1
|
Chen G, Douglas HF, Li Z, Cleveland WJ, Balzer C, Yannopoulos D, Chen IY, Obal D, Riess ML. Cardioprotection by poloxamer 188 is mediated through increased endothelial nitric oxide production. Sci Rep 2025; 15:15170. [PMID: 40307302 PMCID: PMC12043958 DOI: 10.1038/s41598-025-97079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/02/2025] [Indexed: 05/02/2025] Open
Abstract
Ischemia/reperfusion (I/R) injury significantly contributes to the morbidity and mortality associated with cardiac events. Poloxamer 188 (P188), a non-ionic triblock copolymer, has been proposed to mitigate I/R injury by stabilizing cell membranes. However, the underlying mechanisms remain incompletely understood, particularly concerning endothelial cell (EC) function and nitric oxide (NO) production. We employed human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) and ECs to elucidate the effects of P188 on cellular survival, function, and NO secretion under simulated I/R conditions. iPSC-CMs contractility and iPSC-ECs' NO production were assessed following exposure to P188. Further, an isolated heart model using Brown Norway rats subjected to I/R injury was utilized to evaluate the ex-vivo cardioprotective effects of P188, examining cardiac function and NO production, with and without the administration of a NO inhibitor. In iPSC-derived models, P188 significantly preserved CM contractile function and enhanced cell viability after hypoxia/reoxygenation. Remarkably, P188 treatment led to a pronounced increase in NO secretion in iPSC-ECs, a novel finding demonstrating endothelial protective effects beyond membrane stabilization. In the rat isolated heart model, administration of P188 during reperfusion notably improved cardiac function and reduced I/R injury markers. This cardioprotective effect was abrogated by NO inhibition, underscoring the pivotal role of NO. Additionally, a dose-dependent increase in NO production was observed in non-ischemic rat hearts treated with P188, further establishing the critical function of NO in P188 induced cardioprotection. In conclusion, our comprehensive study unveils a novel role of NO in mediating the protective effects of P188 against I/R injury. This mechanism is evident in both cellular models and intact rat hearts, highlighting the potential of P188 as a therapeutic agent against I/R injury. Our findings pave the way for further investigation into P188's therapeutic mechanisms and its potential application in clinical settings to mitigate I/R-related cardiac dysfunction.
Collapse
Affiliation(s)
- Gaoxian Chen
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Hunter F Douglas
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zhu Li
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William J Cleveland
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Claudius Balzer
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Demetris Yannopoulos
- Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ian Y Chen
- Departments of Medicine (Cardiovascular Medicine) and Radiology, Stanford University School of Medicine, Stanford, CA, USA
- Medical (Cardiology) and Radiology Services, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Detlef Obal
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Department of Anesthesiology, University of Iowa, Iowa, IA, USA.
| | - Matthias L Riess
- Department of Anesthesiology, TVHS VA Medical Center, Nashville, TN, USA.
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
Korbmacher F, Bernabeu M. Induced pluripotent stem cell-based tissue models to study malaria: a new player in the research game. Curr Opin Microbiol 2025; 84:102585. [PMID: 40010012 DOI: 10.1016/j.mib.2025.102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/28/2025]
Abstract
Most in vitro studies on parasite development and pathogenesis in the human host have been conducted using traditional primary or immortalized cells, despite their inherent limitations. Breakthroughs in the field of induced pluripotent stem cells (iPSCs) are revolutionizing disease modeling, offering alternatives to traditional in vivo and in vitro infection models. Human iPSCs differentiate into all cell types, proliferate indefinitely, and offer experimental advantages, like genome editing and donor control. iPSCs can be engineered into complex 3D tissue models that closely mimic morphology and function of their in vivo counterparts and allow for precise experimental manipulation. The physiological complexity of iPSC-based tissue models has improved rapidly. Given Plasmodium's systemic impact across multiple organs, these models provide an invaluable resource for studying parasite-tissue interactions. This opinion article focuses on recent developments of iPSC-based models for Plasmodium research. We describe the main highlights and potential use of these systems while acknowledging current limitations.
Collapse
Affiliation(s)
- François Korbmacher
- European Molecular Biology Laboratory (EMBL) Barcelona, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Maria Bernabeu
- European Molecular Biology Laboratory (EMBL) Barcelona, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
3
|
Robinson MA, Kung SHY, Youssef KYM, Scheck KM, Bell RH, Sar F, Haegert AM, Asmae MM, Cheng C, Yeack SV, Mathur BT, Jiang F, Collins CC, Hach F, Willerth SM, Flannigan RK. 3D Bioprinted Coaxial Testis Model Using Human Induced Pluripotent Stem Cells:A Step Toward Bicompartmental Cytoarchitecture and Functionalization. Adv Healthc Mater 2025; 14:e2402606. [PMID: 39955738 PMCID: PMC12004438 DOI: 10.1002/adhm.202402606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Fertility preservation following pediatric cancer therapy programs has become a major avenue of infertility research. In vitro spermatogenesis (IVS) aims to generate sperm from banked prepubertal testicular tissues in a lab setting using specialized culture conditions. While successful using rodent tissues, progress with human tissues is limited by the scarcity of human prepubertal testicular tissues for research. This study posits that human induced pluripotent stem cells (hiPSCs) can model human prepubertal testicular tissue to facilitate the development of human IVS conditions. Testicular cells derived from hiPSCs are characterized for phenotype markers and profiled transcriptionally. HiPSC-derived testicular cells are bioprinted into core-shell constructs representative of testis cytoarchitecture and found to capture functional aspects of prepubertal testicular tissues within 7 days under xeno-free conditions. Moreover, hiPSC-derived Sertoli cells illustrate the capacity to mature under pubertal-like conditions. The utility of the model is tested by comparing 2 methods of supplementing retinoic acid (RA), the vitamin responsible for inducing spermatogenesis. The model reveals a significant gain in activity under microsphere-released RA compared to RA medium supplementation, indicating that the fragility of free RA in vitro may be a contributing factor to the molecular dysfunction observed in human IVS studies to date.
Collapse
Affiliation(s)
| | - Sonia HY Kung
- Vancouver Prostate CentreVancouverBritish ColumbiaV6H 3Z6Canada
| | | | - Kali M Scheck
- Axolotl BiosciencesVictoriaBritish ColumbiaV8W 2Y2Canada
| | - Robert H Bell
- Vancouver Prostate CentreVancouverBritish ColumbiaV6H 3Z6Canada
| | - Funda Sar
- Vancouver Prostate CentreVancouverBritish ColumbiaV6H 3Z6Canada
| | - Anne M Haegert
- Vancouver Prostate CentreVancouverBritish ColumbiaV6H 3Z6Canada
| | - M Mahdi Asmae
- Vancouver Prostate CentreVancouverBritish ColumbiaV6H 3Z6Canada
| | - Changfeng Cheng
- Faculty of ForestryUniversity of British ColumbiaVancouverBritish ColumbiaV6T 1Z4Canada
| | - Salina V Yeack
- Axolotl BiosciencesVictoriaBritish ColumbiaV8W 2Y2Canada
| | - Bhairvi T Mathur
- Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaV6T 1Z4Canada
| | - Feng Jiang
- Faculty of ForestryUniversity of British ColumbiaVancouverBritish ColumbiaV6T 1Z4Canada
| | - Colin C Collins
- Vancouver Prostate CentreVancouverBritish ColumbiaV6H 3Z6Canada
| | - Faraz Hach
- Vancouver Prostate CentreVancouverBritish ColumbiaV6H 3Z6Canada
| | - Stephanie M Willerth
- Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaV6T 1Z4Canada
- Department of Mechanical EngineeringUniversity of VictoriaVictoriaBritish ColumbiaV8P 5C2Canada
- Division of Medical SciencesUniversity of VictoriaVictoriaBritish ColumbiaV8P 5C2Canada
| | - Ryan K Flannigan
- Vancouver Prostate CentreVancouverBritish ColumbiaV6H 3Z6Canada
- Department of Urologic SciencesUniversity of British ColumbiaVancouverBritish ColumbiaV6T 1Z4Canada
| |
Collapse
|
4
|
Loh KM, Zheng SL, Liu KJ, Yin Q, Amir-Ugokwe ZA, Jha SK, Qi Y, Wazny VK, Nguyen AT, Chen A, Njunkeng FM, Cheung C, Spiekerkoetter E, Red-Horse K, Ang LT. Protocol for efficient generation of human artery and vein endothelial cells from pluripotent stem cells. STAR Protoc 2025; 6:103494. [PMID: 39705146 PMCID: PMC11728883 DOI: 10.1016/j.xpro.2024.103494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 12/22/2024] Open
Abstract
Blood vessels permeate all organs and execute myriad roles in health and disease. Here, we present a protocol to efficiently generate human artery and vein endothelial cells (ECs) from pluripotent stem cells within 3-4 days of differentiation. We delineate how to seed human pluripotent stem cells and sequentially differentiate them into primitive streak, lateral mesoderm, and either artery or vein ECs. We differentiate stem cells in defined, serum-free culture media in monolayers, without feeder cells or genetic manipulations. For complete details on the use and execution of this protocol, please refer to Ang et al. 1.
Collapse
Affiliation(s)
- Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Sherry Li Zheng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Kevin J Liu
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Qingqing Yin
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Zhainib A Amir-Ugokwe
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Sawan K Jha
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Yue Qi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Vanessa K Wazny
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore
| | - Alana T Nguyen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Angela Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Faith-Masong Njunkeng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Urology, Stanford University, Stanford, CA 94305, USA
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore; Institute of Molecular and Cell Biology, A∗STAR, 138673, Singapore, Singapore
| | - Edda Spiekerkoetter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Urology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Kardassis D, Vindis C, Stancu CS, Toma L, Gafencu AV, Georgescu A, Alexandru-Moise N, Molica F, Kwak BR, Burlacu A, Hall IF, Butoi E, Magni P, Wu J, Novella S, Gamon LF, Davies MJ, Caporali A, de la Cuesta F, Mitić T. Unravelling molecular mechanisms in atherosclerosis using cellular models and omics technologies. Vascul Pharmacol 2025; 158:107452. [PMID: 39667548 DOI: 10.1016/j.vph.2024.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Despite the discovery and prevalent clinical use of potent lipid-lowering therapies, including statins and PCSK9 inhibitors, cardiovascular diseases (CVD) caused by atherosclerosis remain a large unmet clinical need, accounting for frequent deaths worldwide. The pathogenesis of atherosclerosis is a complex process underlying the presence of modifiable and non-modifiable risk factors affecting several cell types including endothelial cells (ECs), monocytes/macrophages, smooth muscle cells (SMCs) and T cells. Heterogeneous composition of the plaque and its morphology could lead to rupture or erosion causing thrombosis, even a sudden death. To decipher this complexity, various cell model systems have been developed. With recent advances in systems biology approaches and single or multi-omics methods researchers can elucidate specific cell types, molecules and signalling pathways contributing to certain stages of disease progression. Compared with animals, in vitro models are economical, easily adjusted for high-throughput work, offering mechanistic insights. Hereby, we review the latest work performed employing the cellular models of atherosclerosis to generate a variety of omics data. We summarize their outputs and the impact they had in the field. Challenges in the translatability of the omics data obtained from the cell models will be discussed along with future perspectives.
Collapse
Affiliation(s)
- Dimitris Kardassis
- University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece.
| | - Cécile Vindis
- CARDIOMET, Center for Clinical Investigation 1436 (CIC1436)/INSERM, Toulouse, France
| | - Camelia Sorina Stancu
- Lipidomics Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Laura Toma
- Lipidomics Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Anca Violeta Gafencu
- Gene Regulation and Molecular Therapies Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Adriana Georgescu
- Pathophysiology and Cellular Pharmacology Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Nicoleta Alexandru-Moise
- Pathophysiology and Cellular Pharmacology Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Filippo Molica
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandrina Burlacu
- Department of Stem Cell Biology, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Ignacio Fernando Hall
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Elena Butoi
- Department of Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milano, Italy; IRCCS MultiMedica, Milan, Italy
| | - Junxi Wu
- University of Strathclyde, Glasgow, United Kingdom
| | - Susana Novella
- Department of Physiology, University of Valencia - INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Luke F Gamon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Caporali
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Fernando de la Cuesta
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Tijana Mitić
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
6
|
Kim H, Choi S, Heo H, Cho SH, Lee Y, Kim D, Jung KO, Rhee S. Applications of Single-Cell Omics Technologies for Induced Pluripotent Stem Cell-Based Cardiovascular Research. Int J Stem Cells 2025; 18:37-48. [PMID: 39129179 PMCID: PMC11867907 DOI: 10.15283/ijsc23183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 08/13/2024] Open
Abstract
Single-cell omics technologies have transformed our investigation of genomic, transcriptomic, and proteomic landscapes at the individual cell level. In particular, the application of single-cell RNA sequencing has unveiled the complex transcriptional variations inherent in cardiac cells, offering valuable perspectives into their dynamics. This review focuses on the integration of single-cell omics with induced pluripotent stem cells (iPSCs) in the context of cardiovascular research, offering a unique avenue to deepen our understanding of cardiac biology. By synthesizing insights from various single-cell technologies, we aim to elucidate the molecular intricacies of heart health and diseases. Beyond current methodologies, we explore the potential of emerging paradigms such as single-cell/spatial omics, delving into their capacity to reveal the spatial organization of cellular components within cardiac tissues. Furthermore, we anticipate their transformative role in shaping the future of cardiovascular research. This review aims to contribute to the advancement of knowledge in the field, offering a comprehensive perspective on the synergistic potential of transcriptomic analyses, iPSC applications, and the evolving frontier of spatial omics.
Collapse
Affiliation(s)
- Hyunjoon Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- K-BioX, Palo Alto, CA, USA
| | - Sohee Choi
- K-BioX, Palo Alto, CA, USA
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Korea
| | - HyoJung Heo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- K-BioX, Palo Alto, CA, USA
| | - Su Han Cho
- K-BioX, Palo Alto, CA, USA
- Department of Biology, Kyung Hee University, Seoul, Korea
| | - Yuna Lee
- K-BioX, Palo Alto, CA, USA
- Department of Systems Biotechnology, Konkuk University, Seoul, Korea
| | - Dohyup Kim
- K-BioX, Palo Alto, CA, USA
- Asthma Research Division, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kyung Oh Jung
- K-BioX, Palo Alto, CA, USA
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Siyeon Rhee
- K-BioX, Palo Alto, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
7
|
Genova E, Rispoli P, Fengming Y, Kohei J, Bramuzzo M, Bulla R, Lucafò M, Ferraro RM, Decorti G, Stocco G. Time-efficient strategies in human iPS cell-derived pancreatic progenitor differentiation and cryopreservation: advancing towards practical applications. Stem Cell Res Ther 2024; 15:483. [PMID: 39695795 PMCID: PMC11658428 DOI: 10.1186/s13287-024-04068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Differentiation of patient-specific induced pluripotent stem cells (iPS) helps researchers to study the individual sensibility to drugs. However, differentiation protocols are time-consuming, and not all tissues have been studied. Few works are available regarding pancreatic exocrine differentiation of iPS cells, and little is known on culturing and cryopreserving these cells. METHODS We differentiated the iPS cells of two pediatric Crohn's disease patients into pancreatic progenitors and exocrine cells, adapting and shortening a protocol for differentiating embryonic stem cells. We analyzed the expression of key genes and proteins of the differentiation process by qPCR and immunofluorescence, respectively. We explored the possibility of keeping differentiated cells in culture and freezing and thawing them to shorten the time needed for the differentiation. We analyzed the cell cycle of undifferentiated and differentiated cells by flow cytometry. RESULTS The analysis of mRNA levels of key pancreatic differentiation genes PDX1 and pancreatic amylase indicate that iPS cells were successfully differentiated into pancreatic exocrine cells with expression of PDX1 (one way ANOVA p < 0.0001), and the two isoforms of amylase (one way ANOVA p < 0.05) significantly higher in exocrine cells in comparison to iPS cells. Differentiation efficiency was also confirmed by immunofluorescence analysis of PDX1 and amylase. We confirmed the possibility of shortening the time necessary for obtaining pancreatic cells without losing differentiation efficiency. Pancreatic progenitors and exocrine cells were maintained in culture and cryopreserved. Interestingly, the stemness marker OCT4 resulted significantly lower after subculturing (OCT4 p < 0.001; one-way ANOVA) and after freezing and thawing procedures (p < 0.05, one-way ANOVA) suggesting a reduction of undifferentiated stem cells leading to a purer population of pancreatic progenitor cells. Also, the stemness marker NANOG resulted lower after passaging, corroborating this result. CONCLUSIONS In this work, we optimized the generation of patient-specific pancreatic differentiated cells and laid the foundation for creating a bank of patient-specific pancreatic lines exploitable for tailored pharmacological assays. TRIAL REGISTRATION The study was approved by the Ethical Committee of the Institute of Maternal and Child Health IRCCS Burlo Garofolo, with approval number 1556 (internal ID RC 44/22).
Collapse
Affiliation(s)
- Elena Genova
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Paola Rispoli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Yue Fengming
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto, Japan
- Institute for Biomedical Sciences, Shinshu University Interdisciplinary Cluster for Cutting Edge Research, Matsumoto, Japan
| | - Johkura Kohei
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Matteo Bramuzzo
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marianna Lucafò
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Rosalba Monica Ferraro
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuliana Decorti
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
8
|
Yang Y, Valencia LA, Lu CH, Nakamoto ML, Tsai CT, Liu C, Yang H, Zhang W, Jahed Z, Lee WR, Santoro F, Liou J, Wu JC, Cui B. Plasma membrane curvature regulates the formation of contacts with the endoplasmic reticulum. Nat Cell Biol 2024; 26:1878-1891. [PMID: 39289582 PMCID: PMC11567891 DOI: 10.1038/s41556-024-01511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
Contact sites between the endoplasmic reticulum (ER) and plasma membrane (PM) play a crucial role in governing calcium regulation and lipid homeostasis. Despite their significance, the factors regulating their spatial distribution on the PM remain elusive. Inspired by observations in cardiomyocytes, where ER-PM contact sites concentrate on tubular PM invaginations known as transverse tubules, we hypothesize that PM curvature plays a role in ER-PM contact formation. Through precise control of PM invaginations, we show that PM curvatures locally induce the formation of ER-PM contacts in cardiomyocytes. Intriguingly, the junctophilin family of ER-PM tethering proteins, specifically expressed in excitable cells, is the key player in this process, whereas the ubiquitously expressed extended synaptotagmin-2 does not show a preference for PM curvature. At the mechanistic level, we find that the low-complexity region (LCR) and membrane occupation and recognition nexus (MORN) motifs of junctophilins can bind independently to the PM, but both the LCR and MORN motifs are required for targeting PM curvatures. By examining the junctophilin interactome, we identify a family of curvature-sensing proteins-Eps15 homology domain-containing proteins-that interact with the MORN_LCR motifs and facilitate the preferential tethering of junctophilins to curved PM. These findings highlight the pivotal role of PM curvature in the formation of ER-PM contacts in cardiomyocytes and unveil a mechanism for the spatial regulation of ER-PM contacts through PM curvature modulation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Luis A Valencia
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Chih-Hao Lu
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Melissa L Nakamoto
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Ching-Ting Tsai
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Departments of Physiology and Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Huaxiao Yang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Wei Zhang
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Zeinab Jahed
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Chemical and Nano Engineering, University of California, San Diego, San Diego, CA, USA
| | - Wan-Ru Lee
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Francesca Santoro
- Tissue Electronics, Istituto Italiano di Tecnologia, Naples, Italy
- Faculty of Electrical Engineering and Information Technology, RWTH Aachen University, Aachen, Germany
- Institute of Biological Information Processing-Bioelectronics (IBI-3), Forschungszentrum, Jülich, Germany
| | - Jen Liou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiology, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Gao B, Hu G, Sun B, Li W, Yang H. BNIP3+ fibroblasts associated with hypoxia and inflammation predict prognosis and immunotherapy response in pancreatic ductal adenocarcinoma. J Transl Med 2024; 22:937. [PMID: 39402590 PMCID: PMC11476087 DOI: 10.1186/s12967-024-05674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors that lacks effective treatment options. Cancer-associated fibroblasts (CAFs), an important component of the tumor microenvironment, associated with tumor progression, prognosis, and treatment response. This work aimed to explore the novel CAFs-associated target to improve treatment strategies in PDAC. METHODS The PDAC single-cell sequencing data (CRA001160, n = 35) were downloaded and integrated based on GSA databases to classify fibroblasts into fine subtypes. Functional enrichment analysis and coexpression regulatory network analysis were used to identify the functional phenotypes and biological properties of the different fibroblast subtypes. Fibroblast differentiation trajectories were constructed using pseudochronological analysis to identify initial and terminally differentiated subtypes of fibroblasts. The changes in the proportions of different fibroblast subtypes before and after PDAC immunotherapy were compared in responsive and nonresponding patients, and the relationships between fibroblast subtypes and PDAC immunotherapy responsiveness were determined based on GSA and GEO database. Using molecular biology methods to confirm the effects of BNIP3 on hypoxia and inflammation in CAFs. CAFs were co cultured with pancreatic cancer cells to detect their effects on migration and invasion of pancreatic cancer. RESULTS Single-cell data analysis divided fibroblasts into six subtypes. The differentiation trajectory suggested that BNIP3+ Fibro subtype exhibited terminal differentiation, and the expression of genes related to hypoxia and the inflammatory response increased gradually with differentiation time. The specific overexpressed genes in the BNIP3+ Fibro subtype were significantly associated with overall and disease progression-free survival in the patients with PDAC. Interestingly, the greater the proportion of the BNIP3+ Fibro subtype was, the worse the response of PDAC patients to immunotherapy, and the CRTL treatment regimen effectively reduced the proportion of the BNIP3+ Fibro subtype. After knocking out BNIP3, the hypoxia markers and inflammatory factors of CAFs were inhibited. Co-culture of CAFs with pancreatic cancer cells can increase the migration and invasion of pancreatic cancer, but this could be reversed by knocking out BNIP3. CONCLUSIONS This study revealed the BNIP3+ Fibro subtype associated with hypoxia and inflammatory responses, which was closely related to the poor prognosis of patients with PDAC, and identified signature genes that predict the immunotherapy response in PDAC.
Collapse
Affiliation(s)
- Bo Gao
- Department of Hernia and Abdominal Wall, Peking University People's Hospital, Beijing, China
| | - Guohua Hu
- Department of Hernia and Abdominal Wall, Peking University People's Hospital, Beijing, China
| | - Boshi Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenqiang Li
- Department of General Surgery, Jinshan Hospital of Fudan University, Shanghai, China
| | - Hao Yang
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
10
|
Yang P, Zhu L, Wang S, Gong J, Selvaraj JN, Ye L, Chen H, Zhang Y, Wang G, Song W, Li Z, Cai L, Zhang H, Zhang D. Engineered model of heart tissue repair for exploring fibrotic processes and therapeutic interventions. Nat Commun 2024; 15:7996. [PMID: 39266508 PMCID: PMC11393355 DOI: 10.1038/s41467-024-52221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
Advancements in human-engineered heart tissue have enhanced the understanding of cardiac cellular alteration. Nevertheless, a human model simulating pathological remodeling following myocardial infarction for therapeutic development remains essential. Here we develop an engineered model of myocardial repair that replicates the phased remodeling process, including hypoxic stress, fibrosis, and electrophysiological dysfunction. Transcriptomic analysis identifies nine critical signaling pathways related to cellular fate transitions, leading to the evaluation of seventeen modulators for their therapeutic potential in a mini-repair model. A scoring system quantitatively evaluates the restoration of abnormal electrophysiology, demonstrating that the phased combination of TGFβ inhibitor SB431542, Rho kinase inhibitor Y27632, and WNT activator CHIR99021 yields enhanced functional restoration compared to single factor treatments in both engineered and mouse myocardial infarction model. This engineered heart tissue repair model effectively captures the phased remodeling following myocardial infarction, providing a crucial platform for discovering therapeutic targets for ischemic heart disease.
Collapse
Affiliation(s)
- Pengcheng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lihang Zhu
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Shiya Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jixing Gong
- Center of Translational Medicine, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
| | - Jonathan Nimal Selvaraj
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lincai Ye
- Shanghai Institute for Congenital Heart Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai, China
| | - Hanxiao Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yaoyao Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Gongxin Wang
- Henan SCOPE Research Institute of Electrophysiology Co. Ltd., Kaifeng, China
| | - Wanjun Song
- Beijing Geek Gene Technology Co. Ltd., Beijing, China
| | - Zilong Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lin Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
| | - Hao Zhang
- Shanghai Institute for Congenital Heart Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai, China.
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
- Cardiovascular Research Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Naderi-Meshkin H, Wahyu Setyaningsih WA, Yacoub A, Carney G, Cornelius VA, Nelson CA, Kelaini S, Donaghy C, Dunne PD, Amirkhah R, Zampetaki A, Zeng L, Stitt AW, Lois N, Grieve DJ, Margariti A. Unveiling impaired vascular function and cellular heterogeneity in diabetic donor-derived vascular organoids. Stem Cells 2024; 42:791-808. [PMID: 39049437 PMCID: PMC11384901 DOI: 10.1093/stmcls/sxae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/06/2024] [Indexed: 07/27/2024]
Abstract
Vascular organoids (VOs), derived from induced pluripotent stem cells (iPSCs), hold promise as in vitro disease models and drug screening platforms. However, their ability to faithfully recapitulate human vascular disease and cellular composition remains unclear. In this study, we demonstrate that VOs derived from iPSCs of donors with diabetes (DB-VOs) exhibit impaired vascular function compared to non-diabetic VOs (ND-VOs). DB-VOs display elevated levels of reactive oxygen species (ROS), heightened mitochondrial content and activity, increased proinflammatory cytokines, and reduced blood perfusion recovery in vivo. Through comprehensive single-cell RNA sequencing, we uncover molecular and functional differences, as well as signaling networks, between vascular cell types and clusters within DB-VOs. Our analysis identifies major vascular cell types (endothelial cells [ECs], pericytes, and vascular smooth muscle cells) within VOs, highlighting the dichotomy between ECs and mural cells. We also demonstrate the potential need for additional inductions using organ-specific differentiation factors to promote organ-specific identity in VOs. Furthermore, we observe basal heterogeneity within VOs and significant differences between DB-VOs and ND-VOs. Notably, we identify a subpopulation of ECs specific to DB-VOs, showing overrepresentation in the ROS pathway and underrepresentation in the angiogenesis hallmark, indicating signs of aberrant angiogenesis in diabetes. Our findings underscore the potential of VOs for modeling diabetic vasculopathy, emphasize the importance of investigating cellular heterogeneity within VOs for disease modeling and drug discovery, and provide evidence of GAP43 (neuromodulin) expression in ECs, particularly in DB-VOs, with implications for vascular development and disease.
Collapse
Affiliation(s)
- Hojjat Naderi-Meshkin
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Wiwit A Wahyu Setyaningsih
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
- Department of Anatomy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Sleman, D.I. Yogyakarta, 55281, Indonesia
| | - Andrew Yacoub
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Garrett Carney
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Victoria A Cornelius
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Clare-Ann Nelson
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Sophia Kelaini
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Clare Donaghy
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Philip D Dunne
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, United Kingdom
| | - Raheleh Amirkhah
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, United Kingdom
| | - Anna Zampetaki
- School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, SE5 9NU, United Kingdom
| | - Lingfang Zeng
- School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, SE5 9NU, United Kingdom
| | - Alan W Stitt
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Noemi Lois
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - David J Grieve
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Andriana Margariti
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| |
Collapse
|
12
|
Wang H, Liu J, Zhu P, Shi L, Liu Y, Yang X, Yang X. Single-nucleus transcriptome reveals cell dynamic response of liver during the late chick embryonic development. Poult Sci 2024; 103:103979. [PMID: 38941785 PMCID: PMC11261130 DOI: 10.1016/j.psj.2024.103979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 06/30/2024] Open
Abstract
The late embryonic development of the liver, a major metabolic organ, remains poorly characterized at single cell resolution. Here, we used single-nucleus RNA-sequencing (snRNA-seq) to characterize the chicken liver cells at 2 embryonic development time points (E14 and D1). We uncovered 8 cell types including hepatocytes, endothelial cells, hepatic stellate cells, erythrocytes, cholangiocytes, kupffer cells, mesothelial cells, and lymphocytes. And we discovered significant differences in the abundance of different cell types between E14 and D1. Moreover, we characterized the heterogeneity of hepatocytes, endothelial cells, and mesenchymal cells based on the gene regulatory networks of each clusters. Trajectory analyses revealed 128 genes associated with hepatocyte development and function, including apolipoprotein genes involved hepatic lipid metabolism and NADH dehydrogenase subunits involved hepatic oxidative phosphorylation. Furthermore, we identified the differentially expressed genes (DEGs) between E14 and D1 at the cellular levels, which contribute to changes in liver development and function. These DEGs were significantly enriched in PPAR signaling pathways and lipid metabolism related pathways. Our results presented the single-cell mapping of chick embryonic liver at late stages of development and demonstrated the metabolic changes across the 2 age stages at the cellular level, which can help to further study the molecular development mechanism of embryonic liver.
Collapse
Affiliation(s)
- Huimei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jiongyan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Pinhui Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Lin Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
13
|
Kiskin FN, Yang Y, Yang H, Zhang JZ. Cracking the code of the cardiovascular enigma: hPSC-derived endothelial cells unveil the secrets of endothelial dysfunction. J Mol Cell Cardiol 2024; 192:65-78. [PMID: 38761989 DOI: 10.1016/j.yjmcc.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Endothelial dysfunction is a central contributor to the development of most cardiovascular diseases and is characterised by the reduced synthesis or bioavailability of the vasodilator nitric oxide together with other abnormalities such as inflammation, senescence, and oxidative stress. The use of patient-specific and genome-edited human pluripotent stem cell-derived endothelial cells (hPSC-ECs) has shed novel insights into the role of endothelial dysfunction in cardiovascular diseases with strong genetic components such as genetic cardiomyopathies and pulmonary arterial hypertension. However, their utility in studying complex multifactorial diseases such as atherosclerosis, metabolic syndrome and heart failure poses notable challenges. In this review, we provide an overview of the different methods used to generate and characterise hPSC-ECs before comprehensively assessing their effectiveness in cardiovascular disease modelling and high-throughput drug screening. Furthermore, we explore current obstacles that will need to be overcome to unleash the full potential of hPSC-ECs in facilitating patient-specific precision medicine. Addressing these challenges holds great promise in advancing our understanding of intricate cardiovascular diseases and in tailoring personalised therapeutic strategies.
Collapse
Affiliation(s)
- Fedir N Kiskin
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Yuan Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Hao Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Joe Z Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
14
|
Yang Y, Valencia LA, Lu CH, Nakamoto ML, Tsai CT, Liu C, Yang H, Zhang W, Jahed Z, Lee WR, Santoro F, Liou J, Wu JC, Cui B. Membrane Curvature Promotes ER-PM Contact Formation via Junctophilin-EHD Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.29.601287. [PMID: 38979311 PMCID: PMC11230412 DOI: 10.1101/2024.06.29.601287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Contact sites between the endoplasmic reticulum (ER) and the plasma membrane (PM) play a crucial role in governing calcium regulation and lipid homeostasis. Despite their significance, the factors regulating their spatial distribution on the PM remain elusive. Inspired by observations in cardiomyocytes, where ER-PM contact sites concentrate on tubular PM invaginations known as transverse tubules (T-tubules), we hypothesize that the PM curvature plays a role in ER-PM contact formation. Through precise control of PM invaginations, we show that PM curvatures locally induce the formation of ER-PM contacts in cardiomyocytes. Intriguingly, the junctophilin family of ER-PM tethering proteins, specifically expressed in excitable cells, is the key player in this process, while the ubiquitously expressed extended synaptotagmin 2 does not show a preference for PM curvature. At the mechanistic level, we find that the low complexity region (LCR) and the MORN motifs of junctophilins can independently bind to the PM, but both the LCR and MORN motifs are required for targeting PM curvatures. By examining the junctophilin interactome, we identify a family of curvature-sensing proteins, Eps15-homology domain containing proteins (EHDs), that interact with the MORN_LCR motifs and facilitate junctophilins' preferential tethering to curved PM. These findings highlight the pivotal role of PM curvature in the formation of ER-PM contacts in cardiomyocytes and unveil a novel mechanism for the spatial regulation of ER-PM contacts through PM curvature modulation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Luis A. Valencia
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Chih-Hao Lu
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Melissa L. Nakamoto
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Ching-Ting Tsai
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Present address: Department of Physiology and Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Huaxiao Yang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Present address: Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Wei Zhang
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Zeinab Jahed
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Present address: Department of Nanoengineering, Jacobs School of Engineering, University of California, San Diego, CA, USA
| | - Wan-Ru Lee
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Francesca Santoro
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Faculty of Electrical Engineering and IT, RWTH, Aachen 52074, Germany
- Institute of Biological Information Processing—Bioelectronics, IBI-3, Forschungszentrum, Juelich 52428, Germany
| | - Jen Liou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine (Division of Cardiology), Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| |
Collapse
|
15
|
Deng D, Zhang Y, Tang B, Zhang Z. Sources and applications of endothelial seed cells: a review. Stem Cell Res Ther 2024; 15:175. [PMID: 38886767 PMCID: PMC11184868 DOI: 10.1186/s13287-024-03773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
Endothelial cells (ECs) are widely used as donor cells in tissue engineering, organoid vascularization, and in vitro microvascular model development. ECs are invaluable tools for disease modeling and drug screening in fundamental research. When treating ischemic diseases, EC engraftment facilitates the restoration of damaged blood vessels, enhancing therapeutic outcomes. This article presents a comprehensive overview of the current sources of ECs, which encompass stem/progenitor cells, primary ECs, cell lineage conversion, and ECs derived from other cellular sources, provides insights into their characteristics, potential applications, discusses challenges, and explores strategies to mitigate these issues. The primary aim is to serve as a reference for selecting suitable EC sources for preclinical research and promote the translation of basic research into clinical applications.
Collapse
Affiliation(s)
- Dan Deng
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yu Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Bo Tang
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
16
|
Chen Q, Zhang S, Liu W, Sun X, Luo Y, Sun X. Application of emerging technologies in ischemic stroke: from clinical study to basic research. Front Neurol 2024; 15:1400469. [PMID: 38915803 PMCID: PMC11194379 DOI: 10.3389/fneur.2024.1400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Stroke is a primary cause of noncommunicable disease-related death and disability worldwide. The most common form, ischemic stroke, is increasing in incidence resulting in a significant burden on patients and society. Urgent action is thus needed to address preventable risk factors and improve treatment methods. This review examines emerging technologies used in the management of ischemic stroke, including neuroimaging, regenerative medicine, biology, and nanomedicine, highlighting their benefits, clinical applications, and limitations. Additionally, we suggest strategies for technological development for the prevention, diagnosis, and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Qiuyan Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Wenxiu Liu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
17
|
Chen D, Fan X, Wang K, Gong L, Melero-Martin JM, Pu WT. Pioneer factor ETV2 safeguards endothelial cell specification by recruiting the repressor REST to restrict alternative lineage commitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.595971. [PMID: 38853821 PMCID: PMC11160620 DOI: 10.1101/2024.05.28.595971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mechanisms of cell fate specification remain a central question for developmental biology and regenerative medicine. The pioneer factor ETV2 is a master regulator for the endothelial cell (EC) lineage specification. Here, we studied mechanisms of ETV2-driven fate specification using a highly efficient system in which ETV2 directs human induced pluripotent stem cell-derived mesodermal progenitors to form ECs over two days. By applying CUT&RUN, single-cell RNA-sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analyses, we characterized the transcriptomic profiles, chromatin landscapes, dynamic cis-regulatory elements (CREs), and molecular features of EC cell differentiation mediated by ETV2. This defined the scope of ETV2 pioneering activity and identified its direct downstream target genes. Induced ETV2 expression both directed specification of endothelial progenitors and suppressed acquisition of alternative fates. Functional screening and candidate validation revealed cofactors essential for efficient EC specification, including the transcriptional activator GABPA. Surprisingly, the transcriptional repressor REST was also necessary for efficient EC specification. ETV2 recruited REST to occupy and repress non-EC lineage genes. Collectively, our study provides an unparalleled molecular analysis of EC specification at single-cell resolution and identifies the important role of pioneer factors to recruit repressors that suppress commitment to alternative lineages.
Collapse
|
18
|
Chen G, Douglas HF, Li Z, Cleveland WJ, Balzer C, Yannopolous D, Chen IYL, Obal D, Riess ML. Cardioprotection by Poloxamer 188 is Mediated through Increased Endothelial Nitric Oxide Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.18.593838. [PMID: 38826479 PMCID: PMC11142105 DOI: 10.1101/2024.05.18.593838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Ischemia/reperfusion (I/R) injury significantly contributes to the morbidity and mortality associated with cardiac events. Poloxamer 188 (P188), a nonionic triblock copolymer, has been proposed to mitigate I/R injury by stabilizing cell membranes. However, the underlying mechanisms remain incompletely understood, particularly concerning endothelial cell function and nitric oxide (NO) production. We employed human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) and endothelial cells (ECs) to elucidate the effects of P188 on cellular survival, function, and NO secretion under simulated I/R conditions. iPSC-CMs contractility and iPSC-ECs' NO production were assessed following exposure to P188. Further, an isolated heart model using Brown Norway rats subjected to I/R injury was utilized to evaluate the ex-vivo cardioprotective effects of P188, examining cardiac function and NO production, with and without the administration of a NO inhibitor. In iPSC-derived models, P188 significantly preserved CM contractile function and enhanced cell viability after hypoxia/reoxygenation. Remarkably, P188 treatment led to a pronounced increase in NO secretion in iPSC-ECs, a novel finding demonstrating endothelial protective effects beyond membrane stabilization. In the rat isolated heart model, administration of P188 during reperfusion notably improved cardiac function and reduced I/R injury markers. This cardioprotective effect was abrogated by NO inhibition, underscoring the pivotal role of NO. Additionally, a dose-dependent increase in NO production was observed in non-ischemic rat hearts treated with P188, further establishing the critical function of NO in P188 induced cardioprotection. In conclusion, our comprehensive study unveils a novel role of NO in mediating the protective effects of P188 against I/R injury. This mechanism is evident in both cellular models and intact rat hearts, highlighting the potential of P188 as a therapeutic agent against I/R injury. Our findings pave the way for further investigation into P188's therapeutic mechanisms and its potential application in clinical settings to mitigate I/R-related cardiac dysfunction.
Collapse
|
19
|
Chandy M, Hill T, Jimenez-Tellez N, Wu JC, Sarles SE, Hensel E, Wang Q, Rahman I, Conklin DJ. Addressing Cardiovascular Toxicity Risk of Electronic Nicotine Delivery Systems in the Twenty-First Century: "What Are the Tools Needed for the Job?" and "Do We Have Them?". Cardiovasc Toxicol 2024; 24:435-471. [PMID: 38555547 PMCID: PMC11485265 DOI: 10.1007/s12012-024-09850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Cigarette smoking is positively and robustly associated with cardiovascular disease (CVD), including hypertension, atherosclerosis, cardiac arrhythmias, stroke, thromboembolism, myocardial infarctions, and heart failure. However, after more than a decade of ENDS presence in the U.S. marketplace, uncertainty persists regarding the long-term health consequences of ENDS use for CVD. New approach methods (NAMs) in the field of toxicology are being developed to enhance rapid prediction of human health hazards. Recent technical advances can now consider impact of biological factors such as sex and race/ethnicity, permitting application of NAMs findings to health equity and environmental justice issues. This has been the case for hazard assessments of drugs and environmental chemicals in areas such as cardiovascular, respiratory, and developmental toxicity. Despite these advances, a shortage of widely accepted methodologies to predict the impact of ENDS use on human health slows the application of regulatory oversight and the protection of public health. Minimizing the time between the emergence of risk (e.g., ENDS use) and the administration of well-founded regulatory policy requires thoughtful consideration of the currently available sources of data, their applicability to the prediction of health outcomes, and whether these available data streams are enough to support an actionable decision. This challenge forms the basis of this white paper on how best to reveal potential toxicities of ENDS use in the human cardiovascular system-a primary target of conventional tobacco smoking. We identify current approaches used to evaluate the impacts of tobacco on cardiovascular health, in particular emerging techniques that replace, reduce, and refine slower and more costly animal models with NAMs platforms that can be applied to tobacco regulatory science. The limitations of these emerging platforms are addressed, and systems biology approaches to close the knowledge gap between traditional models and NAMs are proposed. It is hoped that these suggestions and their adoption within the greater scientific community will result in fresh data streams that will support and enhance the scientific evaluation and subsequent decision-making of tobacco regulatory agencies worldwide.
Collapse
Affiliation(s)
- Mark Chandy
- Robarts Research Institute, Western University, London, N6A 5K8, Canada
| | - Thomas Hill
- Division of Nonclinical Science, Center for Tobacco Products, US Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Nerea Jimenez-Tellez
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - S Emma Sarles
- Biomedical and Chemical Engineering PhD Program, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Edward Hensel
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Daniel J Conklin
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, 580 S. Preston St., Delia Baxter, Rm. 404E, Louisville, KY, 40202, USA.
| |
Collapse
|
20
|
Ream MW, Randolph LN, Jiang Y, Chang Y, Bao X, Lian XL. Direct programming of human pluripotent stem cells into endothelial progenitors with SOX17 and FGF2. Stem Cell Reports 2024; 19:579-595. [PMID: 38518781 PMCID: PMC11096437 DOI: 10.1016/j.stemcr.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/24/2024] Open
Abstract
Transcription factors (TFs) are pivotal in guiding stem cell behavior, including their maintenance and differentiation. Using single-cell RNA sequencing, we investigated TFs expressed in endothelial progenitors (EPs) derived from human pluripotent stem cells (hPSCs) and identified upregulated expression of SOXF factors SOX7, SOX17, and SOX18 in the EP population. To test whether overexpression of these factors increases differentiation efficiency, we established inducible hPSC lines for each SOXF factor and found only SOX17 overexpression robustly increased the percentage of cells expressing CD34 and vascular endothelial cadherin (VEC). Conversely, SOX17 knockdown via CRISPR-Cas13d significantly compromised EP differentiation. Intriguingly, we discovered SOX17 overexpression alone was sufficient to generate CD34+VEC+CD31- cells, and, when combined with FGF2 treatment, more than 90% of CD34+VEC+CD31+ EP was produced. These cells are capable of further differentiating into endothelial cells. These findings underscore an undiscovered role of SOX17 in programming hPSCs toward an EP lineage, illuminating pivotal mechanisms in EP differentiation.
Collapse
Affiliation(s)
- Michael W Ream
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Lauren N Randolph
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Yuqian Jiang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
21
|
Carr SM, Owsiany K, Scrivner O, McLaughlin D, Jo H, Brewster LP, Hekman KE. Hyperoxia impairs induced pluripotent stem cell-derived endothelial cells and drives an atherosclerosis-like transcriptional phenotype. JVS Vasc Sci 2024; 5:100193. [PMID: 38770110 PMCID: PMC11103376 DOI: 10.1016/j.jvssci.2024.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/22/2024] [Indexed: 05/22/2024] Open
Abstract
Background Induced pluripotent stem cells (iPSCs) directed to endothelial identity (iPSC-ECs) are emerging as a potent tool for regenerative medicine in vascular disease. However, iPSC-ECs lose expression of key identity markers under standard in vitro conditions, limiting their clinical applications. Methods To model physiological in vivo conditions, we examined the bioenergetics, presence of key cell markers, and proliferative and angiogenic capacity in iPSC-ECs at late and early passage under hyperoxic (21%) and physiological (4%) oxygen concentrations. Results Physoxia resulted in relative preservation of mitochondrial bioenergetic activity, as well as CD144 expression in late passage iPSC-ECs, but not proliferative capacity or tube formation. Single cell RNA sequencing (scRNA-seq) revealed that late passage hyperoxic iPSC-ECs develop an endothelial-to-mesenchymal phenotype. Comparing scRNA-seq data from iPSC-ECs and from atherosclerotic ECs revealed overlap of their transcriptional phenotypes. Conclusions Taken together, our studies demonstrate that physiological 4% oxygen culture conditions were sufficient to improve mitochondrial function in high passage cells, but alone was insufficient to preserve angiogenic capacity. Furthermore, late passage cells under typical conditions take on an endothelial-to-mesenchymal phenotype with similarities to ECs found in atherosclerosis.
Collapse
Affiliation(s)
- Sean M. Carr
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
- Atlanta VA Healthcare System, Surgical and Research Services, Decatur, Georgia
| | - Katherine Owsiany
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
- Atlanta VA Healthcare System, Surgical and Research Services, Decatur, Georgia
| | - Ottis Scrivner
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
- Atlanta VA Healthcare System, Surgical and Research Services, Decatur, Georgia
| | - Dylan McLaughlin
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
- Atlanta VA Healthcare System, Surgical and Research Services, Decatur, Georgia
| | - Hanjoong Jo
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Luke P. Brewster
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
- Atlanta VA Healthcare System, Surgical and Research Services, Decatur, Georgia
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Katherine E. Hekman
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
- Atlanta VA Healthcare System, Surgical and Research Services, Decatur, Georgia
| |
Collapse
|
22
|
Wu X, Ni Y, Li W, Yang B, Yang X, Zhu Z, Zhang J, Wu X, Shen Q, Liao Z, Yuan L, Chen Y, Du Q, Wang C, Liu P, Miao Y, Li N, Zhang S, Liao M, Hua J. Rapid conversion of porcine pluripotent stem cells into macrophages with chemically defined conditions. J Biol Chem 2024; 300:105556. [PMID: 38097188 PMCID: PMC10825052 DOI: 10.1016/j.jbc.2023.105556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
A renewable source of porcine macrophages derived from pluripotent stem cells (PSCs) would be a valuable alternative to primary porcine alveolar macrophages (PAMs) in the research of host-pathogen interaction mechanisms. We developed an efficient and rapid protocol, within 11 days, to derive macrophages from porcine PSCs (pPSCs). The pPSC-derived macrophages (pPSCdMs) exhibited molecular and functional characteristics of primary macrophages. The pPSCdMs showed macrophage-specific surface protein expression and macrophage-specific transcription factors, similar to PAMs. The pPSCdMs also exhibited the functional characteristics of macrophages, such as endocytosis, phagocytosis, porcine respiratory and reproductive syndrome virus infection and the response to lipopolysaccharide stimulation. Furthermore, we performed transcriptome sequencing of the whole differentiation process to track the fate transitions of porcine PSCs involved in the signaling pathway. The activation of transforming growth factor beta signaling was required for the formation of mesoderm and the inhibition of the transforming growth factor beta signaling pathway at the hematopoietic endothelium stage could enhance the fate transformation of hematopoiesis. In summary, we developed an efficient and rapid protocol to generate pPSCdMs that showed aspects of functional maturity comparable with PAMs. pPSCdMs could provide a broad prospect for the platforms of host-pathogen interaction mechanisms.
Collapse
Affiliation(s)
- Xiaolong Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Ni
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenhao Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinchun Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenshuo Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Juqing Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojie Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiaoyan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zheng Liao
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Liming Yuan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunlong Chen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Du
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengbao Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Consortium, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yiliang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shiqiang Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Mingzhi Liao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
23
|
Chen W, Li C, Chen Y, Bin J, Chen Y. Cardiac cellular diversity and functionality in cardiac repair by single-cell transcriptomics. Front Cardiovasc Med 2023; 10:1237208. [PMID: 37920179 PMCID: PMC10619858 DOI: 10.3389/fcvm.2023.1237208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
Cardiac repair after myocardial infarction (MI) is orchestrated by multiple intrinsic mechanisms in the heart. Identifying cardiac cell heterogeneity and its effect on processes that mediate the ischemic myocardium repair may be key to developing novel therapeutics for preventing heart failure. With the rapid advancement of single-cell transcriptomics, recent studies have uncovered novel cardiac cell populations, dynamics of cell type composition, and molecular signatures of MI-associated cells at the single-cell level. In this review, we summarized the main findings during cardiac repair by applying single-cell transcriptomics, including endogenous myocardial regeneration, myocardial fibrosis, angiogenesis, and the immune microenvironment. Finally, we also discussed the integrative analysis of spatial multi-omics transcriptomics and single-cell transcriptomics. This review provided a basis for future studies to further advance the mechanism and development of therapeutic approaches for cardiac repair.
Collapse
Affiliation(s)
- Wei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Chuling Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Yijin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
- Department of Cardiology, Ganzhou People’s Hospital, Ganzhou, China
| |
Collapse
|
24
|
Bailin SS, Kropski JA, Gangula RD, Hannah L, Simmons JD, Mashayekhi M, Ye F, Fan R, Mallal S, Warren CM, Kalams SA, Gabriel CL, Wanjalla CN, Koethe JR. Changes in subcutaneous white adipose tissue cellular composition and molecular programs underlie glucose intolerance in persons with HIV. Front Immunol 2023; 14:1152003. [PMID: 37711619 PMCID: PMC10499182 DOI: 10.3389/fimmu.2023.1152003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Subcutaneous adipose tissue (SAT) is a critical regulator of systemic metabolic homeostasis. Persons with HIV (PWH) have an increased risk of metabolic diseases and significant alterations in the SAT immune environment compared with the general population. Methods We generated a comprehensive single-cell multi-omic SAT atlas to characterize cellular compositional and transcriptional changes in 59 PWH across a spectrum of metabolic health. Results Glucose intolerance was associated with increased lipid-associated macrophages, CD4+ and CD8+ T effector memory cells, and decreased perivascular macrophages. We observed a coordinated intercellular regulatory program which enriched for genes related to inflammation and lipid-processing across multiple cell types as glucose intolerance increased. Increased CD4+ effector memory tissue-resident cells most strongly associated with altered expression of adipocyte genes critical for lipid metabolism and cellular regulation. Intercellular communication analysis demonstrated enhanced pro-inflammatory and pro-fibrotic signaling between immune cells and stromal cells in PWH with glucose intolerance compared with non-diabetic PWH. Lastly, while cell type-specific gene expression among PWH with diabetes was globally similar to HIV-negative individuals with diabetes, we observed substantially divergent intercellular communication pathways. Discussion These findings suggest a central role of tissue-resident immune cells in regulating SAT inflammation among PWH with metabolic disease, and underscore unique mechanisms that may converge to promote metabolic disease.
Collapse
Affiliation(s)
- Samuel S. Bailin
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jonathan A. Kropski
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
- Deparment of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Rama D. Gangula
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - LaToya Hannah
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joshua D. Simmons
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mona Mashayekhi
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fei Ye
- Department of Biostatics, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Run Fan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Simon Mallal
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
- Insitute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christian M. Warren
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Spyros A. Kalams
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Curtis L. Gabriel
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Nashville, TN, United States
| | - Celestine N. Wanjalla
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John R. Koethe
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
25
|
Kizub IV. Induced pluripotent stem cells for cardiovascular therapeutics: Progress and perspectives. REGULATORY MECHANISMS IN BIOSYSTEMS 2023; 14:451-468. [DOI: 10.15421/10.15421/022366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The discovery of methods for reprogramming adult somatic cells into induced pluripotent stem cells (iPSCs) opens up prospects of developing personalized cell-based therapy options for a variety of human diseases as well as disease modeling and new drug discovery. Like embryonic stem cells, iPSCs can give rise to various cell types of the human body and are amenable to genetic correction. This allows usage of iPSCs in the development of modern therapies for many virtually incurable human diseases. The review summarizes progress in iPSC research in the context of application in the cardiovascular field including modeling cardiovascular disease, drug study, tissue engineering, and perspectives for personalized cardiovascular medicine.
Collapse
|
26
|
Liu C, Yang F, Su X, Zhang Z, Xing Y. ScRNA-seq and spatial transcriptomics: exploring the occurrence and treatment of coronary-related diseases starting from development. Front Cardiovasc Med 2023; 10:1064949. [PMID: 37416923 PMCID: PMC10319627 DOI: 10.3389/fcvm.2023.1064949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 05/22/2023] [Indexed: 07/08/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a new technology that can be used to explore molecular changes in complex cell clusters at the single-cell level. Single-cell spatial transcriptomic technology complements the cell-space location information lost during single-cell sequencing. Coronary artery disease is an important cardiovascular disease with high mortality rates. Many studies have explored the physiological development and pathological changes in coronary arteries from the perspective of single cells using single-cell spatial transcriptomic technology. This article reviews the molecular mechanisms underlying coronary artery development and diseases as revealed by scRNA-seq combined with spatial transcriptomic technology. Based on these mechanisms, we discuss the possible new treatments for coronary diseases.
Collapse
|
27
|
Koslow M, Mondaca-Ruff D, Xu X. Transcriptome studies of inherited dilated cardiomyopathies. Mamm Genome 2023; 34:312-322. [PMID: 36749382 PMCID: PMC10426000 DOI: 10.1007/s00335-023-09978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
Dilated cardiomyopathy (DCM) is a group of heart muscle diseases that often lead to heart failure, with more than 50 causative genes have being linked to DCM. The heterogenous nature of the inherited DCMs suggest the need of precision medicine. Consistent with this emerging concept, transcriptome studies in human patients with DCM indicated distinct molecular signature for DCMs of different genetic etiology. To facilitate this line of research, we reviewed the status of transcriptome studies of inherited DCMs by focusing on three predominant DCM causative genes, TTN, LMNA, and BAG3. Besides studies in human patients, we summarized transcriptomic analysis of these inherited DCMs in a variety of model systems ranging from iPSCs to rodents and zebrafish. We concluded that the RNA-seq technology is a powerful genomic tool that has already led to the discovery of new modifying genes, signaling pathways, and related therapeutic avenues. We also pointed out that both temporal (different pathological stages) and spatial (different cell types) information need to be considered for future transcriptome studies. While an important bottle neck is the low throughput in experimentally testing differentially expressed genes, new technologies in efficient animal models such as zebrafish starts to be developed. It is anticipated that the RNA-seq technology will continue to uncover both unique and common pathological events, aiding the development of precision medicine for inherited DCMs.
Collapse
Affiliation(s)
- Matthew Koslow
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - David Mondaca-Ruff
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
28
|
Theodoris CV, Xiao L, Chopra A, Chaffin MD, Al Sayed ZR, Hill MC, Mantineo H, Brydon EM, Zeng Z, Liu XS, Ellinor PT. Transfer learning enables predictions in network biology. Nature 2023; 618:616-624. [PMID: 37258680 PMCID: PMC10949956 DOI: 10.1038/s41586-023-06139-9] [Citation(s) in RCA: 232] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/27/2023] [Indexed: 06/02/2023]
Abstract
Mapping gene networks requires large amounts of transcriptomic data to learn the connections between genes, which impedes discoveries in settings with limited data, including rare diseases and diseases affecting clinically inaccessible tissues. Recently, transfer learning has revolutionized fields such as natural language understanding1,2 and computer vision3 by leveraging deep learning models pretrained on large-scale general datasets that can then be fine-tuned towards a vast array of downstream tasks with limited task-specific data. Here, we developed a context-aware, attention-based deep learning model, Geneformer, pretrained on a large-scale corpus of about 30 million single-cell transcriptomes to enable context-specific predictions in settings with limited data in network biology. During pretraining, Geneformer gained a fundamental understanding of network dynamics, encoding network hierarchy in the attention weights of the model in a completely self-supervised manner. Fine-tuning towards a diverse panel of downstream tasks relevant to chromatin and network dynamics using limited task-specific data demonstrated that Geneformer consistently boosted predictive accuracy. Applied to disease modelling with limited patient data, Geneformer identified candidate therapeutic targets for cardiomyopathy. Overall, Geneformer represents a pretrained deep learning model from which fine-tuning towards a broad range of downstream applications can be pursued to accelerate discovery of key network regulators and candidate therapeutic targets.
Collapse
Affiliation(s)
- Christina V Theodoris
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School Genetics Training Program, Boston, USA.
| | - Ling Xiao
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Anant Chopra
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, USA
| | - Mark D Chaffin
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zeina R Al Sayed
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew C Hill
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Helene Mantineo
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Zexian Zeng
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
29
|
Bae S, Jung C, Yoon YS. Rescue of EndMT-associated endothelial dysfunction by modulating the YAP pathway. NATURE CARDIOVASCULAR RESEARCH 2023; 2:420-422. [PMID: 39196047 DOI: 10.1038/s44161-023-00268-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Seongho Bae
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Cholomi Jung
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Sup Yoon
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
30
|
Miranda AMA, Janbandhu V, Maatz H, Kanemaru K, Cranley J, Teichmann SA, Hübner N, Schneider MD, Harvey RP, Noseda M. Single-cell transcriptomics for the assessment of cardiac disease. Nat Rev Cardiol 2023; 20:289-308. [PMID: 36539452 DOI: 10.1038/s41569-022-00805-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
Cardiovascular disease is the leading cause of death globally. An advanced understanding of cardiovascular disease mechanisms is required to improve therapeutic strategies and patient risk stratification. State-of-the-art, large-scale, single-cell and single-nucleus transcriptomics facilitate the exploration of the cardiac cellular landscape at an unprecedented level, beyond its descriptive features, and can further our understanding of the mechanisms of disease and guide functional studies. In this Review, we provide an overview of the technical challenges in the experimental design of single-cell and single-nucleus transcriptomics studies, as well as a discussion of the type of inferences that can be made from the data derived from these studies. Furthermore, we describe novel findings derived from transcriptomics studies for each major cardiac cell type in both health and disease, and from development to adulthood. This Review also provides a guide to interpreting the exhaustive list of newly identified cardiac cell types and states, and highlights the consensus and discordances in annotation, indicating an urgent need for standardization. We describe advanced applications such as integration of single-cell data with spatial transcriptomics to map genes and cells on tissue and define cellular microenvironments that regulate homeostasis and disease progression. Finally, we discuss current and future translational and clinical implications of novel transcriptomics approaches, and provide an outlook of how these technologies will change the way we diagnose and treat heart disease.
Collapse
Affiliation(s)
| | - Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Henrike Maatz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kazumasa Kanemaru
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - James Cranley
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sarah A Teichmann
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Deptartment of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charite-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | | | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
31
|
Lv J, Meng S, Gu Q, Zheng R, Gao X, Kim JD, Chen M, Xia B, Zuo Y, Zhu S, Zhao D, Li Y, Wang G, Wang X, Meng Q, Cao Q, Cooke JP, Fang L, Chen K, Zhang L. Epigenetic landscape reveals MECOM as an endothelial lineage regulator. Nat Commun 2023; 14:2390. [PMID: 37185814 PMCID: PMC10130150 DOI: 10.1038/s41467-023-38002-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
A comprehensive understanding of endothelial cell lineage specification will advance cardiovascular regenerative medicine. Recent studies found that unique epigenetic signatures preferentially regulate cell identity genes. We thus systematically investigate the epigenetic landscape of endothelial cell lineage and identify MECOM to be the leading candidate as an endothelial cell lineage regulator. Single-cell RNA-Seq analysis verifies that MECOM-positive cells are exclusively enriched in the cell cluster of bona fide endothelial cells derived from induced pluripotent stem cells. Our experiments demonstrate that MECOM depletion impairs human endothelial cell differentiation, functions, and Zebrafish angiogenesis. Through integrative analysis of Hi-C, DNase-Seq, ChIP-Seq, and RNA-Seq data, we find MECOM binds enhancers that form chromatin loops to regulate endothelial cell identity genes. Further, we identify and verify the VEGF signaling pathway to be a key target of MECOM. Our work provides important insights into epigenetic regulation of cell identity and uncovered MECOM as an endothelial cell lineage regulator.
Collapse
Affiliation(s)
- Jie Lv
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Shu Meng
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Qilin Gu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Rongbin Zheng
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Xinlei Gao
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Jun-Dae Kim
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Min Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Bo Xia
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Yihan Zuo
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Sen Zhu
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Dongyu Zhao
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Yanqiang Li
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Guangyu Wang
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Xin Wang
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Qingshu Meng
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qi Cao
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John P Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
| | - Kaifu Chen
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Lili Zhang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
32
|
Yu D, Zhang S, Liu Z, Xu L, Chen L, Xie L. Single-Cell RNA Sequencing Analysis of Gene Regulatory Network Changes in the Development of Lung Adenocarcinoma. Biomolecules 2023; 13:671. [PMID: 37189418 PMCID: PMC10135828 DOI: 10.3390/biom13040671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023] Open
Abstract
Lung cancer is a highly heterogeneous disease. Cancer cells and other cells within the tumor microenvironment interact to determine disease progression, as well as response to or escape from treatment. Understanding the regulatory relationship between cancer cells and their tumor microenvironment in lung adenocarcinoma is of great significance for exploring the heterogeneity of the tumor microenvironment and its role in the genesis and development of lung adenocarcinoma. This work uses public single-cell transcriptome data (distant normal, nLung; early LUAD, tLung; advanced LUAD, tL/B), to draft a cell map of lung adenocarcinoma from onset to progression, and provide a cell-cell communication view of lung adenocarcinoma in the different disease stages. Based on the analysis of cell populations, it was found that the proportion of macrophages was significantly reduced in the development of lung adenocarcinoma, and patients with lower proportions of macrophages exhibited poor prognosis. We therefore constructed a process to screen an intercellular gene regulatory network that reduces any error generated by single cell communication analysis and increases the credibility of selected cell communication signals. Based on the key regulatory signals in the macrophage-tumor cell regulatory network, we performed a pseudotime analysis of the macrophages and found that signal molecules (TIMP1, VEGFA, SPP1) are highly expressed in immunosuppression-associated macrophages. These molecules were also validated using an independent dataset and were significantly associated with poor prognosis. Our study provides an effective method for screening the key regulatory signals in the tumor microenvironment and the selected signal molecules may serve as a reference to guide the development of diagnostic biomarkers for risk stratification and therapeutic targets for lung adenocarcinoma.
Collapse
Affiliation(s)
- Dongshuo Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- Shanghai-MOST Key Laboratory of Health and Disease Genomics (Chinese National Human Genome Center at Shanghai), Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200037, China; (S.Z.); (Z.L.); (L.X.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Siwen Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics (Chinese National Human Genome Center at Shanghai), Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200037, China; (S.Z.); (Z.L.); (L.X.)
| | - Zhenhao Liu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics (Chinese National Human Genome Center at Shanghai), Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200037, China; (S.Z.); (Z.L.); (L.X.)
| | - Linfeng Xu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics (Chinese National Human Genome Center at Shanghai), Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200037, China; (S.Z.); (Z.L.); (L.X.)
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lu Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics (Chinese National Human Genome Center at Shanghai), Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200037, China; (S.Z.); (Z.L.); (L.X.)
| |
Collapse
|
33
|
Tan WLW, Seow WQ, Zhang A, Rhee S, Wong WH, Greenleaf WJ, Wu JC. Current and future perspectives of single-cell multi-omics technologies in cardiovascular research. NATURE CARDIOVASCULAR RESEARCH 2023; 2:20-34. [PMID: 39196210 PMCID: PMC11974510 DOI: 10.1038/s44161-022-00205-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/05/2022] [Indexed: 08/29/2024]
Abstract
Single-cell technology has become an indispensable tool in cardiovascular research since its first introduction in 2009. Here, we highlight the recent remarkable progress in using single-cell technology to study transcriptomic and epigenetic heterogeneity in cardiac disease and development. We then introduce the key concepts in single-cell multi-omics modalities that apply to cardiovascular research. Lastly, we discuss some of the trending concepts in single-cell technology that are expected to propel cardiovascular research to the next phase of single-cell research.
Collapse
Grants
- HL130020 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL130020 NHLBI NIH HHS
- R01 HL145676 NHLBI NIH HHS
- R01 HL146690 NHLBI NIH HHS
- F30 HL156478 NHLBI NIH HHS
- HL156478 U.S. Department of Health & Human Services | NIH | Center for Information Technology (Center for Information Technology, National Institutes of Health)
- R01 HL141371 NHLBI NIH HHS
- R01 HL126527 NHLBI NIH HHS
- HL145676 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL141371 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HG010359 U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI)
- R01 HG010359 NHGRI NIH HHS
- HL146690 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 20POST35210896 American Heart Association (American Heart Association, Inc.)
Collapse
Affiliation(s)
| | | | - Angela Zhang
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Greenstone Biosciences, Palo Alto, CA, USA
| | - Siyeon Rhee
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Greenstone Biosciences, Palo Alto, CA, USA
| | - Wing H Wong
- Department of Statistics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Greenstone Biosciences, Palo Alto, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
34
|
Ameen M, Sundaram L, Shen M, Banerjee A, Kundu S, Nair S, Shcherbina A, Gu M, Wilson KD, Varadarajan A, Vadgama N, Balsubramani A, Wu JC, Engreitz JM, Farh K, Karakikes I, Wang KC, Quertermous T, Greenleaf WJ, Kundaje A. Integrative single-cell analysis of cardiogenesis identifies developmental trajectories and non-coding mutations in congenital heart disease. Cell 2022; 185:4937-4953.e23. [PMID: 36563664 PMCID: PMC10122433 DOI: 10.1016/j.cell.2022.11.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 09/13/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
To define the multi-cellular epigenomic and transcriptional landscape of cardiac cellular development, we generated single-cell chromatin accessibility maps of human fetal heart tissues. We identified eight major differentiation trajectories involving primary cardiac cell types, each associated with dynamic transcription factor (TF) activity signatures. We contrasted regulatory landscapes of iPSC-derived cardiac cell types and their in vivo counterparts, which enabled optimization of in vitro differentiation of epicardial cells. Further, we interpreted sequence based deep learning models of cell-type-resolved chromatin accessibility profiles to decipher underlying TF motif lexicons. De novo mutations predicted to affect chromatin accessibility in arterial endothelium were enriched in congenital heart disease (CHD) cases vs. controls. In vitro studies in iPSCs validated the functional impact of identified variation on the predicted developmental cell types. This work thus defines the cell-type-resolved cis-regulatory sequence determinants of heart development and identifies disruption of cell type-specific regulatory elements in CHD.
Collapse
Affiliation(s)
- Mohamed Ameen
- Department of Cancer Biology, Stanford University, Stanford, CA, USA; Illumina Artificial Intelligence Laboratory, Illumina Inc, Foster City, CA, USA
| | - Laksshman Sundaram
- Department of Computer Science, Stanford University, Stanford, CA, USA; Illumina Artificial Intelligence Laboratory, Illumina Inc, Foster City, CA, USA
| | - Mengcheng Shen
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Abhimanyu Banerjee
- Illumina Artificial Intelligence Laboratory, Illumina Inc, Foster City, CA, USA; Department of Physics, Stanford University, Stanford, CA, USA
| | - Soumya Kundu
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Surag Nair
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Anna Shcherbina
- Department of Biomedical Informatics, Stanford University, Stanford, CA, USA
| | - Mingxia Gu
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Avyay Varadarajan
- Department of Computer Science, California Institute of Technology, Pasadena, CA, USA
| | - Nirmal Vadgama
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | | | - Joseph C Wu
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | | | - Kyle Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc, Foster City, CA, USA
| | - Ioannis Karakikes
- Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.
| | - Kevin C Wang
- Department of Cancer Biology, Stanford University, Stanford, CA, USA; Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Applied Physics, Stanford University, Stanford, CA, USA.
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
35
|
Cao X, Mircea M, Yakala GK, van den Hil FE, Brescia M, Mei H, Mummery CL, Semrau S, Orlova VV. ETV2 Upregulation Marks the Specification of Early Cardiomyocytes and Endothelial Cells During Co-differentiation. Stem Cells 2022; 41:140-152. [PMID: 36512477 PMCID: PMC9982073 DOI: 10.1093/stmcls/sxac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
The ability to differentiate human-induced pluripotent stem cells (hiPSCs) efficiently into defined cardiac lineages, such as cardiomyocytes and cardiac endothelial cells, is crucial to study human heart development and model cardiovascular diseases in vitro. The mechanisms underlying the specification of these cell types during human development are not well understood which limits fine-tuning and broader application of cardiac model systems. Here, we used the expression of ETV2, a master regulator of hematoendothelial specification in mice, to identify functionally distinct subpopulations during the co-differentiation of endothelial cells and cardiomyocytes from hiPSCs. Targeted analysis of single-cell RNA-sequencing data revealed differential ETV2 dynamics in the 2 lineages. A newly created fluorescent reporter line allowed us to identify early lineage-predisposed states and show that a transient ETV2-high-state initiates the specification of endothelial cells. We further demonstrated, unexpectedly, that functional cardiomyocytes can originate from progenitors expressing ETV2 at a low level. Our study thus sheds light on the in vitro differentiation dynamics of 2 important cardiac lineages.
Collapse
Affiliation(s)
- Xu Cao
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Mircea
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Gopala Krishna Yakala
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Francijna E van den Hil
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcella Brescia
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefan Semrau
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Valeria V Orlova
- Corresponding author: Stefan Semrau, Ph.D., Leiden Institute of Physics, Leiden University, 2333 RA, Leiden, The Netherlands. ; or, Valeria V. Orlova, Ph.D., Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333ZC Leiden, The Netherlands.
| |
Collapse
|
36
|
Patient-specific and gene-corrected induced pluripotent stem cell-derived endothelial cells elucidate single-cell phenotype of pulmonary veno-occlusive disease. Stem Cell Reports 2022; 17:2674-2689. [PMID: 36400028 PMCID: PMC9768576 DOI: 10.1016/j.stemcr.2022.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022] Open
Abstract
Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary hypertension characterized by the preferential remodeling of the pulmonary venules. Hereditary PVOD is caused by biallelic variants of the EIF2AK4 gene. Three PVOD patients who carried the compound heterozygous variants of EIF2AK4 and two healthy controls were recruited and induced pluripotent stem cells (iPSCs) were generated from human peripheral blood mononuclear cells (PBMCs). The EIF2AK4 c.2965C>T variant (PVOD#1), c.3460A>T variant (PVOD#2), and c.4832_4833insAAAG variant (PVOD#3) were corrected by CRISPR-Cas9 in PVOD-iPSCs to generate isogenic controls and gene-corrected-iPSCs (GC-iPSCs). PVOD-iPSC-endothelial cells (ECs) exhibited a decrease in GCN2 protein and mRNA expression when compared with control and GC-ECs. PVOD-ECs exhibited an abnormal EC phenotype featured by excessive proliferation and angiogenesis. The abnormal phenotype of PVOD-ECs was normalized by protein kinase B inhibitors AZD5363 and MK2206. These findings help elucidate the underlying molecular mechanism of PVOD in humans and to identify promising therapeutic drugs for treating the disease.
Collapse
|
37
|
Mansfield C, Zhao MT, Basu M. Translational potential of hiPSCs in predictive modeling of heart development and disease. Birth Defects Res 2022; 114:926-947. [PMID: 35261209 PMCID: PMC9458775 DOI: 10.1002/bdr2.1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022]
Abstract
Congenital heart disease (CHD) represents a major class of birth defects worldwide and is associated with cardiac malformations that often require surgical intervention immediately after birth. Despite the intense efforts from multicentric genome/exome sequencing studies that have identified several genetic variants, the etiology of CHD remains diverse and often unknown. Genetically modified animal models with candidate gene deficiencies continue to provide novel molecular insights that are responsible for fetal cardiac development. However, the past decade has seen remarkable advances in the field of human induced pluripotent stem cell (hiPSC)-based disease modeling approaches to better understand the development of CHD and discover novel preventative therapies. The iPSCs are derived from reprogramming of differentiated somatic cells to an embryonic-like pluripotent state via overexpression of key transcription factors. In this review, we describe how differentiation of hiPSCs to specialized cardiac cellular identities facilitates our understanding of the development and pathogenesis of CHD subtypes. We summarize the molecular and functional characterization of hiPSC-derived differentiated cells in support of normal cardiogenesis, those that go awry in CHD and other heart diseases. We illustrate how stem cell-based disease modeling enables scientists to dissect the molecular mechanisms of cell-cell interactions underlying CHD. We highlight the current state of hiPSC-based studies that are in the verge of translating into clinical trials. We also address limitations including hiPSC-model reproducibility and scalability and differentiation methods leading to cellular heterogeneity. Last, we provide future perspective on exploiting the potential of hiPSC technology as a predictive model for patient-specific CHD, screening pharmaceuticals, and provide a source for cell-based personalized medicine. In combination with existing clinical and animal model studies, data obtained from hiPSCs will yield further understanding of oligogenic, gene-environment interaction, pathophysiology, and management for CHD and other genetic cardiac disorders.
Collapse
Affiliation(s)
- Corrin Mansfield
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Madhumita Basu
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
38
|
Sen T, Thummer RP. CRISPR and iPSCs: Recent Developments and Future Perspectives in Neurodegenerative Disease Modelling, Research, and Therapeutics. Neurotox Res 2022; 40:1597-1623. [PMID: 36044181 PMCID: PMC9428373 DOI: 10.1007/s12640-022-00564-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/17/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022]
Abstract
Neurodegenerative diseases are prominent causes of pain, suffering, and death worldwide. Traditional approaches modelling neurodegenerative diseases are deficient, and therefore, improved strategies that effectively recapitulate the pathophysiological conditions of neurodegenerative diseases are the need of the hour. The generation of human-induced pluripotent stem cells (iPSCs) has transformed our ability to model neurodegenerative diseases in vitro and provide an unlimited source of cells (including desired neuronal cell types) for cell replacement therapy. Recently, CRISPR/Cas9-based genome editing has also been gaining popularity because of the flexibility they provide to generate and ablate disease phenotypes. In addition, the recent advancements in CRISPR/Cas9 technology enables researchers to seamlessly target and introduce precise modifications in the genomic DNA of different human cell lines, including iPSCs. CRISPR-iPSC-based disease modelling, therefore, allows scientists to recapitulate the pathological aspects of most neurodegenerative processes and investigate the role of pathological gene variants in healthy non-patient cell lines. This review outlines how iPSCs, CRISPR/Cas9, and CRISPR-iPSC-based approaches accelerate research on neurodegenerative diseases and take us closer to a cure for neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic Lateral Sclerosis, and so forth.
Collapse
Affiliation(s)
- Tirthankar Sen
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| |
Collapse
|
39
|
Brittain EL, Thenappan T, Huston JH, Agrawal V, Lai YC, Dixon D, Ryan JJ, Lewis EF, Redfield MM, Shah SJ, Maron BA. Elucidating the Clinical Implications and Pathophysiology of Pulmonary Hypertension in Heart Failure With Preserved Ejection Fraction: A Call to Action: A Science Advisory From the American Heart Association. Circulation 2022; 146:e73-e88. [PMID: 35862198 PMCID: PMC9901193 DOI: 10.1161/cir.0000000000001079] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This science advisory focuses on the need to better understand the epidemiology, pathophysiology, and treatment of pulmonary hypertension in patients with heart failure with preserved ejection fraction. This clinical phenotype is important because it is common, is strongly associated with adverse outcomes, and lacks evidence-based therapies. Our goal is to clarify key knowledge gaps in pulmonary hypertension attributable to heart failure with preserved ejection fraction and to suggest specific, actionable scientific directions for addressing such gaps. Areas in need of additional investigation include refined disease definitions and interpretation of hemodynamics, as well as greater insights into noncardiac contributors to pulmonary hypertension risk, optimized animal models, and further molecular studies in patients with combined precapillary and postcapillary pulmonary hypertension. We highlight translational approaches that may provide important biological insight into pathophysiology and reveal new therapeutic targets. Last, we discuss the current and future landscape of potential therapies for patients with heart failure with preserved ejection fraction and pulmonary vascular dysfunction, including considerations of precision medicine, novel trial design, and device-based therapies, among other considerations. This science advisory provides a synthesis of important knowledge gaps, culminating in a collection of specific research priorities that we argue warrant investment from the scientific community.
Collapse
|
40
|
Hu Y, Zhang Y, Liu Y, Gao Y, San T, Li X, Song S, Yan B, Zhao Z. Advances in application of single-cell RNA sequencing in cardiovascular research. Front Cardiovasc Med 2022; 9:905151. [PMID: 35958408 PMCID: PMC9360414 DOI: 10.3389/fcvm.2022.905151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) provides high-resolution information on transcriptomic changes at the single-cell level, which is of great significance for distinguishing cell subtypes, identifying stem cell differentiation processes, and identifying targets for disease treatment. In recent years, emerging single-cell RNA sequencing technologies have been used to make breakthroughs regarding decoding developmental trajectories, phenotypic transitions, and cellular interactions in the cardiovascular system, providing new insights into cardiovascular disease. This paper reviews the technical processes of single-cell RNA sequencing and the latest progress based on single-cell RNA sequencing in the field of cardiovascular system research, compares single-cell RNA sequencing with other single-cell technologies, and summarizes the extended applications and advantages and disadvantages of single-cell RNA sequencing. Finally, the prospects for applying single-cell RNA sequencing in the field of cardiovascular research are discussed.
Collapse
Affiliation(s)
- Yue Hu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Ying Zhang
- Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Yutong Liu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yan Gao
- Department of Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Tiantian San
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Xiaoying Li
- Department of Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan, China
- Department of Emergency, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Sensen Song
- Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Binglong Yan
- Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan, China
| | - Zhuo Zhao
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
- Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan, China
- *Correspondence: Zhuo Zhao
| |
Collapse
|
41
|
PDGFD switches on stem cell endothelial commitment. Angiogenesis 2022; 25:517-533. [PMID: 35859222 PMCID: PMC9519648 DOI: 10.1007/s10456-022-09847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
Abstract
The critical factors regulating stem cell endothelial commitment and renewal remain not well understood. Here, using loss- and gain-of-function assays together with bioinformatic analysis and multiple model systems, we show that PDGFD is an essential factor that switches on endothelial commitment of embryonic stem cells (ESCs). PDGFD genetic deletion or knockdown inhibits ESC differentiation into EC lineage and increases ESC self-renewal, and PDGFD overexpression activates ESC differentiation towards ECs. RNA sequencing reveals a critical requirement of PDGFD for the expression of vascular-differentiation related genes in ESCs. Importantly, PDGFD genetic deletion or knockdown increases ESC self-renewal and decreases blood vessel densities in both embryonic and neonatal mice and in teratomas. Mechanistically, we reveal that PDGFD fulfills this function via the MAPK/ERK pathway. Our findings provide new insight of PDGFD as a novel regulator of ESC fate determination, and suggest therapeutic implications of modulating PDGFD activity in stem cell therapy.
Collapse
|
42
|
Zhu J, Yan M, Yan H, Xu L, Jiang Z, Liao G, Zhou Y, Liu W, Liang X, Li X, Xiao Y, Zhang Y. Single-Cell Transcriptomic Analysis Reveals the Crosstalk Propensity Between the Tumor Intermediate State and the CD8+ T Exhausted State to be Associated with Clinical Benefits in Melanoma. Front Immunol 2022; 13:766852. [PMID: 35903095 PMCID: PMC9314667 DOI: 10.3389/fimmu.2022.766852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 06/20/2022] [Indexed: 11/14/2022] Open
Abstract
Heterogeneous crosstalk between tumor cells and CD8+ T cells leads to substantial variation in clinical benefits from immunotherapy in melanoma. Due to spatial distribution and functional state heterogeneity, it is still unknown whether there is a crosstalk propensity between tumor cells and CD8+ T cells in melanoma, and how this crosstalk propensity affects the clinical outcome of patients. Using public single-cell transcriptome data, extensive heterogeneous functional states and ligand–receptor interactions of tumor cells and CD8+ T cells were revealed in melanoma. Furthermore, based on the association between cell–cell communication intensity and cell state activity in a single cell, we identified a crosstalk propensity between the tumor intermediate state and the CD8+ T exhausted state. This crosstalk propensity was further verified by pseudo-spatial proximity, spatial co-location, and the intra/intercellular signal transduction network. At the sample level, the tumor intermediate state and the CD8+ T exhausted state synergistically indicated better prognosis and both reduced in immunotherapy-resistant samples. The risk groups defined based on these two cell states could comprehensively reflect tumor genomic mutations and anti-tumor immunity information. The low-risk group had a higher BRAF mutation fraction as well as stronger antitumor immune response. Our findings highlighted the crosstalk propensity between the tumor intermediate state and the CD8+ T exhausted state, which may serve as a reference to guide the development of diagnostic biomarkers for risk stratification and therapeutic targets for new therapeutic strategies.
Collapse
Affiliation(s)
- Jiali Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Min Yan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Haoteng Yan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Liwen Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zedong Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Gaoming Liao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yao Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wei Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xin Liang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Key Laboratory of High Throughput Omics Big Data for Cold Region’s Major Diseases in Heilongjiang Province, Harbin Medical University, Harbin, China
- *Correspondence: Yunpeng Zhang, ; Yun Xiao, ; Xia Li,
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Key Laboratory of High Throughput Omics Big Data for Cold Region’s Major Diseases in Heilongjiang Province, Harbin Medical University, Harbin, China
- *Correspondence: Yunpeng Zhang, ; Yun Xiao, ; Xia Li,
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Key Laboratory of High Throughput Omics Big Data for Cold Region’s Major Diseases in Heilongjiang Province, Harbin Medical University, Harbin, China
- *Correspondence: Yunpeng Zhang, ; Yun Xiao, ; Xia Li,
| |
Collapse
|
43
|
Ang LT, Nguyen AT, Liu KJ, Chen A, Xiong X, Curtis M, Martin RM, Raftry BC, Ng CY, Vogel U, Lander A, Lesch BJ, Fowler JL, Holman AR, Chai T, Vijayakumar S, Suchy FP, Nishimura T, Bhadury J, Porteus MH, Nakauchi H, Cheung C, George SC, Red-Horse K, Prescott JB, Loh KM. Generating human artery and vein cells from pluripotent stem cells highlights the arterial tropism of Nipah and Hendra viruses. Cell 2022; 185:2523-2541.e30. [PMID: 35738284 DOI: 10.1016/j.cell.2022.05.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/26/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
Abstract
Stem cell research endeavors to generate specific subtypes of classically defined "cell types." Here, we generate >90% pure human artery or vein endothelial cells from pluripotent stem cells within 3-4 days. We specified artery cells by inhibiting vein-specifying signals and vice versa. These cells modeled viral infection of human vasculature by Nipah and Hendra viruses, which are extraordinarily deadly (∼57%-59% fatality rate) and require biosafety-level-4 containment. Generating pure populations of artery and vein cells highlighted that Nipah and Hendra viruses preferentially infected arteries; arteries expressed higher levels of their viral-entry receptor. Virally infected artery cells fused into syncytia containing up to 23 nuclei, which rapidly died. Despite infecting arteries and occupying ∼6%-17% of their transcriptome, Nipah and Hendra largely eluded innate immune detection, minimally eliciting interferon signaling. We thus efficiently generate artery and vein cells, introduce stem-cell-based toolkits for biosafety-level-4 virology, and explore the arterial tropism and cellular effects of Nipah and Hendra viruses.
Collapse
Affiliation(s)
- Lay Teng Ang
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Alana T Nguyen
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Kevin J Liu
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Angela Chen
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Xiaochen Xiong
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Matthew Curtis
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Renata M Martin
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Brian C Raftry
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Chun Yi Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Uwe Vogel
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin 13353, Germany
| | - Angelika Lander
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin 13353, Germany
| | - Benjamin J Lesch
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Jonas L Fowler
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Alyssa R Holman
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Timothy Chai
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Siva Vijayakumar
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Fabian P Suchy
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Toshinobu Nishimura
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Joydeep Bhadury
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Matthew H Porteus
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Kristy Red-Horse
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Joseph B Prescott
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin 13353, Germany.
| | - Kyle M Loh
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
44
|
Nguyen T, Wei Y, Nakada Y, Zhou Y, Zhang J. Cardiomyocyte Cell-Cycle Regulation in Neonatal Large Mammals: Single Nucleus RNA-Sequencing Data Analysis via an Artificial-Intelligence–Based Pipeline. Front Bioeng Biotechnol 2022; 10:914450. [PMID: 35860330 PMCID: PMC9289371 DOI: 10.3389/fbioe.2022.914450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
Adult mammalian cardiomyocytes have very limited capacity to proliferate and repair the myocardial infarction. However, when apical resection (AR) was performed in pig hearts on postnatal day (P) 1 (ARP1) and acute myocardial infarction (MI) was induced on P28 (MIP28), the animals recovered with no evidence of myocardial scarring or decline in contractile performance. Furthermore, the repair process appeared to be driven by cardiomyocyte proliferation, but the regulatory molecules that govern the ARP1-induced enhancement of myocardial recovery remain unclear. Single-nucleus RNA sequencing (snRNA-seq) data collected from fetal pig hearts and the hearts of pigs that underwent ARP1, MIP28, both ARP1 and MI, or neither myocardial injury were evaluated via autoencoder, cluster analysis, sparse learning, and semisupervised learning. Ten clusters of cardiomyocytes (CM1–CM10) were identified across all experimental groups and time points. CM1 was only observed in ARP1 hearts on P28 and was enriched for the expression of T-box transcription factors 5 and 20 (TBX5 and TBX20, respectively), Erb-B2 receptor tyrosine kinase 4 (ERBB4), and G Protein-Coupled Receptor Kinase 5 (GRK5), as well as genes associated with the proliferation and growth of cardiac muscle. CM1 cardiomyocytes also highly expressed genes for glycolysis while lowly expressed genes for adrenergic signaling, which suggested that CM1 were immature cardiomyocytes. Thus, we have identified a cluster of cardiomyocytes, CM1, in neonatal pig hearts that appeared to be generated in response to AR injury on P1 and may have been primed for activation of CM cell-cycle activation and proliferation by the upregulation of TBX5, TBX20, ERBB4, and GRK5.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuhua Wei
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuji Nakada
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
- Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Jianyi Zhang,
| |
Collapse
|
45
|
Mullen M, Wen Tan WL, Rhee JW, Wu JC. Modeling Susceptibility to Cardiotoxicity in Cancer Therapy Using Human iPSC-Derived Cardiac Cells and Systems Biology. Heart Fail Clin 2022; 18:335-347. [PMID: 35718410 PMCID: PMC12001829 DOI: 10.1016/j.hfc.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of human-induced pluripotent stem cell-derived cardiac cell types has created a new paradigm in assessing drug-induced cardiotoxicity. Advances in genomics and epigenomics have also implicated several genomic loci and biological pathways that may contribute to susceptibility to cancer therapies. In this review, we first provide a brief overview of the cardiotoxicity associated with chemotherapy. We then provide a detailed summary of systems biology approaches being applied to elucidate potential molecular mechanisms involved in cardiotoxicity. Finally, we discuss combining systems biology approaches with iPSC technology to help discover molecular mechanisms associated with cardiotoxicity.
Collapse
Affiliation(s)
- McKay Mullen
- Stanford Cardiovascular Institute, Stanford University, 265 Campus Drive G1120B, Stanford, CA 94304, USA
| | - Wilson Lek Wen Tan
- Stanford Cardiovascular Institute, Stanford University, 265 Campus Drive G1120B, Stanford, CA 94304, USA
| | - June-Wha Rhee
- Department of Medicine, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA 91010, USA.
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, 265 Campus Drive G1120B, Stanford, CA 94304, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University; Department of Radiology, Stanford University, 265 Campus Drive G1120B, Stanford, CA 94304, USA.
| |
Collapse
|
46
|
Mizrak D, Feng H, Yang B. Dissecting the Heterogeneity of Human Thoracic Aortic Aneurysms Using Single-Cell Transcriptomics. Arterioscler Thromb Vasc Biol 2022; 42:919-930. [PMID: 35708028 PMCID: PMC9339526 DOI: 10.1161/atvbaha.122.317484] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thoracic aortic aneurysm is a life-threatening condition caused by weakening of the thoracic aorta wall, often developing silently until dissection or rupture occurs. Despite substantial efforts in the past decade, there have been no significant therapeutic advances to prevent or clinically manage diverse forms of thoracic aortic aneurysm and dissection with the only effective treatment being surgical repair. There is an urgent need to understand intra- and inter-aneurysmal heterogeneity underlying thoracic aortic aneurysm and dissection pathogenesis. The human aortic wall consists of many cell types and exhibits significant regional heterogeneity. High-throughput single-cell RNA sequencing has emerged as the principal tool to reveal the complexity in human tissues and clinical specimens. Recent single-cell RNA sequencing studies of different aortic cell populations both in vivo and in vitro began to dissect this complexity and have provided valuable information. In this review, we summarize these findings and discuss the potential applications of single-cell transcriptomics and related high-content technologies in human thoracic aortic aneurysm and dissection research, as well as the challenges associated with it.
Collapse
Affiliation(s)
- Dogukan Mizrak
- Department of Cardiac Surgery, University of Michigan, Ann Arbor (D.M., H.F., B.Y.)
| | - Hao Feng
- Department of Cardiac Surgery, University of Michigan, Ann Arbor (D.M., H.F., B.Y.).,Xiangya School of Medicine, Central South University, Changsha, China (H.F.)
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor (D.M., H.F., B.Y.)
| |
Collapse
|
47
|
Wei TT, Chandy M, Nishiga M, Zhang A, Kumar KK, Thomas D, Manhas A, Rhee S, Justesen JM, Chen IY, Wo HT, Khanamiri S, Yang JY, Seidl FJ, Burns NZ, Liu C, Sayed N, Shie JJ, Yeh CF, Yang KC, Lau E, Lynch KL, Rivas M, Kobilka BK, Wu JC. Cannabinoid receptor 1 antagonist genistein attenuates marijuana-induced vascular inflammation. Cell 2022; 185:1676-1693.e23. [PMID: 35489334 PMCID: PMC9400797 DOI: 10.1016/j.cell.2022.04.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 02/01/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022]
Abstract
Epidemiological studies reveal that marijuana increases the risk of cardiovascular disease (CVD); however, little is known about the mechanism. Δ9-tetrahydrocannabinol (Δ9-THC), the psychoactive component of marijuana, binds to cannabinoid receptor 1 (CB1/CNR1) in the vasculature and is implicated in CVD. A UK Biobank analysis found that cannabis was an risk factor for CVD. We found that marijuana smoking activated inflammatory cytokines implicated in CVD. In silico virtual screening identified genistein, a soybean isoflavone, as a putative CB1 antagonist. Human-induced pluripotent stem cell-derived endothelial cells were used to model Δ9-THC-induced inflammation and oxidative stress via NF-κB signaling. Knockdown of the CB1 receptor with siRNA, CRISPR interference, and genistein attenuated the effects of Δ9-THC. In mice, genistein blocked Δ9-THC-induced endothelial dysfunction in wire myograph, reduced atherosclerotic plaque, and had minimal penetration of the central nervous system. Genistein is a CB1 antagonist that attenuates Δ9-THC-induced atherosclerosis.
Collapse
Affiliation(s)
- Tzu-Tang Wei
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program in Chemical Biology and Molecular Biophysics (TIGP-CBMB), Academia Sinica, Taipei, Taiwan
| | - Mark Chandy
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Greenstone Biosciences, Palo Alto, CA 94304, USA
| | - Masataka Nishiga
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Angela Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Kaavya Krishna Kumar
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Amit Manhas
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Siyeon Rhee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Greenstone Biosciences, Palo Alto, CA 94304, USA
| | - Johanne Marie Justesen
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Ian Y Chen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Hung-Ta Wo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Saereh Khanamiri
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Johnson Y Yang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | | | - Noah Z Burns
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chih-Fan Yeh
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kai-Chien Yang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Edward Lau
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kara L Lynch
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Manuel Rivas
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Greenstone Biosciences, Palo Alto, CA 94304, USA.
| |
Collapse
|
48
|
Yu B, Zhao SR, Yan CD, Zhang M, Wu JC. Deconvoluting the Cells of the Human Heart with iPSC Technology: Cell Types, Protocols, and Uses. Curr Cardiol Rep 2022; 24:487-496. [PMID: 35244869 PMCID: PMC12007454 DOI: 10.1007/s11886-022-01670-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Induced pluripotent stem cells (iPSCs) have become widely adopted tools in cardiovascular biology due to their ability to differentiate into patient-specific cell types. Here, we describe the current protocols, important discoveries, and experimental limitations from the iPSC-derived cell types of the human heart: cardiomyocytes, cardiac fibroblasts, vascular smooth muscle cells, endothelial cells, and pericytes. In addition, we also examine the progress of 3D-based cell culture systems. RECENT FINDINGS There has been rapid advancement in methods to generate cardiac iPSC-derived cell types. These advancements have led to improved cardiovascular disease modeling, elucidation of interactions among different cell types, and the creation of 3D-based cell culture systems able to provide more physiologically relevant insights into cardiovascular diseases. iPSCs have become an instrumental model system in the toolbox of cardiovascular biologists. Ongoing research continues to advance the use of iPSCs in (1) disease modeling, (2) drug screening, and (3) clinical trials in a dish.
Collapse
Affiliation(s)
- Brian Yu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94503, USA
| | - Shane Rui Zhao
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94503, USA
| | - Christopher D Yan
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94503, USA
| | - Mao Zhang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94503, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94503, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Radiology, Stanford University, Stanford, CA, USA.
- , 265 Campus Drive G1120B, Stanford, CA, 94305, USA.
| |
Collapse
|
49
|
Deciphering Cardiac Biology and Disease by Single-Cell Transcriptomic Profiling. Biomolecules 2022; 12:biom12040566. [PMID: 35454155 PMCID: PMC9032111 DOI: 10.3390/biom12040566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
By detecting minute molecular changes in hundreds to millions of single cells, single-cell RNA sequencing allows for the comprehensive characterization of the diversity and dynamics of cells in the heart. Our understanding of the heart has been transformed through the recognition of cellular heterogeneity, the construction of regulatory networks, the building of lineage trajectories, and the mapping of intercellular crosstalk. In this review, we introduce cardiac progenitors and their transcriptional regulation during embryonic development, highlight cellular heterogeneity and cell subtype functions in cardiac health and disease, and discuss insights gained from the study of pluripotent stem-cell-derived cardiomyocytes.
Collapse
|
50
|
Robinson EL, Baker AH, Brittan M, McCracken I, Condorelli G, Emanueli C, Srivastava PK, Gaetano C, Thum T, Vanhaverbeke M, Angione C, Heymans S, Devaux Y, Pedrazzini T, Martelli F. Dissecting the transcriptome in cardiovascular disease. Cardiovasc Res 2022; 118:1004-1019. [PMID: 33757121 PMCID: PMC8930073 DOI: 10.1093/cvr/cvab117] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
The human transcriptome comprises a complex network of coding and non-coding RNAs implicated in a myriad of biological functions. Non-coding RNAs exhibit highly organized spatial and temporal expression patterns and are emerging as critical regulators of differentiation, homeostasis, and pathological states, including in the cardiovascular system. This review defines the current knowledge gaps, unmet methodological needs, and describes the challenges in dissecting and understanding the role and regulation of the non-coding transcriptome in cardiovascular disease. These challenges include poor annotation of the non-coding genome, determination of the cellular distribution of transcripts, assessment of the role of RNA processing and identification of cell-type specific changes in cardiovascular physiology and disease. We highlight similarities and differences in the hurdles associated with the analysis of the non-coding and protein-coding transcriptomes. In addition, we discuss how the lack of consensus and absence of standardized methods affect reproducibility of data. These shortcomings should be defeated in order to make significant scientific progress and foster the development of clinically applicable non-coding RNA-based therapeutic strategies to lessen the burden of cardiovascular disease.
Collapse
Affiliation(s)
- Emma L Robinson
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Universiteitssingel 50, 6229 Maastricht University, Maastricht, The Netherlands
- The Division of Cardiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew H Baker
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Mairi Brittan
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Ian McCracken
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - G Condorelli
- Humanitas Research Hospital, Humanitas University, Via Manzoni 113, Rozzano, MI 20089, Italy
| | - C Emanueli
- Imperial College, National Heart and Lung Institute, Hammersmith campus, Du Cane Road, London W12 0NN, UK
| | - P K Srivastava
- Imperial College, National Heart and Lung Institute, Hammersmith campus, Du Cane Road, London W12 0NN, UK
| | - C Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia 27100, Italy
| | - T Thum
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Carl-Neuberg-Straße 1 30625 Hannover, Germany
| | - M Vanhaverbeke
- UZ Gasthuisberg Campus, KU Leuven, Herestraat 49 3000 Leuven, Belgium
| | - C Angione
- Department of Computer Science and Information Systems, Teesside University, Middlesbrough, TS4 3BX, UK
| | - S Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Universiteitssingel 50, 6229 Maastricht University, Maastricht, The Netherlands
| | - Y Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - T Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, 1011 Lausanne, Switzerland
| | - F Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Piazza Edmondo Malan, 2, 20097 San Donato, Milan, Italy
| | | |
Collapse
|