1
|
Luo Y, Gu W, Pan Z, Zeng J, Yin H. MiR-1 alleviates chronic heart failure through HCN2/HCN4 axis in vitro. Tissue Cell 2025; 95:102921. [PMID: 40252568 DOI: 10.1016/j.tice.2025.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/21/2025]
Abstract
OBJECTIVE Chronic heart failure (CHF) is a complex and progressive condition. This study aimed to investigate the potential regulatory effect of miR-1 on CHF through the hyperpolarization-activated cyclic nucleotide-gated channels 2 and 4 (HCN2/HCN4) axis. METHOD The expression of miR-1 was examined in individuals diagnosed with CHF. The patients' level of NT-proBNP was evaluated. A cellular model using H9c2 cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) was established. RT-qPCR and western blot were performed to determine the levels of miR-1, HCN2, or HCN4. Elisa was used to measure the levels of TNF-α and IL-6. The potential target of miR-1 on HCN2 and HCN4 was verified using the dual luciferase assay. Overexpression of miR-1 or HCN was employed to explore the specific mechanism of miR-1 and HCN on CHF. The MTT assay was used to evaluate cell viability, while apoptosis was quantified through flow cytometry. RESULTS In both patients with CHF and OGD/R-treated H9c2 cells, miR-1 levels were found to be reduced. The overexpression of miR-1 notably suppressed the secretion of TNF-α and IL-6 (P < 0.05). Overexpression of miR-1 also markedly increased cell viability (P < 0.01) and reduced apoptosis (P < 0.05) in OGD/R-treated H9c2 cells. Using miRNA-target prediction databases and luciferase reporter assays, we identified HCN2 and HCN4 as direct targets of miR-1. Moreover, overexpression of HCN2 and HCN4 counteracted the protective effects of miR-1, as evidenced by a significant reduction in cell viability (P < 0.01) and an increase in apoptosis (P < 0.05). CONCLUSION This study suggests that miR-1 regulates cell viability and apoptosis in CHF through the HCN2/HCN4 axis, highlighting its potential as a therapeutic target for CHF.
Collapse
Affiliation(s)
- Yishan Luo
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Wanjie Gu
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhe Pan
- Department of Emergency Medicine, Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Jun Zeng
- Department of Emergency Medicine, Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Haiyan Yin
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
2
|
Brown PA. Transcriptomic signatures of atheroresistance in the human atrium and ventricle highlight potential candidates for targeted atherosclerosis therapeutics. Biochem Biophys Rep 2025; 42:102007. [PMID: 40248137 PMCID: PMC12004712 DOI: 10.1016/j.bbrep.2025.102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
Atherosclerosis risk is not uniform throughout the cardiovascular system. This study therefore aimed to compare the transcriptomes of atheroresistant human atrium and ventricle with atheroprone coronary arteries to identify transcriptomic signatures of atheroresistance and potential targets for atherosclerosis therapeutics. Using publicly available gene read counts, differentially expressed genes between the atrium, ventricle, and coronary artery were identified for each contrast and validated against the Swiss Institute of Bioinformatics' Bgee database. Over-representation analysis and active-subnetwork-oriented enrichment assessment then identified enriched terms, which were grouped into endothelial dysfunction-related processes. Potential biological significance was further explored with pathway analysis. Among 21474 features, 12656 differentially expressed genes were identified across the three contrasts and associated with 1215 enriched terms. There were 315 down-regulated and 133 up-regulated genes associated with endothelial dysfunction-related processes across the contrasts, including immune modulators, cell adhesion molecules, and lipid metabolism- and coagulation-related molecules. Differentially expressed genes were associated with six down-regulated Kyoto Encyclopedia of Genes and Genomes pathways, related to immune cell and associated endothelium functions. Review of regulated genes associated with endothelial dysfunction-related processes and included in these pathways, indicate immune cell-associated B cell scaffold protein with ankyrin repeats 1, as well as arterial endothelial cell-associated vascular cell adhesion molecule 1 and cadherin 5, as potential atherosclerosis targets.
Collapse
Affiliation(s)
- Paul A. Brown
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, Kingston 7, Jamaica
| |
Collapse
|
3
|
Liu Y, Wang TT, Lu Y, Riaz M, Qyang Y. Cardiac macrophage: Insights from murine models to translational potential for human studies. J Mol Cell Cardiol 2025:S0022-2828(25)00083-5. [PMID: 40354877 DOI: 10.1016/j.yjmcc.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Macrophages are a cell type that are known to play dynamic roles in acute and progressive pathology. They are highly attuned to their microenvironments throughout maturation, tailoring their functional responses according to the specific tissues in which they reside and their developmental origin. Cardiac macrophages (cMacs) have emerged as focal points of interest for their interactions with the unique electrical and mechanical stimuli of the heart, as well as for their role in maintaining cardiac homeostasis. Through an in-depth analysis of their origin, lineage, and functional significance, this review aims to shed light on cMacs' distinct contributions to both normal physiological maintenance as well as disease progression. Central to our discussion is the comparison of cMac characteristics between mouse and human models, highlighting current challenges and proposing novel experimental tools for deciphering cMac function within the intricate human cardiac microenvironments based on current murine studies. Our review offers valuable insights for identifying novel therapeutic targets and interventions tailored to the distinct roles of these immune cells in cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Yufeng Liu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department, New Haven, CT, USA; Yale Biological and Biomedical Sciences, Graduate School of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Tricia T Wang
- Yale Biological and Biomedical Sciences, Graduate School of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Yinsheng Lu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department, New Haven, CT, USA; Yale Stem Cell Center, New Haven, CT, USA; Department of Mechanical Engineering and Materials Science, Graduate School of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Muhammad Riaz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Cho S, Rhee S, Madl CM, Caudal A, Thomas D, Kim H, Kojic A, Shin HS, Mahajan A, Jahng JW, Wang X, Thai PN, Paik DT, Wang M, Mullen M, Baker NM, Leitz J, Mukherjee S, Winn VD, Woo YJ, Blau HM, Wu JC. Selective inhibition of stromal mechanosensing suppresses cardiac fibrosis. Nature 2025:10.1038/s41586-025-08945-9. [PMID: 40307543 DOI: 10.1038/s41586-025-08945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Matrix-derived biophysical cues are known to regulate the activation of fibroblasts and their subsequent transdifferentiation into myofibroblasts1-6, but whether modulation of these signals can suppress fibrosis in intact tissues remains unclear, particularly in the cardiovascular system7-10. Here we demonstrate across multiple scales that inhibition of matrix mechanosensing in persistently activated cardiac fibroblasts potentiates-in concert with soluble regulators of the TGFβ pathway-a robust transcriptomic, morphological and metabolic shift towards quiescence. By conducting a meta-analysis of public human and mouse single-cell sequencing datasets, we identify the focal-adhesion-associated tyrosine kinase SRC as a fibroblast-enriched mechanosensor that can be targeted selectively in stromal cells to mimic the effects of matrix softening in vivo. Pharmacological inhibition of SRC by saracatinib, coupled with TGFβ suppression, induces synergistic repression of key profibrotic gene programs in fibroblasts, characterized by a marked inhibition of the MRTF-SRF pathway, which is not seen after treatment with either drug alone. Importantly, the dual treatment alleviates contractile dysfunction in fibrotic engineered heart tissues and in a mouse model of heart failure. Our findings point to joint inhibition of SRC-mediated stromal mechanosensing and TGFβ signalling as a potential mechanotherapeutic strategy for treating cardiovascular fibrosis.
Collapse
Affiliation(s)
- Sangkyun Cho
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Siyeon Rhee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Greenstone Biosciences, Palo Alto, CA, USA
| | - Christopher M Madl
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Arianne Caudal
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Hyeonyu Kim
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ana Kojic
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Hye Sook Shin
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Abhay Mahajan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - James W Jahng
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Xi Wang
- COPPER Laboratory, Ohio State University, Columbus, OH, USA
| | - Phung N Thai
- Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - David T Paik
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mingqiang Wang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - McKay Mullen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Natalie M Baker
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Virginia D Winn
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Y Joseph Woo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Helen M Blau
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Fan Y, Zheng Y, Zhang Y, Xu G, Liu C, Hu J, Ji Q, Zhang S, Fang S, Lei J, Li LZ, Wang X, Xu X, Wang C, Wang S, Ma S, Song M, Jiang W, Zhu J, Feng Y, Wang J, Yang Y, Zhu G, Tian XL, Zhang H, Song W, Yang J, Yao Y, Liu GH, Qu J, Zhang W. ARID5A orchestrates cardiac aging and inflammation through MAVS mRNA stabilization. NATURE CARDIOVASCULAR RESEARCH 2025:10.1038/s44161-025-00635-z. [PMID: 40301689 DOI: 10.1038/s44161-025-00635-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/10/2025] [Indexed: 05/01/2025]
Abstract
Elucidating the regulatory mechanisms of human cardiac aging remains a great challenge. Here, using human heart tissues from 74 individuals ranging from young (≤35 years) to old (≥65 years), we provide an overview of the histological, cellular and molecular alterations underpinning the aging of human hearts. We decoded aging-related gene expression changes at single-cell resolution and identified increased inflammation as the key event, driven by upregulation of ARID5A, an RNA-binding protein. ARID5A epi-transcriptionally regulated Mitochondrial Antiviral Signaling Protein (MAVS) mRNA stability, leading to NF-κB and TBK1 activation, amplifying aging and inflammation phenotypes. The application of gene therapy using lentiviral vectors encoding shRNA targeting ARID5A into the myocardium not only mitigated the inflammatory and aging phenotypes but also bolstered cardiac function in aged mice. Altogether, our study provides a valuable resource and advances our understanding of cardiac aging mechanisms by deciphering the ARID5A-MAVS axis in post-transcriptional regulation.
Collapse
Affiliation(s)
- Yanling Fan
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yandong Zheng
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiyuan Zhang
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Gang Xu
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, China
| | - Chun Liu
- Department of Physiology and Medicine, Cardiovascular Center, Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jianli Hu
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianzhao Ji
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Zhang
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuaiqi Fang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinghui Lei
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lan-Zhu Li
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xing Wang
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi Xu
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, China
| | - Cui Wang
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Si Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuai Ma
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Aging Biomarker Consortium, Beijing, China
| | - Moshi Song
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wenjian Jiang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Junming Zhu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yijia Feng
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiangang Wang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ying Yang
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guodong Zhu
- Institute of Gerontology, Guangzhou Geriatric Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute and School of Life Science, Nanchang University and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Hongjia Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Weihong Song
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiayin Yang
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, China
| | - Yan Yao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Guang-Hui Liu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Jing Qu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Weiqi Zhang
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| |
Collapse
|
6
|
Fang S, Xu M, Cao L, Liu X, Bezulj M, Tan L, Yuan Z, Li Y, Xia T, Guo L, Kovacevic V, Hui J, Guo L, Liu C, Cheng M, Lin L, Wen Z, Josic B, Milicevic N, Qiu P, Lu Q, Li Y, Wang L, Hu L, Zhang C, Kang Q, Chen F, Deng Z, Li J, Li M, Li S, Zhao Y, Fan G, Zhang Y, Chen A, Li Y, Xu X. Stereopy: modeling comparative and spatiotemporal cellular heterogeneity via multi-sample spatial transcriptomics. Nat Commun 2025; 16:3741. [PMID: 40258830 PMCID: PMC12012134 DOI: 10.1038/s41467-025-58079-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/05/2025] [Indexed: 04/23/2025] Open
Abstract
Understanding complex biological systems requires tracing cellular dynamic changes across conditions, time, and space. However, integrating multi-sample data in a unified way to explore cellular heterogeneity remains challenging. Here, we present Stereopy, a flexible framework for modeling and dissecting comparative and spatiotemporal patterns in multi-sample spatial transcriptomics with interactive data visualization. To optimize this framework, we devise a universal container, a scope controller, and an integrative transformer tailored for multi-sample multimodal data storage, management, and processing. Stereopy showcases three representative applications: investigating specific cell communities and genes responsible for pathological changes, detecting spatiotemporal gene patterns by considering spatial and temporal features, and inferring three-dimensional niche-based cell-gene interaction network that bridges intercellular communications and intracellular regulations. Stereopy serves as both a comprehensive bioinformatics toolbox and an extensible framework that empowers researchers with enhanced data interpretation abilities and new perspectives for mining multi-sample spatial transcriptomics data.
Collapse
Affiliation(s)
| | - Mengyang Xu
- BGI Research, Shenzhen, China
- BGI Research, Qingdao, China
| | - Lei Cao
- BGI Research, Beijing, China
- BGI Research, Shenzhen, China
| | | | | | | | - Zhiyuan Yuan
- Institute of Science and Technology for Brain-Inspired Intelligence, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yao Li
- BGI Research, Qingdao, China
| | - Tianyi Xia
- BGI Research, Beijing, China
- BGI Research, Shenzhen, China
| | | | | | | | - Lidong Guo
- BGI Research, Qingdao, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Mengnan Cheng
- BGI Research, Shenzhen, China
- BGI Research, Hangzhou, China
| | | | | | | | | | | | - Qin Lu
- BGI Research, Shenzhen, China
| | | | | | - Luni Hu
- BGI Research, Beijing, China
- BGI Research, Shenzhen, China
| | | | | | | | | | - Junhua Li
- BGI Research, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
- BGI Research, Riga, Latvia
| | - Mei Li
- BGI Research, Shenzhen, China
| | | | - Yi Zhao
- Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
| | - Guangyi Fan
- BGI Research, Shenzhen, China.
- BGI Research, Qingdao, China.
| | - Yong Zhang
- BGI Research, Shenzhen, China.
- BGI Research, Wuhan, China.
- Guangdong Bigdata Engineering Technology Research Center for Life Sciences, BGI research, Shenzhen, China.
| | - Ao Chen
- BGI Research, Shenzhen, China.
| | - Yuxiang Li
- BGI Research, Shenzhen, China.
- BGI Research, Wuhan, China.
- Guangdong Bigdata Engineering Technology Research Center for Life Sciences, BGI research, Shenzhen, China.
| | - Xun Xu
- BGI Research, Wuhan, China.
| |
Collapse
|
7
|
Tang Z, Alrumaihi F, Alwanian WM, Alharbi HO, Allemailem KS, Alissa M, Alasmari O, Almousa S, Ainsworth T, Chen X. The future of cardiology: Integrating single-cell transcriptomics with multi-omics for enhanced cardiac disease insights. Curr Probl Cardiol 2025; 50:103005. [PMID: 39894239 DOI: 10.1016/j.cpcardiol.2025.103005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Recent advancements in single-cell transcriptome sequencing (scRNA-seq) have revolutionized our understanding of cellular heterogeneity in cardiovascular diseases, enabling the identification of novel therapeutic targets. This technology allows for high-resolution analysis of gene expression at the single-cell level, revealing the complex dynamics of human heart cell development and the diverse roles of cardiac cell types in health and disease. Despite its transformative potential, current applications of scRNA-seq face limitations, including challenges in data integration and the need for comprehensive multi-omic approaches to fully elucidate the mechanisms underlying cardiovascular pathologies. This review highlights the significant insights gained from scRNA-seq studies in the mammalian heart, emphasizing the importance of integrating spatial transcriptomics and other omics technologies to enhance our understanding of cardiac biology. Furthermore, it addresses the critical research gaps in the field, particularly in the context of personalized medicine and the need for improved methodologies to analyze rare cell populations. By exploring these challenges and opportunities, this review aims to pave the way for innovative diagnostic and therapeutic strategies that can ultimately improve outcomes for patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Zhengchun Tang
- Guangdong Pharmaceutical University, Guangdong Province, 510006, China
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Wanian M Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hajed Obaid Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Omar Alasmari
- Department of Medical Laboratory, Al Kharj Military Industries Corporation Hospital, Al-kharj, Saudi Arabia
| | - Saad Almousa
- Department of Medical Laboratory, Al Kharj Military Industries Corporation Hospital, Al-kharj, Saudi Arabia
| | - Thomas Ainsworth
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, United States
| | - Xiangmei Chen
- Guangdong Pharmaceutical University, Guangdong Province, 510006, China.
| |
Collapse
|
8
|
Henry A, Mo X, Finan C, Chaffin MD, Speed D, Issa H, Denaxas S, Ware JS, Zheng SL, Malarstig A, Gratton J, Bond I, Roselli C, Miller D, Chopade S, Schmidt AF, Abner E, Adams L, Andersson C, Aragam KG, Ärnlöv J, Asselin G, Raja AA, Backman JD, Bartz TM, Biddinger KJ, Biggs ML, Bloom HL, Boersma E, Brandimarto J, Brown MR, Brunak S, Bruun MT, Buckbinder L, Bundgaard H, Carey DJ, Chasman DI, Chen X, Cook JP, Czuba T, de Denus S, Dehghan A, Delgado GE, Doney AS, Dörr M, Dowsett J, Dudley SC, Engström G, Erikstrup C, Esko T, Farber-Eger EH, Felix SB, Finer S, Ford I, Ghanbari M, Ghasemi S, Ghouse J, Giedraitis V, Giulianini F, Gottdiener JS, Gross S, Guðbjartsson DF, Gui H, Gutmann R, Hägg S, Haggerty CM, Hedman ÅK, Helgadottir A, Hemingway H, Hillege H, Hyde CL, Aagaard Jensen B, Jukema JW, Kardys I, Karra R, Kavousi M, Kizer JR, Kleber ME, Køber L, Koekemoer A, Kuchenbaecker K, Lai YP, Lanfear D, Langenberg C, Lin H, Lind L, Lindgren CM, Liu PP, London B, Lowery BD, Luan J, Lubitz SA, Magnusson P, Margulies KB, Marston NA, Martin H, März W, Melander O, Mordi IR, Morley MP, et alHenry A, Mo X, Finan C, Chaffin MD, Speed D, Issa H, Denaxas S, Ware JS, Zheng SL, Malarstig A, Gratton J, Bond I, Roselli C, Miller D, Chopade S, Schmidt AF, Abner E, Adams L, Andersson C, Aragam KG, Ärnlöv J, Asselin G, Raja AA, Backman JD, Bartz TM, Biddinger KJ, Biggs ML, Bloom HL, Boersma E, Brandimarto J, Brown MR, Brunak S, Bruun MT, Buckbinder L, Bundgaard H, Carey DJ, Chasman DI, Chen X, Cook JP, Czuba T, de Denus S, Dehghan A, Delgado GE, Doney AS, Dörr M, Dowsett J, Dudley SC, Engström G, Erikstrup C, Esko T, Farber-Eger EH, Felix SB, Finer S, Ford I, Ghanbari M, Ghasemi S, Ghouse J, Giedraitis V, Giulianini F, Gottdiener JS, Gross S, Guðbjartsson DF, Gui H, Gutmann R, Hägg S, Haggerty CM, Hedman ÅK, Helgadottir A, Hemingway H, Hillege H, Hyde CL, Aagaard Jensen B, Jukema JW, Kardys I, Karra R, Kavousi M, Kizer JR, Kleber ME, Køber L, Koekemoer A, Kuchenbaecker K, Lai YP, Lanfear D, Langenberg C, Lin H, Lind L, Lindgren CM, Liu PP, London B, Lowery BD, Luan J, Lubitz SA, Magnusson P, Margulies KB, Marston NA, Martin H, März W, Melander O, Mordi IR, Morley MP, Morris AP, Morrison AC, Morton L, Nagle MW, Nelson CP, Niessner A, Niiranen T, Noordam R, Nowak C, O'Donoghue ML, Ostrowski SR, Owens AT, Palmer CNA, Paré G, Pedersen OB, Perola M, Pigeyre M, Psaty BM, Rice KM, Ridker PM, Romaine SPR, Rotter JI, Ruff CT, Sabatine MS, Sallah N, Salomaa V, Sattar N, Shalaby AA, Shekhar A, Smelser DT, Smith NL, Sørensen E, Srinivasan S, Stefansson K, Sveinbjörnsson G, Svensson P, Tammesoo ML, Tardif JC, Teder-Laving M, Teumer A, Thorgeirsson G, Thorsteinsdottir U, Torp-Pedersen C, Tragante V, Trompet S, Uitterlinden AG, Ullum H, van der Harst P, van Heel D, van Setten J, van Vugt M, Veluchamy A, Verschuuren M, Verweij N, Vissing CR, Völker U, Voors AA, Wallentin L, Wang Y, Weeke PE, Wiggins KL, Williams LK, Yang Y, Yu B, Zannad F, Zheng C, Asselbergs FW, Cappola TP, Dubé MP, Dunn ME, Lang CC, Samani NJ, Shah S, Vasan RS, Smith JG, Holm H, Shah S, Ellinor PT, Hingorani AD, Wells Q, Lumbers RT. Genome-wide association study meta-analysis provides insights into the etiology of heart failure and its subtypes. Nat Genet 2025; 57:815-828. [PMID: 40038546 PMCID: PMC11985341 DOI: 10.1038/s41588-024-02064-3] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/17/2024] [Indexed: 03/06/2025]
Abstract
Heart failure (HF) is a major contributor to global morbidity and mortality. While distinct clinical subtypes, defined by etiology and left ventricular ejection fraction, are well recognized, their genetic determinants remain inadequately understood. In this study, we report a genome-wide association study of HF and its subtypes in a sample of 1.9 million individuals. A total of 153,174 individuals had HF, of whom 44,012 had a nonischemic etiology (ni-HF). A subset of patients with ni-HF were stratified based on left ventricular systolic function, where data were available, identifying 5,406 individuals with reduced ejection fraction and 3,841 with preserved ejection fraction. We identify 66 genetic loci associated with HF and its subtypes, 37 of which have not previously been reported. Using functionally informed gene prioritization methods, we predict effector genes for each identified locus, and map these to etiologic disease clusters through phenome-wide association analysis, network analysis and colocalization. Through heritability enrichment analysis, we highlight the role of extracardiac tissues in disease etiology. We then examine the differential associations of upstream risk factors with HF subtypes using Mendelian randomization. These findings extend our understanding of the mechanisms underlying HF etiology and may inform future approaches to prevention and treatment.
Collapse
Affiliation(s)
- Albert Henry
- Institute of Cardiovascular Science, University College London, London, UK
- Institute of Health Informatics, University College London, London, UK
| | - Xiaodong Mo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Chris Finan
- Institute of Cardiovascular Science, University College London, London, UK
| | - Mark D Chaffin
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Doug Speed
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Hanane Issa
- Institute of Health Informatics, University College London, London, UK
| | - Spiros Denaxas
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, London, UK
- British Heart Foundation Data Science Centre, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
| | - James S Ware
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- National Heart & Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Hammersmith Hospital, Imperial College Hospitals NHS Trust, London, UK
| | - Sean L Zheng
- National Heart & Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Anders Malarstig
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
- Pfizer Worldwide Research & Development, Cambridge, MA, USA
| | - Jasmine Gratton
- Institute of Cardiovascular Science, University College London, London, UK
| | - Isabelle Bond
- Institute of Cardiovascular Science, University College London, London, UK
| | - Carolina Roselli
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - David Miller
- Division of Biosciences, University College London, London, UK
| | - Sandesh Chopade
- Institute of Cardiovascular Science, University College London, London, UK
| | - A Floriaan Schmidt
- Institute of Cardiovascular Science, University College London, London, UK
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Erik Abner
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Charlotte Andersson
- Department of Cardiology, Herlev Gentofte Hospital, Herlev, Denmark
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Krishna G Aragam
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Johan Ärnlöv
- Department of Neurobiology, Care Sciences and Society/Section of Family Medicine and Primary Care, Karolinska Institutet, Stockholm, Sweden
- School of Health and Social Sciences, Dalarna University, Falun, Sweden
| | | | - Anna Axelsson Raja
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Joshua D Backman
- Analytical Genetics, Regeneron Genetics Center, Tarrytown, NY, USA
| | - Traci M Bartz
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Kiran J Biddinger
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Mary L Biggs
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Heather L Bloom
- Department of Medicine, Division of Cardiology, Emory University Medical Center, Atlanta, GA, USA
| | - Eric Boersma
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeffrey Brandimarto
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael R Brown
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas School of Public Health, Houston, TX, USA
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | | | - Henning Bundgaard
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - David J Carey
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Xing Chen
- Pfizer Worldwide Research & Development, Cambridge, MA, USA
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Tomasz Czuba
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Simon de Denus
- Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Abbas Dehghan
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Graciela E Delgado
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Alexander S Doney
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Joseph Dowsett
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Samuel C Dudley
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Gunnar Engström
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Deparment of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Tõnu Esko
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Eric H Farber-Eger
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan B Felix
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Sarah Finer
- Centre for Primary Care and Public Health, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Ian Ford
- Robertson Center for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sahar Ghasemi
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Jonas Ghouse
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - John S Gottdiener
- Department of Medicine, Division of Cardiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stefan Gross
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Daníel F Guðbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Hongsheng Gui
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Rebecca Gutmann
- Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Åsa K Hedman
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | | | - Harry Hemingway
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, London, UK
| | - Hans Hillege
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Craig L Hyde
- Pfizer Worldwide Research & Development, Cambridge, MA, USA
| | | | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, the Netherlands
| | - Isabella Kardys
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ravi Karra
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, USA
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jorge R Kizer
- Cardiology Section, San Francisco Veterans Affairs Health System, and Departments of Medicine, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Lars Køber
- Department of Cardiology, Nordsjaellands Hospital, Copenhagen, Denmark
| | - Andrea Koekemoer
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Karoline Kuchenbaecker
- Division of Psychiatry, University College London, London, UK
- UCL Genetics Institute, University College London, London, UK
| | - Yi-Pin Lai
- Pfizer Worldwide Research & Development, Cambridge, MA, USA
| | - David Lanfear
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, USA
- Heart and Vascular Institute, Henry Ford Hospital, Detroit, MI, USA
| | - Claudia Langenberg
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
- Computational Medicine, Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Honghuang Lin
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Peter P Liu
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Barry London
- Division of Cardiovascular Medicine and Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA
| | - Brandon D Lowery
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Steven A Lubitz
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Patrik Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kenneth B Margulies
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas A Marston
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Hilary Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Heidelberg, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
- Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, Germany
| | - Olle Melander
- Department of Internal Medicine, Clinical Sciences, Lund University and Skåne University Hospital, Malmö, Sweden
| | - Ify R Mordi
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Michael P Morley
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas School of Public Health, Houston, TX, USA
| | - Lori Morton
- Cardiovascular Research, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Alexander Niessner
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Teemu Niiranen
- Department of Medicine, Turku University Hospital and University of Turku, Turku, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Christoph Nowak
- Department of Neurobiology, Care Sciences and Society/Section of Family Medicine and Primary Care, Karolinska Institutet, Stockholm, Sweden
| | - Michelle L O'Donoghue
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anjali T Owens
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Colin N A Palmer
- Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Guillaume Paré
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Ole Birger Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland
| | - Marie Pigeyre
- Population Health Research Institute, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
| | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Simon P R Romaine
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Harbor-UCLA Medical Center, Torrance, CA, USA
- Departments of Pediatrics and Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Christian T Ruff
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Marc S Sabatine
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Neneh Sallah
- Institute of Health Informatics, University College London, London, UK
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Naveed Sattar
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Alaa A Shalaby
- Department of Medicine, Division of Cardiology, University of Pittsburgh Medical Center and VA Pittsburgh HCS, Pittsburgh, PA, USA
| | - Akshay Shekhar
- Cardiovascular Research, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Diane T Smelser
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, USA
| | - Nicholas L Smith
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Veterans Affairs Office of Research & Development, Seattle Epidemiologic Research and Information Center, Seattle, WA, USA
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sundararajan Srinivasan
- Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Per Svensson
- Department of Cardiology, Söderjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education-Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Mari-Liis Tammesoo
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Maris Teder-Laving
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Alexander Teumer
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Guðmundur Thorgeirsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Internal Medicine, Division of Cardiology, National University Hospital of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Pim van der Harst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - David van Heel
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK
| | - Jessica van Setten
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marion van Vugt
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Abirami Veluchamy
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
- Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Monique Verschuuren
- Department Life Course and Health, Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niek Verweij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Christoffer Rasmus Vissing
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Uwe Völker
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lars Wallentin
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Yunzhang Wang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Peter E Weeke
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kerri L Wiggins
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Yifan Yang
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas School of Public Health, Houston, TX, USA
| | - Faiez Zannad
- Université de Lorraine, CHU de Nancy, Inserm and INI-CRCT (F-CRIN), Institut Lorrain du Coeur et des Vaisseaux, Vandoeuvre Lès Nancy, France
| | - Chaoqun Zheng
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Folkert W Asselbergs
- Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Thomas P Cappola
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie-Pierre Dubé
- Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Michael E Dunn
- Cardiovascular Research, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Chim C Lang
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Svati Shah
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
| | - Ramachandran S Vasan
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
- Sections of Cardiology, Preventive Medicine and Epidemiology, Department of Medicine, Boston University Schools of Medicine and Public Health, Boston, MA, USA
| | - J Gustav Smith
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, Sweden
| | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Sonia Shah
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Patrick T Ellinor
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, University College London, London, UK
| | - Quinn Wells
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN, USA
| | - R Thomas Lumbers
- Institute of Health Informatics, University College London, London, UK.
- Health Data Research UK, London, UK.
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK.
| |
Collapse
|
9
|
McLendon JM, Zhang X, Stein CS, Baehr LM, Bodine SC, Boudreau RL. Gain and loss of the centrosomal protein taxilin-beta influences cardiac proteostasis and stress. J Mol Cell Cardiol 2025; 201:56-69. [PMID: 40010430 DOI: 10.1016/j.yjmcc.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/25/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
Centrosomes localize to perinuclear foci where they serve multifunctional roles, arranging the microtubule organizing center (MTOC) and anchoring ubiquitin proteasome system (UPS) machinery, as suggested by prior studies. In mature cardiomyocytes, centrosomal proteins redistribute into a specialized perinuclear cage-like structure, and a potential centrosomal-UPS interface has not been studied, despite established roles for UPS in cardiomyopathy. In addition, there have been no reports citing cardiomyocyte UPS dysfunction upon or after manipulation of centrosomal proteins. Taxilin-beta (Txlnb), a cardiomyocyte-enriched protein, belongs to a family of centrosome adapter proteins implicated in protein quality control. We hypothesize that Txlnb is part of the perinuclear centrosomal cage and regulates proteostasis in cardiomyocytes. Herein, we show that centrosome proteins, including Txlnb, have significantly broadly dysregulated RNA expressions in failing hearts; however, Txlnb protein levels appear to be unchanged. Reanalysis of Txlnb's interactome supports its involvement in cytoskeletal, microtubule, and UPS processes, particularly centrosome-related functions. Using gain and loss of function approaches, in cells and mice, we show that Txlnb is a novel regulator of cardiac proteostasis through its influence on UPS. Overexpressing Txlnb in cardiomyocytes reduces ubiquitinated protein accumulation and enhances proteasome activity during hypertrophy. Germline Txlnb knockout in mice increases ubiquitinated protein accumulation, decreases 26Sβ5 proteasome activity, and lowers cardiac mass with aging, indicating proteasomal insufficiency and altered cardiac growth. Loss of Txlnb worsens heart phenotypes in mouse models of cardiac proteotoxicity and pressure overload. Overall, our data implicate the centrosomal protein Txlnb as a novel regulator of cardiac proteostasis, highlighting the likely presence of an understudied and important centrosome-proteasome functional connection in cardiomyocytes.
Collapse
Affiliation(s)
- Jared M McLendon
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Xiaoming Zhang
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America; Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Colleen S Stein
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America; Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Leslie M Baehr
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America; Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Sue C Bodine
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America; Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Ryan L Boudreau
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America; Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America.
| |
Collapse
|
10
|
Deniz GÇ. Transcriptomic Landscape of Human Left and Right Atria Associated with Atrial Fibrillation. Anatol J Cardiol 2025; 29:242-248. [PMID: 40130991 PMCID: PMC12053312 DOI: 10.14744/anatoljcardiol.2025.5215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common acquired cardiac rhythm disorder and has become a notable public health concern. Investigating the left versus right atrium (RA) transcriptome in AF is crucial because it provides insights into the gene expression changes that drive the molecular mechanisms underlying AF, potentially leading to targeted therapies and better patient outcomes. In this study, it is proposed that variances in the transcriptomic profiles between the human left atrium (LA) and RA, as well as alterations in molecular pathways, could offer potential targets for the onset and persistence of AF. METHODS Here transcriptomes of LA and RA of patients (n = 31) undergoing mitral valve surgery were compared. Microarrays proceeded on the Affymetrix platform. Bioinformatic analyses were done on Partek Genomics Suite. Gene ontology, KEGG pathway, and functional enrichment analysis was conducted using differentially expressed genes on WebGestalt. RESULTS Notably, transforming growth factor-β (TGF-β) and peroxisome proliferator-activated receptors signaling pathways were enriched commonly. Claudin 18, which encodes a tight junction transmembrane protein, was one of the most upregulated genes in LA. PITX2 (paired like homeodomain 2) gene upregulation in LA is also involved in TGF-β signaling. Alongside the upregulation of TGF-β signaling, overexpression of extracellular matrix proteins like collagen, vitronectin, fibronectin, and thrombospondin also points out the cardiac fibrosis process preceded in LA, where AF originates. CONCLUSIONS In brief, comparisons of the AF-related transcriptomic landscapes of LA and RA propose targets for novel therapeutic and/or preventive strategies. This study highlights clinical evidence of genetic-based cardiac remodeling that could guide future therapeutic and preventive strategies.
Collapse
|
11
|
Davidson SM, Andreadou I, Antoniades C, Bartunek J, Basso C, Brundel BJJM, Byrne RA, Chiva-Blanch G, da Costa Martins P, Evans PC, Girão H, Giricz Z, Gollmann-Tepeköylü C, Guzik T, Gyöngyösi M, Hübner N, Joner M, Kleinbongard P, Krieg T, Liehn E, Madonna R, Maguy A, Paillard M, Pesce M, Petersen SE, Schiattarella GG, Sluijter JPG, Steffens S, Streckfuss-Bömeke K, Thielmann M, Tucker A, Van Linthout S, Wijns W, Wojta J, Wu JC, Perrino C. Opportunities and challenges for the use of human samples in translational cardiovascular research: a scientific statement of the ESC Working Group on Cellular Biology of the Heart, the ESC Working Group on Cardiovascular Surgery, the ESC Council on Basic Cardiovascular Science, the ESC Scientists of Tomorrow, the European Association of Percutaneous Cardiovascular Interventions of the ESC, and the Heart Failure Association of the ESC. Cardiovasc Res 2025:cvaf023. [PMID: 40084813 DOI: 10.1093/cvr/cvaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 03/16/2025] Open
Abstract
Animal models offer invaluable insights into disease mechanisms but cannot entirely mimic the variability and heterogeneity of human populations, nor the increasing prevalence of multi-morbidity. Consequently, employing human samples-such as whole blood or fractions, valvular and vascular tissues, myocardium, pericardium, or human-derived cells-is essential for enhancing the translational relevance of cardiovascular research. For instance, myocardial tissue slices, which preserve crucial structural and functional characteristics of the human heart, can be used in vitro to examine drug responses. Human blood serves as a rich source of biomarkers, including extracellular vesicles, various types of RNA (miRNA, lncRNA, and circRNAs), circulating inflammatory cells, and endothelial colony-forming cells, facilitating detailed studies of cardiovascular diseases. Primary cardiomyocytes and vascular cells isolated from human tissues are invaluable for mechanistic investigations in vitro. In cases where these are unavailable, human induced pluripotent stem cells serve as effective substitutes, albeit with specific limitations. However, the use of human samples presents challenges such as ethical approvals, tissue procurement and storage, variability in patient genetics and treatment regimens, and the selection of appropriate control samples. Biobanks are central to the efficient use of these scarce and valuable resources. This scientific statement discusses opportunities to implement the use of human samples for cardiovascular research within specific clinical contexts, offers a practical framework for acquiring and utilizing different human materials, and presents examples of human sample applications for specific cardiovascular diseases, providing a valuable resource for clinicians, translational and basic scientists engaged in cardiovascular research.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Ioanna Andreadou
- School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalambos Antoniades
- RDM Division of Cardiovascular Medicine, Acute Multidisciplinary Imaging and Interventional Centre, University of Oxford, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Jozef Bartunek
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, Cardiovascular Pathology, University of Padua, Padua, Italy
| | - Bianca J J M Brundel
- Physiology, Amsterdam UMC Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands
| | - Robert A Byrne
- Cardiovascular Research Institute Dublin, Mater Private Network, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gemma Chiva-Blanch
- Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
- Department of Endocrinology and Nutrition, August Pi i Sunyer Biomedical Research Institute, Hospital Clínic of Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Obesity and Nutrition Physiopathology, Instituto de Salud Carlos III, Madrid, Spain
| | - Paula da Costa Martins
- Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Paul C Evans
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Henrique Girão
- Center for Innovative Biomedicine and Biotechnology, Clinical Academic Centre of Coimbra, Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Coimbra, Portugal
| | - Zoltan Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Can Gollmann-Tepeköylü
- Department for Cardiac Surgery, Cardiac Regeneration Research, Medical University of Innsbruck, Anichstraße 35 A, 6020 Innsbruck, Austria
| | - Tomasz Guzik
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Mariann Gyöngyösi
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Norbert Hübner
- Max Delbrück Center in the Helmholtz Association, Berlin, Germany
- Charite-Universitätsmedizin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Michael Joner
- Department of Cardiology, German Heart Center Munich, Technical University of Munich, Lazarettstrasse 36, 80636 Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Petra Kleinbongard
- Faculty of Medicine University of Duisburg-Essen, Institute of Pathophysiology, Duisburg-Essen, Germany
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Elisa Liehn
- Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rosalinda Madonna
- Cardiology Division, Department of Pathology, University of Pisa, Pisa, Italy
| | - Ange Maguy
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Melanie Paillard
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Aerospace and Mechanical Engineering, Politecnico di Torino, Italy
- Department of Cell Biology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University London, Charterhouse Square, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, UK
- Health Data Research UK, London, UK
- Alan Turing Institute, London, UK
| | - Gabriele G Schiattarella
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
- Deutsches Herzzentrum der Charité (DHZC), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Katrin Streckfuss-Bömeke
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Clinic for Cardiology and Pneumology, University Medicine Göttingen, Germany and German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Matthias Thielmann
- West-German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Art Tucker
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University London, Charterhouse Square, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, UK
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité, BIH Center for Regenerative Therapies, Universitätmedizin Berlin, Berlin, Germany
- Max Delbrück Center in the Helmholtz Association, Berlin, Germany
| | - William Wijns
- The Lambe Institute for Translational Research and Curam, University of Galway, Galway, Ireland
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Core Facilities, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
12
|
Qiu M, Zhao L, Li X, Fan Y, Liu M, Hua D, Zhu Y, Liang Y, Zhang Y, Xiao W, Xu X, Li J. Decoding dengue's neurological assault: insights from single-cell CNS analysis in an immunocompromised mouse model. J Neuroinflammation 2025; 22:62. [PMID: 40038739 PMCID: PMC11877810 DOI: 10.1186/s12974-025-03383-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Dengue encephalitis, a severe neurological complication of dengue virus infection, is increasingly recognized for its rising incidence and significant public health burden. Despite its growing prevalence, the underlying mechanisms and effective therapeutic strategies remain poorly understood. METHODS Cellular atlas of dengue encephalitis was determined by single-nucleus RNA sequencing. Viral load of dengue virus and the level of cytokines expression was detected by RT-qPCR. The target cells of dengue virus were verified by immunofluorescence. The cytotoxic effect of CD8+ T cell was determined by flow cytometry, immunofluorescence, in vivo CD8+ T cell depletion, adoptive transfer and CCK-8-based cell viability assay. Axonal and synaptic reduction induced by dengue virus infection was demonstrated by RT-qPCR, Western blot, transmission electron microscope and immunofluorescence. Finally, motor and sensory functions of mice were detected by open field test and hot plate test, respectively. RESULTS In this study, we utilized single-nucleus RNA sequencing on brain tissues from a dengue-infected murine model to construct a comprehensive cellular atlas of dengue encephalitis. Our findings identify neurons, particularly inhibitory GABAergic subtypes, as the primary targets of dengue virus. Additionally, immune cell infiltration was observed, contributing to significant neurological damage. Comprehensive analyses of cell-cell communication, combined with CD8+ T cell depletion and transfer restoration experiments, have elucidated the critical role of CD8+ T cells in triggering encephalitis through their interaction with neurons. These cells infiltrate the brain from peripheral circulation, interact with neurons, and induce damage of synapse and axon, accompanied by neurological dysfunction. CONCLUSION We defined cellular atlas of dengue encephalitis in mouse model and identified the primary target neuron of dengue virus. In addition, we demonstrated the significant cytotoxic effect of CD8+ T cell, which leads to apoptosis of neuron and neurological dysfunction of mice. Our study provides a molecular and cellular framework for understanding dengue encephalitis through advanced sequencing technologies. The insights gained serve as a foundation for future investigations into its pathogenesis and the development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Minyue Qiu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Lixin Zhao
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Xiaojia Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Yipei Fan
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Minchi Liu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Dong Hua
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Yunkai Zhu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Yinyin Liang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Yu Zhang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Wen Xiao
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Xiaofeng Xu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Jintao Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China.
- Institute of Immunology, Army Medical University, Chongqing, China.
| |
Collapse
|
13
|
Xu X, Su J, Zhu R, Li K, Zhao X, Fan J, Mao F. From morphology to single-cell molecules: high-resolution 3D histology in biomedicine. Mol Cancer 2025; 24:63. [PMID: 40033282 PMCID: PMC11874780 DOI: 10.1186/s12943-025-02240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/18/2025] [Indexed: 03/05/2025] Open
Abstract
High-resolution three-dimensional (3D) tissue analysis has emerged as a transformative innovation in the life sciences, providing detailed insights into the spatial organization and molecular composition of biological tissues. This review begins by tracing the historical milestones that have shaped the development of high-resolution 3D histology, highlighting key breakthroughs that have facilitated the advancement of current technologies. We then systematically categorize the various families of high-resolution 3D histology techniques, discussing their core principles, capabilities, and inherent limitations. These 3D histology techniques include microscopy imaging, tomographic approaches, single-cell and spatial omics, computational methods and 3D tissue reconstruction (e.g. 3D cultures and spheroids). Additionally, we explore a wide range of applications for single-cell 3D histology, demonstrating how single-cell and spatial technologies are being utilized in the fields such as oncology, cardiology, neuroscience, immunology, developmental biology and regenerative medicine. Despite the remarkable progress made in recent years, the field still faces significant challenges, including high barriers to entry, issues with data robustness, ambiguous best practices for experimental design, and a lack of standardization across methodologies. This review offers a thorough analysis of these challenges and presents recommendations to surmount them, with the overarching goal of nurturing ongoing innovation and broader integration of cellular 3D tissue analysis in both biology research and clinical practice.
Collapse
Affiliation(s)
- Xintian Xu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rongyi Zhu
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kailong Li
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaolu Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital)Key Laboratory of Assisted Reproduction (Peking University), Ministry of EducationBeijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China.
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory for Interdisciplinary Research in Gastrointestinal Oncology (BLGO), Beijing, China.
| |
Collapse
|
14
|
Yang R, Xie L, Wang R, Li Y, Lu Y, Liu B, Dai S, Zheng S, Dong K, Dong R. Integration of single-nuclei and spatial transcriptomics to decipher tumor phenotype predictive of relapse-free survival in Wilms tumor. Front Immunol 2025; 16:1539897. [PMID: 40098972 PMCID: PMC11911335 DOI: 10.3389/fimmu.2025.1539897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Background Wilms tumor (WT) is the most common childhood renal malignancy, with recurrence linked to poor prognosis. Identifying the molecular features of tumor phenotypes that drive recurrence and discovering novel targets are crucial for improving treatment strategies and enhancing patient outcomes. Methods Single-nuclei RNA sequencing (snRNA-seq), spatial transcriptomics (ST), bulk RNA-seq, and mutation/copy number data were curated from public databases. The Seurat package was used to process snRNA-seq and ST data. Scissor analysis was applied to identify tumor subpopulations associated with poor relapse-free survival (RFS). Univariate Cox and LASSO analyses were utilized to reduce features. A prognostic ensemble machine learning model was developed. Immunohistochemistry was used to validate the expression of key features in tumor tissues. The CellChat and Commot package was utilized to infer cellular interactions. The PERCEPTION computational pipeline was used to predict the response of tumor cells to chemotherapy and targeted therapies. Results By integrating snRNA-seq and bulk RNA-seq data, we identified a subtype of Scissor+ tumor cells associated with poor RFS, predominantly derived from cap mesenchyme-like blastemal and fibroblast-like tumor subgroups. These cells displayed nephron progenitor signatures and cancer stem cell markers. A prognostic ensemble machine learning model was constructed based on the Scissor+ tumor signature to accurately predict patient RFS. TGFA was identified as the most significant feature in this model and validated by immunohistochemistry. Cellular communication analysis revealed strong associations between Scissor+ tumor cells and cancer-associated fibroblasts (CAFs) through IGF, SLIT, FGF, and PDGF pathways. ST data revealed that Scissor+ tumor cells were primarily located in immune-desert niche surrounded by CAFs. Despite reduced responsiveness to conventional chemotherapy, Scissor+ tumor cells were sensitive to EGFR inhibitors, providing insights into clinical intervention strategies for WT patients at high risk of recurrence. Conclusion This study identified a relapse-associated tumor subtype resembling nephron progenitor cells, residing in immune-desert niches through interactions with CAFs. The proposed prognostic model could accurately identify patients at high risk of relapse, offering a promising method for clinical risk stratification. Targeting these cells with EGFR inhibitors, in combination with conventional chemotherapy, may provide a potential therapeutic strategy for WT patients.
Collapse
Affiliation(s)
- Ran Yang
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
- Children’s Hospital of Fudan University (Xiamen Branch), Xiamen Children’s Hospital, Xiamen Key Laboratory of Pediatric General Surgery Diseases, Xiamen, China
| | - Lulu Xie
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Rui Wang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Li
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Yifei Lu
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Baihui Liu
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Shuyang Dai
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
- Children’s Hospital of Fudan University (Xiamen Branch), Xiamen Children’s Hospital, Xiamen Key Laboratory of Pediatric General Surgery Diseases, Xiamen, China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
- Children’s Hospital of Fudan University (Xiamen Branch), Xiamen Children’s Hospital, Xiamen Key Laboratory of Pediatric General Surgery Diseases, Xiamen, China
| | - Rui Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
- Children’s Hospital of Fudan University (Xiamen Branch), Xiamen Children’s Hospital, Xiamen Key Laboratory of Pediatric General Surgery Diseases, Xiamen, China
| |
Collapse
|
15
|
Landim-Vieira M, Nieto Morales PF, ElSafty S, Kahmini AR, Ranek MJ, Solís C. The role of mechanosignaling in the control of myocardial mass. Am J Physiol Heart Circ Physiol 2025; 328:H622-H638. [PMID: 39739566 DOI: 10.1152/ajpheart.00277.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
Regulation of myocardial mass is key for maintaining cardiovascular health. This review highlights the complex and regulatory relationship between mechanosignaling and myocardial mass, influenced by many internal and external factors including hemodynamic and microgravity, respectively. The heart is a dynamic organ constantly adapting to changes in workload (preload and afterload) and mechanical stress exerted on the myocardium, influencing both physiological adaptations and pathological remodeling. Mechanosignaling pathways, such as the mitogen-activated protein kinases (MAPKs) and the phosphoinositide 3-kinases and serine/threonine kinase (PI3K/Akt) pathways, mediate downstream effects on gene expression and play key roles in transducing mechanical cues into biochemical signals, thereby modulating cellular processes, including control of myocardial mass. Dysregulation of these processes can lead to pathological cardiac remodeling, such as hypertrophic cardiomyopathy. Furthermore, recent studies have highlighted the importance of protein quality control mechanisms, such as the ubiquitin-proteasome system, in settings of extreme physiological conditions that alter the heart workload such as pregnancy and microgravity. Overall, this review provides a thorough insight into how mechanical signals are converted into chemical signals to regulate myocardial mass in both healthy and diseased conditions.
Collapse
Affiliation(s)
- Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States
| | - Paula F Nieto Morales
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States
| | - Summer ElSafty
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States
| | - Aida Rahimi Kahmini
- Department of Health, Nutrition, and Food Science, Florida State University, Tallahassee, Florida, United States
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Christopher Solís
- Department of Health, Nutrition, and Food Science, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
16
|
Akazawa Y, Vaidyanathan S, Dewar MB, Yazaki K, Dauz J, Honjo O, Sun M, Kabir G, Jankov RP, Heximer SP, Connelly KA, Friedberg MK. Homeostatic Role of Decorin in Right Ventricular Pressure Overload and Pulmonary Hypertension Induced Remodeling. JACC Basic Transl Sci 2025; 10:323-341. [PMID: 40139874 PMCID: PMC12013849 DOI: 10.1016/j.jacbts.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 03/29/2025]
Abstract
Right ventricular (RV) pressure loading induces RV profibrotic signaling and fibrosis associated with RV dysfunction. RV decorin protein levels are decreased in patients with chronic RV pressure loading. RV decorin protein levels are also decreased in 4 animal models of mechanical RV pressure loading and pulmonary arterial hypertension. Human cardiac fibroblasts overexpressing decorin show diminished collagen-1 secretion in response to mechanical or chemical profibrotic stress while decorin knockout human cardiac fibroblasts show increased collagen-1 secretion in response to stress. Downregulation of decorin may play a key role in upregulating transforming growth factor-β1 profibrotic signaling and fibrosis that contribute to RV dysfunction in RV pressure loading.
Collapse
Affiliation(s)
- Yohei Akazawa
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Michael Bradley Dewar
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Kana Yazaki
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - John Dauz
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Osami Honjo
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mei Sun
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Golam Kabir
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Robert P Jankov
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Scott Patrick Heximer
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Kim A Connelly
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Mulleners OJ, van der Maarel LE, Christoffels VM, Jensen B. The trabecular and compact myocardium of adult vertebrate ventricles are transcriptionally similar despite morphological differences. Ann N Y Acad Sci 2025; 1545:76-90. [PMID: 39934982 PMCID: PMC11918530 DOI: 10.1111/nyas.15296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
A poorly understood, major event in heart evolution is the convergent prioritization in mammals and birds of compact myocardium over trabecular myocardium. Compact myocardium is thought to facilitate the greater cardiac outputs that distinguish endothermic mammals and birds from ectotherms, but the underlying mechanism remains unclear. We used transcriptomics to investigate whether the compact layer myocardium is intrinsically different from that of the trabecular layer. In the embryonic mouse heart, spatial transcriptomics revealed that 3% of detected genes were differentially expressed between trabecular and compact myocardium. In the adult, this analysis yielded only 0.2% differentially expressed genes. Additionally, the transcriptomes of both embryonic trabecular and compact myocardium greatly differed from those of the adult myocardium. Reanalysis of available single-cell transcriptomes showed relationships between human embryonic and adult trabecular and compact myocardium similar to those in mice. Analysis of new and published transcriptomes from adult zebra finch, zebrafish, and tuna revealed few differentially expressed genes (<0.6%) and no conservation between species. We conclude that the transcriptional states of developing trabecular and compact myocardium do not persist into adulthood. In adult hearts, the compact layer myocardium is not intrinsically different from that of the trabecular layer despite the overt morphological differences.
Collapse
Affiliation(s)
- Otto J. Mulleners
- Department of Medical Biology, Amsterdam Cardiovascular SciencesAmsterdam UMCAmsterdamThe Netherlands
| | - Lieve E. van der Maarel
- Department of Medical Biology, Amsterdam Cardiovascular SciencesAmsterdam UMCAmsterdamThe Netherlands
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular SciencesAmsterdam UMCAmsterdamThe Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular SciencesAmsterdam UMCAmsterdamThe Netherlands
| |
Collapse
|
18
|
Roselli C, Surakka I, Olesen MS, Sveinbjornsson G, Marston NA, Choi SH, Holm H, Chaffin M, Gudbjartsson D, Hill MC, Aegisdottir H, Albert CM, Alonso A, Anderson CD, Arking DE, Arnar DO, Barnard J, Benjamin EJ, Braunwald E, Brumpton B, Campbell A, Chami N, Chasman DI, Cho K, Choi EK, Christophersen IE, Chung MK, Conen D, Crijns HJ, Cutler MJ, Czuba T, Damrauer SM, Dichgans M, Dörr M, Dudink E, Duong T, Erikstrup C, Esko T, Fatkin D, Faul JD, Ferreira M, Freitag DF, Ganesh SK, Gaziano JM, Geelhoed B, Ghouse J, Gieger C, Giulianini F, Graham SE, Gudnason V, Guo X, Haggerty C, Hayward C, Heckbert SR, Hveem K, Ito K, Johnson R, Jukema JW, Jurgens SJ, Kääb S, Kane JP, Kany S, Kardia SLR, Kavousi M, Khurshid S, Kamanu FK, Kirchhof P, Kleber ME, Knight S, Komuro I, Krieger JE, Launer LJ, Li D, Lin H, Lin HJ, Loos RJF, Lotta L, Lubitz SA, Lunetta KL, Macfarlane PW, Magnusson PKE, Malik R, Mantineo H, Marcus GM, März W, McManus DD, Melander O, Melloni GEM, Meyre PB, Miyazawa K, Mohanty S, Monfort LM, Müller-Nurasyid M, Nafissi NA, Natale A, Nazarian S, Ostrowski SR, Pak HN, Pang S, Pedersen OB, et alRoselli C, Surakka I, Olesen MS, Sveinbjornsson G, Marston NA, Choi SH, Holm H, Chaffin M, Gudbjartsson D, Hill MC, Aegisdottir H, Albert CM, Alonso A, Anderson CD, Arking DE, Arnar DO, Barnard J, Benjamin EJ, Braunwald E, Brumpton B, Campbell A, Chami N, Chasman DI, Cho K, Choi EK, Christophersen IE, Chung MK, Conen D, Crijns HJ, Cutler MJ, Czuba T, Damrauer SM, Dichgans M, Dörr M, Dudink E, Duong T, Erikstrup C, Esko T, Fatkin D, Faul JD, Ferreira M, Freitag DF, Ganesh SK, Gaziano JM, Geelhoed B, Ghouse J, Gieger C, Giulianini F, Graham SE, Gudnason V, Guo X, Haggerty C, Hayward C, Heckbert SR, Hveem K, Ito K, Johnson R, Jukema JW, Jurgens SJ, Kääb S, Kane JP, Kany S, Kardia SLR, Kavousi M, Khurshid S, Kamanu FK, Kirchhof P, Kleber ME, Knight S, Komuro I, Krieger JE, Launer LJ, Li D, Lin H, Lin HJ, Loos RJF, Lotta L, Lubitz SA, Lunetta KL, Macfarlane PW, Magnusson PKE, Malik R, Mantineo H, Marcus GM, März W, McManus DD, Melander O, Melloni GEM, Meyre PB, Miyazawa K, Mohanty S, Monfort LM, Müller-Nurasyid M, Nafissi NA, Natale A, Nazarian S, Ostrowski SR, Pak HN, Pang S, Pedersen OB, Pedersen NL, Pereira AC, Pirruccello JP, Preuss M, Psaty BM, Pullinger CR, Rader DJ, Rämö JT, Ridker PM, Rienstra M, Risch L, Roden DM, Rotter JI, Sabatine MS, Schunkert H, Shah SH, Shim J, Shoemaker MB, Simonson B, Sinner MF, Smit RAJ, Smith JA, Smith NL, Smith JG, Soliman EZ, Sørensen E, Sotoodehnia N, Strbian D, Stricker BH, Teder-Laving M, Sun YV, Thériault S, Thorolfsdottir RB, Thorsteinsdottir U, Tveit A, van der Harst P, van Meurs J, Wang B, Weiss S, Wells QS, Weng LC, Wilson PW, Xiao L, Yang PS, Yao J, Yoneda ZT, Zeller T, Zeng L, Zhao W, Zhou X, Zöllner S, Ruff CT, Bundgaard H, Willer C, Stefansson K, Ellinor PT. Meta-analysis of genome-wide associations and polygenic risk prediction for atrial fibrillation in more than 180,000 cases. Nat Genet 2025; 57:539-547. [PMID: 40050429 DOI: 10.1038/s41588-024-02072-3] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 12/30/2024] [Indexed: 03/15/2025]
Abstract
Atrial fibrillation (AF) is the most common heart rhythm abnormality and is a leading cause of heart failure and stroke. This large-scale meta-analysis of genome-wide association studies increased the power to detect single-nucleotide variant associations and found more than 350 AF-associated genetic loci. We identified candidate genes related to muscle contractility, cardiac muscle development and cell-cell communication at 139 loci. Furthermore, we assayed chromatin accessibility using assay for transposase-accessible chromatin with sequencing and histone H3 lysine 4 trimethylation in stem cell-derived atrial cardiomyocytes. We observed a marked increase in chromatin accessibility for our sentinel variants and prioritized genes in atrial cardiomyocytes. Finally, a polygenic risk score (PRS) based on our updated effect estimates improved AF risk prediction compared to the CHARGE-AF clinical risk score and a previously reported PRS for AF. The doubling of known risk loci will facilitate a greater understanding of the pathways underlying AF.
Collapse
Affiliation(s)
- Carolina Roselli
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Morten S Olesen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Nicholas A Marston
- TIMI Study Group, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Mark Chaffin
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Matthew C Hill
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Christine M Albert
- Department of Cardiology, Cedars-Sinai, Los Angeles, CA, USA
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Christopher D Anderson
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dan E Arking
- McKusick Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David O Arnar
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Cardiovascular Centre, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - John Barnard
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Emelia J Benjamin
- Department of Medicine, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Eugene Braunwald
- TIMI Study Group, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ben Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Nathalie Chami
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Eue-Keun Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ingrid E Christophersen
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Mina K Chung
- Cardiovascular Medicine, Heart Vascular and Thoracic Institute and Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Harry J Crijns
- Department of Cardiology and CARIM, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Michael J Cutler
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
| | - Tomasz Czuba
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Cardiology, Lund University Diabetes Center, Wallenberg Center for Molecular Medicine, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Elton Dudink
- Department of Cardiology and CARIM, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - ThuyVy Duong
- McKusick Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christian Erikstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- UNSW Sydney, Sydney, New South Wales, Australia
- St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - J Michael Gaziano
- Million Veteran Program, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bastiaan Geelhoed
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jonas Ghouse
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sarah E Graham
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kópavogur, Iceland
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Christopher Haggerty
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA, USA
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Susan R Heckbert
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Renee Johnson
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- UNSW Sydney, Sydney, New South Wales, Australia
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Sean J Jurgens
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Stefan Kääb
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site: Munich Heart Alliance, Munich, Germany
| | - John P Kane
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Shinwan Kany
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cardiology, University Heart and Vascular Center UKE Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Hamburg, Germany
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Shaan Khurshid
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Demoulas Center for Cardiac Arrhythmias and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Frederick K Kamanu
- TIMI Study Group, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center UKE Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Hamburg, Germany
- Institute of Cardiovascular Sciences, Birmingham, UK
- AFNET, Münster, Germany
| | - Marcus E Kleber
- SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Stacey Knight
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
- Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Issei Komuro
- International University of Health and Welfare, Tokyo, Japan
- Department of Frontier Cardiovascular Science, The University of Tokyo, Tokyo, Japan
| | - Jose E Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Dadong Li
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Henry J Lin
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luca Lotta
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Steven A Lubitz
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Demoulas Center for Cardiac Arrhythmias and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Peter W Macfarlane
- School of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, UK
- Electrocardiology Group, New Lister Building, Royal Infirmary, Glasgow, Scotland, UK
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Helene Mantineo
- Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gregory M Marcus
- Division of Cardiology, University of California, San Francisco, CA, USA
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Synlab Academy, SYNLAB Holding Deutschland GmbH, Mannheim, Germany
| | - David D McManus
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Olle Melander
- Department of Internal Medicine, Lund University and Skåne University Hospital, Malmö, Sweden
| | | | - Pascal B Meyre
- Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, Basel, Switzerland
| | - Kazuo Miyazawa
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Laia M Monfort
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Martina Müller-Nurasyid
- IBE, Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Navid A Nafissi
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, Austin, TX, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Saman Nazarian
- Section of Cardiac Electrophysiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hui-Nam Pak
- Yonsei University College of Medicine, Yonsei University Health System, Seoul, Republic of Korea
| | - Shichao Pang
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Ole B Pedersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - James P Pirruccello
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Preuss
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Clive R Pullinger
- Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, CA, USA
| | - Daniel J Rader
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Joel T Rämö
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lorenz Risch
- Institute of Laboratory Medicine, Faculty of Medical Sciences, Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- Center of Laboratory Medicine, University Institute of Clinical Chemistry, University of Bern, Inselspital, Bern, Switzerland
| | - Dan M Roden
- Departments of Medicine Pharmacology and Biomedical Informatics, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Departments of Pediatrics and Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Marc S Sabatine
- TIMI Study Group, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Heribert Schunkert
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislauferkrankungen (DZHK), Partner site: Munich Heart Alliance, Munich, Germany
| | - Svati H Shah
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Jaemin Shim
- Korea University Cardiovascular Center, Seoul, Republic of Korea
| | - M Benjamin Shoemaker
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bridget Simonson
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Moritz F Sinner
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site: Munich Heart Alliance, Munich, Germany
| | - Roelof A J Smit
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas L Smith
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center, VA Puget Sound Health Care System, Seattle, WA, USA
| | - J Gustav Smith
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Cardiology, Lund University Diabetes Center, Wallenberg Center for Molecular Medicine, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center, Section on Cardiovascular Medicine, Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nona Sotoodehnia
- Division of Cardiology, Departments of Medicine and Epidemiology, University of Washington, Seattle, WA, USA
| | - Daniel Strbian
- Department of Neurology and Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Sébastien Thériault
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| | | | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Arnljot Tveit
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joyce van Meurs
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Biqi Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Stefan Weiss
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Quinn S Wells
- Departments of Medicine Pharmacology and Biomedical Informatics, Divisions of Cardiovascular Medicine and Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lu-Chen Weng
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Peter W Wilson
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Atlanta VA Medical Center, Atlanta, GA, USA
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ling Xiao
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pil-Sung Yang
- Cha University College of Medicine, Seoul, Republic of Korea
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Zachary T Yoneda
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tanja Zeller
- German Center for Cardiovascular Research (DZHK), Hamburg, Germany
- University Center of Cardiovascular Sciences, Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Xiang Zhou
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Sebastian Zöllner
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Christian T Ruff
- TIMI Study Group, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Cristen Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Demoulas Center for Cardiac Arrhythmias and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Heart and Vascular Institute, Mass General Brigham, Boston, MA, USA.
| |
Collapse
|
19
|
Mead TJ, Bhutada S, Peruzzi N, Adegboye J, Seifert DE, Cahill E, Drinko J, Donnellan E, Guggiliam A, Popovic Z, Griffin B, Tran-Lundmark K, Apte SS. ADAMTS7, a target in atherosclerosis, cooperates with its homolog ADAMTS12 to protect against myxomatous valve degeneration. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2025; 11:100288. [PMID: 40115634 PMCID: PMC11925103 DOI: 10.1016/j.jmccpl.2025.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/23/2025]
Abstract
The physiological roles of the metalloprotease-proteoglycan ADAMTS7, a drug target in atherosclerosis and vascular restenosis, and its homolog ADAMTS12, are undefined in the cardiovascular system. The objective of the present work was to investigate their roles in mice with genetic inactivation of both proteases and in relation to the resulting valve defects, to define their proteolytic activities in the matrisome. Here, we demonstrate that Adamts7 and Adamts12 are co-expressed in heart valves and each buffers inactivation of the other by compensatory upregulation. Leaflets of Adamts7 -/-;Adamts12 -/- aortic valves, but not the respective single mutants, were abnormally shaped at birth, with progressively severe disorganization and enlargement occurring thereafter. Doppler echocardiography showed that Adamts7 -/-;Adamts12 -/- mice had stenotic and regurgitant aortic valves. We investigated ADAMTS7 and ADAMTS12 substrates relevant to the valve matrisome in secretome libraries from Adamts7 -/-;Adamts12 -/- cells using the N-terminomics technique Terminal Amine Isotopic Labeling of Substrates (TAILS). Although ADAMTS7 and ADAMTS12 shared several extracellular matrix (ECM) substrates, cleavage sites and sequence preference for each protease were distinct. Adamts7 -/-;Adamts12 -/- valve leaflets showed accumulation of several of the identified ECM substrates, including periostin, a matricellular protein crucial for cardiac valve homeostasis. We conclude that the myxomatous degeneration in Adamts7 -/-;Adamts12 -/- valve leaflets reflects a complex disturbance of ECM proteostasis with accumulation of multiple ADAMTS7 and ADAMTS12 ECM substrates, and perturbation of regulatory pathways with roots in ECM, such as TGFβ signaling, which was increased in the mutant valves.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- University Hospitals Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Sumit Bhutada
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Niccolò Peruzzi
- Department of Experimental Medical Science and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Janet Adegboye
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Deborah E Seifert
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Elisabeth Cahill
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Jeanne Drinko
- Department of Cardiovascular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Eoin Donnellan
- Department of Cardiovascular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Anu Guggiliam
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Zoran Popovic
- Department of Cardiovascular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Brian Griffin
- Department of Cardiovascular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Karin Tran-Lundmark
- Department of Experimental Medical Science and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- The Pediatric Heart Center, Skane University Hospital, Lund, Sweden
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| |
Collapse
|
20
|
Choi SH, Jurgens SJ, Xiao L, Hill MC, Haggerty CM, Sveinbjörnsson G, Morrill VN, Marston NA, Weng LC, Pirruccello JP, Arnar DO, Gudbjartsson DF, Mantineo H, von Falkenhausen AS, Natale A, Tveit A, Geelhoed B, Roselli C, Van Wagoner DR, Darbar D, Haase D, Soliman EZ, Davogustto GE, Jun G, Calkins H, Anderson JL, Brody JA, Halford JL, Barnard J, Hokanson JE, Smith JD, Bis JC, Young K, Johnson LSB, Risch L, Gula LJ, Kwee LC, Chaffin MD, Kühne M, Preuss M, Gupta N, Nafissi NA, Smith NL, Nilsson PM, van der Harst P, Wells QS, Judy RL, Schnabel RB, Johnson R, Smit RAJ, Gabriel S, Knight S, Furukawa T, Blackwell TW, Nauffal V, Wang X, Min YI, Yoneda ZT, Laksman ZWM, Bezzina CR, Alonso A, Psaty BM, Albert CM, Arking DE, Roden DM, Chasman DI, Rader DJ, Conen D, McManus DD, Fatkin D, Benjamin EJ, Boerwinkle E, Marcus GM, Christophersen IE, Smith JG, Roberts JD, Raffield LM, Shoemaker MB, Cho MH, Cutler MJ, Rienstra M, Chung MK, S Olesen M, Sinner MF, Sotoodehnia N, Kirchhof P, Loos RJF, Nazarian S, Mohanty S, Damrauer SM, Kaab S, Heckbert SR, Redline S, Shah SH, Tanaka T, Ebana Y, Holm H, Stefansson K, Ruff CT, Sabatine MS, et alChoi SH, Jurgens SJ, Xiao L, Hill MC, Haggerty CM, Sveinbjörnsson G, Morrill VN, Marston NA, Weng LC, Pirruccello JP, Arnar DO, Gudbjartsson DF, Mantineo H, von Falkenhausen AS, Natale A, Tveit A, Geelhoed B, Roselli C, Van Wagoner DR, Darbar D, Haase D, Soliman EZ, Davogustto GE, Jun G, Calkins H, Anderson JL, Brody JA, Halford JL, Barnard J, Hokanson JE, Smith JD, Bis JC, Young K, Johnson LSB, Risch L, Gula LJ, Kwee LC, Chaffin MD, Kühne M, Preuss M, Gupta N, Nafissi NA, Smith NL, Nilsson PM, van der Harst P, Wells QS, Judy RL, Schnabel RB, Johnson R, Smit RAJ, Gabriel S, Knight S, Furukawa T, Blackwell TW, Nauffal V, Wang X, Min YI, Yoneda ZT, Laksman ZWM, Bezzina CR, Alonso A, Psaty BM, Albert CM, Arking DE, Roden DM, Chasman DI, Rader DJ, Conen D, McManus DD, Fatkin D, Benjamin EJ, Boerwinkle E, Marcus GM, Christophersen IE, Smith JG, Roberts JD, Raffield LM, Shoemaker MB, Cho MH, Cutler MJ, Rienstra M, Chung MK, S Olesen M, Sinner MF, Sotoodehnia N, Kirchhof P, Loos RJF, Nazarian S, Mohanty S, Damrauer SM, Kaab S, Heckbert SR, Redline S, Shah SH, Tanaka T, Ebana Y, Holm H, Stefansson K, Ruff CT, Sabatine MS, Lunetta KL, Lubitz SA, Ellinor PT. Sequencing in over 50,000 cases identifies coding and structural variation underlying atrial fibrillation risk. Nat Genet 2025; 57:548-562. [PMID: 40050430 DOI: 10.1038/s41588-025-02074-9] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 01/02/2025] [Indexed: 03/15/2025]
Abstract
Atrial fibrillation (AF) is a prevalent and morbid abnormality of the heart rhythm with a strong genetic component. Here, we meta-analyzed genome and exome sequencing data from 36 studies that included 52,416 AF cases and 277,762 controls. In burden tests of rare coding variation, we identified novel associations between AF and the genes MYBPC3, LMNA, PKP2, FAM189A2 and KDM5B. We further identified associations between AF and rare structural variants owing to deletions in CTNNA3 and duplications of GATA4. We broadly replicated our findings in independent samples from MyCode, deCODE and UK Biobank. Finally, we found that CRISPR knockout of KDM5B in stem-cell-derived atrial cardiomyocytes led to a shortening of the action potential duration and widespread transcriptomic dysregulation of genes relevant to atrial homeostasis and conduction. Our results highlight the contribution of rare coding and structural variants to AF, including genetic links between AF and cardiomyopathies, and expand our understanding of the rare variant architecture for this common arrhythmia.
Collapse
Grants
- K24HL105780 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- U01 AG068221 NIA NIH HHS
- K08HL153950 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 75N92019D00031 NHLBI NIH HHS
- 18SFRN34110082 American Heart Association (American Heart Association, Inc.)
- R01HL141989 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 648131 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 847770 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 18SFRN34230127 American Heart Association (American Heart Association, Inc.)
- R01HL157635 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 1U01AG068221-01A1 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HL147148 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HL111314 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HL155197 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 9SFRN34830063 American Heart Association (American Heart Association, Inc.)
- 1U01AG058589-01A1 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 2019-0526 Hjärt-Lungfonden (Swedish Heart-Lung Foundation)
- R01HL092577 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R35HL135818 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 18SFRN34250007 American Heart Association (American Heart Association, Inc.)
- IRC15-0067 Stiftelsen för Strategisk Forskning (Swedish Foundation for Strategic Research)
- R01HL137927 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 32473B_176178 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- AA/18/2/34218 British Heart Foundation (BHF)
- 1R01HL164824-01 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- HL113338 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HL111024 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HL141901 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- PG/20/22/35093 British Heart Foundation (BHF)
- HL116690 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 961045 American Heart Association (American Heart Association, Inc.)
- 18SFRN34110067 American Heart Association (American Heart Association, Inc.)
- P01HL158505 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HL089856 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- IK2-CX001780 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- 349-2006-237 Vetenskapsrådet (Swedish Research Council)
- K08HL159346 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 17K07251 MEXT | Japan Society for the Promotion of Science (JSPS)
- 2009-1039 Vetenskapsrådet (Swedish Research Council)
- 32003B_197524 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- 03-007-2022-0035 Hartstichting (Dutch Heart Foundation)
- 33CS30_177520 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- JP18H02804 MEXT | Japan Society for the Promotion of Science (JSPS)
- 2019-0354 Svenska Sällskapet för Medicinsk Forskning (Swedish Society for Medical Research)
- 19SFRN34830063 American Heart Association (American Heart Association, Inc.)
- 2021-02273 Vetenskapsrådet (Swedish Research Council)
- 18SFRN34110067. American Heart Association (American Heart Association, Inc.)
- PG/17/30/32961 British Heart Foundation (BHF)
- 33CS30_148474 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- R01HL149352 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 1R01HL139731 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 2R01HL127564-05A1 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 20CDA35260081 American Heart Association (American Heart Association, Inc.)
- HL-093613 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 1R01HL128914 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- HL43680 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- Ki 731/4-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
Collapse
Affiliation(s)
- Seung Hoan Choi
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sean J Jurgens
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences (Heart Failure & Arrhythmias), Amsterdam UMC, Amsterdam, The Netherlands
| | - Ling Xiao
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachsetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew C Hill
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachsetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Valerie N Morrill
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas A Marston
- TIMI Study Group, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lu-Chen Weng
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachsetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James P Pirruccello
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachsetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - David O Arnar
- deCODE genetics/Amgen, Reykjavik, Iceland
- Cardiovascular Center, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Daniel Fannar Gudbjartsson
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Electical and Computer Engineering and School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Helene Mantineo
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aenne S von Falkenhausen
- Department of Medicine I, University Hospital Munich, Ludwig Maximilian University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St David's Medical Center, Austin, TX, USA
| | - Arnljot Tveit
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
| | - Bastiaan Geelhoed
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Carolina Roselli
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David R Van Wagoner
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Dawood Darbar
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Doreen Haase
- Atrial Fibrillation NETwork (AFNET), Münster, Germany
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center (EPICARE), Department of Internal Medicine, Cardiology Section, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Giovanni E Davogustto
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Goo Jun
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hugh Calkins
- Cardiac Arrhythmia Service, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey L Anderson
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
- Division of Cardiology, University of Utah, Salt Lake City, UT, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer L Halford
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachsetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John Barnard
- Departments of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - John E Hokanson
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jonathan D Smith
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kendra Young
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Linda S B Johnson
- Department of Clinical Physiology, Department of Clinical Sciences, Skåne University Hospital and Lund University, Lund, Sweden
| | - Lorenz Risch
- Institute of Laboratory Medicine, Faculty of Medical Sciences, Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- Center of Laboratory Medicine, University Institute of Clinical Chemistry, University of Bern, Inselspital, Bern, Switzerland
| | - Lorne J Gula
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Lydia Coulter Kwee
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Mark D Chaffin
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Kühne
- Cardiology/Electrophysiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michael Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Namrata Gupta
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Navid A Nafissi
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Peter M Nilsson
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Quinn S Wells
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Renae L Judy
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Renate B Schnabel
- Atrial Fibrillation NETwork (AFNET), Münster, Germany
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg/Kiel/Lübeck, Germany
| | - Renee Johnson
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Roelof A J Smit
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stacey Gabriel
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stacey Knight
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Tetsushi Furukawa
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Thomas W Blackwell
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Victor Nauffal
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachsetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xin Wang
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachsetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuan-I Min
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Zachary T Yoneda
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zachary W M Laksman
- Department of Medicine and the School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Connie R Bezzina
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences (Heart Failure & Arrhythmias), Amsterdam UMC, Amsterdam, The Netherlands
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Christine M Albert
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan M Roden
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel I Chasman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Preventive Medicine and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - David D McManus
- University of Massachusetts Chan Medical School Worcester, Worcester, MA, USA
| | - Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- Cardiology Department, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - Emelia J Benjamin
- NHLBI and Boston University's Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gregory M Marcus
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Ingrid E Christophersen
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - J Gustav Smith
- Department of Cardiology, Lund University Diabetes Center and Wallenberg Center for Molecular Medicine, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Benjamin Shoemaker
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael J Cutler
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mina K Chung
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Morten S Olesen
- Laboratory for Molecular Cardiology, Department of Cardiology, Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Moritz F Sinner
- Department of Medicine I, University Hospital Munich, Ludwig Maximilian University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Paulus Kirchhof
- Atrial Fibrillation NETwork (AFNET), Münster, Germany
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg/Kiel/Lübeck, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Saman Nazarian
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sanghamitra Mohanty
- Texas Cardiac Arrhythmia Institute, St David's Medical Center, Austin, TX, USA
- Dell Medical School, Austin, TX, USA
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Stefan Kaab
- Department of Medicine I, University Hospital Munich, Ludwig Maximilian University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Susan R Heckbert
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Svati H Shah
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Tokyo Medical and Dental University (TMDU) Graduate School of Medical and Dental Sciences, Tokyo, Japan
- BioResource Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yusuke Ebana
- Life Science and Bioethics Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hilma Holm
- deCODE genetics/Amgen, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Christian T Ruff
- TIMI Study Group, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc S Sabatine
- TIMI Study Group, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- NHLBI and Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Steven A Lubitz
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachsetts General Hospital, Harvard Medical School, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachsetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
21
|
Neubauer J, Dørum G, Haas C. Exploring transcriptomic signatures in sudden unexplained death (SUD) cases. Int J Legal Med 2025:10.1007/s00414-025-03414-4. [PMID: 39982482 DOI: 10.1007/s00414-025-03414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Molecular autopsy in sudden unexplained death (SUD) has successfully identified pathogenic variants in cardiovascular genes in a substantial proportion of cases, contributing to prevention strategies in family members. However, many SUD cases remain genetically unresolved, prompting investigations into other omics technologies to better understand the pathogenic mechanisms leading to a sudden death event. In this study, whole transcriptome sequencing was performed on heart samples from 43 SUD cases and 17 heart-healthy controls, with the aim to identify disease-specific transcriptome signatures in sudden unexplained death. RESULTS PCA based on the top 500 genes with the highest variance among the samples showed no clear separation between SUD and controls or among the three SUD subgroups. DESeq2 identified 1,676 differentially expressed genes between SUD and controls with significantly upregulated genes involved in biological processes such as angiogenesis, blood vessel development, vasculogenesis and cell adhesion. Pathway analysis of the differentially expressed genes showed that most were downregulated and involved in amide/peptide biosynthesis and fatty acid metabolism. Additional analysis of SUD subgroups revealed unique gene expression patterns and highlighted differentially expressed genes within each subgroup. CONCLUSION Gene expression analysis of SUD heart tissue is a promising approach to identify cardiac disease-related pathways to further understand the pathological mechanisms leading to a sudden death event. However, due to the heterogeneity of the SUD cases and the unclear phenotype, further studies in larger cohorts are needed.
Collapse
Affiliation(s)
- Jacqueline Neubauer
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Guro Dørum
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
22
|
Obal D, Liu Y. Opioid Preconditioning in Heart Failure: New Frontier or Old Dog? Anesth Analg 2025:00000539-990000000-01152. [PMID: 39908198 DOI: 10.1213/ane.0000000000007388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Affiliation(s)
- Detlef Obal
- From the Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Yu Liu
- Stanford University School of Medicine, Stanford, California
| |
Collapse
|
23
|
Pataluch N, Guilbeau-Frugier C, Pons V, Wahart A, Karsenty C, Sénard JM, Gales C. Unveiling the native architecture of adult cardiac tissue using the 3D-NaissI method. Cell Mol Life Sci 2025; 82:70. [PMID: 39907789 PMCID: PMC11799504 DOI: 10.1007/s00018-025-05595-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/11/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
Accurately imaging adult cardiac tissue in its native state is essential for regenerative medicine and understanding heart disease. Current fluorescence methods encounter challenges with tissue fixation. Here, we introduce the 3D-NaissI (3D-Native Tissue Imaging) method, which enables rapid, cost-effective imaging of fresh cardiac tissue samples in their closest native state, and has been extended to other tissues. We validated the efficacy of 3D-NaissI in preserving cardiac tissue integrity using small biopsies under hypothermic conditions in phosphate-buffered saline, offering unparalleled resolution in confocal microscopy for imaging fluorescent small molecules and antibodies. Compared to conventional histology, 3D-NaissI preserves cardiac tissue architecture and native protein epitopes, facilitating the use of a wide range of commercial antibodies without unmasking strategies. We successfully identified specific cardiac protein expression patterns in cardiomyocytes (CMs) from rodents and humans, including for the first time ACE2 localization in the lateral membrane/T-Tubules and SGTL2 in the sarcoplasmic reticulum. These findings shed light on COVID-19-related cardiac complications and suggest novel explanations for therapeutic benefits of iSGLT2 in HFpEF patients. Additionally, we challenge the notion of "connexin-43 lateralization" in heart pathology, suggesting it may be an artifact of cardiac fixation, as 3D-NaissI clearly revealed native connexin-43 expression at the lateral membrane of healthy CMs. We also discovered previously undocumented periodic ring-like 3D structures formed by pericytes that cover the lateral surfaces of CMs. These structures, positive for laminin-2, delineate a specific spatial architecture of laminin-2 receptors on the CM surface, underscoring the pivotal role of pericytes in CM function. Lastly, 3D-NaissI facilitates the mapping of native human protein expression in fresh cardiac autopsies, offering insights into both pathological and non-pathological contexts. Therefore, 3D-NaissI provides unparalleled insights into native cardiac tissue biology and holds the promise of advancing our understanding of physiology and pathophysiology, surpassing standard histology in both resolution and accuracy.
Collapse
Affiliation(s)
- Nicolas Pataluch
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, 1, avenue Jean-Poulhès , BP84225, 31432, Toulouse Cedex 4, France
| | - Céline Guilbeau-Frugier
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, 1, avenue Jean-Poulhès , BP84225, 31432, Toulouse Cedex 4, France
- Department of Forensic Medicine, Centre Hospitalier Universitaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Véronique Pons
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, 1, avenue Jean-Poulhès , BP84225, 31432, Toulouse Cedex 4, France
| | - Amandine Wahart
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, 1, avenue Jean-Poulhès , BP84225, 31432, Toulouse Cedex 4, France
| | - Clément Karsenty
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, 1, avenue Jean-Poulhès , BP84225, 31432, Toulouse Cedex 4, France
- Department of Pediatric Cardiology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Jean-Michel Sénard
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, 1, avenue Jean-Poulhès , BP84225, 31432, Toulouse Cedex 4, France
- Department of Clinical Pharmacology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Céline Gales
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, 1, avenue Jean-Poulhès , BP84225, 31432, Toulouse Cedex 4, France.
| |
Collapse
|
24
|
Koenig AL, Kadyrov FF, Amrute JM, Yang S, Weinheimer CJ, Nigro JM, Kovacs A, Smith G, Lavine KJ. Genetic Mapping of Monocyte Fate Decisions Following Myocardial Infarction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.24.573263. [PMID: 39974922 PMCID: PMC11838486 DOI: 10.1101/2023.12.24.573263] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Inflammation contributes to the pathogenesis of myocardial infarction and heart failure and represents a viable therapeutic target. Monocytes and their progeny are highly abundant and display incredible functional diversity, serving as key determinants of myocardial inflammation and tissue repair. Much remains to be learned regarding mechanisms and signaling events that instruct monocyte fate decisions. We devised a genetic lineage tracing strategy using Ccr2 crERT2 Rosa26 LSL-tdTomato mice in combination with single cell RNA-sequencing to map the differentiation trajectories of monocytes that infiltrate the heart after reperfused myocardial infarction. Monocytes are recruited to the heart early after injury and give rise to transcriptionally distinct and spatially restricted macrophage and dendritic cell-like subsets that are specified prior to extravasation and chronically persist within the myocardium. Pseudotime analysis predicted two differentiation trajectories of monocyte-derived macrophages that are partitioned into the border and infarct zones, respectively. Among these trajectories, we show that macrophages expressing a type I IFN responsive signature are an intermediate population that gives rise to MHC-II hi macrophages, are localized within the border zone, and promote myocardial protection. Collectively, these data uncover new complexities of monocyte differentiation in the infarcted heart and suggest that modulating monocyte fate decisions may have clinical implications.
Collapse
|
25
|
Fayyaz AU, Eltony M, Prokop LJ, Koepp KE, Borlaug BA, Dasari S, Bois MC, Margulies KB, Maleszewski JJ, Wang Y, Redfield MM. Pathophysiological insights into HFpEF from studies of human cardiac tissue. Nat Rev Cardiol 2025; 22:90-104. [PMID: 39198624 PMCID: PMC11750620 DOI: 10.1038/s41569-024-01067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/01/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major, worldwide health-care problem. Few therapies for HFpEF exist because the pathophysiology of this condition is poorly defined and, increasingly, postulated to be diverse. Although perturbations in other organs contribute to the clinical profile in HFpEF, altered cardiac structure, function or both are the primary causes of this heart failure syndrome. Therefore, studying myocardial tissue is fundamental to improve pathophysiological insights and therapeutic discovery in HFpEF. Most studies of myocardial changes in HFpEF have relied on cardiac tissue from animal models without (or with limited) confirmatory studies in human cardiac tissue. Animal models of HFpEF have evolved based on theoretical HFpEF aetiologies, but these models might not reflect the complex pathophysiology of human HFpEF. The focus of this Review is the pathophysiological insights gained from studies of human HFpEF myocardium. We outline the rationale for these studies, the challenges and opportunities in obtaining myocardial tissue from patients with HFpEF and relevant comparator groups, the analytical approaches, the pathophysiological insights gained to date and the remaining knowledge gaps. Our objective is to provide a roadmap for future studies of cardiac tissue from diverse cohorts of patients with HFpEF, coupling discovery biology with measures to account for pathophysiological diversity.
Collapse
Affiliation(s)
- Ahmed U Fayyaz
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Muhammad Eltony
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Larry J Prokop
- Mayo Clinic College of Medicine and Science, Library Reference Service, Rochester, MN, USA
| | - Katlyn E Koepp
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Barry A Borlaug
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Mayo Clinic College of Medicine and Science, Computational Biology, Rochester, MN, USA
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joesph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ying Wang
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Margaret M Redfield
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
26
|
Hennings E, Aeschbacher S, Coslovsky M, Paladini RE, Voellmin G, Lampart M, Ziegler A, Müller C, Conen D, Zuern CS, Kühne M, Osswald S, Pfister O. BMP10 reflects pre-capillary pulmonary hemodynamics: association of biomarkers and hemodynamic parameters in pulmonary hypertension. Clin Res Cardiol 2025; 114:239-250. [PMID: 39297942 PMCID: PMC11839876 DOI: 10.1007/s00392-024-02546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND AND AIMS The role of biomarkers in diagnosing pulmonary hypertension (PH) and distinguishing between pre- and post-capillary PH remains poorly understood. We aimed to identify biomarkers with a strong association with mean pulmonary arterial pressure, mPAP (PH diagnosis) and pulmonary vascular resistance, PVR (pre-capillary component), but not with pulmonary arterial wedge pressure, PAWP (post-capillary component). METHODS Blood samples were collected in patients undergoing right heart catheterization within a prospective cross-sectional study. Biomarkers measured included BMP10, NT-proBNP, ANG2, ESM1/endocan, FGF23, GDF15, IGFBP7, IL6, MyBPC3, proC3, and proC6/endotrophin. Primary outcomes were mPAP, PVR, and PAWP, while secondary outcomes included PH diagnosis (mPAP > 20 mmHg) and elevated PVR (> 2 Wood units). Multivariable linear and logistic regression models were used to assess the relationship between biomarkers and outcomes. RESULTS Of the 127 patients included (age 66 ± 13 years, 54% female), 73% were diagnosed with PH. BMP10, NT-proBNP, ANG2, MyBPC3, and FGF23 showed a strong association with mPAP (p < 0.001). BMP10 and NT-proBNP were strongly associated with PVR (p < 0.001), while NT-proBNP and ANG2 were strongly associated with PAWP (p < 0.001). NT-proBNP had the strongest association with the diagnosis of PH (area under the curve = 0.76). BMP10 was the only biomarker associated with elevated PVR (OR 1.60, 95%CI 1.01-2.54, p = 0.04) but not with PAWP (p = 0.86). CONCLUSIONS Several biomarkers were strongly associated with mPAP, PAWP, and PVR. BMP10 was the only biomarker strongly associated with mPAP and PVR, but not with PAWP, thus reflecting the pre-capillary PH component. Measurement of BMP10 along with NT-proBNP may aid in diagnosing PH.
Collapse
Affiliation(s)
- Elisa Hennings
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Stefanie Aeschbacher
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Michael Coslovsky
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Rebecca E Paladini
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Gian Voellmin
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Maurin Lampart
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - André Ziegler
- Roche Diagnostics International AG, Rotkreuz, Switzerland
| | - Christian Müller
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Canada
| | - Christine S Zuern
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Michael Kühne
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Stefan Osswald
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Otmar Pfister
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland.
- Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland.
| |
Collapse
|
27
|
Li Y, Zhang R, Li J, Wang L, Zhou G. Dysfunction of Endothelial Cell-Mediated Intercellular Communication and Metabolic Pathways in Age-Related Macular Degeneration. Curr Eye Res 2025; 50:169-181. [PMID: 39329213 DOI: 10.1080/02713683.2024.2407361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, but the therapies are not satisfactory. This study aimed to find AMD specific features through the analysis of high-throughput sequencing. METHODS In this study, we integrated six projects containing single-cell RNA sequencing (scRNA-seq) data to perform a comprehensive analysis for AMD samples in the tissues of retina and retinal pigment epithelium/choroid, and in the positions of macula and periphery. Differentially expressed genes (DEGs) were analyzed and crucial signaling pathways were identified across cell types and between the macula and periphery. The intercellular signaling transduction among cell types were inferred by "CellChat" to build cell-cell communication network under normal and AMD conditions, and verified at the transcriptional level. The CD31+ endothelial cells were obtained to evaluate the enrichment of KEGG pathways in atrophic and neovascular AMD, and GSVA was adopted to discover differential metabolic signals in each AMD type. RESULTS Thirteen major cell types were identified in the integrated scRNA-seq data. Although no disease-specific cell type or differential cell proportion was found, DEGs and enriched pathways were shown in cell-type- and position-dependent manners. Severe impairment of endothelial cell-mediated cell interactions was found in the signaling transduction network of the macula, and compromised cell interactions were observed in the periphery. Furthermore, distinct signaling pathways and metabolic states were uncovered in atrophic and neovascular AMD. Striking reduction in energy metabolism, lipid metabolism, and oxidative stress was indicated in the atrophic AMD. CONCLUSION Conclusively, we discover aberrant signals and metabolic pathways in AMD samples, providing insight into mechanisms and potential therapeutic targets for the AMD treatment.
Collapse
Affiliation(s)
- Yang Li
- Department of Ophthalmology, Yuncheng Central Hospital Affiliated to Shanxi Medical University, Yuncheng, China
| | - Rong Zhang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Lin Wang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Guohong Zhou
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
28
|
Piven OO, Vaičiulevičiūtė R, Bernotiene E, Dobrzyn P. Cardiomyocyte engineering: The meeting point of transcription factors, signaling networks, metabolism and function. Acta Physiol (Oxf) 2025; 241:e14271. [PMID: 39801134 DOI: 10.1111/apha.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/22/2024] [Accepted: 01/01/2025] [Indexed: 05/02/2025]
Abstract
Direct cardiac reprogramming or transdifferentiation is a relatively new and promising area in regenerative therapy, cardiovascular disease modeling, and drug discovery. Effective reprogramming of fibroblasts is limited by their plasticity, that is, their ability to reprogram, and depends on solving several levels of tasks: inducing cardiomyocyte-like cells and obtaining functionally and metabolically mature cardiomyocytes. Currently, in addition to the use of more classical approaches such as overexpression of exogenous transcription factors, activation of endogenous cardiac transcription factors via controlled nucleases, such as CRISPR, represents another interesting way to obtain cardiomyocytes. Therefore, special attention is given to the potential of synthetic biology, in particular the CRISPR system, for the targeted conversion of only certain subpopulations of fibroblasts into cardiomyocytes. However, obtaining functionally and metabolically mature cardiomyocytes remains a challenge despite the range of recently developed approaches. In this review, we summarized current knowledge on the function and diversity of human cardiac fibroblasts and alternative cell sources for in vitro human cardiomyocyte models. We examined in detail the transcription factors that initiate cardiomyogenic reprogramming and their interactions. Additionally, we critically analyzed the strategies used for the metabolic and physiological maturation of induced cardiomyocytes.
Collapse
Affiliation(s)
- Oksana O Piven
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Raminta Vaičiulevičiūtė
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Faculty of Fundamental Sciences, VilniusTech University, Vilnius, Lithuania
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
29
|
Arduini A, Fleming SJ, Xiao L, Hall AW, Akkad AD, Chaffin MD, Bendinelli KJ, Tucker NR, Papangeli I, Mantineo H, Flores-Bringas P, Babadi M, Stegmann CM, García-Cardeña G, Lindsay ME, Klattenhoff C, Ellinor PT. Transcriptional profile of the rat cardiovascular system at single-cell resolution. Cell Rep 2025; 44:115091. [PMID: 39709602 PMCID: PMC11781962 DOI: 10.1016/j.celrep.2024.115091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/24/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024] Open
Abstract
We sought to characterize cellular composition across the cardiovascular system of the healthy Wistar rat, an important model in preclinical cardiovascular research. We performed single-nucleus RNA sequencing (snRNA-seq) in 78 samples in 10 distinct regions, including the four chambers of the heart, ventricular septum, sinoatrial node, atrioventricular node, aorta, pulmonary artery, and pulmonary veins, which produced 505,835 nuclei. We identified 26 distinct cell types and additional subtypes, with different cellular composition across cardiac regions and tissue-specific transcription for each cell type. Several cell subtypes were region specific, including a subtype of vascular smooth muscle cells enriched in the large vasculature. We observed tissue-enriched cellular communication networks, including heightened Nppa-Npr1/2/3 signaling in the sinoatrial node. The existence of tissue-restricted cell types suggests regional regulation of cardiovascular physiology. Our detailed transcriptional characterization of each cell type offers the potential to identify novel therapeutic targets and improve preclinical models of cardiovascular disease.
Collapse
Affiliation(s)
- Alessandro Arduini
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA
| | - Stephen J Fleming
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ling Xiao
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amelia W Hall
- Gene Regulation Observatory, The Broad Institute, Cambridge, MA 02142, USA
| | - Amer-Denis Akkad
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA 02142, USA
| | - Mark D Chaffin
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA
| | - Kayla J Bendinelli
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA
| | | | - Irinna Papangeli
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA 02142, USA
| | - Helene Mantineo
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Mehrtash Babadi
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Guillermo García-Cardeña
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Mark E Lindsay
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Carla Klattenhoff
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA 02142, USA
| | - Patrick T Ellinor
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiology Division, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
30
|
Zhou Y, Zhao L, Cai M, Luo D, Pang Y, Chen J, Luo Q, Lin Q. Utilizing sc-linker to integrate single-cell RNA sequencing and human genetics to identify cell types and driver genes associated with non-small cell lung cancer. BMC Cancer 2025; 25:130. [PMID: 39849454 PMCID: PMC11755902 DOI: 10.1186/s12885-025-13525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) provide a powerful method for identifying the loci and genes that contribute to disease. However, in many cases, the specific cell types and states that confer disease risk through these genes remain unknown. Determining this relationship is crucial for identifying pathogenic processes and developing therapeutic strategies. METHODS In this study, we utilized the sc-linker framework developed by Jagadeesh, which is an integrated framework that combines single-cell RNA sequencing (scRNA-seq), epigenomic single nucleotide polymorphism (SNP)-to-gene mapping, and GWAS summary statistics to infer potential cell types and diseases affected by genetic variations. RESULTS Using normal cell type programs in the sc-linker, we identified type 2 alveolar cells in normal lung tissues that are closely associated with non-small cell lung cancer (NSCLC). Additionally, we identified cancer-associated fibroblasts (CAFs) associated with lung cancer using disease-dependent programs. By integrating extensive single-cell data from NSCLC, we discerned heterogeneity among CAFs subgroups. Finally, using MAGMA, we identified RAB31 as a driver gene in disease-related fibroblasts. Proteins from the RAB family are involved in the dynamic regulation of cell membrane compartments and are dysregulated in various tumor types, potentially altering biological properties such as the proliferation, migration, and invasion of cancer cells. We found that the Ras-related protein Rab-31 (RAB31) was significantly overexpressed in tumor-associated fibroblasts compared to that in normal fibroblasts and was closely associated with poor prognosis in patients with NSCLC. CONCLUSIONS By integrating scRNA-seq, epigenomic, and GWAS datasets, we found that ACT2 and CAFs have specific disease heritability in lung cancer and identified the driver gene RAB31 as a potential therapeutic target.
Collapse
Affiliation(s)
- Yangfan Zhou
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Liang Zhao
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Meimei Cai
- Department of Rheumatology and Clinical Immunology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Doudou Luo
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Yizhen Pang
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Jianhao Chen
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Qicong Luo
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China.
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China.
| |
Collapse
|
31
|
Mendelson JB, Sternbach JD, Moon RA, Hartweck LM, Clark SR, Tollison W, Lahti MT, Carney JP, Markowski T, Higgins L, Kazmirczak F, Prins KW. Glycoprotein 130 Antagonism Counteracts Metabolic and Inflammatory Alterations to Enhance Right Ventricle Function in Pulmonary Artery Banded Pigs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633954. [PMID: 39896622 PMCID: PMC11785131 DOI: 10.1101/2025.01.20.633954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Background Right ventricular dysfunction (RVD) is a risk factor for death in multiple cardiovascular diseases, but RV-enhancing therapies are lacking. Inhibition of glycoprotein-130 (GP130) signaling with the small molecule SC144 improves RV function in rodent RVD via anti-inflammatory and metabolic mechanisms. However, SC144's efficacy and molecular effects in a translational large animal model of RVD are unknown. Methods 4-week-old castrated male pigs underwent pulmonary artery banding (PAB). After 3 weeks, PAB pigs were randomized into 2 groups (daily injections of SC144 [2.2 mg/kg, PAB-SC144, n=5] or vehicle [PAB-Veh, n=5] for 3 weeks). Five age-matched pigs served as controls. Cardiac MRI quantified RV size/function. Right heart catheterization evaluated hemodynamics. Single-nucleus RNA sequencing delineated cell-type specific changes between experimental groups. Electron microscopy evaluated RV mitochondrial morphology. Phosphoproteomics identified dysregulated RV kinases. Lipidomics and metabolomics quantified lipid species and metabolites in RV tissue. Quantitative proteomics examined RV mitochondrial protein regulation. Results SC144 significantly improved RV ejection fraction (Control: 60±4%, PAB-Veh: 22±10%, PAB-SC144: 37±6%) despite similar RV afterload. Single-nucleus RNA sequencing demonstrated PAB-Veh pigs had lower cardiomyocyte and higher macrophage/lymphocyte/pericyte/endothelial cell abundances as compared to control, and many of these changes were blunted by SC144. SC144 combatted the downregulation of cardiomyocyte metabolic genes induced by PAB. Kinome enrichment analysis suggested SC144 counteracted RV mTORC1 activation. Correspondingly, SC144 rebalanced RV autophagy pathway proteins and improved mitochondrial morphology. Integrated lipidomics, metabolomics, and proteomics analyses revealed SC144 restored fatty acid metabolism. Finally, CellChat analysis revealed SC144 restored pericyte-endothelial cell cross-talk. Conclusion GP130 antagonism blunts elevated immune cell abundance, reduces pro-inflammatory gene transcription in macrophages and lymphocytes, rebalances autophagy and preserves fatty acid metabolism in cardiomyocytes, and restores endothelial cell and pericyte communication to improve RV function.
Collapse
Affiliation(s)
- Jenna B Mendelson
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN
| | - Jacob D Sternbach
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Ryan A Moon
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Lynn M Hartweck
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Sophia R Clark
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Walt Tollison
- Experimental Surgical Services Laboratory, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Matthew T Lahti
- Experimental Surgical Services Laboratory, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - John P Carney
- Experimental Surgical Services Laboratory, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Todd Markowski
- Center for Metabolomics and Proteomics, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN
| | - LeeAnn Higgins
- Center for Metabolomics and Proteomics, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN
| | - Felipe Kazmirczak
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Kurt W Prins
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN
| |
Collapse
|
32
|
Wang X, Cao L, Chang R, Shen J, Ma L, Li Y. Elucidating cardiomyocyte heterogeneity and maturation dynamics through integrated single-cell and spatial transcriptomics. iScience 2025; 28:111596. [PMID: 39811652 PMCID: PMC11732507 DOI: 10.1016/j.isci.2024.111596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/27/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
The intricate development and functionality of the mammalian heart are influenced by the heterogeneous nature of cardiomyocytes (CMs). In this study, single-cell and spatial transcriptomics were utilized to analyze cells from neonatal mouse hearts, resulting in a comprehensive atlas delineating the transcriptional profiles of distinct CM subsets. A continuum of maturation states was elucidated, emphasizing a progressive developmental trajectory rather than discrete stages. This approach enabled the mapping of these states across various cardiac regions, illuminating the spatial organization of CM development and the influence of the cellular microenvironment. Notably, a subset of transitional CMs was identified, characterized by a transcriptional signature marking a pivotal maturation phase, presenting a promising target for therapeutic strategies aimed at enhancing cardiac regeneration. This atlas not only elucidates fundamental aspects of cardiac development but also serves as a valuable resource for advancing research into cardiac physiology and pathology, with significant implications for regenerative medicine.
Collapse
Affiliation(s)
- Xiaoying Wang
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lizhi Cao
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Rui Chang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Junwei Shen
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Linlin Ma
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yanfei Li
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
33
|
Forbes LM, Bauer N, Bhadra A, Bogaard HJ, Choudhary G, Goss KN, Gräf S, Heresi GA, Hopper RK, Jose A, Kim Y, Klouda T, Lahm T, Lawrie A, Leary PJ, Leopold JA, Oliveira SD, Prisco SZ, Rafikov R, Rhodes CJ, Stewart DJ, Vanderpool RR, Yuan K, Zimmer A, Hemnes AR, de Jesus Perez VA, Wilkins MR. Precision Medicine for Pulmonary Vascular Disease: The Future Is Now (2023 Grover Conference Series). Pulm Circ 2025; 15:e70027. [PMID: 39749110 PMCID: PMC11693987 DOI: 10.1002/pul2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Pulmonary vascular disease is not a single condition; rather it can accompany a variety of pathologies that impact the pulmonary vasculature. Applying precision medicine strategies to better phenotype, diagnose, monitor, and treat pulmonary vascular disease is increasingly possible with the growing accessibility of powerful clinical and research tools. Nevertheless, challenges exist in implementing these tools to optimal effect. The 2023 Grover Conference Series reviewed the research landscape to summarize the current state of the art and provide a better understanding of the application of precision medicine to managing pulmonary vascular disease. In particular, the following aspects were discussed: (1) Clinical phenotypes, (2) genetics, (3) epigenetics, (4) biomarker discovery, (5) application of precision biology to clinical trials, (6) the right ventricle (RV), and (7) integrating precision medicine to clinical care. The present review summarizes the content of these discussions and the prospects for the future.
Collapse
Affiliation(s)
- Lindsay M. Forbes
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Natalie Bauer
- Department of PharmacologyCollege of Medicine, University of South AlabamaMobileAlabamaUSA
- Department of Physiology and Cell BiologyUniversity of South AlabamaMobileAlabamaUSA
| | - Aritra Bhadra
- Department of PharmacologyCollege of Medicine, University of South AlabamaMobileAlabamaUSA
- Center for Lung BiologyCollege of Medicine, University of South AlabamaMobileAlabamaUSA
| | - Harm J. Bogaard
- Department of Pulmonary MedicineAmsterdam UMCAmsterdamNetherlands
| | - Gaurav Choudhary
- Division of CardiologyWarren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
- Lifespan Cardiovascular InstituteRhode Island and Miriam HospitalsProvidenceRhode IslandUSA
- Department of CardiologyProvidence VA Medical CenterProvidenceRhode IslandUSA
| | - Kara N. Goss
- Department of Medicine and PediatricsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Stefan Gräf
- Division of Computational Genomics and Genomic Medicine, Department of MedicineUniversity of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research InstituteCambridgeUK
| | | | - Rachel K. Hopper
- Department of PediatricsStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Arun Jose
- Division of Pulmonary, Critical Care, and Sleep MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Yunhye Kim
- Division of Pulmonary MedicineBoston Children's HospitalBostonMAUSA
| | - Timothy Klouda
- Division of Pulmonary MedicineBoston Children's HospitalBostonMAUSA
| | - Tim Lahm
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of ColoradoAuroraColoradoUSA
- Division of Pulmonary, Critical Care, and Sleep MedicineNational Jewish HealthDenverColoradoUSA
- Pulmonary and Critical Care SectionRocky Mountain Regional VA Medical CenterDenverColoradoUSA
| | - Allan Lawrie
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Peter J. Leary
- Departments of Medicine and EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Jane A. Leopold
- Division of Cardiovascular MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Suellen D. Oliveira
- Department of Anesthesiology, Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Sasha Z. Prisco
- Division of CardiovascularLillehei Heart Institute, University of MinnesotaMinneapolisMinnesotaUSA
| | - Ruslan Rafikov
- Department of MedicineIndiana UniversityIndianapolisIndianaUSA
| | | | - Duncan J. Stewart
- Ottawa Hospital Research InstituteFaculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | | | - Ke Yuan
- Division of Pulmonary MedicineBoston Children's HospitalBostonMAUSA
| | - Alexsandra Zimmer
- Department of MedicineBrown UniversityProvidenceRhode IslandUSA
- Lifespan Cardiovascular InstituteRhode Island HospitalProvidenceRhode IslandUSA
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Vinicio A. de Jesus Perez
- Division of Pulmonary and Critical Care MedicineStanford University Medical CenterStanfordCaliforniaUSA
| | | |
Collapse
|
34
|
Yildirim Z, Swanson K, Wu X, Zou J, Wu J. Next-Gen Therapeutics: Pioneering Drug Discovery with iPSCs, Genomics, AI, and Clinical Trials in a Dish. Annu Rev Pharmacol Toxicol 2025; 65:71-90. [PMID: 39284102 PMCID: PMC12011342 DOI: 10.1146/annurev-pharmtox-022724-095035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
In the high-stakes arena of drug discovery, the journey from bench to bedside is hindered by a daunting 92% failure rate, primarily due to unpredicted toxicities and inadequate therapeutic efficacy in clinical trials. The FDA Modernization Act 2.0 heralds a transformative approach, advocating for the integration of alternative methods to conventional animal testing, including cell-based assays that employ human induced pluripotent stem cell (iPSC)-derived organoids, and organ-on-a-chip technologies, in conjunction with sophisticated artificial intelligence (AI) methodologies. Our review explores the innovative capacity of iPSC-derived clinical trial in a dish models designed for cardiovascular disease research. We also highlight how integrating iPSC technology with AI can accelerate the identification of viable therapeutic candidates, streamline drug screening, and pave the way toward more personalized medicine. Through this, we provide a comprehensive overview of the current landscape and future implications of iPSC and AI applications being navigated by the research community and pharmaceutical industry.
Collapse
Affiliation(s)
- Zehra Yildirim
- Stanford Cardiovascular Institute and Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA;
| | - Kyle Swanson
- Greenstone Biosciences, Palo Alto, California, USA
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Xuekun Wu
- Stanford Cardiovascular Institute and Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA;
| | - James Zou
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Joseph Wu
- Stanford Cardiovascular Institute and Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA;
| |
Collapse
|
35
|
McNair BD, Yusifov A, Thornburg JP, Hoopes CR, Satyanarayana SB, Roy T, Gigley JP, Bruns DR. Molecular and physiological mechanisms of aging are distinct in the cardiac right and left ventricles. Aging Cell 2025; 24:e14339. [PMID: 39297345 PMCID: PMC11709097 DOI: 10.1111/acel.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 01/11/2025] Open
Abstract
Aging is the primary risk factor for heart disease, the leading global cause of death. Right ventricular (RV) function predicts survival in several age-related clinical contexts, yet no therapies directly improve RV function, in large part due to a poor mechanistic understanding of RV aging and how it is distinct from the widely studied left ventricle (LV). To address this gap, we comprehensively quantified RV functional and morphological remodeling with age. We further aimed to identify molecular mechanisms of RV aging thus we performed RNAseq on RV and LV from male and female young (4 months) and aged (19-21 months) C57BL6 mice. Contrary to the concentric hypertrophic remodeling and diastolic dysfunction that occurs in the LV, the aging RV underwent eccentric remodeling with significant dilation and impaired systolic function. Transcriptomic data were also consistent with ventricle-specific aging, with few genes (13%) similarly shared between ventricles with aging. KEGG analysis identified shared aging genes in inflammatory and immune cell pathways that were confirmed by flow cytometry that demonstrated higher percent of GR1+ myeloid cells in both ventricles. Unique RV aging genes enriched in the biosynthesis of saturated fatty acids, PPAR signaling, and butanoate metabolism, and we identified putative novel RV-specific aging genes. Together, we suggest that the RV and LV are unique cardiac chambers that undergo distinct remodeling with age. These robust differences may explain why therapies designed from LV-based studies fail to improve RV function and suggest that future efforts emphasizing ventricular differences may elucidate new therapies for healthy cardiac aging.
Collapse
Affiliation(s)
| | - Aykhan Yusifov
- Kinesiology and HealthUniversity of WyomingLaramieWyomingUSA
| | | | - Caleb R. Hoopes
- WWAMI Medical EducationUniversity of Washington School of MedicineSeattleWashingtonUSA
| | | | - Tathagato Roy
- Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | | | - Danielle R. Bruns
- Kinesiology and HealthUniversity of WyomingLaramieWyomingUSA
- WWAMI Medical EducationUniversity of Washington School of MedicineSeattleWashingtonUSA
| |
Collapse
|
36
|
Weng LC, Rämö JT, Jurgens SJ, Khurshid S, Chaffin M, Hall AW, Morrill VN, Wang X, Nauffal V, Sun YV, Beer D, Lee S, Nadkarni GN, Duong T, Wang B, Czuba T, Austin TR, Yoneda ZT, Friedman DJ, Clayton A, Hyman MC, Judy RL, Skanes AC, Orland KM, Treu TM, Oetjens MT, Alonso A, Soliman EZ, Lin H, Lunetta KL, van der Pals J, Issa TZ, Nafissi NA, May HT, Leong-Sit P, Roselli C, Choi SH, Khan HR, Knight S, Karlsson Linnér R, Bezzina CR, Ripatti S, Heckbert SR, Gaziano JM, Loos RJF, Psaty BM, Smith JG, Benjamin EJ, Arking DE, Rader DJ, Shah SH, Roden DM, Damrauer SM, Eckhardt LL, Roberts JD, Cutler MJ, Shoemaker MB, Haggerty CM, Cho K, Palotie A, Wilson PWF, Ellinor PT, Lubitz SA. The impact of common and rare genetic variants on bradyarrhythmia development. Nat Genet 2025; 57:53-64. [PMID: 39747593 PMCID: PMC11735381 DOI: 10.1038/s41588-024-01978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/09/2024] [Indexed: 01/04/2025]
Abstract
To broaden our understanding of bradyarrhythmias and conduction disease, we performed common variant genome-wide association analyses in up to 1.3 million individuals and rare variant burden testing in 460,000 individuals for sinus node dysfunction (SND), distal conduction disease (DCD) and pacemaker (PM) implantation. We identified 13, 31 and 21 common variant loci for SND, DCD and PM, respectively. Four well-known loci (SCN5A/SCN10A, CCDC141, TBX20 and CAMK2D) were shared for SND and DCD, while others were more specific for SND or DCD. SND and DCD showed a moderate genetic correlation (rg = 0.63). Cardiomyocyte-expressed genes were enriched for contributions to DCD heritability. Rare-variant analyses implicated LMNA for all bradyarrhythmia phenotypes, SMAD6 and SCN5A for DCD and TTN, MYBPC3 and SCN5A for PM. These results show that variation in multiple genetic pathways (for example, ion channel function, cardiac developmental programs, sarcomeric structure and cellular homeostasis) appear critical to the development of bradyarrhythmias.
Collapse
Grants
- R01 HL141901 NHLBI NIH HHS
- R01 HL139738 NHLBI NIH HHS
- 18SFRN34250007 American Heart Association (American Heart Association, Inc.)
- TNE FANTASY 19CV03 Fondation Leducq
- R01 HL092577 NHLBI NIH HHS
- R01 HL105756 NHLBI NIH HHS
- R01 HL157635 NHLBI NIH HHS
- R01 HL139731 NHLBI NIH HHS
- U01 AG068221 NIA NIH HHS
- 23CDA1050571 American Heart Association (American Heart Association, Inc.)
- T32 HL007101 NHLBI NIH HHS
- R01 AG083735 NIA NIH HHS
- 18SFRN34110082 American Heart Association (American Heart Association, Inc.)
- 18SFRN34230127 American Heart Association (American Heart Association, Inc.)
- IK2 CX001780 CSRD VA
- 75N92019D00031 NHLBI NIH HHS
- K23 HL169839 NHLBI NIH HHS
- 03-007-2022-0035 Hartstichting (Dutch Heart Foundation)
- R21 HL175584 NHLBI NIH HHS
- R01 HL163987 NHLBI NIH HHS
- National Institutes of Health:R01HL139731 & R01HL157635
- Sigrid Juséliuksen Säätiö (Sigrid Jusélius Foundation)
- National Institutes of Health: K23HL169839
- National Institutes of Health: RO1HL092577
- National Institutes of Health: T32HL007101
- Swedish Heart-Lung Foundation (2022-0344, 2022-0345), the Swedish Research Council (2021-02273), the European Research Council (ERC-STG-2015-679242), Gothenburg University, Skane University Hospital, the Scania county, governmental funding of clinical research within the Swedish National Health Service, a generous donation from the Knut and Alice Wallenberg foundation to the Wallenberg Center for Molecular Medicine in Lund, and funding from the Swedish Research Council (Linnaeus grant Dnr 349-2006-237, Strategic Research Area Exodiab Dnr 2009-1039) and Swedish Foundation for Strategic Research (Dnr IRC15-0067) to the Lund University Diabetes Center.
- US Department of Veterans Affairs Clinical Research and Development award IK2-CX001780
- National Institutes of Health: R01HL163987-01 and R01HL139738-01
- Academy of Finland Centre of Excellence in Complex Disease Genetics (grant no. 312074 and 336824)
- National Institutes of Health: R01HL139731, R01HL157635, and RO1HL092577 European Union: MAESTRIA 965286
Collapse
Affiliation(s)
- Lu-Chen Weng
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Joel T Rämö
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sean J Jurgens
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Shaan Khurshid
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Telemachus and Irene Demoulas Family Foundation Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Mark Chaffin
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amelia Weber Hall
- Gene Regulation Observatory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Valerie N Morrill
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xin Wang
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Victor Nauffal
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Yan V Sun
- VA Atlanta Healthcare System, Decatur, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | | | - Simon Lee
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | - ThuyVy Duong
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Biqi Wang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Tomasz Czuba
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Thomas R Austin
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Zachary T Yoneda
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel J Friedman
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Anne Clayton
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
| | - Matthew C Hyman
- Division of Cardiac Electrophysiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Renae L Judy
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allan C Skanes
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Kate M Orland
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Matthew T Oetjens
- Autism and Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center, Section on Cardiovascular Medicine, Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jesper van der Pals
- Department of Cardiology, Clinical Sciences, Lund University and Skane University Hospital, Lund, Sweden
| | - Tariq Z Issa
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Navid A Nafissi
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Heidi T May
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
| | - Peter Leong-Sit
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Carolina Roselli
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Habib R Khan
- Section of Cardiac Electrophysiology, Western University, London, Ontario, Canada
| | - Stacey Knight
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Richard Karlsson Linnér
- Autism and Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
- Department of Economics, Leiden Law School, Leiden University, Leiden, The Netherlands
| | - Connie R Bezzina
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Susan R Heckbert
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - J Michael Gaziano
- VA Boston Healthcare System, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA
| | - J Gustav Smith
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Cardiology, Clinical Sciences, Lund University and Skane University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, Sweden
| | - Emelia J Benjamin
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- NHLBI and BU's Framingham Heart Study, Framingham, MA, USA
| | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel J Rader
- Departments of Medicine and Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Svati H Shah
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Dan M Roden
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lee L Eckhardt
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Michael J Cutler
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
| | - M Benjamin Shoemaker
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher M Haggerty
- Heart Institute, Geisinger, Danville, PA, USA
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA, USA
| | - Kelly Cho
- VA Boston Healthcare System, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Peter W F Wilson
- VA Atlanta Healthcare System, Decatur, GA, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Telemachus and Irene Demoulas Family Foundation Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Steven A Lubitz
- Telemachus and Irene Demoulas Family Foundation Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
37
|
Mazarura GR, Hébert TE. Modeling the contribution of cardiac fibroblasts in dilated cardiomyopathy using induced pluripotent stem cells. Mol Pharmacol 2025; 107:100002. [PMID: 39919160 DOI: 10.1124/molpharm.124.000958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/18/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Fibrosis is implicated in nearly all forms of cardiomyopathy and significantly influences disease severity and outcomes. The primary cell responsible for fibrosis is the cardiac fibroblast, which remains understudied relative to cardiomyocytes in the context of cardiomyopathy. The development of induced pluripotent stem cell-derived cardiac fibroblasts (iPSC-CFs) allows for the modeling of patient-specific disease characteristics and provides a scalable source of fibroblasts. iPSC-CFs are invaluable for understanding molecular pathways that affect disease progression and outcomes. This review explores various aspects of cardiomyopathy, with a focus on dilated cardiomyopathy, that can be modeled using iPSC-CFs and their application in drug discovery, given the current lack of approved therapies for cardiac fibrosis. We examine how iPSC-CFs can be utilized to study heart development, fibroblast heterogeneity, and activation, with the ultimate goal of developing better therapies for patients with cardiomyopathies. SIGNIFICANCE STATEMENT: We explore how induced pluripotent stem cell-derived cardiac fibroblasts (iPSC-CFs) are used to study the fibrotic component of dilated cardiomyopathy. Most research has focused on cardiomyocytes, but iPSC-CFs serve as a valuable tool to elucidate molecular pathways leading to fibrosis and paracrine interactions with cardiomyocytes. Gaining insights into these events could aid in the development of new therapies and enable the use of patient-derived iPSC-CFs for precision medicine, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Grace R Mazarura
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
38
|
An N, Yang F, Zhang G, Jiang Y, Liu H, Gao Y, Li Y, Ji P, Shang H, Xing Y. Single-cell RNA sequencing reveals the contribution of smooth muscle cells and endothelial cells to fibrosis in human atrial tissue with atrial fibrillation. Mol Med 2024; 30:247. [PMID: 39701940 DOI: 10.1186/s10020-024-00999-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024] Open
Abstract
AIMS Atrial fibrillation (AF) has high mortality and morbidity rates. However, the intracellular molecular complexity of the atrial tissue of patients with AF has not been adequately assessed. METHODS AND RESULTS We investigated the cellular heterogeneity of human atrial tissue and changes in differentially expressed genes between cells using single-cell RNA sequencing, fluorescence in situ hybridization, intercellular communication, and cell trajectory analysis. Using genome-wide association studies (GWAS) and proteomics, we discovered cell types enriched for AF susceptibility genes. We discovered eight different cell types, which were further subdivided into 23 subpopulations. In AF, the communication strength between smooth muscle cells (SMCs) and fibroblast (FB) 3 cells increased and the relevant signaling pathways were quite similar. Subpopulations of endothelial cells (ECs) are mainly involved in fibrosis through TXNDC5 and POSTN. AF susceptibility genes revealed by GWAS were especially enriched in neuronal and epicardial cells, FB3, and lymphoid (Lys) cells, whereas proteomic sequencing differential proteins were concentrated in FB3 cells and SMCs. CONCLUSIONS This study provides a cellular landscape based on the atrial tissue of patients with AF and highlights intercellular changes and differentially expressed genes that occur during the disease process. A thorough description of the cellular populations involved in AF will facilitate the identification of new cell-based interventional targets with direct functional significance for the treatment of human disease.
Collapse
Affiliation(s)
- Na An
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 Beixian'ge Street, Xicheng District, Beijing, 100053, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fan Yang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 Beixian'ge Street, Xicheng District, Beijing, 100053, China
| | - Guoxia Zhang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 Beixian'ge Street, Xicheng District, Beijing, 100053, China
| | - Yuchen Jiang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 Beixian'ge Street, Xicheng District, Beijing, 100053, China
| | - Haoqi Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Yingjian Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Peifeng Ji
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, No. 5, Yard 1, Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing, 100700, China.
| | - Yanwei Xing
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, No.5 Beixian'ge Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
39
|
Blazeski A, Garcia-Cardena G, Kamm RD. Advancing Cardiac Organoid Engineering Through Application of Biophysical Forces. IEEE Rev Biomed Eng 2024; PP:211-230. [PMID: 40030454 DOI: 10.1109/rbme.2024.3514378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Cardiac organoids represent an important bioengineering opportunity in the development of models to study human heart pathophysiology. By incorporating multiple cardiac cell types in three-dimensional culture and developmentally-guided biochemical signaling, cardiac organoids recapitulate numerous features of heart tissue. However, cardiac tissue also experiences a variety of mechanical forces as the heart develops and over the course of each contraction cycle. It is now clear that these forces impact cellular specification, phenotype, and function, and should be incorporated into the engineering of cardiac organoids in order to generate better models. In this review, we discuss strategies for engineering cardiac organoids and report the effects of organoid design on the function of cardiac cells. We then discuss the mechanical environment of the heart, including forces arising from tissue elasticity, contraction, blood flow, and stretch, and report on efforts to mimic these biophysical cues in cardiac organoids. Finally, we review emerging areas of cardiac organoid research, for the study of cardiac development, the formation of multi-organ models, and the simulation of the effects of spaceflight on cardiac tissue and consider how these investigations might benefit from the inclusion of mechanical cues.
Collapse
|
40
|
Gregorich ZR, Larson EJ, Zhang Y, Braz CU, Liu C, Ge Y, Guo W. Integrated proteomics and transcriptomics analysis reveals insights into differences in premature mortality associated with disparate pathogenic RBM20 variants. J Mol Cell Cardiol 2024; 197:78-89. [PMID: 39490642 PMCID: PMC11588510 DOI: 10.1016/j.yjmcc.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Variants in RNA binding motif protein 20 (RBM20) are causative in a severe form of dilated cardiomyopathy referred to as RBM20 cardiomyopathy, yet the mechanisms are unclear. Moreover, the reason(s) for phenotypic heterogeneity in carriers with different pathogenic variants are similarly opaque. To gain insight, we carried out multi-omics analysis, including the first analysis of gene expression changes at the protein level, of mice carrying two different pathogenic variants in the RBM20 nuclear localization signal (NLS). Direct comparison of the phenotypes confirmed greater premature morality in S639G variant carrying mice compared to mice with the S637A variant despite similar cardiac remodeling and dysfunction. Analysis of differentially spliced genes uncovered alterations in the splicing of both RBM20 target genes and non-target genes, including several genes previously implicated in arrhythmia. Global proteomics analysis found that a greater number of proteins were differentially expressed in the hearts of Rbm20S639G mice relative to WT than in Rbm20S637A versus WT. Gene ontology analysis suggested greater mitochondrial dysfunction in Rbm20S639G mice, although direct comparison of protein expression in the hearts of Rbm20S639G versus Rbm20S637A mice failed to identify any significant differences. Similarly, few differences were found by direct comparison of gene expression at the transcript level in Rbm20S639G and Rbm20S637A despite greater coverage. Our data provide a comprehensive overview of gene splicing and expression differences associated with pathogenic variants in RBM20, as well as insights into the molecular underpinnings of phenotypic heterogeneity associated with different dilated cardiomyopathy-associated variants.
Collapse
Affiliation(s)
- Zachery R Gregorich
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eli J Larson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yanghai Zhang
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Camila U Braz
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Chunling Liu
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wei Guo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
41
|
Lunde IG, Rypdal KB, Van Linthout S, Diez J, González A. Myocardial fibrosis from the perspective of the extracellular matrix: Mechanisms to clinical impact. Matrix Biol 2024; 134:1-22. [PMID: 39214156 DOI: 10.1016/j.matbio.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and constitutes a central pathophysiological process that underlies tissue dysfunction, across organs, in multiple chronic diseases and during aging. Myocardial fibrosis is a key contributor to dysfunction and failure in numerous diseases of the heart and is a strong predictor of poor clinical outcome and mortality. The excess structural and matricellular ECM proteins deposited by cardiac fibroblasts, is found between cardiomyocytes (interstitial fibrosis), in focal areas where cardiomyocytes have died (replacement fibrosis), and around vessels (perivascular fibrosis). Although myocardial fibrosis has important clinical prognostic value, access to cardiac tissue biopsies for histological evaluation is limited. Despite challenges with sensitivity and specificity, cardiac magnetic resonance imaging (CMR) is the most applicable diagnostic tool in the clinic, and the scientific community is currently actively searching for blood biomarkers reflecting myocardial fibrosis, to complement the imaging techniques. The lack of mechanistic insights into specific pro- and anti-fibrotic molecular pathways has hampered the development of effective treatments to prevent or reverse myocardial fibrosis. Development and implementation of anti-fibrotic therapies is expected to improve patient outcomes and is an urgent medical need. Here, we discuss the importance of the ECM in the heart, the central role of fibrosis in heart disease, and mechanistic pathways likely to impact clinical practice with regards to diagnostics of myocardial fibrosis, risk stratification of patients, and anti-fibrotic therapy.
Collapse
Affiliation(s)
- Ida G Lunde
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway.
| | - Karoline B Rypdal
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Javier Diez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
42
|
Van Wauwe J, Mahy A, Craps S, Ekhteraei-Tousi S, Vrancaert P, Kemps H, Dheedene W, Doñate Puertas R, Trenson S, Roderick HL, Beerens M, Luttun A. PRDM16 determines specification of ventricular cardiomyocytes by suppressing alternative cell fates. Life Sci Alliance 2024; 7:e202402719. [PMID: 39304345 PMCID: PMC11415600 DOI: 10.26508/lsa.202402719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
PRDM16 is a transcription factor with histone methyltransferase activity expressed at the earliest stages of cardiac development. Pathogenic mutations in humans lead to cardiomyopathy, conduction abnormalities, and heart failure. PRDM16 is specifically expressed in ventricular but not atrial cardiomyocytes, and its expression declines postnatally. Because in other tissues PRDM16 is best known for its role in binary cell fate decisions, we hypothesized a similar decision-making function in cardiomyocytes. Here, we demonstrated that cardiomyocyte-specific deletion of Prdm16 during cardiac development results in contractile dysfunction and abnormal electrophysiology of the postnatal heart, resulting in premature death. By combined RNA+ATAC single-cell sequencing, we found that PRDM16 favors ventricular working cardiomyocyte identity, by opposing the activity of master regulators of ventricular conduction and atrial fate. Myocardial loss of PRDM16 during development resulted in hyperplasia of the (distal) ventricular conduction system. Hence, PRDM16 plays an indispensable role during cardiac development by driving ventricular working cardiomyocyte identity.
Collapse
Affiliation(s)
- Jore Van Wauwe
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Alexia Mahy
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Sander Craps
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Samaneh Ekhteraei-Tousi
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Pieter Vrancaert
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Hannelore Kemps
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Wouter Dheedene
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Rosa Doñate Puertas
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Sander Trenson
- Cardiology Lab, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Manu Beerens
- Institute for Clinical Chemistry and Laboratory Medicine, Medizinische Klinik und Poliklinik Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg, Luebeck, Kiel, Hamburg, Germany
| | - Aernout Luttun
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
43
|
Blum SM, Zlotoff DA, Smith NP, Kernin IJ, Ramesh S, Zubiri L, Caplin J, Samanta N, Martin S, Wang M, Tirard A, Song Y, Xu KH, Barth J, Sen P, Slowikowski K, Tantivit J, Manakongtreecheep K, Arnold BY, Nasrallah M, Pinto CJ, McLoughlin D, Jackson M, Chan P, Lawless A, Michaud WA, Sharova T, Nieman LT, Gainor JF, Wu CJ, Juric D, Mino-Kenudson M, Oliveira G, Sullivan RJ, Boland GM, Stone JR, Thomas MF, Neilan TG, Reynolds KL, Villani AC. Immune responses in checkpoint myocarditis across heart, blood and tumour. Nature 2024; 636:215-223. [PMID: 39506125 DOI: 10.1038/s41586-024-08105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
Immune checkpoint inhibitors are widely used anticancer therapies1 that can cause morbid and potentially fatal immune-related adverse events such as immune-related myocarditis (irMyocarditis)2-5. The pathogenesis of irMyocarditis and its relationship to antitumour immunity remain poorly understood. Here we sought to define immune responses in heart, tumour and blood in patients with irMyocarditis by leveraging single-cell RNA sequencing coupled with T cell receptor (TCR) sequencing, microscopy and proteomics analyses of samples from 28 patients with irMyocarditis and 41 unaffected individuals. Analyses of 84,576 cardiac cells by single-cell RNA sequencing combined with multiplexed microscopy demonstrated increased frequencies and co-localization of cytotoxic T cells, conventional dendritic cells and inflammatory fibroblasts in irMyocarditis heart tissue. Analyses of 366,066 blood cells revealed decreased frequencies of plasmacytoid dendritic cells, conventional dendritic cells and B lineage cells but an increased frequency of other mononuclear phagocytes in irMyocarditis. Fifty-two heart-expanded TCR clones from eight patients did not recognize the putative cardiac autoantigens α-myosin, troponin I or troponin T. Additionally, TCRs enriched in heart tissue were largely nonoverlapping with those enriched in paired tumour tissue. The presence of heart-expanded TCRs in a cycling blood CD8 T cell population was associated with fatal irMyocarditis case status. Collectively, these findings highlight crucial biology driving irMyocarditis and identify putative biomarkers.
Collapse
Affiliation(s)
- Steven M Blum
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Mass General Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel A Zlotoff
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cardio-Oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Neal P Smith
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Isabela J Kernin
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Swetha Ramesh
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Leyre Zubiri
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Mass General Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Joshua Caplin
- Cardio-Oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nandini Samanta
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sidney Martin
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mike Wang
- Mass General Cancer Center, Boston, MA, USA
| | - Alice Tirard
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yuhui Song
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Katherine H Xu
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jaimie Barth
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Pritha Sen
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Transplant, Oncology and Immunocompromised Host Program, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Rheumatology, North Shore Physicians Group, Department of Medicine, Mass General Brigham Healthcare Center, Lynn, MA, USA
| | - Kamil Slowikowski
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jessica Tantivit
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kasidet Manakongtreecheep
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin Y Arnold
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mazen Nasrallah
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Rheumatology, North Shore Physicians Group, Department of Medicine, Mass General Brigham Healthcare Center, Lynn, MA, USA
| | - Christopher J Pinto
- Mass General Cancer Center, Boston, MA, USA
- Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel McLoughlin
- Mass General Cancer Center, Boston, MA, USA
- Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Monica Jackson
- Mass General Cancer Center, Boston, MA, USA
- Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - PuiYee Chan
- Mass General Cancer Center, Boston, MA, USA
- Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Aleigha Lawless
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - William A Michaud
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Tatyana Sharova
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Linda T Nieman
- Harvard Medical School, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Justin F Gainor
- Mass General Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Catherine J Wu
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dejan Juric
- Mass General Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mari Mino-Kenudson
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Giacomo Oliveira
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ryan J Sullivan
- Mass General Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Genevieve M Boland
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - James R Stone
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Molly F Thomas
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Oregon Health and Sciences University, Portland, OR, USA
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Sciences University, Portland, OR, USA
| | - Tomas G Neilan
- Harvard Medical School, Boston, MA, USA
- Cardio-Oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kerry L Reynolds
- Mass General Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
44
|
Fan S, Zhao M, Wang K, Deng Y, Yu X, Ma K, Zhang Y, Xiao H. Exercise training attenuates cardiac dysfunction induced by excessive sympathetic activation through an AMPK-KLF4-FMO2 axis. J Mol Cell Cardiol 2024; 197:136-149. [PMID: 39491669 DOI: 10.1016/j.yjmcc.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide and are associated with an overactivated sympathetic system. Although exercise training has shown promise in mitigating sympathetic stress-induced cardiac remodeling, the precise mechanisms remain elusive. Here, we demonstrate that exercise significantly upregulates cardiac flavin-containing monooxygenase 2 (FMO2) expression. Notably, we find that exercise training effectively counteracts sympathetic overactivation-induced cardiac dysfunction and fibrosis by enhancing FMO2 expression via adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) activation. Functional investigations employing FMO2 knockdown with adeno-associated virus 9 (AAV9) underscore the necessity for FMO2 expression to protect the heart during exercise in vivo. Furthermore, we identify the krüppel-like factor 4 (KLF4) as a transcriptional mediator of FMO2 that is crucial for the mechanism through which AMPK activation protects against sympathetic overactivation-induced cardiac dysfunction and fibrosis. Taken together, our study reveals a cardioprotective mechanism for exercise training through an AMPK-KLF4-FMO2 signaling pathway that underscores how exercise alleviates cardiac dysfunction induced by excessive sympathetic activation.
Collapse
Affiliation(s)
- Shiyu Fan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi 832003, China
| | - Mingming Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Institute of Advanced Clinical Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Haihe Laboratory of Cell Ecosystem, Beijing 100191, China
| | - Kang Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Institute of Advanced Clinical Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Haihe Laboratory of Cell Ecosystem, Beijing 100191, China
| | - Yawen Deng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Institute of Advanced Clinical Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Haihe Laboratory of Cell Ecosystem, Beijing 100191, China
| | - Xiaoyue Yu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Institute of Advanced Clinical Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Haihe Laboratory of Cell Ecosystem, Beijing 100191, China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi 832003, China
| | - Youyi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Institute of Advanced Clinical Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Haihe Laboratory of Cell Ecosystem, Beijing 100191, China.
| | - Han Xiao
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi 832003, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Institute of Advanced Clinical Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Haihe Laboratory of Cell Ecosystem, Beijing 100191, China.
| |
Collapse
|
45
|
Hill MC, Simonson B, Roselli C, Xiao L, Herndon CN, Chaffin M, Mantineo H, Atwa O, Bhasin H, Guedira Y, Bedi KC, Margulies KB, Klattenhoff CA, Tucker NR, Ellinor PT. Large-scale single-nuclei profiling identifies role for ATRNL1 in atrial fibrillation. Nat Commun 2024; 15:10002. [PMID: 39562555 PMCID: PMC11576987 DOI: 10.1038/s41467-024-54296-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in humans, yet the molecular basis of AF remains incompletely understood. To determine the cell type-specific transcriptional changes underlying AF, we perform single-nucleus RNA-seq (snRNA-seq) on left atrial (LA) samples from patients with AF and controls. From more than 175,000 nuclei we find that only cardiomyocytes (CMs) and macrophages (MΦs) have a significant number of differentially expressed genes in patients with AF. Attractin Like 1 (ATRNL1) was overexpressed in CMs among patients with AF and localized to the intercalated disks. Further, in both knockdown and overexpression experiments we identify a potent role for ATRNL1 in cell stress response, and in the modulation of the cardiac action potential. Finally, we detect an unexpected expression pattern for a leading AF candidate gene, KCNN3. In sum, we uncover a role for ATRNL1 which may serve as potential therapeutic target for this common arrhythmia.
Collapse
Affiliation(s)
- Matthew C Hill
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Bridget Simonson
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carolina Roselli
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ling Xiao
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Caroline N Herndon
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark Chaffin
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Helene Mantineo
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ondine Atwa
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Harshit Bhasin
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yasmine Guedira
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kenneth C Bedi
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Nathan R Tucker
- Departments of Pharmacology and Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
46
|
Ren C, Xi L, Li H, Pan Z, Li Y, Wang G, Dai J, He D, Fan S, Wang Q. Inhibition of the FOXO1-ROCK1 axis mitigates cardiomyocyte injury under chronic hypoxia in Tetralogy of Fallot by maintaining mitochondrial quality control. Life Sci 2024; 357:123084. [PMID: 39374570 DOI: 10.1016/j.lfs.2024.123084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/17/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION Persistent chronic myocardial hypoxia causes disturbances in mitochondrial quality control (MQC), ultimately leading to increased cardiomyocyte injury in patients with Tetralogy of Fallot (TOF). The present study aimed to identify the key effector molecules of cardiomyocyte injury under chronic hypoxia in TOF. METHODS Clinical data from TOF patients were collected and whole transcriptome sequencing was performed on myocardial samples. Chronic hypoxia models were established in cardiac-specific knockout mice and cardiomyocytes, and a series of molecular experiments were used to determine the specific mechanisms involved. RESULTS Clinical cohort data and whole-transcriptome sequencing analysis of myocardial samples from TOF patients revealed that forkhead box O1 (FOXO1) plays an important role in chronic hypoxic cardiomyocyte injury. In a model of chronic hypoxia established in FOXO1 cardiac-specific knockout mice and FOXO1 gene-deficient cardiomyocytes, the AMPK signaling pathway regulates the expression of FOXO1, which in turn disrupts MQC by regulating the transcriptional activation of Rho-associated protein kinase 1 (ROCK1), and increasing the production of mitochondrial ROS, thereby exacerbating damage to cardiomyocytes. Excessive reactive oxygen species (ROS) production during MQC dysfunction further activates Cox7a2L to increase the assembly of the respiratory chain supercomplex. In addition, we found that miR-27b-3p partially binds to the 3' untranslated region of FOXO1 to exert a protective effect. CONCLUSIONS Maintenance of MQC under chronic hypoxia is achieved through a series of injury-protection mechanisms, suggesting that FOXO1 inhibition may be crucial for future mitigation of chronic hypoxic cardiomyocyte injury in TOF.
Collapse
Affiliation(s)
- Chunnian Ren
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, PR China; Department of Pediatric Surgery, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Linyun Xi
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, PR China
| | - Hongbo Li
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, PR China
| | - Zhengxia Pan
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, PR China
| | - Yonggang Li
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, PR China
| | - Gang Wang
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, PR China
| | - Jiangtao Dai
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, PR China
| | - Dawei He
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, PR China
| | - Shulei Fan
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Quan Wang
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, PR China.
| |
Collapse
|
47
|
Holman AR, Tran S, Destici E, Farah EN, Li T, Nelson AC, Engler AJ, Chi NC. Single-cell multi-modal integrative analyses highlight functional dynamic gene regulatory networks directing human cardiac development. CELL GENOMICS 2024; 4:100680. [PMID: 39437788 PMCID: PMC11605693 DOI: 10.1016/j.xgen.2024.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Illuminating the precise stepwise genetic programs directing cardiac development provides insights into the mechanisms of congenital heart disease and strategies for cardiac regenerative therapies. Here, we integrate in vitro and in vivo human single-cell multi-omic studies with high-throughput functional genomic screening to reveal dynamic, cardiac-specific gene regulatory networks (GRNs) and transcriptional regulators during human cardiomyocyte development. Interrogating developmental trajectories reconstructed from single-cell data unexpectedly reveal divergent cardiomyocyte lineages with distinct gene programs based on developmental signaling pathways. High-throughput functional genomic screens identify key transcription factors from inferred GRNs that are functionally relevant for cardiomyocyte lineages derived from each pathway. Notably, we discover a critical heat shock transcription factor 1 (HSF1)-mediated cardiometabolic GRN controlling cardiac mitochondrial/metabolic function and cell survival, also observed in fetal human cardiomyocytes. Overall, these multi-modal genomic studies enable the systematic discovery and validation of coordinated GRNs and transcriptional regulators controlling the development of distinct human cardiomyocyte populations.
Collapse
Affiliation(s)
- Alyssa R Holman
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaina Tran
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eugin Destici
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elie N Farah
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ting Li
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aileena C Nelson
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA
| | - Neil C Chi
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
48
|
Amrute JM, Lee PC, Eres I, Lee CJM, Bredemeyer A, Sheth MU, Yamawaki T, Gurung R, Anene-Nzelu C, Qiu WL, Kundu S, Li DY, Ramste M, Lu D, Tan A, Kang CJ, Wagoner RE, Alisio A, Cheng P, Zhao Q, Miller CL, Hall IM, Gupta RM, Hsu YH, Haldar SM, Lavine KJ, Jackson S, Andersson R, Engreitz JM, Foo RSY, Li CM, Ason B, Quertermous T, Stitziel NO. Single cell variant to enhancer to gene map for coronary artery disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.13.24317257. [PMID: 39606421 PMCID: PMC11601770 DOI: 10.1101/2024.11.13.24317257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Although genome wide association studies (GWAS) in large populations have identified hundreds of variants associated with common diseases such as coronary artery disease (CAD), most disease-associated variants lie within non-coding regions of the genome, rendering it difficult to determine the downstream causal gene and cell type. Here, we performed paired single nucleus gene expression and chromatin accessibility profiling from 44 human coronary arteries. To link disease variants to molecular traits, we developed a meta-map of 88 samples and discovered 11,182 single-cell chromatin accessibility quantitative trait loci (caQTLs). Heritability enrichment analysis and disease variant mapping demonstrated that smooth muscle cells (SMCs) harbor the greatest genetic risk for CAD. To capture the continuum of SMC cell states in disease, we used dynamic single cell caQTL modeling for the first time in tissue to uncover QTLs whose effects are modified by cell state and expand our insight into genetic regulation of heterogenous cell populations. Notably, we identified a variant in the COL4A1/COL4A2 CAD GWAS locus which becomes a caQTL as SMCs de-differentiate by changing a transcription factor binding site for EGR1/2. To unbiasedly prioritize functional candidate genes, we built a genome-wide single cell variant to enhancer to gene (scV2E2G) map for human CAD to link disease variants to causal genes in cell types. Using this approach, we found several hundred genes predicted to be linked to disease variants in different cell types. Next, we performed genome-wide Hi-C in 16 human coronary arteries to build tissue specific maps of chromatin conformation and link disease variants to integrated chromatin hubs and distal target genes. Using this approach, we show that rs4887091 within the ADAMTS7 CAD GWAS locus modulates function of a super chromatin interactome through a change in a CTCF binding site. Finally, we used CRISPR interference to validate a distal gene, AMOTL2, liked to a CAD GWAS locus. Collectively we provide a disease-agnostic framework to translate human genetic findings to identify pathologic cell states and genes driving disease, producing a comprehensive scV2E2G map with genetic and tissue level convergence for future mechanistic and therapeutic studies.
Collapse
Affiliation(s)
- Junedh M. Amrute
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Amgen Research, South San Francisco, CA, 94080, USA
| | - Paul C. Lee
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Ittai Eres
- Amgen Research, South San Francisco, CA, 94080, USA
| | - Chang Jie Mick Lee
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Andrea Bredemeyer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Maya U. Sheth
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Sciences and Engineering Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Rijan Gurung
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Chukwuemeka Anene-Nzelu
- Montreal Heart Institute, Montreal, 5000 Rue Belanger, QC, H1T 1C8, Canada
- Department of Medicine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montréal, QC, H3T 1J4, Canada
| | - Wei-Lin Qiu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
| | - Soumya Kundu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Y. Li
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
| | - Markus Ramste
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
| | - Daniel Lu
- Amgen Research, South San Francisco, CA, 94080, USA
| | - Anthony Tan
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Sciences and Engineering Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Stanford, CA, USA
| | - Chul-Joo Kang
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Ryan E. Wagoner
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Arturo Alisio
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Paul Cheng
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305
| | - Quanyi Zhao
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
| | - Clint L. Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville
| | - Ira M. Hall
- Center for Genomic Health, Yale University, New Haven, CT, 06510, USA
- Department of Genetics, Yale University, New Haven, CT, 06510, USA
| | - Rajat M. Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Yi-Hsiang Hsu
- Amgen Research, South San Francisco, CA, 94080, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | | | - Kory J. Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | | | - Robin Andersson
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
| | - Jesse M. Engreitz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Sciences and Engineering Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Stanford, CA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Roger S-Y Foo
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Chi-Ming Li
- Amgen Research, South San Francisco, CA, 94080, USA
| | - Brandon Ason
- Amgen Research, South San Francisco, CA, 94080, USA
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305
| | - Nathan O. Stitziel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
49
|
Abolins-Thompson H, Henare KL, Simonson B, Chaffin M, Ellinor PT, Henry C, Haimona M, Aitken J, Parai T, Elkington B, Rongo M, Danielson KM, Leask MP. Culturally responsive strategies and practical considerations for live tissue studies in Māori participant cohorts. Front Res Metr Anal 2024; 9:1468400. [PMID: 39564513 PMCID: PMC11573560 DOI: 10.3389/frma.2024.1468400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
Introduction Indigenous communities globally are inequitably affected by non-communicable diseases such as cancer and coronary artery disease. Increased focus on personalized medicine approaches for the treatment of these diseases offers opportunities to improve the health of Indigenous people. Conversely, poorly implemented approaches pose increased risk of further exacerbating current inequities in health outcomes for Indigenous peoples. The advancement of modern biology techniques, such as three-dimensional (3D) in vitro models and next generation sequencing (NGS) technologies, have enhanced our understanding of disease mechanisms and individualized treatment responses. However, current representation of Indigenous peoples in these datasets is lacking. It is crucial that there is appropriate and ethical representation of Indigenous peoples in generated datasets to ensure these technologies can be used to maximize the benefit of personalized medicine for Indigenous peoples. Methods This project discusses the use of 3D tumor organoids and single cell/nucleus RNA sequencing to study cancer treatment responses and explore immune cell roles in coronary artery disease. Using key pillars from currently available Indigenous bioethics frameworks, strategies were developed for the use of Māori participant samples for live tissue and sequencing studies. These were based on extensive collaborations with local Māori community, scientific leaders, clinical experts, and international collaborators from the Broad Institute of MIT and Harvard. Issues surrounding the use of live tissue, genomic data, sending samples overseas and Indigenous data sovereignty were discussed. Results This paper illustrates a real-world example of how collaboration with community and the incorporation of Indigenous worldviews can be applied to molecular biology studies in a practical and culturally responsive manner, ensuring fair and equitable representation of Indigenous peoples in modern scientific data.
Collapse
Affiliation(s)
- Helena Abolins-Thompson
- Department of Surgery and Anesthesia, University of Otago Wellington, Wellington, New Zealand
| | - Kimiora L Henare
- Faculty of Medical and Health Sciences, Molecular Medicine and Pathology, Waipapa Taumata Rau, University of Auckland, Auckland, New Zealand
| | - Bridget Simonson
- Cardiovascular Disease Initiative, The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Mark Chaffin
- Cardiovascular Disease Initiative, The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Claire Henry
- Department of Surgery and Anesthesia, University of Otago Wellington, Wellington, New Zealand
| | - Mairarangi Haimona
- Department of General Surgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Jake Aitken
- Te Rōpū Rangahau Hauora a Eru Pōmare, University of Otago Wellington, Wellington, New Zealand
| | - Taku Parai
- Te Rūnanga o Toa Rangatira, Porirua, New Zealand
| | | | | | - Kirsty M Danielson
- Department of Surgery and Anesthesia, University of Otago Wellington, Wellington, New Zealand
| | - Megan P Leask
- Department of Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
50
|
Psarras S. The Macrophage-Fibroblast Dipole in the Context of Cardiac Repair and Fibrosis. Biomolecules 2024; 14:1403. [PMID: 39595580 PMCID: PMC11591949 DOI: 10.3390/biom14111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Stromal and immune cells and their interactions have gained the attention of cardiology researchers and clinicians in recent years as their contribution in cardiac repair is increasingly recognized. The repair process in the heart is a particularly critical constellation of complex molecular and cellular events and interactions that characteristically fail to ensure adequate recovery following injury, insult, or exposure to stress conditions in this regeneration-hostile organ. The tremendous consequence of this pronounced inability to maintain homeostatic states is being translated in numerous ways promoting progress into heart failure, a deadly, irreversible condition requiring organ transplantation. Fibrosis is in fact a repair response eventually promoting cardiac dysfunction and cardiac fibroblasts are the major cellular players in this process, overproducing collagens and other extracellular matrix components when activated. On the other hand, macrophages may differentially affect fibroblasts and cardiac repair depending on their status and subsets. The opposite interaction is also probable. We discuss here the multifaceted aspects and crosstalk of this cell dipole and the opportunities it may offer for beneficial manipulation approaches that will hopefully lead to progress in heart disease interventions.
Collapse
Affiliation(s)
- Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 115 27 Athens, Greece
| |
Collapse
|