1
|
Cornelis MC, Fazlollahi A, Bennett DA, Schneider JA, Ayton S. Genetic Markers of Postmortem Brain Iron. J Neurochem 2025; 169:e16309. [PMID: 39918201 PMCID: PMC11804167 DOI: 10.1111/jnc.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025]
Abstract
Brain iron (Fe) dyshomeostasis is implicated in neurodegenerative diseases. Genome-wide association studies (GWAS) have identified plausible loci correlated with peripheral levels of Fe. Systemic organs and the brain share several Fe regulatory proteins but there likely exist different homeostatic pathways. We performed the first GWAS of inductively coupled plasma mass spectrometry measures of postmortem brain Fe from 635 Rush Memory and Aging Project (MAP) participants. Sixteen single nucleotide polymorphisms (SNPs) associated with Fe in at least one of four brain regions were measured (p < 5 × 10-8). Promising SNPs (p < 5 × 10-6) were followed up for replication in published GWAS of blood, spleen, and brain imaging Fe traits and mapped to candidate genes for targeted cortical transcriptomic and epigenetic analysis of postmortem Fe in MAP. Results for SNPs previously associated with other Fe traits were also examined. Ninety-eight SNPs associated with postmortem brain Fe were at least nominally (p < 0.05) associated with one or more related Fe traits. Most novel loci identified had no direct links to Fe regulatory pathways but rather endoplasmic reticulum-Golgi trafficking (SORL1, SORCS2, MARCH1, CLTC), heparan sulfate (HS3ST4, HS3ST1), and coenzyme A (SLC5A6, PANK3); supported by nearest gene function and omic analyses. We replicated (p < 0.05) several previously published Fe loci mapping to candidate genes in cellular and systemic Fe regulation. Finally, novel loci (BMAL, COQ5, SLC25A11) and replication of prior loci (PINK1, PPIF, LONP1) lend support to the role of circadian rhythms and mitochondria function in Fe regulation more generally. In summary, we provide support for novel loci linked to pathways that may have greater relevance to brain Fe accumulation; some of which are implicated in neurodegeneration. However, replication of a subset of prior loci for blood Fe suggests that genetic determinants or biological pathways underlying Fe accumulation in the brain are not completely distinct from those of Fe circulating in the periphery.
Collapse
Affiliation(s)
- Marilyn C. Cornelis
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Amir Fazlollahi
- Department of Radiology, Royal Melbourne HospitalUniversity of MelbourneMelbourneVictoriaAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | | | | | - Scott Ayton
- The Florey Institute of Neuroscience and Mental HealthMelbourneVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
2
|
Zhang DY, Wang J, Huang G, Langberg S, Ding F, Dokholyan NV. APOE regulates the transport of GM1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587789. [PMID: 38617316 PMCID: PMC11014540 DOI: 10.1101/2024.04.02.587789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Apolipoprotein E (APOE) is responsible for lipid transport, including cholesterol transport and clearance. While the ε4 allele of APOE (APOE4) is associated with a significant genetic risk factor for late-onset Alzheimer's disease (AD), no mechanistic understanding of its contribution to AD etiology has been established yet. In addition to cholesterol, monosialotetrahexosylganglioside (GM1) is a crucial lipid component in cell membranes and has been implicated in promoting the aggregation of amyloid beta protein (Aβ), a key protein associated with AD. Here, we ask whether there are direct interactions between APOE and GM1 that further impact AD pathology. We find that both APOE3 and APOE4 exhibit superior binding affinity to GM1 compared to cholesterol and have an enhanced cellular uptake to GM1 lipid structures than cholesterol lipid structures. APOE regulates the transport process of GM1 depending on the cell type, which is influenced by the expression of APOE receptors in different cell lines and alters GM1 contents in cell membranes. We also find that the presence of GM1 alters the secondary structure of APOE3 and APOE4 and enhances the binding affinity between APOE and its receptor low-density lipoprotein receptor (LDLR), consequently promoting the cellular uptake of lipid structures in the presence of APOE. To understand the enhanced cellular uptake observed in lipid structures containing 20% GM1, we determined the distribution of GM1 on the membrane and found that GM1 clustering in lipid rafts, thereby supporting the physiological interaction between APOE and GM1. Overall, we find that APOE plays a regulatory role in GM1 transport, and the presence of GM1 on the lipid structures influences this transport process. Our studies introduce a plausible direct link between APOE and AD etiology, wherein APOE regulates GM1, which, in turn, promotes Aβ oligomerization and aggregation.
Collapse
|
3
|
Lee H, Aylward AJ, Pearse RV, Lish AM, Hsieh YC, Augur ZM, Benoit CR, Chou V, Knupp A, Pan C, Goberdhan S, Duong DM, Seyfried NT, Bennett DA, Taga MF, Huynh K, Arnold M, Meikle PJ, De Jager PL, Menon V, Young JE, Young-Pearse TL. Cell-type-specific regulation of APOE and CLU levels in human neurons by the Alzheimer's disease risk gene SORL1. Cell Rep 2023; 42:112994. [PMID: 37611586 PMCID: PMC10568487 DOI: 10.1016/j.celrep.2023.112994] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
SORL1 is implicated in the pathogenesis of Alzheimer's disease (AD) through genetic studies. To interrogate the roles of SORL1 in human brain cells, SORL1-null induced pluripotent stem cells (iPSCs) were differentiated to neuron, astrocyte, microglial, and endothelial cell fates. Loss of SORL1 leads to alterations in both overlapping and distinct pathways across cell types, with the greatest effects in neurons and astrocytes. SORL1 loss induces a neuron-specific reduction in apolipoprotein E (APOE) and clusterin (CLU) and altered lipid profiles. Analyses of iPSCs derived from a large cohort reveal a neuron-specific association between SORL1, APOE, and CLU levels, a finding validated in postmortem brain. Enhancement of retromer-mediated trafficking rescues tau phenotypes observed in SORL1-null neurons but does not rescue APOE levels. Pathway analyses implicate transforming growth factor β (TGF-β)/SMAD signaling in SORL1 function, and modulating SMAD signaling in neurons alters APOE RNA levels in a SORL1-dependent manner. Taken together, these data provide a mechanistic link between strong genetic risk factors for AD.
Collapse
Affiliation(s)
- Hyo Lee
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aimee J Aylward
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Richard V Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra M Lish
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yi-Chen Hsieh
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zachary M Augur
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Courtney R Benoit
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vicky Chou
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Allison Knupp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Cheryl Pan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Srilakshmi Goberdhan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Duc M Duong
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA, USA
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Mariko F Taga
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Lee H, Aylward AJ, Pearse RV, Hsieh YC, Augur ZM, Benoit CR, Chou V, Knupp A, Pan C, Goberdhan S, Duong DM, Seyfried NT, Bennett DA, Klein HU, De Jager PL, Menon V, Young JE, Young-Pearse TL. Cell-type-specific regulation of APOE levels in human neurons by the Alzheimer's disease risk gene SORL1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530017. [PMID: 36865313 PMCID: PMC9980168 DOI: 10.1101/2023.02.25.530017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
SORL1 is strongly implicated in the pathogenesis of Alzheimer's disease (AD) through human genetic studies that point to an association of reduced SORL1 levels with higher risk for AD. To interrogate the role(s) of SORL1 in human brain cells, SORL1 null iPSCs were generated, followed by differentiation to neuron, astrocyte, microglia, and endothelial cell fates. Loss of SORL1 led to alterations in both overlapping and distinct pathways across cell types, with the greatest effects in neurons and astrocytes. Intriguingly, SORL1 loss led to a dramatic neuron-specific reduction in APOE levels. Further, analyses of iPSCs derived from a human aging cohort revealed a neuron-specific linear correlation between SORL1 and APOE RNA and protein levels, a finding validated in human post-mortem brain. Pathway analysis implicated intracellular transport pathways and TGF- β/SMAD signaling in the function of SORL1 in neurons. In accord, enhancement of retromer-mediated trafficking and autophagy rescued elevated phospho-tau observed in SORL1 null neurons but did not rescue APOE levels, suggesting that these phenotypes are separable. Stimulation and inhibition of SMAD signaling modulated APOE RNA levels in a SORL1-dependent manner. These studies provide a mechanistic link between two of the strongest genetic risk factors for AD.
Collapse
|
5
|
Babio L, Damsteegt EL, Lokman PM. Lipoprotein receptors in ovary of eel, Anguilla australis: molecular characterisation of putative vitellogenin receptors. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:117-137. [PMID: 36648592 PMCID: PMC9935665 DOI: 10.1007/s10695-023-01169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Lipoprotein receptors, including low-density lipoprotein receptor (LDLr) relatives (Lrs) and LDLr-related proteins (Lrps), belong to the LDLr supergene family and participate in diverse physiological functions. In this study, novel sequences of lr and lrp genes expressed in the ovary of the short-finned eel, Anguilla australis, during early gonadal development are presented. The genes encoding the LDLr-like, Lrp1-like, Lrp1b-like, Lrp3, Lrp4-like, Lrp5-like, Lrp6, Lrp10, Lrp11, Lrp12-like, and Lr11-like proteins were found and identified by sequence and structure analysis, in addition to phylogenetic analysis. Genes encoding proteins previously implicated in follicle development and vitellogenin (Vtg) uptake in oviparous vertebrates were also identified, i.e. lr8 (including lr8 + and lr8- variants) and lrp13; their identification was reinforced by conserved synteny with orthologues in other teleost fish. Compared to other lr/lrp genes, the genes encoding Lr8 + , Lr8-, and Lrp13 were highly expressed in ovary during early development, decreasing as oocyte development advanced when induced by hypophysation. Furthermore, lr8 + , lr8-, and lrp13 were dominantly expressed in the ovary when compared with 17 other tissues. Finally, this study successfully detected the expression of both lr8 variants, which showed different expression patterns to those reported in other oviparous vertebrates and provided the first characterisation of Lrp13 in Anguilla sp. We propose that lr8 + , lr8-, and lrp13 encode putative Vtg receptors in anguillid eels.
Collapse
Affiliation(s)
- Lucila Babio
- Department of Zoology, University of Otago, 340 Great King Street, P.O. Box 56, Dunedin, Otago 9054 New Zealand
| | - Erin L. Damsteegt
- Department of Zoology, University of Otago, 340 Great King Street, P.O. Box 56, Dunedin, Otago 9054 New Zealand
| | - P. Mark Lokman
- Department of Zoology, University of Otago, 340 Great King Street, P.O. Box 56, Dunedin, Otago 9054 New Zealand
| |
Collapse
|
6
|
Mol MO, van der Lee SJ, Hulsman M, Pijnenburg YAL, Scheltens P, Seelaar H, van Swieten JC, Kaat LD, Holstege H, van Rooij JGJ. Mapping the genetic landscape of early-onset Alzheimer's disease in a cohort of 36 families. Alzheimers Res Ther 2022; 14:77. [PMID: 35650585 PMCID: PMC9158156 DOI: 10.1186/s13195-022-01018-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Many families with clinical early-onset Alzheimer's disease (EOAD) remain genetically unexplained. A combination of genetic factors is not standardly investigated. In addition to monogenic causes, we evaluated the possible polygenic architecture in a large series of families, to assess if genetic testing of familial EOAD could be expanded. METHODS Thirty-six pedigrees (77 patients) were ascertained from a larger cohort of patients, with relationships determined by genetic data (exome sequencing data and/or SNP arrays). All families included at least one AD patient with symptom onset <70 years. We evaluated segregating rare variants in known dementia-related genes, and other genes or variants if shared by multiple families. APOE was genotyped and duplications in APP were assessed by targeted test or using SNP array data. We computed polygenic risk scores (PRS) compared with a reference population-based dataset, by imputing SNP arrays or exome sequencing data. RESULTS In eight families, we identified a pathogenic variant, including the genes APP, PSEN1, SORL1, and an unexpected GRN frameshift variant. APOE-ε4 homozygosity was present in eighteen families, showing full segregation with disease in seven families. Eight families harbored a variant of uncertain significance (VUS), of which six included APOE-ε4 homozygous carriers. PRS was not higher in the families combined compared with the population mean (beta 0.05, P = 0.21), with a maximum increase of 0.61 (OR = 1.84) in the GRN family. Subgroup analyses indicated lower PRS in six APP/PSEN1 families compared with the rest (beta -0.22 vs. 0.10; P = 0.009) and lower APOE burden in all eight families with monogenic cause (beta 0.29 vs. 1.15, P = 0.010). Nine families remained without a genetic cause or risk factor identified. CONCLUSION Besides monogenic causes, we suspect a polygenic disease architecture in multiple families based on APOE and rare VUS. The risk conveyed by PRS is modest across the studied families. Families without any identified risk factor render suitable candidates for further in-depth genetic evaluation.
Collapse
Affiliation(s)
- Merel O Mol
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Phillip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Harro Seelaar
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John C van Swieten
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Laura Donker Kaat
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Jeroen G J van Rooij
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Binkle L, Klein M, Borgmeyer U, Kuhl D, Hermey G. The adaptor protein PICK1 targets the sorting receptor SorLA. Mol Brain 2022; 15:18. [PMID: 35183222 PMCID: PMC8858569 DOI: 10.1186/s13041-022-00903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
SorLA is a member of the Vps10p-domain (Vps10p-D) receptor family of type-I transmembrane proteins conveying neuronal endosomal sorting. The extracellular/luminal moiety of SorLA has a unique mosaic domain composition and interacts with a large number of different and partially unrelated ligands, including the amyloid precursor protein as well as amyloid-β. Several studies support a strong association of SorLA with sporadic and familial forms of Alzheimer’s disease (AD). Although SorLA seems to be an important factor in AD, the large number of different ligands suggests a role as a neuronal multifunctional receptor with additional intracellular sorting capacities. Therefore, understanding the determinants of SorLA’s subcellular targeting might be pertinent for understanding neuronal endosomal sorting mechanisms in general. A number of cytosolic adaptor proteins have already been demonstrated to determine intracellular trafficking of SorLA. Most of these adaptors and several ligands of the extracellular/luminal moiety are shared with the Vps10p-D receptor Sortilin. Although SorLA and Sortilin show both a predominant intracellular and endosomal localization, they are targeted to different endosomal compartments. Thus, independent adaptor proteins may convey their differential endosomal targeting. Here, we hypothesized that Sortilin and SorLA interact with the cytosolic adaptors PSD95 and PICK1 which have been shown to bind the Vps10p-D receptor SorCS3. We observed only an interaction for SorLA and PICK1 in mammalian-two-hybrid, pull-down and cellular recruitment experiments. We demonstrate by mutational analysis that the C-terminal minimal PDZ domain binding motif VIA of SorLA mediates the interaction. Moreover, we show co-localization of SorLA and PICK1 at vesicular structures in primary neurons. Although the physiological role of the interaction between PICK1 and SorLA remains unsolved, our study suggests that PICK1 partakes in regulating SorLA’s intracellular itinerary.
Collapse
|
8
|
Abstract
With the expected rise in Alzheimer's disease and related dementias (ADRD) in the coming decades due to the aging population and a lack of effective disease-modifying treatments, there is a need for preventive strategies that may tap into resilience parameters. A wide array of resilience strategies has been proposed including genetics, socioeconomic status, lifestyle modifications, behavioral changes, and management of comorbid disease. These different strategies can be broadly classified as distinguishing between modifiable and non-modifiable risk factors, some of which can be quantified so that their clinical intervention can be effectively accomplished. A clear shift in research focus from dementia risk to addressing disease resistance and resilience is emerging that has provided new potential therapeutic targets. Here we review and summarize the latest investigations of resilience mechanisms and methods of quantifying resilience for clinical research. These approaches include identifying genetic variants that may help identify novel pathways (e.g., lipid metabolism, cellular trafficking, synaptic function, inflammation) for therapeutic treatments and biomarkers for use in a precision medicine-like regimen. In addition, innovative structural and molecular neuroimaging analyses may assist in detecting and quantifying pathological changes well before the onset of clinical symptoms setting up the possibility of primary and secondary prevention trials. Lastly, we summarize recent studies demonstrating the study of resilience in caregivers of persons living with dementia may have direct and indirect impact on the quality of care and patient outcomes.
Collapse
Affiliation(s)
- Mahesh S. Joshi
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| | - James E. Galvin
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| |
Collapse
|
9
|
Seto M, Weiner RL, Dumitrescu L, Hohman TJ. Protective genes and pathways in Alzheimer's disease: moving towards precision interventions. Mol Neurodegener 2021; 16:29. [PMID: 33926499 PMCID: PMC8086309 DOI: 10.1186/s13024-021-00452-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disorder that is characterized by neurodegeneration, cognitive impairment, and an eventual inability to perform daily tasks. The etiology of Alzheimer's is complex, with numerous environmental and genetic factors contributing to the disease. Late-onset AD is highly heritable (60 to 80%), and over 40 risk loci for AD have been identified via large genome-wide association studies, most of which are common variants with small effect sizes. Although these discoveries have provided novel insight on biological contributors to AD, disease-modifying treatments remain elusive. Recently, the concepts of resistance to pathology and resilience against the downstream consequences of pathology have been of particular interest in the Alzheimer's field as studies continue to identify individuals who evade the pathology of the disease even into late life and individuals who have all of the neuropathological features of AD but evade downstream neurodegeneration and cognitive impairment. It has been hypothesized that a shift in focus from Alzheimer's risk to resilience presents an opportunity to uncover novel biological mechanisms of AD and to identify promising therapeutic targets for the disease. This review will highlight a selection of genes and variants that have been reported to confer protection from AD within the literature and will also discuss evidence for the biological underpinnings behind their protective effect with a focus on genes involved in lipid metabolism, cellular trafficking, endosomal and lysosomal function, synaptic function, and inflammation. Finally, we offer some recommendations in areas where the field can rapidly advance towards precision interventions that leverage the ideas of protection and resilience for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mabel Seto
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Rebecca L. Weiner
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212 USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
10
|
Takatori S, Wang W, Iguchi A, Tomita T. Genetic Risk Factors for Alzheimer Disease: Emerging Roles of Microglia in Disease Pathomechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:83-116. [PMID: 30747419 DOI: 10.1007/978-3-030-05542-4_5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The accumulation of aggregated amyloid β (Aβ) peptides in the brain is deeply involved in Alzheimer disease (AD) pathogenesis. Mutations in APP and presenilins play major roles in Aβ pathology in rare autosomal-dominant forms of AD, whereas pathomechanisms of sporadic AD, accounting for the majority of cases, remain unknown. In this chapter, we review current knowledge on genetic risk factors of AD, clarified by recent advances in genome analysis technology. Interestingly, TREM2 and many genes associated with disease risk are predominantly expressed in microglia, suggesting that these risk factors are involved in pathogenicity through common mechanisms involving microglia. Therefore, we focus on factors closely associated with microglia and discuss their possible roles in pathomechanisms of AD. Furthermore, we review current views on the pathological roles of microglia and emphasize the importance of microglial changes in response to Aβ deposition and mechanisms underlying the phenotypic changes. Importantly, functional outcomes of microglial activation can be both protective and deleterious to neurons. We further describe the involvement of microglia in tau pathology and the activation of other glial cells. Through these topics, we shed light on microglia as a promising target for drug development for AD and other neurological disorders.
Collapse
Affiliation(s)
- Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Wenbo Wang
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Akihiro Iguchi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
11
|
Pelleieux S, Picard C, Lamarre-Théroux L, Dea D, Leduc V, Tsantrizos YS, Poirier J. Isoprenoids and tau pathology in sporadic Alzheimer's disease. Neurobiol Aging 2018; 65:132-139. [PMID: 29476987 DOI: 10.1016/j.neurobiolaging.2018.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/07/2017] [Accepted: 01/21/2018] [Indexed: 12/12/2022]
Abstract
The mevalonate pathway has been described to play a key role in Alzheimer's disease (AD) physiopathology. Farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are nonsterol isoprenoids derived from mevalonate, which serve as precursors to numerous human metabolites. They facilitate protein prenylation; hFPP and hGGPP synthases act as gateway enzymes to the prenylation of the small guanosine triphosphate (GTP)ase proteins such as RhoA and cdc42 that have been shown to facilitate phospho-tau (p-Tau, i.e., protein tau phosphorylated) production in the brain. In this study, a significant positive correlation was observed between the synthases mRNA prevalence and disease status (FPPS, p < 0.001, n = 123; GGPPS, p < 0.001, n = 122). The levels of mRNA for hFPPS and hGGPPS were found to significantly correlate with the amount of p-Tau protein levels (p < 0.05, n = 34) and neurofibrillary tangle density (p < 0.05, n = 39) in the frontal cortex. Interestingly, high levels of hFPPS and hGGPPS mRNA prevalence are associated with earlier age of onset in AD (p < 0.05, n = 58). Together, these results suggest that accumulation of p-Tau in the AD brain is related, at least in part, to increased levels of neuronal isoprenoids.
Collapse
Affiliation(s)
- Sandra Pelleieux
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Cynthia Picard
- Douglas Mental Health University Institute, McGill University, Montreal, Canada; Center for Studies on the Prevention of Alzheimer's Disease, McGill University, Montreal, Canada
| | | | - Doris Dea
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Valérie Leduc
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Youla S Tsantrizos
- Department of Chemistry, McGill University, Montreal, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, McGill University, Montreal, Canada; Center for Studies on the Prevention of Alzheimer's Disease, McGill University, Montreal, Canada.
| |
Collapse
|
12
|
Trafficking in Alzheimer's Disease: Modulation of APP Transport and Processing by the Transmembrane Proteins LRP1, SorLA, SorCS1c, Sortilin, and Calsyntenin. Mol Neurobiol 2017; 55:5809-5829. [PMID: 29079999 DOI: 10.1007/s12035-017-0806-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022]
Abstract
The amyloid precursor protein (APP), one key player in Alzheimer's disease (AD), is extensively processed by different proteases. This leads to the generation of diverging fragments including the amyloid β (Aβ) peptide, which accumulates in brains of AD patients. Subcellular trafficking of APP is an important aspect for its proteolytic conversion, since the various secretases which cleave APP are located in different cellular compartments. As a consequence, altered subcellular targeting of APP is thought to directly affect the degree to which Aβ is generated. The mechanisms underlying intracellular APP transport are critical to understand AD pathogenesis and can serve as a target for future pharmacological interventions. In the recent years, a number of APP interacting proteins were identified which are implicated in sorting of APP, thereby influencing APP processing at different angles of the secretory or endocytic pathway. This review provides an update on the proteolytic processing of APP and the interplay of the transmembrane proteins low-density lipoprotein receptor-related protein 1, sortilin-receptor with A-type repeats, SorCS1c, sortilin, and calsyntenin. We discuss the specific interactions with APP, the capacity to modulate the intracellular itinerary and the proteolytic conversion of APP, a possible involvement in the clearance of Aβ, and the implications of these transmembrane proteins in AD and other neurodegenerative diseases.
Collapse
|
13
|
SorLA in Interleukin-6 Signaling and Turnover. Mol Cell Biol 2017; 37:MCB.00641-16. [PMID: 28265003 PMCID: PMC5440653 DOI: 10.1128/mcb.00641-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/27/2017] [Indexed: 12/30/2022] Open
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine with important functions in various physiologic processes. Mice lacking IL-6 exhibit multiple phenotypic abnormalities, such as an inadequate immune and acute-phase response, and elevated levels of circulating IL-6 have been found to accompany several pathological conditions. IL-6 binds the nonsignaling IL-6 receptor (IL-6R), which is expressed as a transmembrane, as well as a secreted circulating protein, before it engages homodimeric gp130 for signaling. Complex formation between IL-6 and the membrane-bound IL-6 receptor gives rise to classic cis signaling, whereas complex formation between IL-6 and the soluble IL-6R results in trans signaling. Here, we report that the endocytic receptor SorLA targets IL-6 and IL-6R. We present evidence that SorLA mediates efficient cellular uptake of both IL-6 and the circulating IL-6R in astrocytes. We further show that SorLA interacts with the membrane-bound IL-6R at the cell surface and thereby downregulates IL-6 cis signaling. Finally, we find that the SorLA ectodomain, released from the cell membrane upon enzymatic cleavage of full-length SorLA, may act as an IL-6 carrier protein that stabilizes IL-6 and its capacity for trans signaling.
Collapse
|
14
|
Modulation of APOE and SORL1 genes on hippocampal functional connectivity in healthy young adults. Brain Struct Funct 2017; 222:2877-2889. [PMID: 28229235 PMCID: PMC5541082 DOI: 10.1007/s00429-017-1377-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/26/2017] [Indexed: 10/27/2022]
Abstract
Apolipoprotein E (APOE) and sortilin-related receptor (SORL1) genes act on the same metabolic pathway and have been associated with Alzheimer's disease (AD) characterized by hippocampal impairment. Although the effects of APOE on hippocampal resting-state functional connectivity (rsFC) have been reported, the main effects of SORL1 and SORL1 × APOE interactions on hippocampal rsFC in healthy subjects remain largely unknown. Here, we systematically investigated the main effects of SORL1 rs2070045, and APOE, and their interaction effects on hippocampal rsFC in healthy young adults. The main effect of APOE showed that risk ε4 carriers had decreased positive hippocampal rsFC with the precuneus/posterior cingulate cortex and subgenual anterior cingulate cortex, and increased positive hippocampal rsFC with the sensorimotor cortex compared with non-ε4 carriers. The main effect of SORL1 showed that risk G-allele carriers had decreased positive rsFC between the hippocampus and middle temporal gyrus compared with TT carriers. No significant additive interaction was observed. Instead, significant SORL1 × APOE non-additive interaction was found in negative rsFC between the hippocampus and inferior frontal gyrus. Compared with subjects with TT genotype, SORL1 G-allele carriers had a stronger negative rsFC in APOE ε4 carriers, but a weaker negative rsFC in APOE non-ε4 carriers. These findings suggest that SORL1 and APOE genes modulate different hippocampal rsFCs and have a complex interaction. The SORL1- and APOE-dependent hippocampal connectivity changes may at least partly account for their association with AD.
Collapse
|
15
|
Schmidt V, Subkhangulova A, Willnow TE. Sorting receptor SORLA: cellular mechanisms and implications for disease. Cell Mol Life Sci 2016; 74:1475-1483. [PMID: 27832290 PMCID: PMC5357279 DOI: 10.1007/s00018-016-2410-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 12/21/2022]
Abstract
Sorting-related receptor with A-type repeats (SORLA) is an intracellular sorting receptor that directs cargo proteins, such as kinases, phosphatases, and signaling receptors, to their correct location within the cell. The activity of SORLA assures proper function of cells and tissues, and receptor dysfunction is the underlying cause of common human malignancies, including Alzheimer’s disease, atherosclerosis, and obesity. Here, we discuss the molecular mechanisms that govern sorting of SORLA and its cargo in multiple cell types, and why genetic defects in this receptor results in devastating diseases.
Collapse
Affiliation(s)
- Vanessa Schmidt
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125, Berlin, Germany.
| | - Aygul Subkhangulova
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
16
|
Yamanishi K, Maeda S, Kuwahara-Otani S, Watanabe Y, Yoshida M, Ikubo K, Okuzaki D, El-Darawish Y, Li W, Nakasho K, Nojima H, Yamanishi H, Hayakawa T, Okamura H, Matsunaga H. Interleukin-18-deficient mice develop dyslipidemia resulting in nonalcoholic fatty liver disease and steatohepatitis. Transl Res 2016; 173:101-114.e7. [PMID: 27063959 DOI: 10.1016/j.trsl.2016.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/23/2015] [Accepted: 03/12/2016] [Indexed: 12/11/2022]
Abstract
We investigated potential pathophysiological relationships between interleukin 18 (IL-18) and dyslipidemia, nonalcoholic fatty liver disease (NAFLD) or nonalcoholic steatohepatitis (NASH). Compared with Il18(+/+) mice, IL-18 knockout (Il18(-/-)) mice developed hypercholesterolemia and hyper-high-density-lipoprotein-cholesterolemia as well as hypertriglyceridemia as they aged, and these disorders occurred before the manifestation of obesity and might cause secondary NASH. The analyses of molecular mechanisms involved in the onset of dyslipidemia, NAFLD, and NASH in Il18(-/-) mice identified a number of genes associated with these metabolic diseases. In addition, molecules related to circadian rhythm might affect these extracted genes. The intravenous administration of recombinant IL-18 significantly improved dyslipidemia, inhibited the body weight gain of Il18(+/+) mice, and prevented the onset of NASH. The expression of genes related to these dysfunctions was also affected by recombinant IL-18 administration. In conclusion, this study demonstrated the critical function of IL-18 in lipid metabolism and these findings might contribute to the progress of novel treatments for NAFLD or NASH.
Collapse
Affiliation(s)
- Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan; Hirakata General Hospital for Developmental Disorders, 2-1-1 Tsudahigashi, Hirakata, Osaka 573-0122, Japan
| | - Seishi Maeda
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Sachi Kuwahara-Otani
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Yuko Watanabe
- Hirakata General Hospital for Developmental Disorders, 2-1-1 Tsudahigashi, Hirakata, Osaka 573-0122, Japan
| | - Momoko Yoshida
- Hirakata General Hospital for Developmental Disorders, 2-1-1 Tsudahigashi, Hirakata, Osaka 573-0122, Japan; Department of Genome Informatics, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan
| | - Kaoru Ikubo
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Daisuke Okuzaki
- DNA-Chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan; Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan
| | - Yosif El-Darawish
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Wen Li
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Keiji Nakasho
- Department of Pathology, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Hiroshi Nojima
- DNA-Chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan; Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan
| | - Hiromichi Yamanishi
- Hirakata General Hospital for Developmental Disorders, 2-1-1 Tsudahigashi, Hirakata, Osaka 573-0122, Japan
| | - Tetsu Hayakawa
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Haruki Okamura
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Hisato Matsunaga
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan.
| |
Collapse
|
17
|
Schmidt V, Schulz N, Yan X, Schürmann A, Kempa S, Kern M, Blüher M, Poy MN, Olivecrona G, Willnow TE. SORLA facilitates insulin receptor signaling in adipocytes and exacerbates obesity. J Clin Invest 2016; 126:2706-20. [PMID: 27322061 DOI: 10.1172/jci84708] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 04/29/2016] [Indexed: 12/22/2022] Open
Abstract
In humans, genetic variation of sortilin-related receptor, L(DLR class) A repeats containing (SORL1), which encodes the intracellular sorting receptor SORLA, is a major genetic risk factor for familial and sporadic forms of Alzheimer's disease. Recent GWAS analysis has also associated SORL1 with obesity in humans and in mouse models, suggesting that this receptor may play a role in regulating metabolism. Here, using mouse models with genetic loss or tissue-specific overexpression of SORLA as well as data from obese human subjects, we observed a gene-dosage effect that links SORLA expression to obesity and glucose tolerance. Overexpression of human SORLA in murine adipose tissue blocked hydrolysis of triacylglycerides and caused excessive adiposity. In contrast, Sorl1 gene inactivation in mice accelerated breakdown of triacylglycerides in adipocytes and protected animals from diet-induced obesity. We then identified the underlying molecular mechanism whereby SORLA promotes insulin-induced suppression of lipolysis in adipocytes. Specifically, we determined that SORLA acts as a sorting factor for the insulin receptor (IR) that redirects internalized receptor molecules from endosomes to the plasma membrane, thereby enhancing IR surface expression and strengthening insulin signal reception in target cells. Our findings provide a molecular mechanism for the association of SORL1 with human obesity and confirm a genetic link between neurodegeneration and metabolism that converges on the receptor SORLA.
Collapse
|
18
|
LR11/SorLA links triglyceride-rich lipoproteins to risk of developing cardiovascular disease in FH patients. Atherosclerosis 2015; 243:429-37. [DOI: 10.1016/j.atherosclerosis.2015.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 12/18/2022]
|
19
|
Whittle AJ, Jiang M, Peirce V, Relat J, Virtue S, Ebinuma H, Fukamachi I, Yamaguchi T, Takahashi M, Murano T, Tatsuno I, Takeuchi M, Nakaseko C, Jin W, Jin Z, Campbell M, Schneider WJ, Vidal-Puig A, Bujo H. Soluble LR11/SorLA represses thermogenesis in adipose tissue and correlates with BMI in humans. Nat Commun 2015; 6:8951. [PMID: 26584636 PMCID: PMC4673879 DOI: 10.1038/ncomms9951] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/20/2015] [Indexed: 11/09/2022] Open
Abstract
Thermogenesis in brown adipose tissue (BAT) is an important component of energy expenditure in mammals. Recent studies have confirmed its presence and metabolic role in humans. Defining the physiological regulation of BAT is therefore of great importance for developing strategies to treat metabolic diseases. Here we show that the soluble form of the low-density lipoprotein receptor relative, LR11/SorLA (sLR11), suppresses thermogenesis in adipose tissue in a cell-autonomous manner. Mice lacking LR11 are protected from diet-induced obesity associated with an increased browning of white adipose tissue and hypermetabolism. Treatment of adipocytes with sLR11 inhibits thermogenesis via the bone morphogenetic protein/TGFβ signalling pathway and reduces Smad phosphorylation. In addition, sLR11 levels in humans are shown to positively correlate with body mass index and adiposity. Given the need for tight regulation of a tissue with a high capacity for energy wastage, we propose that LR11 plays an energy conserving role that is exaggerated in states of obesity.
Collapse
Affiliation(s)
- Andrew J. Whittle
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 OQQ, UK
| | - Meizi Jiang
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University, Sakura Medical Center, Sakura 285-8741, Japan
- Department of Genome Research and Clinical Application, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Vivian Peirce
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 OQQ, UK
| | - Joana Relat
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, and Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona 08028, Spain
| | - Sam Virtue
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 OQQ, UK
| | - Hiroyuki Ebinuma
- Tsukuba Research Institute, Sekisui Medical Co. Ltd., Ryugasaki 301-0852, Japan
| | - Isamu Fukamachi
- Tsukuba Research Institute, Sekisui Medical Co. Ltd., Ryugasaki 301-0852, Japan
| | - Takashi Yamaguchi
- Center for Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, Sakura 285-8741, Japan
| | - Mao Takahashi
- Cardiovascular Center, Toho University, Sakura Medical Center, Sakura 285-8741, Japan
| | - Takeyoshi Murano
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University, Sakura Medical Center, Sakura 285-8741, Japan
| | - Ichiro Tatsuno
- Center for Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, Sakura 285-8741, Japan
| | - Masahiro Takeuchi
- Department of Hematology, Chiba University Hospital, Chiba 260-8677, Japan
| | - Chiaki Nakaseko
- Department of Hematology, Chiba University Hospital, Chiba 260-8677, Japan
| | - Wenlong Jin
- Department of Endocrinology, Affiliated Hospital of Yanbian University, Yanji 133000, China
| | - Zhehu Jin
- Department of Dermatology, Affiliated Hospital of Yanbian University, Yanji 133000, China
| | - Mark Campbell
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 OQQ, UK
| | - Wolfgang J. Schneider
- Department of Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Vienna 1030, Austria
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 OQQ, UK
- Department of Cellular Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Hideaki Bujo
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University, Sakura Medical Center, Sakura 285-8741, Japan
- Department of Genome Research and Clinical Application, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| |
Collapse
|
20
|
Kitago Y, Nagae M, Nakata Z, Yagi-Utsumi M, Takagi-Niidome S, Mihara E, Nogi T, Kato K, Takagi J. Structural basis for amyloidogenic peptide recognition by sorLA. Nat Struct Mol Biol 2015; 22:199-206. [PMID: 25643321 DOI: 10.1038/nsmb.2954] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 12/15/2014] [Indexed: 11/09/2022]
Abstract
SorLA is a neuronal sorting receptor considered to be a major risk factor for Alzheimer's disease. We have recently reported that it directs lysosomal targeting of nascent neurotoxic amyloid-β (Aβ) peptides by directly binding Aβ. Here, we determined the crystal structure of the human sorLA domain responsible for Aβ capture, Vps10p, in an unbound state and in complex with two ligands. Vps10p assumes a ten-bladed β-propeller fold with a large tunnel at the center. An internal ligand derived from the sorLA propeptide bound inside the tunnel to extend the β-sheet of one of the propeller blades. The structure of the sorLA Vps10p-Aβ complex revealed that the same site is used. Peptides are recognized by sorLA Vps10p in redundant modes without strict dependence on a particular amino acid sequence, thus suggesting a broad specificity toward peptides with a propensity for β-sheet formation.
Collapse
Affiliation(s)
- Yu Kitago
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Masamichi Nagae
- Institute for Protein Research, Osaka University, Suita, Japan
| | | | - Maho Yagi-Utsumi
- 1] Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Japan. [2] Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | | | - Emiko Mihara
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Terukazu Nogi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Koichi Kato
- 1] Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Japan. [2] Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, Suita, Japan
| |
Collapse
|
21
|
Baillon L, Pierron F, Coudret R, Normendeau E, Caron A, Peluhet L, Labadie P, Budzinski H, Durrieu G, Sarraco J, Elie P, Couture P, Baudrimont M, Bernatchez L. Transcriptome profile analysis reveals specific signatures of pollutants in Atlantic eels. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:71-84. [PMID: 25258179 DOI: 10.1007/s10646-014-1356-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/19/2014] [Indexed: 06/03/2023]
Abstract
Identifying specific effects of contaminants in a multi-stress field context remain a challenge in ecotoxicology. In this context, "omics" technologies, by allowing the simultaneous measurement of numerous biological endpoints, could help unravel the in situ toxicity of contaminants. In this study, wild Atlantic eels were sampled in 8 sites presenting a broad contamination gradient in France and Canada. The global hepatic transcriptome of animals was determined by RNA-Seq. In parallel, the contamination level of fish to 8 metals and 25 organic pollutants was determined. Factor analysis for multiple testing was used to identify genes that are most likely to be related to a single factor. Among the variables analyzed, arsenic (As), cadmium (Cd), lindane (γ-HCH) and the hepato-somatic index (HSI) were found to be the main factors affecting eel's transcriptome. Genes associated with As exposure were involved in the mechanisms that have been described during As vasculotoxicity in mammals. Genes correlated with Cd were involved in cell cycle and energy metabolism. For γ-HCH, genes were involved in lipolysis and cell growth. Genes associated with HSI were involved in protein, lipid and iron metabolisms. Our study proposes specific gene signatures of pollutants and their impacts in fish exposed to multi-stress conditions.
Collapse
Affiliation(s)
- Lucie Baillon
- Univ. Bordeaux, UMR EPOC CNRS 5805, 33400, Talence, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Yusong Guo
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3200;
| | - Daniel W. Sirkis
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3200;
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3200;
| |
Collapse
|
23
|
Yin RH, Yu JT, Tan L. The Role of SORL1 in Alzheimer's Disease. Mol Neurobiol 2014; 51:909-18. [PMID: 24833601 DOI: 10.1007/s12035-014-8742-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/05/2014] [Indexed: 11/29/2022]
Abstract
Genetic variation in SORL1 gene, also known as LR11, has been identified to associate with Alzheimer's disease (AD) through replicated genetic studies. As a type I transmembrane protein, SORL1 is composed of several distinct domains and belongs to both the low-density lipoprotein receptor (LDLR) family and the vacuolar protein sorting 10 (VPS10) domain receptor family. The level of SORL1 was found to be decreased in the AD brain which positively correlated with β-amyloid (Aβ) accumulation. Emerging data suggests that SORL1 contributes to AD through various pathways, including emerging as a central regulator of the trafficking and processing of amyloid precursor protein (APP), involvement in Aβ destruction, and interaction with ApoE and tau protein. Primarily, SORL1 interacts with distinct sets of cytosolic adaptors for anterograde and retrograde movement of APP between the trans-Golgi network (TGN) and early endosomes, thereby restricting the delivery of the precursor to endocytic compartments that favor amyloidogenic breakdown. In this article, we review recent epidemiological and genetical findings of SORL1 that related with AD and speculate the possible roles of SORL1 in the progression of this disease. Finally, given the potential contributions of SORL1 to AD pathogenesis, targeting SORL1 might present novel opportunities for AD therapy.
Collapse
Affiliation(s)
- Rui-Hua Yin
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | | | | |
Collapse
|
24
|
Tsukamoto S, Takeuchi M, Kawaguchi T, Togasaki E, Yamazaki A, Sugita Y, Muto T, Sakai S, Takeda Y, Ohwada C, Sakaida E, Shimizu N, Nishii K, Jiang M, Yokote K, Bujo H, Nakaseko C. Tetraspanin CD9 modulates ADAM17-mediated shedding of LR11 in leukocytes. Exp Mol Med 2014; 46:e89. [PMID: 24699135 PMCID: PMC3944444 DOI: 10.1038/emm.2013.161] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/10/2013] [Accepted: 11/25/2013] [Indexed: 02/05/2023] Open
Abstract
LR11, also known as SorLA or SORL1, is a type-I membrane protein from which a large extracellular part, soluble LR11 (sLR11), is released by proteolytic shedding on cleavage with a disintegrin and metalloproteinase 17 (ADAM17). A shedding mechanism is presumed to have a key role in the functions of LR11, but the evidence for this has not yet been demonstrated. Tetraspanin CD9 has been recently shown to regulate the ADAM17-mediated shedding of tumor necrosis factor-α and intercellular adhesion molecule-1 on the cell surface. Here, we investigated the role of CD9 on the shedding of LR11 in leukocytes. LR11 was not expressed in THP-1 monocytes, but it was expressed and released in phorbol 12-myristate 13-acetate (PMA)-induced THP-1 macrophages (PMA/THP-1). Confocal microscopy showed colocalization of LR11 and CD9 proteins on the cell surface of PMA/THP-1. Ectopic neo-expression of CD9 in CCRF-SB cells, which are LR11-positive and CD9-negative, reduced the amount of sLR11 released from the cells. In contrast, incubation of LR11-transfected THP-1 cells with neutralizing anti-CD9 monoclonal antibodies increased the amount of sLR11 released from the cells. Likewise, the PMA-stimulated release of sLR11 increased in THP-1 cells transfected with CD9-targeted shRNAs, which was negated by treatment with the metalloproteinase inhibitor GM6001. These results suggest that the tetraspanin CD9 modulates the ADAM17-mediated shedding of LR11 in various leukemia cell lines and that the association between LR11 and CD9 on the cell surface has an important role in the ADAM17-mediated shedding mechanism.
Collapse
Affiliation(s)
- Shokichi Tsukamoto
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiro Takeuchi
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeharu Kawaguchi
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Emi Togasaki
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsuko Yamazaki
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasumasa Sugita
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoya Muto
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shio Sakai
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan [3] Division of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Yusuke Takeda
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Chikako Ohwada
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Emiko Sakaida
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naomi Shimizu
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan [3] Division of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Keigo Nishii
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Meizi Jiang
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Medical Center Sakura Hospital, Sakura, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Bujo
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Medical Center Sakura Hospital, Sakura, Japan
| | - Chiaki Nakaseko
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
25
|
Limtipsuntorn U, Haga Y, Kondo H, Hirono I, Satoh S. Microarray analysis of hepatic gene expression in juvenile Japanese flounder Paralichthys olivaceus fed diets supplemented with fish or vegetable oils. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:88-102. [PMID: 24052493 DOI: 10.1007/s10126-013-9535-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 07/15/2013] [Indexed: 05/25/2023]
Abstract
Gene expression profiling was performed in Japanese flounder Paralichthys olivaceus fed diets supplemented with fish oil (FO), linseed oil (LO), or olive oil (OO) for 6 weeks. The LO and OO groups showed significantly retarded growth, lower feed intake, lower protein efficiency ratio, and lower hepatosomatic index (P < 0.05). Liver fatty acid composition reflected the dietary fatty acid composition. Microarray analysis revealed that dietary n - 3 highly unsaturated fatty acid (HUFA) deficiency affected 169 transcripts. In the LO group, 57 genes were up-regulated and 38 genes were down-regulated, whereas in the OO group nine genes were up-regulated and 87 genes were down-regulated. Analysis of the functional annotations suggested that dietary n - 3 HUFA affected genes involved in signal transduction (23.2 %), cellular processes (21.1 %), metabolism (including glucose, lipid, and nucleobase; 15.5 %), transport (11.3 %), regulation of transcription (10.5 %), and immune response (4.2 %). Several genes encoding serine/threonine kinases such as protein kinase C and calmodulin-dependent kinase and nuclear hormone receptors such as vitamin D receptor, retinoic acid receptor, and receptors for cytokines (bone morphogenic protein and transforming growth factor β) were affected. Among 169 transcripts, 22 genes were affected in both LO and OO groups. The present study identified several genes involved in n - 3 HUFA deficiency-sensitive pathways, which will be useful for selective breeding of flounder strains able to adapt to n - 3 HUFA deficiency.
Collapse
Affiliation(s)
- Ubonrat Limtipsuntorn
- Department of Marine Bioscience, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan, Minato 4-5-7, Tokyo, 108-8477, Japan
| | | | | | | | | |
Collapse
|
26
|
Falciani C, Brunetti J, Lelli B, Ravenni N, Lozzi L, Depau L, Scali S, Bernini A, Pini A, Bracci L. Cancer Selectivity of Tetrabranched Neurotensin Peptides Is Generated by Simultaneous Binding to Sulfated Glycosaminoglycans and Protein Receptors. J Med Chem 2013; 56:5009-18. [DOI: 10.1021/jm400329p] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
- Istituto Toscano Tumori (ITT), Via Fiorentina 1, 53100 Siena,
Italy
| | - Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
| | - Barbara Lelli
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
| | - Niccolò Ravenni
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
| | - Luisa Lozzi
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
| | - Lorenzo Depau
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
| | - Silvia Scali
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
| | - Andrea Bernini
- Department of Biotechnology,
Chemistry, and Pharmacy, University of Siena, Via Fiorentina 1, 53100 Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, Via Fiorentina 1, 53100 Siena,
Italy
- Istituto Toscano Tumori (ITT), Via Fiorentina 1, 53100 Siena,
Italy
| |
Collapse
|
27
|
Nishii K, Nakaseko C, Jiang M, Shimizu N, Takeuchi M, Schneider WJ, Bujo H. The soluble form of LR11 protein is a regulator of hypoxia-induced, urokinase-type plasminogen activator receptor (uPAR)-mediated adhesion of immature hematological cells. J Biol Chem 2013; 288:11877-86. [PMID: 23486467 DOI: 10.1074/jbc.m112.442491] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A key property of hematopoietic stem and progenitor cells (HSPCs) regarding differentiation from the self-renewing quiescent to the proliferating stage is their adhesion to the bone marrow (BM) niche. An important molecule involved in proliferation and pool size of HSPCs in the BM is the hypoxia-induced urokinase-type plasminogen activator receptor (uPAR). Here, we show that the soluble form (sLR11) of LR11 (also called SorLA or SORL1) modulates the uPAR-mediated attachment of HSPCs under hypoxic conditions. Immunohistochemical and mRNA expression analyses revealed that hypoxia increased LR11 expression in hematological c-Kit(+) Lin(-) cells. In U937 cells, hypoxia induced a transient rise in LR11 transcription, production of cellular protein, and release of sLR11. Attachment to stromal cells of c-Kit(+) Lin(-) cells of lr11(-/-) mice was reduced by hypoxia much more than of lr11(+/+) animals. sLR11 induced the adhesion of U937 and c-Kit(+) Lin(-) cells to stromal cells. Cell attachment was increased by sLR11 and reduced in the presence of anti-uPAR antibodies. Furthermore, the fraction of uPAR co-immunoprecipitated with LR11 in membrane extracts of U937 cells was increased by hypoxia. CoCl2, a chemical inducer of HIF-1α, enhanced the levels of LR11 and sLR11 in U937 cells. The decrease in hypoxia-induced attachment of HIF-1α-knockdown cells was largely prevented by exogenously added sLR11. Finally, hypoxia induced HIF-1α binding to a consensus binding site in the LR11 promoter. Thus, we conclude that sLR11 regulates the hypoxia-enhanced adhesion of HSPCs via an uPAR-mediated pathway that stabilizes the hematological pool size by controlling cell attachment to the BM niche.
Collapse
Affiliation(s)
- Keigo Nishii
- Department of Genome Research and Clinical Application, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Willnow TE, Andersen OM. Sorting receptor SORLA – a trafficking path to avoid Alzheimer disease. J Cell Sci 2013; 126:2751-60. [DOI: 10.1242/jcs.125393] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Excessive proteolytic breakdown of the amyloid precursor protein (APP) to neurotoxic amyloid β peptides (Aβ) by secretases in the brain is a molecular cause of Alzheimer disease (AD). According to current concepts, the complex route whereby APP moves between the secretory compartment, the cell surface and endosomes to encounter the various secretases determines its processing fate. However, the molecular mechanisms that control the intracellular trafficking of APP in neurons and their contribution to AD remain poorly understood. Here, we describe the functional elucidation of a new sorting receptor SORLA that emerges as a central regulator of trafficking and processing of APP. SORLA interacts with distinct sets of cytosolic adaptors for anterograde and retrograde movement of APP between the trans-Golgi network and early endosomes, thereby restricting delivery of the precursor to endocytic compartments that favor amyloidogenic breakdown. Defects in SORLA and its interacting adaptors result in transport defects and enhanced amyloidogenic processing of APP, and represent important risk factors for AD in patients. As discussed here, these findings uncovered a unique regulatory pathway for the control of neuronal protein transport, and provide clues as to why defects in this pathway cause neurodegenerative disease.
Collapse
|
29
|
Sortilin and SorLA regulate neuronal sorting of trophic and dementia-linked proteins. Mol Neurobiol 2012; 45:379-87. [PMID: 22297619 DOI: 10.1007/s12035-012-8236-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 01/12/2012] [Indexed: 12/24/2022]
Abstract
Sortilin and SorLA are members of the Vps10p domain receptor family, the Sortilins, which comprise five type I transmembrane receptors differentially expressed in neuronal tissues of the central and peripheral nervous system. Since the identification of sortilin in 1997, members of this receptor family are recognized as sorting receptors primarily in the trans-Golgi network, interacting with a wide range of ligands comprising other transmembrane receptors as well as soluble proteins from neurotrophic factors to enzymes targeted for lysosomes. Specifically, the involvement of sortilin in neutrophin signaling in healthy and injured neurons is increasingly recognized, as well as the impact of SorLA on the cellular processing of amyloid precursor protein, an important component in Alzheimer's disease. The current understanding of these issues as well as the recent recognition of a molecular link between sortilin and frontotemporal dementia is addressed in this present review.
Collapse
|
30
|
Tsolakidou A, Alexopoulos P, Guo LH, Grimmer T, Westerteicher C, Kratzer M, Jiang M, Bujo H, Roselli F, Leante MR, Livrea P, Kurz A, Perneczky R. β-Site amyloid precursor protein-cleaving enzyme 1 activity is related to cerebrospinal fluid concentrations of sortilin-related receptor with A-type repeats, soluble amyloid precursor protein, and tau. Alzheimers Dement 2012; 9:386-91. [PMID: 23127467 DOI: 10.1016/j.jalz.2012.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/30/2011] [Accepted: 01/24/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND β-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) activity determines the rate of APP cleavage and is therefore the main driver of amyloid β production, which is a pathological hallmark of Alzheimer's disease (AD). METHODS The present study explored the correlation between BACE1 activity and cerebrospinal fluid (CSF) markers of APP metabolism and axonal degeneration in 63 patients with mild AD and 12 healthy control subjects. RESULTS In the AD group, positive correlations between BACE1 activity and soluble APP β, the APP sorting receptor sortilin-related receptor with A-type repeats (also known as SorLA or LR11), and tau were detected. BACE1 activity was not associated with amyloid β1-42 or soluble APP α concentrations in the AD group, and no associations between BACE1 activity and any of the protein concentrations were found in the control group. CONCLUSION Our results confirm the relevance of BACE1 and sortilin-related receptor with A-type repeats within the amyloid cascade and also provide a further piece of evidence for the link between amyloid and tau pathology in AD.
Collapse
Affiliation(s)
- Amalia Tsolakidou
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schellenberg GD, Montine TJ. The genetics and neuropathology of Alzheimer's disease. Acta Neuropathol 2012; 124:305-23. [PMID: 22618995 DOI: 10.1007/s00401-012-0996-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 02/07/2023]
Abstract
Here we review the genetic causes and risks for Alzheimer's disease (AD). Early work identified mutations in three genes that cause AD: APP, PSEN1 and PSEN2. Although mutations in these genes are rare causes of AD, their discovery had a major impact on our understanding of molecular mechanisms of AD. Early work also revealed the ε4 allele of the APOE as a strong risk factor for AD. Subsequently, SORL1 also was identified as an AD risk gene. More recently, advances in our knowledge of the human genome, made possible by technological advances and methods to analyze genomic data, permit systematic identification of genes that contribute to AD risk. This work, so far accomplished through single nucleotide polymorphism arrays, has revealed nine new genes implicated in AD risk (ABCA7, BIN1, CD33, CD2AP, CLU, CR1, EPHA1, MS4A4E/MS4A6A, and PICALM). We review the relationship between these mutations and genetic variants and the neuropathologic features of AD and related disorders. Together, these discoveries point toward a new era in neurodegenerative disease research that impacts not only AD but also related illnesses that produce cognitive and behavioral deficits.
Collapse
Affiliation(s)
- Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6100, USA.
| | | |
Collapse
|
32
|
Alexopoulos P, Guo LH, Kratzer M, Westerteicher C, Kurz A, Perneczky R, Alzheimer's Disease Neuroimaging Initiative. Impact of SORL1 single nucleotide polymorphisms on Alzheimer's disease cerebrospinal fluid markers. Dement Geriatr Cogn Disord 2011; 32:164-70. [PMID: 21997402 PMCID: PMC3696367 DOI: 10.1159/000332017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2011] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Recently, genetic variants of the neuronal sortilin-related receptor with A-type repeats (SORL1, also called LR11 or sorLA) have emerged as risk factors for the development of Alzheimer's disease (AD). METHODS In this study, SORL1 gene polymorphisms, which have been shown to be related to AD, were analyzed for associations with cerebrospinal fluid (CSF) amyloid beta1-42 (Aβ(1-42)), phosphorylated tau181, and total tau levels in a non-Hispanic Caucasian sample, which encompassed 100 cognitively healthy elderly individuals, 166 patients with mild cognitive impairment, and 87 patients with probable AD. The data were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). Moreover, the impact of gene-gene interactions between SORL1 single nucleotide polymorphisms (SNPs) and the apolipoprotein E (APOE) ε4 allele, the major genetic risk factor for sporadic AD, on Aβ(1-42) concentrations was investigated. RESULTS Significant associations between CSF Aβ(1-42) levels and the SORL1 SNPs 23 (rs3824968) and 24 (rs2282649) were detected in the AD group. The latter association became marginally statistically insignificant after Bonferroni correction for multiple comparisons. Carriers of the SORL1 SNP24 T allele and the SNP23 A allele both had lower CSF Aβ(1-42) concentrations than non-carriers of these alleles. The analysis of the impact of interactions between APOE ε4 allele and SORL1 SNPs on CSF Aβ(1-42) levels unraveled significant influences of APOE. CONCLUSIONS Our findings provide further support for the notion that SORL1 genetic variants are related to AD pathology, probably by regulating the amyloid cascade.
Collapse
Affiliation(s)
- Panagiotis Alexopoulos
- *Dr. Panagiotis Alexopoulos, Klinik und Poliklinik für Psychiatrie und Psychotherapie, Technische Universität München, Ismaninger Strasse 22, DE–81675 München (Germany), Tel. +49 89 4140 4214, E-Mail
| | - Liang-Hao Guo
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martina Kratzer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christine Westerteicher
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexander Kurz
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW The world population is aging and a rapid increase is being seen in the very elderly (aged >80 years). Cholesterol levels in general rise with age and high cholesterol has been associated with extreme longevity. The relationship between lipids and cardiovascular events in the extreme elderly is unclear. RECENT FINDINGS A number of genetic factors associated with lipid metabolism have also been described as having potential antiaging roles, including the genes encoding lipoprotein-associated factors - apolipoprotein E and cholesterol ester transfer protein; adipose tissue metabolism - adiponectin, leptin, glycaemia; and blood pressure - angiotensinogen. Clinical trials of lipid-lowering therapies have recruited subgroups of moderately elderly patients, but only the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER) trial specifically recruited an elderly population. There is no direct equivalent of the Hypertension in the Very Elderly trial (HYVET) study of antihypertensive patients in the extreme elderly. No heterogeneity has been seen with the effects of statin therapy in the elderly compared with younger age groups on classical cardiovascular endpoints of coronary heart disease and stroke. SUMMARY The optimal cholesterol target, long-term tolerability and the specific effects of statins on other vascular-associated diseases of aging, for example arterial aneurysms, microvascular renal and cerebral disease (dementias), remain to be determined.
Collapse
|
34
|
Apolipoprotein A-V; a potent triglyceride reducer. Atherosclerosis 2011; 219:15-21. [DOI: 10.1016/j.atherosclerosis.2011.07.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/03/2011] [Accepted: 07/04/2011] [Indexed: 11/21/2022]
|
35
|
Curti MLR, Jacob P, Borges MC, Rogero MM, Ferreira SRG. Studies of gene variants related to inflammation, oxidative stress, dyslipidemia, and obesity: implications for a nutrigenetic approach. J Obes 2011; 2011:497401. [PMID: 21773006 PMCID: PMC3136190 DOI: 10.1155/2011/497401] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 02/15/2011] [Accepted: 03/14/2011] [Indexed: 01/05/2023] Open
Abstract
Obesity is currently considered a serious public health issue due to its strong impact on health, economy, and quality of life. It is considered a chronic low-grade inflammation state and is directly involved in the genesis of metabolic disturbances, such as insulin resistance and dyslipidemia, which are well-known risk factors for cardiovascular disease. Furthermore, there is evidence that genetic variation that predisposes to inflammation and metabolic disturbances could interact with environmental factors, such as diet, modulating individual susceptibility to developing these conditions. This paper aims to review the possible interactions between diet and single-nucleotide polymorphisms (SNPs) in genes implicated on the inflammatory response, lipoprotein metabolism, and oxidative status. Therefore, the impact of genetic variants of the peroxisome proliferator-activated receptor-(PPAR-)gamma, tumor necrosis factor-(TNF-)alpha, interleukin (IL)-1, IL-6, apolipoprotein (Apo) A1, Apo A2, Apo A5, Apo E, glutathione peroxidases 1, 2, and 4, and selenoprotein P exposed to variations on diet composition is described.
Collapse
Affiliation(s)
| | | | | | | | - Sandra Roberta G. Ferreira
- Department of Nutrition, School of Public Health, University of São Paulo, Avenida Dr. Arnaldo, 715, 01246-904, São Paulo, SP, Brazil
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Sortilins are sorting receptors that direct proteins through secretory and endocytic pathways of the cell. Previously, these receptors have been shown to play important roles in regulating protein transport in neurons and to control neuronal viability and death in many diseases of the nervous system. Recent data, including genome-wide association studies, now suggest equally important functions for sortilins in control of systemic lipoprotein metabolism and risk of cardiovascular disease. This review discusses the evidence implicating two members of this gene family, sortilin and SORLA, in cardiovascular processes. RECENT FINDINGS SORLA is a multifunctional receptor expressed in macrophages and vascular smooth muscle cells. It may act proatherogenic by promoting intimal SMC migration and by regulating apolipoprotein A-V dependent activation of lipoprotein lipase to modulate systemic triglyceride levels. Sortilin, encoded by the cardiovascular risk locus 1p13.3, is a novel regulator of hepatic lipoprotein production. It interacts with apolipoprotein B-100 to control release of very low-density lipoproteins, thereby affecting plasma cholesterol concentrations. SUMMARY Recent data shed light on the importance of sorting receptors in control of cellular and systemic lipoprotein metabolism and how altered trafficking pathways may represent a major risk factor for dyslipidemia and atherosclerosis in the human population.
Collapse
|
37
|
Herskowitz JH, Seyfried NT, Gearing M, Kahn RA, Peng J, Levey AI, Lah JJ. Rho kinase II phosphorylation of the lipoprotein receptor LR11/SORLA alters amyloid-beta production. J Biol Chem 2010; 286:6117-27. [PMID: 21147781 DOI: 10.1074/jbc.m110.167239] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LR11, also known as SorLA, is a mosaic low-density lipoprotein receptor that exerts multiple influences on Alzheimer disease susceptibility. LR11 interacts with the amyloid-β precursor protein (APP) and regulates APP traffic and processing to amyloid-β peptide (Aβ). The functional domains of LR11 suggest that it can act as a cell surface receptor and as an intracellular sorting receptor for trans-Golgi network to endosome traffic. We show that LR11 over-expressed in HEK293 cells is radiolabeled following incubation of cells with [(32)P(i)]orthophosphate. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to discover putative LR11 interacting kinases. Rho-associated coiled-coil containing protein kinase (ROCK) 2 was identified as a binding partner and a candidate kinase acting on LR11. LR11 and ROCK2 co-immunoprecipitate from post-mortem human brain tissue and drug inhibition of ROCK activity reduces LR11 phosphorylation in vivo. Targeted knockdown of ROCK2 with siRNA decreased LR11 ectodomain shedding while simultaneously increasing intracellular LR11 protein level. Site-directed mutagenesis of serine 2206 in the LR11 cytoplasmic tail reduced LR11 shedding, decreased LR11 phosphorylation in vitro, and abrogated LR11 mediated Aβ reduction. These findings provide direct evidence that LR11 is phosphorylated in vivo and indicate that ROCK2 phosphorylation of LR11 may enhance LR11 mediated processing of APP and amyloid production.
Collapse
Affiliation(s)
- Jeremy H Herskowitz
- Department of Neurology, the Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Muresan V, Muresan Z. Is abnormal axonal transport a cause, a contributing factor or a consequence of the neuronal pathology in Alzheimer's disease? FUTURE NEUROLOGY 2009; 4:761-773. [PMID: 20076770 DOI: 10.2217/fnl.09.54] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Axonal transport, the process by which membrane-bound organelles and soluble protein complexes are transported into and out of axons, ensures proper function of the neuron, including that of the synapse. As such, abnormalities in axonal transport could lead to neuronal pathology and disease. Similar to many neurodegenerative diseases, axonal transport is deficient in Alzheimer's disease (AD), a neurodegenerative brain disorder that affects old-age humans and is characterized by the deterioration of cognitive function and progressive memory loss. It was proposed that the synaptic pathology and neuronal degeneration that develops in AD could be caused by an abnormal axonal transport, and that the mutated proteins that cause early-onset AD, as well as the genetic variants that confer predisposition to late-onset AD might somehow impede axonal transport. This paper analyzes the data that support or contradict this hypothesis. Together, they indicate that, although abnormalities in axonal transport are part of the disease, additional studies are required to clearly establish to what extent deficient axonal transport is the cause or the effect of the neuronal pathology in AD, and to identify mechanisms that lead to its perturbation.
Collapse
Affiliation(s)
- Virgil Muresan
- University of Medicine & Dentistry of New Jersey, New Jersey Medical School, Department of Pharmacology & Physiology, 185 South Orange Avenue, MSB, I-683 Newark, NJ 07103, USA, Tel.: +1 973 972 2392, ,
| | | |
Collapse
|
39
|
Matsuo M, Ebinuma H, Fukamachi I, Jiang M, Bujo H, Saito Y. Development of an Immunoassay for the Quantification of Soluble LR11, a Circulating Marker of Atherosclerosis. Clin Chem 2009; 55:1801-8. [DOI: 10.1373/clinchem.2009.127027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Vascular smooth muscle cells (SMCs) migrate from the arterial media to the intima in the progression of atherosclerosis, and dysfunction of SMCs leads to enhanced atherogenesis. A soluble form of the LDL receptor relative with 11 ligand-binding repeats (sLR11) is produced by the intimal SMCs, and the circulating concentrations of sLR11 likely reflect the pathophysiological condition of intimal SMCs. Furthermore, polymorphism of the LR11 gene has been found to be related to the onset of Alzheimer disease. This study describes the development of a sandwich immunoassay for quantifying sLR11 in human serum and cerebrospinal fluid.
Methods: We used synthetic peptides or DNA immunization to produce monoclonal antibodies (MAbs) A2-2–3, M3, and R14 against different epitopes of LR11.
Results: sLR11 was immunologically identified as a 250-kDa protein in human serum and cerebrospinal fluid by SDS-PAGE separation, and was purified from serum by use of a receptor-associated protein and MAb M3. An immunoassay for quantification of sLR11 with a working range of 0.25–4.0 μg/L was developed using the combination of MAbs M3 and R14. Treatment of serum with 5.25% n-nonanoyl-N-methyl-d-glucamine reduced the matrix effects of serum on the absorbance detection in the ELISA system. The linear dynamic range of the ELISA spanned the variation of circulating sLR11 concentrations in individuals with atherosclerosis.
Conclusions: A sandwich ELISA was established for quantifying sLR11 in serum and cerebrospinal fluid. This technique provides a novel means for assessing the pathophysiology of atherosclerosis, and possibly neurodegenerative diseases.
Collapse
Affiliation(s)
- Masanao Matsuo
- Tsukuba Research Institute, Sekisui Medical, Ibaraki, Japan
| | | | | | - Meizi Jiang
- Department of Genome Research and Clinical Application, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Bujo
- Department of Genome Research and Clinical Application, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasushi Saito
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
40
|
Hermey G. The Vps10p-domain receptor family. Cell Mol Life Sci 2009; 66:2677-89. [PMID: 19434368 PMCID: PMC11115710 DOI: 10.1007/s00018-009-0043-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 04/21/2009] [Accepted: 04/21/2009] [Indexed: 12/24/2022]
Abstract
The family of mammalian type-I transmembrane receptors containing a Vps10p domain contains five members, Sortilin, SorCS1, SorCS2, SorCS3, and SorLA. The common characteristic of these receptors is an N-terminal Vps10p domain, which either represents the only module of the luminal/extracellular moiety or is combined with additional domains. Family members play roles in protein transport and signal transduction. The individual receptors bind and internalize a variety of ligands, such as neuropeptides and trophic factors, and Sortilin and SorLA mediate trans-Golgi network-to-endosome sorting. Their prominent neuronal expression, several of the identified ligands, and recent results support the notion that members of this receptor family have important functions in neurogenesis, plasticity-related processes, and functional maintenance of the nervous system. For instance, it has been demonstrated that Sortilin partakes in the transduction of proapoptotic effects, and there is converging biochemical and genetic evidence that implies that SorLA is an Alzheimer's disease risk factor.
Collapse
Affiliation(s)
- Guido Hermey
- Institute of Molecular and Cellular Cognition, Zentrum für Molekulare Neurobiologie Hamburg, Hamburg, Germany.
| |
Collapse
|
41
|
Spoelgen R, Adams KW, Koker M, Thomas AV, Andersen OM, Hallett PJ, Bercury KK, Joyner DF, Deng M, Stoothoff WH, Strickland DK, Willnow TE, Hyman BT. Interaction of the apolipoprotein E receptors low density lipoprotein receptor-related protein and sorLA/LR11. Neuroscience 2009; 158:1460-8. [PMID: 19047013 PMCID: PMC2709796 DOI: 10.1016/j.neuroscience.2008.10.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 10/31/2008] [Accepted: 10/31/2008] [Indexed: 01/07/2023]
Abstract
In this study, we examined protein-protein interactions between two neuronal receptors, low density lipoprotein receptor-related protein (LRP) and sorLA/LR11, and found that these receptors interact, as indicated by three independent lines of evidence: co-immunoprecipitation experiments on mouse brain extracts and mouse neuronal cells, surface plasmon resonance analysis with purified human LRP and sorLA, and fluorescence lifetime imaging microscopy (FLIM) on rat primary cortical neurons. Immunocytochemistry experiments revealed widespread co-localization of LRP and sorLA within perinuclear compartments of rat primary neurons, while FLIM analysis showed that LRP-sorLA interactions take place within a subset of these compartments.
Collapse
Affiliation(s)
- Robert Spoelgen
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Kenneth W. Adams
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Mirjam Koker
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Anne V. Thomas
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | - Penelope J. Hallett
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Kathryn K. Bercury
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Daniel F. Joyner
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Meihua Deng
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - William H. Stoothoff
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, USA
| | | | - Bradley T. Hyman
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
42
|
VPS10P-domain receptors — regulators of neuronal viability and function. Nat Rev Neurosci 2008; 9:899-909. [DOI: 10.1038/nrn2516] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
43
|
Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 2008; 9:768-78. [PMID: 18802446 DOI: 10.1038/nrn2494] [Citation(s) in RCA: 535] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The genetic underpinnings of Alzheimer's disease (AD) remain largely elusive despite early successes in identifying three genes that cause early-onset familial AD (those that encode amyloid precursor protein (APP) and the presenilins (PSEN1 and PSEN2)), and one genetic risk factor for late-onset AD (the gene that encodes apolipoprotein E (APOE)). A large number of studies that aimed to help uncover the remaining disease-related loci have been published in recent decades, collectively proposing or refuting the involvement of over 500 different gene candidates. Systematic meta-analyses of these studies currently highlight more than 20 loci that have modest but significant effects on AD risk. This Review discusses the putative pathogenetic roles and common biochemical pathways of some of the most genetically and biologically compelling of these potential AD risk factors.
Collapse
|
44
|
Boucher R, Larkin H, Brodeur J, Gagnon H, Thériault C, Lavoie C. Intracellular trafficking of LRP9 is dependent on two acidic cluster/dileucine motifs. Histochem Cell Biol 2008; 130:315-27. [PMID: 18461348 DOI: 10.1007/s00418-008-0436-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2008] [Indexed: 01/09/2023]
Abstract
LDL receptor-related protein 9 (LRP9) is a distant member of the low-density lipoprotein receptor (LDLR) superfamily. To date, there are no reports on the cellular distribution of LRP9 or the signals responsible for its localization. Here, we investigated the intracellular localization and trafficking of LRP9. Using confocal microscopy, we demonstrated that LRP9 was not present at the plasma membrane but co-localized with various markers of the trans-Golgi network (TGN) and endosomes. This co-localization was dependent on the presence of two acidic cluster/dileucine (DXXLL) motifs in the cytoplasmic tail of LRP9, which interact with GGA proteins, clathrin adaptors involved in transport between the TGN and endosomes. LRP9 is the first example of a transmembrane protein with an internal GGA-binding sequence in addition to the usual C-terminal motif. An inactivating mutation (LL --> AA) in both DXXLL motifs, which completely inhibited the interaction of LRP9 with GGA proteins, led to an intracellular redistribution of LRP9 from the TGN to early endosomes and the cell surface, indicating that the two DXXLL motifs are essential sorting determinants of LRP9. In conclusion, our results suggest that LRP9 cycles between the TGN, endosomes and the plasma membrane through a GGA dependent-trafficking mechanism.
Collapse
Affiliation(s)
- Rémi Boucher
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001-12e Avenue Nord, Sherbrooke, QC, Canada, J1H 5N4
| | | | | | | | | | | |
Collapse
|
45
|
Hu L, van der Hoogt CC, Espirito Santo SMS, Out R, Kypreos KE, van Vlijmen BJM, Van Berkel TJC, Romijn JA, Havekes LM, van Dijk KW, Rensen PCN. The hepatic uptake of VLDL in lrp-ldlr-/-vldlr-/- mice is regulated by LPL activity and involves proteoglycans and SR-BI. J Lipid Res 2008; 49:1553-61. [PMID: 18367731 DOI: 10.1194/jlr.m800130-jlr200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LPL activity plays an important role in preceding the VLDL remnant clearance via the three major apolipoprotein E (apoE)-recognizing receptors: the LDL receptor (LDLr), LDL receptor-related protein (LRP), and VLDL receptor (VLDLr). The aim of this study was to determine whether LPL activity is also important for VLDL remnant clearance irrespective of these receptors and to determine the mechanisms involved in the hepatic remnant uptake. Administration of an adenovirus expressing LPL (AdLPL) into lrp(-)ldlr(-/-)vldlr(-/-) mice reduced both VLDL-triglyceride (TG) and VLDL-total cholesterol (TC) levels. Conversely, inhibition of LPL by AdAPOC1 increased plasma VLDL-TG and VLDL-TC levels. Metabolic studies with radiolabeled VLDL-like emulsion particles showed that the clearance and hepatic association of their remnants positively correlated with LPL activity. This hepatic association was independent of the bridging function of LPL and HL, since heparin did not reduce the liver association. In vitro studies demonstrated that VLDL-like emulsion particles avidly bound to the cell surface of primary hepatocytes from lrp(-)ldlr(-/-)vldlr(-/-) mice, followed by slow internalization, and involved heparin-releaseable cell surface proteins as well as scavenger receptor class B type I (SR-BI). Collectively, we conclude that hepatic VLDL remnant uptake in the absence of the three classical apoE-recognizing receptors is regulated by LPL activity and involves heparan sulfate proteoglycans and SR-BI.
Collapse
Affiliation(s)
- Lihui Hu
- Netherlands Organization for Applied Scientific Research-Quality of Life, Gaubius Laboratory, 2301 CE Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ebrahimi M, . NS. Determination of the Amount of Environmental Hormone Contamination in Raw Materials and Products of Bandar-e-Imam Petrochemical Complex. ACTA ACUST UNITED AC 2007. [DOI: 10.3923/jbs.2007.1354.1360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Nielsen MS, Gustafsen C, Madsen P, Nyengaard JR, Hermey G, Bakke O, Mari M, Schu P, Pohlmann R, Dennes A, Petersen CM. Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA. Mol Cell Biol 2007; 27:6842-51. [PMID: 17646382 PMCID: PMC2099242 DOI: 10.1128/mcb.00815-07] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SorLA/LR11 (250 kDa) is the largest and most composite member of the Vps10p-domain receptors, a family of type 1 proteins preferentially expressed in neuronal tissue. SorLA binds several ligands, including neurotensin, platelet-derived growth factor-bb, and lipoprotein lipase, and via complex-formation with the amyloid precursor protein it downregulates generation of Alzheimer's disease-associated Abeta-peptide. The receptor is mainly located in vesicles, suggesting a function in protein sorting and transport. Here we examined SorLA's trafficking using full-length and chimeric receptors and find that its cytoplasmic tail mediates efficient Golgi body-endosome transport, as well as AP-2 complex-dependent endocytosis. Functional sorting sites were mapped to an acidic cluster-dileucine-like motif and to a GGA binding site in the C terminus. Experiments in permanently or transiently AP-1 mu1-chain-deficient cells established that the AP-1 adaptor complex is essential to SorLA's transport between Golgi membranes and endosomes. Our results further implicate the GGA proteins in SorLA trafficking and provide evidence that SNX1 and Vps35, as parts of the retromer complex or possibly in a separate context, are engaged in retraction of the receptor from endosomes.
Collapse
Affiliation(s)
- Morten S Nielsen
- The MIND-Center, Department of Medical Biochemistry, Ole Worms Allé, Bldg 1170, University of Aarhus, 8000, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Miida T, Takahashi A, Ikeuchi T. Prevention of stroke and dementia by statin therapy: Experimental and clinical evidence of their pleiotropic effects. Pharmacol Ther 2007; 113:378-93. [PMID: 17113151 DOI: 10.1016/j.pharmthera.2006.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 09/25/2006] [Indexed: 12/26/2022]
Abstract
Stroke and dementia are major causes of disability in most countries. Epidemiological studies have demonstrated that statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) are likely to reduce the risk for developing these formidable disorders. The favorable outcomes in statin users may be attributable to not only cholesterol-dependent actions, but also various cholesterol-independent actions called "pleiotropic effects." Several clinical trials have suggested that statins decrease the incidence of stroke, especially ischemic stroke. Statins improve endothelial function, inhibit platelet activation, reduce blood coagulability, and suppress inflammatory reactions, all of which may contribute to the beneficial effects of the therapy. Statins also reduce the risk of vasospasm caused by subarachnoid hemorrhage (SAH). In addition, statins might inhibit the development and progression of Alzheimer's disease (AD), the dominant type of dementia in most industrialized countries, upstream of the amyloid cascade. In vitro studies have shown that statins modulate the metabolism of the beta-amyloid precursor protein (APP) and reduce the extracellular level of its proteolytic product, amyloid-beta (Abeta). The aggregated Abeta is cytotoxic, leading to formation of neurofibrillary tangles and neuronal loss in the brain. Inflammatory processes are active in AD and may contribute significantly to AD pathology. We review the experimental background regarding the pleiotropic effects of statins and summarize clinical trials that examined the preventative effects of statin therapy on stroke and dementia. We include current trials in which statin therapy is initiated within 24 hr of onset of acute ischemic stroke.
Collapse
Affiliation(s)
- Takashi Miida
- Division of Clinical Preventive Medicine, Department of Community Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
| | | | | |
Collapse
|
49
|
Dodson SE, Gearing M, Lippa CF, Montine TJ, Levey AI, Lah JJ. LR11/SorLA expression is reduced in sporadic Alzheimer disease but not in familial Alzheimer disease. J Neuropathol Exp Neurol 2006; 65:866-72. [PMID: 16957580 PMCID: PMC2663339 DOI: 10.1097/01.jnen.0000228205.19915.20] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
LR11 is an ApoE receptor that is enriched in the brain. We have shown that LR11 is markedly downregulated in patients with sporadic Alzheimer disease (AD). This finding led us to explore whether reduced LR11 expression reflects a primary mechanism of disease or merely a secondary consequence of other AD-associated changes. Therefore, LR11 expression was assessed in a transgenic mouse model of AD and familial AD (FAD) brains. Immunohistochemistry and immunoblotting of LR11 in PS1/APP transgenic and wild-type mice indicated that LR11 levels are not affected by genotype or accumulation of amyloid pathology. LR11 expression was also evaluated based on immunoblotting and LR11 immunostaining intensity in human frontal cortex in controls, sporadic AD, and FAD, including cases with presenilin-1 (PS1) and presenilin-2 (PS2) mutations. Although LR11 was reduced in sporadic AD, there was no difference in protein level or staining intensity between control and FAD cases. The finding that LR11 expression is unaffected in both a mouse model of AD and autosomal-dominant forms of AD suggests that LR11 is not regulated by amyloid accumulation or other AD neuropathologic changes. We hypothesize that LR11 loss may be specific to sporadic AD and influence amyloid pathology through mechanisms independent of substrate-enzyme interactions regulated by FAD mutations.
Collapse
Affiliation(s)
- Sara E Dodson
- Center for Neurodegenerative Disease, Department of Neurology, Emory University Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
50
|
Jiang M, Bujo H, Zhu Y, Yamazaki H, Hirayama S, Kanaki T, Shibasaki M, Takahashi K, Schneider WJ, Saito Y. Pitavastatin attenuates the PDGF-induced LR11/uPA receptor-mediated migration of smooth muscle cells. Biochem Biophys Res Commun 2006; 348:1367-77. [PMID: 16919601 DOI: 10.1016/j.bbrc.2006.07.204] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 07/31/2006] [Indexed: 11/26/2022]
Abstract
Statins, inhibitors of HMG-CoA reductase, elicit various actions on vascular cells including the modulation of proliferation and migration of smooth muscle cells (SMCs). Here, we have elucidated the mechanism by which statins, in particular pitavastatin, attenuate the migration activity of SMCs. The expression of LR11, a member of the LDL receptor family and an enhancer of cell surface localization of urokinase-type plasminogen activator receptor (uPAR), is increased in cultured SMCs by treatment with PDGF-BB. Pitavastatin attenuates the PDGF-BB -induced surface expression of LR11 and uPAR. The increased migration of SMCs observed both upon overexpression of LR11 and via stimulation of secretion of soluble LR11 is not reversed by pitavastatin. In vivo studies showed that the SMCs expressing LR11 in plaques are almost congruent with intimal cells expressing nonmuscle myosin heavy chain (SMemb). Pitavastatin reduced the expression of LR11 and SMemb, and the levels of LR11, uPAR, and SMemb in cultured intimal SMCs were reduced to those seen in medial SMCs. We propose that this statin reduces PDGF-induced migration through the attenuation of the LR11/uPAR system in SMCs. Modulation of the LR11/uPAR system with statins suggests a novel treatment strategy for atherogenesis based on suppression of intimal SMC migration.
Collapse
MESH Headings
- Animals
- Becaplermin
- Cell Movement/drug effects
- Cells, Cultured
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Myosin Heavy Chains/metabolism
- Platelet-Derived Growth Factor/antagonists & inhibitors
- Platelet-Derived Growth Factor/pharmacology
- Proto-Oncogene Proteins c-sis
- Quinolines/pharmacology
- Rabbits
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/metabolism
- Receptors, LDL/antagonists & inhibitors
- Receptors, LDL/metabolism
- Receptors, Urokinase Plasminogen Activator
Collapse
Affiliation(s)
- Meizi Jiang
- Department of Genome Research and Clinical Application, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|