1
|
Urschel K, Hug KP, Zuo H, Büttner M, Furtmair R, Kuehn C, Stumpfe FM, Botos B, Achenbach S, Yuan Y, Dietel B, Tauchi M. The Shear Stress-Regulated Expression of Glypican-4 in Endothelial Dysfunction In Vitro and Its Clinical Significance in Atherosclerosis. Int J Mol Sci 2023; 24:11595. [PMID: 37511353 PMCID: PMC10380765 DOI: 10.3390/ijms241411595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Retention of circulating lipoproteins by their interaction with extracellular matrix molecules has been suggested as an underlying mechanism for atherosclerosis. We investigated the role of glypican-4 (GPC4), a heparan sulfate (HS) proteoglycan, in the development of endothelial dysfunction and plaque progression; Expression of GPC4 and HS was investigated in human umbilical vein/artery endothelial cells (HUVECs/HUAECs) using flow cytometry, qPCR, and immunofluorescent staining. Leukocyte adhesion was determined in HUVECs in bifurcation chamber slides under dynamic flow. The association between the degree of inflammation and GPC4, HS, and syndecan-4 expressions was analyzed in human carotid plaques; GPC4 was expressed in HUVECs/HUAECs. In HUVECs, GPC4 protein expression was higher in laminar than in non-uniform shear stress regions after a 1-day or 10-day flow (p < 0.01 each). The HS expression was higher under laminar flow after a 1 day (p < 0.001). Monocytic THP-1 cell adhesion to HUVECs was facilitated by GPC4 knock-down (p < 0.001) without affecting adhesion molecule expression. GPC4 and HS expression was lower in more-inflamed than in less-inflamed plaque shoulders (p < 0.05, each), especially in vulnerable plaque sections; Reduced expression of GPC4 was associated with atherogenic conditions, suggesting the involvement of GPC4 in both early and advanced stages of atherosclerosis.
Collapse
Affiliation(s)
- Katharina Urschel
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Karsten P. Hug
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Hanxiao Zuo
- School of Public Health, University of Alberta, 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada; (H.Z.); (Y.Y.)
| | - Michael Büttner
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Roman Furtmair
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Constanze Kuehn
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Florian M. Stumpfe
- Department of Obstetrics and Gynaecology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsstraße 21-23, 91054 Erlangen, Germany;
| | - Balaz Botos
- Department of Vascular and Endovascular Surgery, General Hospital Nuremberg, Paracelsus Medical University, Breslauer Str. 201, 90471 Nuremberg, Germany;
| | - Stephan Achenbach
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Yan Yuan
- School of Public Health, University of Alberta, 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada; (H.Z.); (Y.Y.)
| | - Barbara Dietel
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Miyuki Tauchi
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| |
Collapse
|
2
|
Xiang P, Blanchard V, Francis GA. Smooth Muscle Cell—Macrophage Interactions Leading to Foam Cell Formation in Atherosclerosis: Location, Location, Location. Front Physiol 2022; 13:921597. [PMID: 35795646 PMCID: PMC9251363 DOI: 10.3389/fphys.2022.921597] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cholesterol-overloaded cells or “foam cells” in the artery wall are the biochemical hallmark of atherosclerosis, and are responsible for much of the growth, inflammation and susceptibility to rupture of atherosclerotic lesions. While it has previously been thought that macrophages are the main contributor to the foam cell population, recent evidence indicates arterial smooth muscle cells (SMCs) are the source of the majority of foam cells in both human and murine atherosclerosis. This review outlines the timeline, site of appearance and proximity of SMCs and macrophages with lipids in human and mouse atherosclerosis, and likely interactions between SMCs and macrophages that promote foam cell formation and removal by both cell types. An understanding of these SMC-macrophage interactions in foam cell formation and regression is expected to provide new therapeutic targets to reduce the burden of atherosclerosis for the prevention of coronary heart disease, stroke and peripheral vascular disease.
Collapse
|
3
|
Trinh K, Julovi SM, Rogers NM. The Role of Matrix Proteins in Cardiac Pathology. Int J Mol Sci 2022; 23:ijms23031338. [PMID: 35163259 PMCID: PMC8836004 DOI: 10.3390/ijms23031338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) and ECM-regulatory proteins mediate structural and cell-cell interactions that are crucial for embryonic cardiac development and postnatal homeostasis, as well as organ remodeling and repair in response to injury. These proteins possess a broad functionality that is regulated by multiple structural domains and dependent on their ability to interact with extracellular substrates and/or cell surface receptors. Several different cell types (cardiomyocytes, fibroblasts, endothelial and inflammatory cells) within the myocardium elaborate ECM proteins, and their role in cardiovascular (patho)physiology has been increasingly recognized. This has stimulated robust research dissecting the ECM protein function in human health and disease and replicating the genetic proof-of-principle. This review summarizes recent developments regarding the contribution of ECM to cardiovascular disease. The clear importance of this heterogeneous group of proteins in attenuating maladaptive repair responses provides an impetus for further investigation into these proteins as potential pharmacological targets in cardiac diseases and beyond.
Collapse
Affiliation(s)
- Katie Trinh
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sohel M. Julovi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Natasha M. Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence:
| |
Collapse
|
4
|
Abstract
Diabetes is a complex disorder responsible for the mortality and morbidity of millions of individuals worldwide. Although many approaches have been used to understand and treat diabetes, the role of proteoglycans, in particular heparan sulfate proteoglycans (HSPGs), has only recently received attention. The HSPGs are heterogeneous, highly negatively charged, and are found in all cells primarily attached to the plasma membrane or present in the extracellular matrix (ECM). HSPGs are involved in development, cell migration, signal transduction, hemostasis, inflammation, and antiviral activity, and regulate cytokines, chemokines, growth factors, and enzymes. Hyperglycemia, accompanying diabetes, increases reactive oxygen species and upregulates the enzyme heparanase that degrades HSPGs or affects the synthesis of the HSPGs altering their structure. The modified HSPGs in the endothelium and ECM in the blood vessel wall contribute to the nephropathy, cardiovascular disease, and retinopathy seen in diabetes. Besides the blood vessel, other cells and tissues in the heart, kidney, and eye are affected by diabetes. Although not well understood, the adipose tissue, intestine, and brain also reveal HSPG changes associated with diabetes. Further, HSPGs are significantly involved in protecting the β cells of the pancreas from autoimmune destruction and could be a focus of prevention of type I diabetes. In some circumstances, HSPGs may contribute to the pathology of the disease. Understanding the role of HSPGs and how they are modified by diabetes may lead to new treatments as well as preventative measures to reduce the morbidity and mortality associated with this complex condition.
Collapse
Affiliation(s)
- Linda M Hiebert
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
5
|
Macrophages bind LDL using heparan sulfate and the perlecan protein core. J Biol Chem 2021; 296:100520. [PMID: 33684447 PMCID: PMC8027565 DOI: 10.1016/j.jbc.2021.100520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022] Open
Abstract
The retention of low-density lipoprotein (LDL) is a key process in the pathogenesis of atherosclerosis and largely mediated via smooth-muscle cell-derived extracellular proteoglycans including the glycosaminoglycan chains. Macrophages can also internalize lipids via complexes with proteoglycans. However, the role of polarized macrophage-derived proteoglycans in binding LDL is unknown and important to advance our understanding of the pathogenesis of atherosclerosis. We therefore examined the identity of proteoglycans, including the pendent glycosaminoglycans, produced by polarized macrophages to gain insight into the molecular basis for LDL binding. Using the quartz crystal microbalance with dissipation monitoring technique, we established that classically activated macrophage (M1)- and alternatively activated macrophage (M2)-derived proteoglycans bind LDL via both the protein core and heparan sulfate (HS) in vitro. Among the proteoglycans secreted by macrophages, we found perlecan was the major protein core that bound LDL. In addition, we identified perlecan in the necrotic core as well as the fibrous cap of advanced human atherosclerotic lesions in the same regions as HS and colocalized with M2 macrophages, suggesting a functional role in lipid retention in vivo. These findings suggest that macrophages may contribute to LDL retention in the plaque by the production of proteoglycans; however, their contribution likely depends on both their phenotype within the plaque and the presence of enzymes, such as heparanase, that alter the secreted protein structure.
Collapse
|
6
|
Baba O, Huang LH, Elvington A, Szpakowska M, Sultan D, Heo GS, Zhang X, Luehmann H, Detering L, Chevigné A, Liu Y, Randolph GJ. CXCR4-Binding Positron Emission Tomography Tracers Link Monocyte Recruitment and Endothelial Injury in Murine Atherosclerosis. Arterioscler Thromb Vasc Biol 2021; 41:822-836. [PMID: 33327748 PMCID: PMC8105279 DOI: 10.1161/atvbaha.120.315053] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE vMIP-II (viral macrophage inflammatory protein 2)/vCCL2 (viral chemotactic cytokine ligand 2) binds to multiple chemokine receptors, and vMIP-II-based positron emission tomography tracer (64Cu-DOTA-vMIP-II: vMIP-II tracer) accumulates at atherosclerotic lesions in mice. Given that it would be expected to react with multiple chemokine receptors on monocytes and macrophages, we wondered if its accumulation in atherosclerosis lesion-bearing mice might correlate with overall macrophage burden or, alternatively, the pace of monocyte recruitment. Approach and Results: We employed a mouse model of atherosclerosis regression involving adenoassociated virus 8 vector encoding murine Apoe (AAV-mApoE) treatment of Apoe-/- mice where the pace of monocyte recruitment slows before macrophage burden subsequently declines. Accumulation of 64Cu-DOTA-vMIP-II at Apoe-/- plaque sites was strong but declined with AAV-mApoE-induced decline in monocyte recruitment, before macrophage burden reduced. Monocyte depletion indicated that monocytes and macrophages themselves were not the only target of the 64Cu-DOTA-vMIP-II tracer. Using fluorescence-tagged vMIP-II tracer, competitive receptor blocking with CXCR4 antagonists, endothelial-specific Cre-mediated deletion of CXCR4, CXCR4-specific tracer 64Cu-DOTA-FC131, and CXCR4 staining during disease progression and regression, we show endothelial cell expression of CXCR4 is a key target of 64Cu-DOTA-vMIP-II imaging. Expression of CXCR4 was low in nonplaque areas but strongly detected on endothelium of progressing plaques, especially on proliferating endothelium, where vascular permeability was increased and monocyte recruitment was the strongest. CONCLUSIONS Endothelial injury status of plaques is marked by CXCR4 expression and this injury correlates with the tendency of such plaques to recruit monocytes. Furthermore, our findings suggest positron emission tomography tracers that mark CXCR4 can be used translationally to monitor the state of plaque injury and monocyte recruitment.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/diagnostic imaging
- Aorta, Thoracic/immunology
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Atherosclerosis/diagnostic imaging
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Biomarkers/metabolism
- Cell Line
- Chemokines/administration & dosage
- Chemokines/pharmacokinetics
- Disease Models, Animal
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/diagnostic imaging
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Injections, Intravenous
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Knockout, ApoE
- Molecular Imaging
- Monocytes/immunology
- Monocytes/metabolism
- Monocytes/pathology
- Organometallic Compounds/administration & dosage
- Organometallic Compounds/pharmacokinetics
- Plaque, Atherosclerotic
- Positron-Emission Tomography
- Predictive Value of Tests
- Radiopharmaceuticals/administration & dosage
- Radiopharmaceuticals/pharmacokinetics
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Mice
Collapse
Affiliation(s)
- Osamu Baba
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis
| | - Li-Hao Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis
| | - Andrew Elvington
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Deborah Sultan
- Department of Radiology, Washington University School of Medicine, St. Louis
| | - Gyu Seong Heo
- Department of Radiology, Washington University School of Medicine, St. Louis
| | - Xiaohui Zhang
- Department of Radiology, Washington University School of Medicine, St. Louis
| | - Hannah Luehmann
- Department of Radiology, Washington University School of Medicine, St. Louis
| | - Lisa Detering
- Department of Radiology, Washington University School of Medicine, St. Louis
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, St. Louis
| | - Gwendalyn J. Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis
| |
Collapse
|
7
|
Gómez Toledo A, Sorrentino JT, Sandoval DR, Malmström J, Lewis NE, Esko JD. A Systems View of the Heparan Sulfate Interactome. J Histochem Cytochem 2021; 69:105-119. [PMID: 33494649 PMCID: PMC7841697 DOI: 10.1369/0022155420988661] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/28/2022] Open
Abstract
Heparan sulfate proteoglycans consist of a small family of proteins decorated with one or more covalently attached heparan sulfate glycosaminoglycan chains. These chains have intricate structural patterns based on the position of sulfate groups and uronic acid epimers, which dictate their ability to engage a large repertoire of heparan sulfate-binding proteins, including extracellular matrix proteins, growth factors and morphogens, cytokines and chemokines, apolipoproteins and lipases, adhesion and growth factor receptors, and components of the complement and coagulation system. This review highlights recent progress in the characterization of the so-called "heparan sulfate interactome," with a major focus on systems-wide strategies as a tool for discovery and characterization of this subproteome. In addition, we compiled all heparan sulfate-binding proteins reported in the literature to date and grouped them into a few major functional classes by applying a networking approach.
Collapse
Affiliation(s)
- Alejandro Gómez Toledo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - James T Sorrentino
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Daniel R Sandoval
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| | - Johan Malmström
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, La Jolla, California
- Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
8
|
Abstract
Aggrecan is a large proteoglycan that forms giant hydrated aggregates with hyaluronan in the extracellular matrix (ECM). The extraordinary resistance of these aggregates to compression explains their abundance in articular cartilage of joints where they ensure adequate load-bearing. In the brain, they provide mechanical buffering and contribute to formation of perineuronal nets, which regulate synaptic plasticity. Aggrecan is also present in cardiac jelly, developing heart valves, and blood vessels during cardiovascular development. Whereas aggrecan is essential for skeletal development, its function in the developing cardiovascular system remains to be fully elucidated. An excess of aggrecan was demonstrated in cardiovascular tissues in aortic aneurysms, atherosclerosis, vascular re-stenosis after injury, and varicose veins. It is a product of vascular smooth muscle and is likely to be an important component of pericellular matrix, where its levels are regulated by proteases. Aggrecan can contribute to specific biophysical and regulatory properties of cardiovascular ECM via the diverse interactions of its domains, and its accumulation is likely to have a significant role in developmental and disease pathways. Here, the established biological functions of aggrecan, its cardiovascular associations, and potential roles in cardiovascular development and disease are discussed.
Collapse
Affiliation(s)
- Christopher D Koch
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut.,Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.,Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Chan Mi Lee
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| |
Collapse
|
9
|
Qu D, Wang L, Huo M, Song W, Lau CW, Xu J, Xu A, Yao X, Chiu JJ, Tian XY, Huang Y. Focal TLR4 activation mediates disturbed flow-induced endothelial inflammation. Cardiovasc Res 2020; 116:226-236. [PMID: 30785200 DOI: 10.1093/cvr/cvz046] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/19/2018] [Accepted: 02/18/2019] [Indexed: 11/13/2022] Open
Abstract
AIMS Disturbed blood flow at arterial branches and curvatures modulates endothelial function and predisposes the region to endothelial inflammation and subsequent development of atherosclerotic lesions. Activation of the endothelial Toll-like receptors (TLRs), in particular TLR4, contributes to vascular inflammation. Therefore, we investigate whether TLR4 can sense disturbed flow (DF) to mediate the subsequent endothelial inflammation. METHODS AND RESULTS En face staining of endothelium revealed that TLR4 expression, activation, and its downstream inflammatory markers were elevated in mouse aortic arch compared with thoracic aorta, which were absent in Tlr4mut mice. Similar results were observed in the partial carotid ligation model where TLR4 signalling was activated in response to ligation-induced flow disturbance in mouse carotid arteries, and such effect was attenuated in Tlr4mut mice. DF in vitro increased TLR4 expression and activation in human endothelial cells (ECs) and promoted monocyte-EC adhesion, which were inhibited in TLR4-knockdown ECs. Among endogenous TLR4 ligands examined as candidate mediators of DF-induced TLR4 activation, fibronectin containing the extra domain A (FN-EDA) expressed by ECs was increased by DF and was revealed to directly interact with and activate TLR4. CONCLUSION Our findings demonstrate the indispensable role of TLR4 in DF-induced endothelial inflammation and pinpoint FN-EDA as the endogenous TLR4 activator in this scenario. This novel mechanism of vascular inflammation under DF condition may serve as a critical initiating step in atherogenesis.
Collapse
Affiliation(s)
- Dan Qu
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Mingyu Huo
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Wencong Song
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Wai Lau
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jian Xu
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
| | - Xiaoqiang Yao
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jeng-Jiann Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Xiao Yu Tian
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Ma Z, Mao C, Jia Y, Fu Y, Kong W. Extracellular matrix dynamics in vascular remodeling. Am J Physiol Cell Physiol 2020; 319:C481-C499. [PMID: 32579472 DOI: 10.1152/ajpcell.00147.2020] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vascular remodeling is the adaptive response to various physiological and pathophysiological alterations that are closely related to aging and vascular diseases. Understanding the mechanistic regulation of vascular remodeling may be favorable for discovering potential therapeutic targets and strategies. The extracellular matrix (ECM), including matrix proteins and their degradative metalloproteases, serves as the main component of the microenvironment and exhibits dynamic changes during vascular remodeling. This process involves mainly the altered composition of matrix proteins, metalloprotease-mediated degradation, posttranslational modification of ECM proteins, and altered topographical features of the ECM. To date, adequate studies have demonstrated that ECM dynamics also play a critical role in vascular remodeling in various diseases. Here, we review these related studies, summarize how ECM dynamics control vascular remodeling, and further indicate potential diagnostic biomarkers and therapeutic targets in the ECM for corresponding vascular diseases.
Collapse
Affiliation(s)
- Zihan Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chenfeng Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
11
|
Pessentheiner AR, Ducasa GM, Gordts PLSM. Proteoglycans in Obesity-Associated Metabolic Dysfunction and Meta-Inflammation. Front Immunol 2020; 11:769. [PMID: 32508807 PMCID: PMC7248225 DOI: 10.3389/fimmu.2020.00769] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Proteoglycans are a specific subset of glycoproteins found at the cell surface and in the extracellular matrix, where they interact with a plethora of proteins involved in metabolic homeostasis and meta-inflammation. Over the last decade, new insights have emerged on the mechanism and biological significance of these interactions in the context of diet-induced disorders such as obesity and type-2 diabetes. Complications of energy metabolism drive most diet-induced metabolic disorders, which results in low-grade chronic inflammation, thereby affecting proper function of many vital organs involved in energy homeostasis, such as the brain, liver, kidney, heart and adipose tissue. Here, we discuss how heparan, chondroitin and keratan sulfate proteoglycans modulate obesity-induced metabolic dysfunction and low-grade inflammation that impact the initiation and progression of obesity-associated morbidities.
Collapse
Affiliation(s)
- Ariane R. Pessentheiner
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
| | - G. Michelle Ducasa
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
| | - Philip L. S. M. Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
12
|
Ashwood C, Waas M, Weerasekera R, Gundry RL. Reference glycan structure libraries of primary human cardiomyocytes and pluripotent stem cell-derived cardiomyocytes reveal cell-type and culture stage-specific glycan phenotypes. J Mol Cell Cardiol 2020; 139:33-46. [PMID: 31972267 DOI: 10.1016/j.yjmcc.2019.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/16/2022]
Abstract
Cell surface glycoproteins play critical roles in maintaining cardiac structure and function in health and disease and the glycan-moiety attached to the protein is critical for proper protein folding, stability and signaling [1]. However, despite mounting evidence that glycan structures are key modulators of heart function and must be considered when developing cardiac biomarkers, we currently do not have a comprehensive view of the glycans present in the normal human heart. In the current study, we used porous graphitized carbon liquid chromatography interfaced with mass spectrometry (PGC-LC-MS) to generate glycan structure libraries for primary human heart tissue homogenate, cardiomyocytes (CM) enriched from human heart tissue, and human induced pluripotent stem cell derived CM (hiPSC-CM). Altogether, we established the first reference structure libraries of the cardiac glycome containing 265 N- and O-glycans. Comparing the N-glycome of CM enriched from primary heart tissue to that of heart tissue homogenate, the same pool of N-glycan structures was detected in each sample type but the relative signal of 21 structures significantly differed between samples, with the high mannose class increased in enriched CM. Moreover, by comparing primary CM to hiPSC-CM collected during 20-100 days of differentiation, dynamic changes in the glycan profile throughout in vitro differentiation were observed and differences between primary and hiPSC-CM were revealed. Namely, >30% of the N-glycome significantly changed across these time-points of differentiation and only 23% of the N-glycan structures were shared between hiPSC-CM and primary CM. These observations are an important complement to current genomic, transcriptomic, and proteomic profiling and reveal new considerations for the use and interpretation of hiPSC-CM models for studies of human development, disease, and drug testing. Finally, these data are expected to support future regenerative medicine efforts by informing targets for evaluating the immunogenic potential of hiPSC-CM and harnessing differences between immature, proliferative hiPSC-CM and adult primary CM.
Collapse
Affiliation(s)
- Christopher Ashwood
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew Waas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ranjuna Weerasekera
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rebekah L Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
13
|
Trout AL, Rutkai I, Biose IJ, Bix GJ. Review of Alterations in Perlecan-Associated Vascular Risk Factors in Dementia. Int J Mol Sci 2020; 21:E679. [PMID: 31968632 PMCID: PMC7013765 DOI: 10.3390/ijms21020679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 01/10/2023] Open
Abstract
Perlecan is a heparan sulfate proteoglycan protein in the extracellular matrix that structurally and biochemically supports the cerebrovasculature by dynamically responding to changes in cerebral blood flow. These changes in perlecan expression seem to be contradictory, ranging from neuroprotective and angiogenic to thrombotic and linked to lipid retention. This review investigates perlecan's influence on risk factors such as diabetes, hypertension, and amyloid that effect Vascular contributions to Cognitive Impairment and Dementia (VCID). VCID, a comorbidity with diverse etiology in sporadic Alzheimer's disease (AD), is thought to be a major factor that drives the overall clinical burden of dementia. Accordingly, changes in perlecan expression and distribution in response to VCID appears to be injury, risk factor, location, sex, age, and perlecan domain dependent. While great effort has been made to understand the role of perlecan in VCID, additional studies are needed to increase our understanding of perlecan's role in health and in cerebrovascular disease.
Collapse
Affiliation(s)
- Amanda L. Trout
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - Ibolya Rutkai
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; (I.R.); (I.J.B.)
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Ifechukwude J. Biose
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; (I.R.); (I.J.B.)
| | - Gregory J. Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; (I.R.); (I.J.B.)
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
14
|
Allahverdian S, Ortega C, Francis GA. Smooth Muscle Cell-Proteoglycan-Lipoprotein Interactions as Drivers of Atherosclerosis. Handb Exp Pharmacol 2020; 270:335-358. [PMID: 33340050 DOI: 10.1007/164_2020_364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In humans, smooth muscle cells (SMCs) are the main cell type in the artery medial layer, in pre-atherosclerotic diffuse thickening of the intima, and in all stages of atherosclerotic lesion development. SMCs secrete the proteoglycans responsible for the initial binding and retention of atherogenic lipoproteins in the artery intima, with this retention driving foam cell formation and subsequent stages of atherosclerosis. In this chapter we review current knowledge of the extracellular matrix generated by SMCs in medial and intimal arterial layers, their relationship to atherosclerotic lesion development and stabilization, how these findings correlate with mouse models of atherosclerosis, and potential therapies aimed at targeting the SMC matrix-lipoprotein interaction for atherosclerosis prevention.
Collapse
Affiliation(s)
- Sima Allahverdian
- Department of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Carleena Ortega
- Department of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Gordon A Francis
- Department of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Interaction of arterial proteoglycans with low density lipoproteins (LDLs): From theory to promising therapeutic approaches. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2019. [DOI: 10.1016/j.medntd.2019.100016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
16
|
Wight TN. A role for proteoglycans in vascular disease. Matrix Biol 2018; 71-72:396-420. [PMID: 29499356 PMCID: PMC6110991 DOI: 10.1016/j.matbio.2018.02.019] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/15/2022]
Abstract
The content of proteoglycans (PGs) is low in the extracellular matrix (ECM) of vascular tissue, but increases dramatically in all phases of vascular disease. Early studies demonstrated that glycosaminoglycans (GAGs) including chondroitin sulfate (CS), dermatan sulfate (DS), keratan sulfate (KS) and heparan sulfate (HS) accumulate in vascular lesions in both humans and in animal models in areas of the vasculature that are susceptible to disease initiation (such as at branch points) and are frequently coincident with lipid deposits. Later studies showed the GAGs were covalently attached to specific types of core proteins that accumulate in vascular lesions. These molecules include versican (CSPG), biglycan and decorin (DS/CSPGs), lumican and fibromodulin (KSPGs) and perlecan (HSPG), although other types of PGs are present, but in lesser quantities. While the overall molecular design of these macromolecules is similar, there is tremendous structural diversity among the different PG families creating multiple forms that have selective roles in critical events that form the basis of vascular disease. PGs interact with a variety of different molecules involved in disease pathogenesis. For example, PGs bind and trap serum components that accumulate in vascular lesions such as lipoproteins, amyloid, calcium, and clotting factors. PGs interact with other ECM components and regulate, in part, ECM assembly and turnover. PGs interact with cells within the lesion and alter the phenotypes of both resident cells and cells that invade the lesion from the circulation. A number of therapeutic strategies have been developed to target specific PGs involved in key pathways that promote vascular disease. This review will provide a historical perspective of this field of research and then highlight some of the evidence that defines the involvement of PGs and their roles in the pathogenesis of vascular disease.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, United States.
| |
Collapse
|
17
|
Nahon JE, Hoekstra M, Havik SR, Van Santbrink PJ, Dallinga-Thie GM, Kuivenhoven JA, Geerling JJ, Van Eck M. Proteoglycan 4 regulates macrophage function without altering atherosclerotic lesion formation in a murine bone marrow-specific deletion model. Atherosclerosis 2018; 274:120-127. [DOI: 10.1016/j.atherosclerosis.2018.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 11/15/2022]
|
18
|
Gordts PLSM, Esko JD. The heparan sulfate proteoglycan grip on hyperlipidemia and atherosclerosis. Matrix Biol 2018; 71-72:262-282. [PMID: 29803939 DOI: 10.1016/j.matbio.2018.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of proteins involved in lipid homeostasis and inflammation. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions in the context of cardiovascular disease. The majority of cardiovascular disease-related deaths are caused by complications of atherosclerosis, a disease that results in narrowing of the arterial lumen, thereby reducing blood flow to critical levels in vital organs, such as the heart and brain. Here, we discuss novel insights into how heparan sulfate proteoglycans modulate risk factors such as hyperlipidemia and inflammation that drive the initiation and progression of atherosclerotic plaques to their clinical critical endpoint.
Collapse
Affiliation(s)
- Philip L S M Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA.
| | - Jeffrey D Esko
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Lord MS, Tang F, Rnjak-Kovacina J, Smith JGW, Melrose J, Whitelock JM. The multifaceted roles of perlecan in fibrosis. Matrix Biol 2018; 68-69:150-166. [PMID: 29475023 DOI: 10.1016/j.matbio.2018.02.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/11/2022]
Abstract
Perlecan, or heparan sulfate proteoglycan 2 (HSPG2), is a ubiquitous heparan sulfate proteoglycan that has major roles in tissue and organ development and wound healing by orchestrating the binding and signaling of mitogens and morphogens to cells in a temporal and dynamic fashion. In this review, its roles in fibrosis are reviewed by drawing upon evidence from tissue and organ systems that undergo fibrosis as a result of an uncontrolled response to either inflammation or traumatic cellular injury leading to an over production of a collagen-rich extracellular matrix. This review focuses on examples of fibrosis that occurs in lung, liver, kidney, skin, kidney, neural tissues and blood vessels and its link to the expression of perlecan in that particular organ system.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Fengying Tang
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia
| | | | - James G W Smith
- University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia; Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia
| |
Collapse
|
20
|
Elevated circulating TGF-β is not the cause of increased atherosclerosis development in biglycan deficient mice. Atherosclerosis 2017; 268:68-75. [PMID: 29182988 DOI: 10.1016/j.atherosclerosis.2017.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 10/14/2017] [Accepted: 11/09/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Vascular biglycan contributes to atherosclerosis development and increased biglycan expression correlates with increased atherosclerosis. However, mice deficient in biglycan have either no reduction in atherosclerosis or an unexpected increase in atherosclerosis. Biglycan deficient mice have systemically elevated TGF-β, likely due to lack of sequestration of TGF-β in the extracellular matrix. The purpose of this study was to determine if prevention of TGF-β elevations in biglycan deficient mice affected atherosclerosis development. METHODS Biglycan deficient mice were crossed to Ldlr deficient mice. Diabetes was induced via streptozotocin and all mice were fed a high cholesterol diet. Diabetic biglycan wild type and biglycan deficient Ldlr deficient mice were injected with the TGF-β neutralizing antibody 1D11 or the irrelevant control antibody 13C4. RESULTS Biglycan deficient mice had significantly elevated plasma TGF-β levels, which was further increased by diabetes, and significantly increased atherosclerosis. There was a significant correlation between TGF-β concentrations and atherosclerosis. However, despite nearly complete suppression of plasma TGF-β levels in mice treated with the TGF-β neutralizing antibody 1D11, there was no significant difference in atherosclerosis between mice with elevated TGF-β levels and mice with suppressed TGF-β levels. CONCLUSIONS The increased atherosclerosis in biglycan deficient mice does not appear to be due to elevations in TGF-β.
Collapse
|
21
|
Sarduy R, Brito V, Castillo A, Soto Y, Griñán T, Marleau S, Vázquez AM. Dose-Dependent Induction of an Idiotypic Cascade by Anti-Glycosaminoglycan Monoclonal Antibody in apoE -/- Mice: Association with Atheroprotection. Front Immunol 2017; 8:232. [PMID: 28316603 PMCID: PMC5334371 DOI: 10.3389/fimmu.2017.00232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/17/2017] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis, the underlying pathology of most cardiovascular diseases, is triggered by the retention of apolipoprotein B (apoB)-containing lipoproteins in the arterial wall through electrostatic interactions with glycosaminoglycan (GAG) side chains of proteoglycans. Previously, we reported the antiatherogenic properties of the chimeric monoclonal antibody (mAb) chP3R99-LALA, which binds sulfated GAGs, inhibits low-density lipoprotein (LDL)–chondroitin sulfate (CS) association, and abrogates LDL oxidation and foam cell formation. In preventive and therapeutic settings, apoE-deficient (apoE−/−) mice immunized with 50 μg of this mAb showed reduced atherosclerotic lesions related with the induction of autologous anti-GAG antibodies. Knowing that age and sex are major non-modifiable risk factors in the development of atherosclerosis, the present study aimed to assess the influence of these variables on the capacity of chP3R99-LALA mAb to generate an anti-CS antibody response. Also, we aimed at defining the impact of the dose of chP3R99-LALA on the anti-CS antibody induction and the atheroprotective effect of this mAb in apoE−/− mice. Neither age nor sex had an impact in the IgG anti-CS antibody response induced by s.c. immunization with this mAb. Moreover, chP3R99-LALA mAb reduced atherosclerotic lesions to a similar extent in both young male and female apoE−/− mice fed a hypercholesterolemic diet and, in middle-aged female apoE−/− mice, with spontaneous lesions. On the other hand, increasing the dose of chP3R99-LALA (200 vs. 50 μg) elicited an anti-idiotype antibody cascade characterized by higher levels of anti-idiotype (Ab2), anti-anti-idiotype (Ab3), and anti-CS antibody responses. Moreover, this dose increment resulted in a striking reduction of aortic atherosclerotic lesions in immunized mice.
Collapse
Affiliation(s)
- Roger Sarduy
- Division of Immunobiology, Center of Molecular Immunology , Havana , Cuba
| | - Victor Brito
- Division of Immunobiology, Center of Molecular Immunology , Havana , Cuba
| | - Adriana Castillo
- Division of Immunobiology, Center of Molecular Immunology , Havana , Cuba
| | - Yosdel Soto
- Division of Immunobiology, Center of Molecular Immunology , Havana , Cuba
| | - Tania Griñán
- Division of Immunobiology, Center of Molecular Immunology , Havana , Cuba
| | - Sylvie Marleau
- Faculté de Pharmacie, Université de Montréal , Montréal, QC , Canada
| | - Ana María Vázquez
- Innovation Managing Direction, Center of Molecular Immunology , Havana , Cuba
| |
Collapse
|
22
|
Fuller E, Little CB, Melrose J. Interleukin-1α induces focal degradation of biglycan and tissue degeneration in an in-vitro ovine meniscal model. Exp Mol Pathol 2016; 101:214-220. [PMID: 27615609 DOI: 10.1016/j.yexmp.2016.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
Abstract
We have developed an ovine meniscal explant model where the focal degradative events leading to characteristic fragmentation patterns of biglycan in human OA of the knee and hip, and evident in animal models of knee OA and IVD degeneration are reproduced in culture. Lateral and medial menisci were dissected into outer, mid and inner zones and established in explant culture±IL-1 (10ng/ml). The biglycan species present in conditioned media samples and in GuHCl extracts of tissues were examined by Western blotting using two C-terminal antibodies PR-85 and EF-Bgn. Clear differences were evident in the biglycan species in each meniscal tissue zone with the medial outer meniscus having lower biglycan levels and major fragments of 20, 28, 33 and 36, 39kDa. Similar fragmentation was detected in articular cartilage samples, 42-45kDa core protein species were also detected. Biglycan fragmentation was not as extensive in the IL-1 stimulated meniscal cultures with 36, 39, 42 and 45kDa biglycan species evident. Thus the medial meniscus outer zone displayed the highest levels of biglycan processing in this model and correlated with a major zone of meniscal remodelling in OA in man. Significantly, enzymatic digests of meniscal tissues with MMP-13, ADAMTS-4 and ADAMTS-5 have also generated similar biglycan species in-vitro. Zymography confirmed that the medial outer zone was the region of maximal MMP activity. This model represents a convenient system to recapitulate matrix remodelling events driven by IL-1 in pathological cartilages and in animal models of joint degeneration.
Collapse
Affiliation(s)
- Emily Fuller
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, Australia
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, Australia; School of Biomedical Engineering, University of New South Wales, Kensington, NSW 2052, Australia.
| |
Collapse
|
23
|
Gáspár R, Pipicz M, Hawchar F, Kovács D, Djirackor L, Görbe A, Varga ZV, Kiricsi M, Petrovski G, Gácser A, Csonka C, Csont T. The cytoprotective effect of biglycan core protein involves Toll-like receptor 4 signaling in cardiomyocytes. J Mol Cell Cardiol 2016; 99:138-150. [PMID: 27515282 DOI: 10.1016/j.yjmcc.2016.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/15/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023]
Abstract
AIMS Exogenously administered biglycan (core protein with high-molecular weight glycosaminoglycan chains) has been shown to protect neonatal cardiomyocytes against simulated ischemia/reperfusion injury (SI/R), however, the mechanism of action is not clear. In this study we aimed to investigate, which structural component of biglycan is responsible for its cardiocytoprotective effect and to further explore the molecular mechanisms involved in the cytoprotection. METHODS AND RESULTS A pilot study was conducted to demonstrate that both native (glycanated) and deglycanated biglycan can attenuate cell death induced by SI/R in a dose-dependent manner in primary neonatal cardiomyocytes isolated from Wistar rats. In separate experiments, we have shown that similarly to glycanated biglycan, recombinant human biglycan core protein (rhBGNc) protects cardiomyocytes against SI/R injury. In contrast, the glycosaminoglycan component dermatan sulfate had no significant effect on cell viability, while chondroitin sulfate further enhanced cell death induced by SI/R. Treatment of cardiomyocytes with rhBGNc reverses the effect of SI/R upon markers of necrosis, apoptosis, mitochondrial membrane potential, and autophagy. We have also shown that pharmacological blockade of Toll-like receptor 4 (TLR4) signaling or its downstream mediators (IRAK1/4, ERK, JNK and p38 MAP kinases) abolished the cytoprotective effect of rhBGNc against SI/R injury. Pretreatment of cardiomyocytes with rhBGNc for 20h resulted in increased Akt phosphorylation and NO production without having significant effect on phosphorylation of ERK1/2, STAT3, and on the production of superoxide. Treatment over 10min and 1h with rhBGNc increased ERK1 phosphorylation, while the SI/R-induced increase in superoxide production was attenuated by rhBGNc. Blockade of NO synthesis also prevented the cardiocytoprotective effect of rhBGNc. CONCLUSIONS The core protein of exogenous biglycan protects myocardial cells from SI/R injury via TLR4-mediated mechanisms involving activation of ERK, JNK and p38 MAP kinases and increased NO production. The cytoprotective effect of rhBGNc is due to modulation of SI/R-induced changes in necrosis, apoptosis and autophagy.
Collapse
Affiliation(s)
- Renáta Gáspár
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Márton Pipicz
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Fatime Hawchar
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Dávid Kovács
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Luna Djirackor
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Anikó Görbe
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán V Varga
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Goran Petrovski
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary; Centre of Eye Research, Department of Ophthalmology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Attila Gácser
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Csonka
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tamás Csont
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
24
|
Hultgårdh-Nilsson A, Borén J, Chakravarti S. The small leucine-rich repeat proteoglycans in tissue repair and atherosclerosis. J Intern Med 2015; 278:447-61. [PMID: 26477596 PMCID: PMC4616156 DOI: 10.1111/joim.12400] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteoglycans consist of a protein core with one or more covalently attached glycosaminoglycan (GAG) side chains and have multiple roles in the initiation and progression of atherosclerosis. Here we discuss the potential and known functions of a group of small leucine-rich repeat proteoglycans (SLRPs) in atherosclerosis. We focus on five SLRPs, decorin, biglycan, lumican, fibromodulin and PRELP, because these have been detected in atherosclerotic plaques or demonstrated to have a role in animal models of atherosclerosis. Decorin and biglycan are modified post-translationally by substitution with chondroitin/dermatan sulphate GAGs, whereas lumican, fibromodulin and PRELP have keratan sulphate side chains, and the core proteins have leucine-rich repeat (LRR) motifs that are characteristic of the LRR superfamily. The chondroitin/dermatan sulphate GAG side chains have been implicated in lipid retention in atherosclerosis. The core proteins are discussed here in the context of (i) interactions with collagens and their implications in tissue integrity, fibrosis and wound repair and (ii) interactions with growth factors, cytokines, pathogen-associated molecular patterns and cell surface receptors that impact normal physiology and disease processes such as inflammation, innate immune responses and wound healing (i.e. processes that are all important in plaque development and progression). Thus, studies of these SLRPs in the context of wound healing are providing clues about their functions in early stages of atherosclerosis to plaque vulnerability and cardiovascular disease at later stages. Understanding of signal transduction pathways regulated by the core protein interactions is leading to novel roles and therapeutic potential for these proteins in wound repair and atherosclerosis.
Collapse
Affiliation(s)
| | - J Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - S Chakravarti
- Departments of Medicine, Ophthalmology and Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Meen AJ, Drevon CA, Pejler G, Jenssen TG, Olstad OK, Åbrink M, Kolset SO. Serglycin protects against high fat diet-induced increase in serum LDL in mice. Glycoconj J 2015; 32:703-14. [PMID: 26391682 DOI: 10.1007/s10719-015-9621-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 12/21/2022]
Abstract
Proteoglycans have been implicated in regulation of lipoprotein metabolism. However, the impact of serglycin, the major proteoglycan expressed by many hematopoietic- and endothelial cells, on lipoprotein metabolism has not been explored. Here we addressed this issue by comparing several parameters of lipid metabolism in wild type (WT) and serglycin-/- mice, both at baseline and after feeding mice the Paigen diet. We show that, after feeding this diet for 20 weeks, serglycin deficient mice exhibited elevated concentrations of serum LDL in comparison with WT mice, thus suggesting that serglycin protects against an elevation of serum LDL levels after intake of a high-fat diet. Body weight increased in both groups, but only significantly in the serglycin-/- group. To explore the mechanism underlying this phenotype, genome-wide expression analysis was performed on liver tissues from WT and serglycin-/- mice. This analysis showed that serglycin-deficiency is associated with differential expression of numerous genes involved in the regulation of lipid metabolism, suggesting that the impact of serglycin on LDL levels may be related to effects at the gene expression level. In particular, several members of the CYP gene family were differently regulated in serglycin-/- compared with WT mice. Moreover, upstream regulator analysis suggested that several pro-inflammatory pathways, including the NFκB pathway, could contribute to the impact of serglycin on LDL. Hence, the elevation of serum LDL seen in serglycin-/- mice may be linked to dysregulated inflammatory responses. Taken together, our findings introduce serglycin as a novel player in processes that regulate lipid metabolism.
Collapse
Affiliation(s)
- Astri J Meen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Pb. 1046, Blindern, 0317, Oslo, Norway.
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Pb. 1046, Blindern, 0317, Oslo, Norway
| | - Gunnar Pejler
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Trond G Jenssen
- Department of Transplant Medicine, Section of Nephrology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Health Science, University of Tromsø, Tromsø, Norway
| | - Ole Kristoffer Olstad
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Magnus Åbrink
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Svein O Kolset
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Pb. 1046, Blindern, 0317, Oslo, Norway
| |
Collapse
|
26
|
Du J, Wang Y, Jia L. ECM and Atherosclerosis. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Xu YX, Ashline D, Liu L, Tassa C, Shaw SY, Ravid K, Layne MD, Reinhold V, Robbins PW. The glycosylation-dependent interaction of perlecan core protein with LDL: implications for atherosclerosis. J Lipid Res 2014; 56:266-76. [PMID: 25528754 PMCID: PMC4306681 DOI: 10.1194/jlr.m053017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Perlecan is a major heparan sulfate (HS) proteoglycan in the arterial wall. Previous studies have linked it to atherosclerosis. Perlecan contains a core protein and three HS side chains. Its core protein has five domains (DI–DV) with disparate structures and DII is highly homologous to the ligand-binding portion of LDL receptor (LDLR). The functional significance of this domain has been unknown. Here, we show that perlecan DII interacts with LDL. Importantly, the interaction largely relies on O-linked glycans that are only present in the secreted DII. Among the five repeat units of DII, most of the glycosylation sites are from the second unit, which is highly divergent and rich in serine and threonine, but has no cysteine residues. Interestingly, most of the glycans are capped by the negatively charged sialic acids, which are critical for LDL binding. We further demonstrate an additive effect of HS and DII on LDL binding. Unlike LDLR, which directs LDL uptake through endocytosis, this study uncovers a novel feature of the perlecan LDLR-like DII in receptor-mediated lipoprotein retention, which depends on its glycosylation. Thus, perlecan glycosylation may play a role in the early LDL retention during the development of atherosclerosis.
Collapse
Affiliation(s)
- Yu-Xin Xu
- Center for Human Genetic Research and Cardiovascular Research CenterMassachusetts General Hospital, Boston, MA 02114
| | - David Ashline
- The Glycomics Center, University of New Hampshire, Durham, NH 03824
| | - Li Liu
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118
| | - Carlos Tassa
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Stanley Y Shaw
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Katya Ravid
- Departments of Medicine Boston University School of Medicine, Boston, MA 02118 Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Matthew D Layne
- Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Vernon Reinhold
- The Glycomics Center, University of New Hampshire, Durham, NH 03824
| | - Phillips W Robbins
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118
| |
Collapse
|
28
|
Tannock LR. Vascular proteoglycans and atherosclerosis: not over yet. Atherosclerosis 2014; 237:435-6. [PMID: 25463070 DOI: 10.1016/j.atherosclerosis.2014.08.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Lisa R Tannock
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY 40536, USA; Department of Veterans Affairs, Lexington, KY, USA.
| |
Collapse
|
29
|
Tang T, Thompson JC, Wilson PG, Yoder MH, Müeller J, Fischer JW, Williams KJ, Tannock LR. Biglycan deficiency: increased aortic aneurysm formation and lack of atheroprotection. J Mol Cell Cardiol 2014; 75:174-80. [PMID: 25093698 DOI: 10.1016/j.yjmcc.2014.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
Abstract
Proteoglycans of the arterial wall play a critical role in vascular integrity and the development of atherosclerosis owing to their ability to organize extracellular matrix molecules and to bind and retain atherogenic apolipoprotein (apo)-B containing lipoproteins. Prior studies have suggested a role for biglycan in aneurysms and in atherosclerosis. Angiotensin II (angII) infusions into mice have been shown to induce abdominal aortic aneurysm development, increase vascular biglycan content, increase arterial retention of lipoproteins, and accelerate atherosclerosis. The goal of this study was to determine the role of biglycan in angII-induced vascular diseases. Biglycan-deficient or biglycan wildtype mice crossed to LDL receptor deficient (Ldlr-/-) mice (C57BL/6 background) were infused with angII (500 or 1000ng/kg/min) or saline for 28days while fed on normal chow, then pumps were removed, and mice were switched to an atherogenic Western diet for 6weeks. During angII infusions, biglycan-deficient mice developed abdominal aortic aneurysms, unusual descending thoracic aneurysms, and a striking mortality caused by aortic rupture (76% for males and 48% for females at angII 1000ng/kg/min). Histological analyses of non-aneurysmal aortic segments from biglycan-deficient mice revealed a deficiency of dense collagen fibers and the aneurysms demonstrated conspicuous elastin breaks. AngII infusion increased subsequent atherosclerotic lesion development in both biglycan-deficient and biglycan wildtype mice. However, the biglycan genotype did not affect the atherosclerotic lesion area induced by the Western diet after treatment with angII. Biglycan-deficient mice exhibited significantly increased vascular perlecan content compared to biglycan wildtype mice. Analyses of the atherosclerotic lesions demonstrated that vascular perlecan co-localized with apoB, suggesting that increased perlecan compensated for biglycan deficiency in terms of lipoprotein retention. Biglycan deficiency increases aortic aneurysm development and is not protective against the development of atherosclerosis. Biglycan deficiency leads to loosely packed aortic collagen fibers, increased susceptibility of aortic elastin fibers to angII-induced stress, and up-regulation of vascular perlecan content.
Collapse
Affiliation(s)
- Tao Tang
- Division of Endocrinology and Molecular Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Joel C Thompson
- Division of Endocrinology and Molecular Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Patricia G Wilson
- Division of Endocrinology and Molecular Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Meghan H Yoder
- Division of Endocrinology and Molecular Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Julia Müeller
- Institute of Pharmacology and Clinical Pharmacology, University Clinics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jens W Fischer
- Institute of Pharmacology and Clinical Pharmacology, University Clinics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kevin Jon Williams
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, Temple University, Philadelphia, PA, USA; Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Göteborg, Sweden
| | - Lisa R Tannock
- Division of Endocrinology and Molecular Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Veterans Affairs, Lexington, KY, USA.
| |
Collapse
|
30
|
Chuang CY, Degendorfer G, Davies MJ. Oxidation and modification of extracellular matrix and its role in disease. Free Radic Res 2014; 48:970-89. [DOI: 10.3109/10715762.2014.920087] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Thompson JC, Tang T, Wilson PG, Yoder MH, Tannock LR. Increased atherosclerosis in mice with increased vascular biglycan content. Atherosclerosis 2014; 235:71-5. [PMID: 24816040 DOI: 10.1016/j.atherosclerosis.2014.03.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 03/12/2014] [Accepted: 03/31/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The response to retention hypothesis of atherogenesis proposes that atherosclerosis is initiated via the retention of atherogenic lipoproteins by vascular proteoglycans. Co-localization studies suggest that of all the vascular proteoglycans, biglycan is the one most closely co-localized with LDL. The goal of this study was to determine if over-expression of biglycan in hyperlipidemic mice would increase atherosclerosis development. METHODS Transgenic mice were developed by expressing biglycan under control of the smooth muscle actin promoter, and were crossed to the LDL receptor deficient (C57BL/6 background) atherosclerotic mouse model. Biglycan transgenic and non-transgenic control mice were fed an atherogenic Western diet for 4-12 weeks. RESULTS LDL receptor deficient mice overexpressing biglycan under control of the smooth muscle alpha actin promoter had increased atherosclerosis development that correlated with vascular biglycan content. CONCLUSION Increased vascular biglycan content predisposes to increased lipid retention and increased atherosclerosis development.
Collapse
Affiliation(s)
- Joel C Thompson
- Division of Endocrinology and Molecular Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Tao Tang
- Division of Endocrinology and Molecular Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Patricia G Wilson
- Division of Endocrinology and Molecular Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Meghan H Yoder
- Division of Endocrinology and Molecular Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Lisa R Tannock
- Division of Endocrinology and Molecular Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Veterans Affairs, Lexington, KY, USA.
| |
Collapse
|
32
|
Oberkersch R, Maccari F, Bravo AI, Volpi N, Gazzaniga S, Calabrese GC. Atheroprotective remodelling of vascular dermatan sulphate proteoglycans in response to hypercholesterolaemia in a rat model. Int J Exp Pathol 2014; 95:181-90. [PMID: 24602133 DOI: 10.1111/iep.12072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/14/2014] [Indexed: 01/03/2023] Open
Abstract
Proteoglycan accumulation within the arterial intima has been implicated in atherosclerosis progression in humans. Nevertheless, hypercholesterolaemia is unable to induce intimal thickening and atheroma plaque development in rats. The study was performed to analyse proteoglycans modifications in rats fed with a high-cholesterol diet to understand whether vascular wall remodelling protects against lesions. Sections obtained from rat aortas showed normal features, in intimal-to-media ratio and lipid accumulation. However, focal endothelial hyperplasia and neo-intima rearrangement were observed in high-cholesterol animals. Besides, hypercholesterolaemia induced an inflammatory microenviroment. We determined the expression of different proteoglycans from aortic cells by Western blot and observed a diminished production of decorin and biglycan in high-cholesterol animals compared with control (P < 0.01 and P < 0.05, respectively). Versican was increased in high-cholesterol animals (P < 0.05), whereas perlecan production showed no differences. No modification of the total content of glycosaminoglycans (GAGs) was found between the two experimental groups. In contrast, the chondroitin sulphate/dermatan sulphate ratio was increased in the high-cholesterol group as compared to the control (0.56 and 0.34, respectively). Structural alterations in the disaccharide composition of galactosaminoglycans were also detected by HPLC, as the ratio of 6-sulphate to 4-sulphate disaccharides was increased in high-cholesterol animals (P < 0.05). Our results suggest that attenuation of decorin and biglycan expression might be an effective strategy to inhibit the first step in atherogenesis, although specific GAG structural modification associated with the development of vascular disease took place. Results emphasize the potential application of therapies based on vascular matrix remodelling to treat atherosclerosis.
Collapse
Affiliation(s)
- Roxana Oberkersch
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Kaga E, Karademir B, Baykal AT, Ozer NK. Identification of differentially expressed proteins in atherosclerotic aorta and effect of vitamin E. J Proteomics 2013; 92:260-73. [DOI: 10.1016/j.jprot.2013.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/06/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022]
|
35
|
Hutter R, Huang L, Speidl WS, Giannarelli C, Trubin P, Bauriedel G, Klotman ME, Fuster V, Badimon JJ, Klotman PE. Novel small leucine-rich repeat protein podocan is a negative regulator of migration and proliferation of smooth muscle cells, modulates neointima formation, and is expressed in human atheroma. Circulation 2013; 128:2351-63. [PMID: 24043300 DOI: 10.1161/circulationaha.113.004634] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Smooth muscle cell (SMC) migration and proliferation critically influence the clinical course of vascular disease. We tested the effect of the novel small leucine-rich repeat protein podocan on SMC migration and proliferation using a podocan-deficient mouse in combination with a model of arterial injury and aortic explant SMC culture. In addition, we examined the effect of overexpression of the human form of podocan on human SMCs and tested for podocan expression in human atherosclerosis. In all these conditions, we concomitantly evaluated the Wnt-TCF (T-cell factor) pathway. METHODS AND RESULTS Podocan was strongly and selectively expressed in arteries of wild-type mice after injury. Podocan-deficient mice showed increased arterial lesion formation compared with wild-type littermates in response to injury (P<0.05). Also, SMC proliferation was increased in arteries of podocan-deficient mice compared with wild-type (P<0.05). In vitro, migration and proliferation were increased in podocan-deficient SMCs and were normalized by transfection with the wild-type podocan gene (P<0.05). In addition, upregulation of the Wnt-TCF pathway was found in SMCs of podocan-deficient mice both in vitro and in vivo. On the other hand, podocan overexpression in human SMCs significantly reduced SMC migration and proliferation, inhibiting the Wnt-TCF pathway. Podocan and a Wnt-TCF pathway marker were differently expressed in human coronary restenotic versus primary lesions. CONCLUSIONS Podocan appears to be a potent negative regulator of the migration and proliferation of both murine and human SMCs. The lack of podocan results in excessive arterial repair and prolonged SMC proliferation, which likely is mediated by the Wnt-TCF pathway.
Collapse
Affiliation(s)
- Randolph Hutter
- Departments of Medicine and Cardiology, Mount Sinai School of Medicine, New York, NY (R.H., L.H., W.S.S., C.G., P.T., V.F., J.J.B.); Department of Cardiology, Elisabeth Klinikum, Schmalkalden, Germany (G.B.); Department of Medicine, Duke University, Durham, NC (M.E.K.); and Department of Medicine, Baylor College of Medicine, Houston, TX (P.E.K.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tang T, Wilson PG, Thompson JC, Nelson C, Yoder MH, Tannock LR. Prevention of TGFβ induction attenuates angII-stimulated vascular biglycan and atherosclerosis in Ldlr-/- mice. J Lipid Res 2013; 54:2255-2264. [PMID: 23749984 PMCID: PMC3708375 DOI: 10.1194/jlr.p040139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Indexed: 01/13/2023] Open
Abstract
Angiotensin II (angII) accelerates atherosclerosis, but the mechanisms are not fully understood. The aim of this study was to determine whether TGFβ is required for angII-induced atherosclerosis. Ldlr-null mice fed a normal chow diet were infused with angII or saline for 28 days. A single injection of TGFβ neutralizing antibody 1D11 (2 mg/kg) prevented angII-induction of TGFβ1 levels, and strikingly attenuated angII-induced accumulation of aortic biglycan content. To study atherosclerosis, mice were infused with angII or saline for 4 weeks, and then fed Western diet for a further 6 weeks. 1D11 had no effect on systolic blood pressure or plasma cholesterol; however, angII-infused mice that received 1D11 had reduced atherosclerotic lesion area by 30% (P < 0.05). Immunohistochemical analyses demonstrated that angII induced both lipid retention and accumulation of biglycan and perlecan which colocalized with apoB. 1D11 strikingly reduced the effect of angII on biglycan but not perlecan. 1D11 decreased total collagen content (P < 0.05) in the lesion area without changing plaque inflammation markers (CD68 and CD45). Thus, this study demonstrates that neutralization of TGFβ attenuated angII stimulation of biglycan accumulation and atherogenesis in mice, suggesting that TGFβ-mediated biglycan induction is one of the mechanisms underlying angII-promoted atherosclerosis.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Biglycan/biosynthesis
- Disease Models, Animal
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Receptors, LDL/deficiency
- Receptors, LDL/metabolism
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Tao Tang
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY; Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY; and
| | - Patricia G Wilson
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY; Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY; and
| | - Joel C Thompson
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY; Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY; and
| | - Christina Nelson
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY
| | - Meghan H Yoder
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY
| | - Lisa R Tannock
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY; Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY; and; Department of Veterans Affairs, Lexington, KY.
| |
Collapse
|
37
|
Melchior JT, Sawyer JK, Kelley KL, Shah R, Wilson MD, Hantgan RR, Rudel LL. LDL particle core enrichment in cholesteryl oleate increases proteoglycan binding and promotes atherosclerosis. J Lipid Res 2013; 54:2495-503. [PMID: 23804810 DOI: 10.1194/jlr.m039644] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several studies in humans and animals suggest that LDL particle core enrichment in cholesteryl oleate (CO) is associated with increased atherosclerosis. Diet enrichment with MUFAs enhances LDL CO content. Steroyl O-acyltransferase 2 (SOAT2) is the enzyme that catalyzes the synthesis of much of the CO found in LDL, and gene deletion of SOAT2 minimizes CO in LDL and protects against atherosclerosis. The purpose of this study was to test the hypothesis that the increased atherosclerosis associated with LDL core enrichment in CO results from an increased affinity of the LDL particle for arterial proteoglycans. ApoB-100-only Ldlr(-/-) mice with and without Soat2 gene deletions were fed diets enriched in either cis-MUFA or n-3 PUFA, and LDL particles were isolated. LDL:proteogylcan binding was measured using surface plasmon resonance. Particles with higher CO content consistently bound with higher affinity to human biglycan and the amount of binding was shown to be proportional to the extent of atherosclerosis of the LDL donor mice. The data strongly support the thesis that atherosclerosis was induced through enhanced proteoglycan binding of LDL resulting from LDL core CO enrichment.
Collapse
Affiliation(s)
- John T Melchior
- Department of Pathology, Section of Lipid Sciences, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Raterman HG, Levels H, Voskuyl AE, Lems WF, Dijkmans BA, Nurmohamed MT. HDL protein composition alters from proatherogenic into less atherogenic and proinflammatory in rheumatoid arthritis patients responding to rituximab. Ann Rheum Dis 2013; 72:560-5. [PMID: 22589377 DOI: 10.1136/annrheumdis-2011-201228] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE An atherogenic lipid profile is an established risk factor for cardiovascular (CV) diseases. Interestingly, high inflammatory states as present in rheumatoid arthritis (RA) are associated with unfavourable lipid profile. Data about effects of novel immunomodulating agents as rituximab (RTX) on lipid profile are limited. Therefore, changes in lipids in RTX treated RA patients were evaluated. METHODS In 49 consecutive RTX treated RA patients, serum and EDTA plasma samples were collected at baseline, 1, 3 and 6 months. In these samples, lipid and levels were assessed to determine changes in time. Surface-enhanced laser desorption/ionisation time-of-flight (SELDI-TOF) MS analysis was performed in six good and six non-responding RA patients to study functional high density lipoprotein (HDL) protein composition changes in time. RESULTS In the total group (n=49), the atherogenic index decreased from 4.3 to 3.9 (∼9%) after 6 months. Testing for effect modification revealed a difference in the effect on lipid levels between responders and non-responders upon RTX (p<0.001). ApoB to ApoA-I ratios decreased significantly (∼9%) in good responding (n=32) patients. SELDI-TOF MS analysis revealed a significant decrease in density of mass charge (m/z) marker 11743, representing a decrease in serum amyloid A, in good responding patients. CONCLUSION This study indicates beneficial effects on cholesterol profile upon RTX treatment along with improvement of disease activity. Proteomic analysis of the HDL particle reveals composition changes from proatherogenic to a less proatherogenic composition during 6 months RTX treatment. Whether these HDL particle alterations during immunotherapies result in a lower CV event rate remains to be established.
Collapse
MESH Headings
- Adult
- Aged
- Antibodies, Monoclonal, Murine-Derived/therapeutic use
- Antirheumatic Agents/therapeutic use
- Apolipoproteins A/analysis
- Apolipoproteins A/blood
- Apolipoproteins B/analysis
- Apolipoproteins B/blood
- Arthritis, Rheumatoid/blood
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/epidemiology
- Atherosclerosis/blood
- Atherosclerosis/epidemiology
- Atherosclerosis/prevention & control
- Cholesterol, HDL/analysis
- Cholesterol, HDL/blood
- Cholesterol, LDL/analysis
- Cholesterol, LDL/blood
- Female
- Humans
- Immunomodulation/drug effects
- Immunomodulation/immunology
- Male
- Middle Aged
- Proteomics
- Risk Factors
- Rituximab
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Treatment Outcome
- Triglycerides/analysis
- Triglycerides/blood
Collapse
Affiliation(s)
- Hennie G Raterman
- Department of Rheumatology and Internal Medicine, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
Kamato D, Babaahmadi Rezaei H, Getachew R, Thach L, Guidone D, Osman N, Roufogalis B, Duke CC, Tran VH, Zheng W, Little PJ. (S)-[6]-Gingerol inhibits TGF-β-stimulated biglycan synthesis but not glycosaminoglycan hyperelongation in human vascular smooth muscle cells. J Pharm Pharmacol 2013; 65:1026-36. [DOI: 10.1111/jphp.12060] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/26/2013] [Indexed: 02/02/2023]
Abstract
Abstract
Objectives
(S)-[6]-Gingerol is under investigation for a variety of therapeutic uses. Transforming growth factor (TGF)-β stimulates proteoglycan synthesis, leading to increased binding of low-density lipoproteins, which is the initiating step in atherosclerosis. We evaluated the effects of (S)-[6]-gingerol on these TGF-β-mediated proteoglycan changes to explore its potential as an anti-atherosclerotic agent.
Methods
Purified (S)-[6]-gingerol was assessed for its effects on proteoglycan synthesis by [35S]-sulfate incorporation into glycosaminoglycan chains and [35S]-Met/Cys incorporation into proteoglycans and total proteins in human vascular smooth muscle cells. Biglycan level was assessed by real-time quantitative polymerase chain reactions and the effects of (S)-[6]-gingerol on TGF-β signalling by assessment of the phosphorylation of Smads and Akt by western blotting.
Key findings
(S)-[6]-Gingerol concentration-dependently inhibited TGF-β-stimulated proteoglycan core protein synthesis, and this was not secondary to inhibition of total protein synthesis. (S)-[6]-Gingerol inhibited biglycan mRNA expression. (S)-[6]-Gingerol did not inhibit TGF-β-stimulated glycosaminoglycan hyperelongation or phosphorylation of Smad 2, in either the carboxy terminal or linker region, or Akt phosphorylation.
Conclusions
The activity of (S)-[6]-gingerol to inhibit TGF-β-stimulated biglycan synthesis suggests a potential role for ginger in the prevention of atherosclerosis or other lipid-binding diseases. The signalling studies indicate a novel site of action of (S)-[6]-gingerol in inhibiting TGF-β responses.
Collapse
Affiliation(s)
- Danielle Kamato
- Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, Health Innovations Research Institute, RMIT University, Bundoora, Australia
| | - Hossein Babaahmadi Rezaei
- Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, Health Innovations Research Institute, RMIT University, Bundoora, Australia
- Department of Clinical Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Robel Getachew
- Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, Health Innovations Research Institute, RMIT University, Bundoora, Australia
| | - Lyna Thach
- Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, Health Innovations Research Institute, RMIT University, Bundoora, Australia
| | - Daniel Guidone
- Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, Health Innovations Research Institute, RMIT University, Bundoora, Australia
| | - Narin Osman
- Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, Health Innovations Research Institute, RMIT University, Bundoora, Australia
- Departments of Medicine, Nursing and Health Sciences and Immunology, Monash University, School of Medicine (Central and Eastern Clinical School, Alfred Health), Prahran, Vic., Australia
| | - Basil Roufogalis
- Faculty of Pharmacy, A15, The University of Sydney, NSW, Australia
| | - Colin C Duke
- Faculty of Pharmacy, A15, The University of Sydney, NSW, Australia
| | - Van Hoan Tran
- Faculty of Pharmacy, A15, The University of Sydney, NSW, Australia
| | - Wenhua Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peter J Little
- Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, Health Innovations Research Institute, RMIT University, Bundoora, Australia
- Departments of Medicine, Nursing and Health Sciences and Immunology, Monash University, School of Medicine (Central and Eastern Clinical School, Alfred Health), Prahran, Vic., Australia
| |
Collapse
|
40
|
Chen W, Cormode DP, Vengrenyuk Y, Herranz B, Feig JE, Klink A, Mulder WJM, Fisher EA, Fayad ZA. Collagen-specific peptide conjugated HDL nanoparticles as MRI contrast agent to evaluate compositional changes in atherosclerotic plaque regression. JACC Cardiovasc Imaging 2013; 6:373-84. [PMID: 23433925 PMCID: PMC3653172 DOI: 10.1016/j.jcmg.2012.06.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/14/2012] [Accepted: 06/29/2012] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study sought to develop magnetic resonance contrast agents based on high-density lipoprotein (HDL) nanoparticles to noninvasively visualize intraplaque macrophages and collagen content in mouse atherosclerotic plaques. BACKGROUND Macrophages and collagen are important intraplaque components that play central roles in plaque progression and/or regression. In a Reversa mouse model, plaque regression with compositional changes (from high macrophage, low collagen to low macrophage, high collagen) can be induced. METHODS This study labeled HDL nanoparticles with amphiphilic gadolinium chelates to enable target-specific imaging of intraplaque macrophages. To render HDL nanoparticles specific for the extracellular matrix, labeled HDL nanoparticles were functionalized with collagen-specific EP3533 peptides (EP3533-HDL) via poly(ethylene glycol) spacers embedded in the HDL lipid layers. The association of nanoparticles with collagen was examined in vitro by optical methods. The in vivo magnetic resonance efficacy of these nanoparticles was evaluated in a Reversa mouse model of atherosclerosis regression. Ex vivo confocal microscopy was applied to corroborate the in vivo findings and to evaluate the fate of the different HDL nanoparticles. RESULTS All nanoparticles had similar sizes (10 ± 2 nm) and longitudinal relaxivity r1 (9 ± 1 s(-1) mmol/l(-1)). EP3533-HDL showed strong association with collagen in vitro. After 28 days of plaque regression in Reversa mice, EP3533-HDL showed significantly increased (p < 0.05) in vivo magnetic resonance signal in aortic vessel walls (normalized enhancement ratio [NERw] = 85 ± 25%; change of contrast-to-noise ratio [ΔCNRw] = 17 ± 5) compared with HDL (NERw = -7 ± 23%; ΔCNRw = -2 ± 4) and nonspecific control EP3612-HDL (NERw = 4 ± 24%; ΔCNRw = 1 ± 6) at 24 h after injection. Ex vivo confocal images revealed the colocalization of EP3533-HDL with collagen. Immunohistostaining analysis confirmed the changes of collagen and macrophage contents in the aortic vessel walls after regression. CONCLUSIONS This study shows that the HDL nanoparticle platform can be modified to monitor in vivo plaque compositional changes in a regression environment, which will facilitate understanding plaque regression and the search for therapeutic interventions.
Collapse
Affiliation(s)
- Wei Chen
- Translational and Molecular Imaging Institute, Departments of Radiology and Medicine, Mount Sinai School of Medicine, New York, New York USA
| | - David P. Cormode
- Translational and Molecular Imaging Institute, Departments of Radiology and Medicine, Mount Sinai School of Medicine, New York, New York USA
| | - Yuliya Vengrenyuk
- Department of Medicine, Leon H. Charney Division of Cardiology and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York, USA
| | - Beatriz Herranz
- Translational and Molecular Imaging Institute, Departments of Radiology and Medicine, Mount Sinai School of Medicine, New York, New York USA
- Department of Epidemiology, Atherothrombosis and Imaging. Fundacion Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Jonathan E Feig
- Department of Medicine, Leon H. Charney Division of Cardiology and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York, USA
| | - Ahmed Klink
- Translational and Molecular Imaging Institute, Departments of Radiology and Medicine, Mount Sinai School of Medicine, New York, New York USA
- Paris Cardiovascular Research Center, INSERM Assistance Publique-Hopitaux de Paris, Hopital Europeen Georges Pompidou, Paris, France
| | - Willem J. M. Mulder
- Translational and Molecular Imaging Institute, Departments of Radiology and Medicine, Mount Sinai School of Medicine, New York, New York USA
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Edward A. Fisher
- Department of Medicine, Leon H. Charney Division of Cardiology and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York, USA
| | - Zahi A. Fayad
- Translational and Molecular Imaging Institute, Departments of Radiology and Medicine, Mount Sinai School of Medicine, New York, New York USA
| |
Collapse
|
41
|
Mangat R, Warnakula S, Borthwick F, Hassanali Z, Uwiera RRE, Russell JC, Cheeseman CI, Vine DF, Proctor SD. Arterial retention of remnant lipoproteins ex vivo is increased in insulin resistance because of increased arterial biglycan and production of cholesterol-rich atherogenic particles that can be improved by ezetimibe in the JCR:LA-cp rat. J Am Heart Assoc 2012; 1:e003434. [PMID: 23316299 PMCID: PMC3541624 DOI: 10.1161/jaha.112.003434] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/14/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Literature supports the "response-to-retention" hypothesis-that during insulin resistance, impaired metabolism of remnant lipoproteins can contribute to accelerated cardiovascular disease progression. We used the JCR:LA-cp rat model of metabolic syndrome (MetS) to determine the extent of arterial accumulation of intestinal-derived remnants ex vivo and potential mechanisms that contribute to exacerbated cholesterol deposition in insulin resistance. METHODS AND RESULTS Arteries from control and MetS (insulin-resistant) JCR:LA-cp rats were perfused ex vivo with Cy5-labeled remnant lipoproteins, and their arterial retention was quantified by confocal microscopy. Arterial proteoglycans were isolated from control and MetS rats at 6, 12, and 32 weeks of age. There was a significant increase in the arterial retention of remnants and in associated cholesterol accumulation in MetS rats as compared to control rats. Mechanistic studies reveal that increased cholesterol deposition is a result of greater arterial biglycan content; longer glycosaminoglycans and increased production of cholesterol-rich intestinal-derived remnants, as compared to controls. Additionally, perfusion of vessels treated with ezetimibe, alone or in combination with simvastatin, with remnants isolated from the respective treatment group reduced ex vivo arterial retention of remnant-derived cholesterol ex vivo as compared to untreated controls. CONCLUSIONS Increased progression of atherosclerotic cardiovascular disease in MetS and type 2 diabetes mellitus might be explained in part by an increase in the arterial retention of cholesterol-rich remnants. Furthermore, ezetimibe alone or in combination treatment with simvastatin could be beneficial in ameliorating atherosclerotic cardiovascular disease in insulin resistance and MetS.
Collapse
Affiliation(s)
- Rabban Mangat
- Metabolic and Cardiovascular Diseases Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Didangelos A, Mayr U, Monaco C, Mayr M. Novel role of ADAMTS-5 protein in proteoglycan turnover and lipoprotein retention in atherosclerosis. J Biol Chem 2012; 287:19341-5. [PMID: 22493487 PMCID: PMC3365970 DOI: 10.1074/jbc.c112.350785] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Atherosclerosis is initiated by the retention of lipoproteins on proteoglycans in the arterial intima. However, the mechanisms leading to proteoglycan accumulation and lipoprotein retention are poorly understood. In this study, we set out to investigate the role of ADAMTS-5 (a disintegrin and metalloprotease with thrombospondin motifs-5) in the vasculature. ADAMTS-5 was markedly reduced in atherosclerotic aortas of apolipoprotein E-null (apoE−/−) mice. The reduction of ADAMTS-5 was accompanied by accumulation of biglycan and versican, the major lipoprotein-binding proteoglycans, in atherosclerosis. ADAMTS-5 activity induced the release of ADAMTS-specific versican (DPEAAE441) and aggrecan (374ALGS) fragments as well as biglycan and link protein from the aortic wall. Fibroblast growth factor 2 (FGF-2) inhibited ADAMTS-5 expression in isolated aortic smooth muscle cells and blocked the spontaneous release of ADAMTS-generated versican and aggrecan fragments from aortic explants. In aortas of ADAMTS-5-deficient mice, DPEAAE441 versican neoepitopes were not detectable. Instead, biglycan levels were increased, highlighting the role of ADAMTS-5 in the catabolism of vascular proteoglycans. Importantly, ADAMTS-5 proteolytic activity reduced the LDL binding ability of biglycan and released LDL from human aortic lesions. This study provides the first evidence implicating ADAMTS-5 in the regulation of proteoglycan turnover and lipoprotein retention in atherosclerosis.
Collapse
Affiliation(s)
- Athanasios Didangelos
- King's British Heart Foundation Centre, King's College London, London SE5 9NU, United Kingdom
| | | | | | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Serum amyloid A (SAA) is a family of acute-phase proteins which are shown to correlate with cardiovascular disease, but whether this SAA contributes causally to atherosclerosis development or reflects underlying disease or risk factors remains unclear. RECENT FINDINGS SAA has been detected within atherosclerotic lesions and within adipose tissue where it is hypothesized that it may play a contributory role in disease development. In the acute-phase response SAA is synthesized by the liver and transported primarily in association with HDL. However, there is a growing literature suggesting that localized synthesis of SAA within the vasculature, or adipose tissue, may play a distinct role in disease development. Furthermore, SAA can be found in association with apoB-containing lipoproteins, in which its biological activity may be different. SUMMARY This review will discuss recent experimental evidence supporting a causal role of SAA with atherosclerosis.
Collapse
Affiliation(s)
- Victoria L King
- Division of Cardiovascular Medicine, Lexington, Kentucky, USA.
| | | | | |
Collapse
|
44
|
Wu JG, Wei YJ, Ran X, Zhang H, Nian H, Qin LP. Inhibitory effects of essential oil from rhizomes of Ligusticum chuanxiong on hypertrophic scarring in the rabbit ear model. PHARMACEUTICAL BIOLOGY 2011; 49:764-769. [PMID: 21639690 DOI: 10.3109/13880209.2010.542761] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
CONTEXT Hypertrophic scarring, a common proliferative disorder of dermal fibroblasts, results from an overproduction of collagen and excessive deposition of extracellular matrix. Although the treatment with surgical excisions or steroid hormones can modify the symptoms, numerous treatment-related complications have also been established. OBJECTIVE To investigate the effects of essential oil (EO) from rhizomes of Ligusticum chuanxiong Hort. (Umbelliferae) on hypertrophic scarring in a rabbit ear model. MATERIALS AND METHODS A rabbit ear model of hypertrophic scarring was established. EO (5, 10, and 20%) was applied once daily to the scars for 22 days. After 28 days of post-wounding, excision of scars was respectively performed for both histological examination and assays of the levels of collagen I, collagen III, matrix metalloproteinase-1 (MMP-1), and transforming growth factor beta 1 (TGF-β₁). The scar elevation index (SEI) was also determined. RESULTS After 22 days of treatment with indicated concentrations of EO, hypertrophic scarring was significantly inhibited in the rabbit ears. The levels of TGF-β₁, collagen I, and collagen III evidently decreased and MMP-1 level markedly increased in the scar tissue. SEI was also significantly reduced. Immunohistochemical findings exhibited significant amelioration of the scar tissue. DISCUSSION AND CONCLUSION EO suppresses hypertrophic scarring in the rabbit ear model and is a probably effective cure for human hypertrophic scarring.
Collapse
MESH Headings
- Animals
- Cicatrix, Hypertrophic/drug therapy
- Cicatrix, Hypertrophic/pathology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Ear, External/pathology
- Male
- Oils, Volatile/administration & dosage
- Oils, Volatile/isolation & purification
- Oils, Volatile/pharmacology
- Rabbits
- Rhizome
Collapse
Affiliation(s)
- Jian-Guo Wu
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | | | | | | | | | | |
Collapse
|
45
|
Monaco C, Terrando N, Midwood KS. Toll-like receptor signaling: common pathways that drive cardiovascular disease and rheumatoid arthritis. Arthritis Care Res (Hoboken) 2011; 63:500-11. [PMID: 21452263 DOI: 10.1002/acr.20382] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Claudia Monaco
- Kennedy Institute of Rheumatology, Imperial College, London, UK.
| | | | | |
Collapse
|
46
|
Chiba T, Chang MY, Wang S, Wight TN, McMillen TS, Oram JF, Vaisar T, Heinecke JW, De Beer FC, De Beer MC, Chait A. Serum amyloid A facilitates the binding of high-density lipoprotein from mice injected with lipopolysaccharide to vascular proteoglycans. Arterioscler Thromb Vasc Biol 2011; 31:1326-32. [PMID: 21474830 DOI: 10.1161/atvbaha.111.226159] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Levels of serum amyloid A (SAA), an acute-phase protein carried on high-density lipoprotein (HDL), increase in inflammatory states and are associated with increased risk of cardiovascular disease. HDL colocalizes with vascular proteoglycans in atherosclerotic lesions. However, its major apolipoprotein, apolipoprotein A-I, has no proteoglycan-binding domains. Therefore, we investigated whether SAA, which has proteoglycan-binding domains, plays a role in HDL retention by proteoglycans. METHODS AND RESULTS HDL from control mice and mice deficient in both SAA1.1 and SAA2.1 (SAA knockout mice) injected with bacterial lipopolysaccharide (LPS) was studied. SAA mRNA expression in the liver and plasma levels of SAA increased dramatically in C57BL/6 mice after LPS administration, although HDL cholesterol did not change. Fast protein liquid chromatography analysis showed most of the SAA to be in HDL. Mass spectrometric analysis indicated that HDL from LPS-injected control mice had high levels of SAA1.1/2.1 and reduced levels of apolipoprotein A-I. HDL from LPS-injected control mice demonstrated high-affinity binding to biglycan relative to normal mouse HDL. In contrast, HDL from LPS-injected SAA knockout mice showed very little binding to biglycan, consistent with SAA facilitating the binding of HDL to vascular proteoglycans. CONCLUSION SAA enrichment of HDL under inflammatory conditions plays an important role in the binding of HDL to vascular proteoglycans.
Collapse
Affiliation(s)
- Tsuyoshi Chiba
- Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lam V, Takechi R, Pallebage-Gamarallage MMS, Galloway S, Mamo JCL. Colocalisation of plasma derived apo B lipoproteins with cerebral proteoglycans in a transgenic-amyloid model of Alzheimer's disease. Neurosci Lett 2011; 492:160-4. [PMID: 21310214 DOI: 10.1016/j.neulet.2011.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/28/2011] [Accepted: 02/01/2011] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is characterized by cerebral proteinaceous deposits comprised of amyloid beta (Aβ). Evidence suggests that enhanced blood-to-brain delivery of Aβ occurs when plasma concentration is increased, exacerbating amyloidosis. In blood, significant Aβ is associated with apolipoprotein (apo) B lipoproteins. In this study, immunofluorescent microscopy was utilised to explore if there is an association between apo B lipoproteins and proteoglycan expression within Aβ-rich plaques in transgenic-amyloid mice. Focal accumulation of apo B was found with Aβ-plaque in APP/PS1 mice. There was enrichment in the proteoglycans, agrin, perlecan, biglycan and decorin within the core of dense Aβ-plaque. Perlecan, biglycan and decorin were positively associated with apo B lipoprotein abundance within amyloid plaque consistent with a cause-for-retention effect. These findings show that proteoglycans are an integral component of Aβ deposits in APP/PS1 mice. This study suggests that some proteoglycans contribute to Aβ retention, whilst other proteoglycans have different functions in the aetiology of AD.
Collapse
Affiliation(s)
- Virginie Lam
- Curtin Health Innovation Research Institute, and The Australian Technology Network Centre for Metabolic Fitness, Curtin University, Bentley Campus, Kent Street, Perth 6102, Australia
| | | | | | | | | |
Collapse
|
48
|
Higashimori M, Tatro JB, Moore KJ, Mendelsohn ME, Galper JB, Beasley D. Role of toll-like receptor 4 in intimal foam cell accumulation in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2010; 31:50-7. [PMID: 20966403 DOI: 10.1161/atvbaha.110.210971] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Atherosclerosis encompasses a conspicuously maladaptive inflammatory response that might involve innate immunity. Here, we compared the role of Toll-like receptor 4 (TLR4) with that of TLR2 in intimal foam cell accumulation and inflammation in apolipoprotein E (ApoE) knockout (KO) mice in vivo and determined potential mechanisms of upstream activation and downstream action. METHODS AND RESULTS We measured lipid accumulation and gene expression in the lesion-prone lesser curvature of the aortic arch. TLR4 deficiency reduced intimal lipid by ≈75% in ApoE KO mice, despite unaltered total serum cholesterol and triglyceride levels, whereas TLR2 deficiency reduced it by ≈45%. TLR4 deficiency prevented the increased interleukin-1α (IL-1α) and monocyte chemoattractant protein-1 mRNA levels seen within lesional tissue, and it also lowered serum IL-1α levels. Smooth muscle cells (SMC) were present within the intima of the lesser curvature of the aortic arch at this early lesion stage, and they enveloped and permeated nascent lesions, which consisted of focal clusters of foam cells. Cholesterol enrichment of SMC in vitro stimulated acyl-coenzyme A:cholesterol acyltransferase-1 mRNA expression, cytoplasmic cholesterol ester accumulation, and monocyte chemoattractant protein-1 mRNA and protein expression in a TLR4-dependent manner. CONCLUSIONS TLR4 contributes to early-stage intimal foam cell accumulation at lesion-prone aortic sites in ApoE KO mice, as does TLR2 to a lesser extent. Intimal SMC surround and penetrate early lesions, where TLR4 signaling within them may influence lesion progression.
Collapse
|
49
|
Segev A, Nili N, Osherov A, Qiang B, Wong A, Pillarisetti S, Strauss B. A perlecan-inducing compound significantly inhibits smooth muscle cell function and in-stent intimal hyperplasia: novel insights into the diverse biological effects of perlecan. EUROINTERVENTION 2010. [DOI: 10.4244/eijv6i1a20] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Jing C, Jia-Han W, Hong-Xing Z. Double-edged effects of neuropeptide substance P on repair of cutaneous trauma. Wound Repair Regen 2010; 18:319-24. [PMID: 20412553 DOI: 10.1111/j.1524-475x.2010.00589.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To explore further the role of substance P (SP) in wound healing and scar formation, SP concentrations in wounds of scalded rats were assayed. Expressions of apoptosis-associated genes in fibroblasts cultured with SP were detected. SP concentrations in superficial wounds increased earlier than those in deep wounds. SP was associated with an increased proliferation and a decreased apoptosis of fibroblasts. It had a greater influence on keloid fibroblasts than on hypertrophic scar fibroblasts by elevating the expression of proliferating cell nuclear antigen and BCL-2 in fibroblasts. Spantide completely suppressed the effects of SP on hypertrophic scar fibroblasts, and partly inhibited its effects on keloid scar fibroblasts. SP may play an important role in wound healing by promoting wound fibroblast proliferation and inhibiting apoptosis. It may also participate in pathological scar formation by modulating the expression of apoptosis-associated genes. SP is postulated to play a dual role in wound repair.
Collapse
Affiliation(s)
- Chen Jing
- Department of Burns Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | | | | |
Collapse
|