1
|
Lu C, Xu C, Yang J. The Beneficial Effects of GLP-1 Receptor Agonists Other than Their Anti-Diabetic and Anti-Obesity Properties. MEDICINA (KAUNAS, LITHUANIA) 2024; 61:17. [PMID: 39858999 PMCID: PMC11767243 DOI: 10.3390/medicina61010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
As an incretin hormone, Glucagon-like peptide-1 (GLP-1) has obvious effects on blood glucose regulation and weight loss. GLP-1 receptor (GLP-1R) agonists are synthetic products that have similar effects to GLP-1 but are less prone to degradation, and they are widely used in the treatment of type 2 diabetes and obesity. In recent years, different beneficial effects of GLP-1R agonists were discovered, such as reducing ischemia-reperfusion injury, improving the function of various organs, alleviating substance use disorder, affecting tumorigenesis, regulating bone metabolism, changing gut microbiota composition, and prolonging graft survival. Therefore, GLP-1R agonists have great potential for clinical application in various diseases. Here, we briefly summarized the beneficial effects of GLP-1R agonists other than the anti-diabetic and anti-obesity effects.
Collapse
Affiliation(s)
- Chenqi Lu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| | - Cong Xu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| |
Collapse
|
2
|
D’Amato A, Prosperi S, Severino P, Myftari V, Correale M, Perrone Filardi P, Badagliacca R, Fedele F, Vizza CD, Palazzuoli A. MicroRNA and Heart Failure: A Novel Promising Diagnostic and Therapeutic Tool. J Clin Med 2024; 13:7560. [PMID: 39768484 PMCID: PMC11728316 DOI: 10.3390/jcm13247560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
Heart failure (HF) has a multifaceted and complex pathophysiology. Beyond neurohormonal, renin-angiotensin-aldosterone system, and adrenergic hyperactivation, a role for other pathophysiological determinants is emerging. Genetic and epigenetic factors are involved in this syndrome. In many maladaptive processes, the role of microRNAs (miRNAs) has been recently demonstrated. MiRNAs are small endogenous non-coding molecules of RNA involved in gene expression regulation, and they play a pivotal role in intercellular communication, being involved in different biological and pathophysiological processes. MiRNAs can modulate infarct area size, cardiomyocytes restoration, collagen deposition, and macrophage polarization. MiRNAs may be considered as specific biomarkers of hypertrophy and fibrosis. MiRNAs have been proposed as a therapeutical tool because their administration can contrast with myocardial pathophysiological remodeling leading to HF. Antimir and miRNA mimics are small oligonucleotides which may be administered in several manners and may be able to regulate the expression of specific and circulating miRNAs. Studies on animal models and on healthy humans demonstrate that these molecules are well tolerated and effective, opening the possibility of a therapeutic use of miRNAs in cases of HF. The application of miRNAs for diagnosis, prognostic stratification, and therapy fits in with the new concept of a personalized and tailored approach to HF.
Collapse
Affiliation(s)
- Andrea D’Amato
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Silvia Prosperi
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Paolo Severino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Vincenzo Myftari
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Michele Correale
- Cardiothoracic Department, ‘Policlinico Riuniti’ University Hospital, 71100 Foggia, Italy
| | - Pasquale Perrone Filardi
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University, 80131 Naples, Italy;
| | - Roberto Badagliacca
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | | | - Carmine Dario Vizza
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Alberto Palazzuoli
- Cardio Thoracic and Vascular Department, ‘S. Maria alle Scotte Hospital’, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
3
|
Sorge M, Savoré G, Gallo A, Acquarone D, Sbroggiò M, Velasco S, Zamporlini F, Femminò S, Moiso E, Morciano G, Balmas E, Raimondi A, Nattenberg G, Stefania R, Tacchetti C, Rizzo AM, Corsetto P, Ghigo A, Turco E, Altruda F, Silengo L, Pinton P, Raffaelli N, Sniadecki NJ, Penna C, Pagliaro P, Hirsch E, Riganti C, Tarone G, Bertero A, Brancaccio M. An intrinsic mechanism of metabolic tuning promotes cardiac resilience to stress. EMBO Mol Med 2024; 16:2450-2484. [PMID: 39271959 PMCID: PMC11473679 DOI: 10.1038/s44321-024-00132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Defining the molecular mechanisms underlying cardiac resilience is crucial to find effective approaches to protect the heart. A physiologic level of ROS is produced in the heart by fatty acid oxidation, but stressful events can boost ROS and cause mitochondrial dysfunction and cardiac functional impairment. Melusin is a muscle specific chaperone required for myocardial compensatory remodeling during stress. Here we report that Melusin localizes in mitochondria where it binds the mitochondrial trifunctional protein, a key enzyme in fatty acid oxidation, and decreases it activity. Studying both mice and human induced pluripotent stem cell-derived cardiomyocytes, we found that Melusin reduces lipid oxidation in the myocardium and limits ROS generation in steady state and during pressure overload and doxorubicin treatment, preventing mitochondrial dysfunction. Accordingly, the treatment with the lipid oxidation inhibitor Trimetazidine concomitantly with stressful stimuli limits ROS accumulation and prevents long-term heart dysfunction. These findings disclose a physiologic mechanism of metabolic regulation in the heart and demonstrate that a timely restriction of lipid metabolism represents a potential therapeutic strategy to improve cardiac resilience to stress.
Collapse
Affiliation(s)
- Matteo Sorge
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy.
| | - Giulia Savoré
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Andrea Gallo
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Davide Acquarone
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Mauro Sbroggiò
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Silvia Velasco
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Federica Zamporlini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, 60121, Italy
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043, Italy
| | - Enrico Moiso
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Giampaolo Morciano
- Department of Medical Sciences, University of Ferrara, Ferrara, 44121, Italy
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, 48033, Italy
| | - Elisa Balmas
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Andrea Raimondi
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Gabrielle Nattenberg
- Departments of Mechanical Engineering, Bioengineering, and Laboratory Medicine and Pathology, Institute for Stem Cell and Regenerative Medicine, and Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
| | - Rachele Stefania
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Carlo Tacchetti
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Angela Maria Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, 20133, Italy
| | - Paola Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, 20133, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Emilia Turco
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Fiorella Altruda
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Lorenzo Silengo
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, 44121, Italy
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, 48033, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, 60121, Italy
| | - Nathan J Sniadecki
- Departments of Mechanical Engineering, Bioengineering, and Laboratory Medicine and Pathology, Institute for Stem Cell and Regenerative Medicine, and Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Torino, 10126, Italy
| | - Guido Tarone
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy.
| |
Collapse
|
4
|
Alibhai FJ, Li RK. Rejuvenation of the Aging Heart: Molecular Determinants and Applications. Can J Cardiol 2024; 40:1394-1411. [PMID: 38460612 DOI: 10.1016/j.cjca.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
In Canada and worldwide, the elderly population (ie, individuals > 65 years of age) is increasing disproportionately relative to the total population. This is expected to have a substantial impact on the health care system, as increased aged is associated with a greater incidence of chronic noncommunicable diseases. Within the elderly population, cardiovascular disease is a leading cause of death, therefore developing therapies that can prevent or slow disease progression in this group is highly desirable. Historically, aging research has focused on the development of anti-aging therapies that are implemented early in life and slow the age-dependent decline in cell and organ function. However, accumulating evidence supports that late-in-life therapies can also benefit the aged cardiovascular system by limiting age-dependent functional decline. Moreover, recent studies have demonstrated that rejuvenation (ie, reverting cellular function to that of a younger phenotype) of the already aged cardiovascular system is possible, opening new avenues to develop therapies for older individuals. In this review, we first provide an overview of the functional changes that occur in the cardiomyocyte with aging and how this contributes to the age-dependent decline in heart function. We then discuss the various anti-aging and rejuvenation strategies that have been pursued to improve the function of the aged cardiomyocyte, with a focus on therapies implemented late in life. These strategies include 1) established systemic approaches (caloric restriction, exercise), 2) pharmacologic approaches (mTOR, AMPK, SIRT1, and autophagy-targeting molecules), and 3) emerging rejuvenation approaches (partial reprogramming, parabiosis/modulation of circulating factors, targeting endogenous stem cell populations, and senotherapeutics). Collectively, these studies demonstrate the exciting potential and limitations of current rejuvenation strategies and highlight future areas of investigation that will contribute to the development of rejuvenation therapies for the aged heart.
Collapse
Affiliation(s)
- Faisal J Alibhai
- Toronto General Research Hospital Institute, University Health Network, Toronto, Ontario, Canada
| | - Ren-Ke Li
- Toronto General Research Hospital Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Division of Cardiovascular Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Zhang X, Zheng W, Sun S, Du Y, Xu W, Sun Z, Liu F, Wang M, Zhao Z, Liu J, Liu Q. Cadmium contributes to cardiac metabolic disruption by activating endothelial HIF1A-GLUT1 axis. Cell Signal 2024; 119:111170. [PMID: 38604344 DOI: 10.1016/j.cellsig.2024.111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Cadmium (Cd) is an environmental risk factor of cardiovascular diseases. Researchers have found that Cd exposure causes energy metabolic disorders in the heart decades ago. However, the underlying molecular mechanisms are still elusive. In this study, male C57BL/6 J mice were exposed to cadmium chloride (CdCl2) through drinking water for 4 weeks. We found that exposure to CdCl2 increased glucose uptake and utilization, and disrupted normal metabolisms in the heart. In vitro studies showed that CdCl2 specifically increased endothelial glucose uptake without affecting cardiomyocytic glucose uptake and endothelial fatty acid uptake. The glucose transporter 1 (GLUT1) as well as its transcription factor HIF1A was significantly increased after CdCl2 treatment in endothelial cells. Further investigations found that CdCl2 treatment upregulated HIF1A expression by inhibiting its degradation through ubiquitin-proteasome pathway, thereby promoted its transcriptional activation of SLC2A1. Administration of HIF1A small molecule inhibitor echinomycin and A-485 reversed CdCl2-mediated increase of glucose uptake in endothelial cells. In accordance with this, intravenous injection of echinomycin effectively ameliorated CdCl2-mediated metabolic disruptions in the heart. Our study uncovered the molecular mechanisms of Cd in contributing cardiac metabolic disruption by inhibiting HIF1A degradation and increasing GLUT1 transcriptional expression. Inhibition of HIF1A could be a potential strategy to ameliorate Cd-mediated cardiac metabolic disorders and Cd-related cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Medical Physiology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, China; Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Wendan Zheng
- Department of Medical Physiology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, China; Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Shiyu Sun
- Department of Medical Physiology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, China; Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Yang Du
- Department of Personnel, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Wenjuan Xu
- Department of Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering Laboratory for Health Management, Ji'nan, Shandong, China
| | - Zongguo Sun
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Fuhong Liu
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Manzhi Wang
- Department of Hematology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Zuohui Zhao
- Department of Pediatric Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Ju Liu
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Qiang Liu
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China; Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Ji'nan, Shandong, China.
| |
Collapse
|
6
|
Fernandez-Patron C, Lopaschuk GD, Hardy E. A self-reinforcing cycle hypothesis in heart failure pathogenesis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:627-636. [PMID: 39196226 DOI: 10.1038/s44161-024-00480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/25/2024] [Indexed: 08/29/2024]
Abstract
Heart failure is a progressive syndrome with high morbidity and mortality rates. Here, we suggest that chronic exposure of the heart to risk factors for heart failure damages heart mitochondria, thereby impairing energy production to levels that can suppress the heart's ability to pump blood and repair mitochondria (both energy-consuming processes). As damaged mitochondria accumulate, the heart becomes deprived of energy in a 'self-reinforcing cycle', which can persist after the heart is no longer chronically exposed to (or after antagonism of) the risk factors that initiated the cycle. Together with other previously described pathological mechanisms, this proposed cycle can help explain (1) why heart failure progresses, (2) why it can recur after cessation of treatment, and (3) why heart failure is often accompanied by dysfunction of multiple organs. Ideally, therapy of heart failure syndrome would be best attempted before the self-reinforcing cycle is triggered or designed to break the self-reinforcing cycle.
Collapse
Affiliation(s)
- Carlos Fernandez-Patron
- Cardiovascular Research Centre, Department of Biochemistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
7
|
Wang X, Rao J, Zhang L, Liu X, Zhang Y. Identification of circadian rhythm-related gene classification patterns and immune infiltration analysis in heart failure based on machine learning. Heliyon 2024; 10:e27049. [PMID: 38509983 PMCID: PMC10950509 DOI: 10.1016/j.heliyon.2024.e27049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/17/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Background Circadian rhythms play a key role in the failing heart, but the exact molecular mechanisms linking changes in the expression of circadian rhythm-related genes to heart failure (HF) remain unclear. Methods By intersecting differentially expressed genes (DEGs) between normal and HF samples in the Gene Expression Omnibus (GEO) database with circadian rhythm-related genes (CRGs), differentially expressed circadian rhythm-related genes (DE-CRGs) were obtained. Machine learning algorithms were used to screen for feature genes, and diagnostic models were constructed based on these feature genes. Subsequently, consensus clustering algorithms and non-negative matrix factorization (NMF) algorithms were used for clustering analysis of HF samples. On this basis, immune infiltration analysis was used to score the immune infiltration status between HF and normal samples as well as among different subclusters. Gene Set Variation Analysis (GSVA) evaluated the biological functional differences among subclusters. Results 13 CRGs showed differential expression between HF patients and normal samples. Nine feature genes were obtained through cross-referencing results from four distinct machine learning algorithms. Multivariate LASSO regression and external dataset validation were performed to select five key genes with diagnostic value, including NAMPT, SERPINA3, MAPK10, NPPA, and SLC2A1. Moreover, consensus clustering analysis could divide HF patients into two distinct clusters, which exhibited different biological functions and immune characteristics. Additionally, two subgroups were distinguished using the NMF algorithm based on circadian rhythm associated differentially expressed genes. Studies on immune infiltration showed marked variances in levels of immune infiltration between these subgroups. Subgroup A had higher immune scores and more widespread immune infiltration. Finally, the Weighted Gene Co-expression Network Analysis (WGCNA) method was utilized to discern the modules that had the closest association with the two observed subgroups, and hub genes were pinpointed via protein-protein interaction (PPI) networks. GRIN2A, DLG1, ERBB4, LRRC7, and NRG1 were circadian rhythm-related hub genes closely associated with HF. Conclusion This study provides valuable references for further elucidating the pathogenesis of HF and offers beneficial insights for targeting circadian rhythm mechanisms to regulate immune responses and energy metabolism in HF treatment. Five genes identified by us as diagnostic features could be potential targets for therapy for HF.
Collapse
Affiliation(s)
- Xuefu Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jin Rao
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Li Zhang
- Guangxi University, Nanning, China
| | | | - Yufeng Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Hu M, Zhang X, Gao YP, Hu YX, Teng T, Wang SS, Tang QZ. Isthmin-1 Improves Aging-Related Cardiac Dysfunction in Mice through Enhancing Glycolysis and SIRT1 Deacetylase Activity. Aging Dis 2024; 15:2682-2696. [PMID: 38300636 PMCID: PMC11567257 DOI: 10.14336/ad.2024.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/13/2024] [Indexed: 02/02/2024] Open
Abstract
Aging-related cardiac dysfunction poses a major risk factor of mortality for elderly populations, however, efficient treatment for aging-related cardiac dysfunction is far from being known. Isthmin-1 (ISM1) is a novel adipokine that promotes glucose uptake and acts indispensable roles in restraining inflammatory and fibrosis. The present study aims to investigate the potential role and molecular mechanism of ISM1 in aging-related cardiac dysfunction. Aged and matched young mice were overexpressed or silenced with ISM1 to investigate the role of ISM1 in aging-related cardiac dysfunction. Moreover, H9C2 cells were stimulated with D-galactose (D-gal) to examine the role of ISM1 in vitro. Herein, we found that cardiac-specific overexpression of ISM1 significantly mitigated insulin resistance by promoting glucose uptake in aging mice. ISM1 overexpression alleviated while ISM1 silencing deteriorated cellular senescence, cardiac inflammation, and dysfunction in natural and accelerated cardiac aging. Mechanistically, ISM1 promoted glycolysis and activated Sirtuin-1 (SIRT1) through increasing glucose uptake. ISM1 increased glucose uptake via translocating GLUT4 to the surface, thereby enhancing glycolytic flux and hexosamine biosynthetic pathway (HBP) flux, ultimately leading to increased SIRT1 activity through O-GlcNAc modification. ISM1 may serve as a novel potential therapeutic target for preventing aging-related cardiac disease in elderly populations. ISM1 prevents aging-related cardiac dysfunction by promoting glycolysis and enhancing SIRT1 deacetylase activity, making it a promising therapeutic target for aging-related cardiac disease.
Collapse
Affiliation(s)
- Min Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Xin Zhang
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yi-Peng Gao
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Yu-Xin Hu
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Sha-Sha Wang
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| |
Collapse
|
9
|
Zhao M, Li N, Zhou H. SGLT1: A Potential Drug Target for Cardiovascular Disease. Drug Des Devel Ther 2023; 17:2011-2023. [PMID: 37435096 PMCID: PMC10332373 DOI: 10.2147/dddt.s418321] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023] Open
Abstract
SGLT1 and SGLT2 are the two main members of the sodium-glucose cotransporters (SGLTs), which are mainly responsible for glucose reabsorption in the body. In recent years, many large clinical trials have shown that SGLT2 inhibitors have cardiovascular protection for diabetic and non-diabetic patients independent of lowering blood glucose. However, SGLT2 was barely detected in the hearts of humans and animals, while SGLT1 was highly expressed in myocardium. As SGLT2 inhibitors also have a moderate inhibitory effect on SGLT1, the cardiovascular protection of SGLT2 inhibitors may be due to SGLT1 inhibition. SGLT1 expression is associated with pathological processes such as cardiac oxidative stress, inflammation, fibrosis, and cell apoptosis, as well as mitochondrial dysfunction. The purpose of this review is to summarize the protective effects of SGLT1 inhibition on hearts in various cell types, including cardiomyocytes, endothelial cells, and fibroblasts in preclinical studies, and to highlight the underlying molecular mechanisms of protection against cardiovascular diseases. Selective SGLT1 inhibitors could be considered a class of drugs for cardiac-specific therapy in the future.
Collapse
Affiliation(s)
- Mengnan Zhao
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Na Li
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Hong Zhou
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
10
|
Nakayama Y, Mukai N, Kreitzer G, Patwari P, Yoshioka J. Interaction of ARRDC4 With GLUT1 Mediates Metabolic Stress in the Ischemic Heart. Circ Res 2022; 131:510-527. [PMID: 35950500 PMCID: PMC9444972 DOI: 10.1161/circresaha.122.321351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/01/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND An ancient family of arrestin-fold proteins, termed alpha-arrestins, may have conserved roles in regulating nutrient transporter trafficking and cellular metabolism as adaptor proteins. One alpha-arrestin, TXNIP (thioredoxin-interacting protein), is known to regulate myocardial glucose uptake. However, the in vivo role of the related alpha-arrestin, ARRDC4 (arrestin domain-containing protein 4), is unknown. METHODS We first tested whether interaction with GLUTs (glucose transporters) is a conserved function of the mammalian alpha-arrestins. To define the in vivo function of ARRDC4, we generated and characterized a novel Arrdc4 knockout (KO) mouse model. We then analyzed the molecular interaction between arrestin domains and the basal GLUT1. RESULTS ARRDC4 binds to GLUT1, induces its endocytosis, and blocks cellular glucose uptake in cardiomyocytes. Despite the closely shared protein structure, ARRDC4 and its homologue TXNIP operate by distinct molecular pathways. Unlike TXNIP, ARRDC4 does not increase oxidative stress. Instead, ARRDC4 uniquely mediates cardiomyocyte death through its effects on glucose deprivation and endoplasmic reticulum stress. At baseline, Arrdc4-KO mice have mild fasting hypoglycemia. Arrdc4-KO hearts exhibit a robust increase in myocardial glucose uptake and glycogen storage. Accordingly, deletion of Arrdc4 improves energy homeostasis during ischemia and protects cardiomyocytes against myocardial infarction. Furthermore, structure-function analyses of the interaction of ARRDC4 with GLUT1 using both scanning mutagenesis and deep-learning Artificial Intelligence identify specific residues in the C-terminal arrestin-fold domain as the interaction interface that regulates GLUT1 function, revealing a new molecular target for potential therapeutic intervention against myocardial ischemia. CONCLUSIONS These results uncover a new mechanism of ischemic injury in which ARRDC4 drives glucose deprivation-induced endoplasmic reticulum stress leading to cardiomyocyte death. Our findings establish ARRDC4 as a new scaffold protein for GLUT1 that regulates cardiac metabolism in response to ischemia and provide insight into the therapeutic strategy for ischemic heart disease.
Collapse
Affiliation(s)
- Yoshinobu Nakayama
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| | - Nobuhiro Mukai
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| | - Geri Kreitzer
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| | - Parth Patwari
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jun Yoshioka
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Patel N, Yaqoob MM, Aksentijevic D. Cardiac metabolic remodelling in chronic kidney disease. Nat Rev Nephrol 2022; 18:524-537. [DOI: 10.1038/s41581-022-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
|
12
|
The Role of Oxidative Stress in the Aging Heart. Antioxidants (Basel) 2022; 11:antiox11020336. [PMID: 35204217 PMCID: PMC8868312 DOI: 10.3390/antiox11020336] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022] Open
Abstract
Medical advances and the availability of diagnostic tools have considerably increased life expectancy and, consequently, the elderly segment of the world population. As age is a major risk factor in cardiovascular disease (CVD), it is critical to understand the changes in cardiac structure and function during the aging process. The phenotypes and molecular mechanisms of cardiac aging include several factors. An increase in oxidative stress is a major player in cardiac aging. Reactive oxygen species (ROS) production is an important mechanism for maintaining physiological processes; its generation is regulated by a system of antioxidant enzymes. Oxidative stress occurs from an imbalance between ROS production and antioxidant defenses resulting in the accumulation of free radicals. In the heart, ROS activate signaling pathways involved in myocyte hypertrophy, interstitial fibrosis, contractile dysfunction, and inflammation thereby affecting cell structure and function, and contributing to cardiac damage and remodeling. In this manuscript, we review recent published research on cardiac aging. We summarize the aging heart biology, highlighting key molecular pathways and cellular processes that underlie the redox signaling changes during aging. Main ROS sources, antioxidant defenses, and the role of dysfunctional mitochondria in the aging heart are addressed. As metabolism changes contribute to cardiac aging, we also comment on the most prevalent metabolic alterations. This review will help us to understand the mechanisms involved in the heart aging process and will provide a background for attractive molecular targets to prevent age-driven pathology of the heart. A greater understanding of the processes involved in cardiac aging may facilitate our ability to mitigate the escalating burden of CVD in older individuals and promote healthy cardiac aging.
Collapse
|
13
|
Liu X, Zhang Y, Deng Y, Yang L, Ou W, Xie M, Ding L, Jiang C, Yu H, Li Q, Li T. Mitochondrial protein hyperacetylation underpins heart failure with preserved ejection fraction in mice. J Mol Cell Cardiol 2022; 165:76-85. [PMID: 34998831 DOI: 10.1016/j.yjmcc.2021.12.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/03/2021] [Accepted: 12/31/2021] [Indexed: 02/08/2023]
Abstract
Over 50% of patients with heart failure have preserved ejection fraction (HFpEF), rather than reduced ejection fraction (HFrEF). The prevalence of HFpEF continues to increase, while the pathogenic mechanisms underlying HFpEF remain largely elusive and evidence-based therapies are still lacking. This study was designed to investigate the metabolic signature of HFpEF and test the potential therapeutic intervention in a mouse model. By utilizing a "3-Hit" HFpEF mouse model, we observed a global protein hyperacetylation in the HFpEF hearts as compared to the pressure overload-induced HFrEF and adult/aged non-heart failure (NHF) hearts. Acetylome analysis identified that a large proportion of the hyperacetylated proteins (74%) specific to the HFpEF hearts are in mitochondria, and enriched in tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), and fatty acid oxidation. Further study showed that the elevated protein acetylation in the HFpEF hearts was correlated with reduced NAD+/NADH ratio, impaired mitochondrial function, and depleted TCA cycle metabolites. Normalization of NAD+/NADH ratio by supplementation of nicotinamide riboside (NR) for 30 days downregulated the acetylation level, improved mitochondrial function and ameliorated HFpEF phenotypes. Therefore, our study identified a distinct protein acetylation pattern in the HFpEF hearts, and proposed NR as a promising agent in lowering acetylation and mitigating HFpEF phenotypes in mice.
Collapse
Affiliation(s)
- Xin Liu
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yabing Zhang
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yan Deng
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lin Yang
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Ou
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Maodi Xie
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lin Ding
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chunling Jiang
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hai Yu
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qian Li
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Jiang M, Xie X, Cao F, Wang Y. Mitochondrial Metabolism in Myocardial Remodeling and Mechanical Unloading: Implications for Ischemic Heart Disease. Front Cardiovasc Med 2021; 8:789267. [PMID: 34957264 PMCID: PMC8695728 DOI: 10.3389/fcvm.2021.789267] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Ischemic heart disease refers to myocardial degeneration, necrosis, and fibrosis caused by coronary artery disease. It can lead to severe left ventricular dysfunction (LVEF ≤ 35–40%) and is a major cause of heart failure (HF). In each contraction, myocardium is subjected to a variety of mechanical forces, such as stretch, afterload, and shear stress, and these mechanical stresses are clinically associated with myocardial remodeling and, eventually, cardiac outcomes. Mitochondria produce 90% of ATP in the heart and participate in metabolic pathways that regulate the balance of glucose and fatty acid oxidative phosphorylation. However, altered energetics and metabolic reprogramming are proved to aggravate HF development and progression by disturbing substrate utilization. This review briefly summarizes the current insights into the adaptations of cardiomyocytes to mechanical stimuli and underlying mechanisms in ischemic heart disease, with focusing on mitochondrial metabolism. We also discuss how mechanical circulatory support (MCS) alters myocardial energy metabolism and affects the detrimental metabolic adaptations of the dysfunctional myocardium.
Collapse
Affiliation(s)
- Min Jiang
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,College of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiaoye Xie
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China.,Department of Cadre Ward, The 960 Hospital of Chinese People's Liberation Army, Jinan, China
| | - Feng Cao
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yabin Wang
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
15
|
He H, Baka T, Balschi J, Motani AS, Nguyen KK, Liu Q, Slater R, Rock B, Wang C, Hale C, Karamanlidis G, Hartman JJ, Malik FI, Reagan JD, Luptak I. A Novel Small Molecule Troponin Activator Increases Cardiac Contractile Function Without Negative Impact on Energetics. Circ Heart Fail 2021; 15:e009195. [PMID: 34743528 PMCID: PMC8920024 DOI: 10.1161/circheartfailure.121.009195] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Current heart failure (HF) therapies unload the failing heart without targeting the underlying problem of reduced cardiac contractility. Traditional inotropes (i.e. calcitropes) stimulate contractility via energetically costly augmentation of calcium cycling and worsen patient survival. A new class of agents - myotropes - activate the sarcomere directly, independent of calcium. We hypothesize that a novel myotrope TA1 increases contractility without the deleterious myocardial energetic impact of a calcitrope dobutamine. Methods: We determined the effect of TA1 in bovine cardiac myofibrils and human cardiac microtissues, ex vivo in mouse cardiac fibers and in vivo in anesthetized normal rats. Effects of increasing concentrations of TA1 or dobutamine on contractile function, phosphocreatine (PCr) and ATP concentrations and ATP production were assessed by 31P NMR spectroscopy on isolated perfused rat hearts. Results: TA1 increased the rate of myosin ATPase activity in isolated bovine myofibrils and calcium sensitivity in intact mouse papillary fibers. Contractility increased dose dependently in human cardiac microtissues and in vivo in rats as assessed by echocardiography. In isolated rat hearts, TA1 and dobutamine similarly increased rate pressure product (RPP). Dobutamine increased both developed pressure (DevP) and heart rate (HR) accompanied by decreased PCr to ATP ratio and decreased free energy of ATP hydrolysis (ΔG~ATP) and elevated left ventricular end-diastolic pressure (LVEDP). In contrast, the TA1 increased DevP without any effect on HR, LVEDP, PCr/ATP ratio or ΔG~ATP. Conclusions: Novel myotrope, TA1, increased myocardial contractility by sensitizing the sarcomere to calcium without impairing diastolic function or depleting the cardiac energy reserve. Since energetic depletion negatively correlates with long term survival, myotropes may represent a superior alternative to traditional inotropes in heart failure management.
Collapse
Affiliation(s)
- Huamei He
- Physiological NMR Core Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Myocardial Biology Unit, Boston University School of Medicine, Boston, MA
| | - James Balschi
- Physiological NMR Core Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Alykhan S Motani
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., Thousand Oaks, CA
| | - Kathy K Nguyen
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., Thousand Oaks, CA
| | - Qingxiang Liu
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., Thousand Oaks, CA
| | - Rebecca Slater
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., Thousand Oaks, CA
| | - Brooke Rock
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., Thousand Oaks, CA
| | - Chen Wang
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., Thousand Oaks, CA
| | - Christopher Hale
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., Thousand Oaks, CA
| | - Georgios Karamanlidis
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., Thousand Oaks, CA
| | | | | | - Jeff D Reagan
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., Thousand Oaks, CA
| | - Ivan Luptak
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA
| |
Collapse
|
16
|
Du H, Zhao Y, Li H, Wang DW, Chen C. Roles of MicroRNAs in Glucose and Lipid Metabolism in the Heart. Front Cardiovasc Med 2021; 8:716213. [PMID: 34368265 PMCID: PMC8339264 DOI: 10.3389/fcvm.2021.716213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that participate in heart development and pathological processes mainly by silencing gene expression. Overwhelming evidence has suggested that miRNAs were involved in various cardiovascular pathological processes, including arrhythmias, ischemia-reperfusion injuries, dysregulation of angiogenesis, mitochondrial abnormalities, fibrosis, and maladaptive remodeling. Various miRNAs could regulate myocardial contractility, vascular proliferation, and mitochondrial function. Meanwhile, it was reported that miRNAs could manipulate nutrition metabolism, especially glucose and lipid metabolism, by regulating insulin signaling pathways, energy substrate transport/metabolism. Recently, increasing studies suggested that the abnormal glucose and lipid metabolism were closely associated with a broad spectrum of cardiovascular diseases (CVDs). Therefore, maintaining glucose and lipid metabolism homeostasis in the heart might be beneficial to CVD patients. In this review, we summarized the present knowledge of the functions of miRNAs in regulating cardiac glucose and lipid metabolism, as well as highlighted the miRNA-based therapies targeting cardiac glucose and lipid metabolism.
Collapse
Affiliation(s)
- Hengzhi Du
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yanru Zhao
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Huaping Li
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Abstract
Insulin receptors are highly expressed in the heart and vasculature. Insulin signaling regulates cardiac growth, survival, substrate uptake, utilization, and mitochondrial metabolism. Insulin signaling modulates the cardiac responses to physiological and pathological stressors. Altered insulin signaling in the heart may contribute to the pathophysiology of ventricular remodeling and heart failure progression. Myocardial insulin signaling adapts rapidly to changes in the systemic metabolic milieu. What may initially represent an adaptation to protect the heart from carbotoxicity may contribute to amplifying the risk of heart failure in obesity and diabetes. This review article presents the multiple roles of insulin signaling in cardiac physiology and pathology and discusses the potential therapeutic consequences of modulating myocardial insulin signaling.
Collapse
Affiliation(s)
- E Dale Abel
- Division of Endocrinology, Metabolism and Diabetes and Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
18
|
Abstract
Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex and are dependent not only on the severity and type of heart failure present but also on the co-existence of common comorbidities such as obesity and type 2 diabetes. The failing heart faces an energy deficit, primarily because of a decrease in mitochondrial oxidative capacity. This is partly compensated for by an increase in ATP production from glycolysis. The relative contribution of the different fuels for mitochondrial ATP production also changes, including a decrease in glucose and amino acid oxidation, and an increase in ketone oxidation. The oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in heart failure associated with diabetes and obesity, myocardial fatty acid oxidation increases, while in heart failure associated with hypertension or ischemia, myocardial fatty acid oxidation decreases. Combined, these energy metabolic changes result in the failing heart becoming less efficient (ie, a decrease in cardiac work/O2 consumed). The alterations in both glycolysis and mitochondrial oxidative metabolism in the failing heart are due to both transcriptional changes in key enzymes involved in these metabolic pathways, as well as alterations in NAD redox state (NAD+ and nicotinamide adenine dinucleotide levels) and metabolite signaling that contribute to posttranslational epigenetic changes in the control of expression of genes encoding energy metabolic enzymes. Alterations in the fate of glucose, beyond flux through glycolysis or glucose oxidation, also contribute to the pathology of heart failure. Of importance, pharmacological targeting of the energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac efficiency, decreasing the energy deficit and improving cardiac function in the failing heart.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle (R.T.)
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.)
| | - E Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City (E.D.A.).,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City (E.D.A.)
| |
Collapse
|
19
|
Pharmacological inhibition of GLUT1 as a new immunotherapeutic approach after myocardial infarction. Biochem Pharmacol 2021; 190:114597. [PMID: 33965393 DOI: 10.1016/j.bcp.2021.114597] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/21/2022]
Abstract
Myocardial infarction (MI) is one of the major contributors to cardiovascular morbidity and mortality. Excess inflammation significantly contributes to cardiac remodeling and heart failure after MI. Accumulating evidence has shown the central role of cellular metabolism in regulating the differentiation and function of cells. Metabolic rewiring is particularly relevant for proinflammatory responses induced by ischemia. Hypoxia reduces mitochondrial oxidative phosphorylation (OXPHOS) and induces increased reliance on glycolysis. Moreover, activation of a proinflammatory transcriptional program is associated with preferential glucose metabolism in leukocytes. An improved understanding of the mechanisms that regulate metabolic adaptations holds the potential to identify new metabolic targets and strategies to reduce ischemic cardiac damage, attenuate excess local inflammation and ultimately prevent the development of heart failure. Among possible drug targets, glucose transporter 1 (GLUT1) gained considerable interest considering its pivotal role in regulating glucose availability in activated leukocytes and the availability of small molecules that selectively inhibit it. Therefore, we summarize current evidence on the role of GLUT1 in leukocytes (focusing on macrophages and T cells) and non-leukocytes, including cardiomyocytes, endothelial cells and fibroblasts regarding ischemic heart disease. Beyond myocardial infarction, we can foresee the role of GLUT1 blockers as a possible pharmacological approach to limit pathogenic inflammation in other conditions driven by excess sterile inflammation.
Collapse
|
20
|
Troncoso MF, Pavez M, Wilson C, Lagos D, Duran J, Ramos S, Barrientos G, Silva P, Llanos P, Basualto-Alarcón C, Westenbrink BD, Lavandero S, Estrada M. Testosterone activates glucose metabolism through AMPK and androgen signaling in cardiomyocyte hypertrophy. Biol Res 2021; 54:3. [PMID: 33546773 PMCID: PMC7863443 DOI: 10.1186/s40659-021-00328-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Background Testosterone regulates nutrient and energy balance to maintain protein synthesis and metabolism in cardiomyocytes, but supraphysiological concentrations induce cardiac hypertrophy. Previously, we determined that testosterone increased glucose uptake—via AMP-activated protein kinase (AMPK)—after acute treatment in cardiomyocytes. However, whether elevated glucose uptake is involved in long-term changes of glucose metabolism or is required during cardiomyocyte growth remained unknown. In this study, we hypothesized that glucose uptake and glycolysis increase in testosterone-treated cardiomyocytes through AMPK and androgen receptor (AR). Methods Cultured cardiomyocytes were stimulated with 100 nM testosterone for 24 h, and hypertrophy was verified by increased cell size and mRNA levels of β-myosin heavy chain (β-mhc). Glucose uptake was assessed by 2-NBDG. Glycolysis and glycolytic capacity were determined by measuring extracellular acidification rate (ECAR). Results Testosterone induced cardiomyocyte hypertrophy that was accompanied by increased glucose uptake, glycolysis enhancement and upregulated mRNA expression of hexokinase 2. In addition, testosterone increased AMPK phosphorylation (Thr172), while inhibition of both AMPK and AR blocked glycolysis and cardiomyocyte hypertrophy induced by testosterone. Moreover, testosterone supplementation in adult male rats by 5 weeks induced cardiac hypertrophy and upregulated β-mhc, Hk2 and Pfk2 mRNA levels. Conclusion These results indicate that testosterone stimulates glucose metabolism by activation of AMPK and AR signaling which are critical to induce cardiomyocyte hypertrophy. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-021-00328-4.
Collapse
Affiliation(s)
- Mayarling Francisca Troncoso
- Programa de Fisiología Y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, 8389100, Independencia, Santiago, Chile
| | - Mario Pavez
- Programa de Fisiología Y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, 8389100, Independencia, Santiago, Chile
| | - Carlos Wilson
- Programa de Fisiología Y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, 8389100, Independencia, Santiago, Chile
| | - Daniel Lagos
- Programa de Fisiología Y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, 8389100, Independencia, Santiago, Chile
| | - Javier Duran
- Programa de Fisiología Y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, 8389100, Independencia, Santiago, Chile
| | - Sebastián Ramos
- Programa de Fisiología Y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, 8389100, Independencia, Santiago, Chile
| | - Genaro Barrientos
- Programa de Fisiología Y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, 8389100, Independencia, Santiago, Chile
| | - Patricio Silva
- Faculty of Health Science, Universidad Central de Chile, Santiago, Chile
| | - Paola Llanos
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carla Basualto-Alarcón
- Departamento de Ciencias de la Salud, Universidad de Aysén, 5951537, Coyhaique, Chile.,Departamento de Anatomía y Medicina Legal, Facultad de Medicina, Universidad de Chile, 8389100, Santiago, Chile
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Manuel Estrada
- Programa de Fisiología Y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, 8389100, Independencia, Santiago, Chile.
| |
Collapse
|
21
|
Wende AR, Schell JC, Ha CM, Pepin ME, Khalimonchuk O, Schwertz H, Pereira RO, Brahma MK, Tuinei J, Contreras-Ferrat A, Wang L, Andrizzi CA, Olsen CD, Bradley WE, Dell'Italia LJ, Dillmann WH, Litwin SE, Abel ED. Maintaining Myocardial Glucose Utilization in Diabetic Cardiomyopathy Accelerates Mitochondrial Dysfunction. Diabetes 2020; 69:2094-2111. [PMID: 32366681 PMCID: PMC7506832 DOI: 10.2337/db19-1057] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/25/2020] [Indexed: 12/13/2022]
Abstract
Cardiac glucose uptake and oxidation are reduced in diabetes despite hyperglycemia. Mitochondrial dysfunction contributes to heart failure in diabetes. It is unclear whether these changes are adaptive or maladaptive. To directly evaluate the relationship between glucose delivery and mitochondrial dysfunction in diabetic cardiomyopathy, we generated transgenic mice with inducible cardiomyocyte-specific expression of the GLUT4. We examined mice rendered hyperglycemic following low-dose streptozotocin prior to increasing cardiomyocyte glucose uptake by transgene induction. Enhanced myocardial glucose in nondiabetic mice decreased mitochondrial ATP generation and was associated with echocardiographic evidence of diastolic dysfunction. Increasing myocardial glucose delivery after short-term diabetes onset exacerbated mitochondrial oxidative dysfunction. Transcriptomic analysis revealed that the largest changes, driven by glucose and diabetes, were in genes involved in mitochondrial function. This glucose-dependent transcriptional repression was in part mediated by O-GlcNAcylation of the transcription factor Sp1. Increased glucose uptake induced direct O-GlcNAcylation of many electron transport chain subunits and other mitochondrial proteins. These findings identify mitochondria as a major target of glucotoxicity. They also suggest that reduced glucose utilization in diabetic cardiomyopathy might defend against glucotoxicity and caution that restoring glucose delivery to the heart in the context of diabetes could accelerate mitochondrial dysfunction by disrupting protective metabolic adaptations.
Collapse
Affiliation(s)
- Adam R Wende
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - John C Schell
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Chae-Myeong Ha
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Mark E Pepin
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Oleh Khalimonchuk
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE
| | - Hansjörg Schwertz
- Division of Occupational Medicine, Molecular Medicine Program, and Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, UT
| | - Renata O Pereira
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Manoja K Brahma
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Joseph Tuinei
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Ariel Contreras-Ferrat
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Li Wang
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Chase A Andrizzi
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Curtis D Olsen
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Wayne E Bradley
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Louis J Dell'Italia
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | | | - Sheldon E Litwin
- Division of Cardiology, University of Utah School of Medicine, Salt Lake City, UT
- Department of Medicine, Medical University of South Carolina, Charleston, SC
- Division of Cardiology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - E Dale Abel
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
22
|
Differential Effects of Sacubitril/Valsartan on Diastolic Function in Mice With Obesity-Related Metabolic Heart Disease. JACC Basic Transl Sci 2020; 5:916-927. [PMID: 33015414 PMCID: PMC7524781 DOI: 10.1016/j.jacbts.2020.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
MHD associated with obesity, diabetes, and/or metabolic syndrome is an important precursor of HFpEF. Mice fed a HFHS diet develop MHD with myocardial hypertrophy, fibrosis, diastolic dysfunction, and impaired energetics. Mice on HFHS diet were treated with matched doses of VAL or sac SAC/VAL for 16 weeks. Only SAC/VAL prevented diastolic dysfunction and fibrosis, and to a lesser extent oxidative stress, whereas VAL and SAC/VAL had similar effects on hypertrophy and energetics. Neprilysin inhibition exerts beneficial effects on MHD that are complimentary to VAL, suggesting that SAC/VAL has promise to prevent the development of HFpEF in patients with or at risk for MHD.
Mice with obesity and metabolic heart disease (MHD) due to a high-fat, high-sucrose diet were treated with placebo, a clinically relevant dose of sacubitril (SAC)/valsartan (VAL), or an equivalent dose of VAL for 4 months. There were striking differences between SAC/VAL and VAL with regard to: 1) diastolic dysfunction; 2) interstitial fibrosis; and to a lesser degree; 3) oxidative stress—all of which were more favorably affected by SAC/VAL. SAC/VAL and VAL similarly attenuated myocardial hypertrophy and improved myocardial energetics. In mice with obesity-related MHD, neprilysin inhibition exerts favorable effects on diastolic function.
Collapse
Key Words
- ARB, angiotensin receptor blocker
- ATP, adenosine triphosphate
- CD, control diet
- GMP, guanosine monophosphate
- HFHS, high-fat, high-sucrose
- HFpEF, heart failure with a preserved ejection fraction
- LV, left ventricular
- MHD, metabolic heart disease
- MNA, methoxy-2-naphthlamine
- NMR, nuclear magnetic resonance
- PCr, phosphocreatine
- ROS, reactive oxygen species
- RPP, rate × pressure product
- SAC/VAL, sacubitril/valsartan
- VAL, valsartan
- diastolic
- neprilysin
- obesity
Collapse
|
23
|
Luptak I, Croteau D, Valentine C, Qin F, Siwik DA, Remick DG, Colucci WS, Hobai IA. Myocardial Redox Hormesis Protects the Heart of Female Mice in Sepsis. Shock 2020; 52:52-60. [PMID: 30102640 DOI: 10.1097/shk.0000000000001245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mice challenged with lipopolysaccharide develop cardiomyopathy in a sex and redox-dependent fashion. Here we extended these studies to the cecal ligation and puncture (CLP) model.We compared male and female FVB mice (wild type, WT) and transgenic littermates overexpressing myocardial catalase (CAT). CLP induced 100% mortality within 4 days, with similar mortality rates in male and female WT and CAT mice. 24 h after CLP, isolated (Langendorff) perfused hearts showed depressed contractility in WT male mice, but not in male CAT or female WT and CAT mice. In WT male mice, CLP induced a depression of cardiomyocyte sarcomere shortening (ΔSS) and calcium transients (ΔCai), and the inhibition of the sarcoplasmic reticulum Ca ATPase (SERCA). These deficits were associated with overexpression of NADPH-dependent oxidase (NOX)-1, NOX-2, and cyclooxygenase 2 (COX-2), and were partially prevented in male CAT mice. Female WT mice showed unchanged ΔSS, ΔCai, and SERCA function after CLP. At baseline, female WT mice showed partially depressed ΔSS, ΔCai, and SERCA function, as compared with male WT mice, which were associated with NOX-1 overexpression and were prevented in CAT female mice.In conclusion, in male WT mice, septic shock induces myocardial NOX-1, NOX-2, and COX-2, and redox-dependent dysregulation of myocardial Ca transporters. Female WT mice are resistant to CLP-induced cardiomyopathy, despite increased NOX-1 and COX-2 expression, suggesting increased antioxidant capacity. Female resistance occurred in association with NOX-1 overexpression and signs of increased oxidative signaling at baseline, indicating the presence of a protective myocardial redox hormesis mechanism.
Collapse
Affiliation(s)
- Ivan Luptak
- Cardiovascular Medicine, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Dominique Croteau
- Cardiovascular Medicine, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Catherine Valentine
- Department of Pathology, Boston University Medical Center, Boston, Massachusetts
| | - Fuzhong Qin
- Cardiovascular Medicine, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Deborah A Siwik
- Cardiovascular Medicine, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Daniel G Remick
- Department of Pathology, Boston University Medical Center, Boston, Massachusetts
| | - Wilson S Colucci
- Cardiovascular Medicine, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Ion A Hobai
- Cardiovascular Medicine, Department of Medicine, Boston University Medical Center, Boston, Massachusetts.,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard University, Boston, Massachusetts
| |
Collapse
|
24
|
Liu Z, Ding J, McMillen TS, Villet O, Tian R, Shao D. Enhancing fatty acid oxidation negatively regulates PPARs signaling in the heart. J Mol Cell Cardiol 2020; 146:1-11. [PMID: 32592696 DOI: 10.1016/j.yjmcc.2020.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022]
Abstract
High fatty acid oxidation (FAO) is associated with lipotoxicity, but whether it causes lipotoxic cardiomyopathy remains controversial. Molecular mechanisms that may be responsible for FAO-induced lipotoxic cardiomyopathy are also elusive. In this study, increasing FAO by genetic deletion of acetyl-CoA carboxylase 2 (ACC2) did not induce cardiac dysfunction after 16 weeks of high fat diet (HFD) feeding. This suggests that increasing FAO, per se, does not cause metabolic cardiomyopathy in obese mice. We compared transcriptomes of control and ACC2 deficient mouse hearts under chow- or HFD-fed conditions. ACC2 deletion had a significant impact on the global transcriptome including downregulation of the peroxisome proliferator-activated receptors (PPARs) signaling and fatty acid degradation pathways. Increasing fatty acids by HFD feeding normalized expression of fatty acid degradation genes in ACC2 deficient mouse hearts to the same level as the control mice. In contrast, cardiac transcriptome analysis of the lipotoxic mouse model (db/db) showed an upregulation of PPARs signaling and fatty acid degradation pathways. Our results suggest that enhancing FAO by genetic deletion of ACC2 negatively regulates PPARs signaling through depleting endogenous PPAR ligands, which can serve as a negative feedback mechanism to prevent excess activation of PPAR signaling under non-obese condition. In obesity, excessive lipid availability negates the feedback mechanism resulting in over activation of PPAR cascade, thus contributes to the development of cardiac lipotoxicity.
Collapse
Affiliation(s)
- ZhengLong Liu
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA
| | - Jeffrey Ding
- Department of Medicine and Pharmacology, University of California San Diego, San Diego, CA 92093, USA
| | - Timothy S McMillen
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA
| | - Outi Villet
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA
| | - Rong Tian
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA.
| | - Dan Shao
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
25
|
Snyder J, Zhai R, Lackey AI, Sato PY. Changes in Myocardial Metabolism Preceding Sudden Cardiac Death. Front Physiol 2020; 11:640. [PMID: 32612538 PMCID: PMC7308560 DOI: 10.3389/fphys.2020.00640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Heart disease is widely recognized as a major cause of death worldwide and is the leading cause of mortality in the United States. Centuries of research have focused on defining mechanistic alterations that drive cardiac pathogenesis, yet sudden cardiac death (SCD) remains a common unpredictable event that claims lives in every age group. The heart supplies blood to all tissues while maintaining a constant electrical and hormonal feedback communication with other parts of the body. As such, recent research has focused on understanding how myocardial electrical and structural properties are altered by cardiac metabolism and the various signaling pathways associated with it. The importance of cardiac metabolism in maintaining myocardial function, or lack thereof, is exemplified by shifts in cardiac substrate preference during normal development and various pathological conditions. For instance, a shift from fatty acid (FA) oxidation to oxygen-sparing glycolytic energy production has been reported in many types of cardiac pathologies. Compounded by an uncoupling of glycolysis and glucose oxidation this leads to accumulation of undesirable levels of intermediate metabolites. The resulting accumulation of intermediary metabolites impacts cardiac mitochondrial function and dysregulates metabolic pathways through several mechanisms, which will be reviewed here. Importantly, reversal of metabolic maladaptation has been shown to elicit positive therapeutic effects, limiting cardiac remodeling and at least partially restoring contractile efficiency. Therein, the underlying metabolic adaptations in an array of pathological conditions as well as recently discovered downstream effects of various substrate utilization provide guidance for future therapeutic targeting. Here, we will review recent data on alterations in substrate utilization in the healthy and diseased heart, metabolic pathways governing cardiac pathogenesis, mitochondrial function in the diseased myocardium, and potential metabolism-based therapeutic interventions in disease.
Collapse
Affiliation(s)
- J Snyder
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - R Zhai
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - A I Lackey
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - P Y Sato
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
26
|
Zuurbier CJ, Bertrand L, Beauloye CR, Andreadou I, Ruiz‐Meana M, Jespersen NR, Kula‐Alwar D, Prag HA, Eric Botker H, Dambrova M, Montessuit C, Kaambre T, Liepinsh E, Brookes PS, Krieg T. Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J Cell Mol Med 2020; 24:5937-5954. [PMID: 32384583 PMCID: PMC7294140 DOI: 10.1111/jcmm.15180] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/13/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022] Open
Abstract
Reducing infarct size during a cardiac ischaemic-reperfusion episode is still of paramount importance, because the extension of myocardial necrosis is an important risk factor for developing heart failure. Cardiac ischaemia-reperfusion injury (IRI) is in principle a metabolic pathology as it is caused by abruptly halted metabolism during the ischaemic episode and exacerbated by sudden restart of specific metabolic pathways at reperfusion. It should therefore not come as a surprise that therapy directed at metabolic pathways can modulate IRI. Here, we summarize the current knowledge of important metabolic pathways as therapeutic targets to combat cardiac IRI. Activating metabolic pathways such as glycolysis (eg AMPK activators), glucose oxidation (activating pyruvate dehydrogenase complex), ketone oxidation (increasing ketone plasma levels), hexosamine biosynthesis pathway (O-GlcNAcylation; administration of glucosamine/glutamine) and deacetylation (activating sirtuins 1 or 3; administration of NAD+ -boosting compounds) all seem to hold promise to reduce acute IRI. In contrast, some metabolic pathways may offer protection through diminished activity. These pathways comprise the malate-aspartate shuttle (in need of novel specific reversible inhibitors), mitochondrial oxygen consumption, fatty acid oxidation (CD36 inhibitors, malonyl-CoA decarboxylase inhibitors) and mitochondrial succinate metabolism (malonate). Additionally, protecting the cristae structure of the mitochondria during IR, by maintaining the association of hexokinase II or creatine kinase with mitochondria, or inhibiting destabilization of FO F1 -ATPase dimers, prevents mitochondrial damage and thereby reduces cardiac IRI. Currently, the most promising and druggable metabolic therapy against cardiac IRI seems to be the singular or combined targeting of glycolysis, O-GlcNAcylation and metabolism of ketones, fatty acids and succinate.
Collapse
Affiliation(s)
- Coert J. Zuurbier
- Department of AnesthesiologyLaboratory of Experimental Intensive Care and AnesthesiologyAmsterdam Infection & ImmunityAmsterdam Cardiovascular SciencesAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Luc Bertrand
- Institut de Recherche Expérimentale et CliniquePole of Cardiovascular ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Christoph R. Beauloye
- Institut de Recherche Expérimentale et CliniquePole of Cardiovascular ResearchUniversité catholique de LouvainBrusselsBelgium
- Cliniques Universitaires Saint‐LucBrusselsBelgium
| | - Ioanna Andreadou
- Laboratory of PharmacologyFaculty of PharmacyNational and Kapodistrian University of AthensAthensGreece
| | - Marisol Ruiz‐Meana
- Department of CardiologyHospital Universitari Vall d’HebronVall d’Hebron Institut de Recerca (VHIR)CIBER‐CVUniversitat Autonoma de Barcelona and Centro de Investigación Biomédica en Red‐CVMadridSpain
| | | | | | - Hiran A. Prag
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - Hans Eric Botker
- Department of CardiologyAarhus University HospitalAarhus NDenmark
| | - Maija Dambrova
- Pharmaceutical PharmacologyLatvian Institute of Organic SynthesisRigaLatvia
| | - Christophe Montessuit
- Department of Pathology and ImmunologyUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Tuuli Kaambre
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
| | - Edgars Liepinsh
- Pharmaceutical PharmacologyLatvian Institute of Organic SynthesisRigaLatvia
| | - Paul S. Brookes
- Department of AnesthesiologyUniversity of Rochester Medical CenterRochesterNYUSA
| | - Thomas Krieg
- Department of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
27
|
Zeng H, He X, Chen JX. Endothelial Sirtuin 3 Dictates Glucose Transport to Cardiomyocyte and Sensitizes Pressure Overload-Induced Heart Failure. J Am Heart Assoc 2020; 9:e015895. [PMID: 32468895 PMCID: PMC7428981 DOI: 10.1161/jaha.120.015895] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background Alterations of energetic metabolism are suggested to be an important contributor to pressure overload (PO)‐induced heart failure. Our previous study reveals that knockout of endothelial Sirtuin 3 (SIRT3) alters glycolysis and impairs diastolic function. We hypothesize that endothelial SIRT3 regulates glucose utilization of cardiomyocytes and sensitizes PO‐induced heart failure. Methods and Results SIRT3 endothelial cell knockout mice and their control SIRT3 LoxP mice were subjected to PO by transverse aortic constriction for 7 weeks. The ratio of heart weight to tibia length was increased in both strains of mice, in which SIRT3 endothelial cell knockout mice+transverse aortic constriction exhibited more severe cardiac hypertrophy. Coronary blood flow and systolic function were significantly decreased in SIRT3 endothelial cell knockout mice+transverse aortic constriction compared with SIRT3 LoxP mice+transverse aortic constriction, as evidenced by lower systolic/diastolic ratio, ejection fraction, and fractional shortening. PO‐induced upregulation of apelin and glucose transporter 4 were significantly reduced in the hearts of SIRT3 endothelial cell knockout mice. In vitro, levels of hypoxia‐inducible factor‐1α and glucose transporter 1 and glucose uptake were significantly reduced in SIRT3 knockout endothelial cells. Furthermore, hypoxia‐induced apelin expression was abolished together with reduced apelin‐mediated glucose uptake in SIRT3 knockout endothelial cells. Exposure of cardiomyocyte with apelin increased expression of glucose transporter 1 and glucose transporter 4. This was accompanied by a significant increase in glycolysis. Supplement of apelin in SIRT3 knockout hypoxic endothelial cell media increased glycolysis in the cardiomyocytes. Conclusions Knockout of SIRT3 disrupts glucose transport from endothelial cells to cardiomyocytes, reduces cardiomyocyte glucose utilization via apelin in a paracrine manner, and sensitizes PO‐induced heart failure. Endothelial SIRT3 may regulate cardiomyocyte glucose availability and govern the function of the heart.
Collapse
Affiliation(s)
- Heng Zeng
- Department of Pharmacology and Toxicology School of Medicine University of Mississippi Medical Center Jackson MS
| | - Xiaochen He
- Department of Pharmacology and Toxicology School of Medicine University of Mississippi Medical Center Jackson MS
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology School of Medicine University of Mississippi Medical Center Jackson MS
| |
Collapse
|
28
|
Ziegler GC, Almos P, McNeill RV, Jansch C, Lesch KP. Cellular effects and clinical implications of SLC2A3 copy number variation. J Cell Physiol 2020; 235:9021-9036. [PMID: 32372501 DOI: 10.1002/jcp.29753] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/04/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022]
Abstract
SLC2A3 encodes the predominantly neuronal glucose transporter 3 (GLUT3), which facilitates diffusion of glucose across plasma membranes. The human brain depends on a steady glucose supply for ATP generation, which consequently fuels critical biochemical processes, such as axonal transport and neurotransmitter release. Besides its role in the central nervous system, GLUT3 is also expressed in nonneural organs, such as the heart and white blood cells, where it is equally involved in energy metabolism. In cancer cells, GLUT3 overexpression contributes to the Warburg effect by answering the cell's increased glycolytic demands. The SLC2A3 gene locus at chromosome 12p13.31 is unstable and prone to non-allelic homologous recombination events, generating multiple copy number variants (CNVs) of SLC2A3 which account for alterations in SLC2A3 expression. Recent associations of SLC2A3 CNVs with different clinical phenotypes warrant investigation of the potential influence of these structural variants on pathomechanisms of neuropsychiatric, cardiovascular, and immune diseases. In this review, we accumulate and discuss the evidence how SLC2A3 gene dosage may exert diverse protective or detrimental effects depending on the pathological condition. Cellular states which lead to increased energetic demand, such as organ development, proliferation, and cellular degeneration, appear particularly susceptible to alterations in SLC2A3 copy number. We conclude that better understanding of the impact of SLC2A3 variation on disease etiology may potentially provide novel therapeutic approaches specifically targeting this GLUT.
Collapse
Affiliation(s)
- Georg C Ziegler
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany.,Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Germany
| | - Peter Almos
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany.,Department of Psychiatry, University of Szeged, Hungary
| | - Rhiannon V McNeill
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Germany
| | - Charline Jansch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany.,Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
29
|
Paternal Resistance Training Induced Modifications in the Left Ventricle Proteome Independent of Offspring Diet. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5603580. [PMID: 32454941 PMCID: PMC7218999 DOI: 10.1155/2020/5603580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/18/2019] [Indexed: 01/13/2023]
Abstract
Ancestral obesogenic exposure is able to trigger harmful effects in the offspring left ventricle (LV) which could lead to cardiovascular diseases. However, the impact of the father's lifestyle on the offspring LV is largely unexplored. The aim of this study was to investigate the effects of 8 weeks of paternal resistance training (RT) on the offspring left ventricle (LV) proteome exposed to control or high-fat (HF) diet. Wistar rats were randomly divided into two groups: sedentary fathers and trained fathers (8 weeks, 3 times per week with weights secured to the animals' tails). The offspring were obtained by mating with sedentary females. Upon weaning, male offspring were divided into 4 groups (5 animals per group): offspring from sedentary fathers, exposed to control diet (SFO-C); offspring from trained fathers, exposed to control diet (TFO-C); offspring from sedentary fathers, exposed to high-fat diet (SFO-HF); and offspring from trained fathers, exposed to high-fat diet (TFO-HF). The LC-MS/MS analysis revealed 537 regulated proteins among groups. Offspring exposure to HF diet caused reduction in the abundance levels of proteins related to cell component organization, metabolic processes, and transport. Proteins related to antioxidant activity, transport, and transcription regulation were increased in TFO-C and TFO-HF as compared with the SFO-C and SFO-HF groups. Paternal RT demonstrated to be an important intervention capable of inducing significant effects on the LV proteome regardless of offspring diet due to the increase of proteins involved into LV homeostasis maintenance. This study contributes to a better understanding of the molecular aspects involved in transgenerational inheritance.
Collapse
|
30
|
Panagia M, He H, Baka T, Pimentel DR, Croteau D, Bachschmid MM, Balschi JA, Colucci WS, Luptak I. Increasing mitochondrial ATP synthesis with butyrate normalizes ADP and contractile function in metabolic heart disease. NMR IN BIOMEDICINE 2020; 33:e4258. [PMID: 32066202 PMCID: PMC7165026 DOI: 10.1002/nbm.4258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/17/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Metabolic heart disease (MHD), which is strongly associated with heart failure with preserved ejection fraction, is characterized by reduced mitochondrial energy production and contractile performance. In this study, we tested the hypothesis that an acute increase in ATP synthesis, via short chain fatty acid (butyrate) perfusion, restores contractile function in MHD. Isolated hearts of mice with MHD due to consumption of a high fat high sucrose (HFHS) diet or on a control diet (CD) for 4 months were studied using 31 P NMR spectroscopy to measure high energy phosphates and ATP synthesis rates during increased work demand. At baseline, HFHS hearts had increased ADP and decreased free energy of ATP hydrolysis (ΔG~ATP ), although contractile function was similar between the two groups. At high work demand, the ATP synthesis rate in HFHS hearts was reduced by over 50%. Unlike CD hearts, HFHS hearts did not increase contractile function at high work demand, indicating a lack of contractile reserve. However, acutely supplementing HFHS hearts with 4mM butyrate normalized ATP synthesis, ADP, ΔG~ATP and contractile reserve. Thus, acute reversal of depressed mitochondrial ATP production improves contractile dysfunction in MHD. These findings suggest that energy starvation may be a reversible cause of myocardial dysfunction in MHD, and opens new therapeutic opportunities.
Collapse
Affiliation(s)
- Marcello Panagia
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA
| | - Huamei He
- Physiological NMR Core Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Tomas Baka
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - David R. Pimentel
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA
| | - Dominique Croteau
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA
| | | | - James A. Balschi
- Physiological NMR Core Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Wilson S. Colucci
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA
| | - Ivan Luptak
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA
| |
Collapse
|
31
|
Pandya JD, Valdez M, Royland JE, MacPhail RC, Sullivan PG, Kodavanti PRS. Age- and Organ-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats. J Aging Res 2020; 2020:7232614. [PMID: 32318291 PMCID: PMC7152959 DOI: 10.1155/2020/7232614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/22/2020] [Accepted: 02/13/2020] [Indexed: 12/27/2022] Open
Abstract
Mitochondria play a central role in energy homeostasis and act as regulatory checkpoints for downstream metabolic responses and cell senescence processes during an entire life span. Acute or chronic environmental toxicant exposures have shown deleterious organ-specific human health issues at various life stages. Since mitochondria are a prime target for ensuing cellular bioenergetics responses and senescence, it is essential to understand mitochondrial bioenergetic responses in different organs over multiple life stages. Therefore, in the present study, we evaluated mitochondrial bioenergetic parameters in the liver, lung, and heart in four diverse age groups (young: 1 month; adult: 4 months; middle-aged: 12 months; old-aged: 24 month) using male Brown Norway rats as a model of aging (n = 5 sample size/organ/age group) and compared them with our previously published results on brain. Real-time mitochondrial bioenergetic parameters (i.e., State III, State IV, and State V) were measured using the Seahorse Extracellular Flux Analyzer. Additionally, mitochondrial enzyme pyruvate dehydrogenase complex (PDHC), Complex I, Complex II, and Complex IV activities were measured using Synergy HT plate reader. Our results indicated that nearly in all parameters, significant age- and organ-specific interactions were observed. We observed age-specific declines in State III (i.e., ATP synthesis rate) responses in both the heart and lung, where opposite was observed in the liver as age advances. Across the age, the heart has highest enzyme activities than the liver and lung. Interestingly, heart and liver mitochondrial bioenergetic rates and enzyme activities remain higher than the lung, which specifies their higher metabolic capabilities than the lung. Amongst all, bioenergetic rates and enzyme activities in the lung remain lowest suggesting the lung may display higher vulnerability and lower resilience to environmental toxicants during aging than other organs tested here. Overall, these age- and organ-specific findings may facilitate a more contextualized understanding of mitochondrial bioenergetic outcomes when considering the interactions of age-related sensitivities with exposure to chemical stressors from the environment.
Collapse
Affiliation(s)
- Jignesh D Pandya
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Matthew Valdez
- Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, TN 37831, USA
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Joyce E Royland
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Robert C MacPhail
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Prasada Rao S Kodavanti
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| |
Collapse
|
32
|
Ruiz-Velasco A, Zi M, Hille SS, Azam T, Kaur N, Jiang J, Nguyen B, Sekeres K, Binder P, Collins L, Pu F, Xiao H, Guan K, Frey N, Cartwright EJ, Müller OJ, Wang X, Liu W. Targeting mir128-3p alleviates myocardial insulin resistance and prevents ischemia-induced heart failure. eLife 2020; 9:54298. [PMID: 32223896 PMCID: PMC7124275 DOI: 10.7554/elife.54298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/27/2020] [Indexed: 01/02/2023] Open
Abstract
Myocardial insulin resistance contributes to heart failure in response to pathological stresses, therefore, a therapeutic strategy to maintain cardiac insulin pathways requires further investigation. We demonstrated that insulin receptor substrate 1 (IRS1) was reduced in failing mouse hearts post-myocardial infarction (MI) and failing human hearts. The mice manifesting severe cardiac dysfunction post-MI displayed elevated mir128-3p in the myocardium. Ischemia-upregulated mir128-3p promoted Irs1 degradation. Using rat cardiomyocytes and human-induced pluripotent stem cell-derived cardiomyocytes, we elucidated that mitogen-activated protein kinase 7 (MAPK7, also known as ERK5)-mediated CCAAT/enhancer-binding protein beta (CEBPβ) transcriptionally represses mir128-3p under hypoxia. Therapeutically, functional studies demonstrated gene therapy-delivered cardiac-specific MAPK7 restoration or overexpression of CEBPβ impeded cardiac injury after MI, at least partly due to normalization of mir128-3p. Furthermore, inhibition of mir128-3p preserved Irs1 and ameliorated cardiac dysfunction post-MI. In conclusion, we reveal that targeting mir128-3p mitigates myocardial insulin resistance, thereafter slowing down the progression of heart failure post-ischemia.
Collapse
Affiliation(s)
- Andrea Ruiz-Velasco
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Min Zi
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Susanne S Hille
- Department of Internal Medicine III, University of KielKielGermany,DZHK, German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/LübeckKielGermany
| | - Tayyiba Azam
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Namrita Kaur
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Juwei Jiang
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Binh Nguyen
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Karolina Sekeres
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universitaet DresdenDresdenGermany
| | - Pablo Binder
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Lucy Collins
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Fay Pu
- Edinburgh University Medical SchoolEdinburghUnited Kingdom
| | - Han Xiao
- Institute of Vascular Medicine, Peking UniversityBeijingChina
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universitaet DresdenDresdenGermany
| | - Norbert Frey
- Department of Internal Medicine III, University of KielKielGermany,DZHK, German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/LübeckKielGermany
| | - Elizabeth J Cartwright
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Oliver J Müller
- Department of Internal Medicine III, University of KielKielGermany,DZHK, German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/LübeckKielGermany
| | - Xin Wang
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Wei Liu
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| |
Collapse
|
33
|
Luptak I, Qin F, Sverdlov AL, Pimentel DR, Panagia M, Croteau D, Siwik DA, Bachschmid MM, He H, Balschi JA, Colucci WS. Energetic Dysfunction Is Mediated by Mitochondrial Reactive Oxygen Species and Precedes Structural Remodeling in Metabolic Heart Disease. Antioxid Redox Signal 2019; 31:539-549. [PMID: 31088291 PMCID: PMC6648235 DOI: 10.1089/ars.2018.7707] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
Abstract
Aims: Metabolic syndrome is associated with metabolic heart disease (MHD) that is characterized by left ventricular (LV) hypertrophy, interstitial fibrosis, contractile dysfunction, and mitochondrial dysfunction. Overexpression of catalase in mitochondria (transgenic expression of catalase targeted to the mitochondria [mCAT]) prevents the structural and functional features of MHD caused by a high-fat, high-sucrose (HFHS) diet for ≥4 months. However, it is unclear whether the effect of mCAT is due to prevention of reactive oxygen species (ROS)-mediated cardiac remodeling, a direct effect on mitochondrial function, or both. To address this question, we measured myocardial function and energetics in mice, with or without mCAT, after 1 month of HFHS, before the development of cardiac structural remodeling. Results: HFHS diet for 1 month had no effect on body weight, heart weight, LV structure, myocyte size, or interstitial fibrosis. Isolated cardiac mitochondria from HFHS-fed mice produced 2.2- to 3.8-fold more H2O2, and 16%-29% less adenosine triphosphate (ATP). In isolated beating hearts from HFHS-fed mice, [phosphocreatine (PCr)] and the free energy available for ATP hydrolysis (ΔG∼ATP) were decreased, and they failed to increase with work demands. Overexpression of mCAT normalized ROS and ATP production in isolated mitochondria, and it corrected myocardial [PCr] and ΔG∼ATP in the beating heart. Innovation: This is the first demonstration that in MHD, mitochondrial ROS mediate energetic dysfunction that is sufficient to impair contractile function. Conclusion: ROS produced and acting in the mitochondria impair myocardial energetics, leading to slowed relaxation and decreased contractile reserve. These effects precede structural remodeling and are corrected by mCAT, indicating that ROS-mediated energetic impairment, per se, is sufficient to cause contractile dysfunction in MHD.
Collapse
Affiliation(s)
- Ivan Luptak
- Myocardial Biology Unit, Boston University School of Medicine, Boston, Massachusetts
| | - Fuzhong Qin
- Myocardial Biology Unit, Boston University School of Medicine, Boston, Massachusetts
| | - Aaron L. Sverdlov
- Myocardial Biology Unit, Boston University School of Medicine, Boston, Massachusetts
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
| | - David R. Pimentel
- Myocardial Biology Unit, Boston University School of Medicine, Boston, Massachusetts
| | - Marcello Panagia
- Myocardial Biology Unit, Boston University School of Medicine, Boston, Massachusetts
| | - Dominique Croteau
- Myocardial Biology Unit, Boston University School of Medicine, Boston, Massachusetts
| | - Deborah A. Siwik
- Myocardial Biology Unit, Boston University School of Medicine, Boston, Massachusetts
| | - Markus M. Bachschmid
- Vascular Biology Unit, Boston University School of Medicine, Boston, Massachusetts
| | - Huamei He
- Physiological NMR Core Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - James A. Balschi
- Physiological NMR Core Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wilson S. Colucci
- Myocardial Biology Unit, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
34
|
Abstract
The heart consumes large amounts of energy in the form of ATP that is continuously replenished by oxidative phosphorylation in mitochondria and, to a lesser extent, by glycolysis. To adapt the ATP supply efficiently to the constantly varying demand of cardiac myocytes, a complex network of enzymatic and signalling pathways controls the metabolic flux of substrates towards their oxidation in mitochondria. In patients with heart failure, derangements of substrate utilization and intermediate metabolism, an energetic deficit, and oxidative stress are thought to underlie contractile dysfunction and the progression of the disease. In this Review, we give an overview of the physiological processes of cardiac energy metabolism and their pathological alterations in heart failure and diabetes mellitus. Although the energetic deficit in failing hearts - discovered >2 decades ago - might account for contractile dysfunction during maximal exertion, we suggest that the alterations of intermediate substrate metabolism and oxidative stress rather than an ATP deficit per se account for maladaptive cardiac remodelling and dysfunction under resting conditions. Treatments targeting substrate utilization and/or oxidative stress in mitochondria are currently being tested in patients with heart failure and might be promising tools to improve cardiac function beyond that achieved with neuroendocrine inhibition.
Collapse
|
35
|
Wang L, Quan N, Sun W, Chen X, Cates C, Rousselle T, Zhou X, Zhao X, Li J. Cardiomyocyte-specific deletion of Sirt1 gene sensitizes myocardium to ischaemia and reperfusion injury. Cardiovasc Res 2019; 114:805-821. [PMID: 29409011 DOI: 10.1093/cvr/cvy033] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Aims A longevity gene, Sirtuin 1 (SIRT1) and energy sensor AMP-activated protein kinase (AMPK) have common activators such as caloric restriction, oxidative stress, and exercise. The objective of this study is to characterize the role of cardiomyocyte SIRT1 in age-related impaired ischemic AMPK activation and increased susceptibility to ischemic insults. Methods and results Mice were subjected to ligation of left anterior descending coronary artery for in vivo ischemic models. The glucose and fatty acid oxidation were measured in a working heart perfusion system. The cardiac functions by echocardiography show no difference in young wild-type C57BL/6 J (WT, 4-6 months), aged WT C57BL/6 J (24-26 months), and young inducible cardiomyocyte-specific SIRT1 knockout (icSIRT1 KO) (4-6 months) mice under physiological conditions. However, after 45 mins ischaemia and 24-h reperfusion, the ejection fraction of aged WT and icSIRT1 KO mice was impaired. The aged WT and icSIRT1 KO hearts vs. young WT hearts also show an impaired post-ischemic contractile function in a Langendorff perfusion system. The infarct size of aged WT and icSIRT1 KO hearts was larger than that of young WT hearts. The immunoblotting data demonstrated that aged WT and icSIRT1 KO hearts vs. young WT hearts had impaired phosphorylation of AMPK and downstream acetyl-CoA carboxylase during ischaemia. Intriguingly, AMPK upstream LKB1 is hyper-acetylated in both aged WT and icSIRT1 KO hearts; this could blunt activation of LKB1, leading to an impaired AMPK activation. The working heart perfusion results demonstrated that SIRT1 deficiency significantly impaired substrate metabolism in the hearts; fatty acid oxidation is augmented and glucose oxidation is blunted during ischaemia and reperfusion. Adeno-associated virus (AAV9)-Sirt1 was delivered into the aged hearts via a coronary delivery approach, which significantly rescued the protein level of SIRT1 and the ischemic tolerance of aged hearts. Furthermore, AMPK agonist can rescue the tolerance of aged heart and icSIRT1 KO heart to ischemic insults. Conclusions Cardiac SIRT1 mediates AMPK activation via LKB1 deacetylation, and AMPK modulates SIRT1 activity via regulation of NAD+ level during ischaemia. SIRT1 and AMPK agonists have therapeutic potential for treatment of aging-related ischemic heart disease.
Collapse
Affiliation(s)
- Lin Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Xinmin Street, Changchun 130021, China.,Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, USA
| | - Nanhu Quan
- Department of Cardiovascular Center, The First Hospital of Jilin University, Xinmin Street, Changchun 130021, China.,Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, USA
| | - Wanqing Sun
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, USA
| | - Xu Chen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, USA
| | - Courtney Cates
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, USA
| | - Thomas Rousselle
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, USA
| | - Xinchun Zhou
- Department of Pathology, Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Xuezhong Zhao
- Department of Cardiovascular Center, The First Hospital of Jilin University, Xinmin Street, Changchun 130021, China
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, USA
| |
Collapse
|
36
|
Shoop S, Maria Z, Campolo A, Rashdan N, Martin D, Lovern P, Lacombe VA. Glial Growth Factor 2 Regulates Glucose Transport in Healthy Cardiac Myocytes and During Myocardial Infarction via an Akt-Dependent Pathway. Front Physiol 2019; 10:189. [PMID: 30971932 PMCID: PMC6445869 DOI: 10.3389/fphys.2019.00189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 02/14/2019] [Indexed: 12/23/2022] Open
Abstract
Neuregulin (NRG), a paracrine factor in myocytes, promotes cardiac development via the ErbB receptors. NRG-1β also improves cardiac function and cell survival after myocardial infarction (MI), although the mechanisms underlying these cardioprotective effects are not well elucidated. Increased glucose uptake has been shown to be cardio-protective during MI. We hypothesized that treatment with a recombinant version of NRG-1β, glial growth factor 2 (GGF2), will enhance glucose transport in the healthy myocardium and during MI. Cardiac myocytes were isolated from MI and healthy adult rats, and subsequently incubated with or without insulin or GGF2. Glucose uptake was measured using a fluorescent D-glucose analog. The translocation of glucose transporter (GLUT) 4 to the cell surface, the rate-limiting step in glucose uptake, was measured using a photolabeled biotinylation assay in isolated myocytes. Similar to insulin, acute in vitro GGF2 treatment increased glucose uptake in healthy cardiac myocytes (by 40 and 49%, respectively, P = 0.002). GGF2 treatment also increased GLUT4 translocation in healthy myocytes by 184% (P < 0.01), while ErbB 2/4 receptor blockade (by afatinib) abolished these effects. In addition, GGF2 treatment enhanced Akt phosphorylation (at both threonine and serine sites, by 75 and 139%, respectively, P = 0.029 and P = 0.01), which was blunted by ErbB 2/4 receptor blockade. GGF2 treatment increased the phosphorylation of AS160 (an Akt effector) by 72% (P < 0.05), as well as the phosphorylation of PDK-1 and PKC (by 118 and 92%, respectively, P < 0.05). During MI, cardiac GLUT4 translocation was downregulated by 44% (P = 0.004) and was partially rescued by both in vitro insulin and GGF2 treatment. Our data demonstrate that acute GGF2 treatment increased glucose transport in cardiac myocytes by activating the ErbB 2/4 receptors and subsequent key downstream effectors (i.e., PDK-1, Akt, AS160, and PKC). These findings highlight novel mechanisms of action of GGF2, which warrant further investigation in patients with heart failure.
Collapse
Affiliation(s)
- Shanell Shoop
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, United States.,Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
| | - Zahra Maria
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, United States.,Harold Hamm Diabetes Center, University of Oklahoma, Oklahoma City, OK, United States
| | - Allison Campolo
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, United States.,Harold Hamm Diabetes Center, University of Oklahoma, Oklahoma City, OK, United States
| | - Nabil Rashdan
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Dominic Martin
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
| | - Pamela Lovern
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Véronique A Lacombe
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, United States.,Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States.,Harold Hamm Diabetes Center, University of Oklahoma, Oklahoma City, OK, United States
| |
Collapse
|
37
|
Miyamoto S. Autophagy and cardiac aging. Cell Death Differ 2019; 26:653-664. [PMID: 30692640 PMCID: PMC6460392 DOI: 10.1038/s41418-019-0286-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death and the prevalence of CVD dramatically increases with age. Cardiac aging is associated with hypertrophy, fibrosis, inflammation, and decreased contractility. Autophagy, a bulk degradation/recycling system, is essential to maintain cellular homeostasis. Cardiac autophagy is decreased with age, and misfolded proteins and dysfunctional mitochondria are accumulated in the aging heart. Inhibition of autophagy leads to exacerbated cardiac aging, while stimulation of autophagy improves cardiac function and also increases lifespan in many organisms. Thus autophagy represents a potential therapeutic target for aging-related cardiac dysfunction. This review discusses recent progress in our understanding of the role and regulation of autophagy in the aging heart.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, San Diego, 9500 Gilman drive, La Jolla, CA, 92093-0636, USA.
| |
Collapse
|
38
|
Abstract
Mitochondrial dysfunction has been implicated in the development of heart failure. Oxidative metabolism in mitochondria is the main energy source of the heart, and the inability to generate and transfer energy has long been considered the primary mechanism linking mitochondrial dysfunction and contractile failure. However, the role of mitochondria in heart failure is now increasingly recognized to be beyond that of a failed power plant. In this Review, we summarize recent evidence demonstrating vicious cycles of pathophysiological mechanisms during the pathological remodeling of the heart that drive mitochondrial contributions from being compensatory to being a suicide mission. These mechanisms include bottlenecks of metabolic flux, redox imbalance, protein modification, ROS-induced ROS generation, impaired mitochondrial Ca2+ homeostasis, and inflammation. The interpretation of these findings will lead us to novel avenues for disease mechanisms and therapy.
Collapse
|
39
|
Shao D, Villet O, Zhang Z, Choi SW, Yan J, Ritterhoff J, Gu H, Djukovic D, Christodoulou D, Kolwicz SC, Raftery D, Tian R. Glucose promotes cell growth by suppressing branched-chain amino acid degradation. Nat Commun 2018; 9:2935. [PMID: 30050148 PMCID: PMC6062555 DOI: 10.1038/s41467-018-05362-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/13/2018] [Indexed: 01/13/2023] Open
Abstract
Glucose and branched-chain amino acids (BCAAs) are essential nutrients and key determinants of cell growth and stress responses. High BCAA level inhibits glucose metabolism but reciprocal regulation of BCAA metabolism by glucose has not been demonstrated. Here we show that glucose suppresses BCAA catabolism in cardiomyocytes to promote hypertrophic response. High glucose inhibits CREB stimulated KLF15 transcription resulting in downregulation of enzymes in the BCAA catabolism pathway. Accumulation of BCAA through the glucose-KLF15-BCAA degradation axis is required for the activation of mTOR signaling during the hypertrophic growth of cardiomyocytes. Restoration of KLF15 prevents cardiac hypertrophy in response to pressure overload in wildtype mice but not in mutant mice deficient of BCAA degradation gene. Thus, regulation of KLF15 transcription by glucose is critical for the glucose-BCAA circuit which controls a cascade of obligatory metabolic responses previously unrecognized for cell growth.
Collapse
Affiliation(s)
- Dan Shao
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA, 98109, USA
| | - Outi Villet
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA, 98109, USA
| | - Zhen Zhang
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA, 98109, USA
| | - Sung Won Choi
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA, 98109, USA
| | - Jie Yan
- Department of Medicine, NMR Laboratory of Physiological Chemistry, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Julia Ritterhoff
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA, 98109, USA
| | - Haiwei Gu
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA, 98109, USA
| | - Danijel Djukovic
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA, 98109, USA
| | - Danos Christodoulou
- Department of Medicine, NMR Laboratory of Physiological Chemistry, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Stephen C Kolwicz
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA, 98109, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA, 98109, USA
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA, 98109, USA
| | - Rong Tian
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
40
|
Luptak I, Sverdlov AL, Panagia M, Qin F, Pimentel DR, Croteau D, Siwik DA, Ingwall JS, Bachschmid MM, Balschi JA, Colucci WS. Decreased ATP production and myocardial contractile reserve in metabolic heart disease. J Mol Cell Cardiol 2018; 116:106-114. [PMID: 29409987 PMCID: PMC5871926 DOI: 10.1016/j.yjmcc.2018.01.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 01/08/2023]
Abstract
Metabolic syndrome is a cluster of obesity-related metabolic abnormalities that lead to metabolic heart disease (MHD) with left ventricular pump dysfunction. Although MHD is thought to be associated with myocardial energetic deficiency, two key questions have not been answered. First, it is not known whether there is a sufficient energy deficit to contribute to pump dysfunction. Second, the basis for the energy deficit is not clear. To address these questions, mice were fed a high fat, high sucrose (HFHS) 'Western' diet to recapitulate the MHD phenotype. In isolated beating hearts, we used 31P NMR spectroscopy with magnetization transfer to determine a) the concentrations of high energy phosphates ([ATP], [ADP], [PCr]), b) the free energy of ATP hydrolysis (∆G~ATP), c) the rate of ATP production and d) flux through the creatine kinase (CK) reaction. At the lowest workload, the diastolic pressure-volume relationship was shifted upward in HFHS hearts, indicative of diastolic dysfunction, whereas systolic function was preserved. At this workload, the rate of ATP synthesis was decreased in HFHS hearts, and was associated with decreases in both [PCr] and ∆G~ATP. Higher work demands unmasked the inability of HFHS hearts to increase systolic function and led to a further decrease in ∆G~ATP to a level that is not sufficient to maintain normal function of sarcoplasmic Ca2+-ATPase (SERCA). While [ATP] was preserved at all work demands in HFHS hearts, the progressive increase in [ADP] led to a decrease in ∆G~ATP with increased work demands. Surprisingly, CK flux, CK activity and total creatine were normal in HFHS hearts. These findings differ from dilated cardiomyopathy, in which the energetic deficiency is associated with decreases in CK flux, CK activity and total creatine. Thus, in HFHS-fed mice with MHD there is a distinct metabolic phenotype of the heart characterized by a decrease in ATP production that leads to a functionally-important energetic deficiency and an elevation of [ADP], with preservation of CK flux.
Collapse
Affiliation(s)
- Ivan Luptak
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA, United States
| | - Aaron L Sverdlov
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA, United States; Heart Failure Unit, School of Medicine and Public Health, University of Newcastle, NSW 2300, Australia
| | - Marcello Panagia
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA, United States
| | - Fuzhong Qin
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA, United States
| | - David R Pimentel
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA, United States
| | - Dominique Croteau
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA, United States
| | - Deborah A Siwik
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA, United States
| | - Joanne S Ingwall
- Physiological NMR Core Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Markus M Bachschmid
- Vascular Biology Unit, Boston University School of Medicine, Boston, MA, United States
| | - James A Balschi
- Physiological NMR Core Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Wilson S Colucci
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA, United States.
| |
Collapse
|
41
|
Ritterhoff J, Tian R. Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res 2017; 113:411-421. [PMID: 28395011 DOI: 10.1093/cvr/cvx017] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/01/2017] [Indexed: 12/12/2022] Open
Abstract
Cardiac metabolism is highly adaptive to changes in fuel availability and the energy demand of the heart. This metabolic flexibility is key for the heart to maintain its output during the development and in response to stress. Alterations in substrate preference have been observed in multiple disease states; a clear understanding of their impact on cardiac function in the long term is critical for the development of metabolic therapies. In addition, the contribution of cellular metabolism to growth, survival, and other signalling pathways through the generation of metabolic intermediates has been increasingly noted, adding another layer of complexity to the impact of metabolism on cardiac function. In a quest to understand the complexity of the cardiac metabolic network, genetic tools have been engaged to manipulate cardiac metabolism in a variety of mouse models. The ability to engineer cardiac metabolism in vivo has provided tremendous insights and brought about conceptual innovations. In this review, we will provide an overview of the cardiac metabolic network and highlight alterations observed during cardiac development and pathological hypertrophy. We will focus on consequences of altered substrate preference on cardiac response to chronic stresses through energy providing and non-energy providing pathways.
Collapse
|
42
|
Wende AR, Kim J, Holland WL, Wayment BE, O'Neill BT, Tuinei J, Brahma MK, Pepin ME, McCrory MA, Luptak I, Halade GV, Litwin SE, Abel ED. Glucose transporter 4-deficient hearts develop maladaptive hypertrophy in response to physiological or pathological stresses. Am J Physiol Heart Circ Physiol 2017; 313:H1098-H1108. [PMID: 28822962 DOI: 10.1152/ajpheart.00101.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/10/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023]
Abstract
Pathological cardiac hypertrophy may be associated with reduced expression of glucose transporter 4 (GLUT4) in contrast to exercise-induced cardiac hypertrophy, where GLUT4 levels are increased. However, mice with cardiac-specific deletion of GLUT4 (G4H-/-) have normal cardiac function in the unstressed state. This study tested the hypothesis that cardiac GLUT4 is required for myocardial adaptations to hemodynamic demands. G4H-/- and control littermates were subjected to either a pathological model of left ventricular pressure overload [transverse aortic constriction (TAC)] or a physiological model of endurance exercise (swim training). As predicted after TAC, G4H-/- mice developed significantly greater hypertrophy and more severe contractile dysfunction. Somewhat surprisingly, after exercise training, G4H-/- mice developed increased fibrosis and apoptosis that was associated with dephosphorylation of the prosurvival kinase Akt in concert with an increase in protein levels of the upstream phosphatase protein phosphatase 2A (PP2A). Exercise has been shown to decrease levels of ceramide; G4H-/- hearts failed to decrease myocardial ceramide in response to exercise. Furthermore, G4H-/- hearts have reduced levels of the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1, lower carnitine palmitoyl-transferase activity, and reduced hydroxyacyl-CoA dehydrogenase activity. These basal changes may also contribute to the impaired ability of G4H-/- hearts to adapt to hemodynamic stresses. In conclusion, GLUT4 is required for the maintenance of cardiac structure and function in response to physiological or pathological processes that increase energy demands, in part through secondary changes in mitochondrial metabolism and cellular stress survival pathways such as Akt.NEW & NOTEWORTHY Glucose transporter 4 (GLUT4) is required for myocardial adaptations to exercise, and its absence accelerates heart dysfunction after pressure overload. The requirement for GLUT4 may extend beyond glucose uptake to include defects in mitochondrial metabolism and survival signaling pathways that develop in its absence. Therefore, GLUT4 is critical for responses to hemodynamic stresses.
Collapse
Affiliation(s)
- Adam R Wende
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah; .,Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jaetaek Kim
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah
| | - William L Holland
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah
| | - Benjamin E Wayment
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah
| | - Brian T O'Neill
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah.,Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Joseph Tuinei
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah
| | - Manoja K Brahma
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mark E Pepin
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mark A McCrory
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ivan Luptak
- Division of Cardiology, Boston University School of Medicine, Boston, Massachusetts
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Sheldon E Litwin
- Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - E Dale Abel
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah.,Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
43
|
Im HJ, Cheon GJ. Sex difference in cardiac metabolism in nonischemic heart failure: Insight for prognostic value of altered cardiac metabolism. J Nucl Cardiol 2017; 24:1236-1238. [PMID: 27052811 DOI: 10.1007/s12350-016-0489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Hyung-Jun Im
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
44
|
Exenatide Regulates Substrate Preferences Through the p38γ MAPK Pathway After Ischaemia/Reperfusion Injury in a Rat Heart. Heart Lung Circ 2017; 26:404-412. [DOI: 10.1016/j.hlc.2016.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/08/2016] [Accepted: 07/15/2016] [Indexed: 11/20/2022]
|
45
|
Li T, Zhang Z, Kolwicz SC, Abell L, Roe ND, Kim M, Zhou B, Cao Y, Ritterhoff J, Gu H, Raftery D, Sun H, Tian R. Defective Branched-Chain Amino Acid Catabolism Disrupts Glucose Metabolism and Sensitizes the Heart to Ischemia-Reperfusion Injury. Cell Metab 2017; 25:374-385. [PMID: 28178567 PMCID: PMC5301464 DOI: 10.1016/j.cmet.2016.11.005] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/26/2016] [Accepted: 11/09/2016] [Indexed: 02/05/2023]
Abstract
Elevated levels of branched-chain amino acids (BCAAs) have recently been implicated in the development of cardiovascular and metabolic diseases, but the molecular mechanisms are unknown. In a mouse model of impaired BCAA catabolism (knockout [KO]), we found that chronic accumulation of BCAAs suppressed glucose metabolism and sensitized the heart to ischemic injury. High levels of BCAAs selectively disrupted mitochondrial pyruvate utilization through inhibition of pyruvate dehydrogenase complex (PDH) activity. Furthermore, downregulation of the hexosamine biosynthetic pathway in KO hearts decreased protein O-linked N-acetylglucosamine (O-GlcNAc) modification and inactivated PDH, resulting in significant decreases in glucose oxidation. Although the metabolic remodeling in KO did not affect baseline cardiac energetics or function, it rendered the heart vulnerable to ischemia-reperfusion injury. Promoting BCAA catabolism or normalizing glucose utilization by overexpressing GLUT1 in the KO heart rescued the metabolic and functional outcome. These observations revealed a novel role of BCAA catabolism in regulating cardiac metabolism and stress response.
Collapse
Affiliation(s)
- Tao Li
- West China-Washington Mitochondria and Metabolism Center and Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PRC; Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Zhen Zhang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Stephen C Kolwicz
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Lauren Abell
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Nathan D Roe
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Maengjo Kim
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Bo Zhou
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Yang Cao
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Julia Ritterhoff
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Haiwei Gu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Daniel Raftery
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Haipeng Sun
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
46
|
Wang BF, Yoshioka J. The Emerging Role of Thioredoxin-Interacting Protein in Myocardial Ischemia/Reperfusion Injury. J Cardiovasc Pharmacol Ther 2016; 22:219-229. [PMID: 27807222 DOI: 10.1177/1074248416675731] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Myocardial ischemia/reperfusion injury represents a major threat to human health and contributes to adverse cardiovascular outcomes worldwide. Despite the identification of numerous molecular mechanisms, understanding of the complex pathophysiology of this clinical syndrome remains incomplete. Thioredoxin-interacting protein (Txnip) has been of great interest in the past decade since it has been reported to be a critical regulator in human diseases with several important cellular functions. Thioredoxin-interacting protein binds to and inhibits thioredoxin, a redox protein that neutralizes reactive oxygen species (ROS), and through its interaction with thioredoxin, Txnip sensitizes cardiomyocytes to ROS-induced apoptosis. Interestingly, evidence from recent studies also suggests that some of the effects of Txnip may be unrelated to changes in thioredoxin activity. These pleiotropic effects of Txnip are mediated by interactions with other signaling molecules, such as nod-like receptor pyrin domain-containing 3 inflammasome and glucose transporter 1. Indeed, Txnip has been implicated in the regulation of inflammatory response and glucose homeostasis during myocardial ischemia/reperfusion injury. This review attempts to make the case that in addition to interacting with thioredoxin, Txnip contributes to some of the pathological consequences of myocardial ischemia and infarction through endogenous signals in multiple molecular mechanisms.
Collapse
Affiliation(s)
- Bing F Wang
- 1 Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jun Yoshioka
- 1 Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Giblett JP, Clarke SJ, Dutka DP, Hoole SP. Glucagon-Like Peptide-1: A Promising Agent for Cardioprotection During Myocardial Ischemia. JACC Basic Transl Sci 2016; 1:267-276. [PMID: 30167515 PMCID: PMC6113423 DOI: 10.1016/j.jacbts.2016.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 01/07/2023]
Abstract
Glucagon-like peptide-1-(7-36) amide (GLP-1) is a human incretin hormone responsible for the release of insulin in response to food. Pre-clinical and human physiological studies have demonstrated cardioprotection from ischemia-reperfusion injury. It can reduce infarct size, ischemic left ventricular dysfunction, and myocardial stunning. GLP-1 receptor agonists have also been shown to reduce infarct size in myocardial infarction. The mechanism through which this protection occurs is uncertain but may include hijacking the subcellular pathways of ischemic preconditioning, modulation of myocardial metabolism, and hemodynamic effects including peripheral, pulmonary, and coronary vasodilatation. This review will assess the evidence for each of these mechanisms in turn. Challenges remain in successfully translating cardioprotective interventions from bench-to-bedside. The window of cardioprotection is short and timing of cardioprotection in the appropriate clinical setting is critically important. We will emphasize the need for high-quality, well-designed research to evaluate GLP-1 as a cardioprotective agent for use in real-world practice.
Collapse
Key Words
- AMI, acute myocardial infarction
- ANP, atrial natriuretic peptide
- ATP, adenosine triphosphate
- DPP, dipeptidyl-peptidase
- GLP-1
- GLP-1, glucagon-like peptide 1-(7-36) amide
- GLP-1R, GLP-1 receptor
- GLP-1RA, GLP-1 receptor agonist
- IC, ischemic conditioning
- IR, ischemia reperfusion
- PCI, percutaneous coronary intervention
- RISK, reperfusion injury survival kinase
- SAFE, survivor-activating factor enhancement
- STEMI, ST-segment elevation myocardial infarction
- glucagon-like peptide-1
- ischemia reperfusion injury
- ischemic heart disease
- percutaneous coronary intervention
Collapse
Affiliation(s)
- Joel P Giblett
- Department of Interventional Cardiology, Papworth Hospital, Cambridge, United Kingdom.,Department of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sophie J Clarke
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David P Dutka
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stephen P Hoole
- Department of Interventional Cardiology, Papworth Hospital, Cambridge, United Kingdom
| |
Collapse
|
48
|
Zervou S, Yin X, Nabeebaccus AA, O’Brien BA, Cross RL, McAndrew DJ, Atkinson RA, Eykyn TR, Mayr M, Neubauer S, Lygate CA. Proteomic and metabolomic changes driven by elevating myocardial creatine suggest novel metabolic feedback mechanisms. Amino Acids 2016; 48:1969-81. [PMID: 27143170 PMCID: PMC4974297 DOI: 10.1007/s00726-016-2236-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/11/2016] [Indexed: 01/04/2023]
Abstract
Mice over-expressing the creatine transporter have elevated myocardial creatine levels [Cr] and are protected against ischaemia/reperfusion injury via improved energy reserve. However, mice with very high [Cr] develop cardiac hypertrophy and dysfunction. To investigate these contrasting effects, we applied a non-biased hypothesis-generating approach to quantify global protein and metabolite changes in the LV of mice stratified for [Cr] levels: wildtype, moderately elevated, and high [Cr] (65-85; 100-135; 160-250 nmol/mg protein, respectively). Male mice received an echocardiogram at 7 weeks of age with tissue harvested at 8 weeks. RV was used for [Cr] quantification by HPLC to select LV tissue for subsequent analysis. Two-dimensional difference in-gel electrophoresis identified differentially expressed proteins, which were manually picked and trypsin digested for nano-LC-MS/MS. Principal component analysis (PCA) showed efficient group separation (ANOVA P ≤ 0.05) and peptide sequences were identified by mouse database (UniProt 201203) using Mascot. A total of 27 unique proteins were found to be differentially expressed between normal and high [Cr], with proteins showing [Cr]-dependent differential expression, chosen for confirmation, e.g. α-crystallin B, a heat shock protein implicated in cardio-protection and myozenin-2, which could contribute to the hypertrophic phenotype. Nuclear magnetic resonance (¹H-NMR at 700 MHz) identified multiple strong correlations between [Cr] and key cardiac metabolites. For example, positive correlations with α-glucose (r² = 0.45; P = 0.002), acetyl-carnitine (r² = 0.50; P = 0.001), glutamine (r² = 0.59; P = 0.0002); and negative correlations with taurine (r² = 0.74; P < 0.0001), fumarate (r² = 0.45; P = 0.003), aspartate (r² = 0.59; P = 0.0002), alanine (r² = 0.66; P < 0.0001) and phosphocholine (r² = 0.60; P = 0.0002). These findings suggest wide-ranging and hitherto unexpected adaptations in substrate utilisation and energy metabolism with a general pattern of impaired energy generating pathways in mice with very high creatine levels.
Collapse
Affiliation(s)
- Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and the BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Xiaoke Yin
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | | | - Brett A. O’Brien
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Rebecca L. Cross
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and the BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Debra J. McAndrew
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and the BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - R. Andrew Atkinson
- Randall Division of Cell and Molecular Biophysics, and the BHF Centre of Research Excellence, Centre for Biomolecular Spectroscopy, King’s College London, London, UK
| | - Thomas R. Eykyn
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Manuel Mayr
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and the BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Craig A. Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and the BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| |
Collapse
|
49
|
Myers RB, Fomovsky GM, Lee S, Tan M, Wang BF, Patwari P, Yoshioka J. Deletion of thioredoxin-interacting protein improves cardiac inotropic reserve in the streptozotocin-induced diabetic heart. Am J Physiol Heart Circ Physiol 2016; 310:H1748-59. [PMID: 27037370 DOI: 10.1152/ajpheart.00051.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/25/2016] [Indexed: 02/05/2023]
Abstract
Although the precise pathogenesis of diabetic cardiac damage remains unclear, potential mechanisms include increased oxidative stress, autonomic nervous dysfunction, and altered cardiac metabolism. Thioredoxin-interacting protein (Txnip) was initially identified as an inhibitor of the antioxidant thioredoxin but is now recognized as a member of the arrestin superfamily of adaptor proteins that classically regulate G protein-coupled receptor signaling. Here we show that Txnip plays a key role in diabetic cardiomyopathy. High glucose levels induced Txnip expression in rat cardiomyocytes in vitro and in the myocardium of streptozotocin-induced diabetic mice in vivo. While hyperglycemia did not induce cardiac dysfunction at baseline, β-adrenergic challenge revealed a blunted myocardial inotropic response in diabetic animals (24-wk-old male and female C57BL/6;129Sv mice). Interestingly, diabetic mice with cardiomyocyte-specific deletion of Txnip retained a greater cardiac response to β-adrenergic stimulation than wild-type mice. This benefit in Txnip-knockout hearts was not related to the level of thioredoxin activity or oxidative stress. Unlike the β-arrestins, Txnip did not interact with β-adrenergic receptors to desensitize downstream signaling. However, our proteomic and functional analyses demonstrated that Txnip inhibits glucose transport through direct binding to glucose transporter 1 (GLUT1). An ex vivo analysis of perfused hearts further demonstrated that the enhanced functional reserve afforded by deletion of Txnip was associated with myocardial glucose utilization during β-adrenergic stimulation. These data provide novel evidence that hyperglycemia-induced Txnip is responsible for impaired cardiac inotropic reserve by direct regulation of insulin-independent glucose uptake through GLUT1 and plays a role in the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Ronald B Myers
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gregory M Fomovsky
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Samuel Lee
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Max Tan
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bing F Wang
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Parth Patwari
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jun Yoshioka
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
50
|
Pascual F, Coleman RA. Fuel availability and fate in cardiac metabolism: A tale of two substrates. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1425-33. [PMID: 26993579 DOI: 10.1016/j.bbalip.2016.03.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/12/2022]
Abstract
The heart's extraordinary metabolic flexibility allows it to adapt to normal changes in physiology in order to preserve its function. Alterations in the metabolic profile of the heart have also been attributed to pathological conditions such as ischemia and hypertrophy; however, research during the past decade has established that cardiac metabolic adaptations can precede the onset of pathologies. It is therefore critical to understand how changes in cardiac substrate availability and use trigger events that ultimately result in heart dysfunction. This review examines the mechanisms by which the heart obtains fuels from the circulation or from mobilization of intracellular stores. We next describe experimental models that exhibit either an increase in glucose use or a decrease in FA oxidation, and how these aberrant conditions affect cardiac metabolism and function. Finally, we highlight the importance of alternative, relatively under-investigated strategies for the treatment of heart failure. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Florencia Pascual
- Department of Nutrition, University of North Carolina at Chapel Hill, 27599, USA.
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, 27599, USA.
| |
Collapse
|