1
|
Tang Z, Xie J, Jin M, Wei G, Fu Z, Luo X, Li C, Jia X, Zheng H, Zhong L, Li X, Wang J, Chen G, Chen Y, Liao W, Liao Y, Bin J, Huang S. Sympathetic hyperinnervation drives abdominal aortic aneurysm development by promoting vascular smooth muscle cell phenotypic switching. J Adv Res 2025; 71:383-398. [PMID: 38821358 DOI: 10.1016/j.jare.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
INTRODUCTION Sympathetic hyperinnervation plays an important role in modulating the vascular smooth muscle cell (VSMC) phenotype and vascular diseases, but its role in abdominal aortic aneurysm (AAA) is still unknown. OBJECTIVES This study aimed to investigate the role of sympathetic hyperinnervation in promoting AAA development and the underlying mechanism involved. METHODS Western blotting and immunochemical staining were used to detect sympathetic hyperinnervation. We performed sympathetic denervation through coeliac ganglionectomy (CGX) and 6-OHDA administration to understand the role of sympathetic hyperinnervation in AAA and investigated the underlying mechanisms through transcriptome and functional studies. Sema4D knockout (Sema4D-/-) mice were utilized to determine the involvement of Sema4D in inducing sympathetic hyperinnervation and AAA development. RESULTS We observed sympathetic hyperinnervation, the most important form of sympathetic neural remodeling, in both mouse AAA models and AAA patients. Elimination of sympathetic hyperinnervation by CGX or 6-OHDA significantly inhibited AAA development and progression. We further revealed that sympathetic hyperinnervation promoted VSMC phenotypic switching in AAA by releasing extracellular ATP (eATP) and activating eATP-P2rx4-p38 signaling. Moreover, single-cell RNA sequencing revealed that Sema4D secreted by osteoclast-like cells induces sympathetic nerve diffusion and hyperinnervation through binding to Plxnb1. We consistently observed that AAA progression was significantly ameliorated in Sema4D-deficient mice. CONCLUSIONS Sympathetic hyperinnervation driven by osteoclast-like cell-derived Sema4D promotes VSMC phenotypic switching and accelerates pathological aneurysm progression by activating the eATP/P2rx4/p38 pathway. Inhibition of sympathetic hyperinnervation emerges as a potential novel therapeutic strategy for preventing and treating AAA.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/etiology
- Mice
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice, Knockout
- Humans
- Semaphorins/metabolism
- Semaphorins/genetics
- Disease Models, Animal
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Male
- Phenotype
- Mice, Inbred C57BL
- Sympathetic Nervous System
- Adenosine Triphosphate/metabolism
- Antigens, CD
Collapse
Affiliation(s)
- Zhenquan Tang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Jingfang Xie
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Ming Jin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Guoquan Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Ziwei Fu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Xiajing Luo
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Chuling Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Xiaoqian Jia
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Lintao Zhong
- Department of Cardiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Junfen Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
| |
Collapse
|
2
|
Xiao Q, Li Y, Cai B, Huang X, Fang L, Liang F, Chen L, Xu K, Zhang W, Wang X, Yin A, Wang X, Cai Z, Zhuang F, Shao Q, Zhou B, Hocher B, He B, Shen L. CCDC80 Protects against Aortic Dissection and Rupture by Maintaining the Contractile Smooth Muscle Cell Phenotype. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502108. [PMID: 40278823 DOI: 10.1002/advs.202502108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/20/2025] [Indexed: 04/26/2025]
Abstract
Aortic dissection (AD) is a life-threatening medical emergency characterized by adverse vascular remodeling. Coiled-coil domain-containing protein 80 (CCDC80) plays an essential role in regulating cardiovascular remodeling. This study aims to define the role of CCDC80 in the formation and development of AD. Significant downregulation of CCDC80 in vascular smooth muscle cell (VSMC) in human and mouse AD is identified. Then, CCDC80 knockout mice (CCDC80-/-) and VSMC-specific CCDC80 knockout mice (CCDC80fl/fl SM22α Cre+) treated with angiotensin II (Ang II) or Ang II combined with β-aminopropionitrile monofumarate (BAPN) frequently develop AD with higher frequency and severity, accompanied by severe elastin fragmentation and collagen deposition. Mechanistically, CCDC80 interacts with JAK2, and CCDC80 deficiency promotes VSMC phenotype switching, proliferation, and migration as well as matrix metalloproteinase production by activating the JAK2/STAT3 signaling pathway. Moreover, the JAK2/STAT3 pathway-specific inhibitor ameliorates adverse vascular remodeling and reduces AD formation in CCDC80-knockout mice by mitigating VSMC phenotype switching. In conclusion, CCDC80 deficiency exacerbates the progression of events leading to AD by activating the JAK2/STAT3 pathway involved in regulating the phenotype switching and function of VSMCs. These findings highlight that CCDC80 is a potential key target for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Qingqing Xiao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yi Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Bin Cai
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiying Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Liang Fang
- Department of Cardiac Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Feng Liang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Long Chen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ke Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Weifeng Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiaolei Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Anwen Yin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Fei Zhuang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Qin Shao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Bin Zhou
- Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, 69123, Heidelberg, Germany
- Reproductive and Genetic Hospital of CITIC-Xiangya, People's Republic of China, Changsha, 410028, China
- IMD Institut fur Medizinische Diagnostik Berlin-Potsdam GbR, 14473, Berlin, Germany
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
3
|
Xu S, Han X, Yu Y, Qu C, Yang B, Shen B, Liu X. Deficiency of IL-7R attenuates abdominal aortic aneurysms in mice by inhibiting macrophage polarization towards M1 phenotype through the NF-κB pathway. Mol Med 2025; 31:138. [PMID: 40240976 PMCID: PMC12004661 DOI: 10.1186/s10020-025-01209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/10/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a common degenerative disease of the abdominal aorta, which can result in extremely high mortality owing to the rupture of the abdominal aorta. The activation of IL-7R has been shown to modulate the inflammatory responses, which play an important role in the progression of AAAs. However, the mechanism of IL-7/IL-7R axis in AAAs is still unclear. AIMS This study aims to investigate the effects of IL-7R on AAAs and the underlying mechanisms involved. METHODS Wild-type C57BL/6 and IL-7R knockout mice were used as experimental subjects. ELISA analysis, histological staining, western blotting and qPCR were performed to explore effects of IL-7R deficiency in the formation and development of elastase-induced AAAs. Transwell, CCK8, and immunofluorescence assays detected the migration and polarization of RAW264.7 macrophages in vitro. RESULT We demonstrated that IL-7R was elevated in mice with AAAs. Blocking IL-7R can inhibit the formation of AAAs and reduce aortic dilatation, elastic layer degradation, and inflammatory cell infiltration. Knockout of IL-7R suppressed the migration, infiltration and M1 polarization of macrophages. Moreover, inhibition of the NF-κB signaling pathway by BAY 11-7082 attenuated the macrophage-mediated inflammatory responses caused by IL-7R overexpression. CONCLUSION In short, this study showed that IL-7R promotes the infiltration and migration of macrophages by regulating M1 macrophage polarization, possibly in part via activation of the NF-κB pathway, which may be associated with the development of AAAs.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/etiology
- Aortic Aneurysm, Abdominal/genetics
- NF-kappa B/metabolism
- Mice
- Macrophages/metabolism
- Macrophages/immunology
- Signal Transduction
- Mice, Knockout
- Disease Models, Animal
- Receptors, Interleukin-7/genetics
- Receptors, Interleukin-7/metabolism
- Receptors, Interleukin-7/deficiency
- Male
- Mice, Inbred C57BL
- RAW 264.7 Cells
- Phenotype
- Macrophage Activation
Collapse
Affiliation(s)
- Shengnan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China
| | - Xueyu Han
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China
| | - Yi Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China.
| | - Bo Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China.
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China.
| |
Collapse
|
4
|
Jia Z, Wu J, Liu F, Wang H, Zheng P, Shen B, Zhao R. Arachidonic acid is involved in high-salt diet-induced coronary remodeling through stimulation of the IRE1α/XBP1s/RUNX2/OPN signaling cascade. Lipids Health Dis 2025; 24:44. [PMID: 39934848 PMCID: PMC11817724 DOI: 10.1186/s12944-025-02465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The impact of a high-salt (HS) diet on metabolic disturbances in individuals with coronary heart disease remains unclear. The arachidonic acid (AA) metabolic pathway is closely linked to the development of cardiometabolic diseases and atherosclerotic cardiovascular diseases. Furthermore, endoplasmic reticulum stress (ERS) has emerged as a major contributor to cardiometabolic diseases. AA-related inflammation and ERS are hypothesized to play a role in HS diet-induced coronary remodeling. METHODS Rats were subjected to an HS diet for 4 weeks, and the serum concentration of AA was measured via enzyme-linked immunosorbent assay. Immunofluorescence staining and vascular tension measurements were conducted on coronary arteries. In addition, AA-stimulated coronary artery smooth muscle cells (CASMCs) were treated with ERS inhibitors to explore the underlying pathway involved. RESULTS Increased susceptibility to myocardial infarction in the HS diet-fed rats was accompanied by increased serum AA concentrations and increased expression of the key AA metabolic enzyme cyclooxygenase-2 (COX-2). AA incubation weakened the contraction of denuded coronary arteries, reduced the expression of contraction markers, and increased the fluorescence intensity of synthetic and ERS response markers in coronary arteries. Further investigation of CASMCs revealed that AA-induced phenotypic transformation was mediated via the ERS pathway. CONCLUSIONS ERS and AA were found to be stimulated in CASMCs following an HS diet. AA triggers an ERS response through COX-2 catalysis, and the downstream inositol requiring enzyme 1 - X-box binding protein-1 - osteopontin pathway may contribute to the AA-induced phenotypic transformation of CASMCs, resulting in dysfunctional coronary tension. This study may provide potential therapeutic targets for cardiovascular diseases associated with excessive AA-derived ERS.
Collapse
Affiliation(s)
- Zhuoran Jia
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Jian Wu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Fang Liu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Huimin Wang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Peiyang Zheng
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Bing Shen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ren Zhao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
5
|
Callow B, He X, Juriga N, Mangum KD, Joshi A, Xing X, Obi A, Chattopadhyay A, Milewicz DM, O’Riordan MX, Gudjonsson J, Gallagher K, Davis FM. Inhibition of vascular smooth muscle cell PERK/ATF4 ER stress signaling protects against abdominal aortic aneurysms. JCI Insight 2025; 10:e183959. [PMID: 39846252 PMCID: PMC11790032 DOI: 10.1172/jci.insight.183959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/08/2024] [Indexed: 01/24/2025] Open
Abstract
Abdominal aortic aneurysms (AAA) are a life-threatening cardiovascular disease for which there is a lack of effective therapy preventing aortic rupture. During AAA formation, pathological vascular remodeling is driven by vascular smooth muscle cell (VSMC) dysfunction and apoptosis, for which the mechanisms regulating loss of VSMCs within the aortic wall remain poorly defined. Using single-cell RNA-Seq of human AAA tissues, we identified increased activation of the endoplasmic reticulum stress response pathway, PERK/eIF2α/ATF4, in aortic VSMCs resulting in upregulation of an apoptotic cellular response. Mechanistically, we reported that aberrant TNF-α activity within the aortic wall induces VSMC ATF4 activation through the PERK endoplasmic reticulum stress response, resulting in progressive apoptosis. In vivo targeted inhibition of the PERK pathway, with VSMC-specific genetic depletion (Eif2ak3fl/fl Myh11-CreERT2) or pharmacological inhibition in the elastase and angiotensin II-induced AAA model preserved VSMC function, decreased elastin fragmentation, attenuated VSMC apoptosis, and markedly reduced AAA expansion. Together, our findings suggest that cell-specific pharmacologic therapy targeting the PERK/eIF2α/ATF4 pathway in VSMCs may be an effective intervention to prevent AAA expansion.
Collapse
MESH Headings
- Activating Transcription Factor 4/metabolism
- Activating Transcription Factor 4/genetics
- eIF-2 Kinase/metabolism
- eIF-2 Kinase/genetics
- eIF-2 Kinase/antagonists & inhibitors
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Endoplasmic Reticulum Stress/drug effects
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Animals
- Humans
- Mice
- Signal Transduction/drug effects
- Apoptosis/drug effects
- Male
- Myocytes, Smooth Muscle/metabolism
- Disease Models, Animal
- Eukaryotic Initiation Factor-2/metabolism
- Angiotensin II
- Mice, Inbred C57BL
Collapse
Affiliation(s)
| | - Xiaobing He
- Section of Vascular Surgery, Department of Surgery, and
| | | | | | - Amrita Joshi
- Section of Vascular Surgery, Department of Surgery, and
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrea Obi
- Section of Vascular Surgery, Department of Surgery, and
| | | | - Dianna M. Milewicz
- University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Mary X. O’Riordan
- Department Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Johann Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine Gallagher
- Section of Vascular Surgery, Department of Surgery, and
- Department Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
6
|
Wu H, Li Z, Yang L, He L, Liu H, Yang S, Xu Q, Li Y, Li W, Li Y, Gong Z, Shen Y, Yang X, Huang J, Yu F, Li L, Zhu J, Sun L, Fu Y, Kong W. ANK Deficiency-Mediated Cytosolic Citrate Accumulation Promotes Aortic Aneurysm. Circ Res 2024; 135:1175-1192. [PMID: 39513269 DOI: 10.1161/circresaha.124.325152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Disturbed metabolism and transport of citrate play significant roles in various pathologies. However, vascular citrate regulation and its potential role in aortic aneurysm (AA) development remain poorly understood. METHODS Untargeted metabolomics by mass spectrometry was applied to identify upregulated metabolites of the tricarboxylic acid cycle in AA tissues of mice. To investigate the role of citrate and its transporter ANK (progressive ankylosis protein) in AA development, vascular smooth muscle cell (VSMC)-specific Ank-knockout mice were used in both Ang II (angiotensin II)- and CaPO4-induced AA models. RESULTS Citrate was abnormally increased in both human and murine aneurysmal tissues, which was associated with downregulation of ANK, a citrate membrane transporter, in VSMCs. The knockout of Ank in VSMCs promoted AA formation in both Ang II- and CaPO4-induced AA models, while its overexpression inhibited the development of aneurysms. Mechanistically, ANK deficiency in VSMCs caused abnormal cytosolic accumulation of citrate, which was cleaved into acetyl coenzyme A and thus intensified histone acetylation at H3K23, H3K27, and H4K5. Cleavage under target and tagmentation analysis further identified that ANK deficiency-induced histone acetylation activated the transcription of inflammatory genes in VSMCs and thus promoted a citrate-related proinflammatory VSMC phenotype during aneurysm diseases. Accordingly, suppressing citrate cleavage to acetyl coenzyme A downregulated inflammatory gene expression in VSMCs and restricted ANK deficiency-aggravated AA formation. CONCLUSIONS Our studies define the pathogenic role of ANK deficiency-induced cytosolic citrate accumulation in AA pathogenesis and an undescribed citrate-related proinflammatory VSMC phenotype. Targeting ANK-mediated citrate transport may emerge as a novel diagnostic and therapeutic strategy in AA.
Collapse
MESH Headings
- Animals
- Mice
- Citric Acid/metabolism
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice, Knockout
- Aortic Aneurysm/metabolism
- Aortic Aneurysm/genetics
- Aortic Aneurysm/pathology
- Aortic Aneurysm/etiology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice, Inbred C57BL
- Cytosol/metabolism
- Male
- Cells, Cultured
- Acetylation
- Acetyl Coenzyme A/metabolism
- Disease Models, Animal
- Histones/metabolism
Collapse
Affiliation(s)
- Hao Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Liu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China (L.Y.)
| | - Lin He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Beijing Aortic Disease Center, Beijing Anzhen Hospital, Capital Medical University, China (H.L., Q.X., J.Z.)
| | - Shiyu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qinfeng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yanjie Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wenqiang Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yiran Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ze Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
- Hwamei College of Life and Health Sciences, Zhejiang Wanli University, Ningbo, China (Z.G.)
| | - Yicong Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xueyuan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li Li
- Department of Pathology, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (L.L.)
| | - Junming Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Luyang Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling (H.W., Z.L., L.Y., S.Y., Yanjie Li, W.L., Yiran Li, Z.G., Y.S., X.Y., J.H., F.Y., Y.F., W.K.), School of Basic Medical Sciences, Peking University, Beijing, China
| | | |
Collapse
|
7
|
Shi J, He F, Du X. Emerging role of IRE1α in vascular diseases. J Cell Commun Signal 2024; 18:e12056. [PMID: 39691875 PMCID: PMC11647051 DOI: 10.1002/ccs3.12056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 12/19/2024] Open
Abstract
A mounting body of evidence suggests that the endoplasmic reticulum stress and the unfolded protein response are involved in the underlying mechanisms responsible for vascular diseases. Inositol-requiring protein 1α (IRE1α), the most ancient branch among the UPR-related signaling pathways, can possess both serine/threonine kinase and endoribonuclease (RNase) activity and can perform physiological and pathological functions. The IRE1α-signaling pathway plays a critical role in the pathology of various vascular diseases. In this review, we provide a general overview of the physiological function of IRE1α and its pathophysiological role in vascular diseases.
Collapse
Affiliation(s)
- Jia Shi
- Department of NephrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Fan He
- Department of NephrologyTongji Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceChina
| | - Xiaogang Du
- Department of NephrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
8
|
Han X, Xu S, Hu K, Yu Y, Wang X, Qu C, Yang B, Liu X. Early growth response 1 exacerbates thoracic aortic aneurysm and dissection of mice by inducing the phenotypic switching of vascular smooth muscle cell through the activation of Krüppel-like factor 5. Acta Physiol (Oxf) 2024; 240:e14237. [PMID: 39345002 DOI: 10.1111/apha.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/15/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
AIM Vascular smooth muscle cell (VSMC) phenotypic switching has been reported to regulate vascular function and thoracic aortic aneurysm and dissection (TAAD) progression. Early growth response 1 (Egr1) is associated with the differentiation of VSMCs. However, the mechanisms through which Egr1 participates in the regulation of VSMCs and progression of TAAD remain unknown. This study aimed to investigate the role of Egr1 in the phenotypic switching of VSMCs and the development of TAAD. METHODS Wild-type C57BL/6 and SMC-specific Egr1-knockout mice were used as experimental subjects and fed β-aminopropionitrile for 4 weeks to construct the TAAD model. Ultrasound and aortic staining were performed to examine the pathological features in thoracic aortic tissues. Transwell, wound healing, CCK8, and immunofluorescence assays detected the migration and proliferation of synthetic VSMCs. Egr1 was directly bound to the promoter of Krüppel-like factor 5 (KLF5) and promoted the expression of KLF5, which was validated by JASPAR database and dual-luciferase reporter assay. RESULTS Egr1 expression increased and was partially co-located with VSMCs in aortic tissues of mice with TAAD. SMC-specific Egr1 deficiency alleviated TAAD and inhibited the phenotypic switching of VSMC. Egr1 knockdown prevented the phenotypic switching of VSMCs and subsequently suppressed the migration and proliferation of synthetic VSMCs. The inhibitory effects of Egr1 deficiency on VSMCs were blunted once KLF5 was overexpressed. CONCLUSION Egr1 aggravated the development of TAAD by promoting the phenotypic switching of VSMCs via enhancing the transcriptional activation of KLF5. These results suggest that inhibition of SMC-specific Egr1 expression is a promising therapy for TAAD.
Collapse
MESH Headings
- Animals
- Early Growth Response Protein 1/metabolism
- Early Growth Response Protein 1/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Kruppel-Like Transcription Factors/metabolism
- Kruppel-Like Transcription Factors/genetics
- Mice
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/pathology
- Aortic Dissection/metabolism
- Aortic Dissection/pathology
- Aortic Dissection/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Phenotype
- Male
- Myocytes, Smooth Muscle/metabolism
- Disease Models, Animal
- Cell Proliferation
Collapse
Affiliation(s)
- Xueyu Han
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Shengnan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Ke Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Xiukun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| |
Collapse
|
9
|
Wang L, Ren Z, Wu L, Zhang X, Wang M, Niu H, He X, Wang H, Chen Y, Shi G, Qian X. HRD1 reduction promotes cholesterol-induced vascular smooth muscle cell phenotypic change via endoplasmic reticulum stress. Mol Cell Biochem 2024; 479:3021-3036. [PMID: 38145449 DOI: 10.1007/s11010-023-04902-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/07/2023] [Indexed: 12/26/2023]
Abstract
Phenotypic change of vascular smooth muscle cells (VSMCs) is the main contributor of vascular pathological remodeling in atherosclerosis. The endoplasmic reticulum (ER) is critical for maintaining VSMC function through elimination of misfolded proteins that impair VSMC cellular function. ER-associated degradation (ERAD) is an ER-mediated process that controls protein quality by clearing misfolded proteins. One of the critical regulators of ERAD is HRD1, which also plays a vital role in lipid metabolism. However, the function of HRD1 in VSMCs of atherosclerotic vessels remains poorly understood. The level of HRD1 expression was analyzed in aortic tissues of mice fed with a high-fat diet (HFD). The H&E and EVG (VERHOEFF'S VAN GIESON) staining were used to demonstrate pathological vascular changes. IF (immunofluorescence) and WB (western blot) were used to explore the signaling pathways in vivo and in vitro. The wound closure and transwell assays were also used to test the migration rate of VSMCs. CRISPR gene editing and transcriptomic analysis were applied in vitro to explore the cellular mechanism. Our data showed significant reduction of HRD1 in aortic tissues of mice under HFD feeding. VSMC phenotypic change and HRD1 downregulation were detected by cholesterol supplement. Transcriptomic and further analysis of HRD1-KO VSMCs showed that HRD1 deficiency induced the expression of genes related to ER stress response, proliferation and migration, but reduced the contractile-related genes in VSMCs. HRD1 deficiency also exacerbated the proliferation, migration and ROS production of VSMCs induced by cholesterol, which promoted the VSMC dedifferentiation. Our results showed that HRD1 played an essential role in the contractile homeostasis of VSMCs by negatively regulating ER stress response. Thus, HRD1 in VSMCs could serve as a potential therapeutic target in metabolic disorder-induced vascular remodeling.
Collapse
Affiliation(s)
- Linli Wang
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zhitao Ren
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Lin Wu
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Ximei Zhang
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Min Wang
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Haiming Niu
- Department of Critical Care Medicine, Zhongshan People's Hospital, Zhongshan, 528400, China
| | - Xuemin He
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Heting Wang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yanming Chen
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Guojun Shi
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Xiaoxian Qian
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
10
|
Quelquejay H, Al-Rifai R, Silvestro M, Vandestienne M, Ferreira I, Mirault T, Henrion D, Zhong X, Santos-Zas I, Goudot G, Alayrac P, Robidel E, Autret G, Balvay D, Taleb S, Tedgui A, Boulanger CM, Zernecke A, Saliba AE, Hadchouel J, Ramkhelawon B, Cochain C, Bergaya S, Jeunemaitre X, Ait-Oufella H. L-Wnk1 Deletion in Smooth Muscle Cells Causes Aortitis and Inflammatory Shift. Circ Res 2024; 135:488-502. [PMID: 38979610 DOI: 10.1161/circresaha.124.324366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The long isoform of the Wnk1 (with-no-lysine [K] kinase 1) is a ubiquitous serine/threonine kinase, but its role in vascular smooth muscle cells (VSMCs) pathophysiology remains unknown. METHODS AngII (angiotensin II) was infused in Apoe-/- to induce experimental aortic aneurysm. Mice carrying an Sm22-Cre allele were cross-bred with mice carrying a floxed Wnk1 allele to specifically investigate the functional role of Wnk1 in VSMCs. RESULTS Single-cell RNA-sequencing of the aneurysmal abdominal aorta from AngII-infused Apoe-/- mice revealed that VSMCs that did not express Wnk1 showed lower expression of contractile phenotype markers and increased inflammatory activity. Interestingly, WNK1 gene expression in VSMCs was decreased in human abdominal aortic aneurysm. Wnk1-deficient VSMCs lost their contractile function and exhibited a proinflammatory phenotype, characterized by the production of matrix metalloproteases, as well as cytokines and chemokines, which contributed to local accumulation of inflammatory macrophages, Ly6Chi monocytes, and γδ T cells. Sm22Cre+Wnk1lox/lox mice spontaneously developed aortitis in the infrarenal abdominal aorta, which extended to the thoracic area over time without any negative effect on long-term survival. AngII infusion in Sm22Cre+Wnk1lox/lox mice aggravated the aortic disease, with the formation of lethal abdominal aortic aneurysms. Pharmacological blockade of γδ T-cell recruitment using neutralizing anti-CXCL9 (anti-CXC motif chemokine ligand 9) antibody treatment, or of monocyte/macrophage using Ki20227, a selective inhibitor of CSF1 receptor, attenuated aortitis. Wnk1 deletion in VSMCs led to aortic wall remodeling with destruction of elastin layers, increased collagen content, and enhanced local TGF-β (transforming growth factor-beta) 1 expression. Finally, in vivo TGF-β blockade using neutralizing anti-TGF-β antibody promoted saccular aneurysm formation and aorta rupture in Sm22 Cre+ Wnk1lox/lox mice but not in control animals. CONCLUSION Wnk1 is a key regulator of VSMC function. Wnk1 deletion promotes VSMC phenotype switch toward a pathogenic proinflammatory phenotype, orchestrating deleterious vascular remodeling and spontaneous severe aortitis in mice.
Collapse
MESH Headings
- Animals
- Aortitis/genetics
- Aortitis/metabolism
- Aortitis/pathology
- Mice
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Angiotensin II
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Humans
- WNK Lysine-Deficient Protein Kinase 1/genetics
- WNK Lysine-Deficient Protein Kinase 1/metabolism
- Mice, Inbred C57BL
- Male
- Cells, Cultured
- Mice, Knockout, ApoE
- Disease Models, Animal
- Inflammation/metabolism
- Inflammation/genetics
- Inflammation/pathology
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
Collapse
Affiliation(s)
- Helene Quelquejay
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Rida Al-Rifai
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Michele Silvestro
- Division of Vascular and Endovascular Surgery, Department of Surgery and Department of Cell Biology, New York University Langone Medical Center (M.S., B.R.)
| | - Marie Vandestienne
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Irmine Ferreira
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Tristan Mirault
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Daniel Henrion
- MITOVASC Department, Team 2 (CarMe), ICAT SFR (Interactions Cellulaires et Applications Thérapeutiques Structure Fédérale de Recherche), University of Angers, Inserm U1083, France (D.H.)
| | - Xiaodan Zhong
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Icia Santos-Zas
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
- Laboratorio de Endocrinología Celular, Área de Endocrinología Molecular y Celular Instituto de Investigación Sanitaria de Santiago, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain (I.S.-Z.)
| | - Guillaume Goudot
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Paul Alayrac
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Estelle Robidel
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Gwennhael Autret
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Daniel Balvay
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Soraya Taleb
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Alain Tedgui
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Chantal M Boulanger
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany (A.Z., C.C.)
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany (A.-E.S.)
| | - Juliette Hadchouel
- Inserm UMRS 1155, Tenon Hospital (J.H.), Sorbonne Université, Paris, France
| | - Bhama Ramkhelawon
- Division of Vascular and Endovascular Surgery, Department of Surgery and Department of Cell Biology, New York University Langone Medical Center (M.S., B.R.)
| | - Clement Cochain
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany (A.Z., C.C.)
| | - Sonia Bergaya
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Xavier Jeunemaitre
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
| | - Hafid Ait-Oufella
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, France (H.Q., R.A.-R., M.V., I.F., T.M., X.Z., I.S.-Z., G.G., P.A., E.R., G.A., D.B., S.T., A.T., C.M.B., S.B., X.J., H.A.-O.)
- Medical Intensive Care Unit, Hôpital Saint-Antoine, AP-HP (Assistance Publique- Hôpitaux de Paris) (H.A.-O.), Sorbonne Université, Paris, France
| |
Collapse
|
11
|
Adhikari B, Gayral M, Herath V, Bedsole CO, Kumar S, Ball H, Atallah O, Shaw B, Pajerowska-Mukhtar KM, Verchot J. bZIP60 and Bax inhibitor 1 contribute IRE1-dependent and independent roles to potexvirus infection. THE NEW PHYTOLOGIST 2024; 243:1172-1189. [PMID: 38853429 DOI: 10.1111/nph.19882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 06/11/2024]
Abstract
IRE1, BI-1, and bZIP60 monitor compatible plant-potexvirus interactions though recognition of the viral TGB3 protein. This study was undertaken to elucidate the roles of three IRE1 isoforms, the bZIP60U and bZIP60S, and BI-1 roles in genetic reprogramming of cells during potexvirus infection. Experiments were performed using Arabidopsis thaliana knockout lines and Plantago asiatica mosaic virus infectious clone tagged with the green fluorescent protein gene (PlAMV-GFP). There were more PlAMV-GFP infection foci in ire1a/b, ire1c, bzip60, and bi-1 knockout than wild-type (WT) plants. Cell-to-cell movement and systemic RNA levels were greater bzip60 and bi-1 than in WT plants. Overall, these data indicate an increased susceptibility to virus infection. Transgenic overexpression of AtIRE1b or StbZIP60 in ire1a/b or bzip60 mutant background reduced virus infection foci, while StbZIP60 expression influences virus movement. Transgenic overexpression of StbZIP60 also confers endoplasmic reticulum (ER) stress resistance following tunicamycin treatment. We also show bZIP60U and TGB3 interact at the ER. This is the first demonstration of a potato bZIP transcription factor complementing genetic defects in Arabidopsis. Evidence indicates that the three IRE1 isoforms regulate the initial stages of virus replication and gene expression, while bZIP60 and BI-1 contribute separately to virus cell-to-cell and systemic movement.
Collapse
Affiliation(s)
- Binita Adhikari
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Mathieu Gayral
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
- Agroécologie, INRAE, Institut Agro Dijon, Université de Bourgogne, 26, bd Docteur Petitjean-BP 87999, Dijon, Cedex, 21079, France
| | - Venura Herath
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Caleb Oliver Bedsole
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Sandeep Kumar
- Department of Plant Pathology, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, 751003, India
| | - Haden Ball
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Osama Atallah
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Brian Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | | | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| |
Collapse
|
12
|
Liu ZL, Li Y, Lin YJ, Shi MM, Fu MX, Li ZQ, Ning DS, Zeng XM, Liu X, Cui QH, Peng YM, Zhou XM, Hu YR, Liu JS, Liu YJ, Wang M, Zhang CX, Kong W, Ou ZJ, Ou JS. Aging aggravates aortic aneurysm and dissection via miR-1204-MYLK signaling axis in mice. Nat Commun 2024; 15:5985. [PMID: 39013850 PMCID: PMC11252124 DOI: 10.1038/s41467-024-50036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
The mechanism by which aging induces aortic aneurysm and dissection (AAD) remains unclear. A total of 430 participants were recruited for the screening of differentially expressed plasma microRNAs (miRNAs). We found that miR-1204 is significantly increased in both the plasma and aorta of elder patients with AAD and is positively correlated with age. Cell senescence induces the expression of miR-1204 through p53 interaction with plasmacytoma variant translocation 1, and miR-1204 induces vascular smooth muscle cell (VSMC) senescence to form a positive feedback loop. Furthermore, miR-1204 aggravates angiotensin II-induced AAD formation, and inhibition of miR-1204 attenuates β-aminopropionitrile monofumarate-induced AAD development in mice. Mechanistically, miR-1204 directly targets myosin light chain kinase (MYLK), leading to the acquisition of a senescence-associated secretory phenotype (SASP) by VSMCs and loss of their contractile phenotype. MYLK overexpression reverses miR-1204-induced VSMC senescence, SASP and contractile phenotypic changes, and the decrease of transforming growth factor-β signaling pathway. Our findings suggest that aging aggravates AAD via the miR-1204-MYLK signaling axis.
Collapse
Affiliation(s)
- Ze-Long Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Yan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Yi-Jun Lin
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Mao-Mao Shi
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Meng-Xia Fu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Zhi-Qing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, P.R. China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P.R. China
| | - Da-Sheng Ning
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Xiang-Ming Zeng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Xiang Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Qing-Hua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, P.R. China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Xin-Min Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Ye-Rong Hu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Jia-Sheng Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Yu-Jia Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
| | - Mian Wang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Chun-Xiang Zhang
- Department of Pharmacology and Cardiovascular Research Center, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
- Department of Cardiology, Institute of Cardiovascular Research, the Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, P.R. China.
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P.R. China.
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China.
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China.
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China.
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China.
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China.
- NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, P.R. China.
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, P.R. China.
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, P.R. China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P.R. China.
| |
Collapse
|
13
|
Hu P, Du Y, Xu Y, Ye P, Xia J. The role of transcription factors in the pathogenesis and therapeutic targeting of vascular diseases. Front Cardiovasc Med 2024; 11:1384294. [PMID: 38745757 PMCID: PMC11091331 DOI: 10.3389/fcvm.2024.1384294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Transcription factors (TFs) constitute an essential component of epigenetic regulation. They contribute to the progression of vascular diseases by regulating epigenetic gene expression in several vascular diseases. Recently, numerous regulatory mechanisms related to vascular pathology, ranging from general TFs that are continuously activated to histiocyte-specific TFs that are activated under specific circumstances, have been studied. TFs participate in the progression of vascular-related diseases by epigenetically regulating vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). The Krüppel-like family (KLF) TF family is widely recognized as the foremost regulator of vascular diseases. KLF11 prevents aneurysm progression by inhibiting the apoptosis of VSMCs and enhancing their contractile function. The presence of KLF4, another crucial member, suppresses the progression of atherosclerosis (AS) and pulmonary hypertension by attenuating the formation of VSMCs-derived foam cells, ameliorating endothelial dysfunction, and inducing vasodilatory effects. However, the mechanism underlying the regulation of the progression of vascular-related diseases by TFs has remained elusive. The present study categorized the TFs involved in vascular diseases and their regulatory mechanisms to shed light on the potential pathogenesis of vascular diseases, and provide novel insights into their diagnosis and treatment.
Collapse
Affiliation(s)
- Poyi Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xu
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Ye
- Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Zhang J, Zhang X, Liu X, Chen H, Wang J, Ji M. M1 Macrophage-Derived Exosome LncRNA PVT1 Promotes Inflammation and Pyroptosis of Vascular Smooth Muscle Cells in Abdominal Aortic Aneurysm by Inhibiting miR-186-5p and Regulating HMGB1. Cardiovasc Toxicol 2024; 24:302-320. [PMID: 38453799 PMCID: PMC10937795 DOI: 10.1007/s12012-024-09838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/03/2024] [Indexed: 03/09/2024]
Abstract
Abdominal aortic aneurysm (AAA) is a chronic vascular degenerative disease. Vascular smooth muscle cells (VSMCs) are essential for maintaining the integrity of healthy blood vessels. Macrophages play an important role in the inflammatory process of AAA. However, the effect of macrophage-derived exosome LncRNA PVT1 on VSMCs is unclear. Exosomes from M1 macrophages (M1φ-exos) were isolated and identified. The expression of LncRNA PVT1 in M1φ-exos was determined. AAA cell model was constructed by treating VSMCs with Ang-II. AAA cell model was treated with M1φ exosomes transfected with si-LncRNA PVT1 (M1φsi-LncRNA PVT1-exo). VSMCs were transfected with miR-186-5p mimic and oe-HMGB1. Cell viability was detected by CCK-8. The accumulation of LDH was detected by ELISA. Western blot was used to detect the expression of HMGB1, inflammatory factors (IL-6, TNF-α and IL-1β) and pyroptosis-related proteins (GSDMD, N-GSDMD, ASC, NLRP3, Caspase-1 and Cleaved-Capase-1). Cell pyroptosis rate was detected by flow cytometry. At the same time, the targeting relationship between miR-186-5p and LncRNA PVT1 and HMGB1 was verified by double fluorescein experiment. Exosomes from M1φ were successfully extracted. The expression of LncRNA PVT1 in M1φ-exos was significantly increased. M1φ-exo promotes inflammation and pyroptosis of VSMCs. M1φsi-LncRNA PVT1-exos inhibited the inflammation and pyroptosis of VSMCs. LncRNA PVT1 can sponge miR-186-5p mimic to regulate HMGB1 expression. MiR-186-5p mimic further inhibited inflammation and pyroptosis induced by M1φsi-LncRNA PVT1-exos. However, oe-HMGB1 could inhibit the reversal effect of miR-186-5p mimic. LncRNA PVT1 in exosomes secreted by M1φ can regulate HMGB1 by acting as ceRNA on sponge miR-186-5p, thereby promoting cell inflammatory and pyroptosis and accelerating AAA progression.
Collapse
Affiliation(s)
- Jinhui Zhang
- Yan'an Hospital Affiliated To Kunming Medical University, Kunming, 650032, China.
| | - Xili Zhang
- First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xunqiang Liu
- Yan'an Hospital Affiliated To Kunming Medical University, Kunming, 650032, China
| | - Huanjun Chen
- Yan'an Hospital Affiliated To Kunming Medical University, Kunming, 650032, China
| | - Jifeng Wang
- Yan'an Hospital Affiliated To Kunming Medical University, Kunming, 650032, China
| | - Min Ji
- Yan'an Hospital Affiliated To Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
15
|
Liu P, Wang Y, Tian K, Bai X, Wang Y, Wang Y. Artesunate inhibits macrophage-like phenotype switching of vascular smooth muscle cells and attenuates vascular inflammatory injury in atherosclerosis via NLRP3. Biomed Pharmacother 2024; 172:116255. [PMID: 38325261 DOI: 10.1016/j.biopha.2024.116255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Inflammation is one of the main pathogenic factors of atherosclerosis (AS), and the phenotypic transformation of macrophages in human vascular smooth muscle cells (HVSMCs) contributes to the inflammatory injury of blood vessels and the formation of atherosclerotic plaques. Artesunate reportedly exerts anti-inflammatory activity against AS. Herein, we aimed to explore the artesunate-mediated anti-inflammatory and HVSMC phenotypic switch effects against AS and elucidate potential underlying mechanisms. In vitro, artesunate decreased expression of NLRP3, caspase-1, and interleukin (IL)- 1β. Artesunate significantly inhibited low-density lipoprotein (LDL) expression in HVSMCs and macrophages. In vivo, artesunate reduced atherosclerotic plaque formation in high-fat diet (HFD)-fed ApoE-/- mice, as well as decreased NLRP3 and CD68 expression in atherosclerotic plaques. Artesunate decreased serum levels of triglycerides and increased high-density lipoprotein levels in HFD-med mice; however, serum levels of total cholesterol and LDL were unaltered. Treatment with artesunate substantially increased α-smooth muscle actin expression in aortic tissues while inhibiting expression levels of NLRP3, IL-1β, heparinase, matrix metalloproteinase 9, and Krüppel-like factor 4 (KLF4). Collectively, our findings suggest that artesunate-mediated effects may involve inhibition of the ERK1/2/NF-κB/IL-1β pathway in HVSMCs via the downregulation of NLRP3 expression. Thus, artesunate could serve as a novel strategy to treat AS by inhibiting AS plaque formation and suppressing macrophage-like phenotype switching of HVSMCs.
Collapse
Affiliation(s)
- Ping Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yuqi Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Keke Tian
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xinyu Bai
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yaowen Wang
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing 400010, China.
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
16
|
Liu T, Zhang T, Guo C, Liang X, Wang P, Zheng B. Murine double minute 2-mediated estrogen receptor 1 degradation activates macrophage migration inhibitory factor to promote vascular smooth muscle cell dedifferentiation and oxidative stress during thoracic aortic aneurysm progression. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119661. [PMID: 38218386 DOI: 10.1016/j.bbamcr.2024.119661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Estrogen receptor 1 (ESR1) has been recently demonstrated as a potential diagnostic biomarker for thoracic aortic aneurysm (TAA). However, its precise role in the progression of TAA remains unclear. In this study, TAA models were established in ApoE-knockout mice and primary mouse vascular smooth muscle cells (VSMCs) through treatment with angiotensin (Ang) II. Our findings revealed a downregulation of ESR1 in Ang II-induced TAA mice and VSMCs. Upregulation of ESR1 mitigated expansion and cell apoptosis in the mouse aorta, reduced pathogenetic transformation of VSMCs, and reduced inflammatory infiltration and oxidative stress both in vitro and in vivo. Furthermore, we identified macrophage migration inhibitory factor (MIF) as a biological target of ESR1. ESR1 bound to the MIF promoter to suppress its transcription. Artificial MIF restoration negated the mitigating effects of ESR1 on TAA. Additionally, we discovered that murine double minute 2 (MDM2) was highly expressed in TAA models and mediated protein degradation of ESR1 through ubiquitination modification. Silencing of MDM2 reduced VSMC dedifferentiation and suppressed oxidative stress. However, these effects were reversed upon further silencing of ESR1. In conclusion, this study demonstrates that MDM2 activates MIF by mediating ESR1 degradation, thus promoting VSMC dedifferentiation and oxidative stress during TAA progression.
Collapse
Affiliation(s)
- Tao Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, PR China; Department of Cardiovascular Surgery, Guangxi International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine, Nanning 530001, Guangxi, PR China
| | - Tian Zhang
- Department of Cardiovascular Surgery, Guangxi International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine, Nanning 530001, Guangxi, PR China
| | - Chenfan Guo
- Department of Cardiovascular Surgery, Guangxi International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine, Nanning 530001, Guangxi, PR China
| | - Xiangsen Liang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, PR China
| | - Pandeng Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, PR China.
| | - Baoshi Zheng
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, PR China.
| |
Collapse
|
17
|
Wei B, Deng N, Guo H, Wei Y, Xu F, Luo S, You W, Chen J, Li W, Si X. Trimethylamine N-oxide promotes abdominal aortic aneurysm by inducing vascular inflammation and vascular smooth muscle cell phenotypic switching. Eur J Pharmacol 2024; 965:176307. [PMID: 38160930 DOI: 10.1016/j.ejphar.2023.176307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Inflammation and vascular smooth muscle cell (VSMC) phenotypic switching are implicated in the pathogenesis of abdominal aortic aneurysm (AAA). Trimethylamine N-oxide (TMAO) has emerged as a crucial risk factor in cardiovascular diseases, inducing vascular inflammation and calcification. We aimed to evaluate the effect of TMAO on the formation of AAA. APPROACH AND RESULTS Here, we showed that TMAO was elevated in plasma from AAA patients compared with nonaneurysmal subjects by liquid chromatography‒mass spectrometry (LC‒MS) detection. Functional studies revealed that increased TMAO induced by feeding a choline-supplemented diet promoted Ang II-induced AAA formation. Immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), and Western blot analyses revealed that TMAO induced macrophage infiltration and inflammatory factor release. Conversely, inhibition of TMAO by supplementation with DMB suppressed AAA formation and the inflammatory response. Molecular studies revealed that TMAO regulated VSMC phenotypic switching. Flow cytometry analyses showed that TMAO induces macrophage M1-type polarization. Furthermore, pharmacological intervention experiments suggested that the nuclear factor-κB (NF-κB) signaling pathway was critical for TMAO to trigger AAA formation. CONCLUSIONS TMAO promotes AAA formation by inducing vascular inflammation and VSMC phenotypic switching through activation of the NF-κB signaling pathway. Thus, TMAO is a prospective therapeutic AAA target.
Collapse
Affiliation(s)
- Bo Wei
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Na Deng
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Haijun Guo
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Yingying Wei
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Fujia Xu
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Sihan Luo
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Weili You
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Jingjing Chen
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Wei Li
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China.
| | - Xiaoyun Si
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China.
| |
Collapse
|
18
|
Xu Q, Li J, Zhang H, Wang S, Qin C, Lu Y. Constitutive expression of spliced X-box binding protein 1 inhibits dentin formation in mice. Front Physiol 2024; 14:1319954. [PMID: 38274041 PMCID: PMC10809399 DOI: 10.3389/fphys.2023.1319954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Upon endoplasmic reticulum (ER) stress, inositol-requiring enzyme 1 (IRE1) is activated, which subsequently converts an unspliced X-box binding protein 1 (XBP1U) mRNA to a spliced mRNA that encodes a potent XBP1S transcription factor. XBP1S is essential for relieving ER stress and secretory cell differentiation. We previously established Twist2-Cre;Xbp1 CS/+ mice that constitutively expressed XBP1S in the Twist2-expressing cells as well as in the cells derived from the Twist2-expressing cells. In this study, we analyzed the dental phenotype of Twist2-Cre;Xbp1 CS/+ mice. We first generated a mutant Xbp1s minigene that corresponds to the recombinant Xbp1 Δ26 allele (the Xbp1 CS allele that has undergone Cre-mediated recombination) and confirmed that the Xbp1s minigene expressed XBP1S that does not require IRE1α activation in vitro. Consistently, immunohistochemistry showed that XBP1S was constitutively expressed in the odontoblasts and other dental pulp cells in Twist2-Cre;Xbp1 CS/+ mice. Plain X-ray radiography and µCT analysis revealed that constitutive expression of XBP1S altered the dental pulp chamber roof- and floor-dentin formation, resulting in a significant reduction in dentin/cementum formation in Twist2-Cre;Xbp1 CS/+ mice, compared to age-matched Xbp1 CS/+ control mice. However, there is no significant difference in the density of dentin/cementum between these two groups of mice. Histologically, persistent expression of XBP1S caused a morphological change in odontoblasts in Twist2-Cre;Xbp1 CS/+ mice. Nevertheless, in situ hybridization and immunohistochemistry analyses showed that continuous expression of XBP1S had no apparent effects on the expression of the Dspp and Dmp1 genes. In conclusion, these results support that sustained production of XBP1S adversely affected odontoblast function and dentin formation.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongbo Lu
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, United States
| |
Collapse
|
19
|
Li X, Pan Y, Liu K, Yang Y, Ye Y, Xu Q, Fan M, Guo F. Identification and functional coordination analysis of gene co-expression networks in different tissues of XBP1 cartilage-specific deficient mice. Cell Signal 2024; 113:110929. [PMID: 37875231 DOI: 10.1016/j.cellsig.2023.110929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/21/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023]
Abstract
Abnormal differentiation and proliferation of chondrocytes leads to various diseases related to growth and development. The process of chondrocyte differentiation involves a series of complex cellular and molecular interactions. X-box binding protein 1 (XBP1), an essential molecule of the unfolded protein response (UPR) in Endoplasmic Reticulum (ER) stress, participated in cartilage development and causes other related diseases. We previously reported that XBP1 deficiency in cartilage impacts the function and associated diseases of many different tissues including cartilage. However, how differential expression of genes modulates the roles of cartilage and other tissues when XBP1 is lack of in chondrocytes remains unclear. We aimed to screen for differentially expressed (DE) genes in cartilage, brain, heart, and muscle by high-throughput sequencing in XBP1 cartilage-specific knockout (CKO) mice. Further, gene co-expression networks were constructed by weighted gene co-expression network analysis (WGCNA) algorithm and pivot genes were identified in the above four tissues. Protein detection, Hematoxylin-eosin (HE) staining and immunohistochemistry (IHC) experiments have proved that these differentially co-expressed genes participate in the downstream regulatory pathway of different tissues and affect tissue function.Significantly differentially expressed mRNAs [differentially expressed genes (DEGs)] were identified between XBP1 CKO mice and controls in cartilage, brain, heart, and muscle tissues, including 610, 126, 199 and 219 DEGs, respectively. 39 differentially co-expressed genes were identified in the above four tissues, and they were important pivot genes. Comprehensive analysis discovered that XBP1 deficiency in cartilage influences the difference of co-expressed genes between cartilage and other different tissues. These differentially co-expressed genes participate in downstream regulatory pathways of different tissues and affect tissue functions. Collectively, our conclusions may contribute potential biomarkers and molecular mechanisms for the mutual modulation between cartilage and different tissues and the diagnosis and treatment of diseases caused by abnormalities in different tissues. The analysis also provides meaningful insights for future genetic discoveries.
Collapse
Affiliation(s)
- Xiaoli Li
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yiming Pan
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Kaiwen Liu
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yuyou Yang
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yuanlan Ye
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Qingbo Xu
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre, London, United Kingdom
| | - Mengtian Fan
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Fengjin Guo
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
20
|
Zhang SX, Wang JJ, Starr CR, Lee EJ, Park KS, Zhylkibayev A, Medina A, Lin JH, Gorbatyuk M. The endoplasmic reticulum: Homeostasis and crosstalk in retinal health and disease. Prog Retin Eye Res 2024; 98:101231. [PMID: 38092262 PMCID: PMC11056313 DOI: 10.1016/j.preteyeres.2023.101231] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The endoplasmic reticulum (ER) is the largest intracellular organelle carrying out a broad range of important cellular functions including protein biosynthesis, folding, and trafficking, lipid and sterol biosynthesis, carbohydrate metabolism, and calcium storage and gated release. In addition, the ER makes close contact with multiple intracellular organelles such as mitochondria and the plasma membrane to actively regulate the biogenesis, remodeling, and function of these organelles. Therefore, maintaining a homeostatic and functional ER is critical for the survival and function of cells. This vital process is implemented through well-orchestrated signaling pathways of the unfolded protein response (UPR). The UPR is activated when misfolded or unfolded proteins accumulate in the ER, a condition known as ER stress, and functions to restore ER homeostasis thus promoting cell survival. However, prolonged activation or dysregulation of the UPR can lead to cell death and other detrimental events such as inflammation and oxidative stress; these processes are implicated in the pathogenesis of many human diseases including retinal disorders. In this review manuscript, we discuss the unique features of the ER and ER stress signaling in the retina and retinal neurons and describe recent advances in the research to uncover the role of ER stress signaling in neurodegenerative retinal diseases including age-related macular degeneration, inherited retinal degeneration, achromatopsia and cone diseases, and diabetic retinopathy. In some chapters, we highlight the complex interactions between the ER and other intracellular organelles focusing on mitochondria and illustrate how ER stress signaling regulates common cellular stress pathways such as autophagy. We also touch upon the integrated stress response in retinal degeneration and diabetic retinopathy. Finally, we provide an update on the current development of pharmacological agents targeting the UPR response and discuss some unresolved questions and knowledge gaps to be addressed by future research.
Collapse
Affiliation(s)
- Sarah X Zhang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - Josh J Wang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Christopher R Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eun-Jin Lee
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Karen Sophia Park
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Assylbek Zhylkibayev
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andy Medina
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jonathan H Lin
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Marina Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
21
|
Lau C, Muthu ML, Siddiqui IF, Li L, Reinhardt DP. High-Fat Diet Has a Protective Sex-Dependent Effect on Aortic Aneurysm Severity in a Marfan Syndrome Mouse Model. Can J Cardiol 2023; 39:1553-1567. [PMID: 37482239 DOI: 10.1016/j.cjca.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Marfan syndrome (MFS) is a genetic disorder caused by mutations in fibrillin-1 and is characterized by thoracic aortic aneurysms and other complications. Previous studies revealed sexual dimorphisms in formation of aortic aneurysm in patients with MFS. The current study aimed to investigate the combined role of a high-fat diet (HFD) and biological sex in aortic disease using the mgR/mgR MFS mouse model. METHODS Male and female mgR/mgR mice, as well as wild-type (WT) littermate mice, were fed a control diet (CD [10% fat]) or HFD (60% fat) from 4 to 12 weeks of age. Key aortic disease parameters analyzed included the diameter of the aortic wall; elastic fibre fragmentation; proteoglycan content; mRNA levels of Mmp12, Col1a1, Col3a1, and Fbn1; and fibrillin-1 deposition in the aortic wall. RESULTS HFD-fed female mgR/mgR mice had significantly reduced aortic diameters (35%), elastic fibre fragmentation (56%), pathologically enhanced proteoglycans (45%), and expression of Mmp12 (64%), Col1a1 (41%), and Col3a1 (43%) compared with male mgR/mgR mice on HFD. Fibrillin-1 deposition and Fbn1 mRNA levels were unaffected. The data reveal a protective effect of HFD in female mice. In contrast, CD did not exert any protective effects. CONCLUSIONS This study demonstrates a specific sexual dimorphism in MFS mice, with HFD exerting an explicit protective effect on severity of aortic disease in female mice. These preclinical data may be useful for developing nutritional recommendations for individuals with MFS in the longer term.
Collapse
Affiliation(s)
- Cori Lau
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | - Muthu L Muthu
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | - Iram Fatima Siddiqui
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | - Ling Li
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
22
|
Yang K, Cui S, Wang J, Xu T, Du H, Yue H, Ye H, Guo J, Zhang J, Li P, Guo Y, Pan C, Pang J, Wang J, Yu X, Zhang C, Liu Z, Chen Y, Xu F. Early Progression of Abdominal Aortic Aneurysm is Decelerated by Improved Endothelial Barrier Function via ALDH2-LIN28B-ELK3 Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302231. [PMID: 37822152 PMCID: PMC10646281 DOI: 10.1002/advs.202302231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/25/2023] [Indexed: 10/13/2023]
Abstract
The involvement of endothelial barrier function in abdominal aortic aneurysm (AAA) and its upstream regulators remains unknown. Single-cell RNA sequencing shows that disrupted endothelial focal junction is an early (3 days) and persistent (28 days) event during Angiotensin II (Ang II)-induced AAA progression. Consistently, mRNA sequencing on human aortic dissection tissues confirmed downregulated expression of endothelial barrier-related genes. Aldehyde dehydrogenase 2 (ALDH2), a negative regulator of AAA, is found to be upregulated in the intimal media of AAA samples, leading to testing its role in early-stage AAA. ALDH2 knockdown/knockout specifically in endothelial cells (ECs) significantly increases expression of EC barrier markers related to focal adhesion and tight junction, restores endothelial barrier integrity, and suppresses early aortic dilation of AAA (7 and 14 days post-Ang II). Mechanically, ELK3 acts as an ALDH2 downstream regulator for endothelial barrier function preservation. At the molecular level, ALDH2 directly binds to LIN28B, a regulator of ELK3 mRNA stability, hindering LIN28B binding to ELK3 mRNA, thereby depressing ELK3 expression and impairing endothelial barrier function. Therefore, preserving vascular endothelial barrier integrity via ALDH2-specific knockdown in ECs holds therapeutic potential in the early management of AAAs.
Collapse
|
23
|
Wang Y, Yang J, Lu J, Wang Q, Wang J, Zhao J, Huang Y, Sun K. Novel hub genes and regulatory network related to ferroptosis in tetralogy of Fallot. Front Pediatr 2023; 11:1177993. [PMID: 37920788 PMCID: PMC10619671 DOI: 10.3389/fped.2023.1177993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
Ferroptosis is a newly discovered type of cell death mainly triggered by uncontrolled lipid peroxidation, and it could potentially have a significant impact on the development and progression of tetralogy of Fallot (TOF). Our project aims to identify and validate potential genes related to ferroptosis in TOF. We obtained sequencing data of TOF from the GEO database and ferroptosis-related genes from the ferroptosis database. We employed bioinformatics methods to analyze the differentially expressed mRNAs (DEmRNAs) and microRNAs between the normal control group and TOF group and identify DEmRNAs related to ferroptosis. Protein-protein interaction analysis was conducted to screen hub genes. Furthermore, a miRNA-mRNA-TF co-regulatory network was constructed to utilize prediction software. The expression of hub genes was further validated through quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). After conducting the differential gene analysis, we observed that in TOF, 41 upregulated mRNAs and three downregulated mRNAs associated with ferroptosis genes were found. Further Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analysis revealed that these genes were primarily involved in molecular functions and biological processes related to chemical stress, oxidative stress, cellular response to starvation, response to nutrient levels, cellular response to external stimulus, and cellular response to extracellular stimulus. Furthermore, we constructed a miRNA-mRNA-TF co-regulatory network. qRT-PCR analysis of the right ventricular tissues from human cases showed an upregulation in the mRNA levels of KEAP1 and SQSTM1. Our bioinformatics analysis successfully identified 44 potential genes that are associated with ferroptosis in TOF. This finding significantly contributes to our understanding of the molecular mechanisms underlying the development of TOF. Moreover, these findings have the potential to open new avenues for the development of innovative therapeutic approaches for the treatment of this condition.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junjie Yang
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jieru Lu
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingjie Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianyuan Zhao
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Huang
- Linyi Maternal and Child Health Care Hospital, Linyi, China
| | - Kun Sun
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Lu Y, Sun Y, Saaoud F, Shao Y, Xu K, Jiang X, Wu S, Yu J, Snyder NW, Yang L, Shi XM, Zhao H, Wang H, Yang X. ER stress mediates Angiotensin II-augmented innate immunity memory and facilitates distinct susceptibilities of thoracic from abdominal aorta to aneurysm development. Front Immunol 2023; 14:1268916. [PMID: 37731512 PMCID: PMC10507336 DOI: 10.3389/fimmu.2023.1268916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
To determine the roles of endoplasmic reticulum (ER) stress and trained immunity, we performed transcriptome analyses on the thoracic aorta (TA) and abdominal aorta (AA) from the angiotensin II (Ang II)-HFD-ApoE-KO aneurysm model and made significant findings: 1) Ang II bypassed HFD-induced metabolic reprogramming and induced stronger inflammation in AA than in TA; 2) Ang II and HFD upregulated 890 genes in AA versus TA and induced cytokine signaling; 3) Ang II AA and TA upregulated 73 and 68 cytokines, scRNA-Seq identified markers of macrophages and immune cells, cell death regulators, respectively; transdifferentiation markers of neuron, glial, and squamous epithelial cells were upregulated by Ang II-AA and TA; and pyroptosis signaling with IL-1β and caspase-4 were more upregulated in Ang II-AA than in TA; 4) Six upregulated transcriptomes in patients with AAA, Ang II AA, Ang II TA, additional aneurysm models, PPE-AAA and BAPN-Ang II-AAA, were partially overlapped with 10 lists of new ER stress gene sets including 3 interaction protein lists of ER stress regulators ATF6, PERK, and IRE1, HPA ER localization genes, KEGG signal genes, XBP1 transcription targets, ATF4 (PERK) targets, ATF6 targets, thapsigargin ER stress genes, tunicamycin-ER stress genes, respectively; 5) Ang II-AA and TA upregulated ROS regulators, MitoCarta genes, trained immunity genes, and glycolysis genes; and 6) Gene KO transcriptomes indicated that ATF6 and PERK played more significant roles than IRE1 in promoting AAA and trained immunity whereas antioxidant NRF2 inhibited them. Our unprecedented ER-focused transcriptomic analyses have provided novel insights on the roles of ER as an immune organelle in sensing various DAMPs and initiating ER stress that triggers Ang II-accelerated trained immunity and differs susceptibilities of thoracic and abdominal aortas to diseases.
Collapse
Affiliation(s)
- Yifan Lu
- Centers of Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Centers of Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Centers of Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Centers of Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Sheng Wu
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jun Yu
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nathaniel W. Snyder
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ling Yang
- Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xinghua Mindy Shi
- Department of Computer and Information Sciences, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Huaqing Zhao
- Biomedical Education and Data Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
25
|
Lu L, Jin Y, Tong Y, Xiao L, Hou Y, Liu Z, Dou H. Myeloid-derived suppressor cells promote the formation of abdominal aortic aneurysms through the IL-3-ICOSL-ICOS axis. BBA ADVANCES 2023; 4:100103. [PMID: 37705722 PMCID: PMC10495679 DOI: 10.1016/j.bbadva.2023.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Th17 cells are powerful inflammation promoters in the pathogenesis of abdominal aortic aneurysms (AAAs). Myeloid-derived suppressor cells (MDSCs) can promote the differentiation of Th17 cells in chronic inflammatory autoimmune injury. Here, we aim to examine whether MDSCs regulate the differentiation of Th17 cells to participate in the development of AAA. We demonstrated an abnormal accumulation of MDSCs in AAA patients, which was positively associated with Th17 cells. We established angiotensin II-induced apolipoprotein E knockout mice and found the impaired immunosuppressive function of M-MDSCs. After systemic injection of anti-Gr-1 antibody in AAA mice to deplete circulating MDSCs, AAA formation and the differentiation of Th17 cells were abolished, and the overexpression of inducible T-cell costimulator (ICOS) on Th17 cells was reversed accordingly. Regulating the expression of ICOS ligand (ICOSL) on MDSCs affects the differentiation of Th17 cells. The adoptive transfer of ICOSLlowMDSCs in AAA mice inhibited the differentiation of Th17 cells and the development of AAA. Meanwhile, rIL-3 promoted the survival and immunosuppressive dysfunction of MDSCs, upregulated ICOSL expression on MDSCs by inhibiting activation of the PI3K/AKT signaling pathway, and regulated MDSCs to promote the differentiation of Th17 cells via the ICOSL-ICOS axis. An increase in serum IL-3, ICOSL+MDSCs, and ICOS+Th17 cells was detected in AAA patients, and IL-3 levels were positively correlated with the proportion of ICOSL+MDSC cells. In conclusion, we uncovered a pivotal role of MDSCs in promoting the differentiation of Th17 cells through the IL-3-ICOSL-ICOS axis during AAA, providing an important theoretical basis for understanding the pathogenesis of AAA.
Collapse
Affiliation(s)
- Li Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Yi Jin
- Department of Vascular Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Yuanhao Tong
- Department of Vascular Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Lun Xiao
- Department of Vascular Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Zhao Liu
- Department of Vascular Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| |
Collapse
|
26
|
Yodsanit N, Shirasu T, Huang Y, Yin L, Islam ZH, Gregg AC, Riccio AM, Tang R, Kent EW, Wang Y, Xie R, Zhao Y, Ye M, Zhu J, Huang Y, Hoyt N, Zhang M, Hossack JA, Salmon M, Kent KC, Guo LW, Gong S, Wang B. Targeted PERK inhibition with biomimetic nanoclusters confers preventative and interventional benefits to elastase-induced abdominal aortic aneurysms. Bioact Mater 2023; 26:52-63. [PMID: 36875050 PMCID: PMC9975632 DOI: 10.1016/j.bioactmat.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a progressive aortic dilatation, causing ∼80% mortality upon rupture. Currently, there is no approved drug therapy for AAA. Surgical repairs are invasive and risky and thus not recommended to patients with small AAAs which, however, account for ∼90% of the newly diagnosed cases. It is therefore a compelling unmet clinical need to discover effective non-invasive strategies to prevent or slow down AAA progression. We contend that the first AAA drug therapy will only arise through discoveries of both effective drug targets and innovative delivery methods. There is substantial evidence that degenerative smooth muscle cells (SMCs) orchestrate AAA pathogenesis and progression. In this study, we made an exciting finding that PERK, the endoplasmic reticulum (ER) stress Protein Kinase R-like ER Kinase, is a potent driver of SMC degeneration and hence a potential therapeutic target. Indeed, local knockdown of PERK in elastase-challenged aorta significantly attenuated AAA lesions in vivo. In parallel, we also conceived a biomimetic nanocluster (NC) design uniquely tailored to AAA-targeting drug delivery. This NC demonstrated excellent AAA homing via a platelet-derived biomembrane coating; and when loaded with a selective PERK inhibitor (PERKi, GSK2656157), the NC therapy conferred remarkable benefits in both preventing aneurysm development and halting the progression of pre-existing aneurysmal lesions in two distinct rodent models of AAA. In summary, our current study not only establishes a new intervention target for mitigating SMC degeneration and aneurysmal pathogenesis, but also provides a powerful tool to facilitate the development of effective drug therapy of AAA.
Collapse
Affiliation(s)
- Nisakorn Yodsanit
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Takuro Shirasu
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- The Biomedical Sciences Graduate Program (BIMS), School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Li Yin
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Zain Husain Islam
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | | | - Alessandra Marie Riccio
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Runze Tang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Eric William Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yuyuan Wang
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ruosen Xie
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yi Zhao
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Mingzhou Ye
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jingcheng Zhu
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yi Huang
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Nicholas Hoyt
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- School of Medicine and Health Sciences, George Washington University, Washington, DC, 20052, USA
| | - Mengxue Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - John A. Hossack
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Morgan Salmon
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - K. Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Shaoqin Gong
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
27
|
Zhang J, Guo Y, Zhao X, Pang J, Pan C, Wang J, Wei S, Yu X, Zhang C, Chen Y, Yin H, Xu F. The role of aldehyde dehydrogenase 2 in cardiovascular disease. Nat Rev Cardiol 2023; 20:495-509. [PMID: 36781974 DOI: 10.1038/s41569-023-00839-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/15/2023]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme involved in the detoxification of alcohol-derived acetaldehyde and endogenous aldehydes. The inactivating ALDH2 rs671 polymorphism, present in up to 8% of the global population and in up to 50% of the East Asian population, is associated with increased risk of cardiovascular conditions such as coronary artery disease, alcohol-induced cardiac dysfunction, pulmonary arterial hypertension, heart failure and drug-induced cardiotoxicity. Although numerous studies have attributed an accumulation of aldehydes (secondary to alcohol consumption, ischaemia or elevated oxidative stress) to an increased risk of cardiovascular disease (CVD), this accumulation alone does not explain the emerging protective role of ALDH2 rs671 against ageing-related cardiac dysfunction and the development of aortic aneurysm or dissection. ALDH2 can also modulate risk factors associated with atherosclerosis, such as cholesterol biosynthesis and HDL biogenesis in hepatocytes and foam cell formation and efferocytosis in macrophages, via non-enzymatic pathways. In this Review, we summarize the basic biology and the clinical relevance of the enzymatic and non-enzymatic, tissue-specific roles of ALDH2 in CVD, and discuss the future directions in the research and development of therapeutic strategies targeting ALDH2. A thorough understanding of the complex roles of ALDH2 in CVD will improve the diagnosis, management and prognosis of patients with CVD who harbour the ALDH2 rs671 polymorphism.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Yunyun Guo
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Xiangkai Zhao
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Jiaojiao Pang
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Chang Pan
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Jiali Wang
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Shujian Wei
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Shandong, China
| | - Cheng Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
- Department of Cardiology, Qilu Hospital of Shandong University, Shandong, China
| | - Yuguo Chen
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China.
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China.
| | - Huiyong Yin
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.
| | - Feng Xu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China.
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China.
| |
Collapse
|
28
|
Sun L, Li X, Luo Z, Li M, Liu H, Zhu Z, Wang J, Lu P, Wang L, Yang C, Wang T, He H, Li M, Shu C, Li J. Purinergic receptor P2 × 7 contributes to abdominal aortic aneurysm development via modulating macrophage pyroptosis and inflammation. Transl Res 2023:S1931-5244(23)00042-7. [PMID: 36967061 DOI: 10.1016/j.trsl.2023.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/17/2023]
Abstract
The purinergic receptor P2 × 7 has been established as an important mediator of inflammation and participates in a variety of cardiovascular diseases including atherosclerosis, however, its role in abdominal aortic aneurysms (AAA) remains unclear. In this study, we demonstrate that P2 × 7 plays essential roles in AAA development via modulating macrophage pyroptosis and inflammation. P2 × 7 is highly expressed in human AAA specimen, as well as in experimental murine AAA lesions (both CaCl2-and Angiotensin Ⅱ-induced AAA models), and it mainly confines in macrophages. Furthermore, P2 × 7 deficiency or pharmacological inhibition with its antagonist could significantly attenuate aneurysm formation in experimental murine AAA models, while P2 × 7 agonist could promote AAA development. The caspase-I activity, matrix metalloproteinase (MMP) activity, reactive oxygen species (ROS) production and pro-inflammatory gene expression were significant reduced in experimental AAA lesions in mice with P2 × 7 deficiency or inhibition. Mechanistically, macrophage P2 × 7 can mediate the activation of NLRP3 inflammasome and activate its downstream caspase-1 to initiate the pyroptosis pathway. After caspase-1 activation, it further cleaves pro-interleukin (IL)-1β and gasdermin D (GSDMD). Consequently, the N-terminal fragment of GSDMD forms pores on the cell membrane, leading to macrophage pyroptosis and release of the pro-inflammatory factor IL-1β. The resulting vascular inflammation further leads to the upregulation of MMP and ROS, thereby promoting AAA development. In summary, these data identify P2 × 7-mediated macrophage pyroptosis signaling pathway as a novel contributory mechanism of AAA formation.
Collapse
Affiliation(s)
- Likun Sun
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China; Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Li
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China
| | - Zhongchen Luo
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China
| | - Maohua Li
- Molecular Biology Research Center, School of Life Science, Central South University, Changsha, 410012, China
| | - Hongyu Liu
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China
| | - Zhaowei Zhu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Junwei Wang
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China
| | - Peng Lu
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China
| | - Lunchang Wang
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China
| | - Chenzi Yang
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China
| | - Tun Wang
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China
| | - Hao He
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China
| | - Ming Li
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China
| | - Chang Shu
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China; Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Jiehua Li
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China; Vascular Diseases Institute of Central South University, Changsha, 410011, China.
| |
Collapse
|
29
|
Gong Z, Huang J, Wang D, Yang S, Ma Z, Fu Y, Ma Q, Kong W. ADAMTS-7 deficiency attenuates thoracic aortic aneurysm and dissection in mice. J Mol Med (Berl) 2023; 101:237-248. [PMID: 36662289 DOI: 10.1007/s00109-023-02284-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening cardiovascular disease with severe extracellular matrix (ECM) remodeling that lacks efficient early stage diagnosis and nonsurgical therapy. A disintegrin and metalloproteinase with thrombospondin motif 7 (ADAMTS-7) is recognized as a novel locus for human coronary artery atherosclerosis. Previous work by us and others showed that ADAMTS-7 promoted atherosclerosis, postinjury neointima formation, and vascular calcification. However, whether ADAMTS-7 is involved in TAAD pathogenesis is unknown. We aimed to explore the alterations in ADAMTS-7 expression in human and mouse TAAD, and investigate the role of ADAMTS-7 in TAAD formation. A case-control study of TAAD patients (N = 86) and healthy participants (N = 88) was performed. The plasma ADAMTS-7 levels were markedly increased in TAAD patients within 24 h and peaked in 7 days. A TAAD mouse model was induced with 0.5% β-aminopropionitrile (BAPN) in drinking water. ELISA analysis of mouse plasma, Western blotting, and immunohistochemical staining of aorta showed an increase in ADAMTS-7 in the early stage of TAAD. Moreover, ADAMTS-7-deficient mice exhibited significantly attenuated TAAD formation and TAAD rupture-related mortality in both male and female mice, which was accompanied by reduced artery dilation and inhibited elastin degradation. ADAMTS-7 deficiency caused repressed inflammatory response and complement system activation during TAAD formation. An increase in plasma ADAMTS-7 is a novel biomarker for human TAAD. ADAMTS-7 deficiency attenuates BAPN-induced murine TAAD. ADAMTS-7 is a potential novel target for TAAD diagnosis and therapy. KEY MESSAGES: A case-control study revealed increased plasma ADAMTS-7 is a risk factor for TAAD. ADAMTS-7 was elevated in plasma and aorta at early stage of mouse TAAD. ADAMTS-7 knockout attenuated mouse TAAD formation and mortality in both sexes.
Collapse
Affiliation(s)
- Ze Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, People's Republic of China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, People's Republic of China
| | - Daidai Wang
- Department of Emergency Medicine, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Shiyu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, People's Republic of China
| | - Zihan Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, People's Republic of China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, People's Republic of China
| | - Qingbian Ma
- Department of Emergency Medicine, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, People's Republic of China.
| |
Collapse
|
30
|
Sun K, Yao H, Zhang P, Sun Y, Ma J, Xia Q. Emerging landscape of circFNDC3B and its role in human malignancies. Front Oncol 2023; 13:1097956. [PMID: 36793611 PMCID: PMC9924128 DOI: 10.3389/fonc.2023.1097956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, more attention has been paid to expanding the abundance of Circular RNAs (circRNAs), while the circRNAs that have been found to have significant functions have not been studied in different diseases. CircFNDC3B is one of the most researched circRNAs generated from fibronectin type III domain-containing protein 3B (FNDC3B) gene. Accumulating researches have reported the multiple functions of circFNDC3B in different cancer types and other non-neoplastic diseases, and predicted that circFNDC3B might be a potential biomarker. Notably, circFNDC3B can play roles in different diseases by binding to various microRNAs (miRNAs), binding to RNA-binding proteins (RBPs), or encoding functional peptides. This paper systematically summarizes the biogenesis and function of circRNAs, reviews and discusses the roles and molecular mechanisms of circFNDC3B and its target genes in different cancers and non-neoplastic diseases, which will do favor to broaden our comprehension of the function of circRNAs and facilitate subsequent research on circFNDC3B.
Collapse
Affiliation(s)
- Kai Sun
- Department of Urology, Shandong Province Hospital, Shandong University, Jinan, China
| | - Huibao Yao
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Peizhi Zhang
- Department of Urology, Shandong Province Hospital, Shandong University, Jinan, China
| | - Yanning Sun
- Department of Urology, Shandong Province Hospital, Shandong University, Jinan, China
| | - Jian Ma
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Qinghua Xia
- Department of Urology, Shandong Province Hospital, Shandong University, Jinan, China
| |
Collapse
|
31
|
Rong Z, Li F, Zhang R, Niu S, Di X, Ni L, Liu C. Inhibition of tiRNA-Gly-GCC ameliorates neointimal formation via CBX3-mediated VSMCs phenotypic switching. Front Cardiovasc Med 2023; 10:1030635. [PMID: 36818350 PMCID: PMC9937027 DOI: 10.3389/fcvm.2023.1030635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Background and aim tRNA-derived fragments (tRFs) are a new class of non-coding RNAs involved in a variety of pathological processes, but their biological functions and mechanisms in human aortic smooth muscle cells (HASMCs) phenotype transition and vascular intimal hyperplasia are unclear. Methods/results tiRNA-Gly-GCC is upregulated in synthetic HASMCs, atherosclerotic arteries, plasma, and the balloon injured carotid artery of rats. Functionally, the inhibition of tiRNA-Gly-GCC represses HASMCs proliferation, migration, and reversed dedifferentiation, whereas the overexpression of tiRNA- Gly-GCC have contrary effects. Mechanistically, tiRNA-Gly-GCC performs these functions on HASMCs via downregulating chromobox protein homolog 3 (CBX3). Finally, the inhibition of tiRNA-Gly-GCC could ameliorate neointimal formation after vascular injury in vivo. Conclusions tiRNA-Gly-GCC is a mediator of HASMCs phenotypic switching by targeting CBX3 and inhibition of tiRNA-Gly-GCC suppresses neointimal formation.
Collapse
|
32
|
Wang J, Tian X, Yan C, Wu H, Bu Y, Li J, Liu D, Han Y. TCF7L1 Accelerates Smooth Muscle Cell Phenotypic Switching and Aggravates Abdominal Aortic Aneurysms. JACC Basic Transl Sci 2023; 8:155-170. [PMID: 36908661 PMCID: PMC9998605 DOI: 10.1016/j.jacbts.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022]
Abstract
Phenotypic switching of vascular smooth muscle cells is a central process in abdominal aortic aneurysm (AAA) pathology. We found that knockdown TCF7L1 (transcription factor 7-like 1), a member of the TCF/LEF (T cell factor/lymphoid enhancer factor) family of transcription factors, inhibits vascular smooth muscle cell differentiation. This study hints at potential interventions to maintain a normal, differentiated smooth muscle cell state, thereby eliminating the pathogenesis of AAA. In addition, our study provides insights into the potential use of TCF7L1 as a biomarker for AAA.
Collapse
Key Words
- AAA, abdominal aortic aneurysm
- AAV, adeno-associated virus
- Ang II, angiotensin II
- CVF, collagen volume fraction
- MMP, matrix metalloproteinase
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- SM22α, smooth muscle protein 22-α
- SMA, smooth muscle actin
- SRF, serum response factor
- TCF7L1
- TCF7L1, transcription factor 7-like 1
- VSMC, vascular smooth muscle cell
- abdominal aortic aneurysms
- cDNA, complementary DNA
- mRNA, messenger RNA
- phenotypic switching
- siRNA, small interfering RNA
- smooth muscle cell
Collapse
Affiliation(s)
- Jing Wang
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaoxiang Tian
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hanlin Wu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yuxin Bu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jia Li
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yaling Han
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
33
|
Huang H, Dong J, Jiang J, Yang F, Zheng Y, Wang S, Wang N, Ma J, Hou M, Ding Y, Meng L, Zhuo W, Yang D, Qian W, Chen Q, You G, Qian G, Gu L, Lv H. The role of FOXO4/NFAT2 signaling pathway in dysfunction of human coronary endothelial cells and inflammatory infiltration of vasculitis in Kawasaki disease. Front Immunol 2023; 13:1090056. [PMID: 36700213 PMCID: PMC9869249 DOI: 10.3389/fimmu.2022.1090056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Aims The Ca+/NFAT (Nuclear factor of activated T cells) signaling pathway activation is implicated in the pathogenesis of Kawasaki disease (KD); however, we lack detailed information regarding the regulatory network involved in the human coronary endothelial cell dysfunction and cardiovascular lesion development. Herein, we aimed to use mouse and endothelial cell models of KD vasculitis in vivo and in vitro to characterize the regulatory network of NFAT pathway in KD. Methods and Results Among the NFAT gene family, NFAT2 showed the strongest transcriptional activity in peripheral blood mononuclear cells (PBMCs) from patients with KD. Then, NFAT2 overexpression and knockdown experiments in Human coronary artery endothelial cells (HCAECs) indicated that NFAT2 overexpression disrupted endothelial cell homeostasis by regulation of adherens junctions, whereas its knockdown protected HCAECs from such dysfunction. Combined analysis using RNA-sequencing and transcription factor (TF) binding site analysis in the NFAT2 promoter region predicted regulation by Forkhead box O4 (FOXO4). Western blotting, chromatin immunoprecipitation, and luciferase assays validated that FOXO4 binds to the promoter and transcriptionally represses NFAT2. Moreover, Foxo4 knockout increased the extent of inflamed vascular tissues in a mouse model of KD vasculitis. Functional experiments showed that inhibition NFAT2 relieved Foxo4 knockout exaggerated vasculitis in vivo. Conclusions Our findings revealed the FOXO4/NFAT2 axis as a vital pathway in the progression of KD that is associated with endothelial cell homeostasis and cardiovascular inflammation development.
Collapse
Affiliation(s)
- Hongbiao Huang
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China,Department of Pediatrics, Fujian Provincial Hospital, Fujian Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian, China,Epigenetics Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jinfeng Dong
- Department of Hematology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jiaqi Jiang
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fang Yang
- Department of Pediatrics, Fujian Provincial Hospital, Fujian Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Yiming Zheng
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shuhui Wang
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Nana Wang
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jin Ma
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Miao Hou
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yueyue Ding
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lijun Meng
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Wenyu Zhuo
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Daoping Yang
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Weiguo Qian
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiaobin Chen
- Department of Pediatrics, Fujian Provincial Hospital, Fujian Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Guoping You
- Department of Emergency, Fujian Provincial Hospital, Fujian Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Guanghui Qian
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lei Gu
- Epigenetics Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany,Cardiopulmonary Institute (CPI), Bad Nauheim, Germany,*Correspondence: Haitao Lv, ; Lei Gu,
| | - Haitao Lv
- Department of Pediatrics, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China,*Correspondence: Haitao Lv, ; Lei Gu,
| |
Collapse
|
34
|
Yang S, Chen L, Wang Z, Chen J, Ni Q, Guo X, Liu W, Lv L, Xue G. Neutrophil extracellular traps induce abdominal aortic aneurysm formation by promoting the synthetic and proinflammatory smooth muscle cell phenotype via Hippo-YAP pathway. Transl Res 2022; 255:85-96. [PMID: 36435329 DOI: 10.1016/j.trsl.2022.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
The neutrophil plays an important role during abdominal aortic aneurysm (AAA) formation by undergoing histone citrullination with peptidyl arginine deiminase 4 (encoded by Padi4) and releasing neutrophil extracellular traps (NETs). However, the specific role of NETs during AAA formation is elusive. We found the levels of NET components in serum and tissues were found to be significantly associated with the clinical outcome of AAA patients. Furthermore, we reported that NETs induced the synthetic and proinflammatory smooth muscle cells (SMCs) phenotype and promoted AAA formation in a Hippo-YAP pathway-dependent manner by in vitro and in vivo experiments. Padi4 or Yap global knockout mice, exhibited significantly less synthetic and proinflammatory phenotypes of SMCs and developed AAA with lower frequency and severity compared with those of controls. Further studies indicated that the phenotypic switch of SMCs was associated with NETs-regulated enrichment status of H3K4me3 and H3K27me3 at promoters of synthetic and proinflammatory genes in SMCs. Cumulatively, these data suggest that NETs contribute to AAA formation by promoting the synthetic and proinflammatory phenotype of SMCs via inhibiting the Hippo-YAP pathway. A better understanding of the molecular mechanisms that regulate NETs and SMC phenotype is important to provide suitable cellular targets to prevent AAA.
Collapse
Affiliation(s)
- Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Liang Chen
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheyu Wang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaquan Chen
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qihong Ni
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangjiang Guo
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wanfeng Liu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Lei Lv
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guanhua Xue
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
35
|
Sun LY, Lyu YY, Zhang HY, Shen Z, Lin GQ, Geng N, Wang YL, Huang L, Feng ZH, Guo X, Lin N, Ding S, Yuan AC, Zhang L, Qian K, Pu J. Nuclear Receptor NR1D1 Regulates Abdominal Aortic Aneurysm Development by Targeting the Mitochondrial Tricarboxylic Acid Cycle Enzyme Aconitase-2. Circulation 2022; 146:1591-1609. [PMID: 35880522 PMCID: PMC9674448 DOI: 10.1161/circulationaha.121.057623] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 06/10/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Metabolic disorder increases the risk of abdominal aortic aneurysm (AAA). NRs (nuclear receptors) have been increasingly recognized as important regulators of cell metabolism. However, the role of NRs in AAA development remains largely unknown. METHODS We analyzed the expression profile of the NR superfamily in AAA tissues and identified NR1D1 (NR subfamily 1 group D member 1) as the most highly upregulated NR in AAA tissues. To examine the role of NR1D1 in AAA formation, we used vascular smooth muscle cell (VSMC)-specific, endothelial cell-specific, and myeloid cell-specific conditional Nr1d1 knockout mice in both AngII (angiotensin II)- and CaPO4-induced AAA models. RESULTS Nr1d1 gene expression exhibited the highest fold change among all 49 NRs in AAA tissues, and NR1D1 protein was upregulated in both human and murine VSMCs from AAA tissues. The knockout of Nr1d1 in VSMCs but not endothelial cells and myeloid cells inhibited AAA formation in both AngII- and CaPO4-induced AAA models. Mechanistic studies identified ACO2 (aconitase-2), a key enzyme of the mitochondrial tricarboxylic acid cycle, as a direct target trans-repressed by NR1D1 that mediated the regulatory effects of NR1D1 on mitochondrial metabolism. NR1D1 deficiency restored the ACO2 dysregulation and mitochondrial dysfunction at the early stage of AngII infusion before AAA formation. Supplementation with αKG (α-ketoglutarate, a downstream metabolite of ACO2) was beneficial in preventing and treating AAA in mice in a manner that required NR1D1 in VSMCs. CONCLUSIONS Our data define a previously unrecognized role of nuclear receptor NR1D1 in AAA pathogenesis and an undescribed NR1D1-ACO2 axis involved in regulating mitochondrial metabolism in VSMCs. It is important that our findings suggest αKG supplementation as an effective therapeutic approach for AAA treatment.
Collapse
MESH Headings
- Humans
- Mice
- Animals
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/prevention & control
- Aorta, Abdominal/pathology
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Muscle, Smooth, Vascular/metabolism
- Citric Acid Cycle
- Myocytes, Smooth Muscle/metabolism
- Angiotensin II/adverse effects
- Mice, Knockout
- Aconitate Hydratase/metabolism
- Disease Models, Animal
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Ling-Yue Sun
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Yan Lyu
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - Heng-Yuan Zhang
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Shen
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - Guan-Qiao Lin
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - Na Geng
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Li Wang
- Department of Vascular Surgery (Y.-L.W., L.Z.), Shanghai Jiao Tong University, Shanghai, China
| | - Lin Huang
- Renji Hospital, School of Medicine, School of Biomedical Engineering and Med-X Research Institute (L.H., K.Q.), Shanghai Jiao Tong University, Shanghai, China
| | - Ze-Hao Feng
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Guo
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - Nan Lin
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - Song Ding
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - An-Cai Yuan
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| | - Lan Zhang
- Department of Vascular Surgery (Y.-L.W., L.Z.), Shanghai Jiao Tong University, Shanghai, China
| | - Kun Qian
- Renji Hospital, School of Medicine, School of Biomedical Engineering and Med-X Research Institute (L.H., K.Q.), Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology (L.-Y.S., Y.-Y.L., H.-Y.Z., Z.S., G.-Q.L., N.G., Z.-H.F., X.G., N.L., S.D., A.-C.Y., J.P.), Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Liu X, Liu Y, Yang RX, Ding XJ, Liang ES. Loss of myeloid Tsc2 predisposes to angiotensin II-induced aortic aneurysm formation in mice. Cell Death Dis 2022; 13:972. [PMID: 36400753 PMCID: PMC9674579 DOI: 10.1038/s41419-022-05423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
RATIONALE Genetic studies have proved the involvement of Tuberous sclerosis complex subunit 2 (Tsc2) in aortic aneurysm. However, the exact role of macrophage Tsc2 in the vascular system remains unclear. Here, we examined the potential function of macrophage Tsc2 in the development of aortic remodeling and aortic aneurysms. METHODS AND RESULTS Conditional gene knockout strategy combined with histology and whole-transcriptomic analysis showed that Tsc2 deficiency in macrophages aggravated the progression of aortic aneurysms along with an upregulation of proinflammatory cytokines and matrix metallopeptidase-9 in the angiotensin II-induced mouse model. G protein-coupled receptor 68 (Gpr68), a proton-sensing receptor for detecting the extracellular acidic pH, was identified as the most up-regulated gene in Tsc2 deficient macrophages compared with control macrophages. Additionally, Tsc2 deficient macrophages displayed higher glycolysis and glycolytic inhibitor 2-deoxy-D-glucose treatment partially attenuated the level of Gpr68. We further demonstrated an Tsc2-Gpr68-CREB network in macrophages that regulates the inflammatory response, proteolytic degradation and vascular homeostasis. Gpr68 inhibition largely abrogated the progression of aortic aneurysms caused by Tsc2 deficiency in macrophages. CONCLUSIONS The findings reveal that Tsc2 deficiency in macrophages contributes to aortic aneurysm formation, at least in part, by upregulating Gpr68 expression, which subsequently drives proinflammatory processes and matrix metallopeptidase activation. The data also provide a novel therapeutic strategy to limit the progression of the aneurysm resulting from Tsc2 mutations.
Collapse
Affiliation(s)
- Xue Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Rui-Xue Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiang-Jiu Ding
- Department of Vascular Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Er-Shun Liang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
37
|
Resistance Training Modulates Reticulum Endoplasmic Stress, Independent of Oxidative and Inflammatory Responses, in Elderly People. Antioxidants (Basel) 2022; 11:antiox11112242. [DOI: 10.3390/antiox11112242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Aging is related to changes in the redox status, low-grade inflammation, and decreased endoplasmic reticulum unfolded protein response (UPR). Exercise has been shown to regulate the inflammatory response, balance redox homeostasis, and ameliorate the UPR. This work aimed to investigate the effects of resistance training on changes in the UPR, oxidative status, and inflammatory responses in peripheral blood mononuclear cells of elderly subjects. Thirty elderly subjects volunteered to participate in an 8-week resistance training program, and 11 youth subjects were included for basal assessments. Klotho, heat shock protein 60 (HSP60), oxidative marker expression (catalase, glutathione, lipid peroxidation, nuclear factor erythroid 2-related factor 2, protein carbonyls, reactive oxygen species, and superoxide dismutase 1 and 2), the IRE1 arm of UPR, and TLR4/TRAF6/pIRAK1 pathway activation were evaluated before and following training. No changes in the HSP60 and Klotho protein content, oxidative status markers, and TLR4/TRAF6/pIRAK1 pathway activation were found with exercise. However, an attenuation of the reduced pIRE1/IRE1 ratio was observed following training. Systems biology analysis showed that a low number of proteins (RPS27A, SYVN1, HSPA5, and XBP1) are associated with IRE1, where XBP1 and RPS27A are essential nodes according to the centrality analysis. Additionally, a gene ontology analysis confirms that endoplasmic reticulum stress is a key mechanism modulated by IRE1. These findings might partially support the modulatory effect of resistance training on the endoplasmic reticulum in the elderly.
Collapse
|
38
|
Zhao G, Zhao Y, Lu H, Chang Z, Liu H, Wang H, Liang W, Liu Y, Zhu T, Rom O, Guo Y, Chang L, Yang B, Garcia-Barrio MT, Lin JD, Chen YE, Zhang J. BAF60c prevents abdominal aortic aneurysm formation through epigenetic control of vascular smooth muscle cell homeostasis. J Clin Invest 2022; 132:e158309. [PMID: 36066968 PMCID: PMC9621131 DOI: 10.1172/jci158309] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 09/01/2022] [Indexed: 01/19/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease. BAF60c, a unique subunit of the SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex, is critical for cardiac and skeletal myogenesis, yet little is known about its function in the vasculature and, specifically, in AAA pathogenesis. Here, we found that BAF60c was downregulated in human and mouse AAA tissues, with primary staining to vascular smooth muscle cells (VSMCs), confirmed by single-cell RNA-sequencing. In vivo studies revealed that VSMC-specific knockout of Baf60c significantly aggravated both angiotensin II- (Ang II-) and elastase-induced AAA formation in mice, with a significant increase in elastin degradation, inflammatory cell infiltration, VSMC phenotypic switch, and apoptosis. In vitro studies showed that BAF60c knockdown in VSMCs resulted in loss of contractile phenotype, increased VSMC inflammation, and apoptosis. Mechanistically, we demonstrated that BAF60c preserved VSMC contractile phenotype by strengthening serum response factor (SRF) association with its coactivator P300 and the SWI/SNF complex and suppressing VSMC inflammation by promoting a repressive chromatin state of NF-κB target genes as well as preventing VSMC apoptosis through transcriptional activation of KLF5-dependent B cell lymphoma 2 (BCL2) expression. Our identification of the essential role of BAF60c in preserving VSMC homeostasis expands its therapeutic potential in preventing and treating AAA.
Collapse
Affiliation(s)
- Guizhen Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yang Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Haocheng Lu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Ziyi Chang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Hongyu Liu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Huilun Wang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Wenying Liang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yuhao Liu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Tianqing Zhu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Oren Rom
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Science Center–Shreveport, Shreveport, Louisiana, USA
| | - Yanhong Guo
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Lin Chang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Minerva T. Garcia-Barrio
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jiandie D. Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Y. Eugene Chen
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jifeng Zhang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
39
|
Wei M, Nurjanah U, Herkilini A, Huang C, Li Y, Miyagishi M, Wu S, Kasim V. Unspliced XBP1 contributes to cholesterol biosynthesis and tumorigenesis by stabilizing SREBP2 in hepatocellular carcinoma. Cell Mol Life Sci 2022; 79:472. [PMID: 35933495 PMCID: PMC11073046 DOI: 10.1007/s00018-022-04504-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/03/2022] [Accepted: 07/22/2022] [Indexed: 11/03/2022]
Abstract
Cholesterol biosynthesis plays a critical role in rapidly proliferating tumor cells. X-box binding protein 1 (XBP1), which was first characterized as a basic leucine zipper-type transcription factor, exists in an unspliced (XBP1-u) and spliced (XBP1-s) form. Recent studies showed that unspliced XBP1 (XBP1-u) has unique biological functions independent from XBP1-s and could promote tumorigenesis; however, whether it is involved in tumor metabolic reprogramming remains unknown. Herein, we found that XBP1-u promotes tumor growth by enhancing cholesterol biosynthesis in hepatocellular carcinoma (HCC) cells. Specifically, XBP1-u colocalizes with sterol regulatory element-binding protein 2 (SREBP2) and inhibits its ubiquitination/proteasomal degradation. The ensuing stabilization of SREBP2 activates the transcription of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), a rate-limiting enzyme in cholesterol biosynthesis. We subsequently show that the XBP1-u/SREBP2/HMGCR axis is crucial for enhancing cholesterol biosynthesis and lipid accumulation as well as tumorigenesis in HCC cells. Taken together, these findings reveal a novel function of XBP1-u in promoting tumorigenesis through increased cholesterol biosynthesis in hepatocarcinoma cells. Hence, XBP1-u might be a potential target for anti-tumor therapeutic strategies that focus on cholesterol metabolism in HCC.
Collapse
Affiliation(s)
- Mankun Wei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Uli Nurjanah
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Arin Herkilini
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Can Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yanjun Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Makoto Miyagishi
- Molecular Composite Medicine Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
40
|
Wang Y, Gao P, Li F, Du J. Insights on aortic aneurysm and dissection: Role of the extracellular environment in vascular homeostasis. J Mol Cell Cardiol 2022; 171:90-101. [DOI: 10.1016/j.yjmcc.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/06/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022]
|
41
|
Malik A, Bagchi AK, Jassal DS, Singal PK. Interleukin-10 Mitigates Doxorubicin-Induced Endoplasmic Reticulum Stress as Well as Cardiomyopathy. Biomedicines 2022; 10:biomedicines10040890. [PMID: 35453640 PMCID: PMC9027958 DOI: 10.3390/biomedicines10040890] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
The use of doxorubicin (Dox) in cancer patients carries the risk of cardiotoxicity via an increase in oxidative stress, mitochondrial dysfunction, and disturbed endoplasmic reticulum (ER) homeostasis in cardiomyocytes. The present study explores which of the ER transmembrane sensors is involved in Dox-induced apoptosis and whether interleukin-10 (IL-10) has any mitigating effect. There was a time-related increase in apoptosis in cardiomyocytes exposed to 5.43 µg/mL Dox for 0 to 48 h. Dox treatment for 24 h significantly upregulated glucose-regulated proteins 78 and 94, protein disulfide isomerase, cleavage of activating transcription factor 6α, and X-box binding protein 1. These Dox-induced changes in ER stress proteins as well as apoptosis were blunted by IL-10 (10 ng/mL). In Dox-exposed cardiomyocytes, IL-10 also promoted expression of protein kinase-like endoplasmic reticulum kinase and inositol-requiring kinase 1α, which helped in maintaining ER homeostasis. Additionally, under Dox-treatment, IL-10 downregulated caspase-12 activation as well as phosphorylation of c-JUN NH2-terminal kinase, thereby promoting cardiomyocyte survival. IL-10 was able to reduce the overexpression of mitochondrial apoptotic proteins caspase-3 as well as Bax, which were upregulated upon Dox treatment. Thus, a reduction in Dox-induced ER stress as well as apoptosis through IL-10 may provide a significant benefit in improving cardiac function.
Collapse
Affiliation(s)
- Akshi Malik
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (A.M.); (D.S.J.)
| | - Ashim K. Bagchi
- Department of Internal Medicine, Cardiology Division, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Davinder S. Jassal
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (A.M.); (D.S.J.)
- Section of Cardiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Pawan K. Singal
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (A.M.); (D.S.J.)
- Correspondence: ; Tel.: + 1-(204)-235-3416
| |
Collapse
|
42
|
Zhang N, Wang YY, Hu HJ, Lu G, Xu X, Dou YQ, Cui W, Gao SJ, Han M. Assessing serum levels of SM22α as a new biomarker for patients with aortic aneurysm/dissection. PLoS One 2022; 17:e0264942. [PMID: 35358189 PMCID: PMC8970406 DOI: 10.1371/journal.pone.0264942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background Aortic aneurysm/dissection (AAD) is now encountered more often because of the increasing prevalence of atherosclerosis and hypertension in the population. Despite many therapeutic improvements, in particular timely and successful surgery, in-hospital mortality rates are still higher. Timely identification of patients at high risk will help improve the overall prognosis of AAD. Since early clinical and radiological signs are nonspecific, there is an urgent need for accurate biomarkers. Smooth muscle 22α (SM22α) is a potential marker for AAD because of its abundant expression in vascular smooth muscle, which is involved in development of AAD. Methods We prepared three different mouse models, including abdominal aortic aneurysm, neointimal hyperplasia and atherosclerosis. SM22α levels were assessed in serum and vascular tissue of the mice. Next, the relationships between serum SM22α level and vascular lesion were studied in mice. Finally, serum from 41 patients with AAD, 107 carotid artery stenosis (CAS) patients and 40 healthy volunteers were tested for SM22α. Serum levels of SM22α were measured using an enzyme-linked immunosorbent assay (ELISA). Results Compared with the controls, serum SM22α levels were reduced in the models of aortic aneurysm, neointimal formation and atherosclerosis, and elevated in mice with ruptured aneurysm. Serum SM22α level was negatively correlated with apoptosis rate of vascular smooth muscle cells (VSMC), ratio of intima/ media (I/M) area and plaque size. Patients with AAD had significantly higher serum SM22α levels than patients with only CAS, or normal controls. Conclusion Serum SM22α could be a potential predictive marker for AAD, and regulation of VSMC is a possible mechanism for the effects of SM22α.
Collapse
Affiliation(s)
- Ning Zhang
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
- Department of Functional Region of Diagnosis, The Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, China
| | - Ying-Ying Wang
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
- Department of Functional Region of Diagnosis, The Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, China
| | - Hai-Juan Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hebei Medical University, Shijiazhuang, China
| | - Gang Lu
- Department of Clinical Laboratory, The Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, China
| | - Xin Xu
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yong-Qing Dou
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Integrative Medicine on Liver-kidney patterns of Hebei Province, College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wei Cui
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hebei Medical University, Shijiazhuang, China
| | - She-Jun Gao
- Department of Clinical Laboratory, The Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, China
| | - Mei Han
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
- * E-mail:
| |
Collapse
|
43
|
Du X, Sun Z, Cao Z, Zhou X, Wang D, Wang K, Li X, Zuo G. Atorvastatin regulates vascular smooth muscle cell phenotypic transformation by epigenetically modulating contractile proteins and mediating Akt/FOXO4 axis. Mol Med Rep 2022; 25:167. [PMID: 35475577 DOI: 10.3892/mmr.2022.12683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 01/14/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Xinping Du
- Department of Cardiology, Tianjin Fifth Central Hospital, Tianjin 300450, P.R. China
| | - Zhiyuan Sun
- Department of Cardiology, Tianjin Fifth Central Hospital, Tianjin 300450, P.R. China
| | - Zhongnan Cao
- Department of Cardiology, Tianjin Fifth Central Hospital, Tianjin 300450, P.R. China
| | - Xiuhong Zhou
- Department of Cardiology, Tianjin Fifth Central Hospital, Tianjin 300450, P.R. China
| | - Dong Wang
- Department of Cardiology, Tianjin Fifth Central Hospital, Tianjin 300450, P.R. China
| | - Kuan Wang
- Department of Cardiology, Tianjin Fifth Central Hospital, Tianjin 300450, P.R. China
| | - Xuebin Li
- Department of Cardiology, Tianjin Fifth Central Hospital, Tianjin 300450, P.R. China
| | - Guoxing Zuo
- Department of Cardiology, Tianjin Fifth Central Hospital, Tianjin 300450, P.R. China
| |
Collapse
|
44
|
Spliced or Unspliced, That Is the Question: The Biological Roles of XBP1 Isoforms in Pathophysiology. Int J Mol Sci 2022; 23:ijms23052746. [PMID: 35269888 PMCID: PMC8910952 DOI: 10.3390/ijms23052746] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 01/27/2023] Open
Abstract
X-box binding protein 1 (XBP1) is a member of the CREB/ATF basic region leucine zipper family transcribed as the unspliced isoform (XBP1-u), which, upon exposure to endoplasmic reticulum stress, is spliced into its spliced isoform (XBP1-s). XBP1-s interacts with the cAMP response element of major histocompatibility complex class II gene and plays critical role in unfolded protein response (UPR) by regulating the transcriptional activity of genes involved in UPR. XBP1-s is also involved in other physiological pathways, including lipid metabolism, insulin metabolism, and differentiation of immune cells. Its aberrant expression is closely related to inflammation, neurodegenerative disease, viral infection, and is crucial for promoting tumor progression and drug resistance. Meanwhile, recent studies reported that the function of XBP1-u has been underestimated, as it is not merely a precursor of XBP1-s. Instead, XBP-1u is a critical factor involved in various biological pathways including autophagy and tumorigenesis through post-translational regulation. Herein, we summarize recent research on the biological functions of both XBP1-u and XBP1-s, as well as their relation to diseases.
Collapse
|
45
|
Li J, Xia N, Li D, Wen S, Qian S, Lu Y, Gu M, Tang T, Jiao J, Lv B, Nie S, Hu D, Liao Y, Yang X, Shi G, Cheng X. Aorta Regulatory T Cells with a Tissue-Specific Phenotype and Function Promote Tissue Repair through Tff1 in Abdominal Aortic Aneurysms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104338. [PMID: 35332699 PMCID: PMC8948580 DOI: 10.1002/advs.202104338] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/02/2022] [Indexed: 06/14/2023]
Abstract
In addition to maintaining immune tolerance, Foxp3+ regulatory T cells (Tregs) perform specialized functions in tissue homeostasis and remodeling. However, whether Tregs in aortic aneurysms have a tissue-specific phenotype and function is unclear. Here, a special group of Tregs that potentially inhibit abdominal aortic aneurysm (AAA) progression are identified and functionally characterized. Aortic Tregs gradually increase during the process of AAA and are mainly recruited from peripheral circulation. Single-cell TCR sequencing and bulk RNA sequencing demonstrate their unique phenotype and highly expressed trefoil factor 1 (Tff1). Foxp3cre/cre Tff1flox/flox mice are used to clarify the role of Tff1 in AAA, suggesting that aortic Tregs secrete Tff1 to regulate smooth muscle cell (SMC) survival. In vitro experiments confirm that Tff1 inhibits SMC apoptosis through the extracellular signal-regulated kinase (ERK) 1/2 pathway. The findings reveal a tissue-specific phenotype and function of aortic Tregs and may provide a promising and novel approach for the prevention of AAA.
Collapse
Affiliation(s)
- Jingyong Li
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Ni Xia
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Dan Li
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shuang Wen
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shirui Qian
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yuzhi Lu
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Muyang Gu
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Tingting Tang
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jiao Jiao
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Bingjie Lv
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shaofang Nie
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yuhua Liao
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xiangping Yang
- School of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Guoping Shi
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Xiang Cheng
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
46
|
Pan L, Bai P, Weng X, Liu J, Chen Y, Chen S, Ma X, Hu K, Sun A, Ge J. Legumain Is an Endogenous Modulator of Integrin αvβ3 Triggering Vascular Degeneration, Dissection, and Rupture. Circulation 2022; 145:659-674. [PMID: 35100526 DOI: 10.1161/circulationaha.121.056640] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND The development of thoracic aortic dissection (TAD) is closely related to extracellular matrix degradation and vascular smooth muscle cell (VSMC) transformation from contractile to synthetic type. LGMN (legumain) degrades extracellular matrix components directly or by activating downstream signals. The role of LGMN in VSMC differentiation and the occurrence of TAD remains elusive. METHODS Microarray datasets concerning vascular dissection or aneurysm were downloaded from the Gene Expression Omnibus database to screen differentially expressed genes. Four-week-old male Lgmn knockout mice (Lgmn-/-), macrophage-specific Lgmn knockout mice (LgmnF/F;LysMCre), and RR-11a-treated C57BL/6 mice were given BAPN (β-aminopropionitrile monofumarate; 1 g/kg/d) in drinking water for 4 weeks for TAD modeling. RNA sequencing analysis was performed to recapitulate transcriptome profile changes. Cell interaction was examined in macrophage and VSMC coculture system. The reciprocity of macrophage-derived LGMN with integrin αvβ3 in VSMCs was tested by coimmunoprecipitation assay and colocalization analyses. RESULTS Microarray datasets from the Gene Expression Omnibus database indicated upregulated LGMN in aorta from patients with TAD and mice with angiotensin II-induced AAA. Elevated LGMN was evidenced in aorta and sera from patients with TAD and mice with BAPN-induced TAD. BAPN-induced TAD progression was significantly ameliorated in Lgmn-deficient or inhibited mice. Macrophage-specific deletion of Lgmn alleviated BAPN-induced extracellular matrix degradation. Unbiased profiler polymerase chain reaction array and Gene Ontology analysis displayed that LGMN regulated VSMC phenotype transformation. Macrophage-specific deletion of Lgmn ameliorated VSMC phenotypic switch in BAPN-treated mice. Macrophage-derived LGMN inhibited VSMC differentiation in vitro as assessed by macrophages and the VSMC coculture system. Macrophage-derived LGMN bound to integrin αvβ3 in VSMCs and blocked integrin αvβ3, thereby attenuating Rho GTPase activation, downregulating VSMC differentiation markers and eventually exacerbating TAD development. ROCK (Rho kinase) inhibitor Y-27632 reversed the protective role of LGMN depletion in vascular dissection. CONCLUSIONS LGMN signaling may be a novel target for the prevention and treatment of TAD.
Collapse
Affiliation(s)
- Lihong Pan
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China (L.P., S.C., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Peiyuan Bai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Xinyu Weng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Jin Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Yingjie Chen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (Y.C.)
| | - Siqin Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China (L.P., S.C., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Xiurui Ma
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.)
| | - Aijun Sun
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China (L.P., S.C., A.S., J.G.).,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| | - Junbo Ge
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China (L.P., S.C., A.S., J.G.).,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China (P.B., X.W., J.L., X.M., K.H., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.).,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China (L.P., P.B., X.W., J.L., S.C., X.M., A.S., J.G.)
| |
Collapse
|
47
|
Zhang D, Lu D, Xu R, Zhai S, Zhang K. Inhibition of XIST attenuates abdominal aortic aneurysm in mice by regulating apoptosis of vascular smooth muscle cells through miR-762/MAP2K4 axis. Microvasc Res 2022; 140:104299. [PMID: 34942175 DOI: 10.1016/j.mvr.2021.104299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a common chronic aortic degenerative disease. Long non-coding RNA X-inactive specific transcript (XIST) is associated with the progression of AAA, while the underlying mechanism is still unclear. We investigated the functional role of XIST in AAA. AAA mouse model was established by administration of Angiotensin II (Ang II). Primary mouse vascular smooth muscle cells (VSMCs) were separated from the abdominal aorta of Ang II-induced AAA mice, and then treated with Ang II. XIST was highly expressed in Ang II-treated VSMCs. Cell proliferation ability was decreased and apoptosis was increased in VSMCs following Ang II treatment. XIST knockdown reversed the impact of Ang II on cell proliferation and apoptosis in VSMCs. XIST promoted mitogen-activated protein kinase kinase 4 (MAP2K4) expression by sponging miR-762. XIST overexpression suppressed cell proliferation and apoptosis of Ang II-treated VSMCs by regulating miR-762/MAP2K4 axis. Finally, Ang II-induced AAA mouse model was established to verify the function of XIST in AAA. Inhibition of XIST significantly attenuated the pathological changes of abdominal aorta tissues in Ang II-induced mice. The expression of miR-762 was inhibited, and MAP2K4 expression was enhanced by XIST knockdown in the abdominal aorta tissues of AAA mice. In conclusion, these data demonstrate that inhibition of XIST attenuates AAA in mice, which attributes to inhibit apoptosis of VSMCs by regulating miR-762/MAP2K4 axis. Thus, this study highlights a novel ceRNA circuitry involving key regulators in the pathogenesis of AAA.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Apoptosis
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Gene Expression Regulation, Enzymologic
- MAP Kinase Kinase 4/genetics
- MAP Kinase Kinase 4/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- RNA Interference
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Dongbin Zhang
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Danghui Lu
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Rutao Xu
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Shuiting Zhai
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Kewei Zhang
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China.
| |
Collapse
|
48
|
Wu S, Liu S, Chen N, Zhang C, Zhang H, Guo X. Genome-Wide Identification of Immune-Related Alternative Splicing and Splicing Regulators Involved in Abdominal Aortic Aneurysm. Front Genet 2022; 13:816035. [PMID: 35251127 PMCID: PMC8892299 DOI: 10.3389/fgene.2022.816035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/06/2022] [Indexed: 01/08/2023] Open
Abstract
The molecular mechanism of AAA formation is still poorly understood and has not been fully elucidated. The study was designed to identify the immune-related genes, immune-RAS in AAA using bioinformatics methods. The GSE175683 datasets were downloaded from the GEO database. The DEseq2 software was used to identify differentially expressed genes (DEGs). SUVA pipeline was used to quantify AS events and RAS events. KOBAS 2.0 server was used to identify GO terms and KEGG pathways to sort out functional categories of DEGs. The CIBERSORT algorithm was used with the default parameter for estimating immune cell fractions. Nine samples from GSE175683 were used to construct the co-disturbed network between expression of SFs and splicing ratio of RAS events. PCA analysis was performed by R package factoextra to show the clustering of samples, and the pheatmap package in R was used to perform the clustering based on Euclidean distance. The results showed that there were 3,541 genes significantly differentially expressed, of which 177 immune-related genes were upregulated and 48 immune-related genes were downregulated between the WT and WTA group. Immune-RAS events were mainly alt5P and IR events, and about 60% of it was complex splicing events in AAA. The WT group and the WTA group can be clearly distinguished in the first principal component by using the splicing ratio of immune-RAS events. Two downregulated genes, Nr4a1 and Nr4a2, and eight upregulated genes, Adipor2, Akt2, Bcl3, Dhx58, Pparg, Ptgds, Sytl1, and Vegfa were identified among the immune-related genes with RAS and DEGs. Eighteen differentially expressed SFs were identified and displayed by heatmap. The proportion of different types of cells and ratio of the average ratio of different cells were quite different. Both M1 and M2 types of macrophages and plasma cells were upregulated, while M0 type was downregulated in AAA. The proportion of plasma cells in the WTA group had sharply increased. There is a correlation between SF expression and immune cells/immune-RAS. Sf3b1, a splicing factor with significantly different expression, was selected to bind on a mass of immune-related genes. In conclusion, our results showed that immune-related genes, immune-RAS, and SFs by genome-wide identification were involved in AAA.
Collapse
Affiliation(s)
- Shiyong Wu
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shibiao Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ningheng Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chuang Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hairong Zhang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Hairong Zhang, ; Xueli Guo,
| | - Xueli Guo
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Hairong Zhang, ; Xueli Guo,
| |
Collapse
|
49
|
Abdominal Aortic Aneurysm Formation with a Focus on Vascular Smooth Muscle Cells. Life (Basel) 2022; 12:life12020191. [PMID: 35207478 PMCID: PMC8880357 DOI: 10.3390/life12020191] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/29/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a lethal degenerative vascular disease that affects, mostly, the elder population, with a high mortality rate (>80%) upon rupture. It features a dilation of the aortic diameter to larger than 30 mm or more than 50%. Diverse pathological processes are involved in the development of AAA, including aortic wall inflammation, elastin breakdown, oxidative stress, smooth muscle cell (SMC) phenotypic switching and dysfunction, and extracellular matrix degradation. With open surgery being the only therapeutic option up to date, the lack of pharmaceutical treatment approach calls for identifying novel and effective targets and further understanding the pathological process of AAA. Both lifestyle and genetic predisposition have an important role in increasing the risk of AAA. Several cell types are closely related to the pathogenesis of AAA. Among them, vascular SMCs (VSMCs) are gaining much attention as a critical contributor for AAA initiation and/or progression. In this review, we summarize what is known about AAA, including the risk factors, the pathophysiology, and the established animal models of AAA. In particular, we focus on the VSMC phenotypic switching and dysfunction in AAA formation. Further understanding the regulation of VSMC phenotypic changes may provide novel therapeutic targets for the treatment or prevention of AAA.
Collapse
|
50
|
Affiliation(s)
- Peiran Yang
- Brigham and Women’s Hospital, Division of
Cardiovascular Medicine, Harvard Medical School, Boston, MA 02115,Present affiliation: State Key Laboratory of Medical
Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences,
Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730,
China
| | - Paul B. Yu
- Brigham and Women’s Hospital, Division of
Cardiovascular Medicine, Harvard Medical School, Boston, MA 02115,Present affiliation: Massachusetts General Hospital,
Division of Cardiovascular Medicine, Harvard Medical School, Boston, MA 02114
| |
Collapse
|