-/- versus isogenic control; P=0.001), despite normal inward rectifier currents (both IK1 and IK,ACh) and carbachol-induced shortening of action potential duration. CONCLUSIONS Complete PITX2 deficiency in human induced pluripotent stem cell-derived atrial cardiomyocytes recapitulates some findings of electrical remodeling of atrial fibrillation in the absence of fast beating, indicating that these abnormalities could be primary consequences of lower PITX2 levels.
Collapse
Affiliation(s)
- Carl Schulz
- Institute of Experimental Pharmacology and Toxicology (C.S., M.D.L., G.M., J.S., A.H., T.E., T.C.), University Medical Center Hamburg-Eppendorf, Germany
- German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck (C.S., M.D.L., G.M., J.S., E.S., P.K.)
| | - Marc D Lemoine
- Institute of Experimental Pharmacology and Toxicology (C.S., M.D.L., G.M., J.S., A.H., T.E., T.C.), University Medical Center Hamburg-Eppendorf, Germany
- German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck (C.S., M.D.L., G.M., J.S., E.S., P.K.)
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany (M.D.L., A.H., P.K., T.E., T.C.)
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology (C.S., M.D.L., G.M., J.S., A.H., T.E., T.C.), University Medical Center Hamburg-Eppendorf, Germany
- German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck (C.S., M.D.L., G.M., J.S., E.S., P.K.)
- DiNAQOR AG, Pfäffikon, Switzerland (G.M., P.K.)
| | - Jussi Koivumäki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Finland (J.K.)
| | - Jascha Sani
- Institute of Experimental Pharmacology and Toxicology (C.S., M.D.L., G.M., J.S., A.H., T.E., T.C.), University Medical Center Hamburg-Eppendorf, Germany
- German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck (C.S., M.D.L., G.M., J.S., E.S., P.K.)
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology (E.S.), University Medical Center Hamburg-Eppendorf, Germany
- German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck (C.S., M.D.L., G.M., J.S., E.S., P.K.)
| | - Paulus Kirchhof
- German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck (C.S., M.D.L., G.M., J.S., E.S., P.K.)
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany (M.D.L., A.H., P.K., T.E., T.C.)
- DiNAQOR AG, Pfäffikon, Switzerland (G.M., P.K.)
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.K.)
| | - Amer Ghalawinji
- Division of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.G., M.S.)
| | - Monika Stoll
- Division of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.G., M.S.)
- Department of Biochemistry, CARIM School for Cardiovascular Sciences, Maastricht University, the Netherlands (M.S.)
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology (C.S., M.D.L., G.M., J.S., A.H., T.E., T.C.), University Medical Center Hamburg-Eppendorf, Germany
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany (M.D.L., A.H., P.K., T.E., T.C.)
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology (C.S., M.D.L., G.M., J.S., A.H., T.E., T.C.), University Medical Center Hamburg-Eppendorf, Germany
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany (M.D.L., A.H., P.K., T.E., T.C.)
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology (C.S., M.D.L., G.M., J.S., A.H., T.E., T.C.), University Medical Center Hamburg-Eppendorf, Germany
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany (M.D.L., A.H., P.K., T.E., T.C.)
| |
Collapse
|
35
|
Ernst P, Bidwell PA, Dora M, Thomas DD, Kamdar F. Cardiac calcium regulation in human induced pluripotent stem cell cardiomyocytes: Implications for disease modeling and maturation. Front Cell Dev Biol 2023; 10:986107. [PMID: 36742199 PMCID: PMC9889838 DOI: 10.3389/fcell.2022.986107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Human induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) are based on ground-breaking technology that has significantly impacted cardiovascular research. They provide a renewable source of human cardiomyocytes for a variety of applications including in vitro disease modeling and drug toxicity testing. Cardiac calcium regulation plays a critical role in the cardiomyocyte and is often dysregulated in cardiovascular disease. Due to the limited availability of human cardiac tissue, calcium handling and its regulation have most commonly been studied in the context of animal models. hiPSC-CMs can provide unique insights into human physiology and pathophysiology, although a remaining limitation is the relative immaturity of these cells compared to adult cardiomyocytes Therefore, this field is rapidly developing techniques to improve the maturity of hiPSC-CMs, further establishing their place in cardiovascular research. This review briefly covers the basics of cardiomyocyte calcium cycling and hiPSC technology, and will provide a detailed description of our current understanding of calcium in hiPSC-CMs.
Collapse
Affiliation(s)
- Patrick Ernst
- Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Philip A. Bidwell
- Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Michaela Dora
- College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Forum Kamdar
- Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
36
|
Gabetti S, Sileo A, Montrone F, Putame G, Audenino AL, Marsano A, Massai D. Versatile electrical stimulator for cardiac tissue engineering-Investigation of charge-balanced monophasic and biphasic electrical stimulations. Front Bioeng Biotechnol 2023; 10:1031183. [PMID: 36686253 PMCID: PMC9846083 DOI: 10.3389/fbioe.2022.1031183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
The application of biomimetic physical stimuli replicating the in vivo dynamic microenvironment is crucial for the in vitro development of functional cardiac tissues. In particular, pulsed electrical stimulation (ES) has been shown to improve the functional properties of in vitro cultured cardiomyocytes. However, commercially available electrical stimulators are expensive and cumbersome devices while customized solutions often allow limited parameter tunability, constraining the investigation of different ES protocols. The goal of this study was to develop a versatile compact electrical stimulator (ELETTRA) for biomimetic cardiac tissue engineering approaches, designed for delivering controlled parallelizable ES at a competitive cost. ELETTRA is based on an open-source micro-controller running custom software and is combinable with different cell/tissue culture set-ups, allowing simultaneously testing different ES patterns on multiple samples. In particular, customized culture chambers were appositely designed and manufactured for investigating the influence of monophasic and biphasic pulsed ES on cardiac cell monolayers. Finite element analysis was performed for characterizing the spatial distributions of the electrical field and the current density within the culture chamber. Performance tests confirmed the accuracy, compliance, and reliability of the ES parameters delivered by ELETTRA. Biological tests were performed on neonatal rat cardiac cells, electrically stimulated for 4 days, by comparing, for the first time, the monophasic waveform (electric field = 5 V/cm) to biphasic waveforms by matching either the absolute value of the electric field variation (biphasic ES at ±2.5 V/cm) or the total delivered charge (biphasic ES at ±5 V/cm). Findings suggested that monophasic ES at 5 V/cm and, particularly, charge-balanced biphasic ES at ±5 V/cm were effective in enhancing electrical functionality of stimulated cardiac cells and in promoting synchronous contraction.
Collapse
Affiliation(s)
- Stefano Gabetti
- Department of Mechanical and Aerospace Engineering and PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Antonio Sileo
- Department of Surgery and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Federica Montrone
- Department of Mechanical and Aerospace Engineering and PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Giovanni Putame
- Department of Mechanical and Aerospace Engineering and PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Alberto L. Audenino
- Department of Mechanical and Aerospace Engineering and PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Anna Marsano
- Department of Surgery and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Diana Massai
- Department of Mechanical and Aerospace Engineering and PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy,*Correspondence: Diana Massai,
| |
Collapse
|
37
|
Dalmao-Fernandez A, Aizenshtadt A, Bakke HG, Krauss S, Rustan AC, Thoresen GH, Kase ET. Development of three-dimensional primary human myospheres as culture model of skeletal muscle cells for metabolic studies. Front Bioeng Biotechnol 2023; 11:1130693. [PMID: 37034250 PMCID: PMC10076718 DOI: 10.3389/fbioe.2023.1130693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: Skeletal muscle is a major contributor to whole-body energy homeostasis and the utilization of fatty acids and glucose. At present, 2D cell models have been the most used cellular models to study skeletal muscle energy metabolism. However, the transferability of the results to in vivo might be limited. This project aimed to develop and characterize a skeletal muscle 3D cell model (myospheres) as an easy and low-cost tool to study molecular mechanisms of energy metabolism. Methods and results: We demonstrated that human primary myoblasts form myospheres without external matrix support and carry structural and molecular characteristics of mature skeletal muscle after 10 days of differentiation. We found significant metabolic differences between the 2D myotubes model and myospheres. In particular, myospheres showed increased lipid oxidative metabolism than the 2D myotubes model, which oxidized relatively more glucose and accumulated more oleic acid. Discussion and conclusion: These analyses demonstrate model differences that can have an impact and should be taken into consideration for studying energy metabolism and metabolic disorders in skeletal muscle.
Collapse
Affiliation(s)
- Andrea Dalmao-Fernandez
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- *Correspondence: Andrea Dalmao-Fernandez,
| | - Aleksandra Aizenshtadt
- Hybrid Technology Hub Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hege G. Bakke
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Stefan Krauss
- Hybrid Technology Hub Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Arild C. Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - G. Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eili Tranheim Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
38
|
Kobayashi H, Tohyama S, Kanazawa H, Ichimura H, Chino S, Tanaka Y, Suzuki Y, Zhao J, Shiba N, Kadota S, Narita K, Naito T, Seto T, Kuwahara K, Shiba Y, Fukuda K. Intracoronary transplantation of pluripotent stem cell-derived cardiomyocytes: Inefficient procedure for cardiac regeneration. J Mol Cell Cardiol 2023; 174:77-87. [PMID: 36403760 DOI: 10.1016/j.yjmcc.2022.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Advances in stem cell biology have facilitated cardiac regeneration, and many animal studies and several initial clinical trials have been conducted using human pluripotent stem cell-derived cardiomyocytes (PSC-CMs). Most preclinical and clinical studies have typically transplanted PSC-CMs via the following two distinct approaches: direct intramyocardial injection or epicardial delivery of engineered heart tissue. Both approaches present common disadvantages, including a mandatory thoracotomy and poor engraftment. Furthermore, a standard transplantation approach has yet to be established. In this study, we tested the feasibility of performing intracoronary administration of PSC-CMs based on a commonly used method of transplanting somatic stem cells. Six male cynomolgus monkeys underwent intracoronary administration of dispersed human PSC-CMs or PSC-CM aggregates, which are called cardiac spheroids, with multiple cell dosages. The recipient animals were sacrificed at 4 weeks post-transplantation for histological analysis. Intracoronary administration of dispersed human PSC-CMs in the cynomolgus monkeys did not lead to coronary embolism or graft survival. Although the transplanted cardiac spheroids became partially engrafted, they also induced scar formation due to cardiac ischemic injury. Cardiac engraftment and scar formation were reasonably consistent with the spheroid size or cell dosage. These findings indicate that intracoronary transplantation of PSC-CMs is an inefficient therapeutic approach.
Collapse
Affiliation(s)
- Hideki Kobayashi
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hajime Ichimura
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan; Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Japan
| | - Shuji Chino
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuki Tanaka
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan; Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Japan
| | - Yota Suzuki
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan; Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Japan
| | - Jian Zhao
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Japan
| | - Naoko Shiba
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Japan
| | - Shin Kadota
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan; Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Japan
| | - Kazumasa Narita
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan; Department of Clinical Pharmacology and Therapeutics, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Takafumi Naito
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan; Department of Clinical Pharmacology and Therapeutics, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Tatsuichiro Seto
- Division of Cardiovascular Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Matsumoto, Japan; Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | - Yuji Shiba
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan; Department of Regenerative Science and Medicine, Shinshu University, Matsumoto, Japan.
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
39
|
Carvalho AB, Coutinho KCDS, Barbosa RAQ, de Campos DBP, Leitão IDC, Pinto RS, Dos Santos DS, Farjun B, De Araújo DDS, Mesquita FCP, Monnerat-Cahli G, Medei EH, Kasai-Brunswick TH, De Carvalho ACC. Action potential variability in human pluripotent stem cell-derived cardiomyocytes obtained from healthy donors. Front Physiol 2022; 13:1077069. [PMID: 36589430 PMCID: PMC9800870 DOI: 10.3389/fphys.2022.1077069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Human pluripotent stem cells (PSC) have been used for disease modelling, after differentiation into the desired cell type. Electrophysiologic properties of cardiomyocytes derived from pluripotent stem cells are extensively used to model cardiac arrhythmias, in cardiomyopathies and channelopathies. This requires strict control of the multiple variables that can influence the electrical properties of these cells. In this article, we report the action potential variability of 780 cardiomyocytes derived from pluripotent stem cells obtained from six healthy donors. We analyze the overall distribution of action potential (AP) data, the distribution of action potential data per cell line, per differentiation protocol and batch. This analysis indicates that even using the same cell line and differentiation protocol, the differentiation batch still affects the results. This variability has important implications in modeling arrhythmias and imputing pathogenicity to variants encountered in patients with arrhythmic diseases. We conclude that even when using isogenic cell lines to ascertain pathogenicity to variants associated to arrythmias one should use cardiomyocytes derived from pluripotent stem cells using the same differentiation protocol and batch and pace the cells or use only cells that have very similar spontaneous beat rates. Otherwise, one may find phenotypic variability that is not attributable to pathogenic variants.
Collapse
Affiliation(s)
- A. B. Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro, Brazil,*Correspondence: A. B. Carvalho,
| | | | | | | | - Isabela de Carvalho Leitão
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R. S. Pinto
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - D. Silva Dos Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Farjun
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dayana da Silva De Araújo
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - G. Monnerat-Cahli
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - E. H. Medei
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro, Brazil
| | - Tais Hanae Kasai-Brunswick
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro, Brazil
| | - A. C. Campos De Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro, Brazil,National Institute of Cardiology, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
van der Velden J, Asselbergs FW, Bakkers J, Batkai S, Bertrand L, Bezzina CR, Bot I, Brundel BJJM, Carrier L, Chamuleau S, Ciccarelli M, Dawson D, Davidson SM, Dendorfer A, Duncker DJ, Eschenhagen T, Fabritz L, Falcão-Pires I, Ferdinandy P, Giacca M, Girao H, Gollmann-Tepeköylü C, Gyongyosi M, Guzik TJ, Hamdani N, Heymans S, Hilfiker A, Hilfiker-Kleiner D, Hoekstra AG, Hulot JS, Kuster DWD, van Laake LW, Lecour S, Leiner T, Linke WA, Lumens J, Lutgens E, Madonna R, Maegdefessel L, Mayr M, van der Meer P, Passier R, Perbellini F, Perrino C, Pesce M, Priori S, Remme CA, Rosenhahn B, Schotten U, Schulz R, Sipido KR, Sluijter JPG, van Steenbeek F, Steffens S, Terracciano CM, Tocchetti CG, Vlasman P, Yeung KK, Zacchigna S, Zwaagman D, Thum T. Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2022; 118:3016-3051. [PMID: 34999816 PMCID: PMC9732557 DOI: 10.1093/cvr/cvab370] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular diseases represent a major cause of morbidity and mortality, necessitating research to improve diagnostics, and to discover and test novel preventive and curative therapies, all of which warrant experimental models that recapitulate human disease. The translation of basic science results to clinical practice is a challenging task, in particular for complex conditions such as cardiovascular diseases, which often result from multiple risk factors and comorbidities. This difficulty might lead some individuals to question the value of animal research, citing the translational 'valley of death', which largely reflects the fact that studies in rodents are difficult to translate to humans. This is also influenced by the fact that new, human-derived in vitro models can recapitulate aspects of disease processes. However, it would be a mistake to think that animal models do not represent a vital step in the translational pathway as they do provide important pathophysiological insights into disease mechanisms particularly on an organ and systemic level. While stem cell-derived human models have the potential to become key in testing toxicity and effectiveness of new drugs, we need to be realistic, and carefully validate all new human-like disease models. In this position paper, we highlight recent advances in trying to reduce the number of animals for cardiovascular research ranging from stem cell-derived models to in situ modelling of heart properties, bioinformatic models based on large datasets, and state-of-the-art animal models, which show clinically relevant characteristics observed in patients with a cardiovascular disease. We aim to provide a guide to help researchers in their experimental design to translate bench findings to clinical routine taking the replacement, reduction, and refinement (3R) as a guiding concept.
Collapse
Grants
- R01 HL150359 NHLBI NIH HHS
- RG/16/14/32397 British Heart Foundation
- FS/18/37/33642 British Heart Foundation
- PG/17/64/33205 British Heart Foundation
- PG/15/88/31780 British Heart Foundation
- FS/RTF/20/30009, NH/19/1/34595, PG/18/35/33786, CS/17/4/32960, PG/15/88/31780, and PG/17/64/33205 British Heart Foundation
- NC/T001488/1 National Centre for the Replacement, Refinement and Reduction of Animals in Research
- PG/18/44/33790 British Heart Foundation
- CH/16/3/32406 British Heart Foundation
- FS/RTF/20/30009 British Heart Foundation
- NWO-ZonMW
- ZonMW and Heart Foundation for the translational research program
- Dutch Cardiovascular Alliance (DCVA)
- Leducq Foundation
- Dutch Research Council
- Association of Collaborating Health Foundations (SGF)
- UCL Hospitals NIHR Biomedical Research Centre, and the DCVA
- Netherlands CardioVascular Research Initiative CVON
- Stichting Hartekind and the Dutch Research Counsel (NWO) (OCENW.GROOT.2019.029)
- National Fund for Scientific Research, Belgium and Action de Recherche Concertée de la Communauté Wallonie-Bruxelles, Belgium
- Netherlands CardioVascular Research Initiative CVON (PREDICT2 and CONCOR-genes projects), the Leducq Foundation
- ERA PerMed (PROCEED study)
- Netherlands Cardiovascular Research Initiative
- Dutch Heart Foundation
- German Centre of Cardiovascular Research (DZHH)
- Chest Heart and Stroke Scotland
- Tenovus Scotland
- Friends of Anchor and Grampian NHS-Endowments
- National Institute for Health Research University College London Hospitals Biomedical Research Centre
- German Centre for Cardiovascular Research
- European Research Council (ERC-AG IndivuHeart), the Deutsche Forschungsgemeinschaft
- European Union Horizon 2020 (REANIMA and TRAINHEART)
- German Ministry of Education and Research (BMBF)
- Centre for Cardiovascular Research (DZHK)
- European Union Horizon 2020
- DFG
- National Research, Development and Innovation Office of Hungary
- Research Excellence Program—TKP; National Heart Program
- Austrian Science Fund
- European Union Commission’s Seventh Framework programme
- CVON2016-Early HFPEF
- CVON She-PREDICTS
- CVON Arena-PRIME
- European Union’s Horizon 2020 research and innovation programme
- Deutsche Forschungsgemeinschaft
- Volkswagenstiftung
- French National Research Agency
- ERA-Net-CVD
- Fédération Française de Cardiologie, the Fondation pour la Recherche Médicale
- French PIA Project
- University Research Federation against heart failure
- Netherlands Heart Foundation
- Dekker Senior Clinical Scientist
- Health Holland TKI-LSH
- TUe/UMCU/UU Alliance Fund
- south African National Foundation
- Cancer Association of South Africa and Winetech
- Netherlands Heart Foundation/Applied & Engineering Sciences
- Dutch Technology Foundation
- Pie Medical Imaging
- Netherlands Organisation for Scientific Research
- Dr. Dekker Program
- Netherlands CardioVascular Research Initiative: the Dutch Heart Foundation
- Dutch Federation of University Medical Centres
- Netherlands Organization for Health Research and Development and the Royal Netherlands Academy of Sciences for the GENIUS-II project
- Netherlands Organization for Scientific Research (NWO) (VICI grant); the European Research Council
- Incyte s.r.l. and from Ministero dell’Istruzione, Università e Ricerca Scientifica
- German Center for Cardiovascular Research (Junior Research Group & Translational Research Project), the European Research Council (ERC Starting Grant NORVAS),
- Swedish Heart-Lung-Foundation
- Swedish Research Council
- National Institutes of Health
- Bavarian State Ministry of Health and Care through the research project DigiMed Bayern
- ERC
- ERA-CVD
- Dutch Heart Foundation, ZonMw
- the NWO Gravitation project
- Ministero dell'Istruzione, Università e Ricerca Scientifica
- Regione Lombardia
- Netherlands Organisation for Health Research and Development
- ITN Network Personalize AF: Personalized Therapies for Atrial Fibrillation: a translational network
- MAESTRIA: Machine Learning Artificial Intelligence Early Detection Stroke Atrial Fibrillation
- REPAIR: Restoring cardiac mechanical function by polymeric artificial muscular tissue
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- European Union H2020 program to the project TECHNOBEAT
- EVICARE
- BRAV3
- ZonMw
- German Centre for Cardiovascular Research (DZHK)
- British Heart Foundation Centre for Cardiac Regeneration
- British Heart Foundation studentship
- NC3Rs
- Interreg ITA-AUS project InCARDIO
- Italian Association for Cancer Research
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science and Institute of Health Informatics, University College London, London, UK
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Sandor Batkai
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Luc Bertrand
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Connie R Bezzina
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Ilze Bot
- Heart Center, Department of Experimental Cardiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bianca J J M Brundel
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Steven Chamuleau
- Amsterdam UMC, Heart Center, Cardiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Odontology, University of Salerno, Fisciano (SA), Italy
| | - Dana Dawson
- Department of Cardiology, Aberdeen Cardiovascular and Diabetes Centre, Aberdeen Royal Infirmary and University of Aberdeen, Aberdeen, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Andreas Dendorfer
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Larissa Fabritz
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- University Center of Cardiovascular Sciences and Department of Cardiology, University Heart Center Hamburg, Germany and Institute of Cardiovascular Sciences, University of Birmingham, UK
| | - Ines Falcão-Pires
- UnIC - Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Portugal
| | - Péter Ferdinandy
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Mauro Giacca
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Henrique Girao
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, Coimbra, Portugal
- Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | | | - Mariann Gyongyosi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Tomasz J Guzik
- Instutute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Nazha Hamdani
- Division Cardiology, Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Andres Hilfiker
- Department for Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Department of Cardiovascular Complications in Pregnancy and in Oncologic Therapies, Comprehensive Cancer Centre, Philipps-Universität Marburg, Germany
| | - Alfons G Hoekstra
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Sébastien Hulot
- Université de Paris, INSERM, PARCC, F-75015 Paris, France
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, F-75015 Paris, France
| | - Diederik W D Kuster
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Linda W van Laake
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Tim Leiner
- Department of Radiology, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27B, 48149 Muenster, Germany
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, 56124 Pisa, Italy
- Department of Internal Medicine, Cardiology Division, University of Texas Medical School in Houston, Houston, TX, USA
| | - Lars Maegdefessel
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Mayr
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500AE Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Filippo Perbellini
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro cardiologico Monzino, IRCCS, Milan, Italy
| | - Silvia Priori
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, Pavia, Italy
- University of Pavia, Pavia, Italy
| | - Carol Ann Remme
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Bodo Rosenhahn
- Institute for information Processing, Leibniz University of Hanover, 30167 Hannover, Germany
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Karin R Sipido
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, Regenerative Medicine Center Utrecht, Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Steenbeek
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
| | | | - Carlo Gabriele Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center for Clinical and Translational Research (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Patricia Vlasman
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Kak Khee Yeung
- Amsterdam UMC, Vrije Universiteit, Surgery, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Serena Zacchigna
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Dayenne Zwaagman
- Amsterdam UMC, Heart Center, Cardiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Thomas Thum
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
41
|
Abadi B, Goshtasbi N, Bolourian S, Tahsili J, Adeli-Sardou M, Forootanfar H. Electrospun hybrid nanofibers: Fabrication, characterization, and biomedical applications. Front Bioeng Biotechnol 2022; 10:986975. [PMID: 36561047 PMCID: PMC9764016 DOI: 10.3389/fbioe.2022.986975] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Nanotechnology is one of the most promising technologies available today, holding tremendous potential for biomedical and healthcare applications. In this field, there is an increasing interest in the use of polymeric micro/nanofibers for the construction of biomedical structures. Due to its potential applications in various fields like pharmaceutics and biomedicine, the electrospinning process has gained considerable attention for producing nano-sized fibers. Electrospun nanofiber membranes have been used in drug delivery, controlled drug release, regenerative medicine, tissue engineering, biosensing, stent coating, implants, cosmetics, facial masks, and theranostics. Various natural and synthetic polymers have been successfully electrospun into ultrafine fibers. Although biopolymers demonstrate exciting properties such as good biocompatibility, non-toxicity, and biodegradability, they possess poor mechanical properties. Hybrid nanofibers from bio and synthetic nanofibers combine the characteristics of biopolymers with those of synthetic polymers, such as high mechanical strength and stability. In addition, a variety of functional agents, such as nanoparticles and biomolecules, can be incorporated into nanofibers to create multifunctional hybrid nanofibers. Due to the remarkable properties of hybrid nanofibers, the latest research on the unique properties of hybrid nanofibers is highlighted in this study. Moreover, various established hybrid nanofiber fabrication techniques, especially the electrospinning-based methods, as well as emerging strategies for the characterization of hybrid nanofibers, are summarized. Finally, the development and application of electrospun hybrid nanofibers in biomedical applications are discussed.
Collapse
Affiliation(s)
- Banafshe Abadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran,Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Kerman, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Bolourian
- Department of Biology, Faculty of Science, Alzahra University, Tehran, Iran
| | - Jaleh Tahsili
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mahboubeh Adeli-Sardou
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| |
Collapse
|
42
|
Durán-Rey D, Brito-Pereira R, Ribeiro C, Ribeiro S, Sánchez-Margallo JA, Crisóstomo V, Irastorza I, Silván U, Lanceros-Méndez S, Sánchez-Margallo FM. Development and evaluation of different electroactive poly(vinylidene fluoride) architectures for endothelial cell culture. Front Bioeng Biotechnol 2022; 10:1044667. [PMID: 36338140 PMCID: PMC9626752 DOI: 10.3389/fbioe.2022.1044667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022] Open
Abstract
Tissue engineering (TE) aims to develop structures that improve or even replace the biological functions of tissues and organs. Mechanical properties, physical-chemical characteristics, biocompatibility, and biological performance of the materials are essential factors for their applicability in TE. Poly(vinylidene fluoride) (PVDF) is a thermoplastic polymer that exhibits good mechanical properties, high biocompatibility and excellent thermal properties. However, PVDF structuring, and the corresponding processing methods used for its preparation are known to significantly influence these characteristics. In this study, doctor blade, salt-leaching, and electrospinning processing methods were used to produce PVDF-based structures in the form of films, porous membranes, and fiber scaffolds, respectively. These PVDF scaffolds were subjected to a variety of characterizations and analyses, including physicochemical analysis, contact angle measurement, cytotoxicity assessment and cell proliferation. All prepared PVDF scaffolds are characterized by a mechanical response typical of ductile materials. PVDF films displayed mostly vibration modes for the a-phase, while the remaining PVDF samples were characterized by a higher content of electroactive β-phase due the low temperature solvent evaporation during processing. No significant variations have been observed between the different PVDF membranes with respect to the melting transition. In addition, all analysed PVDF samples present a hydrophobic behavior. On the other hand, cytotoxicity assays confirm that cell viability is maintained independently of the architecture and processing method. Finally, all the PVDF samples promote human umbilical vein endothelial cells (HUVECs) proliferation, being higher on the PVDF film and electrospun randomly-oriented membranes. These findings demonstrated the importance of PVDF topography on HUVEC behavior, which can be used for the design of vascular implants.
Collapse
Affiliation(s)
- David Durán-Rey
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Ricardo Brito-Pereira
- CMEMS-UMinho, University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
- CF-UM-UP, Physics Centre of Minho and Porto Universities, University of Minho—Campus de Gualtar, Braga, Portugal
- IB-S Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Clarisse Ribeiro
- CF-UM-UP, Physics Centre of Minho and Porto Universities, University of Minho—Campus de Gualtar, Braga, Portugal
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, Portugal
| | - Sylvie Ribeiro
- CF-UM-UP, Physics Centre of Minho and Porto Universities, University of Minho—Campus de Gualtar, Braga, Portugal
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, Portugal
| | - Juan A. Sánchez-Margallo
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
- RICORS-TERAV Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Verónica Crisóstomo
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- RICORS-TERAV Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Igor Irastorza
- CF-UM-UP, Physics Centre of Minho and Porto Universities, University of Minho—Campus de Gualtar, Braga, Portugal
- Cell Biology and Histology Department, Faculty of Medicine, Leioa, Spain
| | - Unai Silván
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Francisco M. Sánchez-Margallo
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- RICORS-TERAV Network, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Francisco M. Sánchez-Margallo,
| |
Collapse
|
43
|
Ergir E, Oliver-De La Cruz J, Fernandes S, Cassani M, Niro F, Pereira-Sousa D, Vrbský J, Vinarský V, Perestrelo AR, Debellis D, Vadovičová N, Uldrijan S, Cavalieri F, Pagliari S, Redl H, Ertl P, Forte G. Generation and maturation of human iPSC-derived 3D organotypic cardiac microtissues in long-term culture. Sci Rep 2022; 12:17409. [PMID: 36257968 PMCID: PMC9579206 DOI: 10.1038/s41598-022-22225-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/11/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular diseases remain the leading cause of death worldwide; hence there is an increasing focus on developing physiologically relevant in vitro cardiovascular tissue models suitable for studying personalized medicine and pre-clinical tests. Despite recent advances, models that reproduce both tissue complexity and maturation are still limited. We have established a scaffold-free protocol to generate multicellular, beating human cardiac microtissues in vitro from hiPSCs-namely human organotypic cardiac microtissues (hOCMTs)-that show some degree of self-organization and can be cultured for long term. This is achieved by the differentiation of hiPSC in 2D monolayer culture towards cardiovascular lineage, followed by further aggregation on low-attachment culture dishes in 3D. The generated hOCMTs contain multiple cell types that physiologically compose the heart and beat without external stimuli for more than 100 days. We have shown that 3D hOCMTs display improved cardiac specification, survival and metabolic maturation as compared to standard monolayer cardiac differentiation. We also confirmed the functionality of hOCMTs by their response to cardioactive drugs in long-term culture. Furthermore, we demonstrated that they could be used to study chemotherapy-induced cardiotoxicity. Due to showing a tendency for self-organization, cellular heterogeneity, and functionality in our 3D microtissues over extended culture time, we could also confirm these constructs as human cardiac organoids (hCOs). This study could help to develop more physiologically-relevant cardiac tissue models, and represent a powerful platform for future translational research in cardiovascular biology.
Collapse
Affiliation(s)
- Ece Ergir
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic ,grid.5329.d0000 0001 2348 4034Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1040 Vienna, Austria
| | - Jorge Oliver-De La Cruz
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Soraia Fernandes
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Marco Cassani
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Francesco Niro
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic ,grid.10267.320000 0001 2194 0956Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech Republic
| | - Daniel Pereira-Sousa
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic ,grid.10267.320000 0001 2194 0956Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech Republic
| | - Jan Vrbský
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Vladimír Vinarský
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Ana Rubina Perestrelo
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Doriana Debellis
- grid.25786.3e0000 0004 1764 2907Electron Microscopy Facility, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Natália Vadovičová
- grid.10267.320000 0001 2194 0956Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech Republic
| | - Stjepan Uldrijan
- grid.10267.320000 0001 2194 0956Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech Republic
| | - Francesca Cavalieri
- grid.1008.90000 0001 2179 088XDepartment of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.6530.00000 0001 2300 0941Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Stefania Pagliari
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Heinz Redl
- grid.454388.6Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200 Vienna, Austria ,grid.511951.8Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Peter Ertl
- grid.5329.d0000 0001 2348 4034Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1040 Vienna, Austria ,grid.511951.8Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Giancarlo Forte
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic ,grid.1374.10000 0001 2097 1371Department of Biomaterials Science, Institute of Dentistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
44
|
Towards a Better Understanding of Genotype-Phenotype Correlations and Therapeutic Targets for Cardiocutaneous Genes: The Importance of Functional Studies above Prediction. Int J Mol Sci 2022; 23:ijms231810765. [PMID: 36142674 PMCID: PMC9503274 DOI: 10.3390/ijms231810765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Genetic variants in gene-encoding proteins involved in cell−cell connecting structures, such as desmosomes and gap junctions, may cause a skin and/or cardiac phenotype, of which the combination is called cardiocutaneous syndrome. The cardiac phenotype is characterized by cardiomyopathy and/or arrhythmias, while the skin particularly displays phenotypes such as keratoderma, hair abnormalities and skin fragility. The reported variants associated with cardiocutaneous syndrome, in genes DSP, JUP, DSC2, KLHL24, GJA1, are classified by interpretation guidelines from the American College of Medical Genetics and Genomics. The genotype−phenotype correlation, however, remains poorly understood. By providing an overview of variants that are assessed for a functional protein pathology, we show that this number (n = 115) is low compared to the number of variants that are assessed by in silico algorithms (>5000). As expected, there is a mismatch between the prediction of variant pathogenicity and the prediction of the functional effect compared to the real functional evidence. Aiding to improve genotype−phenotype correlations, we separate variants into ‘protein reducing’ or ‘altered protein’ variants and provide general conclusions about the skin and heart phenotype involved. We conclude by stipulating that adequate prognoses can only be given, and targeted therapies can only be designed, upon full knowledge of the protein pathology through functional investigation.
Collapse
|
45
|
Cho S, Discher DE, Leong KW, Vunjak-Novakovic G, Wu JC. Challenges and opportunities for the next generation of cardiovascular tissue engineering. Nat Methods 2022; 19:1064-1071. [PMID: 36064773 PMCID: PMC12061062 DOI: 10.1038/s41592-022-01591-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/07/2022] [Indexed: 12/21/2022]
Abstract
Engineered cardiac tissues derived from human induced pluripotent stem cells offer unique opportunities for patient-specific disease modeling, drug discovery and cardiac repair. Since the first engineered hearts were introduced over two decades ago, human induced pluripotent stem cell-based three-dimensional cardiac organoids and heart-on-a-chip systems have now become mainstays in basic cardiovascular research as valuable platforms for investigating fundamental human pathophysiology and development. However, major obstacles remain to be addressed before the field can truly advance toward commercial and clinical translation. Here we provide a snapshot of the state-of-the-art methods in cardiac tissue engineering, with a focus on in vitro models of the human heart. Looking ahead, we discuss major challenges and opportunities in the field and suggest strategies for enabling broad acceptance of engineered cardiac tissues as models of cardiac pathophysiology and testbeds for the development of therapies.
Collapse
Affiliation(s)
- Sangkyun Cho
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford, CA, USA
| | - Dennis E Discher
- Molecular & Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA, USA
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford, CA, USA.
| |
Collapse
|
46
|
Strimaityte D, Tu C, Yanez A, Itzhaki I, Wu H, Wu JC, Yang H. Contractility and Calcium Transient Maturation in the Human iPSC-Derived Cardiac Microfibers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35376-35388. [PMID: 35901275 PMCID: PMC9780031 DOI: 10.1021/acsami.2c07326] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are considered immature in the sarcomere organization, contractile machinery, calcium transient, and transcriptome profile, which prevent them from further applications in modeling and studying cardiac development and disease. To improve the maturity of hiPSC-CMs, here, we engineered the hiPSC-CMs into cardiac microfibers (iCMFs) by a stencil-based micropatterning method, which enables the hiPSC-CMs to be aligned in an end-to-end connection for prolonged culture on the hydrogel of physiological stiffness. A series of characterization approaches were performed to evaluate the maturation in iCMFs on both structural and functional levels, including immunohistochemistry, calcium transient, reverse-transcription quantitative PCR, cardiac contractility, and electrical pacing analysis. Our results demonstrate an improved cardiac maturation of hiPSC-CMs in iCMFs compared to micropatterned or random single hiPSC-CMs and hiPSC-CMs in a random cluster at the same cell number of iCMFs. We found an increased sarcomere length, better regularity and alignment of sarcomeres, enhanced contractility, matured calcium transient, and T-tubule formation and improved adherens junction and gap junction formation. The hiPSC-CMs in iCMFs showed a robust calcium cycling in response to the programmed and continuous electrical pacing from 0.5 to 7 Hz. Moreover, we generated the iCMFs with hiPSC-CMs with mutations in myosin-binding protein C (MYBPC3) to have a proof-of-concept of iCMFs in modeling cardiac hypertrophic phenotype. These findings suggest that the multipatterned iCMF connection of hiPSC-CMs boosts the cardiac maturation structurally and functionally, which will reveal the full potential of the application of hiPSC-CM models in disease modeling of cardiomyopathy and cardiac regenerative medicine.
Collapse
Affiliation(s)
- Dovile Strimaityte
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA
| | - Chengyi Tu
- Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Apuleyo Yanez
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA
| | - Ilanit Itzhaki
- Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Haodi Wu
- Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Joseph C. Wu
- Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA
| |
Collapse
|
47
|
Cyclic Stretching Induces Maturation of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes through Nuclear-Mechanotransduction. Tissue Eng Regen Med 2022; 19:781-792. [PMID: 35258794 PMCID: PMC9294081 DOI: 10.1007/s13770-021-00427-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 11/22/2021] [Accepted: 12/21/2021] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND During cardiogenesis, cardiac cells receive various stimuli, such as biomechanical and chemical cues, from the surrounding microenvironment, and these signals induce the maturation of heart cells. Mechanical force, especially tensile force in the heart, is one of the key stimuli that induce cardiomyocyte (CM) maturation through mechanotransduction, a process through which physical cues are transformed into biological responses. However, the effects and mechanisms of tensile force on cell maturation are poorly studied. METHODS In this study, we developed a cyclic stretch system that mimics the mechanical environment of the heart by loading tensile force to human-induced pluripotent stem cell (hiPSC)-derived CMs. hiPSC-CMs cultured with the cyclic stretch system analyzed morphological change, immunofluorescent staining, expression of maturation markers in mRNA, and beating properties compared to static cultures. RESULTS hiPSC-CMs cultured with the cyclic stretch system showed increased cell alignment, sarcomere length and expression of maturation markers in mRNA, such as TNNI3, MYL2 and TTN, compared to static cultures. Especially, the expression of genes related to nuclear mechanotransduction, such as Yap1, Lamin A/C, plectin, and desmin, was increased in the cyclically stretched hiPSC-CMs. Furthermore, the volume of the nucleus was increased by as much as 120% in the cyclic stretch group. CONCLUSION These results revealed that nuclear mechanotransduction induced by tensile force is involved in CM maturation. Together, these findings provide novel evidence suggesting that nuclear mechanotransduction induced by tensile force is involved in the regulation of cardiac maturation.
Collapse
|
48
|
Afzal J, Liu Y, Du W, Suhail Y, Zong P, Feng J, Ajeti V, Sayyad WA, Nikolaus J, Yankova M, Deymier AC, Yue L, Kshitiz. Cardiac ultrastructure inspired matrix induces advanced metabolic and functional maturation of differentiated human cardiomyocytes. Cell Rep 2022; 40:111146. [PMID: 35905711 DOI: 10.1016/j.celrep.2022.111146] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/26/2022] [Accepted: 07/07/2022] [Indexed: 12/21/2022] Open
Abstract
The vast potential of human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) in preclinical models of cardiac pathologies, precision medicine, and drug screening remains to be fully realized because hiPSC-CMs are immature without adult-like characteristics. Here, we present a method to accelerate hiPSC-CM maturation on a substrate, cardiac mimetic matrix (CMM), mimicking adult human heart matrix ligand chemistry, rigidity, and submicron ultrastructure, which synergistically mature hiPSC-CMs rapidly within 30 days. hiPSC-CMs matured on CMM exhibit systemic transcriptomic maturation toward an adult heart state, are aligned with high strain energy, metabolically rely on oxidative phosphorylation and fatty acid oxidation, and display enhanced redox handling capability, efficient calcium handling, and electrophysiological features of ventricular myocytes. Endothelin-1-induced pathological hypertrophy is mitigated on CMM, highlighting the role of a native cardiac microenvironment in withstanding hypertrophy progression. CMM is a convenient model for accelerated development of ventricular myocytes manifesting highly specialized cardiac-specific functions.
Collapse
Affiliation(s)
- Junaid Afzal
- Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Yamin Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA
| | - Wenqiang Du
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; Center for Cellular Analysis and Modeling, University of Connecticut Health, Farmington, CT 06032, USA
| | - Pengyu Zong
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06032, USA; Calhoun Cardiology Center, University of Connecticut Health, Farmington, CT 06032, USA
| | - Jianlin Feng
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06032, USA; Calhoun Cardiology Center, University of Connecticut Health, Farmington, CT 06032, USA
| | - Visar Ajeti
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; Center for Cellular Analysis and Modeling, University of Connecticut Health, Farmington, CT 06032, USA
| | - Wasim A Sayyad
- Department of Cell Biology, Yale University, New Haven, CT 06510, USA
| | - Joerg Nikolaus
- West Campus Imaging Core, Yale University, New Haven, CT 06477, USA
| | - Maya Yankova
- Electron Microscopy Core, University of Connecticut Health, Farmington, CT 06032, USA
| | - Alix C Deymier
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA
| | - Lixia Yue
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06032, USA; Calhoun Cardiology Center, University of Connecticut Health, Farmington, CT 06032, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; Center for Cellular Analysis and Modeling, University of Connecticut Health, Farmington, CT 06032, USA; Department of Cell Biology, University of Connecticut Health, Farmington, CT 06032, USA.
| |
Collapse
|
49
|
Mohr E, Thum T, Bär C. Accelerating Cardiovascular Research: Recent Advances in Translational 2D and 3D Heart Models. Eur J Heart Fail 2022; 24:1778-1791. [PMID: 35867781 DOI: 10.1002/ejhf.2631] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/30/2022] [Accepted: 07/20/2022] [Indexed: 11/11/2022] Open
Abstract
In vitro modelling the complex (patho-) physiological conditions of the heart is a major challenge in cardiovascular research. In recent years, methods based on three-dimensional (3D) cultivation approaches have steadily evolved to overcome the major limitations of conventional adherent monolayer cultivation (2D). These 3D approaches aim to study, reproduce or modify fundamental native features of the heart such as tissue organization and cardiovascular microenvironment. Therefore, these systems have great potential for (patient-specific) disease research, for the development of new drug screening platforms, and for the use in regenerative and replacement therapy applications. Consequently, continuous improvement and adaptation is required with respect to fundamental limitations such as cardiomyocyte maturation, scalability, heterogeneity, vascularization, and reproduction of native properties. In this review, 2D monolayer culturing and the 3D in vitro systems of cardiac spheroids, organoids, engineered cardiac microtissue and bioprinting as well as the ex vivo technique of myocardial slicing are introduced with their basic concepts, advantages, and limitations. Furthermore, recent advances of various new approaches aiming to extend as well as to optimize these in vitro and ex vivo systems are presented. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Elisa Mohr
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| |
Collapse
|
50
|
Ahrens JH, Uzel SGM, Skylar-Scott M, Mata MM, Lu A, Kroll KT, Lewis JA. Programming Cellular Alignment in Engineered Cardiac Tissue via Bioprinting Anisotropic Organ Building Blocks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200217. [PMID: 35451188 DOI: 10.1002/adma.202200217] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The ability to replicate the 3D myocardial architecture found in human hearts is a grand challenge. Here, the fabrication of aligned cardiac tissues via bioprinting anisotropic organ building blocks (aOBBs) composed of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) is reported. A bioink composed of contractile cardiac aOBBs is first generated and aligned cardiac tissue sheets with linear, spiral, and chevron features are printed. Next, aligned cardiac macrofilaments are printed, whose contractile force and conduction velocity increase over time and exceed the performance of spheroid-based cardiac tissues. Finally, the ability to spatially control the magnitude and direction of contractile force by printing cardiac sheets with different aOBB alignment is highlighted. This research opens new avenues to generating functional cardiac tissue with high cell density and complex cellular alignment.
Collapse
Affiliation(s)
- John H Ahrens
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Sebastien G M Uzel
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Mark Skylar-Scott
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Mariana M Mata
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Aric Lu
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Katharina T Kroll
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Jennifer A Lewis
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|