1
|
Savulescu-Fiedler I, Baz RO, Baz RA, Scheau C, Gegiu A. Coronary Artery Spasm: From Physiopathology to Diagnosis. Life (Basel) 2025; 15:597. [PMID: 40283152 PMCID: PMC12029111 DOI: 10.3390/life15040597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Coronary artery spasm (CAS) is a reversible vasoconstriction of normal or atherosclerotic epicardial coronary arteries with a subsequent reduction in myocardial blood flow, leading to myocardial ischemia, myocardial infarction, severe arrhythmias, or even sudden death. It is an entity that should be recognized based on a particular clinical presentation. Numerous differences exist between CAS and obstructive coronary disease in terms of mechanisms, risk factors, and therapeutic solutions. The gold standard for CAS diagnosis is represented by transitory and reversible occlusion of the coronary arteries at spasm provocation test, which consists of an intracoronary administration of Ach, ergonovine, or methylergonovine during angiography. The pathophysiology of CAS is not fully understood. However, the core of CAS is represented by vascular smooth muscle cell contraction, with a circadian pattern. The initiating event of this contraction may be represented by endothelial dysfunction, inflammation, or autonomic nervous system unbalance. Our study explores the intricate balance of these factors and their clinical relevance in the management of CAS.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Radu Octavian Baz
- Clinical Laboratory of Radiology and Medical Imaging, “Sf. Apostol Andrei” County Emergency Hospital, 900591 Constanta, Romania
- Department of Radiology and Medical Imaging, Faculty of Medicine, “Ovidius” University, 900527 Constanta, Romania
| | - Radu Andrei Baz
- Clinical Laboratory of Radiology and Medical Imaging, “Sf. Apostol Andrei” County Emergency Hospital, 900591 Constanta, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Andrei Gegiu
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| |
Collapse
|
2
|
Zhu Y, Chu Y, Lan Y, Wang S, Zhang Y, Liu Y, Wang X, Yu F, Ma X. Loss of Endothelial TRPC1 Induces Aortic Hypercontractility and Hypertension. Circ Res 2025; 136:508-523. [PMID: 39912234 DOI: 10.1161/circresaha.124.325574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND The increasing prevalence of obesity-related cardiovascular diseases demands a better understanding of the contribution of different cell types to vascular function for developing new treatment strategies. Previous studies have established a fundamental role of TRPC1 (transient receptor potential channel canonical family member 1) in blood vessels. However, little is known about its functional roles within different cell types. METHODS We generated endothelial-specific TRPC1-deficient and knockin mice and analyzed their changes in vascular function under physiological and pathologically obese state. Wire myography, Ca2+ image, blood pressure measurements, RNA-sequencing analysis, liquid chromatography-mass spectrometry, immunoblotting, ELISA, luciferase reporter assay, and morphometric assessments were performed to unravel phenotype and molecular changes in response to the absence or presence of endothelial TRPC1. RESULTS Loss of endothelial TRPC1 reduced endothelial-dependent relaxation and exaggerated endothelial-dependent contraction in mouse aorta. As expected, loss of endothelial TRPC1 amplified blood pressure and decreased acetylcholine-induced intracellular Ca2+ concentration rise in the aorta. In endothelial-specific TRPC1-deficient mouse arteries, the mRNA profile identified upregulation of c-Fos (Fos proto-oncogene, activator protein-1 transcription factor subunit). Blockade of c-Fos rescued the impaired vasomotor tone in the aorta of mice deficient in endothelial TRPC1. Endothelial TRPC1-regulated nitric oxide/endothelin-1 production is involved in vascular c-Fos expression. Moreover, knockin of endothelial TRPC1 ameliorated enhanced endothelial-dependent contraction and hypertension in obese mice which is related to alleviated endothelial endothelin-1/c-Fos production and smooth muscle contraction. CONCLUSIONS Our results identify endothelial TRPC1 as a previously unclear regulator of vascular changes and blood pressure in both physiological and pathologically obese state, and it is associated with nitric oxide/endothelin-1/c-Fos signaling.
Collapse
Affiliation(s)
- Yifei Zhu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
- Food Nutrition and Human Health Interdisciplinary Center, School of Food Science and Technology, Wuxi School of Medicine, Jiangnan University, Wuxi, China (Y. Zhu, X.M.)
| | - Yuan Chu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
| | - Yihui Lan
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
| | - Sheng Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
| | - Yizhi Zhang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
| | - Yuan Liu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
| | - Xianfeng Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
| | - Fan Yu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
| | - Xin Ma
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
- Food Nutrition and Human Health Interdisciplinary Center, School of Food Science and Technology, Wuxi School of Medicine, Jiangnan University, Wuxi, China (Y. Zhu, X.M.)
- Affiliated Hospital of Jiangnan University, Wuxi, China (X.M.)
| |
Collapse
|
3
|
Singh H, Singh R, Singh A, Singh H, Singh G, Kaur S, Singh B. Role of oxidative stress in diabetes-induced complications and their management with antioxidants. Arch Physiol Biochem 2024; 130:616-641. [PMID: 37571852 DOI: 10.1080/13813455.2023.2243651] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 08/13/2023]
Abstract
Diabetes mellitus (DM) is a huge global health issue and one of the most studied diseases, with a large global prevalence. Oxidative stress is a cytotoxic consequence of the excessive development of ROS and suppression of the antioxidant defense system for ROS elimination, which accelerates the progression of diabetes complications such as diabetic neuropathy, retinopathy, and nephropathy. Hyperglycaemia induced oxidative stress causes the activation of seven major pathways implicated in the pathogenesis of diabetic complications. These pathways increase the production of ROS and RNS, which contributes to dysregulated autophagy, gene expression changes, and the development of numerous pro-inflammatory mediators which may eventually lead to diabetic complications. This review will illustrate that oxidative stress plays a vital role in the pathogenesis of diabetic complications, and the use of antioxidants will help to reduce oxidative stress and thus may alleviate diabetic complications.
Collapse
Affiliation(s)
- Hasandeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Rajanpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Arshdeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Harshbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Gurpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Sarabjit Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|
4
|
Elbrolosy MA, Helal MG, Makled MN. CGS-21680 defers cisplatin-induced AKI-CKD transition in C57/BL6 mice. Chem Biol Interact 2024; 403:111255. [PMID: 39332792 DOI: 10.1016/j.cbi.2024.111255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Acute kidney injury (AKI), with a high mortality and morbidity, is known as a risk factor for developing progressive chronic kidney disease (CKD). Targeting transition of AKI to CKD displays an excellent therapeutic potential. This study aims at investigating the role of CGS-21680, selective A2AR agonist, in deferring Cis-induced AKI-CKD transition. The AKI-CKD transition model was induced in C57/BL6 mice by repeated low doses of Cis (2.5 mg/kg i.p for 5 consecutive days in two cycles with a recovery phase of 16 days between two cycles). CGS-21680 was administered daily for 6 weeks (0.1 mg/kg, i.p). Urine, blood, and kidney were collected at three different time points to track the disease progression. CGS-21680 administration preserved kidney function and attenuated tubular damage as evidenced by hematoxylin-eosin (H&E) histopathology. CGS-21680 significantly restored oxidative status as reflected by reduced malondialdehyde (MDA) content and increased total antioxidant capacity (TAC). CGS-21680 showed anti-inflammatory effect as indicated by decreased TNF-α and iNOS. Additionally, CGS-21680 ameliorated endothelial dysfunction and enhanced renal vasodilation as evidenced by upregulation of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) expression and down regulation of endothelin-1 (ET-1) and its receptor endothelin-A (ET-A) receptor expression. CGS-21680 also attenuated renal fibrosis as reflected by the reduction of percentage of fibrosis in Masson's trichome-stained renal sections and down regulation of transforming growth factor beta1 (TGF-β1) protein expression in IHC-stained renal sections. In conclusion, CGS-21680 could defer Cis-induced AKI-CKD transition via its vasodilatory, antioxidant, anti-inflammatory, and anti-fibrotic effects.
Collapse
Affiliation(s)
- Menna A Elbrolosy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mirhan N Makled
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
5
|
Turner CG, Hayat MJ, Otis JS, Quyyumi AA, Wong BJ. The effect of endothelin a receptor inhibition and biological sex on cutaneous microvascular function in non-Hispanic Black and White young adults. Physiol Rep 2024; 12:e16149. [PMID: 39016164 PMCID: PMC11252828 DOI: 10.14814/phy2.16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
The purpose of this study was to investigate whether endothelin-A receptor (ETAR) inhibition in non-Hispanic Black (NHB) and White (NHW) young adults depends on biological sex. We recruited females during low hormone (n = 22) and high hormone (n = 22) phases, and males (n = 22). Participants self-identified as NHB (n = 33) or NHW (n = 33). Participants were instrumented with two microdialysis fibers: (1) lactated Ringer's (control) and (2) 500 nM BQ-123 (ETAR antagonist). Local heating was used to elicit cutaneous vasodilation, and an infusion of 20 mM L-NAME to quantify NO-dependent vasodilation. At control sites, NO-dependent vasodilation was lowest in NHB males (46 ± 13 %NO) and NHB females during low hormone phases (47 ± 12 %NO) compared to all NHW groups. Inhibition of ETAR increased NO-dependent vasodilation in NHB males (66 ± 13 %NO), in both groups of females during low hormone phases (NHW, control: 64 ± 12 %NO, BQ-123: 85 ± 11 %NO; NHB, BQ-123: 68 ± 13 %NO), and in NHB females during high hormone phases (control: 61 ± 11 %NO, BQ-123: 83 ± 9 %NO). There was no effect for ETAR inhibition in NHW males or females during high hormone phases. These data suggest the effect of ETAR inhibition on NO-dependent vasodilation is influenced by biological sex and racial identity.
Collapse
Affiliation(s)
- Casey G. Turner
- Department of Kinesiology and HealthGeorgia State UniversityAtlantaGeorgiaUSA
- Molecular Cardiology Research InstituteTufts Medical CenterBostonMassachusettsUSA
| | - Matthew J. Hayat
- School of Public HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jeffrey S. Otis
- Department of Kinesiology and HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Arshed A. Quyyumi
- Emory Clinical Cardiovascular Research InstituteEmory University School of MedicineAtlantaGeorgiaUSA
| | - Brett J. Wong
- Department of Kinesiology and HealthGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
6
|
Cao M, Yang F, McClements DJ, Guo Y, Liu R, Chang M, Wei W, Jin J, Wang X. Impact of dietary n-6/n-3 fatty acid ratio of atherosclerosis risk: A review. Prog Lipid Res 2024; 95:101289. [PMID: 38986846 DOI: 10.1016/j.plipres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Atherosclerosis is a causative factor associated with cardiovascular disease (CVD). Over the past few decades, extensive research has been carried out on the relationship between the n-6/n-3 fatty acid ratio of ingested lipids and the progression of atherosclerosis. However, there are still many uncertainties regarding the precise nature of this relationship, which has led to challenges in providing sound dietary advice to the general public. There is therefore a pressing need to review our current understanding of the relationship between the dietary n-6/n-3 fatty acid ratio and atherosclerosis, and to summarize the underlying factors contributing to the current uncertainties. Initially, this article reviews the association between the n-6/n-3 fatty acid ratio and CVDs in different countries. A summary of the current understanding of the molecular mechanisms of n-6/n-3 fatty acid ratio on atherosclerosis is then given, including inflammatory responses, lipid metabolism, low-density lipoprotein cholesterol oxidation, and vascular function. Possible reasons behind the current controversies on the relationship between the n-6/n-3 fatty acid ratio and atherosclerosis are then provided, including the precise molecular structures of the fatty acids, diet-gene interactions, the role of fat-soluble phytochemicals, and the impact of other nutritional factors. An important objective of this article is to highlight areas where further research is needed to clarify the role of n-6/n-3 fatty acid ratio on atherosclerosis.
Collapse
Affiliation(s)
- Minjie Cao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China; Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Fangwei Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Longpan Road, Xuanwu District, Nanjing, China
| | | | - Yiwen Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruijie Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ming Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
7
|
Ider M, Ceylan C, Naseri A, Ceylan O, Durgut MK, Ok M, Iyigun SS, Erol BB, Sahin HB, Kilickaya MC. Evaluation of endothelial glycocalyx injury biomarkers in feline hemotropic mycoplasmosis. Sci Rep 2024; 14:12931. [PMID: 38839816 PMCID: PMC11153643 DOI: 10.1038/s41598-024-62359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
The present study aimed to investigate endothelial glycocalyx (eGCx) damage in cats with feline hemotropic mycoplasmosis caused by Mycoplasma haemofelis using selected biomarkers and to determine the diagnostic and prognostic significance of these biomarkers. The study included 25 cats with feline hemotropic mycoplasmosis and 10 healthy cats. Clinical examination, blood gas analysis, complete blood count, and biochemical analysis were performed. Hemotropic mycoplasmosis diagnosed by microscopic examination and molecularly confirmed by PCR targeting the Mycoplasma haemofelis 16s rRNA gene. To evaluate endothelial glycocalyx damage, syndecan-1, endothelin-1 (ET-1), asymmetric dimethylarginine (ADMA), and vascular endothelial growth factor-A (VEGF-A) concentrations were measured using cat-specific commercial ELISA kits. Of the cats with feline hemotropic mycoplasmosis, 14 (56%) survived and 11 (44%) died. While syndecan-1 and ET-1 concentrations were significantly higher in cats with hemotropic mycoplasmosis compared to the control group (p < 0.001), no statistically significant difference was found for ADMA and VEGF-A concentrations (p > 0.05). Endothelial glycocalyx biomarkers showed significant correlations with each other and with hematological parameters (p < 0.01). The results of the ROC analysis showed that ET-1 with area under the curve (AUC) of 0.821 (p < 0.01) and VEGF-A with AUC of 0.805 (p < 0.010) were found to be significant prognostic indicators. In conclusion, this study demonstrated that serum syndecan-1 and ET-1 can be used as diagnostic and serum ET-1 and VEGF-A as prognostic biomarkers in cats with hemotropic mycoplasmosis. Our results indicate the development of eGCx damage in feline hemotropic mycoplasmosis and suggest that glycocalyx disruption may contribute to the pathogenesis of the disease.
Collapse
Affiliation(s)
- Merve Ider
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey.
| | - Ceylan Ceylan
- Department of Parasitology, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
| | - Amir Naseri
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Onur Ceylan
- Department of Parasitology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Murat Kaan Durgut
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Mahmut Ok
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Suleyman Serhat Iyigun
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Busra Burcu Erol
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Hatice Betul Sahin
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Merve Cansu Kilickaya
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
8
|
Li J, Zhu J, Gray O, Sobreira DR, Wu D, Huang RT, Miao B, Sakabe NJ, Krause MD, Kaikkonen MU, Romanoski CE, Nobrega MA, Fang Y. Mechanosensitive super-enhancers regulate genes linked to atherosclerosis in endothelial cells. J Cell Biol 2024; 223:e202211125. [PMID: 38231044 PMCID: PMC10794123 DOI: 10.1083/jcb.202211125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 10/05/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Vascular homeostasis and pathophysiology are tightly regulated by mechanical forces generated by hemodynamics. Vascular disorders such as atherosclerotic diseases largely occur at curvatures and bifurcations where disturbed blood flow activates endothelial cells while unidirectional flow at the straight part of vessels promotes endothelial health. Integrated analysis of the endothelial transcriptome, the 3D epigenome, and human genetics systematically identified the SNP-enriched cistrome in vascular endothelium subjected to well-defined atherosclerosis-prone disturbed flow or atherosclerosis-protective unidirectional flow. Our results characterized the endothelial typical- and super-enhancers and underscored the critical regulatory role of flow-sensitive endothelial super-enhancers. CRISPR interference and activation validated the function of a previously unrecognized unidirectional flow-induced super-enhancer that upregulates antioxidant genes NQO1, CYB5B, and WWP2, and a disturbed flow-induced super-enhancer in endothelium which drives prothrombotic genes EDN1 and HIVEP in vascular endothelium. Our results employing multiomics identify the cis-regulatory architecture of the flow-sensitive endothelial epigenome related to atherosclerosis and highlight the regulatory role of super-enhancers in mechanotransduction mechanisms.
Collapse
Affiliation(s)
- Jin Li
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Jiayu Zhu
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Olivia Gray
- Department of Human Genetics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Débora R. Sobreira
- Department of Human Genetics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - David Wu
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Ru-Ting Huang
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Bernadette Miao
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Noboru J. Sakabe
- Department of Human Genetics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Matthew D. Krause
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Minna U. Kaikkonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Casey E. Romanoski
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Marcelo A. Nobrega
- Department of Human Genetics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Yun Fang
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
- Committee on Molecular Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Cardenas HL, Evanoff NG, Fandl HK, Berry AR, Wegerson KN, Ostrander EI, Greiner JJ, Dufresne SR, Kotlyar M, Dengel DR, DeSouza CA, Garcia VP. Endothelial-derived extracellular vesicles associated with electronic cigarette use impair cerebral microvascular cell function. J Appl Physiol (1985) 2023; 135:271-278. [PMID: 37348012 PMCID: PMC10393369 DOI: 10.1152/japplphysiol.00243.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
The aim of this study was to determine the effect of circulating endothelial cell-derived microvesicles (EMVs) isolated from e-cigarette users on human cerebral microvascular endothelial cells (hCMECs) nitric oxide (NO) and endothelin (ET)-1 production and tissue-type plasminogen activator (t-PA) release. Circulating EMVs (CD144-PE) were isolated (flow cytometry) from 27 young adults (19-25 yr): 10 nonsmokers (6 M/4 F), 10 e-cigarette users (6 M/4 F), and 7 tobacco cigarette smokers (4 M/3 F). hCMECs were cultured and treated with isolated EMVs for 24 h. EMVs from e-cigarette users and cigarette smokers induced significantly higher expression of p-eNOS (Thr495; 28.4 ± 4.6 vs. 29.1 ± 2.8 vs. 22.9 ± 3.8 AU), Big ET-1 (138.8 ± 19.0 vs. 141.7 ± 19.1 vs. 90.3 ± 18.8 AU) and endothelin converting enzyme (107.6 ± 10.1 and 113.5 ± 11.8 vs. 86.5 ± 13.2 AU), and significantly lower expression of p-eNOS (Ser1177; 7.4 ± 1.7 vs. 6.5 ± 0.5 vs. 9.7 ± 1.6 AU) in hCMECs than EMVs from nonsmokers. NO production was significantly lower and ET-1 production was significantly higher in hCMECs treated with EMVs from e-cigarette (5.7 ± 0.8 µmol/L; 33.1 ± 2.9 pg/mL) and cigarette smokers (6.3 ± 0.7 µmol/L; 32.1 ± 3.9 pg/mL) than EMVs from nonsmokers (7.6 ± 1.2 µmol/L; 27.9 ± 3.1 pg/mL). t-PA release in response to thrombin was significantly lower in hCMECs treated with EMVs from e-cigarette users (from 38.8 ± 6.3 to 37.4 ± 8.3 pg/mL) and cigarette smokers (31.5 ± 5.5 to 34.6 ± 8.4 pg/mL) than EMVs from nonsmokers (38.9 ± 4.3 to 48.4 ± 7.9 pg/mL). There were no significant differences in NO, ET-1, or t-PA protein expression or production in hCMECs treated with EMVs from e-cigarette users and smokers. Circulating EMVs associated with e-cigarette use adversely affects brain microvascular endothelial cells and may contribute to reported cerebrovascular dysfunction with e-cigarette use.NEW & NOTEWORTHY In the present study, we determined the effect of circulating endothelial cell-derived microvesicles (EMVs) isolated from e-cigarette users on human cerebral microvascular endothelial cells (hCMECs) nitric oxide (NO) and endothelin (ET)-1 production and tissue-type plasminogen activator (t-PA) release. EMVs from e-cigarette users reduced brain microvascular endothelial cell NO production, enhanced ET-1 production, and impaired endothelial t-PA release. EMVs are a potential mediating factor in the increased risk of stroke associated with e-cigarette use.
Collapse
Affiliation(s)
- Hannah L Cardenas
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Nicholas G Evanoff
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Hannah K Fandl
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Auburn R Berry
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Kendra N Wegerson
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Emily I Ostrander
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Jared J Greiner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Sheena R Dufresne
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Michael Kotlyar
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Donald R Dengel
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Vinicius P Garcia
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| |
Collapse
|
10
|
Muturi HT, Ghadieh HE, Abdolahipour R, Stankus HL, Belew GD, Liu JK, Jahromi MS, Lee AD, Singer BB, Angeli-Pahim I, Sehrawat TS, Malhi H, Verhulst S, van Grunsven LA, Zarrinpar A, Duarte S, Najjar SM. Loss of CEACAM1 in endothelial cells causes hepatic fibrosis. Metabolism 2023; 144:155562. [PMID: 37088122 PMCID: PMC10330196 DOI: 10.1016/j.metabol.2023.155562] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/29/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
OBJECTIVES Hepatocytic CEACAM1 plays a critical role in NASH pathogenesis, as bolstered by the development of insulin resistance, visceral obesity, steatohepatitis and fibrosis in mice with global Ceacam1 (Cc1) deletion. In contrast, VECadCre+Cc1fl/fl mice with endothelial loss of Cc1 manifested insulin sensitivity with no visceral obesity despite elevated NF-κB signaling and increased systemic inflammation. We herein investigated whether VECadCre+Cc1fl/fl male mice develop hepatic fibrosis and whether this is mediated by increased production of endothelin1 (ET1), a transcriptional NF-κB target. METHODS VECadCre+Et1.Cc1fl/fl mice with combined endothelial loss of Cc1/Et1 genes were generated. Histological and immunohistochemical analyses were conducted on their livers and on liver tissue biopsies from adult patients undergoing bariatric surgery or from patients with NASH diagnosis receiving liver transplant. RESULTS Hepatic fibrosis and inflammatory infiltration developed in VECadCre+Cc1fl/fl liver parenchyma. This was preceded by increased ET1 production and reversed with combined endothelial loss of Et1. Conditioned media from VECadCre+Cc1fl/fl, but not VECadCre+Et1.Cc1fl/fl primary liver endothelial cells activated wild-type hepatic stellate cells; a process inhibited by bosentan, an ETAR/ETBR dual antagonist. Consistently, immunohistochemical analysis of liver biopsies from patients with NASH showed a decline in endothelial CEACAM1 in parallel with increased plasma endothelin1 levels and progression of hepatic fibrosis stage. CONCLUSIONS The data demonstrated that endothelial CEACAM1 plays a key role in preventing hepatic fibrogenesis by reducing autocrine endothelin1 production.
Collapse
Affiliation(s)
- Harrison T Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Hilda E Ghadieh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Balamand, Al-Koura, Lebanon
| | - Raziyeh Abdolahipour
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Hannah L Stankus
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Getachew Debas Belew
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - James K Liu
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Marziyeh Salehi Jahromi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Abraham D Lee
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Department of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, OH, USA
| | - Bernhard B Singer
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Isabella Angeli-Pahim
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tejasav S Sehrawat
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Stefaan Verhulst
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ali Zarrinpar
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sergio Duarte
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
11
|
Turner CG, Hayat MJ, Grosch C, Quyyumi AA, Otis JS, Wong BJ. Endothelin A receptor inhibition increases nitric oxide-dependent vasodilation independent of superoxide in non-Hispanic Black young adults. J Appl Physiol (1985) 2023; 134:891-899. [PMID: 36892887 PMCID: PMC10042601 DOI: 10.1152/japplphysiol.00739.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Young non-Hispanic Black adults have reduced microvascular endothelial function compared with non-Hispanic White counterparts, but the mechanisms are not fully elucidated. The purpose of this study was to investigate the effect of endothelin-1 A receptor (ETAR) and superoxide on cutaneous microvascular function in young non-Hispanic Black (n = 10) and White (n = 10) adults. Participants were instrumented with four intradermal microdialysis fibers: 1) lactated Ringer's (control), 2) 500 nM BQ-123 (ETAR antagonist), 3) 10 μM tempol (superoxide dismutase mimetic), and 4) BQ-123 + tempol. Skin blood flow was assessed via laser-Doppler flowmetry (LDF), and each site underwent rapid local heating from 33°C to 39°C. At the plateau of local heating, 20 mM l-NAME [nitric oxide (NO) synthase inhibitor] was infused to quantify NO-dependent vasodilation. Data are means ± standard deviation. NO-dependent vasodilation was decreased in non-Hispanic Black compared with non-Hispanic White young adults (P < 0.01). NO-dependent vasodilation was increased at BQ-123 sites (73 ± 10% NO) and at BQ-123 + tempol sites (71 ± 10%NO) in non-Hispanic Black young adults compared with control (53 ± 13%NO, P = 0.01). Tempol alone had no effect on NO-dependent vasodilation in non-Hispanic Black young adults (63 ± 14%NO, P = 0.18). NO-dependent vasodilation at BQ-123 sites was not statistically different between non-Hispanic Black and White (80 ± 7%NO) young adults (P = 0.15). ETAR contributes to reduced NO-dependent vasodilation in non-Hispanic Black young adults independent of superoxide, suggesting a greater effect on NO synthesis rather than NO scavenging via superoxide.NEW & NOTEWORTHY Endothelin-1 A receptors (ETARs) have been shown to reduce endothelial function independently and through increased production of superoxide. We show that independent ETAR inhibition increases microvascular endothelial function in non-Hispanic Black young adults. However, administration of a superoxide dismutase mimetic alone and in combination with ETAR inhibition had no effect on microvascular endothelial function suggesting that, in the cutaneous microvasculature, the negative effects of ETAR in non-Hispanic Black young adults are independent of superoxide production.
Collapse
Affiliation(s)
- Casey G Turner
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| | - Matthew J Hayat
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia, United States
| | - Caroline Grosch
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia, United States
| | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jeffrey S Otis
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| | - Brett J Wong
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| |
Collapse
|
12
|
Erewele EO, Castellon M, Loya O, Marshboom G, Schwartz A, Yerlioglu K, Callahan C, Chen J, Minshall RD, Oliveira SD. Hypoxia-induced pulmonary hypertension upregulates eNOS and TGF-β contributing to sex-linked differences in BMPR2 +/R899X mutant mice. Pulm Circ 2022; 12:e12163. [PMID: 36484056 PMCID: PMC9722973 DOI: 10.1002/pul2.12163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/28/2022] Open
Abstract
Dysfunctional bone morphogenetic protein receptor 2 (BMPR2) and endothelial nitric oxide synthase (eNOS) have been largely implicated in the pathogenesis of pulmonary arterial hypertension (PAH); a life-threatening cardiopulmonary disease. Although the incident of PAH is about three times higher in females, males with PAH usually have a worse prognosis, which seems to be dependent on estrogen-associated cardiac and vascular protection. Here, we evaluated whether hypoxia-induced pulmonary hypertension (PH) in humanized BMPR2+/R899X loss-of-function mutant mice contributes to sex-associated differences observed in PAH by altering eNOS expression and inducing expansion of hyperactivated TGF-β-producing pulmonary myofibroblasts. To test this hypothesis, male and female wild-type (WT) and BMPR2+/R899X mutant mice were kept under hypoxic or normoxic conditions for 4 weeks, and then right ventricular systolic pressure (RVSP) and right ventricular hypertrophy (RVH) were measured. Chronic hypoxia exposure elevated RVSP, inducing RVH in both groups, with a greater effect in BMPR2+/R899X female mice. Lung histology revealed no differences in vessel thickness/area between sexes, suggesting RVSP differences in this model are unlikely to be in response to sex-dependent vascular narrowing. On the other hand, hypoxia exposure increased vascular collagen deposition, the number of TGF-β-associated α-SMA-positive microvessels, and eNOS expression, whereas it also reduced caveolin-1 expression in the lungs of BMPR2+/R899X females compared to males. Taken together, this brief report reveals elevated myofibroblast-derived TGF-β and eNOS-derived oxidants contribute to pulmonary microvascular muscularization and sex-linked differences in incidence, severity, and outcome of PAH.
Collapse
Affiliation(s)
- Ejehi O Erewele
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Maricela Castellon
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Cardiovascular Research Center, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Omar Loya
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Glenn Marshboom
- Department of Pharmacology and Regenerative Medicine, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Andrew Schwartz
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Kayla Yerlioglu
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Christopher Callahan
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Jiwang Chen
- Cardiovascular Research Center, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Department of Medicine, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Richard D Minshall
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Department of Pharmacology and Regenerative Medicine, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Suellen D Oliveira
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Department of Physiology & Biophysics, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| |
Collapse
|
13
|
Wang W, Li C, Zhuang C, Zhang H, Wang Q, Fan X, Qi M, Sun R, Yu J. Research on the Mechanism and Prevention of Hypertension Caused by Apatinib Through the RhoA/ROCK Signaling Pathway in a Mouse Model of Gastric Cancer. Front Cardiovasc Med 2022; 9:873829. [PMID: 35811723 PMCID: PMC9262125 DOI: 10.3389/fcvm.2022.873829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Hypertension is one of the main adverse effects of antiangiogenic tumor drugs and thus limits their application. The mechanism of hypertension caused by tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factors is mainly related to inhibition of the nitric oxide (NO) pathway and activation of the endothelin pathway, as well as vascular rarefaction and increased salt sensitivity; consequently, prevention and treatment differ for this type of hypertension compared with primary hypertension. Apatinib is a highly selective TKI approved in China for the treatment of advanced or metastatic gastric cancer. The RhoA/ROCK pathway is involved in the pathogenesis of hypertension and mediates smooth muscle contraction, eNOS inhibition, endothelial dysfunction and vascular remodeling. In this study, in vivo experiments were performed to explore whether the RhoA/ROCK signaling pathway is part of a possible mechanism of apatinib in the treatment of gastric cancer-induced hypertension and the impairment of vascular remodeling and left ventricular function. Y27632, a selective small inhibitor of both ROCK1 and ROCK2, was combined with apatinib, and its efficacy was evaluated, wherein it can reduce hypertension induced by apatinib treatment in gastric cancer mice and weaken the activation of the RhoA/ROCK pathway by apatinib and a high-salt diet (HSD). Furthermore, Y-27632 improved aortic remodeling, fibrosis, endothelial dysfunction, superior mesenteric artery endothelial injury, left ventricular dysfunction and cardiac fibrosis in mice by weakening the activation of the RhoA/ROCK pathway. The expression of RhoA/ROCK pathway-related proteins and relative mRNA levels in mice after apatinib intervention were analyzed by various methods, and blood pressure and cardiac function indexes were compared. Endothelial and cardiac function and collagen levels in the aorta were also measured to assess vascular and cardiac fibrosis and to provide a basis for the prevention and treatment of this type of hypertension.
Collapse
|
14
|
The vascular endothelial growth factor trap aflibercept induces vascular dysfunction and hypertension via attenuation of eNOS/NO signaling in mice. Acta Pharmacol Sin 2021; 42:1437-1448. [PMID: 33303990 PMCID: PMC8379246 DOI: 10.1038/s41401-020-00569-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022]
Abstract
Aflibercept, as a soluble decoy vascular endothelial growth factor receptor, Which has been used as a first-line monotherapy for cancers. Aflibercept often causes cardiovascular toxicities including hypertension, but the mechanisms underlying aflibercept-induced hypertension remain unknown. In this study we investigated the effect of short-term and long-term administration of aflibercept on blood pressure (BP), vascular function, NO bioavailability, oxidative stress and endothelin 1 (ET-1) in mice and cultured endothelial cells. We showed that injection of a single-dose of aflibercept (18.2, 36.4 mg/kg, iv) rapidly and dose-dependently elevated BP in mice. Aflibercept treatment markedly impaired endothelial-dependent relaxation (EDR) and resulted in NADPH oxidases 1 (NOX1)- and NADPH oxidases 4 (NOX4)-mediated generation of ROS, decreased the activation of protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS) concurrently with a reduction in nitric oxide (NO) production and elevation of ET-1 levels in mouse aortas; these effects were greatly attenuated by supplementation of L-arginine (L-arg, 0.5 or 1.0 g/kg, bid, ig) before aflibercept injection. Similar results were observed in L-arg-pretreated cultured endothelial cells, showing markedly decreased ROS accumulation and AKT/eNOS/NO signaling impairment induced by aflibercept. In order to assess the effects of long-term aflibercept on hypertension and to evaluate the beneficial effects of L-arg supplementation, we administered these two drugs to WT mice for up to 14 days (at an interval of two days). Long-term administration of aflibercept resulted in a sustained increase in BP and a severely impaired EDR, which are associated with NOX1/NOX4-mediated production of ROS, increase in ET-1, inhibition of AKT/eNOS/NO signaling and a decreased expression of cationic amino acid transporter (CAT-1). The effects caused by long-term administration were greatly attenuated by L-arg supplementation in a dose-dependent manner. We conclude that aflibercept leads to vascular dysfunction and hypertension by inhibiting CAT-1/AKT/eNOS/NO signaling, increasing ET-1, and activating NOX1/NOX4-mediated oxidative stress, which can be suppressed by supplementation of L-arg. Therefore, L-arg could be a potential therapeutic agent for aflibercept-induced hypertension.
Collapse
|
15
|
Deng X, Yang P, Gao T, Liu M, Li X. Allicin attenuates myocardial apoptosis, inflammation and mitochondrial injury during hypoxia-reoxygenation: an in vitro study. BMC Cardiovasc Disord 2021; 21:200. [PMID: 33882833 PMCID: PMC8059159 DOI: 10.1186/s12872-021-01918-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/11/2021] [Indexed: 01/19/2023] Open
Abstract
Background Myocardial ischemia–reperfusion (IR) injury is a damage due to an initial reduction in blood flow to the heart, preventing it from receiving enough oxygen, and subsequent restoration of blood flow through the opening of an occluded coronary artery producing paradoxical harmful effects. The finding of new therapies to prevent IR is of utmost importance. Allicin is a compound isolated from garlic having the ability to prevent and cure different diseases, and a protective effect on the myocardium was also demonstrated. Therefore, the aim of this study was to evaluate the in vitro protective effect of Allicin against myocardial IR injury on cardiomyocytes. Methods We established an in vitro hypoxia-reoxygenation (HR) model of primary porcine cardiomyocytes to simulate myocardial IR injury. Primary porcine cardiomyocytes were extracted from Mini-musk swines (1 day old). After a period of adaptation of at least 2–3 days, cardiomyocytes in good condition were selected and randomly divided into control group (normal oxygen for 5 h), HR group (2 h of hypoxia/3 h of reoxygenation), and HR + Allicin group (hypoxia/reoxygenation + Allicin treatment). Results After the induction of hypoxia/reoxygenation, Allicin treatment enhanced the cell viability. Moreover, Allicin treatment resulted in a reduction of apoptosis from 13.5 ± 1.2% to 6.11 ± 0.15% compared with the HR group (p < 0.05), and the apoptosis related proteins were regulated as well, with a decreased expression of Bax, cleaved caspase-3 and cytosolic cytochrome C and an increase in Bcl-2 expression in the HR + Allicin group (all p < 0.01). Pro-inflammatory cytokines, such as interleukin-6 and tumor necrosis factor alpha were down-regulated by the treatment with Allicin (both p < 0.01). In addition, it significantly decreased intracellular reactive oxygen species generation (p < 0.01) and reduced the loss of mitochondrial membrane potential (p < 0.01). Furthermore, the expression of PPARγ coactivator-1α and endothelial nitric oxide synthase was up-regulated (both p < 0.01), while the expression of Endothelin-1, hypoxia inducing factor-1α and transforming growth factor beta was down-regulated (all p < 0.01) by Allicin treatment. Conclusions These results suggested that Allicin protected the cardiomyocytes against HR damage by reducing apoptosis, inflammation and mitochondrial injury, thus providing a basis for its potential use in the treatment of myocardial IR. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-01918-6.
Collapse
Affiliation(s)
- Xinyi Deng
- Peking University China-Japan Friendship School of Clinical Medicine, 2 East Yinghuayuan Street, Hepingli, Beijing, 100029, China.,Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Peng Yang
- Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Tong Gao
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Mengru Liu
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Xianlun Li
- Peking University China-Japan Friendship School of Clinical Medicine, 2 East Yinghuayuan Street, Hepingli, Beijing, 100029, China. .,Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China. .,Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
16
|
Lv Y, Zhao W, Yu L, Yu JG, Zhao L. Angiotensin-Converting Enzyme Gene D/I Polymorphism in Relation to Endothelial Function and Endothelial-Released Factors in Chinese Women. Front Physiol 2020; 11:951. [PMID: 33041838 PMCID: PMC7526498 DOI: 10.3389/fphys.2020.00951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Many studies have investigated the relationship between angiotensin-converting enzyme (ACE) D/I polymorphism and cardiovascular disease or endothelial dysfunction; however, hardly any of these studies has taken aging or menopause into consideration. Furthermore, despite that many studies have examined the regulatory effects of endothelial-released factors (ERFs) on endothelial function, no study has evaluated the relationship between ERFs and endothelial function with respect to ACE D/I polymorphism and menopause status. To answer these questions, 391 healthy Chinese women over a wide range of ages (22-75 years) were enrolled and divided into pre-menopause group and post-menopause group. After ACE D/I genotype being identified, the women were then classified into either DI/II or DD genotype. Flow-mediated dilatation (FMD) of brachial endothelium and plasma levels of ERFs: nitric oxide (NO), endothelin-1 (ET-1), and angiotensin II (Ang II) were measured. The results showed that frequencies of ACE D/I genotypes were in accordance with the Hardy-Weinberg equilibrium, and the frequency of I allele was higher than D allele. In pre-menopause group, FMD was significantly higher in women of DI/II than DD (P = 0.032), and age-dependent in both genotypes (DD, P = 0.0472; DI/II, P < 0.0001). In post-menopause group, FMD was similar between women of DI/II and DD, and age-dependent only in women of DI/II (P < 0.0001). In pre-menopause group, Ang II level was significantly higher in women of DD than DI/II (P = 0.029), and FMD was significantly correlated with all ERFs in women of DD (NO, P = 0.032; ET-1, P = 0.017; Ang II, P = 0.002), but only with Ang II in women of DI/II (P = 0.026). In post-menopause group, no significant difference was observed in any ERF between women of DI/II and DD, and FMD was only significantly correlated with ET-1 in women of DD (P = 0.010). In summary, FMD in women of DI/II was superior to DD in pre-menopause and more age-dependent than DD in post-menopause, and FMD was closely associated with ERFs. In conclusion, Chinese women of DI/II seem to have lower risk than DD in pre-menopause, but similar risk as DD in post-menopause in developing cardiovascular disease.
Collapse
Affiliation(s)
- Yuanyuan Lv
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | | | - Laikang Yu
- Department of Strength and Conditioning Training, Beijing Sport University, Beijing, China
| | - Ji-Guo Yu
- Department of Community Medicine and Rehabilitation, Section of Sports Medicine, Umeå University, Umeå, Sweden
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| |
Collapse
|
17
|
Kato T, Mitani Y, Masuya M, Maruyama J, Sawada H, Ohashi H, Ikeyama Y, Otsuki S, Yodoya N, Shinohara T, Miyata E, Zhang E, Katayama N, Shimpo H, Maruyama K, Komada Y, Hirayama M. A non-selective endothelin receptor antagonist bosentan modulates kinetics of bone marrow-derived cells in ameliorating pulmonary hypertension in mice. Pulm Circ 2020; 10:2045894020919355. [PMID: 32489640 PMCID: PMC7238854 DOI: 10.1177/2045894020919355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/21/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate whether a dual endothelin receptor antagonist bosentan modulates the kinetics of bone marrow-derived stem cells in inhibiting the development of pulmonary hypertension. Bone marrow chimeric mice, transplanted with enhanced green fluorescent protein (eGFP)-positive bone marrow mononuclear cells, were exposed to hypobaric hypoxia or kept in the ambient air, and were daily treated with bosentan sodium salt or saline for 21 days. After the treatment period, right ventricular pressure was measured and pulmonary vascular morphometry was conducted. Incorporation of bone marrow-derived cells was analyzed by immunohistochemistry. Gene expression and protein level in the lung tissue were evaluated by quantitative real-time PCR and western blotting, respectively. The results showed that, in hypoxic mice, right ventricular pressure and the percentage of muscularized vessel were increased and pulmonary vascular density was decreased, each of which was reversed by bosentan. Bone marrow-derived endothelial cells and macrophages in lungs were increased by hypoxia. Bosentan promoted bone marrow-derived endothelial cell incorporation but inhibited macrophage infiltration into lungs. Quantitative real-time PCR analysis revealed that interleukin 6, stromal cell-derived factor-1, and monocyte chemoattractant protein-1 were upregulated by hypoxia, in which interleukin 6 and monocyte chemoattractant protein-1 were downregulated and stromal cell-derived factor-1 was upregulated by bosentan. Protein level of endothelial nitric oxide synthase (eNOS) in the whole lung was significantly upregulated by hypoxia, which was further upregulated by bosentan. Bosentan modulated kinetics of bone marrow-derived ECs and macrophages and related gene expression in lungs in ameliorating pulmonary hypertension in mice. Altered kinetics of bone marrow-derived stem cells may be a novel mechanism of the endothelin receptor blockade in vivo and confer a new understanding of the therapeutic basis for pulmonary hypertension.
Collapse
Affiliation(s)
- Taichi Kato
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masahiro Masuya
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Junko Maruyama
- Department of Clinical Engineering, Suzuka University of Medical Science, Suzuka, Japan
| | - Hirofumi Sawada
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Anesthesiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroyuki Ohashi
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yukiko Ikeyama
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Shoichiro Otsuki
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Noriko Yodoya
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tsutomu Shinohara
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medicine, Nagoya, Japan
| | - Eri Miyata
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Erquan Zhang
- Department of Anesthesiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Naoyuki Katayama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hideto Shimpo
- Department of Thoracic and Cardiovascular Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kazuo Maruyama
- Department of Anesthesiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshihiro Komada
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masahiro Hirayama
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
18
|
Brewster LM, Garcia VP, Levy MV, Stockelman KA, Goulding A, DeSouza NM, Greiner JJ, Hijmans JG, DeSouza CA. Endothelin-1-induced endothelial microvesicles impair endothelial cell function. J Appl Physiol (1985) 2020; 128:1497-1505. [PMID: 32324474 DOI: 10.1152/japplphysiol.00816.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to determine the effects of endothelin-1 (ET-1)-generated endothelial microvesicles (EMVs) on endothelial cell inflammation, apoptosis, and endothelial nitric oxide synthase (eNOS). Human umbilical vein endothelial cells (HUVECs) were treated with ET-1 for 24 h. EMVs released into the supernatant from cells treated with ET-1 or vehicle were isolated and quantified. EMV release was higher (P < 0.05) in cells treated with ET-1 compared with control (95 ± 15 vs. 54 ± 5 EMV/µL). Fresh HUVECs were then treated with either ET-1, ET-1-induced EMVs, or control EMVs for 24 h. ET-1-generated EMVs induced significantly higher release of IL-6 (181.0 ± 16.0 vs. 132.1 ± 8.1 pg/mL) and IL-8 (303.4 ± 37.4 vs. 211.8 ± 10.0 pg/mL), as well as greater total NF-κB p65 (76.0 ± 7.6 vs. 57.1 ± 2.1 AU) and active NF-κB p65 (Ser-536) (11.6 ± 0.9 vs. 6.8 ± 1.0 AU) expression than control EMVs. There were no significant differences in expression of caspase-9 (230.1 ± 24.3 vs. 243.6 ± 22.3 AU), caspase-3 (271.9 ± 22.7 vs. 265.1 ± 30.5 AU), and active caspase-3 (4.4 ± 0.4 vs. 4.3 ± 0.1 AU) in cells treated with ET-1-EMVs versus control EMVs. Total eNOS (108.4 ± 11.4 vs. 158.8 ± 1.6 AU) and activated eNOS (4.7 ± 0.5 vs. 9.6 ± 1.4 AU) were significantly lower in endothelial cells treated with ET-1-generated EMVs compared with control EMVs. The effects of ET-1-generated EMVs on cellular markers and mediators of endothelial inflammation, as well as eNOS function, was comparable to the effects of ET-1. In summary, ET-1 induces an EMV phenotype that adversely affects endothelial cell function. ET-1-generated EMVs may contribute to the atherogenic effect of ET-1.NEW & NOTEWORTHY Endothelin-1 (ET-1) is a potent vasoconstrictor peptide released by the endothelium that contributes to the regulation of vascular tone. Overexpression of ET-1 has been implicated in the etiology of atherosclerotic vascular disease. Endothelial cell-derived microvesicles (EMVs) play a pivotal role in vascular health and disease. Their functional phenotype is largely dictated by the stimulus for release. EMVs released in response to various pathological conditions have been shown to elicit deleterious vascular effects. In the present study, we determined, in vitro, the effect of ET-1 on EMV release from endothelial cells and the effects of ET-1-generated EMVs on endothelial cell inflammation, apoptosis, and endothelial nitric oxide synthase (eNOS). ET-1 induced a marked increase in EMV release. ET-1-generated EMVs significantly increased endothelial cell inflammation and reduced eNOS protein expression and activation. Moreover, the endothelial effects of ET-1-derived EMVs were similar to the direct effects of ET-1. ET-1-generated EMVs may contribute to the proatherogenic profile of ET-1.
Collapse
Affiliation(s)
- L Madden Brewster
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Vinicius P Garcia
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Ma'ayan V Levy
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Kelly A Stockelman
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Anabel Goulding
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Noah M DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Jared J Greiner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Jamie G Hijmans
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| |
Collapse
|
19
|
Huang J, Cai C, Zheng T, Wu X, Wang D, Zhang K, Xu B, Yan R, Gong H, Zhang J, Shi Y, Xu Z, Zhang X, Zhang X, Shang T, Zhou J, Guo X, Zeng C, Lai EY, Xiao C, Chen J, Wan S, Liu WH, Ke Y, Cheng H. Endothelial Scaffolding Protein ENH (Enigma Homolog Protein) Promotes PHLPP2 (Pleckstrin Homology Domain and Leucine-Rich Repeat Protein Phosphatase 2)-Mediated Dephosphorylation of AKT1 and eNOS (Endothelial NO Synthase) Promoting Vascular Remodeling. Arterioscler Thromb Vasc Biol 2020; 40:1705-1721. [PMID: 32268790 DOI: 10.1161/atvbaha.120.314172] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE A decrease in nitric oxide, leading to vascular smooth muscle cell proliferation, is a common pathological feature of vascular proliferative diseases. Nitric oxide synthesis by eNOS (endothelial nitric oxide synthase) is precisely regulated by protein kinases including AKT1. ENH (enigma homolog protein) is a scaffolding protein for multiple protein kinases, but whether it regulates eNOS activation and vascular remodeling remains unknown. Approach and Results: ENH was upregulated in injured mouse arteries and human atherosclerotic plaques and was associated with coronary artery disease. Neointima formation in carotid arteries, induced by ligation or wire injury, was greatly decreased in endothelium-specific ENH-knockout mice. Vascular ligation reduced AKT and eNOS phosphorylation and nitric oxide production in the endothelium of control but not ENH-knockout mice. ENH was found to interact with AKT1 and its phosphatase PHLPP2 (pleckstrin homology domain and leucine-rich repeat protein phosphatase 2). AKT and eNOS activation were prolonged in VEGF (vascular endothelial growth factor)-induced ENH- or PHLPP2-deficient endothelial cells. Inhibitors of either AKT or eNOS effectively restored ligation-induced neointima formation in ENH-knockout mice. Moreover, endothelium-specific PHLPP2-knockout mice displayed reduced ligation-induced neointima formation. Finally, PHLPP2 was increased in the endothelia of human atherosclerotic plaques and blood cells from patients with coronary artery disease. CONCLUSIONS ENH forms a complex with AKT1 and its phosphatase PHLPP2 to negatively regulate AKT1 activation in the artery endothelium. AKT1 deactivation, a decrease in nitric oxide generation, and subsequent neointima formation induced by vascular injury are mediated by ENH and PHLPP2. ENH and PHLPP2 are thus new proatherosclerotic factors that could be therapeutically targeted.
Collapse
Affiliation(s)
- Jiaqi Huang
- From the Department of Pathology and Pathophysiology and Department of Cardiology, Sir Run Run Shaw Hospital (J.H., K.Z., H.C.), Zhejiang University School of Medicine, Hangzhou, China
| | - Changhong Cai
- Department of Cardiology, Lishui Hospital, Zhejiang University School of Medicine, China. (C.C., C.Z.)
| | - Tianyu Zheng
- Department of Pathology and Pathophysiology (T.Z., X. Wu, R.Y., Y.S., Z.X., X.Z., Y.K.), Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyan Wu
- Department of Pathology and Pathophysiology (T.Z., X. Wu, R.Y., Y.S., Z.X., X.Z., Y.K.), Zhejiang University School of Medicine, Hangzhou, China
| | - Dongfei Wang
- Department of Cardiovascular Science, The First Affiliated Hospital of Zhejiang University (D.W., X.G.), Zhejiang University School of Medicine, Hangzhou, China
| | - Kaijie Zhang
- From the Department of Pathology and Pathophysiology and Department of Cardiology, Sir Run Run Shaw Hospital (J.H., K.Z., H.C.), Zhejiang University School of Medicine, Hangzhou, China
| | - Bocheng Xu
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China (B.X.)
| | - Ruochen Yan
- Department of Pathology and Pathophysiology (T.Z., X. Wu, R.Y., Y.S., Z.X., X.Z., Y.K.), Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Gong
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou University, China (H.G.)
| | - Jie Zhang
- Department of Urology, Sir Run Run Shaw Hospital (J. Zhang), Zhejiang University School of Medicine, Hangzhou, China
| | - Yueli Shi
- Department of Pathology and Pathophysiology (T.Z., X. Wu, R.Y., Y.S., Z.X., X.Z., Y.K.), Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyong Xu
- Department of Pathology and Pathophysiology (T.Z., X. Wu, R.Y., Y.S., Z.X., X.Z., Y.K.), Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology (T.Z., X. Wu, R.Y., Y.S., Z.X., X.Z., Y.K.), Zhejiang University School of Medicine, Hangzhou, China
| | - Xuemin Zhang
- Department of Vascular Surgery, Peking University People's Hospital, Peking University Health Science Center, Peking University, Beijing, China (X. Zhang)
| | - Tao Shang
- Department of Vascular Surgery, The First Affiliated Hospital (T.S.)
| | - Jianhong Zhou
- Department of Gynecology, School of Medicine, Zhejiang University, Hangzhou, China (J. Zhou)
| | - Xiaogang Guo
- Department of Cardiovascular Science, The First Affiliated Hospital of Zhejiang University (D.W., X.G.), Zhejiang University School of Medicine, Hangzhou, China
| | - Chunlai Zeng
- Department of Cardiology, Lishui Hospital, Zhejiang University School of Medicine, China. (C.C., C.Z.)
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences (E.Y.L.), Zhejiang University School of Medicine, Hangzhou, China
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, China (C.X., W.-H.L.).,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA (C.X.)
| | - Ju Chen
- Department of Medicine and Cardiology, University of California San Diego, La Jolla (J.C.)
| | - Shu Wan
- Brain Center of Zhejiang Hospital, Hangzhou, China (S.W.)
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, China (C.X., W.-H.L.)
| | - Yuehai Ke
- Department of Pathology and Pathophysiology (T.Z., X. Wu, R.Y., Y.S., Z.X., X.Z., Y.K.), Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Cheng
- From the Department of Pathology and Pathophysiology and Department of Cardiology, Sir Run Run Shaw Hospital (J.H., K.Z., H.C.), Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (H.C.)
| |
Collapse
|
20
|
Grunewald ZI, Jurrissen TJ, Woodford ML, Ramirez-Perez FI, Park LK, Pettit-Mee R, Ghiarone T, Brown SM, Morales-Quinones M, Ball JR, Staveley-O'Carroll KF, Aroor AR, Fadel PJ, Paradis P, Schiffrin EL, Bender SB, Martinez-Lemus LA, Padilla J. Chronic Elevation of Endothelin-1 Alone May Not Be Sufficient to Impair Endothelium-Dependent Relaxation. Hypertension 2019; 74:1409-1419. [PMID: 31630572 DOI: 10.1161/hypertensionaha.119.13676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Endothelin-1 (ET-1) is a powerful vasoconstrictor peptide considered to be causally implicated in hypertension and the development of cardiovascular disease. Increased ET-1 is commonly associated with reduced NO bioavailability and impaired vascular function; however, whether chronic elevation of ET-1 directly impairs endothelium-dependent relaxation (EDR) remains elusive. Herein, we report that (1) prolonged ET-1 exposure (ie, 48 hours) of naive mouse aortas or cultured endothelial cells did not impair EDR or reduce eNOS (endothelial NO synthase) activity, respectively (P>0.05); (2) mice with endothelial cell-specific ET-1 overexpression did not exhibit impaired EDR or reduced eNOS activity (P>0.05); (3) chronic (8 weeks) pharmacological blockade of ET-1 receptors in obese/hyperlipidemic mice did not improve aortic EDR or increase eNOS activity (P>0.05); and (4) vascular and plasma ET-1 did not inversely correlate with EDR in resistance arteries isolated from human subjects with a wide range of ET-1 levels (r=0.0037 and r=-0.1258, respectively). Furthermore, we report that prolonged ET-1 exposure downregulated vascular UCP-1 (uncoupling protein-1; P<0.05), which may contribute to the preservation of EDR in conditions characterized by hyperendothelinemia. Collectively, our findings demonstrate that chronic elevation of ET-1 alone may not be sufficient to impair EDR.
Collapse
Affiliation(s)
- Zachary I Grunewald
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| | - Thomas J Jurrissen
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| | - Makenzie L Woodford
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia.,Department of Biological Engineering (F.I.R.-P.), University of Missouri, Columbia
| | - Lauren K Park
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| | - Ryan Pettit-Mee
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| | - Thaysa Ghiarone
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| | - Scott M Brown
- Department of Biomedical Sciences (S.M.B., S.B.B.), University of Missouri, Columbia.,Harry S. Truman Memorial Veterans Hospital (S.M.B., A.R.A., S.B.B.), University of Missouri, Columbia
| | - Mariana Morales-Quinones
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| | - James R Ball
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia
| | | | - Annayya R Aroor
- Harry S. Truman Memorial Veterans Hospital (S.M.B., A.R.A., S.B.B.), University of Missouri, Columbia
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington (P.J.F.)
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (P.P., E.L.S.), McGill University, Montreal, Québec, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (P.P., E.L.S.), McGill University, Montreal, Québec, Canada.,Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montreal, Québec, Canada
| | - Shawn B Bender
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia.,Department of Biomedical Sciences (S.M.B., S.B.B.), University of Missouri, Columbia.,Harry S. Truman Memorial Veterans Hospital (S.M.B., A.R.A., S.B.B.), University of Missouri, Columbia
| | - Luis A Martinez-Lemus
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia.,Department of Medical Pharmacology and Physiology (L.A.M.-L.), University of Missouri, Columbia
| | - Jaume Padilla
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| |
Collapse
|
21
|
Traylor M, Anderson CD, Rutten-Jacobs LCA, Falcone GJ, Comeau ME, Ay H, Sudlow CLM, Xu H, Mitchell BD, Cole JW, Rexrode K, Jimenez-Conde J, Schmidt R, Grewal RP, Sacco R, Ribases M, Rundek T, Rosand J, Dichgans M, Lee JM, Langefeld CD, Kittner SJ, Markus HS, Woo D, Malik R. Subtype Specificity of Genetic Loci Associated With Stroke in 16 664 Cases and 32 792 Controls. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:e002338. [PMID: 31306060 DOI: 10.1161/circgen.118.002338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Genome-wide association studies have identified multiple loci associated with stroke. However, the specific stroke subtypes affected, and whether loci influence both ischemic and hemorrhagic stroke, remains unknown. For loci associated with stroke, we aimed to infer the combination of stroke subtypes likely to be affected, and in doing so assess the extent to which such loci have homogeneous effects across stroke subtypes. METHODS We performed Bayesian multinomial regression in 16 664 stroke cases and 32 792 controls of European ancestry to determine the most likely combination of stroke subtypes affected for loci with published genome-wide stroke associations, using model selection. Cases were subtyped under 2 commonly used stroke classification systems, TOAST (Trial of Org 10172 Acute Stroke Treatment) and causative classification of stroke. All individuals had genotypes imputed to the Haplotype Reference Consortium 1.1 Panel. RESULTS Sixteen loci were considered for analysis. Seven loci influenced both hemorrhagic and ischemic stroke, 3 of which influenced ischemic and hemorrhagic subtypes under both TOAST and causative classification of stroke. Under causative classification of stroke, 4 loci influenced both small vessel stroke and intracerebral hemorrhage. An EDNRA locus demonstrated opposing effects on ischemic and hemorrhagic stroke. No loci were predicted to influence all stroke subtypes in the same direction, and only one locus (12q24) was predicted to influence all ischemic stroke subtypes. CONCLUSIONS Heterogeneity in the influence of stroke-associated loci on stroke subtypes is pervasive, reflecting differing causal pathways. However, overlap exists between hemorrhagic and ischemic stroke, which may reflect shared pathobiology predisposing to small vessel arteriopathy. Stroke is a complex, heterogeneous disorder requiring tailored analytic strategies to decipher genetic mechanisms.
Collapse
Affiliation(s)
- Matthew Traylor
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge (M.T., H.S.M.).,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (M.T.)
| | - Christopher D Anderson
- Center for Genomic Medicine (C.D.A., J.R.), Massachusetts General Hospital, Boston.,J. Philip Kistler Stroke Research Center, Department of Neurology (C.D.A., J.R.), Massachusetts General Hospital, Boston.,Division of Neurocritical Care and Emergency Neurology, Department of Neurology (C.D.A., J.R.), Massachusetts General Hospital, Boston.,Program in Medical and Population Genetics, Broad Inst, Cambridge, MA (C.D.A., J.R.)
| | - Loes C A Rutten-Jacobs
- German Center for Neurodegenerative Diseases, Population Health Sciences, Bonn, Germany (L.C.A.R.-J.)
| | - Guido J Falcone
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale School of Medicine, New Haven, CT (G.J.F.)
| | - Mary E Comeau
- Department of Biostatistical Sciences, Division of Public Health Sciences, School of Medicine, Wake Forest University, Winston-Salem, NC (M.E.C., C.D.L.)
| | - Hakan Ay
- Stroke Service (H.A.), Massachusetts General Hospital, Boston.,A.A. Martinos Center for Biomedical Imaging, Department of Radiology (H.A.), Massachusetts General Hospital, Boston
| | - Cathie L M Sudlow
- Center for Clinical Brain Sciences, University of Edinburgh (C.L.M.S.).,Usher Institute of Population Health Sciences and Informatics, Nine Bioquarter, Edinburgh, United Kingdom (C.L.M.S.)
| | - Huichun Xu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X., B.D.M.,), University of Maryland School of Medicine
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X., B.D.M.,), University of Maryland School of Medicine.,Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center (B.D.M.)
| | - John W Cole
- Department of Neurology (S.J.K., J.W.C), University of Maryland School of Medicine.,Department of Neurology, Veterans Affairs Medical Center, Baltimore, MD (J.W.C., S.J.K)
| | - Kathryn Rexrode
- Channing Division of Network Medicine and Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA (K.R.)
| | - Jordi Jimenez-Conde
- Neurovascular Research Unit, Department of Neurology (J.J.-C.), Institut Municipal d'Investigacio´ Medica-Hospital del Mar, Universitat Autonoma de Barcelona, Spain.,Program in Inflammation and Cardiovascular Disorders (J.J.-C.), Institut Municipal d'Investigacio´ Medica-Hospital del Mar, Universitat Autonoma de Barcelona, Spain
| | - Reinhold Schmidt
- Department of Neurology, Medical University of Graz, Austria (R. Schmidt)
| | - Raji P Grewal
- Neuroscience Institute, Saint Francis Medical Center, School of Health and Medical Sciences, Seton Hall University, South Orange, NJ (R.P.G.)
| | - Ralph Sacco
- Department of Neurology, Miller School of Medicine, University of Miami, FL (R. Sacco, T.R.)
| | - Marta Ribases
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (M.R.).,Department of Psychiatry, Hospital Universitari Vall d'Hebron (M.R.).,Biomedical Network Research Center on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain (M.R.)
| | - Tatjana Rundek
- Department of Neurology, Miller School of Medicine, University of Miami, FL (R. Sacco, T.R.)
| | - Jonathan Rosand
- Center for Genomic Medicine (C.D.A., J.R.), Massachusetts General Hospital, Boston.,J. Philip Kistler Stroke Research Center, Department of Neurology (C.D.A., J.R.), Massachusetts General Hospital, Boston.,Division of Neurocritical Care and Emergency Neurology, Department of Neurology (C.D.A., J.R.), Massachusetts General Hospital, Boston.,Program in Medical and Population Genetics, Broad Inst, Cambridge, MA (C.D.A., J.R.)
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München (M.D., R.M.).,Munich Cluster for Systems Neurology (SyNergy), Germany (M.D.)
| | - Jin-Moo Lee
- Department of Neurology, Radiology, and Biomedical Engineering, Washington University School of Medicine, St Louis, MO (J.-M.L.)
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Division of Public Health Sciences, School of Medicine, Wake Forest University, Winston-Salem, NC (M.E.C., C.D.L.)
| | - Steven J Kittner
- Department of Neurology (S.J.K., J.W.C), University of Maryland School of Medicine.,Department of Neurology, Veterans Affairs Medical Center, Baltimore, MD (J.W.C., S.J.K)
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge (M.T., H.S.M.)
| | - Daniel Woo
- Department of Neurology and Rehabilitation Medicine and Comprehensive Stroke Center, University of Cincinnati, OH (D.W.)
| | - Rainer Malik
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München (M.D., R.M.)
| | | |
Collapse
|
22
|
The Endothelin Receptor Antagonist Macitentan Improves Isosorbide-5-Mononitrate (ISMN) and Isosorbide Dinitrate (ISDN) Induced Endothelial Dysfunction, Oxidative Stress, and Vascular Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2018:7845629. [PMID: 30687454 PMCID: PMC6327264 DOI: 10.1155/2018/7845629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/17/2018] [Indexed: 11/18/2022]
Abstract
Objective Organic nitrates such as isosorbide-5-mononitrate (ISMN) and isosorbide dinitrate (ISDN) are used for the treatment of patients with chronic symptomatic stable coronary artery disease and chronic congestive heart failure. Limiting side effects of these nitrovasodilators include nitrate tolerance and/or endothelial dysfunction mediated by oxidative stress. Here, we tested the therapeutic effects of the dual endothelin (ET) receptor antagonist macitentan in ISMN- and ISDN-treated animals. Methods and Results Organic nitrates (ISMN, ISDN, and nitroglycerin (GTN)) augmented the oxidative burst and interleukin-6 release in cultured macrophages, whereas macitentan decreased the oxidative burst in isolated human leukocytes. Male C57BL/6j mice were treated with ISMN (75 mg/kg/d) or ISDN (25 mg/kg/d) via s.c. infusion for 7 days and some mice in addition with 30 mg/kg/d of macitentan (gavage, once daily). ISMN and ISDN in vivo therapy caused endothelial dysfunction but no nitrate (or cross-)tolerance to the organic nitrates, respectively. ISMN/ISDN increased blood nitrosative stress, vascular/cardiac oxidative stress via NOX-2 (fluorescence and chemiluminescence methods), ET1 expression, ET receptor signaling, and markers of inflammation (protein and mRNA level). ET receptor signaling blockade by macitentan normalized endothelial function, vascular/cardiac oxidative stress, and inflammatory phenotype in both nitrate therapy groups. Conclusion ISMN/ISDN treatment caused activation of the NOX-2/ET receptor signaling axis leading to increased vascular oxidative stress and inflammation as well as endothelial dysfunction. Our study demonstrates for the first time that blockade of ET receptor signaling by the dual endothelin receptor blocker macitentan improves adverse side effects of the organic nitrates ISMN and ISDN.
Collapse
|
23
|
Genetic susceptibility of five tagSNPs in the endothelin-1 ( EDN1) gene to coronary artery disease in a Chinese Han population. Biosci Rep 2018; 38:BSR20171320. [PMID: 29654172 PMCID: PMC6205642 DOI: 10.1042/bsr20171320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 03/24/2018] [Accepted: 04/09/2018] [Indexed: 01/12/2023] Open
Abstract
Endothelin-1 (ET-1) plays important roles in endothelial dysfunction, vascular physiology, inflammation, and atherosclerosis. Nonetheless, the role of ET-1 (EDN1) gene variants on coronary artery disease (CAD) risk remains poorly understood. The aim of the present study was to evaluate the role of EDN1 gene polymorphisms on individual susceptibility to CAD. We genotyped five tagSNPs (single-nucleotide polymorphisms) (rs6458155, rs4145451, rs9369217, rs3087459, and rs2070699) within EDN1 gene in 525 CAD patients and 675 control subjects. In a multivariate logistic regression analysis, we detected an association of rs6458155 in EDN1 gene with the CAD risk; compared with the TT homozygotes, the CT heterozygotes (odds ratio (OR) = 1.53, 95% confidence interval (CI) = 1.02–2.29, P=0.040) and the CC homozygotes (OR = 1.55, 95% CI = 1.01–2.36, P=0.043) were statistically significantly associated with the increased risk for CAD. A similar trend of the association was found in dominant model (OR = 1.53, 95% CI = 1.05–2.25, P=0.029). Consistently, the haplotype rs6458155C-rs4145451C containing rs6458155 C allele exhibited the increased CAD risk (OR = 1.22, 95% CI = 1.03–1.43, and P=0.018). In addition, CT genotype of rs6458155 conferred the increased plasma ET-1 levels compared with TT genotype (P<0.05). No association of the other four tagSNPs in EDN1 gene with CAD risk was observed. In conclusion, our study provides the first evidence that EDN1 tagSNP rs6458155 is associated with CAD risk in the Chinese Han population, which is probably due to the influence of the circulating ET-1 levels.
Collapse
|
24
|
Rodriguez-Miguelez P, Gregg J, Seigler N, Bass L, Thomas J, Pollock JS, Sullivan JC, Dillard TA, Harris RA. Acute Tetrahydrobiopterin Improves Endothelial Function in Patients With COPD. Chest 2018; 154:597-606. [PMID: 29705218 DOI: 10.1016/j.chest.2018.04.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/27/2018] [Accepted: 04/02/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cardiovascular diseases represent a hallmark characteristic in COPD, and endothelial dysfunction has been observed in these patients. Tetrahydrobiopterin (BH4) is an essential cofactor for nitric oxide (NO) synthesis and a regulator of endothelial function. The goal of this study was to test the hypothesis that a single dose of BH4 would improve endothelial function in patients with COPD via an increase in NO bioavailability. METHODS Seventeen patients with COPD completed a randomized, double-blind, placebo (PLC)-controlled, crossover trial with an acute dose of either BH4 (Kuvan; BioMarin Pharmaceutical Inc) or PLC. Flow-mediated dilation (FMD), a bioassay of endothelial function, was completed prior to and 3 h following each treatment. Phospho- and total endothelial NO synthase (NOS3) protein was evaluated after incubating endothelial cells with plasma from the patients prior to and following treatment. Fifteen demographically matched control subjects were tested at baseline for case control comparisons. RESULTS Treatment with BH4 significantly (P ≤ .004) increased FMD, improving endothelial function in patients compared to control values (P ≥ .327). BH4 increased (P = .013) the ratio of phospho-NOS3 to total NOS3 protein. No changes in FMD (P ≥ .776) or the protein ratio (P = .536) were observed following PLC. CONCLUSIONS An acute dose of BH4 was able to improve endothelial function in patients with COPD to values similar to control subjects. The improvement in endothelial function was accompanied by an increase in NOS3 phosphorylation. BH4 may represent a potential novel therapy to improve endothelial function and reduce cardiovascular disease risk in patients with COPD. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT01398943; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
| | - Justin Gregg
- Pulmonary and Critical Care Medicine Department, Greenville Memorial Hospital, Greenville, SC
| | - Nichole Seigler
- Georgia Prevention Institute, Department of Pediatrics, Augusta University, Augusta, GA
| | - Leon Bass
- Pulmonology Department, Holston Medical Group, Kingsport, TN
| | - Jeffrey Thomas
- Georgia Prevention Institute, Department of Pediatrics, Augusta University, Augusta, GA
| | - Jennifer S Pollock
- Cardio-Renal Physiology & Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | - Thomas A Dillard
- Pulmonary and Critical Care, Department of Medicine, Augusta University, Augusta, GA
| | - Ryan A Harris
- Georgia Prevention Institute, Department of Pediatrics, Augusta University, Augusta, GA; Sport and Exercise Science Research Institute, Ulster University, Jordanstown, Northern Ireland.
| |
Collapse
|
25
|
Co-ingestion of whole eggs or egg whites with glucose protects against postprandial hyperglycaemia-induced oxidative stress and dysregulated arginine metabolism in association with improved vascular endothelial function in prediabetic men. Br J Nutr 2018; 120:901-913. [PMID: 30160222 DOI: 10.1017/s0007114518002192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Replacing a portion of a glucose challenge with whole eggs (EGG) or egg whites (WHITE) was shown to protect against glucose-induced impairments in vascular function. We hypothesised in the present study that previously observed vasoprotection following co-ingestion of EGG or WHITE with glucose was attributed to limiting postprandial hyperglycaemia-induced oxidative stress that improves NO∙ bioavailability. Prediabetic men completed a randomised, cross-over study in which they ingested isoenergetic meals containing 100 g glucose (GLU), or 75 g glucose with 1·5 EGG, seven WHITE or two egg yolks (YOLK). At 30 min intervals for 3 h, we assessed plasma NO∙ metabolites, the lipid peroxidation biomarker malondialdehyde, antioxidants, arginine and its methylated metabolites (asymmetric dimethylarginine and symmetric dimethylarginine), tetrahydrobiopterin redox status, vasoconstrictors and inflammatory markers. Compared with GLU, malondialdehyde was lower and NO∙ metabolites were greater in EGG and WHITE, but YOLK was not different from GLU. Malondialdehyde was inversely correlated with NO∙ metabolites and vascular function, whereas NO∙ metabolites were positively correlated with vascular function. Compared with GLU, arginine was greater, but asymmetric and symmetric dimethylarginine and angiotensin-II were lower in all egg-based meals. Antioxidants, tetrahydrobiopterin redox status and inflammatory markers did not differ among treatments. Thus, while each egg-based meal improved arginine metabolism, only EGG and WHITE limited lipid peroxidation. This suggests that vasoprotection mediated by EGG and WHITE likely occurs in an NO∙-dependent manner by improving arginine metabolism and attenuating oxidative stress that otherwise limit NO∙ biosynthesis and bioavailability to the vascular endothelium.
Collapse
|
26
|
Chang PK, Yen IC, Tsai WC, Chang TC, Lee SY. Protective Effects of Rhodiola Crenulata Extract on Hypoxia-Induced Endothelial Damage via Regulation of AMPK and ERK Pathways. Int J Mol Sci 2018; 19:E2286. [PMID: 30081534 PMCID: PMC6121284 DOI: 10.3390/ijms19082286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022] Open
Abstract
Rhodiola crenulata root extract (RCE) has been shown to possess protective activities against hypoxia both in vitro and in vivo. However, the effects of RCE on response to hypoxia in the endothelium remain unclear. In this study, we aimed to examine the effects of RCE in endothelial cells challenged with hypoxic exposure and to elucidate the underlying mechanisms. Human umbilical vein endothelial cells were pretreated with or without RCE and then exposed to hypoxia (1% O₂) for 24 h. Cell viability, nitric oxide (NO) production, oxidative stress markers, as well as mechanistic readouts were studied. We found that hypoxia-induced cell death, impaired NO production, and oxidative stress. These responses were significantly attenuated by RCE treatment and were associated with the activation of AMP-activated kinase and extracellular signal-regulated kinase 1/2 signaling pathways. In summary, we showed that RCE protected endothelial cells from hypoxic insult and suggested that R. crenulata might be useful for the prevention of hypoxia-associated vascular dysfunction.
Collapse
Affiliation(s)
- Pi-Kai Chang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan.
- Division of Colon and Rectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - I-Chuan Yen
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Wei-Cheng Tsai
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Tsu-Chung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Shih-Yu Lee
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan.
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
27
|
Wu S, Yang YM, Zhu J, Ren JM, Wang J, Zhang H, Shao XH. The association between plasma big endothelin-1 levels at admission and long-term outcomes in patients with atrial fibrillation. Atherosclerosis 2018. [PMID: 29529394 DOI: 10.1016/j.atherosclerosis.2018.02.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND AND AIMS The prognostic role of big endothelin-1 (ET-1) in atrial fibrillation (AF) is unclear. We aimed to assess its predictive value in patients with AF. METHODS A total of 716 AF patients were enrolled and divided into two groups based on the optimal cut-off value of big ET-1 in predicting all-cause mortality. The primary outcomes were all-cause mortality and major adverse events (MAEs). Cox regression analysis and net reclassification improvement (NRI) analysis were performed to assess the predictive value of big ET-1 on outcomes. RESULTS With the optimal cut-off value of 0.55 pmol/L, 326 patients were classified into the high big ET-1 levels group. Cardiac dysfunction and left atrial dilation were factors related to high big ET-1 levels. During a median follow-up of 3 years, patients with big ET-1 ≥ 0.55 pmol/L had notably higher risk of all-cause death (44.8% vs. 11.5%, p < 0.001), MAEs (51.8% vs. 17.4%, p < 0.001), cardiovascular death, major bleeding, and tended to have higher thromboembolic risk. After adjusting for confounding factors, high big ET-1 level was an independent predictor of all-cause mortality (hazard ratio (HR) 2.11, 95% confidence interval (CI) 1.46-3.05; p < 0.001), MAEs (HR 2.05, 95% CI 1.50-2.80; p = 0.001), and cardiovascular death (HR 2.44, 95% CI 1.52-3.93; p < 0.001). NRI analysis showed that big ET-1 allowed a significant improvement of 0.32 in the accuracy of predicting the risk of both all-cause mortality and MAEs. CONCLUSIONS Elevated big ET-1 levels is an independent predictor of long-term all-cause mortality, MAEs, and cardiovascular death in patients with AF.
Collapse
Affiliation(s)
- Shuang Wu
- Emergency and Intensive Care Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Yan-Min Yang
- Emergency and Intensive Care Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China.
| | - Jun Zhu
- Emergency and Intensive Care Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Jia-Meng Ren
- Emergency and Intensive Care Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Juan Wang
- Emergency and Intensive Care Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Han Zhang
- Emergency and Intensive Care Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Xing-Hui Shao
- Emergency and Intensive Care Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| |
Collapse
|
28
|
Naik RP, Derebail VK. The spectrum of sickle hemoglobin-related nephropathy: from sickle cell disease to sickle trait. Expert Rev Hematol 2017; 10:1087-1094. [PMID: 29048948 DOI: 10.1080/17474086.2017.1395279] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Renal dysfunction is among the most common complication of sickle cell disease (SCD), from hyposthenuria in children to progression to overt chronic kidney disease (CKD) in young adults. Emerging evidence now suggests that sickle hemoglobin-related nephropathy extends to individuals with sickle cell trait (SCT). Areas covered: This review will highlight the pathophysiology, epidemiology, and management recommendations for sickle hemoglobin-related nephropathy in both SCD and SCT. In addition, it will focus on the major demographic and genetic modifiers of renal disease in sickling hemoglobinopathies. Expert commentary: Studies have elucidated the course of renal disease in SCD; however, the scope and age of onset of renal dysfunction in SCT has yet to be determined. In SCD, several modifiers of renal disease - such as α-thalassemia, hemoglobin F, APOL1 and HMOX1 - have been described and provide an opportunity for a precision medicine approach to risk stratify patients who may benefit from early intervention. Extrapolating from this literature may also provide insight into the modifiers of renal disease in SCT. Further studies are needed to determine the optimal treatment for sickle hemoglobin-related nephropathy.
Collapse
Affiliation(s)
- Rakhi P Naik
- a Division of Hematology, Department of Medicine , Johns Hopkins University , Baltimore , MD , USA
| | - Vimal K Derebail
- b Division of Nephrology and Hypertension, Department of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| |
Collapse
|
29
|
Gabriele M, Frassinetti S, Caltavuturo L, Montero L, Dinelli G, Longo V, Di Gioia D, Pucci L. Citrus bergamia powder: Antioxidant, antimicrobial and anti-inflammatory properties. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
30
|
Zhou BY, Guo YL, Wu NQ, Zhu CG, Gao Y, Qing P, Li XL, Wang Y, Dong Q, Liu G, Xu RX, Cui CJ, Sun J, Li JJ. Plasma big endothelin-1 levels at admission and future cardiovascular outcomes: A cohort study in patients with stable coronary artery disease. Int J Cardiol 2017; 230:76-79. [PMID: 28038820 DOI: 10.1016/j.ijcard.2016.12.082] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/15/2016] [Accepted: 12/16/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Big endothelin-1 (ET-1) has been proposed as a novel prognostic indicator of acute coronary syndrome, while its predicting role of cardiovascular outcomes in patients with stable coronary artery disease (CAD) is unclear. METHODS AND RESULTS A total of 3154 consecutive patients with stable CAD were enrolled and followed up for 24months. The outcomes included all-cause death, non-fatal myocardial infarction, stroke and unplanned revascularization (percutaneous coronary intervention and coronary artery bypass grafting). Baseline big ET-1 was measured using sandwich enzyme immunoassay method. Cox proportional hazard regression analysis and Kaplan-Meier analysis were used to evaluate the prognostic value of big ET-1 on cardiovascular outcomes. One hundred and eighty-nine (5.99%) events occurred during follow-up. Patients were divided into two groups: events group (n=189) and non-events group (n=2965). The results indicated that the events group had higher levels of big ET-1 compared to non-events group. Multivariable Cox proportional hazard regression analysis showed that big ET-1 was positively and statistically correlated with clinical outcomes (Hazard Ratio: 1.656, 95% confidence interval: 1.099-2.496, p=0.016). Additionally, the Kaplan-Meier analysis revealed that patients with higher big ET-1 presented lower event-free survival (p=0.016). CONCLUSIONS The present study firstly suggests that big ET-1 is an independent risk marker of cardiovascular outcomes in patients with stable CAD. And more studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Bing-Yang Zhou
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Yuan-Lin Guo
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Na-Qiong Wu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Cheng-Gang Zhu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Ying Gao
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Ping Qing
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Xiao-Lin Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Yao Wang
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Qian Dong
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Geng Liu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Rui Xia Xu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Chuan-Jue Cui
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Jing Sun
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 Bei Li Shi Road, Xi Cheng District, Beijing 100037, China.
| |
Collapse
|
31
|
Abstract
Exposure to air pollution negatively impacts cardiovascular health. Studies show that increased exposure to a number of airborne pollutants increases the risk for cardiovascular disease progression, myocardial events, and cardiovascular mortality. A hypothesized mechanism linking air pollution and cardiovascular disease is the development of systemic inflammation and endothelium dysfunction, the latter of which can result from an imbalance of vasoactive factors within the vasculature. Endothelin-1 (ET-1) is a potent peptide vasoconstrictor that plays a significant role in regulating vascular homeostasis. It has been reported that the production and function of ET-1 and its receptors are upregulated in a number of disease states associated with endothelium dysfunction including hypertension and atherosclerosis. This mini-review surveys epidemiological and experimental air pollution studies focused on ET-1 dysregulation as a plausible mechanism underlying the development of cardiovascular disease. Although alterations in ET-1 system components are observed in some studies, there remains a need for future research to clarify whether these specific changes are compensatory or causally related to vascular injury and dysfunction. Moreover, further research may test the efficacy of selective ET-1 pharmacological interventions (e.g., ETA receptor inhibitors) to determine whether these treatments could impede the deleterious impact of air pollution exposure on cardiovascular health.
Collapse
|
32
|
Sibutramine provokes apoptosis of aortic endothelial cells through altered production of reactive oxygen and nitrogen species. Toxicol Appl Pharmacol 2017; 314:1-11. [DOI: 10.1016/j.taap.2016.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/01/2016] [Accepted: 11/08/2016] [Indexed: 01/09/2023]
|
33
|
Ataga KI, Derebail VK, Caughey M, Elsherif L, Shen JH, Jones SK, Maitra P, Pollock DM, Cai J, Archer DR, Hinderliter AL. Albuminuria Is Associated with Endothelial Dysfunction and Elevated Plasma Endothelin-1 in Sickle Cell Anemia. PLoS One 2016; 11:e0162652. [PMID: 27669006 PMCID: PMC5036885 DOI: 10.1371/journal.pone.0162652] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/28/2016] [Indexed: 12/11/2022] Open
Abstract
Background The pathogenesis of albuminuria in SCD remains incompletely understood. We evaluated the association of albuminuria with measures of endothelial function, and explored associations of both albuminuria and measures of endothelial function with selected biological variables (vascular endothelial growth factor [VEGF], endothelin-1 [ET-1], soluble fms-like tyrosine kinase-1 [sFLT-1], soluble vascular cell adhesion molecule-1 [soluble VCAM-1] and plasma hemoglobin). Methods Spot urine measurements for albumin-creatinine ratio (UACR) and 24-hour urine protein were obtained. Endothelial function was assessed using brachial artery ultrasound with measurements of flow-mediated dilation (FMD), nitroglycerin-mediated dilation (NTMD) and hyperemic velocity. Results Twenty three subjects with varying degrees of albuminuria were evaluated. UACR was significantly correlated with FMD (ρ = -0.45, p = 0.031). In univariate analysis, UACR was correlated with VEGF (ρ = -0.49; 95% CI: -0.75 –-0.1, p = 0.015), plasma hemoglobin (ρ = 0.50; 95% CI: 0.11–0.75, p = 0.013) and ET-1 (ρ = 0.40; 95% CI: -0.03–0.69, p = 0.06). Multivariable analysis showed significant associations of ET-1 (estimate: 455.1 [SE: 198.3], p = 0.02), VEGF (estimate: -1.1 [SE: 0.53], p = 0.04) and sFLT-1 (estimate: -1.14 [SE: 0.49], p = 0.02) with UACR. Only ET-1 (estimate: -8.03 [SE: 3.87], p = 0.04) was significantly associated with FMD in multivariable analyses. Finally, UACR was correlated with both 24-hour urine protein (ρ = 0.90, p < 0.0001) and urine aliquots for albumin-creatinine ratio obtained from the 24-hour urine collection (ρ = 0.97, p < 0.0001). Conclusion This study provides more definitive evidence for the association of albuminuria with endothelial dysfunction in SCD. Elevated circulating levels of ET-1 may contribute to SCD-related glomerulopathy by mediating endothelial dysfunction.
Collapse
Affiliation(s)
- Kenneth I. Ataga
- Division of Hematology/Oncology, University of North Carolina, Chapel Hill, NC, United States of America
- * E-mail:
| | - Vimal K. Derebail
- Division of Nephrology and Hypertension, University of North Carolina, Chapel Hill, NC, United States of America
| | - Melissa Caughey
- Division of Cardiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Laila Elsherif
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, United States of America
| | - Jessica H. Shen
- Division of Hematology/Oncology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Susan K. Jones
- Division of Hematology/Oncology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Poulami Maitra
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States of America
| | - David M. Pollock
- Division of Nephrology, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States of America
| | - David R. Archer
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| | - Alan L. Hinderliter
- Division of Cardiology, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
34
|
Liraglutide prevents and reverses monocrotaline-induced pulmonary arterial hypertension by suppressing ET-1 and enhancing eNOS/sGC/PKG pathways. Sci Rep 2016; 6:31788. [PMID: 27581840 PMCID: PMC5007506 DOI: 10.1038/srep31788] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/28/2016] [Indexed: 12/26/2022] Open
Abstract
Liraglutide, a glucagon-like peptide-1 receptor (GLP-1R) agonist, is widely used to treat diabetes. However, its effect on pulmonary arterial hypertension (PAH) is unknown. In this study, we investigated its effects on rats with monocrotaline (MCT)-induced PAH and mechanisms on rat pulmonary artery smooth muscle cells (PASMCs). Liraglutide was investigated for both prevention and treatment of MCT-induced PAH. The hemodynamic and body weight changes, right heart hypertrophy, lung morphology, immune-reactivity of endothelial nitric oxide synthase (eNOS), endothelin-1 and cyclic guanosine monophosphate (cGMP) levels, protein expressions of eNOS, soluble guanylyl cyclase (sGCα), protein kinase G (PKG) and Rho kinase (ROCK) II pathway were measured in both in vivo and in vitro. Cell migration and cell cycle were also determined. Liraglutide both prevented and reversed MCT-induced PAH, right ventricle hypertrophy and pulmonary vascular wall remodeling. Protein expression of ROCK II was increased while eNOS, sGC and PKG were decreased. Pretreatment with liraglutide inhibited platelet-derived growth factor (PDGF)-BB stimulated PASMCs migration, which were associated with cell-cycle arrest at G0/G1 phase. Liraglutide may have both preventive and therapeutic effects on MCT-induced PAH, through the eNOS/sGC/PKG and Rho kinase pathways. Thus, liraglutide may have a therapeutic role in pulmonary vascular remodelling.
Collapse
|
35
|
Gene silencing of endothelial von Willebrand Factor attenuates angiotensin II-induced endothelin-1 expression in porcine aortic endothelial cells. Sci Rep 2016; 6:30048. [PMID: 27443965 PMCID: PMC4957110 DOI: 10.1038/srep30048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/29/2016] [Indexed: 12/13/2022] Open
Abstract
Expression of endothelin (ET)-1 is increased in endothelial cells exposed to angiotensin II (Ang II), leading to endothelial dysfunction and cardiovascular disorders. Since von Willebrand Factor (vWF) blockade improves endothelial function in coronary patients, we hypothesized that targeting endothelial vWF with short interference RNA (siRNA) prevents Ang II-induced ET-1 upregulation. Nearly 65 ± 2% silencing of vWF in porcine aortic endothelial cells (PAOECs) was achieved with vWF-specific siRNA without affecting cell viability and growth. While showing ET-1 similar to wild type cells at rest, vWF-silenced cells did not present ET-1 upregulation during exposure to Ang II (100 nM/24 h), preserving levels of endothelial nitric oxide synthase activity similar to wild type. vWF silencing prevented AngII-induced increase in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity and superoxide anion (O2-) levels, known triggers of ET-1 expression. Moreover, no increase in O2- or ET-1 levels was found in silenced cells treated with AngII or NOX-agonist phorbol ester (PMA 5 nM/48 h). Finally, vWF was required for overexpression of NOX4 and NOX2 in response to AngII and PMA. In conclusion, endothelial vWF knockdown prevented Ang II-induced ET-1 upregulation through attenuation of NOX-mediated O2- production. Our findings reveal a new role of vWF in preventing of Ang II-induced endothelial dysfunction.
Collapse
|
36
|
Halili L, Singh MS, Fujii N, Alexander LM, Kenny GP. Endothelin-1 modulates methacholine-induced cutaneous vasodilatation but not sweating in young human skin. J Physiol 2016; 594:3439-52. [PMID: 26846374 DOI: 10.1113/jp271735] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/29/2016] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Endothelin-1 (ET-1) is a potent endothelial-derived vasoconstrictor that may modulate cholinergic cutaneous vascular regulation. Endothelin receptors are also expressed on the human eccrine sweat gland, although it remains unclear whether ET-1 modulates cholinergic sweating. We investigated whether ET-1 attenuates cholinergic cutaneous vasodilatation and sweating through a nitric oxide synthase (NOS)-dependent mechanism. Our findings show that ET-1 attenuates methacholine-induced cutaneous vasodilatation through a NOS-independent mechanism. We also demonstrate that ET-1 attenuates cutaneous vasodilatation in response to sodium nitroprusside, suggesting that ET-1 diminishes the dilatation capacity of vascular smooth muscle cells. We show that ET-1 does not modulate methacholine-induced sweating at any of the administered concentrations. Our findings advance our knowledge pertaining to the peripheral control underpinning the regulation of cutaneous blood flow and sweating and infer that ET-1 may attenuate the heat loss responses of cutaneous blood flow, but not sweating. ABSTRACT The present study investigated the effect of endothelin-1 (ET-1) on cholinergic mechanisms of end-organs (i.e. skin blood vessels and sweat glands) for heat dissipation. We evaluated the hypothesis that ET-1 attenuates cholinergic cutaneous vasodilatation and sweating through a nitric oxide synthase (NOS)-dependent mechanism. Cutaneous vascular conductance (CVC) and sweat rate were assessed in three protocols: in Protocol 1 (n = 8), microdialysis sites were perfused with lactated Ringer solution (Control), 40 pm, 4 nm or 400 nm ET-1; in Protocol 2 (n = 11) sites were perfused with lactated Ringer solution (Control), 400 nm ET-1, 10 mm N(G) -nitro-l-arginine (l-NNA; a NOS inhibitor) or a combination of 400 nm ET-1 and 10 mm l-NNA; in Protocol 3 (n = 8), only two sites (Control and 400 nm ET-1) were utilized to assess the influence of ET-1 on the dilatation capacity of vascular smooth muscle cells (sodium nitroprusside; SNP). Methacholine (MCh) was co-administered in a dose-dependent manner (0.0125, 0.25, 5, 100, 2000 mm, each for 25 min) at all skin sites. ET-1 at 400 nm (P < 0.05) compared to lower doses (40 pm and 4 nm) (all P > 0.05) significantly attenuated increases in CVC in response to 0.25 and 5 mm MCh. A high dose of ET-1 (400 nm) co-infused with l-NNA further attenuated CVC during 0.25, 5 and 100 mm MCh administration relative to the ET-1 site (all P < 0.05). Cutaneous vasodilatation in response to SNP was significantly blunted after administration of 400 nm ET-1 (P < 0.05). We show that ET-1 attenuates cutaneous vasodilatation through a NOS-independent mechanism, possibly through a vascular smooth muscle cell-dependent mechanism, and methacholine-induced sweating is not altered by ET-1.
Collapse
Affiliation(s)
- Lyra Halili
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Maya Sarah Singh
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, PA, USA
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
37
|
Morsy MA, Heeba GH. Nebivolol Ameliorates Cisplatin-Induced Nephrotoxicity in Rats. Basic Clin Pharmacol Toxicol 2016; 118:449-55. [PMID: 26617394 DOI: 10.1111/bcpt.12538] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/04/2015] [Indexed: 01/04/2023]
Abstract
Treatment with cisplatin is associated with dose-limiting side effects, mainly nephrotoxicity. On the other hand, nebivolol, a β1 -adrenoceptor antagonist, exhibits vasodilatory and antioxidative properties. This study aimed to determine whether nebivolol possesses a protective effect against cisplatin nephrotoxicity and explore many mechanisms underlying this potential effect. Nephrotoxicity was induced in Wistar rats by a single intraperitoneal injection of cisplatin (6 mg/kg) on day 2. Nebivolol (10 mg/kg) was administered orally for 7 consecutive days. Nebivolol showed a nephroprotective effect as demonstrated by the significant reduction in the elevated levels of serum creatinine and urea as well as renal levels of malondialdehyde, nitric oxide products (nitrite/nitrate), inducible nitric oxide synthase, tumour necrosis factor-alpha, caspase-3, angiotensin II and endothelin-1 with a concurrent increase in renal levels of reduced glutathione and endothelial nitric oxide synthase compared to untreated rats. Histopathological examination confirmed the nephroprotective effect of nebivolol. Pre-treatment with Nω -nitro-L-arginine methyl ester, the non-specific nitric oxide synthase inhibitor, partially altered the protection afforded by nebivolol. In conclusion, nebivolol protects rats against cisplatin-induced nephrotoxicity that is most likely through its antioxidant, anti-inflammatory and antiapoptotic effects as well as by abrogation of the augmented angiotensin II and endothelin-1 levels.
Collapse
Affiliation(s)
- Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Gehan H Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| |
Collapse
|
38
|
Cardiovascular and Hepatic Toxicity of Cocaine: Potential Beneficial Effects of Modulators of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:8408479. [PMID: 26823954 PMCID: PMC4707355 DOI: 10.1155/2016/8408479] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/19/2015] [Accepted: 11/01/2015] [Indexed: 12/20/2022]
Abstract
Oxidative stress (OS) is thought to play an important role in the pharmacological and toxic effects of various drugs of abuse. Herein we review the literature on the mechanisms responsible for the cardiovascular and hepatic toxicity of cocaine with special focus on OS-related mechanisms. We also review the preclinical and clinical literature concerning the putative therapeutic effects of OS modulators (such as N-acetylcysteine, superoxide dismutase mimetics, nitroxides and nitrones, NADPH oxidase inhibitors, xanthine oxidase inhibitors, and mitochondriotropic antioxidants) for the treatment of cocaine toxicity. We conclude that available OS modulators do not appear to have clinical efficacy.
Collapse
|
39
|
Genome-Wide Association Study of Peripheral Arterial Disease in a Japanese Population. PLoS One 2015; 10:e0139262. [PMID: 26488411 PMCID: PMC4619060 DOI: 10.1371/journal.pone.0139262] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/10/2015] [Indexed: 02/07/2023] Open
Abstract
Characteristics of peripheral arterial disease (PAD) are the occlusion or stenosis of multiple vessel sites caused mainly by atherosclerosis and chronic lower limb ischemia. To identify PAD susceptible loci, we conducted a genome-wide association study (GWAS) with 785 cases and 3,383 controls in a Japanese population using 431,666 single nucleotide polymorphisms (SNP). After staged analyses including a total of 3,164 cases and 20,134 controls, we identified 3 novel PAD susceptibility loci at IPO5/RAP2A, EDNRA and HDAC9 with genome wide significance (combined P = 6.8 x 10−14, 5.3 x 10−9 and 8.8 x 10−8, respectively). Fine-mapping at the IPO5/RAP2A locus revealed that rs9584669 conferred risk of PAD. Luciferase assay showed that the risk allele at this locus reduced expression levels of IPO5. To our knowledge, these are the first genetic risk factors for PAD.
Collapse
|
40
|
Abstract
Diabetic neuropathy (DN) is one of the most common and severe manifestations of diabetes mellitus. The mechanisms underlying the structural, functional and metabolic changes in diabetic neuropathy have been under study for a long time. In this review the biochemistry and implications of the four pathways responsible for the development of DN, polyol pathway; increased AGEs (advanced glycation end-products) formation; activation of PKC (protein kinase C) and hexosamine pathway have been discussed. Experimental and clinical evidences suggest a close link between neurodegeneration and oxidative stress which serves as a unifying mechanism, thus linking the four pathways. Recent studies indicate that oxidative stress mediated DNA damage causes poly(ADP-ribose) polymerase (PARP) overactivation and reduced activity of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a factor common to all the four pathways. The exact mechanism of PARP mediated cell death in DN needs further investigation. Based on current studies neuroprotective and antioxidant therapy have been suggested as potential treatment and preventive solutions for DN.
Collapse
Affiliation(s)
- Manal Shakeel
- Dr. BR Ambedkar Centre for Biomedical Research, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
41
|
Carvalho LJDM, Moreira ADS, Daniel-Ribeiro CT, Martins YC. Vascular dysfunction as a target for adjuvant therapy in cerebral malaria. Mem Inst Oswaldo Cruz 2015; 109:577-88. [PMID: 25185000 PMCID: PMC4156451 DOI: 10.1590/0074-0276140061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/02/2014] [Indexed: 12/27/2022] Open
Abstract
Cerebral malaria (CM) is a life-threatening complication of Plasmodium
falciparum malaria that continues to be a major global health problem.
Brain vascular dysfunction is a main factor underlying the pathogenesis of CM and can
be a target for the development of adjuvant therapies for the disease. Vascular
occlusion by parasitised red blood cells and vasoconstriction/vascular dysfunction
results in impaired cerebral blood flow, ischaemia, hypoxia, acidosis and death. In
this review, we discuss the mechanisms of vascular dysfunction in CM and the roles of
low nitric oxide bioavailability, high levels of endothelin-1 and dysfunction of the
angiopoietin-Tie2 axis. We also discuss the usefulness and relevance of the murine
experimental model of CM by Plasmodium berghei ANKA to identify
mechanisms of disease and to screen potential therapeutic interventions.
Collapse
Affiliation(s)
| | - Aline da Silva Moreira
- Laboratório de Pesquisas em Malária, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | | | - Yuri Chaves Martins
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
42
|
Thengchaisri N, Hein TW, Ren Y, Kuo L. Endothelin-1 impairs coronary arteriolar dilation: Role of p38 kinase-mediated superoxide production from NADPH oxidase. J Mol Cell Cardiol 2015. [PMID: 26211713 DOI: 10.1016/j.yjmcc.2015.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elevated levels of endothelin-1 (ET-1), a potent vasoactive peptide, are implicated as a risk factor for cardiovascular diseases by exerting vasoconstriction. The aim of this study was to address whether ET-1, at sub-vasomotor concentrations, elicits adverse effects on coronary microvascular function. Porcine coronary arterioles (50-100μm) were isolated, cannulated and pressurized without flow for in vitro study. Diameter changes were recorded using a videomicrometer. Arterioles developed basal tone (60±3μm) and dilated to the endothelium-dependent nitric oxide (NO)-mediated vasodilators serotonin (1nmol/L to 0.1μmol/L) and adenosine (1nmol/L to 10μmol/L). Treating the vessels with a clinically relevant sub-vasomotor concentration of ET-1 (10pmol/L, 60min) significantly attenuated arteriolar dilations to adenosine and serotonin but not to endothelium-independent vasodilator sodium nitroprusside. The arteriolar wall contains ETA receptors and the adverse effect of ET-1 was prevented by ETA receptor antagonist BQ123, the superoxide scavenger Tempol, the NADPH oxidase inhibitors apocynin and VAS2870, the NOX2-based NADPH oxidase inhibitor gp91 ds-tat, or the p38 kinase inhibitor SB203580. However, ETB receptor antagonist BQ788, H2O2 scavenger catalase, scrambled gp91 ds-tat, or inhibitors of xanthine oxidase (allopurinol), PKC (Gö 6983), Rho kinase (Y27632), and c-Jun N-terminal kinase (SP600125) did not protect the vessel. Immunohistochemical staining showed that ET-1 elicited Tempol-, apocynin- and SB203580-sensitive superoxide productions in the arteriolar wall. Our results indicate that exposure of coronary arterioles to a pathophysiological, sub-vasomotor concentration of ET-1 leads to vascular dysfunction by impairing endothelium-dependent NO-mediated dilation via p38 kinase-mediated production of superoxide from NADPH oxidase following ETA receptor activation.
Collapse
Affiliation(s)
- Naris Thengchaisri
- Department of Medical Physiology, Cardiovascular Research Institute, College of Medicine, Texas A&M Health Science Center, Temple, TX 76504, USA; Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Travis W Hein
- Department of Surgery, College of Medicine, Texas A&M Health Science Center, Temple, TX 76504, USA
| | - Yi Ren
- Department of Surgery, College of Medicine, Texas A&M Health Science Center, Temple, TX 76504, USA
| | - Lih Kuo
- Department of Medical Physiology, Cardiovascular Research Institute, College of Medicine, Texas A&M Health Science Center, Temple, TX 76504, USA; Department of Surgery, College of Medicine, Texas A&M Health Science Center, Temple, TX 76504, USA.
| |
Collapse
|
43
|
Interaction of Panax quinquefolius Saponin and Dual Antiplatelets on Vascular Endothelial Function in Rats with Acute Myocardial Infarction. BIOMED RESEARCH INTERNATIONAL 2015; 2015:932751. [PMID: 26090462 PMCID: PMC4452292 DOI: 10.1155/2015/932751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 12/26/2014] [Indexed: 11/17/2022]
Abstract
The objective of this study is to investigate the interaction of Panax quinquefolius saponin (PQS) and dual antiplatelets (aspirin and clopidogrel) on antiplatelet activity and vascular endothelial function in rats with acute myocardial infarction (AMI). Forty-eight male SD rats were randomly designed into sham group, model group, dual antiplatelet group, and PQS plus dual antiplatelet group. AMI rats were induced by ligation of left anterior descending coronary artery (LAD) and dual antiplatelet agents and additional PQS to dual antiplatelets were intragastrically administered for 28 days, respectively. The ventricular cavity area and cardiac transverse area ratio in PQS + dual antiplatelet group showed a decreased tendency. PAgT(%) decreased significantly in both dual antiplatelet group and PQS + dual antiplatelet group. TXB2 concentration significantly decreased in dual antiplatelet and PQS + dual antiplatelet groups, whereas 6-keto-PGF1α concentration significantly increased in PQS + dual antiplatelet group. Rats in PQS + dual antiplatelet group demonstrated a significant decrease in plasma ET-1 concentration and an increase in serum NO concentration compared with dual antiplatelet group. The combination therapy of PQS and dual antiplatelets showed some beneficial effects on vascular endothelial function and ventricular remodeling in rats with AMI.
Collapse
|
44
|
Jokar Z, Nematbakhsh M, Moeini M, Talebi A. Role of endothelin-1 antagonist; bosentan, against cisplatin-induced nephrotoxicity in male and female rats. Adv Biomed Res 2015; 4:83. [PMID: 26015909 PMCID: PMC4434484 DOI: 10.4103/2277-9175.156642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/20/2015] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Cisplatin (CP) is a chemotherapy drug, with the major side effect of nephrotoxicity. The level of endothelin-1 (ET-1) increases during nephrotoxicity, which is accompanied with vasoconstrictive properties. Bosentan (BOS) is a nonselective ET-1 receptor antagonist, having vasodilatory and anti-hypertension effects. The purpose of this study was to investigate the renoprotective effect of BOS against CP-induced nephrotoxicity in male and female rats. MATERIALS AND METHODS Male and female rats were divided into six groups; groups 1-3 and 4-6 were male and female rats, respectively. Animals in groups 1 and 4 were considered as negative control and groups 2 and 5 considered as positive control groups received BOS (30 mg/kg/day) alone and CP (2.5 mg/kg/day) alone, respectively, for 1-week. The animals in groups 3 and 6 were treated with both CP and BOS. Finally, serum parameters were measured, and the kidney tissue was subjected to staining to evaluate tissue damage. RESULTS The serum levels of blood urea nitrogen and creatinine, kidney tissue damage score and kidney weight elevated, and body weight significantly decreased in both CP alone and in CP plus BOS-treated groups when compared with the control groups (P < 0.05), while BOS did not ameliorate these parameters neither in males nor in females. No significant differences were observed in serum levels of nitrite and malondialdehyde between the groups, but kidney tissue level of nitrite decreased significantly in CP alone and CP plus BOS-treated groups (P < 0.05). CONCLUSION Renoprotective effect of BOS, as ET-1 blocker, was not observed against CP-induced nephrotoxicity neither in male nor in female rats. This is while BOS promoted the severity of injuries in females.
Collapse
Affiliation(s)
- Zahra Jokar
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran ; Department of Physiology, Islamic Azad University, Jahrom Brunch, Jahrom, Iran
| | - Mehdi Nematbakhsh
- Department of Physiology, Islamic Azad University, Jahrom Brunch, Jahrom, Iran ; Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran ; Isfahan MN Institute of Basic and Applied Sciences Research, Isfahan, Iran
| | - Maryam Moeini
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ardeshir Talebi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
45
|
Park J, Omi N. The effects of different exercise modes for preventing endothelial dysfunction of arteries and bone loss in ovariectomized rats. J Exerc Nutrition Biochem 2014; 18:133-9. [PMID: 25566448 PMCID: PMC4241919 DOI: 10.5717/jenb.2014.18.2.133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 04/17/2014] [Accepted: 05/15/2014] [Indexed: 11/04/2022] Open
Abstract
[Purpose] Several epidemiological studies have demonstrated that there are positive correlations between vascular disorders and bone loss in postmenopausal women. The aim of the present study was to examine the effect of different types of exercise (e.g., climbing and swimming) for preventing endothelial dysfunction of arteries and bone loss in ovariectomized rats. [Methods] Twenty Sprague-Dawley female rats were randomly divided into three groups: ovariectomy (OVX) plus treatment with vitamin D3 and nicotine (VDN) (control rats [Con], n = 7), which is an animal model for endothelial dysfunction and bone loss; voluntary climbing resistance exercise with OVX plus VDN (climbing rats [Clim], n = 6), and swimming exercise with OVX plus VDN (swimming rats [Swim], n = 7). The period of exercise training was 8 weeks. [Results] The endothelin-1 (ET-1) protein levels were significantly lower in the Clim and Swim groups than in the Con. The endothelial nitric oxide synthase protein levels were significantly higher in the Swim group than in the Con, but they did not differ between the Clim and Con groups. The cortical bone mineral density in the tibia and breaking energy of the femur were significantly higher in the Clim group than in the Con, but this positive effect was not seen in the Swim group. [Conclusion] Voluntary climbing exercise decreased arterial ET-1 protein levels and prevented bone loss in a postmenopause-model rat combining OVX and VDN. Conversely, swimming suppressed endothelial dysfunction of the arteries but did not prevent bone loss. Thus, the type of exercise should be cautiously chosen for enhancing vascular function and bone status, especially in females after menopause.
Collapse
Affiliation(s)
- Jonghoon Park
- Department of Physical Education, Konkuk University, Seoul, Korea
| | - Naomi Omi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
46
|
Chou JC, Rollins SD, Ye M, Batlle D, Fawzi AA. Endothelin receptor-A antagonist attenuates retinal vascular and neuroretinal pathology in diabetic mice. Invest Ophthalmol Vis Sci 2014; 55:2516-25. [PMID: 24644048 DOI: 10.1167/iovs.13-13676] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We sought to determine the effects of atrasentan, a selective endothelin-A receptor antagonist, on the retinal vascular and structural integrity in a db/db mouse, an animal model of type 2 diabetes and diabetic retinopathy. METHODS Diabetic mice, 23 weeks old, were given either atrasentan or vehicle treatment in drinking water for 8 weeks. At the end of the treatment period, eyes underwent trypsin digest to assess the retinal vascular pathology focusing on capillary degeneration, endothelial cell, and pericyte loss. Paraffin-embedded retinal cross sections were used to evaluate retinal sublayer thickness both near the optic nerve and in the retinal periphery. Immunohistochemistry and TUNEL assay were done to evaluate retinal cellular and vascular apoptosis. RESULTS Compared with untreated db/db mice, atrasentan treatment was able to ameliorate the retinal vascular pathology by reducing pericyte loss (29.2% ± 0.4% vs. 44.4% ± 2.0%, respectively, P < 0.05) and capillary degeneration as determined by the percentage of acellular capillaries (8.6% ± 0.3% vs. 3.3% ± 0.41%, respectively, P < 0.05). A reduction in inner retinal thinning both at the optic nerve and at the periphery in treated diabetic mice was also observed in db/db mice treated with atrasentan as compared with untreated db/db mice (P < 0.05). TUNEL assay suggested that atrasentan may decrease enhanced apoptosis in neuroretinal layers and vascular pericytes in the db/db mice. CONCLUSIONS Endothelin-A receptor blockade using atrasentan significantly reduces the vascular and neuroretinal complications in diabetic mice. Endothelin-A receptor blockade is a promising therapeutic target in diabetic retinopathy.
Collapse
Affiliation(s)
- Jonathan C Chou
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | | | | | | | | |
Collapse
|
47
|
Protein kinase C delta modulates endothelial nitric oxide synthase after cardiac arrest. J Cereb Blood Flow Metab 2014; 34:613-20. [PMID: 24447953 PMCID: PMC3982078 DOI: 10.1038/jcbfm.2013.232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 11/25/2013] [Accepted: 11/28/2013] [Indexed: 12/21/2022]
Abstract
We previously showed that inhibition of protein kinase C delta (PKCδ) improves brain perfusion 24 hours after asphyxial cardiac arrest (ACA) and confers neuroprotection in the cortex and CA1 region of the hippocampus 7 days after arrest. Therefore, in this study, we investigate the mechanism of action of PKCδ-mediated hypoperfusion after ACA in the rat by using the two-photon laser scanning microscopy (TPLSM) to observe cortical cerebral blood flow (CBF) and laser Doppler flowmetry (LDF) detecting regional CBF in the presence/absence of δV1-1 (specific PKCδ inhibitor), nitric oxide synthase (NOS) substrate (L-arginine, L-arg) and inhibitor (N(ω)-Nitro-L-arginine, NLA), and nitric oxide (NO) donor (sodium nitroprusside, SNP). There was an increase in regional LDF and local (TPLSM) CBF in the presence of δV1-1+L-arg, but only an increase in regional CBF under δV1-1+SNP treatments. Systemic blood nitrite levels were measured 15 minutes and 24 hours after ACA. Nitrite levels were enhanced by pretreatment with δV1-1 30 minutes before ACA possibly attributable to enhanced endothelial NOS protein levels. Our results suggest that PKCδ can modulate NO machinery in cerebral vasculature. Protein kinase C delta can depress endothelial NOS blunting CBF resulting in hypoperfusion, but can be reversed with δV1-1 improving brain perfusion, thus providing subsequent neuroprotection after ACA.
Collapse
|
48
|
Rafikov R, Kumar S, Aggarwal S, Hou Y, Kangath A, Pardo D, Fineman JR, Black SM. Endothelin-1 stimulates catalase activity through the PKCδ-mediated phosphorylation of serine 167. Free Radic Biol Med 2014; 67:255-64. [PMID: 24211614 PMCID: PMC3945115 DOI: 10.1016/j.freeradbiomed.2013.10.814] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 01/03/2023]
Abstract
Our previous studies have shown that endothelin-1 (ET-1) stimulates catalase activity in endothelial cells and in lambs with acute increases in pulmonary blood flow (PBF), without altering gene expression. The purpose of this study was to investigate the molecular mechanism by which this occurs. Exposing pulmonary arterial endothelial cells to ET-1 increased catalase activity and decreased cellular hydrogen peroxide (H2O2) levels. These changes correlated with an increase in serine-phosphorylated catalase. Using the inhibitory peptide δV1.1, this phosphorylation was shown to be protein kinase Cδ (PKCδ) dependent. Mass spectrometry identified serine 167 as the phosphorylation site. Site-directed mutagenesis was used to generate a phospho-mimic (S167D) catalase. Activity assays using recombinant protein purified from Escherichia coli or transiently transfected COS-7 cells demonstrated that S167D catalase had an increased ability to degrade H2O2 compared to the wild-type enzyme. Using a phospho-specific antibody, we were able to verify that pS167 catalase levels are modulated in lambs with acute increases in PBF in the presence and absence of the ET receptor antagonist tezosentan. S167 is located on the dimeric interface, suggesting it could be involved in regulating the formation of catalase tetramers. To evaluate this possibility we utilized analytical gel filtration to examine the multimeric structure of recombinant wild-type and S167D catalase. We found that recombinant wild-type catalase was present as a mixture of monomers and dimers, whereas S167D catalase was primarily tetrameric. Further, the incubation of wild-type catalase with PKCδ was sufficient to convert wild-type catalase into a tetrameric structure. In conclusion, this is the first report indicating that the phosphorylation of catalase regulates its multimeric structure and activity.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta GA 30912
- Please address correspondence and proofs to: Stephen M. Black, Ph.D., Vascular Biology Center, Georgia Regents University, 1459 Laney Walker Blvd, CB 3211-B, Augusta, GA-30912, Tel: 706-721-7860,
| | - Sanjiv Kumar
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta GA 30912
- Please address correspondence and proofs to: Stephen M. Black, Ph.D., Vascular Biology Center, Georgia Regents University, 1459 Laney Walker Blvd, CB 3211-B, Augusta, GA-30912, Tel: 706-721-7860,
| | - Saurabh Aggarwal
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta GA 30912
| | - Yali Hou
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta GA 30912
| | - Archana Kangath
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta GA 30912
| | - Daniel Pardo
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta GA 30912
| | - Jeffrey R. Fineman
- Department of Pediatrics University of California, San Francisco, CA, 94143
- Cardiovascular Research Institute, University of California, San Francisco, CA, 94143
| | - Stephen M. Black
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta GA 30912
| |
Collapse
|
49
|
Yeung PKK, Shen J, Chung SSM, Chung SK. Targeted over-expression of endothelin-1 in astrocytes leads to more severe brain damage and vasospasm after subarachnoid hemorrhage. BMC Neurosci 2013; 14:131. [PMID: 24156724 PMCID: PMC3815232 DOI: 10.1186/1471-2202-14-131] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/15/2013] [Indexed: 01/15/2023] Open
Abstract
Background Endothelin-1 (ET-1) is a potent vasoconstrictor, and astrocytic ET-1 is reported to play a role in the pathogenesis of cerebral ischemic injury and cytotoxic edema. However, it is still unknown whether astrocytic ET-1 also contributes to vasogenic edema and vasospasm during subarachnoid hemorrhage (SAH). In the present study, transgenic mice with astrocytic endothelin-1 over-expression (GET-1 mice) were used to investigate the pathophysiological role of ET-1 in SAH pathogenesis. Results The GET-1 mice experienced a higher mortality rate and significantly more severe neurological deficits, blood–brain barrier breakdown and vasogenic edema compared to the non-transgenic (Ntg) mice following SAH. Oral administration of vasopressin V1a receptor antagonist, SR 49059, significantly reduced the cerebral water content in the GET-1 mice. Furthermore, the GET-1 mice showed significantly more pronounced middle cerebral arterial (MCA) constriction after SAH. Immunocytochemical analysis showed that the calcium-activated potassium channels and the phospho-eNOS were significantly downregulated, whereas PKC-α expression was significantly upregulated in the MCA of the GET-1 mice when compared to Ntg mice after SAH. Administration of ABT-627 (ETA receptor antagonist) significantly down-regulated PKC-α expression in the MCA of the GET-1 mice following SAH. Conclusions The present study suggests that astrocytic ET-1 involves in SAH-induced cerebral injury, edema and vasospasm, through ETA receptor and PKC-mediated potassium channel dysfunction. Administration of ABT-627 (ETA receptor antagonist) and SR 49059 (vasopressin V1a receptor antagonist) resulted in amelioration of edema and vasospasm in mice following SAH. These data provide a strong rationale to investigate SR 49059 and ABT-627 as therapeutic drugs for the treatment of SAH patients.
Collapse
Affiliation(s)
| | | | | | - Sookja K Chung
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
50
|
Toda N, Nakanishi S, Tanabe S. Aldosterone affects blood flow and vascular tone regulated by endothelium-derived NO: therapeutic implications. Br J Pharmacol 2013. [PMID: 23190073 DOI: 10.1111/j.1476-5381.2012.02194.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aldosterone, in doses inappropriate to the salt status, plays an important role in the development of cardiovascular injury, including endothelial dysfunction, independent of its hypertensive effects. Acute non-genomic effects of aldosterone acting on mineralocorticoid receptors are inconsistent in healthy humans: vasoconstriction or forearm blood flow decrease via endothelial dysfunction, vasodilatation mediated by increased NO actions, or no effects. However, in studies with experimental animals, aldosterone mostly enhances vasodilatation mediated by endothelium-derived NO. Chronic exposure to aldosterone, which induces genomic responses, results in impairments of endothelial function through decreased NO synthesis and action in healthy individuals, experimental animals and isolated endothelial cells. Chronic aldosterone reduces NO release from isolated human endothelial cells only when extracellular sodium is raised. Oxidative stress is involved in the impairment of endothelial function by promoting NO degradation. Aldosterone liberates endothelin-1 (ET-1) from endothelial cells, which elicits ET(A) receptor-mediated vasoconstriction by inhibiting endothelial NO synthesis and action and through its own direct vasoconstrictor action. Ca(2+) flux through T-type Ca(2+) channels activates aldosterone synthesis and thus enhances unwanted effects of aldosterone on the endothelium. Mineralocorticoid receptor inhibitors, ET(A) receptor antagonists and T-type Ca(2) + channel blockers appear to diminish the pathophysiological participation of aldosterone in cardiovascular disease and exert beneficial actions on bioavailability of endothelium-derived NO, particularly in resistant hypertension and aldosteronism.
Collapse
Affiliation(s)
- Noboru Toda
- Toyama Institute for Cardiovascular Pharmacology Research, Osaka, Japan.
| | | | | |
Collapse
|