1
|
Shine BK, Choi JE, Park YJ, Hong KW. The Genetic Variants Influencing Hypertension Prevalence Based on the Risk of Insulin Resistance as Assessed Using the Metabolic Score for Insulin Resistance (METS-IR). Int J Mol Sci 2024; 25:12690. [PMID: 39684400 DOI: 10.3390/ijms252312690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Insulin resistance is a major indicator of cardiovascular diseases, including hypertension. The Metabolic Score for Insulin Resistance (METS-IR) offers a simplified and cost-effective way to evaluate insulin resistance. This study aimed to identify genetic variants associated with the prevalence of hypertension stratified by METS-IR score levels. Data from the Korean Genome and Epidemiology Study (KoGES) were analyzed. The METS-IR was calculated using the following formula: ln [(2 × fasting blood glucose (FBG) + triglycerides (TG)) × body mass index (BMI)]/ ln [high-density lipoprotein cholesterol (HDL-C)]. The participants were divided into tertiles 1 (T1) and 3 (T3) based on their METS-IR scores. Genome-wide association studies (GWAS) were performed for hypertensive cases and non-hypertensive controls within these tertile groups using logistic regression adjusted for age, sex, and lifestyle factors. Among the METS-IR tertile groups, 3517 of the 19,774 participants (17.8%) at T1 had hypertension, whereas 8653 of the 20,374 participants (42.5%) at T3 had hypertension. A total of 113 single-nucleotide polymorphisms (SNPs) reached the GWAS significance threshold (p < 5 × 10-8) in at least one tertile group, mapping to six distinct genetic loci. Notably, four loci, rs11899121 (chr2p24), rs7556898 (chr2q24.3), rs17249754 (ATP2B1), and rs1980854 (chr20p12.2), were significantly associated with hypertension in the high-METS-score group (T3). rs10857147 (FGF5) was significant in both the T1 and T3 groups, whereas rs671 (ALDH2) was significant only in the T1 group. The GWASs identified six genetic loci significantly associated with hypertension, with distinct patterns across METS-IR tertiles, highlighting the role of metabolic context in genetic susceptibility. These findings underscore critical genetic factors influencing hypertension prevalence and provide insights into the metabolic-genetic interplay underlying this condition.
Collapse
Affiliation(s)
- Bo-Kyung Shine
- Department of Family Medicine, Medical Center, Dong-A University, Busan 49201, Republic of Korea
| | - Ja-Eun Choi
- Institute of Advanced Technology, Theragen Health Co., Ltd., Seongnam 13493, Republic of Korea
| | - Young-Jin Park
- Department of Family Medicine, Medical Center, Dong-A University, Busan 49201, Republic of Korea
| | - Kyung-Won Hong
- Institute of Advanced Technology, Theragen Health Co., Ltd., Seongnam 13493, Republic of Korea
| |
Collapse
|
2
|
Moore A, Ritchie MD. Is the Relationship Between Cardiovascular Disease and Alzheimer's Disease Genetic? A Scoping Review. Genes (Basel) 2024; 15:1509. [PMID: 39766777 PMCID: PMC11675426 DOI: 10.3390/genes15121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cardiovascular disease (CVD) and Alzheimer's disease (AD) are two diseases highly prevalent in the aging population and often co-occur. The exact relationship between the two diseases is uncertain, though epidemiological studies have demonstrated that CVDs appear to increase the risk of AD and vice versa. This scoping review aims to examine the current identified overlapping genetics between CVDs and AD at the individual gene level and at the shared pathway level. METHODS Following PRISMA-ScR guidelines for a scoping review, we searched the PubMed and Scopus databases from 1990 to October 2024 for articles that involved (1) CVDs, (2) AD, and (3) used statistical methods to parse genetic relationships. RESULTS Our search yielded 2918 articles, of which 274 articles passed screening and were organized into two main sections: (1) evidence of shared genetic risk; and (2) shared mechanisms. The genes APOE, PSEN1, and PSEN2 reportedly have wide effects across the AD and CVD spectrum, affecting both cardiac and brain tissues. Mechanistically, changes in three main pathways (lipid metabolism, blood pressure regulation, and the breakdown of the blood-brain barrier (BBB)) contribute to subclinical and etiological changes that promote both AD and CVD progression. However, genetic studies continue to be limited by the availability of longitudinal data and lack of cohorts that are representative of diverse populations. CONCLUSIONS Highly penetrant familial genes simultaneously increase the risk of CVDs and AD. However, in most cases, sets of dysregulated genes within larger-scale mechanisms, like changes in lipid metabolism, blood pressure regulation, and BBB breakdown, increase the risk of both AD and CVDs and contribute to disease progression.
Collapse
Affiliation(s)
- Anni Moore
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Marylyn D. Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Division of Informatics, Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Zhabin S, Lazarenko V, Azarova I, Klyosova E, Bashkatov D, Kononov S, Dolgintsev M, Churnosov M, Solodilova M, Polonikov A. The Promoter Polymorphism rs3918226 of the Endothelial Nitric Oxide Synthase Gene as a Novel Susceptibility Marker for Peripheral Artery Disease. Ann Vasc Surg 2024; 108:557-563. [PMID: 39025213 DOI: 10.1016/j.avsg.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND This pilot study aimed to investigate the association between the single nucleotide polymorphism (SNP) rs3918226 in the promoter of the nitric oxide synthase (NOS3) gene and the risk of peripheral artery disease (PAD). METHODS DNA samples from 1,263 unrelated subjects of Slavic origin, including 620 patients with PAD and 643 controls, were genotyped for the SNP rs3918226 using the MassArray-4 system. RESULTS The rs3918226 polymorphism was found to be strongly associated with an increased risk of PAD regardless of coronary artery disease, hypertension, or cigarette smoking (odds ratio [OR] = 2.86; 95% confidence interval [CI] 1.89-4.32; Pperm < 0.0001). The SNP-PAD association was almost 3 times stronger in females (OR = 8.31; 95% CI 3.07-22.48) than in males (OR = 1.79; 95% CI 1.10-2.93). SNP rs3918226 was correlated with ankle-brachial index and total plasma cholesterol in patients with PAD (Рperm < 0.05). The NOS3 polymorphism was closely associated with SNPs rs7692387 and rs13139571 in guanylate cyclase soluble subunit alpha-3 (GUCY1A3) to determine the risk of PAD, suggesting that the rs3918226 polymorphism may disrupt signaling in the NO-soluble guanylyl cyclase pathway. Diplotypes with wild-type alleles, such as NOS3 rs3918226-C/C×GUCY1A1 rs7692387G/G and NOS3 rs3918226-C/C×GUCY1A1 rs13139571C/C, showed strong protection against disease risk (false discovery rate ≤ 0.001). Functional SNP annotation revealed that the allele rs3918226-T was associated with decreased expression of NOS3, most strongly in the tibial arteries than in the coronary artery or aorta. CONCLUSIONS The present study is the first to show that the rs3918226 polymorphism of NOS3 is a novel susceptibility marker for PAD. Further research in independent populations is necessary to reproduce the association between polymorphism rs3918226 and disease risk.
Collapse
Affiliation(s)
- Sergey Zhabin
- Department of Surgical Diseases №1, Kursk State Medical University, Kursk, Russia
| | - Victor Lazarenko
- Department of Surgical Diseases of Institute of Continuing Education, Kursk State Medical University, Kursk, Russia
| | - Iulia Azarova
- Department of Biological Chemistry, Kursk State Medical University, Kursk, Russia; Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia; Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| | - Daniil Bashkatov
- Department of Faculty Surgery With Courses in Laparoscopic and Cardiovascular Surgery and Clinic, Pavlov First Saint Petersburg State Medical University, Saint-Petersburg, Russia
| | - Stanislav Kononov
- Department of Internal Medicine №2, Kursk State Medical University, Kursk, Russia
| | - Maxim Dolgintsev
- Department of Pathophysiology, Kursk State Medical University, Kursk, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
| | - Maria Solodilova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia; Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia.
| |
Collapse
|
4
|
Cañadas-Garre M, Maqueda JJ, Baños-Jaime B, Hill C, Skelly R, Cappa R, Brennan E, Doyle R, Godson C, Maxwell AP, McKnight AJ. Mitochondrial related variants associated with cardiovascular traits. Front Physiol 2024; 15:1395371. [PMID: 39258111 PMCID: PMC11385366 DOI: 10.3389/fphys.2024.1395371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction Cardiovascular disease (CVD) is responsible for over 30% of mortality worldwide. CVD arises from the complex influence of molecular, clinical, social, and environmental factors. Despite the growing number of autosomal genetic variants contributing to CVD, the cause of most CVDs is still unclear. Mitochondria are crucial in the pathophysiology, development and progression of CVDs; the impact of mitochondrial DNA (mtDNA) variants and mitochondrial haplogroups in the context of CVD has recently been highlighted. Aims We investigated the role of genetic variants in both mtDNA and nuclear-encoded mitochondrial genes (NEMG) in CVD, including coronary artery disease (CAD), hypertension, and serum lipids in the UK Biobank, with sub-group analysis for diabetes. Methods We investigated 371,542 variants in 2,527 NEMG, along with 192 variants in 32 mitochondrial genes in 381,994 participants of the UK Biobank, stratifying by presence of diabetes. Results Mitochondrial variants showed associations with CVD, hypertension, and serum lipids. Mitochondrial haplogroup J was associated with CAD and serum lipids, whereas mitochondrial haplogroups T and U were associated with CVD. Among NEMG, variants within Nitric Oxide Synthase 3 (NOS3) showed associations with CVD, CAD, hypertension, as well as diastolic and systolic blood pressure. We also identified Translocase Of Outer Mitochondrial Membrane 40 (TOMM40) variants associated with CAD; Solute carrier family 22 member 2 (SLC22A2) variants associated with CAD and CVD; and HLA-DQA1 variants associated with hypertension. Variants within these three genes were also associated with serum lipids. Conclusion Our study demonstrates the relevance of mitochondrial related variants in the context of CVD. We have linked mitochondrial haplogroup U to CVD, confirmed association of mitochondrial haplogroups J and T with CVD and proposed new markers of hypertension and serum lipids in the context of diabetes. We have also evidenced connections between the etiological pathways underlying CVDs, blood pressure and serum lipids, placing NOS3, SLC22A2, TOMM40 and HLA-DQA1 genes as common nexuses.
Collapse
Affiliation(s)
- Marisa Cañadas-Garre
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- MRC Integrative Epidemiology Unit, Bristol Medical School (Population Health Sciences), University of Bristol Oakfield House, Belfast, United Kingdom
| | - Joaquín J Maqueda
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Blanca Baños-Jaime
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Claire Hill
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Ryan Skelly
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Ruaidhri Cappa
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Eoin Brennan
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Ross Doyle
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexander P Maxwell
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Regional Nephrology Unit, Belfast City Hospital Belfast, Belfast, United Kingdom
| | - Amy Jayne McKnight
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| |
Collapse
|
5
|
Pandey KN. Genetic and Epigenetic Mechanisms Regulating Blood Pressure and Kidney Dysfunction. Hypertension 2024; 81:1424-1437. [PMID: 38545780 PMCID: PMC11168895 DOI: 10.1161/hypertensionaha.124.22072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The pioneering work of Dr Lewis K. Dahl established a relationship between kidney, salt, and high blood pressure (BP), which led to the major genetic-based experimental model of hypertension. BP, a heritable quantitative trait affected by numerous biological and environmental stimuli, is a major cause of morbidity and mortality worldwide and is considered to be a primary modifiable factor in renal, cardiovascular, and cerebrovascular diseases. Genome-wide association studies have identified monogenic and polygenic variants affecting BP in humans. Single nucleotide polymorphisms identified in genome-wide association studies have quantified the heritability of BP and the effect of genetics on hypertensive phenotype. Changes in the transcriptional program of genes may represent consequential determinants of BP, so understanding the mechanisms of the disease process has become a priority in the field. At the molecular level, the onset of hypertension is associated with reprogramming of gene expression influenced by epigenomics. This review highlights the specific genetic variants, mutations, and epigenetic factors associated with high BP and how these mechanisms affect the regulation of hypertension and kidney dysfunction.
Collapse
Affiliation(s)
- Kailash N. Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA
| |
Collapse
|
6
|
Dunca D, Chopade S, Gordillo-Marañón M, Hingorani AD, Kuchenbaecker K, Finan C, Schmidt AF. Comparing the effects of CETP in East Asian and European ancestries: a Mendelian randomization study. Nat Commun 2024; 15:5302. [PMID: 38906890 PMCID: PMC11192935 DOI: 10.1038/s41467-024-49109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 05/24/2024] [Indexed: 06/23/2024] Open
Abstract
CETP inhibitors are a class of lipid-lowering drugs in development for treatment of coronary heart disease (CHD). Genetic studies in East Asian ancestry have interpreted the lack of CETP signal with low-density lipoprotein cholesterol (LDL-C) and lack of drug target Mendelian randomization (MR) effect on CHD as evidence that CETP inhibitors might not be effective in East Asian participants. Capitalizing on recent increases in sample size of East Asian genetic studies, we conducted a drug target MR analysis, scaled to a standard deviation increase in high-density lipoprotein cholesterol. Despite finding evidence for possible neutral effects of lower CETP levels on LDL-C, systolic blood pressure and pulse pressure in East Asians (interaction p-values < 1.6 × 10-3), effects on cardiovascular outcomes were similarly protective in both ancestry groups. In conclusion, on-target inhibition of CETP is anticipated to decrease cardiovascular disease in individuals of both European and East Asian ancestries.
Collapse
Affiliation(s)
- Diana Dunca
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom.
- UCL Genetics Institute, University College London, London, UK.
| | - Sandesh Chopade
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - María Gordillo-Marañón
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
- UCL British Heart Foundation Research Accelerator, London, UK
- Health Data Research UK, London, UK
| | - Karoline Kuchenbaecker
- UCL Genetics Institute, University College London, London, UK
- Division of Psychiatry, University College London, London, UK
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
- UCL British Heart Foundation Research Accelerator, London, UK
- Health Data Research UK, London, UK
| | - Amand F Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
- UCL British Heart Foundation Research Accelerator, London, UK
- Department of Cardiology, Amsterdam UMC Heart Center, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Fegraeus K, Rosengren MK, Naboulsi R, Orlando L, Åbrink M, Jouni A, Velie BD, Raine A, Egner B, Mattsson CM, Lång K, Zhigulev A, Björck HM, Franco-Cereceda A, Eriksson P, Andersson G, Sahlén P, Meadows JRS, Lindgren G. An endothelial regulatory module links blood pressure regulation with elite athletic performance. PLoS Genet 2024; 20:e1011285. [PMID: 38885195 PMCID: PMC11182536 DOI: 10.1371/journal.pgen.1011285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/02/2024] [Indexed: 06/20/2024] Open
Abstract
The control of transcription is crucial for homeostasis in mammals. A previous selective sweep analysis of horse racing performance revealed a 19.6 kb candidate regulatory region 50 kb downstream of the Endothelin3 (EDN3) gene. Here, the region was narrowed to a 5.5 kb span of 14 SNVs, with elite and sub-elite haplotypes analyzed for association to racing performance, blood pressure and plasma levels of EDN3 in Coldblooded trotters and Standardbreds. Comparative analysis of human HiCap data identified the span as an enhancer cluster active in endothelial cells, interacting with genes relevant to blood pressure regulation. Coldblooded trotters with the sub-elite haplotype had significantly higher blood pressure compared to horses with the elite performing haplotype during exercise. Alleles within the elite haplotype were part of the standing variation in pre-domestication horses, and have risen in frequency during the era of breed development and selection. These results advance our understanding of the molecular genetics of athletic performance and vascular traits in both horses and humans.
Collapse
Affiliation(s)
- Kim Fegraeus
- Department of Medical Sciences, Science for life laboratory, Uppsala University, Sweden
| | - Maria K. Rosengren
- Department of Animal Biosciences, Swedish University of Agricultural Sciences Uppsala, Sweden
| | - Rakan Naboulsi
- Department of Animal Biosciences, Swedish University of Agricultural Sciences Uppsala, Sweden
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institute, Stockholm
| | - Ludovic Orlando
- Centre d’Anthropobiologie et de Génomique de Toulouse (CNRS UMR 5288), Université Paul Sabatier, Toulouse, France
| | - Magnus Åbrink
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ahmad Jouni
- Department of Animal Biosciences, Swedish University of Agricultural Sciences Uppsala, Sweden
| | - Brandon D. Velie
- School of Life & Environmental Sciences, University of Sydney, Sydney, Australia
| | - Amanda Raine
- Department of Medical Sciences, Science for life laboratory, Uppsala University, Sweden
| | - Beate Egner
- Department of Cardio-Vascular Research, Veterinary Academy of Higher Learning, Babenhausen, Germany
| | - C Mikael Mattsson
- Silicon Valley Exercise Analytics (svexa), MenloPark, CA, United States of America
| | - Karin Lång
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Artemy Zhigulev
- KTH Royal Institute of Technology, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Hanna M. Björck
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Anders Franco-Cereceda
- Section of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Per Eriksson
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Göran Andersson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences Uppsala, Sweden
| | - Pelin Sahlén
- KTH Royal Institute of Technology, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Jennifer R. S. Meadows
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gabriella Lindgren
- Department of Animal Biosciences, Swedish University of Agricultural Sciences Uppsala, Sweden
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Zhang H, Chen Y, Xu P, Liu D, Wu N, Wang L, Mo X. Unveiling blood pressure-associated genes in aortic cells through integrative analysis of GWAS and RNA modification-associated variants. Chronic Dis Transl Med 2024; 10:118-129. [PMID: 38872756 PMCID: PMC11166679 DOI: 10.1002/cdt3.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 06/15/2024] Open
Abstract
Background Genome-wide association studies (GWAS) have identified more than a thousand loci for blood pressure (BP). Functional genes in these loci are cell-type specific. The aim of this study was to elucidate potentially functional genes associated with BP in the aorta through the utilization of RNA modification-associated single-nucleotide polymorphisms (RNAm-SNPs). Methods Utilizing large-scale genetic data of 757,601 individuals from the UK Biobank and International Consortium of Blood Pressure consortium, we identified associations between RNAm-SNPs and BP. The association between RNAm-SNPs, gene expression, and BP were examined. Results A total of 355 RNAm-SNPs related to m6A, m1A, m5C, m7G, and A-to-I modification were associated with BP. The related genes were enriched in the pancreatic secretion pathway and renin secretion pathway. The BP GWAS signals were significantly enriched with m6A-SNPs, highlighting the potential functional relevance of m6A in physiological processes influencing BP. Notably, m6A-SNPs in CYP11B1, PDE3B, HDAC7, ACE, SLC4A7, PDE1A, FRK, MTHFR, NPPA, CACNA1D, and HDAC9 were identified. Differential methylation and differential expression of the BP genes in FTO-overexpression and METTL14-knockdown vascular smooth muscle cells were detected. RNAm-SNPs were associated with ascending and descending aorta diameter and the genes showed differential methylation between aortic dissection (AD) cases and controls. In scRNA-seq study, we identified ARID5A, HLA-DPB1, HLA-DRA, IRF1, LINC01091, MCL1, MLF1, MLXIPL, NAA16, NADK, RERG, SRM, and USP53 as differential expression genes for AD in aortic cells. Conclusion The present study identified RNAm-SNPs in BP loci and elucidated the associations between the RNAm-SNPs, gene expression, and BP. The identified BP-associated genes in aortic cells were associated with AD.
Collapse
Affiliation(s)
- Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public HealthMedical College of Soochow UniversitySuzhouJiangsuChina
| | - Yuxi Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public HealthMedical College of Soochow UniversitySuzhouJiangsuChina
| | - Peng Xu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public HealthMedical College of Soochow UniversitySuzhouJiangsuChina
| | - Dan Liu
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Naqiong Wu
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Laiyuan Wang
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xingbo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public HealthMedical College of Soochow UniversitySuzhouJiangsuChina
- MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Center for Genetic Epidemiology and GenomicsMedical College of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
9
|
Keaton JM, Kamali Z, Xie T, Vaez A, Williams A, Goleva SB, Ani A, Evangelou E, Hellwege JN, Yengo L, Young WJ, Traylor M, Giri A, Zheng Z, Zeng J, Chasman DI, Morris AP, Caulfield MJ, Hwang SJ, Kooner JS, Conen D, Attia JR, Morrison AC, Loos RJF, Kristiansson K, Schmidt R, Hicks AA, Pramstaller PP, Nelson CP, Samani NJ, Risch L, Gyllensten U, Melander O, Riese H, Wilson JF, Campbell H, Rich SS, Psaty BM, Lu Y, Rotter JI, Guo X, Rice KM, Vollenweider P, Sundström J, Langenberg C, Tobin MD, Giedraitis V, Luan J, Tuomilehto J, Kutalik Z, Ripatti S, Salomaa V, Girotto G, Trompet S, Jukema JW, van der Harst P, Ridker PM, Giulianini F, Vitart V, Goel A, Watkins H, Harris SE, Deary IJ, van der Most PJ, Oldehinkel AJ, Keavney BD, Hayward C, Campbell A, Boehnke M, Scott LJ, Boutin T, Mamasoula C, Järvelin MR, Peters A, Gieger C, Lakatta EG, Cucca F, Hui J, Knekt P, Enroth S, De Borst MH, Polašek O, Concas MP, Catamo E, Cocca M, Li-Gao R, Hofer E, Schmidt H, Spedicati B, Waldenberger M, Strachan DP, Laan M, Teumer A, Dörr M, Gudnason V, Cook JP, Ruggiero D, Kolcic I, Boerwinkle E, Traglia M, et alKeaton JM, Kamali Z, Xie T, Vaez A, Williams A, Goleva SB, Ani A, Evangelou E, Hellwege JN, Yengo L, Young WJ, Traylor M, Giri A, Zheng Z, Zeng J, Chasman DI, Morris AP, Caulfield MJ, Hwang SJ, Kooner JS, Conen D, Attia JR, Morrison AC, Loos RJF, Kristiansson K, Schmidt R, Hicks AA, Pramstaller PP, Nelson CP, Samani NJ, Risch L, Gyllensten U, Melander O, Riese H, Wilson JF, Campbell H, Rich SS, Psaty BM, Lu Y, Rotter JI, Guo X, Rice KM, Vollenweider P, Sundström J, Langenberg C, Tobin MD, Giedraitis V, Luan J, Tuomilehto J, Kutalik Z, Ripatti S, Salomaa V, Girotto G, Trompet S, Jukema JW, van der Harst P, Ridker PM, Giulianini F, Vitart V, Goel A, Watkins H, Harris SE, Deary IJ, van der Most PJ, Oldehinkel AJ, Keavney BD, Hayward C, Campbell A, Boehnke M, Scott LJ, Boutin T, Mamasoula C, Järvelin MR, Peters A, Gieger C, Lakatta EG, Cucca F, Hui J, Knekt P, Enroth S, De Borst MH, Polašek O, Concas MP, Catamo E, Cocca M, Li-Gao R, Hofer E, Schmidt H, Spedicati B, Waldenberger M, Strachan DP, Laan M, Teumer A, Dörr M, Gudnason V, Cook JP, Ruggiero D, Kolcic I, Boerwinkle E, Traglia M, Lehtimäki T, Raitakari OT, Johnson AD, Newton-Cheh C, Brown MJ, Dominiczak AF, Sever PJ, Poulter N, Chambers JC, Elosua R, Siscovick D, Esko T, Metspalu A, Strawbridge RJ, Laakso M, Hamsten A, Hottenga JJ, de Geus E, Morris AD, Palmer CNA, Nolte IM, Milaneschi Y, Marten J, Wright A, Zeggini E, Howson JMM, O'Donnell CJ, Spector T, Nalls MA, Simonsick EM, Liu Y, van Duijn CM, Butterworth AS, Danesh JN, Menni C, Wareham NJ, Khaw KT, Sun YV, Wilson PWF, Cho K, Visscher PM, Denny JC, Levy D, Edwards TL, Munroe PB, Snieder H, Warren HR. Genome-wide analysis in over 1 million individuals of European ancestry yields improved polygenic risk scores for blood pressure traits. Nat Genet 2024; 56:778-791. [PMID: 38689001 PMCID: PMC11096100 DOI: 10.1038/s41588-024-01714-w] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/11/2024] [Indexed: 05/02/2024]
Abstract
Hypertension affects more than one billion people worldwide. Here we identify 113 novel loci, reporting a total of 2,103 independent genetic signals (P < 5 × 10-8) from the largest single-stage blood pressure (BP) genome-wide association study to date (n = 1,028,980 European individuals). These associations explain more than 60% of single nucleotide polymorphism-based BP heritability. Comparing top versus bottom deciles of polygenic risk scores (PRSs) reveals clinically meaningful differences in BP (16.9 mmHg systolic BP, 95% CI, 15.5-18.2 mmHg, P = 2.22 × 10-126) and more than a sevenfold higher odds of hypertension risk (odds ratio, 7.33; 95% CI, 5.54-9.70; P = 4.13 × 10-44) in an independent dataset. Adding PRS into hypertension-prediction models increased the area under the receiver operating characteristic curve (AUROC) from 0.791 (95% CI, 0.781-0.801) to 0.826 (95% CI, 0.817-0.836, ∆AUROC, 0.035, P = 1.98 × 10-34). We compare the 2,103 loci results in non-European ancestries and show significant PRS associations in a large African-American sample. Secondary analyses implicate 500 genes previously unreported for BP. Our study highlights the role of increasingly large genomic studies for precision health research.
Collapse
Affiliation(s)
- Jacob M Keaton
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zoha Kamali
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tian Xie
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ahmad Vaez
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ariel Williams
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Slavina B Goleva
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alireza Ani
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Ioannina, Greece
| | - Jacklyn N Hellwege
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Loic Yengo
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - William J Young
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Matthew Traylor
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Ayush Giri
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zhili Zheng
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jian Zeng
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Daniel I Chasman
- Division of Preventive Medicine Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shih-Jen Hwang
- Population Sciences Branch, NHLBI Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Jaspal S Kooner
- National Heart and Lung Institute, Imperial College London, London, UK
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - John R Attia
- Faculty of Health and Medicine, University of Newcastle, New Lambton Heights, Newcastle, New South Wales, Australia
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kati Kristiansson
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
- University of Lübeck, Lübeck, Germany
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
- University of Lübeck, Lübeck, Germany
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Lorenz Risch
- Faculty of Medical Sciences, Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- Department of Laboratory Medicine, Dr. Risch Anstalt, Vaduz, Liechtenstein
| | - Ulf Gyllensten
- Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Harriette Riese
- Interdisciplinary Center Psychopathology and Emotional Regulation (ICPE), Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Yingchang Lu
- Vanderbilt Genetic Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Johan Sundström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK
- Leicester NIHR Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zoltan Kutalik
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Stella Trompet
- Department Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Pim van der Harst
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Paul M Ridker
- Division of Preventive Medicine Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Franco Giulianini
- Division of Preventive Medicine Brigham and Women's Hospital, Boston, MA, USA
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | - Anuj Goel
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hugh Watkins
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah E Harris
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Albertine J Oldehinkel
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Manchester Heart Institute, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
- Centre for Genomic and Experimental Medicine, IGC, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, IGC, University of Edinburgh, Edinburgh, UK
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Michael Boehnke
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Laura J Scott
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Thibaud Boutin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | | | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl für Epidemiologie, Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie (IBE), Ludwig-Maximilians-Universität München, Neuherberg, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Francesco Cucca
- Institute of Genetic and Biomedical Research, National Research Council (CNR), Monserrato, Italy
| | - Jennie Hui
- Busselton Population Medical Research Institute, Perth, Western Australia, Australia
- School of Population and Global Health, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Paul Knekt
- Population Health Unit, Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Stefan Enroth
- Department of Immunology, Genetics, and Pathology, Biomedical Center, Science for Life Laboratory (SciLifeLab) Uppsala, Uppsala University, Uppsala, Sweden
| | - Martin H De Borst
- Department of Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ozren Polašek
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Maria Pina Concas
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Eulalia Catamo
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Massimiliano Cocca
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Helena Schmidt
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - David P Strachan
- Population Health Sciences Institute St George's, University of London, London, UK
| | - Maris Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Kopavogur, Iceland
| | - James P Cook
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Daniela Ruggiero
- IRCCS Neuromed, Pozzilli, Italy
- Institute of Genetics and Biophysics - 'A. Buzzati-Traverso', National Research Council of Italy, Naples, Italy
| | - Ivana Kolcic
- Algebra University College, Zagreb, Croatia
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Michela Traglia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Andrew D Johnson
- Population Sciences Branch, NHLBI Framingham Heart Study, Framingham, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Christopher Newton-Cheh
- Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Morris J Brown
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anna F Dominiczak
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Peter J Sever
- International Centre for Circulatory Health, Imperial College London, London, UK
| | - Neil Poulter
- School of Public Health, Imperial College London, London, UK
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Roberto Elosua
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- CIBER Enfermedades Cardiovasculares (CIBERCV), Barcelona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | | | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Rona J Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- Health Data Research UK, Glasgow, UK
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Kuopio University Hospital, Kuopio, Finland
| | - Anders Hamsten
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Eco de Geus
- Department of Biological Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Andrew D Morris
- Data Science, University of Edinburgh, Edinburgh, UK
- Health Data Research UK, London, UK
| | - Colin N A Palmer
- Population Health and Genomics, School of Medicine, University of Dundee, Dundee, UK
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Yuri Milaneschi
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Jonathan Marten
- Centre for Genomic and Experimental Medicine, IGC, University of Edinburgh, Edinburgh, UK
| | - Alan Wright
- Centre for Genomic and Experimental Medicine, IGC, University of Edinburgh, Edinburgh, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Munich, Germany
| | - Joanna M M Howson
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Christopher J O'Donnell
- VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tim Spector
- Department of Twin Research, King's College London, London, UK
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, NIA/NINDS, NIH, Bethesda, MD, USA
- Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | - Eleanor M Simonsick
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yongmei Liu
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Cornelia M van Duijn
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
| | - John N Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Department of Human Genetics, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, London, UK
| | | | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
- VA Atlanta Healthcare System, Decatur, GA, USA
| | - Peter W F Wilson
- Emory Clinical Cardiovascular Research Institute, Atlanta, GA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Kelly Cho
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, WA, USA
| | - Peter M Visscher
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Joshua C Denny
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Levy
- Population Sciences Branch, NHLBI Framingham Heart Study, Framingham, MA, USA
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Helen R Warren
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
10
|
Balčiūnienė E, Inčiūra A, Juozaitytė E, Ugenskienė R. Impact of RRP1B Variants on the Phenotype, Progression, and Metastasis of Cervical Cancer. Cancers (Basel) 2024; 16:1250. [PMID: 38610928 PMCID: PMC11011178 DOI: 10.3390/cancers16071250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Metastasis is a key determinant of cancer progression, influenced significantly by genetic mechanisms. RRP1B, primarily a nucleolar protein, emerges as a suppressor of metastasis, forming alliances with various cellular components and modulating gene expression. This study investigates the involvement of the ribosomal RNA processing 1 homolog B (RRP1B) gene in metastasis regulation in cervical cancer. Through a comprehensive analysis of 172 cervical cancer patients, we evaluated five RRP1B single nucleotide polymorphisms (SNPs) (rs2838342, rs7276633, rs2051407, rs9306160, and rs762400) for their associations with clinicopathological features and survival outcomes. Significant associations were observed between specific genetic variants and clinicopathological parameters. Notably, the A allele of rs2838342 was associated with reduced odds of advanced tumor size, worse prognosis, and, preliminarily, distant metastasis, while the T allele of rs7276633 correlated with a decreased risk of higher tumor size and worse prognosis. Additionally, the C allele of rs2051407 demonstrated protective effects against larger tumors, metastasis, and adverse prognosis. The rs9306160 C allele exhibited a protective effect against metastasis. The rs762400 G allele was significant for reduced tumor size and metastasis risk. Furthermore, the rs2838342 A allele, rs7276633 T allele, rs2051407 C allele, and rs762400 G allele were associated with improved overall survival, demonstrating their potential significance in predicting prognoses in cervical cancer. Linkage disequilibrium and haplotypes analysis enabled us to evaluate the collective effect of the analyzed SNPs, which was in line with the results of allelic models. Our findings underscore the clinical relevance of RRP1B SNPs as prognostic markers in cervical cancer, shedding light on the intricate interplay between genetic factors and disease-progression dynamics. This research provides critical insights for future investigations and underscores the importance of incorporating RRP1B SNP detection into prognostic-assessment tools for accurate prediction of disease outcomes in cervical cancer.
Collapse
Affiliation(s)
- Eglė Balčiūnienė
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (A.I.); (E.J.); (R.U.)
| | - Arturas Inčiūra
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (A.I.); (E.J.); (R.U.)
| | - Elona Juozaitytė
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (A.I.); (E.J.); (R.U.)
| | - Rasa Ugenskienė
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (A.I.); (E.J.); (R.U.)
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
11
|
Xu X, Khunsriraksakul C, Eales JM, Rubin S, Scannali D, Saluja S, Talavera D, Markus H, Wang L, Drzal M, Maan A, Lay AC, Prestes PR, Regan J, Diwadkar AR, Denniff M, Rempega G, Ryszawy J, Król R, Dormer JP, Szulinska M, Walczak M, Antczak A, Matías-García PR, Waldenberger M, Woolf AS, Keavney B, Zukowska-Szczechowska E, Wystrychowski W, Zywiec J, Bogdanski P, Danser AHJ, Samani NJ, Guzik TJ, Morris AP, Liu DJ, Charchar FJ, Tomaszewski M. Genetic imputation of kidney transcriptome, proteome and multi-omics illuminates new blood pressure and hypertension targets. Nat Commun 2024; 15:2359. [PMID: 38504097 PMCID: PMC10950894 DOI: 10.1038/s41467-024-46132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Genetic mechanisms of blood pressure (BP) regulation remain poorly defined. Using kidney-specific epigenomic annotations and 3D genome information we generated and validated gene expression prediction models for the purpose of transcriptome-wide association studies in 700 human kidneys. We identified 889 kidney genes associated with BP of which 399 were prioritised as contributors to BP regulation. Imputation of kidney proteome and microRNAome uncovered 97 renal proteins and 11 miRNAs associated with BP. Integration with plasma proteomics and metabolomics illuminated circulating levels of myo-inositol, 4-guanidinobutanoate and angiotensinogen as downstream effectors of several kidney BP genes (SLC5A11, AGMAT, AGT, respectively). We showed that genetically determined reduction in renal expression may mimic the effects of rare loss-of-function variants on kidney mRNA/protein and lead to an increase in BP (e.g., ENPEP). We demonstrated a strong correlation (r = 0.81) in expression of protein-coding genes between cells harvested from urine and the kidney highlighting a diagnostic potential of urinary cell transcriptomics. We uncovered adenylyl cyclase activators as a repurposing opportunity for hypertension and illustrated examples of BP-elevating effects of anticancer drugs (e.g. tubulin polymerisation inhibitors). Collectively, our studies provide new biological insights into genetic regulation of BP with potential to drive clinical translation in hypertension.
Collapse
Affiliation(s)
- Xiaoguang Xu
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | | | - James M Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sebastien Rubin
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - David Scannali
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sushant Saluja
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - David Talavera
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Havell Markus
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Lida Wang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Maciej Drzal
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Akhlaq Maan
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Abigail C Lay
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Priscilla R Prestes
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Jeniece Regan
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Avantika R Diwadkar
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Matthew Denniff
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Grzegorz Rempega
- Department of Urology, Medical University of Silesia, Katowice, Poland
| | - Jakub Ryszawy
- Department of Urology, Medical University of Silesia, Katowice, Poland
| | - Robert Król
- Department of General, Vascular and Transplant Surgery, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - John P Dormer
- Department of Cellular Pathology, University Hospitals of Leicester, Leicester, UK
| | - Monika Szulinska
- Department of Obesity, Metabolic Disorders Treatment and Clinical Dietetics, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Marta Walczak
- Department of Internal Diseases, Metabolic Disorders and Arterial Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Antczak
- Department of Urology and Uro-oncology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Pamela R Matías-García
- Institute of Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust Manchester, Manchester Royal Infirmary, Manchester, UK
| | | | - Wojciech Wystrychowski
- Department of General, Vascular and Transplant Surgery, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Zywiec
- Department of Internal Medicine, Diabetology and Nephrology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Pawel Bogdanski
- Department of Obesity, Metabolic Disorders Treatment and Clinical Dietetics, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - A H Jan Danser
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Tomasz J Guzik
- Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Dajiang J Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Fadi J Charchar
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK.
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust Manchester, Manchester Royal Infirmary, Manchester, UK.
| |
Collapse
|
12
|
Gomes B, Singh A, O'Sullivan JW, Schnurr TM, Goddard PC, Loong S, Amar D, Hughes JW, Kostur M, Haddad F, Salerno M, Foo R, Montgomery SB, Parikh VN, Meder B, Ashley EA. Genetic architecture of cardiac dynamic flow volumes. Nat Genet 2024; 56:245-257. [PMID: 38082205 DOI: 10.1038/s41588-023-01587-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/23/2023] [Indexed: 02/04/2024]
Abstract
Cardiac blood flow is a critical determinant of human health. However, the definition of its genetic architecture is limited by the technical challenge of capturing dynamic flow volumes from cardiac imaging at scale. We present DeepFlow, a deep-learning system to extract cardiac flow and volumes from phase-contrast cardiac magnetic resonance imaging. A mixed-linear model applied to 37,653 individuals from the UK Biobank reveals genome-wide significant associations across cardiac dynamic flow volumes spanning from aortic forward velocity to aortic regurgitation fraction. Mendelian randomization reveals a causal role for aortic root size in aortic valve regurgitation. Among the most significant contributing variants, localizing genes (near ELN, PRDM6 and ADAMTS7) are implicated in connective tissue and blood pressure pathways. Here we show that DeepFlow cardiac flow phenotyping at scale, combined with genotyping data, reinforces the contribution of connective tissue genes, blood pressure and root size to aortic valve function.
Collapse
Affiliation(s)
- Bruna Gomes
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Cardiology, Pneumology and Angiology, Heidelberg University Hospital, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
| | - Aditya Singh
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Jack W O'Sullivan
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Theresia M Schnurr
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Pagé C Goddard
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Shaun Loong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Amar
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - J Weston Hughes
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Mykhailo Kostur
- Department of Cardiology, Pneumology and Angiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Francois Haddad
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Michael Salerno
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Roger Foo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Stephen B Montgomery
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Victoria N Parikh
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Benjamin Meder
- Department of Cardiology, Pneumology and Angiology, Heidelberg University Hospital, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
| | - Euan A Ashley
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Ahles A, Engelhardt S. Genetic Variants of Adrenoceptors. Handb Exp Pharmacol 2024; 285:27-54. [PMID: 37578621 DOI: 10.1007/164_2023_676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Adrenoceptors are class A G-protein-coupled receptors grouped into three families (α1-, α2-, and β-adrenoceptors), each one including three members. All nine corresponding adrenoceptor genes display genetic variation in their coding and adjacent non-coding genomic region. Coding variants, i.e., nucleotide exchanges within the transcribed and translated receptor sequence, may result in a difference in amino acid sequence thus altering receptor function and signaling. Such variants have been intensely studied in vitro in overexpression systems and addressed in candidate-gene studies for distinct clinical parameters. In recent years, large cohorts were analyzed in genome-wide association studies (GWAS), where variants are detected as significant in context with specific traits. These studies identified two of the in-depth characterized 18 coding variants in adrenoceptors as repeatedly statistically significant genetic risk factors - p.Arg389Gly in the β1- and p.Thr164Ile in the β2-adrenoceptor, along with 56 variants in the non-coding regions adjacent to the adrenoceptor gene loci, the functional role of which is largely unknown at present. This chapter summarizes current knowledge on the two coding variants in adrenoceptors that have been consistently validated in GWAS and provides a prospective overview on the numerous non-coding variants more recently attributed to adrenoceptor gene loci.
Collapse
Affiliation(s)
- Andrea Ahles
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
14
|
Kariis HM, Kasela S, Jürgenson T, Saar A, Lass J, Krebs K, Võsa U, Haan E, Milani L, Lehto K. The role of depression and antidepressant treatment in antihypertensive medication adherence and persistence: Utilising electronic health record data. J Psychiatr Res 2023; 168:269-278. [PMID: 37924579 DOI: 10.1016/j.jpsychires.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 11/06/2023]
Abstract
Higher blood pressure levels in patients with depression may be associated with lower adherence to antihypertensive medications (AHMs). Here, we use electronic health record (EHR) data from the Estonian Biobank (EstBB) to investigate the role of lifetime depression in AHM adherence and persistence. We also explore the relationship between antidepressant initiation and intraindividual change in AHM adherence among hypertension (HTN) patients with newly diagnosed depression. Diagnosis and pharmacy refill data were obtained from the National Health Insurance database. Adherence and persistence to AHMs were determined for hypertension (HTN) patients initiating treatment between 2009 and 2017 with a three-year follow-up period. Multivariable regression was used to explore the associations between depression and AHM adherence or persistence, adjusting for sociodemographic, genetic, and health-related factors. A linear mixed-effects model was used to estimate the effect of antidepressant treatment initiation on antihypertensive medication adherence, adjusting for age and sex. We identified 20,724 individuals with newly diagnosed HTN (6294 depression cases and 14,430 controls). Depression was associated with 6% lower probability of AHM adherence (OR = 0.943, 95%CI = 0.909-0.979) and 12% lower odds of AHM persistence (OR = 0.876, 95%CI = 0.821-0.936). Adjusting for sociodemographic, genetic, and health-related factors did not significantly influence these associations. AHM adherence increased 8% six months after initiating antidepressant therapy (N = 132; β = 0.078; 95%CI = 0.025-0.131). Based on the EHR data on EstBB participants, depression is associated with lower AHM adherence and persistence. Additionally, antidepressant therapy may help improve AHM adherence in patients with depression.
Collapse
Affiliation(s)
- Hanna Maria Kariis
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Riia 23B, Tartu, 51010, Tartumaa, Estonia
| | - Silva Kasela
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Riia 23B, Tartu, 51010, Tartumaa, Estonia
| | - Tuuli Jürgenson
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Riia 23B, Tartu, 51010, Tartumaa, Estonia
| | - Aet Saar
- North Estonia Medical Centre, J. Sütiste Street 19, Tallinn, 13419, Harjumaa, Estonia
| | - Jana Lass
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Riia 23B, Tartu, 51010, Tartumaa, Estonia; Tartu University Hospital, L. Puusepa 8, Tartu, 50406, Tartumaa, Estonia
| | - Kristi Krebs
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Riia 23B, Tartu, 51010, Tartumaa, Estonia
| | - Urmo Võsa
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Riia 23B, Tartu, 51010, Tartumaa, Estonia
| | - Elis Haan
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Riia 23B, Tartu, 51010, Tartumaa, Estonia
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Riia 23B, Tartu, 51010, Tartumaa, Estonia
| | - Kelli Lehto
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Riia 23B, Tartu, 51010, Tartumaa, Estonia.
| |
Collapse
|
15
|
Grilo LF, Zimmerman KD, Puppala S, Chan J, Huber HF, Li G, Jadhav AYL, Wang B, Li C, Clarke GD, Register TC, Oliveira PJ, Nathanielsz PW, Olivier M, Pereira SP, Cox LA. Cardiac Molecular Analysis Reveals Aging-Associated Metabolic Alterations Promoting Glycosaminoglycans Accumulation Via Hexosamine Biosynthetic Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567640. [PMID: 38014295 PMCID: PMC10680868 DOI: 10.1101/2023.11.17.567640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Age is a prominent risk factor for cardiometabolic disease, and often leads to heart structural and functional changes. However, precise molecular mechanisms underlying cardiac remodeling and dysfunction resulting from physiological aging per se remain elusive. Understanding these mechanisms requires biological models with optimal translation to humans. Previous research demonstrated that baboons undergo age-related reduction in ejection fraction and increased heart sphericity, mirroring changes observed in humans. The goal of this study was to identify early cardiac molecular alterations that precede functional adaptations, shedding light on the regulation of age-associated changes. We performed unbiased transcriptomics of left ventricle (LV) samples from female baboons aged 7.5-22.1 years (human equivalent ~30-88 years). Weighted-gene correlation network and pathway enrichment analyses were performed to identify potential age-associated mechanisms in LV, with histological validation. Myocardial modules of transcripts negatively associated with age were primarily enriched for cardiac metabolism, including oxidative phosphorylation, tricarboxylic acid cycle, glycolysis, and fatty-acid β-oxidation. Transcripts positively correlated with age suggest upregulation of glucose uptake, pentose phosphate pathway, and hexosamine biosynthetic pathway (HBP), indicating a metabolic shift towards glucose-dependent anabolic pathways. Upregulation of HBP commonly results in increased glycosaminoglycan precursor synthesis. Transcripts involved in glycosaminoglycan synthesis, modification, and intermediate metabolism were also upregulated in older animals, while glycosaminoglycan degradation transcripts were downregulated with age. These alterations would promote glycosaminoglycan accumulation, which was verified histologically. Upregulation of extracellular matrix (ECM)-induced signaling pathways temporally coincided with glycosaminoglycan accumulation. We found a subsequent upregulation of cardiac hypertrophy-related pathways and an increase in cardiomyocyte width. Overall, our findings revealed a transcriptional shift in metabolism from catabolic to anabolic pathways that leads to ECM glycosaminoglycan accumulation through HBP prior to upregulation of transcripts of cardiac hypertrophy-related pathways. This study illuminates cellular mechanisms that precede development of cardiac hypertrophy, providing novel potential targets to remediate age-related cardiac diseases.
Collapse
Affiliation(s)
- Luís F. Grilo
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
- University of Coimbra, Institute for Interdisciplinary Research, PDBEB - Doctoral Programme in Experimental Biology and Biomedicine
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Kip D. Zimmerman
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sobha Puppala
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jeannie Chan
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hillary F. Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ge Li
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Avinash Y. L. Jadhav
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Benlian Wang
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Cun Li
- Texas Pregnancy & Life-Course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Geoffrey D. Clarke
- Department of Radiology, University of Texas Health Science Center, San Antonio, Texas
| | - Thomas C. Register
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Paulo J. Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Peter W. Nathanielsz
- Texas Pregnancy & Life-Course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Michael Olivier
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Susana P. Pereira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, Porto, Portugal
| | - Laura A. Cox
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
16
|
Feng Q, Grant AJ, Yang Q, Burgess S, Bešević J, Conroy M, Omiyale W, Sun Y, Allen N, Lacey B. Genetically Predicted Vegetable Intake and Cardiovascular Diseases and Risk Factors: An Investigation with Mendelian Randomization. Nutrients 2023; 15:3682. [PMID: 37686714 PMCID: PMC10490460 DOI: 10.3390/nu15173682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND The associations between vegetable intake and cardiovascular diseases have been demonstrated in observational studies, but less sufficiently in randomized trials. Mendelian randomization has been considered a promising alternative in causal inference. The separate effects of cooked and raw vegetable intake remain unclear. This study aimed to investigate the associations between cooked and raw vegetable intake with cardiovascular outcomes using MR. METHODS We identified 15 and 28 genetic variants statistically and biologically associated with cooked and raw vegetable intake, respectively, from previous genome-wide association studies, which were used as instrumental variables to estimate associations with coronary heart disease (CHD), stroke, heart failure (HF), and atrial fibrillation (AF). The independent effects of genetically predicted cooked and raw vegetable intake were examined using multivariable MR analysis. We performed one-sample and two-sample MR analyses and combined their results using meta-analysis. Bonferroni correction was applied for multiple comparisons. We performed two-sample MR analysis for cardiometabolic risk factors (serum lipids, blood pressure, body mass index, and glycemic traits) to explore the potential mechanisms. RESULTS In the MR meta-analysis of 1.2 million participants, we found null evidence for associations between genetically predicted cooked and raw vegetable intake with CHD, HF, or AF. Raw vegetable intake was nominally associated with stroke (odds ratio [95% confidence interval] 0.82 [0.69-0.98] per 1 daily serving increase, p = 0.03), but this association did not pass the corrected significance level. We found consistently null evidence for associations with serum lipids, blood pressure, body mass index, or glycemic traits. CONCLUSIONS We found null evidence for associations between genetically predicted vegetable intake with CHD, AF, HF, or cardiometabolic risk factors in this MR study. Raw vegetable intake may reduce risk of stroke, but this warrants more research. True associations between vegetable intake and CVDs cannot be completely ruled out, and future investigations are required for causal inference in nutritional research.
Collapse
Affiliation(s)
- Qi Feng
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Andrew J. Grant
- MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Qian Yang
- MRC Integrative Epidemiology, University of Bristol, Bristol BS1 3NY, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Jelena Bešević
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Megan Conroy
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Wemimo Omiyale
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Yangbo Sun
- Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Naomi Allen
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Ben Lacey
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| |
Collapse
|
17
|
Oliveros W, Delfosse K, Lato DF, Kiriakopulos K, Mokhtaridoost M, Said A, McMurray BJ, Browning JW, Mattioli K, Meng G, Ellis J, Mital S, Melé M, Maass PG. Systematic characterization of regulatory variants of blood pressure genes. CELL GENOMICS 2023; 3:100330. [PMID: 37492106 PMCID: PMC10363820 DOI: 10.1016/j.xgen.2023.100330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 07/27/2023]
Abstract
High blood pressure (BP) is the major risk factor for cardiovascular disease. Genome-wide association studies have identified genetic variants for BP, but functional insights into causality and related molecular mechanisms lag behind. We functionally characterize 4,608 genetic variants in linkage with 135 BP loci in vascular smooth muscle cells and cardiomyocytes by massively parallel reporter assays. High densities of regulatory variants at BP loci (i.e., ULK4, MAP4, CFDP1, PDE5A) indicate that multiple variants drive genetic association. Regulatory variants are enriched in repeats, alter cardiovascular-related transcription factor motifs, and spatially converge with genes controlling specific cardiovascular pathways. Using heuristic scoring, we define likely causal variants, and CRISPR prime editing finally determines causal variants for KCNK9, SFXN2, and PCGF6, which are candidates for developing high BP. Our systems-level approach provides a catalog of functionally relevant variants and their genomic architecture in two trait-relevant cell lines for a better understanding of BP gene regulation.
Collapse
Affiliation(s)
- Winona Oliveros
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Catalonia, Spain
| | - Kate Delfosse
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Daniella F. Lato
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Katerina Kiriakopulos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Milad Mokhtaridoost
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Abdelrahman Said
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brandon J. McMurray
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jared W.L. Browning
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kaia Mattioli
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Guoliang Meng
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - James Ellis
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Seema Mital
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON M5G 1X8, Canada
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Catalonia, Spain
| | - Philipp G. Maass
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Kurniansyah N, Goodman MO, Khan AT, Wang J, Feofanova E, Bis JC, Wiggins KL, Huffman JE, Kelly T, Elfassy T, Guo X, Palmas W, Lin HJ, Hwang SJ, Gao Y, Young K, Kinney GL, Smith JA, Yu B, Liu S, Wassertheil-Smoller S, Manson JE, Zhu X, Chen YDI, Lee IT, Gu CC, Lloyd-Jones DM, Zöllner S, Fornage M, Kooperberg C, Correa A, Psaty BM, Arnett DK, Isasi CR, Rich SS, Kaplan RC, Redline S, Mitchell BD, Franceschini N, Levy D, Rotter JI, Morrison AC, Sofer T. Evaluating the use of blood pressure polygenic risk scores across race/ethnic background groups. Nat Commun 2023; 14:3202. [PMID: 37268629 PMCID: PMC10238525 DOI: 10.1038/s41467-023-38990-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/24/2023] [Indexed: 06/04/2023] Open
Abstract
We assess performance and limitations of polygenic risk scores (PRSs) for multiple blood pressure (BP) phenotypes in diverse population groups. We compare "clumping-and-thresholding" (PRSice2) and LD-based (LDPred2) methods to construct PRSs from each of multiple GWAS, as well as multi-PRS approaches that sum PRSs with and without weights, including PRS-CSx. We use datasets from the MGB Biobank, TOPMed study, UK biobank, and from All of Us to train, assess, and validate PRSs in groups defined by self-reported race/ethnic background (Asian, Black, Hispanic/Latino, and White). For both SBP and DBP, the PRS-CSx based PRS, constructed as a weighted sum of PRSs developed from multiple independent GWAS, perform best across all race/ethnic backgrounds. Stratified analysis in All of Us shows that PRSs are better predictive of BP in females compared to males, individuals without obesity, and middle-aged (40-60 years) compared to older and younger individuals.
Collapse
Affiliation(s)
- Nuzulul Kurniansyah
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Matthew O Goodman
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Alyna T Khan
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jiongming Wang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Elena Feofanova
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kerri L Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer E Huffman
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Tanika Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Tali Elfassy
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Walter Palmas
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Henry J Lin
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Shih-Jen Hwang
- The Population Sciences Branch of the National Heart, Lung and Blood Institute, Bethesda, MD, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Yan Gao
- The Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kendra Young
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Gregory L Kinney
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Bing Yu
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Simin Liu
- Center for Global Cardiometabolic Health, Department of Epidemiology, Brown University, Providence, RI, USA
- Department of Medicine, Brown University, Providence, RI, USA
| | - Sylvia Wassertheil-Smoller
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - JoAnn E Manson
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yii-Der Ida Chen
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - I-Te Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung City, 40705, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - C Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Sebastian Zöllner
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Adolfo Correa
- Departments of Medicine and Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Bruce M Psaty
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Donna K Arnett
- Office of the Provost, University of South Carolina, Columbia, SC, USA
| | - Carmen R Isasi
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Robert C Kaplan
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Daniel Levy
- The Population Sciences Branch of the National Heart, Lung and Blood Institute, Bethesda, MD, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
19
|
Pérez-Gimeno G, Seral-Cortes M, Sabroso-Lasa S, Esteban LM, Lurbe E, Béghin L, Gottrand F, Meirhaeghe A, Muntaner M, Kafatos A, Molnár D, Leclercq C, Widhalm K, Kersting M, Nova E, Salazar-Tortosa DF, Gonzalez-Gross M, Breidenassel C, Sinningen K, De Ruyter T, Labayen I, Rupérez AI, Bueno-Lozano G, Moreno LA. Development of a genetic risk score to predict the risk of hypertension in European adolescents from the HELENA study. Front Cardiovasc Med 2023; 10:1118919. [PMID: 37324619 PMCID: PMC10267871 DOI: 10.3389/fcvm.2023.1118919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction From genome wide association study (GWAS) a large number of single nucleotide polymorphisms (SNPs) have previously been associated with blood pressure (BP) levels. A combination of SNPs, forming a genetic risk score (GRS) could be considered as a useful genetic tool to identify individuals at risk of developing hypertension from early stages in life. Therefore, the aim of our study was to build a GRS being able to predict the genetic predisposition to hypertension (HTN) in European adolescents. Methods Data were extracted from the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) cross-sectional study. A total of 869 adolescents (53% female), aged 12.5-17.5, with complete genetic and BP information were included. The sample was divided into altered (≥130 mmHg for systolic and/or ≥80 mmHg for diastolic) or normal BP. Based on the literature, a total of 1.534 SNPs from 57 candidate genes related with BP were selected from the HELENA GWAS database. Results From 1,534 SNPs available, An initial screening of SNPs univariately associated with HTN (p < 0.10) was established, to finally obtain a number of 16 SNPs significantly associated with HTN (p < 0.05) in the multivariate model. The unweighted GRS (uGRS) and weighted GRS (wGRS) were estimated. To validate the GRSs, the area under the curve (AUC) was explored using ten-fold internal cross-validation for uGRS (0.802) and wGRS (0.777). Further covariates of interest were added to the analyses, obtaining a higher predictive ability (AUC values of uGRS: 0.879; wGRS: 0.881 for BMI z-score). Furthermore, the differences between AUCs obtained with and without the addition of covariates were statistically significant (p < 0.05). Conclusions Both GRSs, the uGRS and wGRS, could be useful to evaluate the predisposition to hypertension in European adolescents.
Collapse
Affiliation(s)
- Gloria Pérez-Gimeno
- Growth, Exercise, NUtrition and Development (GENUD), Research Group, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Seral-Cortes
- Growth, Exercise, NUtrition and Development (GENUD), Research Group, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Sabroso-Lasa
- Genetic and Molecular Epidemiology Group (GMEG), Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Empar Lurbe
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- INCLIVA Biomedical Research Institute, Pediatric Department, Consorcio Hospital General, University of Valencia, Valencia, Spain
| | - Laurent Béghin
- Université Lille, Inserm, CHU Lille, INFINITE—Institute for Translational Research in Inflammation, Lille, France
| | - Frederic Gottrand
- Université Lille, Inserm, CHU Lille, INFINITE—Institute for Translational Research in Inflammation, Lille, France
| | - Aline Meirhaeghe
- Risk Factors and Molecular Determinants of Aging-Related Diseases (RID-AGE), Centre Hosp. Univ Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Manon Muntaner
- Risk Factors and Molecular Determinants of Aging-Related Diseases (RID-AGE), Centre Hosp. Univ Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Anthony Kafatos
- Department of Social Medicine, Preventive Medicine and Nutrition Clinic, University of Crete School of Medicine, Heraklion, Greece
| | - Dénes Molnár
- Department of Pediatrics, University of Pecs, Pecs, Hungary
| | - Catherine Leclercq
- INRAN, National Research Institute for Food and Nutrition, Food and Nutrition Research Centre-Council for Agricultural Research and Economics, Rome, Italy
| | - Kurt Widhalm
- Division of Clinical Nutrition and Prevention, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Mathilde Kersting
- Departement of Nutrition—Human Nutrition, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Esther Nova
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), CSIC, Madrid, Spain
| | - Diego F. Salazar-Tortosa
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, United States
- PROFITH ‘PROmoting FITness and Health Through Physical Activity’ Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Marcela Gonzalez-Gross
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- ImFine Research Group, Department of Health and Human Performance, Facultad de Ciencias de la Actividad Física y del Deporte-INEF, Universidad Politécnica de Madrid, Madrid, Spain
| | - Christina Breidenassel
- Departement of Nutrition—Human Nutrition, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- ImFine Research Group, Department of Health and Human Performance, Facultad de Ciencias de la Actividad Física y del Deporte-INEF, Universidad Politécnica de Madrid, Madrid, Spain
| | - Kathrin Sinningen
- Research Department of Child Nutrition, University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Thaïs De Ruyter
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Idoia Labayen
- Department of Health Sciences, Institute for Innovation & Sustainable Food Chain Development, Public University of Navarra, Pamplona, Spain
| | - Azahara I. Rupérez
- Growth, Exercise, NUtrition and Development (GENUD), Research Group, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
| | - Gloria Bueno-Lozano
- Growth, Exercise, NUtrition and Development (GENUD), Research Group, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis A. Moreno
- Growth, Exercise, NUtrition and Development (GENUD), Research Group, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
20
|
Ivanova T, Churnosova M, Abramova M, Ponomarenko I, Reshetnikov E, Aristova I, Sorokina I, Churnosov M. Risk Effects of rs1799945 Polymorphism of the HFE Gene and Intergenic Interactions of GWAS-Significant Loci for Arterial Hypertension in the Caucasian Population of Central Russia. Int J Mol Sci 2023; 24:ijms24098309. [PMID: 37176017 PMCID: PMC10179076 DOI: 10.3390/ijms24098309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of this case-control replicative study was to investigate the link between GWAS-impact for arterial hypertension (AH) and/or blood pressure (BP) gene polymorphisms and AH risk in Russian subjects (Caucasian population of Central Russia). AH (n = 939) and control (n = 466) cohorts were examined for ten GWAS AH/BP risk loci. The genotypes/alleles of these SNP and their combinations (SNP-SNP interactions) were tested for their association with the AH development using a logistic regression statistical procedure. The genotype GG of the SNP rs1799945 (C/G) HFE was strongly linked with an increased AH risk (ORrecGG = 2.53; 95%CIrecGG1.03-6.23; ppermGG = 0.045). The seven SNPs such as rs1173771 (G/A) AC026703.1, rs1799945 (C/G) HFE, rs805303 (G/A) BAG6, rs932764 (A/G) PLCE1, rs4387287 (C/A) OBFC1, rs7302981 (G/A) CERS5, rs167479 (T/G) RGL3, out of ten regarded loci, were related with AH within eight SNP-SNP interaction models (<0.001 ≤ pperm-interaction ≤ 0.047). Three polymorphisms such as rs8068318 (T/C) TBX2, rs633185 (C/G) ARHGAP42, and rs2681472 (A/G) ATP2B1 were not linked with AH. The pairwise rs805303 (G/A) BAG6-rs7302981 (G/A) CERS5 combination was a priority in determining the susceptibility to AH (included in six out of eight SNP-SNP interaction models [75%] and described 0.82% AH entropy). AH-associated variants are conjecturally functional for 101 genes involved in processes related to the immune system (major histocompatibility complex protein, processing/presentation of antigens, immune system process regulation, etc.). In conclusion, the rs1799945 polymorphism of the HFE gene and intergenic interactions of BAG6, CERS5, AC026703.1, HFE, PLCE1, OBFC1, RGL3 have been linked with AH risky in the Caucasian population of Central Russia.
Collapse
Affiliation(s)
- Tatiana Ivanova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Maria Churnosova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Maria Abramova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Inna Aristova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Inna Sorokina
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| |
Collapse
|
21
|
Ivanova T, Churnosova M, Abramova M, Plotnikov D, Ponomarenko I, Reshetnikov E, Aristova I, Sorokina I, Churnosov M. Sex-Specific Features of the Correlation between GWAS-Noticeable Polymorphisms and Hypertension in Europeans of Russia. Int J Mol Sci 2023; 24:ijms24097799. [PMID: 37175507 PMCID: PMC10178435 DOI: 10.3390/ijms24097799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of the study was directed at studying the sex-specific features of the correlation between genome-wide association studies (GWAS)-noticeable polymorphisms and hypertension (HTN). In two groups of European subjects of Russia (n = 1405 in total), such as men (n = 821 in total: n = 564 HTN, n = 257 control) and women (n = 584 in total: n = 375 HTN, n = 209 control), the distribution of ten specially selected polymorphisms (they have confirmed associations of GWAS level with blood pressure (BP) parameters and/or HTN in Europeans) has been considered. The list of studied loci was as follows: (PLCE1) rs932764 A > G, (AC026703.1) rs1173771 G > A, (CERS5) rs7302981 G > A, (HFE) rs1799945 C > G, (OBFC1) rs4387287 C > A, (BAG6) rs805303 G > A, (RGL3) rs167479 T > G, (ARHGAP42) rs633185 C > G, (TBX2) rs8068318 T > C, and (ATP2B1) rs2681472 A > G. The contribution of individual loci and their inter-locus interactions to the HTN susceptibility with bioinformatic interpretation of associative links was evaluated separately in men's and women's cohorts. The men-women differences in involvement in the disease of the BP/HTN-associated GWAS SNPs were detected. Among women, the HTN risk has been associated with HFE rs1799945 C > G (genotype GG was risky; ORGG = 11.15 ppermGG = 0.014) and inter-locus interactions of all 10 examined SNPs as part of 26 intergenic interactions models. In men, the polymorphism BAG6 rs805303 G > A (genotype AA was protective; ORAA = 0.30 ppermAA = 0.0008) and inter-SNPs interactions of eight loci in only seven models have been founded as HTN-correlated. HTN-linked loci and strongly linked SNPs were characterized by pronounced polyvector functionality in both men and women, but at the same time, signaling pathways of HTN-linked genes/SNPs in women and men were similar and were represented mainly by immune mechanisms. As a result, the present study has demonstrated a more pronounced contribution of BP/HTN-associated GWAS SNPs to the HTN susceptibility (due to weightier intergenic interactions) in European women than in men.
Collapse
Affiliation(s)
- Tatiana Ivanova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Maria Churnosova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Maria Abramova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Denis Plotnikov
- Genetic Epidemiology Lab, Kazan State Medical University, 420012 Kazan, Russia
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Inna Aristova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Inna Sorokina
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| |
Collapse
|
22
|
Acosta JN, Both CP, Demarais ZS, Conlon CJ, Leasure AC, Torres-Lopez VM, de Havenon A, Petersen NH, Gill TM, Sansing LH, Sheth KN, Falcone GJ. Polygenic Susceptibility to Hypertension and Blood Pressure Control in Stroke Survivors. Neurology 2023; 100:e1587-e1597. [PMID: 36690452 PMCID: PMC10103110 DOI: 10.1212/wnl.0000000000206763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/16/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Blood pressure (BP) is often not at goal in stroke survivors, leaving individuals vulnerable to additional vascular events. Given that BP is a highly heritable trait, we hypothesize that a higher polygenic susceptibility to hypertension (PSH) leads to worse BP control in stroke survivors. METHODS We conducted a study within the UK Biobank evaluating persons of European ancestry who survived an ischemic or hemorrhagic stroke. To model the PSH, we created polygenic risk scores (PRSs) for systolic and diastolic BP using 732 genetic variants. We divided the PRSs into quintiles and used linear/logistic regression to test whether higher PSH led to higher observed BP, uncontrolled BP (systolic BP > 140 mm Hg or diastolic BP > 90 mm Hg), and resistant BP (uncontrolled BP despite being on ≥3 antihypertensive drugs). We conducted an independent replication using data from the Vitamin Intervention for Stroke Prevention (VISP) trial. RESULTS We analyzed 5,940 stroke survivors. When comparing stroke survivors with very low vs very high PSH, the mean systolic BP was 137 (SD 18) vs 143 (SD 20, p < 0.001), the mean diastolic BP was 81 (SD 10) vs 84 (SD 11, p < 0.001), the prevalence of uncontrolled BP was 42.8% vs 57.2% (p < 0.001), and the prevalence of resistant hypertension was 3.9% vs 11% (p < 0.001). Results remained significant using multivariable models (p < 0.001) and were replicated in the VISP study (all tests with p < 0.05). DISCUSSION A higher PSH is associated with worse BP control in stroke survivors. These findings point to genetic predisposition as an important determinant of poorly controlled BP in this population.
Collapse
Affiliation(s)
- Julián N Acosta
- From the Division of Neurocritical Care & Emergency Neurology (J.N.A., C.P.B., A.C.L., V.M.T.-L., A.H., N.H.P., K.N.S., G.J.F.), Department of Neurology, Yale School of Medicine; Frank H. Netter MD School of Medicine (Z.S.D., C.J.C.); Division of Vascular Neurology (N.H.P., L.H.S.), Department of Neurology, Yale School of Medicine; and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Cameron P Both
- From the Division of Neurocritical Care & Emergency Neurology (J.N.A., C.P.B., A.C.L., V.M.T.-L., A.H., N.H.P., K.N.S., G.J.F.), Department of Neurology, Yale School of Medicine; Frank H. Netter MD School of Medicine (Z.S.D., C.J.C.); Division of Vascular Neurology (N.H.P., L.H.S.), Department of Neurology, Yale School of Medicine; and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Zachariah S Demarais
- From the Division of Neurocritical Care & Emergency Neurology (J.N.A., C.P.B., A.C.L., V.M.T.-L., A.H., N.H.P., K.N.S., G.J.F.), Department of Neurology, Yale School of Medicine; Frank H. Netter MD School of Medicine (Z.S.D., C.J.C.); Division of Vascular Neurology (N.H.P., L.H.S.), Department of Neurology, Yale School of Medicine; and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Carolyn J Conlon
- From the Division of Neurocritical Care & Emergency Neurology (J.N.A., C.P.B., A.C.L., V.M.T.-L., A.H., N.H.P., K.N.S., G.J.F.), Department of Neurology, Yale School of Medicine; Frank H. Netter MD School of Medicine (Z.S.D., C.J.C.); Division of Vascular Neurology (N.H.P., L.H.S.), Department of Neurology, Yale School of Medicine; and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Audrey C Leasure
- From the Division of Neurocritical Care & Emergency Neurology (J.N.A., C.P.B., A.C.L., V.M.T.-L., A.H., N.H.P., K.N.S., G.J.F.), Department of Neurology, Yale School of Medicine; Frank H. Netter MD School of Medicine (Z.S.D., C.J.C.); Division of Vascular Neurology (N.H.P., L.H.S.), Department of Neurology, Yale School of Medicine; and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Victor M Torres-Lopez
- From the Division of Neurocritical Care & Emergency Neurology (J.N.A., C.P.B., A.C.L., V.M.T.-L., A.H., N.H.P., K.N.S., G.J.F.), Department of Neurology, Yale School of Medicine; Frank H. Netter MD School of Medicine (Z.S.D., C.J.C.); Division of Vascular Neurology (N.H.P., L.H.S.), Department of Neurology, Yale School of Medicine; and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Adam de Havenon
- From the Division of Neurocritical Care & Emergency Neurology (J.N.A., C.P.B., A.C.L., V.M.T.-L., A.H., N.H.P., K.N.S., G.J.F.), Department of Neurology, Yale School of Medicine; Frank H. Netter MD School of Medicine (Z.S.D., C.J.C.); Division of Vascular Neurology (N.H.P., L.H.S.), Department of Neurology, Yale School of Medicine; and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Nils H Petersen
- From the Division of Neurocritical Care & Emergency Neurology (J.N.A., C.P.B., A.C.L., V.M.T.-L., A.H., N.H.P., K.N.S., G.J.F.), Department of Neurology, Yale School of Medicine; Frank H. Netter MD School of Medicine (Z.S.D., C.J.C.); Division of Vascular Neurology (N.H.P., L.H.S.), Department of Neurology, Yale School of Medicine; and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Thomas M Gill
- From the Division of Neurocritical Care & Emergency Neurology (J.N.A., C.P.B., A.C.L., V.M.T.-L., A.H., N.H.P., K.N.S., G.J.F.), Department of Neurology, Yale School of Medicine; Frank H. Netter MD School of Medicine (Z.S.D., C.J.C.); Division of Vascular Neurology (N.H.P., L.H.S.), Department of Neurology, Yale School of Medicine; and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Lauren H Sansing
- From the Division of Neurocritical Care & Emergency Neurology (J.N.A., C.P.B., A.C.L., V.M.T.-L., A.H., N.H.P., K.N.S., G.J.F.), Department of Neurology, Yale School of Medicine; Frank H. Netter MD School of Medicine (Z.S.D., C.J.C.); Division of Vascular Neurology (N.H.P., L.H.S.), Department of Neurology, Yale School of Medicine; and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Kevin N Sheth
- From the Division of Neurocritical Care & Emergency Neurology (J.N.A., C.P.B., A.C.L., V.M.T.-L., A.H., N.H.P., K.N.S., G.J.F.), Department of Neurology, Yale School of Medicine; Frank H. Netter MD School of Medicine (Z.S.D., C.J.C.); Division of Vascular Neurology (N.H.P., L.H.S.), Department of Neurology, Yale School of Medicine; and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT
| | - Guido J Falcone
- From the Division of Neurocritical Care & Emergency Neurology (J.N.A., C.P.B., A.C.L., V.M.T.-L., A.H., N.H.P., K.N.S., G.J.F.), Department of Neurology, Yale School of Medicine; Frank H. Netter MD School of Medicine (Z.S.D., C.J.C.); Division of Vascular Neurology (N.H.P., L.H.S.), Department of Neurology, Yale School of Medicine; and Department of Internal Medicine (T.M.G.), Yale School of Medicine, New Haven, CT.
| |
Collapse
|
23
|
Myserlis EP, Georgakis MK, Demel SL, Sekar P, Chung J, Malik R, Hyacinth HI, Comeau ME, Falcone G, Langefeld CD, Rosand J, Woo D, Anderson CD. A Genomic Risk Score Identifies Individuals at High Risk for Intracerebral Hemorrhage. Stroke 2023; 54:973-982. [PMID: 36799223 PMCID: PMC10050100 DOI: 10.1161/strokeaha.122.041701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/11/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) has an estimated heritability of 29%. We developed a genomic risk score for ICH and determined its predictive power in comparison to standard clinical risk factors. METHODS We combined genome-wide association data from individuals of European ancestry for ICH and related traits in a meta-genomic risk score ([metaGRS]; 2.6 million variants). We tested associations with ICH and its predictive performance in addition to clinical risk factors in a held-out validation dataset (842 cases and 796 controls). We tested associations with risk of incident ICH in the population-based UK Biobank cohort (486 784 individuals, 1526 events, median follow-up 11.3 years). RESULTS One SD increment in the metaGRS was significantly associated with 31% higher odds for ICH (95% CI, 1.16-1.48) in age-, sex- and clinical risk factor-adjusted models. The metaGRS identified individuals with almost 5-fold higher odds for ICH in the top score percentile (odds ratio, 4.83 [95% CI, 1.56-21.2]). Predictive models for ICH incorporating the metaGRS in addition to clinical predictors showed superior performance compared to the clinical risk factors alone (c-index, 0.695 versus 0.686). The metaGRS showed similar associations for lobar and nonlobar ICH, independent of the known APOE risk locus for lobar ICH. In the UK Biobank, the metaGRS was associated with higher risk of incident ICH (hazard ratio, 1.15 [95% CI, 1.09-1.21]). The associations were significant within both a relatively high-risk population of antithrombotic medications users, as well as among a relatively low-risk population with a good control of vascular risk factors and no use of anticoagulants. CONCLUSIONS We developed and validated a genomic risk score that predicts lifetime risk of ICH beyond established clinical risk factors among individuals of European ancestry. Whether implementation of the score in risk prognostication models for high-risk populations, such as patients under antithrombotic treatment, could improve clinical decision making should be explored in future studies.
Collapse
Affiliation(s)
- Evangelos Pavlos Myserlis
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Henry and Alisson McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Marios K. Georgakis
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Henry and Alisson McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Stacie L. Demel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Padmini Sekar
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jaeyoon Chung
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Hyacinth I. Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mary E. Comeau
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Guido Falcone
- Division of Neurocritical Care & Emergency Neurology, Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Jonathan Rosand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Henry and Alisson McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel Woo
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christopher D. Anderson
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Henry and Alisson McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
24
|
Earley EJ, Kelly S, Fang F, Alencar CS, Rodrigues DDOW, Soares Cruz DT, Flanagan JM, Ware RE, Zhang X, Gordeuk V, Gladwin M, Zhang Y, Nouraie M, Nekhai S, Sabino E, Custer B, Dinardo C, Page GP. Genome-wide association study of early ischaemic stroke risk in Brazilian individuals with sickle cell disease implicates ADAMTS2 and CDK18 and uncovers novel loci. Br J Haematol 2023; 201:343-352. [PMID: 36602125 PMCID: PMC10155195 DOI: 10.1111/bjh.18637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023]
Abstract
Ischaemic stroke is a common complication of sickle cell disease (SCD) and without intervention can affect 11% of children with SCD before the age of 20. Within the Trans-Omics for Precision Medicine (TOPMed), a genome-wide association study (GWAS) of ischaemic stroke was performed on 1333 individuals with SCD from Brazil (178 cases, 1155 controls). Via a novel Cox proportional-hazards analysis, we searched for variants associated with ischaemic stroke occurring at younger ages. Variants at genome-wide significance (p < 5 × 10-8 ) include two near genes previously linked to non-SCD early-onset stroke (<65 years): ADAMTS2 (rs147625068, p = 3.70 × 10-9 ) and CDK18 (rs12144136, p = 2.38 × 10-9 ). Meta-analysis, which included the independent SCD cohorts Walk-PHaSST and PUSH, exhibited consistent association for variants rs1209987 near gene TBC1D32 (p = 3.36 × 10-10 ), rs188599171 near CUX1 (p = 5.89 × 10-11 ), rs77900855 near BTG1 (p = 4.66 × 10-8 ), and rs141674494 near VPS13C (1.68 × 10-9 ). Findings from this study support a multivariant model of early ischaemic stroke risk and possibly a shared genetic architecture between SCD individuals and non-SCD individuals younger than 65 years.
Collapse
Affiliation(s)
- Eric Jay Earley
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, Durham, NC, USA
| | - Shannon Kelly
- Benioff Children’s Hospital, University of San Francisco, California, USA
- Vitalant Research Institute, San Francisco, California, USA
| | - Fang Fang
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, Durham, NC, USA
| | | | | | - Dahra Teles Soares Cruz
- Department of Hematology, Fundação de Hematologia e Hemoterapia de Pernambuco, HEMOPE, Pernambuco, Brazil
| | - Jonathan M. Flanagan
- Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Russell E. Ware
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xu Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Victor Gordeuk
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark Gladwin
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington DC, USA
| | - Ester Sabino
- Instituto de Medicina Tropical, University of São Paulo, Brazil
| | - Brian Custer
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, USA
| | - Carla Dinardo
- Instituto de Medicina Tropical, University of São Paulo, Brazil
| | - Grier P. Page
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, Durham, NC, USA
| |
Collapse
|
25
|
Gunawardhana KL, Hong L, Rugira T, Uebbing S, Kucharczak J, Mehta S, Karunamuni DR, Cabera-Mendoza B, Gandotra N, Scharfe C, Polimanti R, Noonan JP, Mani A. A systems biology approach identifies the role of dysregulated PRDM6 in the development of hypertension. J Clin Invest 2023; 133:e160036. [PMID: 36602864 PMCID: PMC9927944 DOI: 10.1172/jci160036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Genetic variants in the third intron of the PRDM6 gene have been associated with BP traits in multiple GWAS. By combining fine mapping, massively parallel reporter assays, and gene editing, we identified super enhancers that drive the expression of PRDM6 and are partly regulated by STAT1 as the causal variants for hypertension. The heterozygous disruption of Prdm6 in mice expressing Cre recombinase under the control of mouse smooth muscle cell protein 22-α promoter (Prdm6fl/+ SM22-Cre) exhibited a markedly higher number of renin-producing cells in the kidneys at E18.5 compared with WT littermates and developed salt-induced systemic hypertension that was completely responsive to the renin inhibitor aliskiren. Strikingly, RNA-Seq analysis of the mouse aortas identified a network of PRDM6-regulated genes that are located in GWAS-associated loci for blood pressure, most notably Sox6, which modulates renin expression in the kidney. Accordingly, the smooth muscle cell-specific disruption of Sox6 in Prdm6fl/+ SM22-Cre mice resulted in a dramatic reduction of renin. Fate mapping and histological studies also showed increased numbers of neural crest-derived cells accompanied by increased collagen deposition in the kidneys of Prdm6fl/+ Wnt1Cre-ZsGreen1Cre mice compared with WT mice. These findings establish the role of PRDM6 as a regulator of renin-producing cell differentiation into smooth muscle cells and as an attractive target for the development of antihypertensive drugs.
Collapse
Affiliation(s)
| | - Lingjuan Hong
- Cardiovascular Research Center, Department of Internal Medicine, and
| | - Trojan Rugira
- Cardiovascular Research Center, Department of Internal Medicine, and
| | - Severin Uebbing
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joanna Kucharczak
- Trinity Hall College, University of Cambridge, Cambridge, United Kingdom
| | - Sameet Mehta
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dineth R. Karunamuni
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Brenda Cabera-Mendoza
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Neeru Gandotra
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Curt Scharfe
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James P. Noonan
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Arya Mani
- Cardiovascular Research Center, Department of Internal Medicine, and
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
26
|
Gholami M, Zoughi M, Hasanzad M, Larijani B, Amoli MM. Haplotypic variants of COVID-19 related genes are associated with blood pressure and metabolites levels. J Med Virol 2023; 95:e28355. [PMID: 36443248 PMCID: PMC9877746 DOI: 10.1002/jmv.28355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
The genetic association of coronavirus disease 2019 (COVID-19) with its complications has not been fully understood. This study aimed to identify variants and haplotypes of candidate genes implicated in COVID-19 related traits by combining the literature review and pathway analysis. To explore such genes, the protein-protein interactions and relevant pathways of COVID-19-associated genes were assessed. A number of variants on candidate genes were identified from Genome-wide association studies (GWASs) which were associated with COVID-19 related traits (p ˂ 10-6 ). Haplotypic blocks were assessed using haplotypic structures among the 1000 Genomes Project (r2 ≥ 0.8, D' ≥ 0.8). Further functional analyses were performed on the selected variants. The results demonstrated that a group of variants in ACE and AGT genes were significantly correlated with COVID-19 related traits. Three haplotypes were identified to be involved in the blood metabolites levels and the development of blood pressure. Functional analyses revealed that most GWAS index variants were expression quantitative trait loci and had transcription factor binding sites, exonic splicing enhancers or silencer activities. Furthermore, the proxy haplotype variants, rs4316, rs4353, rs4359, and three variants, namely rs2493133, rs2478543, and rs5051, were associated with blood metabolite and systolic blood pressure, respectively. These variants exerted more regulatory effects compared with other GWAS variants. The present study indicates that the genetic variants and candidate haplotypes of COVID-19 related genes are associated with blood pressure and blood metabolites. However, further observational studies are warranted to confirm these results.
Collapse
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Marziyeh Zoughi
- Metabolomics and genomics research center endocrinology and metabolism molecular‐cellular sciences instituteTehran University of medical sciencesTehranIran
| | - Mandana Hasanzad
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Mahsa M. Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
27
|
Abramova M, Churnosova M, Efremova O, Aristova I, Reshetnikov E, Polonikov A, Churnosov M, Ponomarenko I. Effects of Pre-Pregnancy Overweight/Obesity on the Pattern of Association of Hypertension Susceptibility Genes with Preeclampsia. Life (Basel) 2022; 12:2018. [PMID: 36556383 PMCID: PMC9784908 DOI: 10.3390/life12122018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to explore the effects of pre-pregnancy overweight/obesity on the pattern of association of hypertension susceptibility genes with preeclampsia (PE). Ten single-nucleotide polymorphisms (SNPs) of the 10 genome-wide association studies (GWAS)-significant hypertension/blood pressure (BP) candidate genes were genotyped in 950 pregnant women divided into two cohorts according to their pre-pregnancy body mass index (preBMI): preBMI ≥ 25 (162 with PE and 159 control) and preBMI < 25 (290 with PE and 339 control). The PLINK software package was utilized to study the association (analyzed four genetic models using logistic regression). The functionality of PE-correlated loci was analyzed by performing an in silico database analysis. Two SNP hypertension/BP genes, rs805303 BAG6 (OR: 0.36−0.66) and rs167479 RGL3 (OR: 1.86), in subjects with preBMI ≥ 25 were associated with PE. No association between the studied SNPs and PE in the preBMI < 25 group was determined. Further analysis showed that two PE-associated SNPs are functional (have weighty eQTL, sQTL, regulatory, and missense values) and could be potentially implicated in PE development. In conclusion, this study was the first to discover the modifying influence of overweight/obesity on the pattern of association of GWAS-significant hypertension/BP susceptibility genes with PE: these genes are linked with PE in preBMI ≥ 25 pregnant women and are not PE-involved in the preBMI < 25 group.
Collapse
Affiliation(s)
- Maria Abramova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Maria Churnosova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Olesya Efremova
- Department of Medical Genetics, Kharkiv National Medical University, 61022 Kharkov, Ukraine
- Grishchenko Clinic of Reproductive Medicine, 61052 Kharkov, Ukraine
| | - Inna Aristova
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Alexey Polonikov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Biology, Medical Genetics and Ecology and Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia
| |
Collapse
|
28
|
Abramova MY, Ponomarenko IV, Churnosov MI. The Polymorphic Locus rs167479 of the RGL3 Gene Is Associated with the Risk of Severe Preeclampsia. RUSS J GENET+ 2022. [DOI: 10.1134/s102279542212002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Churnosov M, Abramova M, Reshetnikov E, Lyashenko IV, Efremova O, Churnosova M, Ponomarenko I. Polymorphisms of hypertension susceptibility genes as a risk factors of preeclampsia in the Caucasian population of central Russia. Placenta 2022; 129:51-61. [PMID: 36219912 DOI: 10.1016/j.placenta.2022.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/18/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The study was designed to assess the effects of hypertension (HT) susceptibility genes polymorphisms in the development of preeclampsia (PE) in Caucasians from Central Russia. METHODS PE patients (n = 452) and women control group (n = 498) were genotyped for 10 polymorphisms of HT/blood pressure (BP) susceptibility genes (according to the previously published GWAS in Caucasian populations) including AC026703.1 (rs1173771), HFE (rs1799945), BAG6 (rs805303), PLCE1 (rs932764), OBFC1 (rs4387287), ARHGAP42 (rs633185), CERS5 (rs7302981), ATP2B1 (rs2681472), TBX2 (rs8068318) and RGL3 (rs167479). A logistic regression method was applied to search for associations between SNPs and PE. The relationship between SNP-SNP interactions and PE risk was analyzed by performing MB-MDR. RESULTS The rs1799945 gene in HFE significantly independently increased the risk of developing PE (OR = 2.24) and rs805303 in BAG6 was associated with a reduced risk in the occurrence of PE (OR = 0.55-0.78). Among the 10 SNPs examined, nine SNPs were associated with PEs within the 10 most significant SNP-SNP interaction models. Loci rs7302981 CERS5, rs805303 BAG6 and rs932764 PLCE1 contributed to the largest number of epistatic models (50% or more). DISCUSSION The present study is the first to report an association between polymorphisms of HT/BP susceptibility genes important for GWAS and the risk of PE in Caucasians from Central Russia. Our pathway-based functional annotation of the PE risk variants highlights the potential regulatory function (epigenetic/eQTL/sQTL/non-synonymous) that nine genetic risk markers and their 115 highly correlated variants exert on 155 genes. The study shows that these genes may function cooperatively in key signaling pathways in PE biology.
Collapse
Affiliation(s)
- Mikhail Churnosov
- Belgorod State National Research University, Department of Medical Biological Disciplines, Belgorod, Russia.
| | - Maria Abramova
- Belgorod State National Research University, Department of Medical Biological Disciplines, Belgorod, Russia
| | - Evgeny Reshetnikov
- Belgorod State National Research University, Department of Medical Biological Disciplines, Belgorod, Russia
| | - Igor V Lyashenko
- Belgorod State National Research University, Department of English Philology and Cross-cultural Communication, Belgorod, Russia
| | - Olesya Efremova
- Kharkiv National Medical University, Department of Medical Genetics, Kharkov, Ukraine; Grishchenko Clinic of Reproductive Medicine, Kharkov, Ukraine
| | - Maria Churnosova
- Belgorod State National Research University, Department of Medical Biological Disciplines, Belgorod, Russia
| | - Irina Ponomarenko
- Belgorod State National Research University, Department of Medical Biological Disciplines, Belgorod, Russia
| |
Collapse
|
30
|
Zu T, Lian H, Green B, Yu Y. Ultra-high Dimensional Quantile Regression for Longitudinal Data: an Application to Blood Pressure Analysis. J Am Stat Assoc 2022. [DOI: 10.1080/01621459.2022.2128806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Tianhai Zu
- Department of Operations, Business Analytics, & Information Systems, University of Cincinnati, Cincinnati, Ohio, USA
| | - Heng Lian
- Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong Hong Kong, China
| | - Brittany Green
- Department of Information Systems, Analytics, and Operations, University of Louisville, Louisville, Kentucky, USA
| | - Yan Yu
- Department of Operations, Business Analytics, & Information Systems, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
31
|
Genomic basis of insularity and ecological divergence in barn owls (Tyto alba) of the Canary Islands. Heredity (Edinb) 2022; 129:281-294. [PMID: 36175501 PMCID: PMC9613907 DOI: 10.1038/s41437-022-00562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/14/2022] Open
Abstract
Islands, and the particular organisms that populate them, have long fascinated biologists. Due to their isolation, islands offer unique opportunities to study the effect of neutral and adaptive mechanisms in determining genomic and phenotypical divergence. In the Canary Islands, an archipelago rich in endemics, the barn owl (Tyto alba), present in all the islands, is thought to have diverged into a subspecies (T. a. gracilirostris) on the eastern ones, Fuerteventura and Lanzarote. Taking advantage of 40 whole-genomes and modern population genomics tools, we provide the first look at the origin and genetic makeup of barn owls of this archipelago. We show that the Canaries hold diverse, long-standing and monophyletic populations with a neat distinction of gene pools from the different islands. Using a new method, less sensitive to structure than classical FST, to detect regions involved in local adaptation to insular environments, we identified a haplotype-like region likely under selection in all Canaries individuals and genes in this region suggest morphological adaptations to insularity. In the eastern islands, where the subspecies is present, genomic traces of selection pinpoint signs of adapted body proportions and blood pressure, consistent with the smaller size of this population living in a hot arid climate. In turn, genomic regions under selection in the western barn owls from Tenerife showed an enrichment in genes linked to hypoxia, a potential response to inhabiting a small island with a marked altitudinal gradient. Our results illustrate the interplay of neutral and adaptive forces in shaping divergence and early onset speciation.
Collapse
|
32
|
Tomaszewski M, Morris AP, Howson JMM, Franceschini N, Eales JM, Xu X, Dikalov S, Guzik TJ, Humphreys BD, Harrap S, Charchar FJ. Kidney omics in hypertension: from statistical associations to biological mechanisms and clinical applications. Kidney Int 2022; 102:492-505. [PMID: 35690124 PMCID: PMC9886011 DOI: 10.1016/j.kint.2022.04.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023]
Abstract
Hypertension is a major cardiovascular disease risk factor and contributor to premature death globally. Family-based investigations confirmed a significant heritable component of blood pressure (BP), whereas genome-wide association studies revealed >1000 common and rare genetic variants associated with BP and/or hypertension. The kidney is not only an organ of key relevance to BP regulation and the development of hypertension, but it also acts as the tissue mediator of genetic predisposition to hypertension. The identity of kidney genes, pathways, and related mechanisms underlying the genetic associations with BP has started to emerge through integration of genomics with kidney transcriptomics, epigenomics, and other omics as well as through applications of causal inference, such as Mendelian randomization. Single-cell methods further enabled mapping of BP-associated kidney genes to cell types, and in conjunction with other omics, started to illuminate the biological mechanisms underpinning associations of BP-associated genetic variants and kidney genes. Polygenic risk scores derived from genome-wide association studies and refined on kidney omics hold the promise of enhanced diagnostic prediction, whereas kidney omics-informed drug discovery is likely to contribute new therapeutic opportunities for hypertension and hypertension-mediated kidney damage.
Collapse
Affiliation(s)
- Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK; Manchester Heart Centre and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK
| | - Joanna M M Howson
- Department of Genetics, Novo Nordisk Research Centre Oxford, Novo Nordisk Ltd, Oxford, UK
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - James M Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Xiaoguang Xu
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sergey Dikalov
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Department of Internal and Agricultural Medicine, Jagiellonian University College of Medicine, Kraków, Poland
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Stephen Harrap
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Fadi J Charchar
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia; Health Innovation and Transformation Centre, School of Science, Psychology and Sport, Federation University Australia, Ballarat, Victoria, Australia; Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
33
|
Harlow CE, Gandawijaya J, Bamford RA, Martin ER, Wood AR, van der Most PJ, Tanaka T, Leonard HL, Etheridge AS, Innocenti F, Beaumont RN, Tyrrell J, Nalls MA, Simonsick EM, Garimella PS, Shiroma EJ, Verweij N, van der Meer P, Gansevoort RT, Snieder H, Gallins PJ, Jima DD, Wright F, Zhou YH, Ferrucci L, Bandinelli S, Hernandez DG, van der Harst P, Patel VV, Waterworth DM, Chu AY, Oguro-Ando A, Frayling TM. Identification and single-base gene-editing functional validation of a cis-EPO variant as a genetic predictor for EPO-increasing therapies. Am J Hum Genet 2022; 109:1638-1652. [PMID: 36055212 PMCID: PMC9502050 DOI: 10.1016/j.ajhg.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) are currently under clinical development for treating anemia in chronic kidney disease (CKD), but it is important to monitor their cardiovascular safety. Genetic variants can be used as predictors to help inform the potential risk of adverse effects associated with drug treatments. We therefore aimed to use human genetics to help assess the risk of adverse cardiovascular events associated with therapeutically altered EPO levels to help inform clinical trials studying the safety of HIF-PHIs. By performing a genome-wide association meta-analysis of EPO (n = 6,127), we identified a cis-EPO variant (rs1617640) lying in the EPO promoter region. We validated this variant as most likely causal in controlling EPO levels by using genetic and functional approaches, including single-base gene editing. Using this variant as a partial predictor for therapeutic modulation of EPO and large genome-wide association data in Mendelian randomization tests, we found no evidence (at p < 0.05) that genetically predicted long-term rises in endogenous EPO, equivalent to a 2.2-unit increase, increased risk of coronary artery disease (CAD, OR [95% CI] = 1.01 [0.93, 1.07]), myocardial infarction (MI, OR [95% CI] = 0.99 [0.87, 1.15]), or stroke (OR [95% CI] = 0.97 [0.87, 1.07]). We could exclude increased odds of 1.15 for cardiovascular disease for a 2.2-unit EPO increase. A combination of genetic and functional studies provides a powerful approach to investigate the potential therapeutic profile of EPO-increasing therapies for treating anemia in CKD.
Collapse
Affiliation(s)
- Charli E Harlow
- University of Exeter Medical School, University of Exeter, Royal Devon and Exeter NHS Trust, Exeter EX2 5DW, UK
| | - Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, Royal Devon and Exeter NHS Trust, Exeter EX2 5DW, UK
| | - Rosemary A Bamford
- University of Exeter Medical School, University of Exeter, Royal Devon and Exeter NHS Trust, Exeter EX2 5DW, UK
| | - Emily-Rose Martin
- University of Exeter Medical School, University of Exeter, Royal Devon and Exeter NHS Trust, Exeter EX2 5DW, UK
| | - Andrew R Wood
- University of Exeter Medical School, University of Exeter, Royal Devon and Exeter NHS Trust, Exeter EX2 5DW, UK
| | - Peter J van der Most
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen 9713, the Netherlands
| | - Toshiko Tanaka
- Longitudinal Studies Section, Translation Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Hampton L Leonard
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD 20892, USA; Data Tecnica International, Glen Echo, MD 20812, USA; Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy S Etheridge
- Eshelman School of Pharmacy and Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA
| | | | - Robin N Beaumont
- University of Exeter Medical School, University of Exeter, Royal Devon and Exeter NHS Trust, Exeter EX2 5DW, UK
| | - Jessica Tyrrell
- University of Exeter Medical School, University of Exeter, Royal Devon and Exeter NHS Trust, Exeter EX2 5DW, UK
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD 20892, USA; Data Tecnica International, Glen Echo, MD 20812, USA; Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eleanor M Simonsick
- Longitudinal Studies Section, Translation Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Pranav S Garimella
- Division of Nephrology-Hypertension, University of California San Diego, San Diego, CA, USA
| | - Eric J Shiroma
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD 20892, USA
| | - Niek Verweij
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen 9713, the Netherlands
| | - Peter van der Meer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen 9713, the Netherlands
| | - Ron T Gansevoort
- University of Groningen, University Medical Center Groningen, Department of Nephrology, Groningen 9713, the Netherlands
| | - Harold Snieder
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen 9713, the Netherlands
| | - Paul J Gallins
- Bioinformatics Research Center, North Carolina State University, 1 Lampe Drive, Raleigh, NC 27695, USA
| | - Dereje D Jima
- Bioinformatics Research Center, North Carolina State University, 1 Lampe Drive, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA
| | - Fred Wright
- Bioinformatics Research Center, North Carolina State University, 1 Lampe Drive, Raleigh, NC 27695, USA
| | - Yi-Hui Zhou
- Bioinformatics Research Center, North Carolina State University, 1 Lampe Drive, Raleigh, NC 27695, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translation Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | | | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD 20892, USA
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Utrecht, Utrecht 3584, the Netherlands
| | | | | | | | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Royal Devon and Exeter NHS Trust, Exeter EX2 5DW, UK.
| | - Timothy M Frayling
- University of Exeter Medical School, University of Exeter, Royal Devon and Exeter NHS Trust, Exeter EX2 5DW, UK.
| |
Collapse
|
34
|
Appraising the Causal Association between Systemic Iron Status and Heart Failure Risk: A Mendelian Randomisation Study. Nutrients 2022; 14:nu14163258. [PMID: 36014764 PMCID: PMC9412602 DOI: 10.3390/nu14163258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
Although observational studies have shown that abnormal systemic iron status is associated with an increased risk of heart failure (HF), it remains unclear whether this relationship represents true causality. We aimed to explore the causal relationship between iron status and HF risk. Two-sample Mendelian randomisation (MR) was applied to obtain a causal estimate. Genetic summary statistical data for the associations (p < 5 × 10−8) between single nucleotide polymorphisms (SNPs) and four iron status parameters were obtained from the Genetics of Iron Status Consortium in genome-wide association studies involving 48,972 subjects. Statistical data on the association of SNPs with HF were extracted from the UK biobank consortium (including 1088 HF cases and 360,106 controls). The results were further tested using MR based on the Bayesian model averaging (MR-BMA) and multivariate MR (MVMR). Of the twelve SNPs considered to be valid instrumental variables, three SNPs (rs1800562, rs855791, and rs1799945) were associated with all four iron biomarkers. Genetically predicted iron status biomarkers were not causally associated with HF risk (all p > 0.05). Sensitivity analysis did not show evidence of potential heterogeneity and horizontal pleiotropy. Convincing evidence to support a causal relationship between iron status and HF risk was not found. The strong relationship between abnormal iron status and HF risk may be explained by an indirect mechanism.
Collapse
|
35
|
Large-Scale Multi-Omics Studies Provide New Insights into Blood Pressure Regulation. Int J Mol Sci 2022; 23:ijms23147557. [PMID: 35886906 PMCID: PMC9323755 DOI: 10.3390/ijms23147557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Recent genome-wide association studies uncovered part of blood pressure’s heritability. However, there is still a vast gap between genetics and biology that needs to be bridged. Here, we followed up blood pressure genome-wide summary statistics of over 750,000 individuals, leveraging comprehensive epigenomic and transcriptomic data from blood with a follow-up in cardiovascular tissues to prioritise likely causal genes and underlying blood pressure mechanisms. We first prioritised genes based on coding consequences, multilayer molecular associations, blood pressure-associated expression levels, and coregulation evidence. Next, we followed up the prioritised genes in multilayer studies of genomics, epigenomics, and transcriptomics, functional enrichment, and their potential suitability as drug targets. Our analyses yielded 1880 likely causal genes for blood pressure, tens of which are targets of the available licensed drugs. We identified 34 novel genes for blood pressure, supported by more than one source of biological evidence. Twenty-eight (82%) of these new genes were successfully replicated by transcriptome-wide association analyses in a large independent cohort (n = ~220,000). We also found a substantial mediating role for epigenetic regulation of the prioritised genes. Our results provide new insights into genetic regulation of blood pressure in terms of likely causal genes and involved biological pathways offering opportunities for future translation into clinical practice.
Collapse
|
36
|
McGurk KA, Farrell L, Kendall AC, Keavney BD, Nicolaou A. Genetic analyses of circulating PUFA-derived mediators identifies heritable dihydroxyeicosatrienoic acid species. Prostaglandins Other Lipid Mediat 2022; 160:106638. [PMID: 35472599 DOI: 10.1016/j.prostaglandins.2022.106638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
Estimates of heritability are the first step in identifying a trait with substantial variation due to genetic factors. Large-scale genetic analyses can identify the DNA variants that influence the levels of circulating lipid species and the statistical technique Mendelian randomisation can use these DNA variants to address potential causality of these lipids in disease. We estimated the heritability of plasma eicosanoids, octadecanoids and docosanoids to identify those lipid species with substantial heritability. We analysed plasma lipid mediators in 31 White British families (196 participants) ascertained for high blood pressure and deeply clinically and biochemically phenotyped over a 25-year period. We found that the dihydroxyeicosatrienoic acid (DHET) species, 11,12-DHET and 14,15-DHET, products of arachidonic acid metabolism by cytochrome P450 (CYP) monooxygenase and soluble epoxide hydrolase (sEH), exhibited substantial heritability (h2 = 33%-37%; Padj<0.05). Identification of these two heritable bioactive lipid species allows for future large-scale, targeted, lipidomics-genomics analyses to address causality in cardiovascular and other diseases.
Collapse
Affiliation(s)
- Kathryn A McGurk
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Laboratory for Lipidomics and Lipid Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Laura Farrell
- Laboratory for Lipidomics and Lipid Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Bernard D Keavney
- Manchester Heart Centre, Manchester University NHS Foundation Trust, UK
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
37
|
Yeung MW, Wang S, van de Vegte YJ, Borisov O, van Setten J, Snieder H, Verweij N, Said MA, van der Harst P. Twenty-Five Novel Loci for Carotid Intima-Media Thickness: A Genome-Wide Association Study in >45 000 Individuals and Meta-Analysis of >100 000 Individuals. Arterioscler Thromb Vasc Biol 2022; 42:484-501. [PMID: 34852643 PMCID: PMC8939707 DOI: 10.1161/atvbaha.121.317007] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 11/22/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Carotid artery intima-media thickness (cIMT) is a widely accepted marker of subclinical atherosclerosis. Twenty susceptibility loci for cIMT were previously identified and the identification of additional susceptibility loci furthers our knowledge on the genetic architecture underlying atherosclerosis. APPROACH AND RESULTS We performed 3 genome-wide association studies in 45 185 participants from the UK Biobank study who underwent cIMT measurements and had data on minimum, mean, and maximum thickness. We replicated 15 known loci and identified 20 novel loci associated with cIMT at P<5×10-8. Seven novel loci (ZNF385D, ADAMTS9, EDNRA, HAND2, MYOCD, ITCH/EDEM2/MMP24, and MRTFA) were identified in all 3 phenotypes. An additional new locus (LOXL1) was identified in the meta-analysis of the 3 phenotypes. Sex interaction analysis revealed sex differences in 7 loci including a novel locus (SYNE3) in males. Meta-analysis of UK Biobank data with a previous meta-analysis led to identification of three novel loci (APOB, FIP1L1, and LOXL4). Transcriptome-wide association analyses implicated additional genes ARHGAP42, NDRG4, and KANK2. Gene set analysis showed an enrichment in extracellular organization and the PDGF (platelet-derived growth factor) signaling pathway. We found positive genetic correlations of cIMT with coronary artery disease rg=0.21 (P=1.4×10-7), peripheral artery disease rg=0.45 (P=5.3×10-5), and systolic blood pressure rg=0.30 (P=4.0×10-18). A negative genetic correlation between average of maximum cIMT and high-density lipoprotein was found rg=-0.12 (P=7.0×10-4). CONCLUSIONS Genome-wide association meta-analyses in >100 000 individuals identified 25 novel loci associated with cIMT providing insights into genes and tissue-specific regulatory mechanisms of proatherosclerotic processes. We found evidence for shared biological mechanisms with cardiovascular diseases.
Collapse
Affiliation(s)
- Ming Wai Yeung
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Siqi Wang
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
- Department of Epidemiology (S.W., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
- Division of Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, the Netherlands (M.W.Y., J.v.S., P.v.d.H.)
| | - Yordi J. van de Vegte
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Oleg Borisov
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Germany (O.B.)
| | - Jessica van Setten
- Department of Epidemiology (S.W., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Harold Snieder
- Department of Epidemiology (S.W., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Niek Verweij
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - M. Abdullah Said
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Pim van der Harst
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
- Division of Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, the Netherlands (M.W.Y., J.v.S., P.v.d.H.)
| |
Collapse
|
38
|
Chen K, Zhuang Z, Shao C, Zheng J, Zhou Q, Dong E, Huang T, Tang YD. Roles of Cardiometabolic Factors in Mediating the Causal Effect of Type 2 Diabetes on Cardiovascular Diseases: A Two-Step, Two-Sample Multivariable Mendelian Randomization Study. Front Cardiovasc Med 2022; 9:813208. [PMID: 35282373 PMCID: PMC8909643 DOI: 10.3389/fcvm.2022.813208] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/17/2022] [Indexed: 12/17/2022] Open
Abstract
ObjectiveThe objective of this study is to investigate the roles of cardiometabolic factors (including blood pressure, blood lipids, thyroid function, body mass, and insulin sensitivity) in mediating the causal effect of type 2 diabetes (T2DM) on cardiovascular disease (CVD) outcomes.DesignTwo-step, two-sample multivariable Mendelian randomization (MVMR) study.SettingInternational genome-wide association study (GWAS) consortia data.ExposureType 2 diabetes, blood pressure: systolic blood pressure (SBP), diastolic blood pressure (DBP); blood lipids: low-density lipoprotein (LDL), high-density lipoprotein (HDL), total cholesterol (TC), triglycerides (TG); thyroid function: hyperthyroidism, hypothyroidism; body mass index (BMI), waist-hip-ratio (WHR), and insulin sensitivity.Main OutcomesCardiovascular disease includes coronary heart disease (CHD), myocardial infarction (MI), and stroke.MethodsSummary-level data for exposures and main outcomes were extracted from GWAS consortia. We used two-sample MR to illustrate the causal effect of T2DM on CVD subtypes and regression-based MVMR to quantify the possible mediation effects of cardiometabolic factors on CVD.ResultsEach additional unit of log odds of T2DM increased 16% risk of CHD [odds ratio (OR): 1.16, 95% CI: 1.12–1.21], 15% risk of myocardial infarction (MI) (OR: 1.15, 95% CI: 1.10–1.20), and 10% risk of stroke (OR: 1.10, 95% CI: 1.06–1.13). In mediation analysis, SBP, DBP, and TG were found as main mediators, while the mediation effects of other cardiometabolic factors were not significant. The proportion of total effect of T2DM on CHD mediated by SBP, DBP, and TG was 16% (95% CI: 8–24%), 7% (95% CI: 1–13%) and 10% (95% CI: 2–18%), respectively. Mediation effect of SBP and DBP on MI and stroke, TG on MI was also prominent, while mediation effect of TG on stroke was not significant. The combined mediation effect of all the three mediators accounted for 29%, 26%, and 13% of the total effect of T2DM on CHD, MI, and stroke, respectively.ConclusionSystolic blood pressure, DBP, and TG mediate a substantial proportion of the causal effect of T2DM on CVD and thus interventions on these factors might reduce the considerable excess risk of CVD among patients with T2DM.
Collapse
Affiliation(s)
- Ken Chen
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenhuang Zhuang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Chunli Shao
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jilin Zheng
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Zhou
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Erdan Dong
- Department of Cardiology and Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, The Institute of Cardiovascular Sciences, Peking University, Beijing, China
| | - Tao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Department of Global Health, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China
- Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, Beijing, China
| | - Yi-Da Tang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
39
|
Zhang H, Wang A, Xu T, Mo X, Zhang Y. Promoter DNA Methylation in GWAS-Identified Genes as Potential Functional Elements for Blood Pressure: An Observational and Mendelian Randomization Study. Front Genet 2022; 12:791146. [PMID: 35087571 PMCID: PMC8787193 DOI: 10.3389/fgene.2021.791146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 01/03/2023] Open
Abstract
Genome-wide association studies have identified numerous genetic loci for blood pressure (BP). However, the relationships of functional elements inside these loci with BP are not fully understood. This study represented an effort to determine if promoter DNA methylations inside BP-associated loci were associated with BP.We conducted a cross-sectional study investigating the association between promoter DNA methylations of 10 candidate genes and BP in 1,241 Chinese individuals. Twenty-one genomic fragments in the CpG Islands were sequenced. The associations of methylation levels with BP and hypertension were assessed in regression models. Mendelian randomization (MR) analysis was then applied to find supporting evidence for the identified associations.A total of 413 DNA methylation sites were examined in an observational study. Methylation levels of 24 sites in PRDM6, IGFBP3, SYT7, PDE3A, TBX2 and C17orf82 were significantly associated with BP. Methylation levels of PRDM6 and SYT7 were significantly associated with hypertension. Methylation levels of five sites (including cg06713098) in IGFBP3 were significantly associated with DBP. MR analysis found associations between the methylation levels of six CpG sites (cg06713098, cg14228300, cg23193639, cg21268650, cg10677697 and cg04812164) around the IGFBP3 promoter and DBP. Methylation levels of cg14228300 and cg04812164 were associated with SBP. By further applying several MR methods we showed that the associations may not be due to pleiotropy. Association between IGFBP3 mRNA levels in blood cells and BP was also found in MR analysis. This study identified promoter methylation as potential functional element for BP. The identified methylations may be involved in the regulatory pathway linking genetic variants to BP.
Collapse
Affiliation(s)
- Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Aili Wang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Tan Xu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xingbo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yonghong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
40
|
Pirruccello JP, Chaffin MD, Chou EL, Fleming SJ, Lin H, Nekoui M, Khurshid S, Friedman SF, Bick AG, Arduini A, Weng LC, Choi SH, Akkad AD, Batra P, Tucker NR, Hall AW, Roselli C, Benjamin EJ, Vellarikkal SK, Gupta RM, Stegmann CM, Juric D, Stone JR, Vasan RS, Ho JE, Hoffmann U, Lubitz SA, Philippakis AA, Lindsay ME, Ellinor PT. Deep learning enables genetic analysis of the human thoracic aorta. Nat Genet 2022; 54:40-51. [PMID: 34837083 PMCID: PMC8758523 DOI: 10.1038/s41588-021-00962-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Enlargement or aneurysm of the aorta predisposes to dissection, an important cause of sudden death. We trained a deep learning model to evaluate the dimensions of the ascending and descending thoracic aorta in 4.6 million cardiac magnetic resonance images from the UK Biobank. We then conducted genome-wide association studies in 39,688 individuals, identifying 82 loci associated with ascending and 47 with descending thoracic aortic diameter, of which 14 loci overlapped. Transcriptome-wide analyses, rare-variant burden tests and human aortic single nucleus RNA sequencing prioritized genes including SVIL, which was strongly associated with descending aortic diameter. A polygenic score for ascending aortic diameter was associated with thoracic aortic aneurysm in 385,621 UK Biobank participants (hazard ratio = 1.43 per s.d., confidence interval 1.32-1.54, P = 3.3 × 10-20). Our results illustrate the potential for rapidly defining quantitative traits with deep learning, an approach that can be broadly applied to biomedical images.
Collapse
Affiliation(s)
- James P Pirruccello
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Precision Cardiology Laboratory, The Broad Institute & Bayer US LLC, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mark D Chaffin
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Precision Cardiology Laboratory, The Broad Institute & Bayer US LLC, Cambridge, MA, USA
| | - Elizabeth L Chou
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Stephen J Fleming
- Precision Cardiology Laboratory, The Broad Institute & Bayer US LLC, Cambridge, MA, USA
- Data Sciences Platform, Broad Institute, Cambridge, MA, USA
| | - Honghuang Lin
- Framingham Heart Study, Boston University and National Heart, Lung, and Blood Institute, Framingham, MA, USA
- Department of Medicine, Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Mahan Nekoui
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Shaan Khurshid
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
| | | | - Alexander G Bick
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alessandro Arduini
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Precision Cardiology Laboratory, The Broad Institute & Bayer US LLC, Cambridge, MA, USA
| | - Lu-Chen Weng
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
| | - Amer-Denis Akkad
- Precision Cardiology Laboratory, The Broad Institute & Bayer US LLC, Cambridge, MA, USA
| | - Puneet Batra
- Data Sciences Platform, Broad Institute, Cambridge, MA, USA
| | | | - Amelia W Hall
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
| | - Carolina Roselli
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Emelia J Benjamin
- Framingham Heart Study, Boston University and National Heart, Lung, and Blood Institute, Framingham, MA, USA
- Department of Medicine, Cardiology and Preventive Medicine Sections, Boston University School of Medicine, Boston, MA, USA
- Epidemiology Department, Boston University School of Public Health, Boston, MA, USA
| | | | - Rajat M Gupta
- Department of Medicine, Divisions of Cardiovascular Medicine and Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Christian M Stegmann
- Precision Cardiology Laboratory, The Broad Institute & Bayer US LLC, Cambridge, MA, USA
| | - Dejan Juric
- Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - James R Stone
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Ramachandran S Vasan
- Framingham Heart Study, Boston University and National Heart, Lung, and Blood Institute, Framingham, MA, USA
- Department of Medicine, Cardiology and Preventive Medicine Sections, Boston University School of Medicine, Boston, MA, USA
- Epidemiology Department, Boston University School of Public Health, Boston, MA, USA
| | - Jennifer E Ho
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Udo Hoffmann
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Steven A Lubitz
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Anthony A Philippakis
- Data Sciences Platform, Broad Institute, Cambridge, MA, USA
- GV, Mountain View, CA, USA
| | - Mark E Lindsay
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Thoracic Aortic Center, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick T Ellinor
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA.
- Precision Cardiology Laboratory, The Broad Institute & Bayer US LLC, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Wang X, Fang X, Zheng W, Zhou J, Song Z, Xu M, Min J, Wang F. Genetic Support of A Causal Relationship Between Iron Status and Type 2 Diabetes: A Mendelian Randomization Study. J Clin Endocrinol Metab 2021; 106:e4641-e4651. [PMID: 34147035 PMCID: PMC8530720 DOI: 10.1210/clinem/dgab454] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Indexed: 12/15/2022]
Abstract
CONTEXT Iron overload is a known risk factor for type 2 diabetes (T2D); however, iron overload and iron deficiency have both been associated with metabolic disorders in observational studies. OBJECTIVE Using mendelian randomization (MR), we assessed how genetically predicted systemic iron status affected T2D risk. METHODS A 2-sample MR analysis was used to obtain a causal estimate. We selected genetic variants strongly associated (P < 5 × 10-8) with 4 biomarkers of systemic iron status from a study involving 48 972 individuals performed by the Genetics of Iron Status consortium and applied these biomarkers to the T2D case-control study (74 124 cases and 824 006 controls) performed by the Diabetes Genetics Replication and Meta-analysis consortium. The simple median, weighted median, MR-Egger, MR analysis using mixture-model, weighted allele scores, and MR based on a Bayesian model averaging approaches were used for the sensitivity analysis. RESULTS Genetically instrumented serum iron (odds ratio [OR]: 1.07; 95% CI, 1.02-1.12), ferritin (OR: 1.19; 95% CI, 1.08-1.32), and transferrin saturation (OR: 1.06; 95% CI, 1.02-1.09) were positively associated with T2D. In contrast, genetically instrumented transferrin, a marker of reduced iron status, was inversely associated with T2D (OR: 0.91; 95% CI, 0.87-0.96). CONCLUSION Genetic evidence supports a causal link between increased systemic iron status and increased T2D risk. Further studies involving various ethnic backgrounds based on individual-level data and studies regarding the underlying mechanism are warranted for reducing the risk of T2D.
Collapse
Affiliation(s)
- Xinhui Wang
- The Fourth Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xuexian Fang
- The Fourth Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wanru Zheng
- The Fourth Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiahui Zhou
- The Fourth Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zijun Song
- The Fourth Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Junxia Min
- The Fourth Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fudi Wang
- The Fourth Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
42
|
Search for a Functional Genetic Variant Mimicking the Effect of SGLT2 Inhibitor Treatment. Genes (Basel) 2021; 12:genes12081174. [PMID: 34440348 PMCID: PMC8391850 DOI: 10.3390/genes12081174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022] Open
Abstract
SGLT2 inhibitors (SGLT2i) block renal glucose reabsorption. Due to the unexpected beneficial observations in type 2 diabetic patients potentially related to increased natriuresis, SGLT2i are also studied for heart failure treatment. This study aimed to identify genetic variants mimicking SGLT2i to further our understanding of the potential underlying biological mechanisms. Using the UK Biobank resource, we identified 264 SNPs located in the SLC5A2 gene or within 25kb of the 5′ and 3′ flanking regions, of which 91 had minor allele frequencies >1%. Twenty-seven SNPs were associated with glycated hemoglobin (HbA1c) after Bonferroni correction in participants without diabetes, while none of the SNPs were associated with sodium excretion. We investigated whether these variants had a directionally consistent effect on sodium excretion, HbA1c levels, and SLC5A2 expression. None of the variants met these criteria. Likewise, we identified no common missense variants, and although four SNPs could be defined as 5′ or 3′ prime untranslated region variants of which rs45612043 was predicted to be deleterious, these SNPs were not annotated to SLC5A2. In conclusion, no genetic variant was found mimicking SGLT2i based on their location near SLC5A2 and their association with sodium excretion or HbA1c and SLC5A2 expression or function.
Collapse
|
43
|
Wielscher M, Amaral AFS, van der Plaat D, Wain LV, Sebert S, Mosen-Ansorena D, Auvinen J, Herzig KH, Dehghan A, Jarvis DL, Jarvelin MR. Genetic correlation and causal relationships between cardio-metabolic traits and lung function impairment. Genome Med 2021; 13:104. [PMID: 34154662 PMCID: PMC8215837 DOI: 10.1186/s13073-021-00914-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Associations of low lung function with features of poor cardio-metabolic health have been reported. It is, however, unclear whether these co-morbidities reflect causal associations, shared genetic heritability or are confounded by environmental factors. METHODS We performed three analyses: (1) cardio-metabolic health to lung function association tests in Northern Finland Birth cohort 1966, (2) cross-trait linkage disequilibrium score regression (LDSC) to compare genetic backgrounds and (3) Mendelian randomisation (MR) analysis to assess the causal effect of cardio-metabolic traits and disease on lung function, and vice versa (bidirectional MR). Genetic associations were obtained from the UK Biobank data or published large-scale genome-wide association studies (N > 82,000). RESULTS We observed a negative genetic correlation between lung function and cardio-metabolic traits and diseases. In Mendelian Randomisation analysis (MR), we found associations between type 2 diabetes (T2D) instruments and forced vital capacity (FVC) as well as FEV1/FVC. Body mass index (BMI) instruments were associated to all lung function traits and C-reactive protein (CRP) instruments to FVC. These genetic associations provide evidence for a causal effect of cardio-metabolic traits on lung function. Multivariable MR suggested independence of these causal effects from other tested cardio-metabolic traits and diseases. Analysis of lung function specific SNPs revealed a potential causal effect of FEV1/FVC on blood pressure. CONCLUSIONS The present study overcomes many limitations of observational studies by using Mendelian Randomisation. We provide evidence for an independent causal effect of T2D, CRP and BMI on lung function with some of the T2D effect on lung function being attributed to inflammatory mechanisms. Furthermore, this analysis suggests a potential causal effect of FEV1/FVC on blood pressure. Our detailed analysis of the interplay between cardio-metabolic traits and impaired lung function provides the opportunity to improve the quality of existing intervention strategies.
Collapse
Affiliation(s)
- Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Andre F S Amaral
- National Heart and Lung Institute (NHLI), Imperial College London, Emmanuel Kaye Building, London, SW3 6LR, UK
| | - Diana van der Plaat
- National Heart and Lung Institute (NHLI), Imperial College London, Emmanuel Kaye Building, London, SW3 6LR, UK
| | - Louise V Wain
- Genetic Epidemiology Group, Department of Health Sciences, George Davies Centre, University of Leicester, University Rd, Leicester, LE1 7RH, UK
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, University Rd, Leicester, LE1 7RH, UK
| | - Sylvain Sebert
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, P.O.Box 8000, FI-90014, Oulu, Finland
- Biocenter of Oulu, University of Oulu, Aapistie 5, FI-90014, Oulu, Finland
| | - David Mosen-Ansorena
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Juha Auvinen
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, P.O.Box 8000, FI-90014, Oulu, Finland
- Biocenter of Oulu, University of Oulu, Aapistie 5, FI-90014, Oulu, Finland
| | - Karl-Heinz Herzig
- Biocenter of Oulu, University of Oulu, Aapistie 5, FI-90014, Oulu, Finland
- Research Unit of Biomedicine, Medical Research Center (MRC), University of Oulu, University Hospital, P.O. Box 8000, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 41 Jackowskiego St, 60-512, Poznan, Poland
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Debbie L Jarvis
- National Heart and Lung Institute (NHLI), Imperial College London, Emmanuel Kaye Building, London, SW3 6LR, UK.
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK.
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, P.O.Box 8000, FI-90014, Oulu, Finland.
- Biocenter of Oulu, University of Oulu, Aapistie 5, FI-90014, Oulu, Finland.
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Kingston Lane, London, UB8 3PH, UK.
| |
Collapse
|
44
|
Kolifarhood G, Sabour S, Akbarzadeh M, Sedaghati-Khayat B, Guity K, Rasekhi Dehkordi S, Amiri Roudbar M, Hadaegh F, Azizi F, Daneshpour MS. Genome-wide association study on blood pressure traits in the Iranian population suggests ZBED9 as a new locus for hypertension. Sci Rep 2021; 11:11699. [PMID: 34083597 PMCID: PMC8175429 DOI: 10.1038/s41598-021-90925-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
High blood pressure is the heritable risk factor for cardiovascular and kidney diseases. Genome-wide association studies(GWAS) on blood pressure traits increase our understanding of its underlying genetic basis. However, a large proportion of GWAS was conducted in Europeans, and some roadblocks deprive other populations to benefit from their results. Iranians population with a high degree of genomic specificity has not been represented in international databases to date, so to fill the gap, we explored the effects of 652,919 genomic variants on Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), and Hypertension (HTN) in 7694 Iranian adults aged 18 and over from Tehran Cardiometabolic Genetic Study (TCGS). We identified consistent signals on ZBED9 associated with HTN in the genome-wide borderline threshold after adjusting for different sets of environmental predictors. Moreover, strong signals on ABHD17C and suggestive signals on FBN1 were detected for DBP and SBP, respectively, while these signals were not consistent in different GWA analysis. Our finding on ZBED9 was confirmed for all BP traits by linkage analysis in an independent sample. We found significant associations with similar direction of effects and allele frequency of genetic variants on ZBED9 with DBP (genome-wide threshold) and HTN (nominal threshold) in GWAS summary data of UK Biobank. Although there is no strong evidence to support the function of ZBED9 in blood pressure regulation, it provides new insight into the pleiotropic effects of hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Goodarz Kolifarhood
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Sabour
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Akbarzadeh
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Sedaghati-Khayat
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Guity
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Rasekhi Dehkordi
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Amiri Roudbar
- Department of Animal Science, Safiabad-Dezful Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Dezful, Iran
| | - Farzad Hadaegh
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S Daneshpour
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
McGurk KA, Keavney BD, Nicolaou A. Circulating ceramides as biomarkers of cardiovascular disease: Evidence from phenotypic and genomic studies. Atherosclerosis 2021; 327:18-30. [PMID: 34004484 DOI: 10.1016/j.atherosclerosis.2021.04.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022]
Abstract
There is a need for new biomarkers of atherosclerotic cardiovascular disease (ACVD), the main cause of death globally. Ceramides, a class of potent bioactive lipid mediators, have signalling roles in apoptosis, cellular stress and inflammation. Recent studies have highlighted circulating ceramides as novel biomarkers of coronary artery disease, type-2 diabetes and insulin resistance. Ceramides are highly regulated by enzymatic reactions throughout the body in terms of their activity and metabolism, including production, degradation and transport. The genetic studies that have been completed to date on the main ceramide species found in circulation are described, highlighting the importance of DNA variants in genes involved in ceramide biosynthesis as key influencers of heritable, circulating ceramide levels. We also review studies of disease associations with ceramides and discuss mechanistic insights deriving from recent genomic studies. The signalling activities of ceramides in vascular inflammation and apoptosis, associations between circulating ceramides and coronary artery disease risk, type-2 diabetes and insulin resistance, and the potential importance of ceramides with regard to ACVD risk factors, such as blood pressure, lipoproteins and lifestyle factors, are also discussed.
Collapse
Affiliation(s)
- Kathryn A McGurk
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, UK; Laboratory for Lipidomics and Lipid Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, UK
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, UK; Manchester Heart Centre, Manchester University NHS Foundation Trust, UK
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
46
|
Precision Medicine Approaches to Vascular Disease: JACC Focus Seminar 2/5. J Am Coll Cardiol 2021; 77:2531-2550. [PMID: 34016266 DOI: 10.1016/j.jacc.2021.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022]
Abstract
In this second of a 5-part Focus Seminar series, we focus on precision medicine in the context of vascular disease. The most common vascular disease worldwide is atherosclerosis, which is the primary cause of coronary artery disease, peripheral vascular disease, and a large proportion of strokes and other disorders. Atherosclerosis is a complex genetic disease that likely involves many hundreds to thousands of single nucleotide polymorphisms, each with a relatively modest effect for causing disease. Conversely, although less prevalent, there are many vascular disorders that typically involve only a single genetic change, but these changes can often have a profound effect that is sufficient to cause disease. These are termed "Mendelian vascular diseases," which include Marfan and Loeys-Dietz syndromes. Given the very different genetic basis of atherosclerosis versus Mendelian vascular diseases, this article was divided into 2 parts to cover the most promising precision medicine approaches for these disease types.
Collapse
|
47
|
Issa AM, Carleton B, Gerhard T, Filipski KK, Freedman AN, Kimmel S, Liu G, Longo C, Maitland-van der Zee AH, Sansbury L, Zhou W, Bartlett G. Pharmacoepidemiology: A time for a new multidisciplinary approach to precision medicine. Pharmacoepidemiol Drug Saf 2021; 30:985-992. [PMID: 33715268 DOI: 10.1002/pds.5226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 03/09/2021] [Indexed: 11/06/2022]
Abstract
The advent of the genomic age has created a rapid increase in complexity for the development and selection of drug treatments. A key component of precision medicine is the use of genetic information to improve therapeutic effectiveness of drugs and prevent potential adverse drug reactions. Pharmacoepidemiology, as a field, uses observational methods to evaluate the safety and effectiveness of drug treatments in populations. Pharmacoepidemiology by virtue of its focus, tradition, and research orientation can provide appropriate study designs and analysis methods for precision medicine. The objective of this manuscript is to demonstrate how pharmacoepidemiology can impact and shape precision medicine and serve as a reference for pharmacoepidemiologists interested in contributing to the science of precision medicine. This paper depicts the state of the science with respect to the need for pharmacoepidemiology and pharmacoepidemiological methods, tools and approaches for precision medicine; the need for and how pharmacoepidemiologists use their skills to engage with the precision medicine community; and recommendations for moving the science of precision medicine pharmacoepidemiology forward. We propose a new integrated multidisciplinary approach dedicated to the emerging science of precision medicine pharmacoepidemiology.
Collapse
Affiliation(s)
- Amalia M Issa
- Personalized Precision Medicine & Targeted Therapeutics, Springfield, Pennsylvania, USA.,'Pharmaceutical Sciences' and 'Health Policy', University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA.,'Family Medicine' and `Centre of Genomics & Policy'; Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Bruce Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, and BC Children's Hospital and Research Institute, Vancouver, British Columbia, Canada
| | - Tobias Gerhard
- Center for Pharmacoepidemiology and Treatment Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Kelly K Filipski
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, Maryland, USA
| | - Andrew N Freedman
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, Maryland, USA
| | - Stephen Kimmel
- 'College of Public Health & Health Professions' and 'College of Medicine', University of Florida, Gainesville, Florida, USA
| | - Geoffrey Liu
- Epidemiology; Dalla Lana School of Public Health, Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario, Canada
| | - Cristina Longo
- Respiratory Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anke H Maitland-van der Zee
- Respiratory Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Leah Sansbury
- Epidemiology, Value Evidence and Outcomes, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Wei Zhou
- Center for Observational and Real-world Evidence, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Gillian Bartlett
- School of Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
48
|
Kolifarhood G, Daneshpour MS, Zahedi AS, Khosravi N, Sedaghati-Khayat B, Guity K, Rasekhi Dehkordi S, Amiri Roudbar M, Ghanbari F, Hadaegh F, Azizi F, Akbarzadeh M, Sabour S. Familial genetic and environmental risk profile and high blood pressure event: a prospective cohort of cardio-metabolic and genetic study. Blood Press 2021; 30:196-204. [PMID: 33792450 DOI: 10.1080/08037051.2021.1903807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIMS High blood pressure is the heritable risk factor for cardiovascular diseases. We investigated whether the presence of familial genetic and environmental risk factors are associated with increased risk of high blood pressure. METHODS A total of 4,559 individuals from 401 families were included in this study. Familial aggregation analysis was carried out on systolic blood pressure (SBP), diastolic blood pressure (DBP), body mass index (BMI) and waist circumference (WC), and heritability was estimated for SBP and DBP. The association between familial risk factors and blood pressure traits including, incidence of hypertension, SBP and DBP was estimated separately using regression-based two-level Haseman-Elston (HE) method, with individual and familial BMI and WC as environmental exposures and familial genetic profile of known variants as genetic risk factors in 210 index families (≥2 hypertensive cases). Models were adjusted for the two nested sets of covariates. RESULTS During a follow-up of 15 years, the SBP, DBP, BMI and WC were highly correlated in inter class of mother-offspring and intraclass of sister-sister with heritability of 30 and 25% for DBP and SBP, respectively. Among index families, those whose members with higher familial BMI or WC had significantly increased risk of hypertension and consistent, strong signals of rs2493134 (AGT) linked with SBP and DBP, rs976683 (NLGN1) linked with SBP and HTN, and epistasis of rs2021783 (TNXB) and known genetic variants linked with all blood pressure traits. CONCLUSIONS Findings from this study show that familial genetic and environmental risk profile increase risk for high blood pressure beyond the effect of the individuals' own risk factors.
Collapse
Affiliation(s)
- Goodarz Kolifarhood
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S Daneshpour
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asiyeh Sadat Zahedi
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khosravi
- Department of Community Health Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Bahareh Sedaghati-Khayat
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Guity
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Rasekhi Dehkordi
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Amiri Roudbar
- Department of Animal Science, Safiabad-Dezful Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Dezful, Iran
| | - Forough Ghanbari
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Hadaegh
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Akbarzadeh
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Sabour
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Georgiopoulos G, Ntritsos G, Stamatelopoulos K, Tsioufis C, Aimo A, Masi S, Evangelou E. The relationship between blood pressure and risk of atrial fibrillation: a Mendelian randomization study. Eur J Prev Cardiol 2021; 29:zwab005. [PMID: 33556963 DOI: 10.1093/eurjpc/zwab005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/12/2020] [Accepted: 01/06/2021] [Indexed: 01/07/2023]
Abstract
AIMS Observational studies suggest elevated blood pressure (BP) as the leading risk factor for incident atrial fibrillation (AF), but whether this relationship is causal remains unknown. In this study, we used Mendelian randomization (MR) to investigate the potential causal association of BP levels with the risk of developing AF. METHODS AND RESULTS Genetic variants associated with the BP traits were retrieved from the International Consortium of Blood Pressure-Genome Wide Association Studies (N = 299 024). From 901 reported variants, 894 were assessed in a dedicated Genome-Wide Association Study of AF genetics, including >1 000 000 subjects of European ancestry. We used two-sample MR analyses to examine the potential causal association of systolic BP (SBP) and diastolic BP (DBP) as well as of pulse pressure (PP) with AF. MR analysis identified a potentially causal association between AF and SBP [odds ratio (OR): 1.018 per 1 mmHg increase, 95% confidence interval (CI): 1.012-1.024, P < 0.001], DBP (OR: 1.026, 95% CI: 1.016-1.035, P < 0.001), and PP (OR: 1.014, 95% CI: 1.001-1.028, P = 0.033). These findings were robust in sensitivity analyses, including the MR-Egger method and the MR pleiotropy residual sum and outlier test (MR-PRESSO). The causal relationship of BP and AF did not change when single-nucleotide polymorphisms associated with possible confounders (i.e. coronary artery disease and obesity) of the causal relationship were excluded. CONCLUSIONS The association between increased BP levels and the risk of AF is likely causal and applies for different BP indices. Independently from other risk factors, optimal BP control might represent an important therapeutic target for AF prevention in the general population.
Collapse
Affiliation(s)
- Georgios Georgiopoulos
- School of Biomedical Engineering and Imaging Sciences, King's College London, Westminster Bridge Road, London SE1 7EH, UK
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Georgios Ntritsos
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
- Department of Informatics and Telecommunications, School of Informatics and Telecommunications, University of Ioannina, Arta, Greece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Costas Tsioufis
- First Department of Cardiology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Alberto Aimo
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy
- National Centre for Cardiovascular Prevention and Outcomes, Institute of Cardiovascular Science, University College London, London EC1A 4NP, UK
- Department of Twin Research & Genetic Epidemiology, King's College London, London WC2R 2LS, UK
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| |
Collapse
|
50
|
Liu L, Zeng P, Xue F, Yuan Z, Zhou X. Multi-trait transcriptome-wide association studies with probabilistic Mendelian randomization. Am J Hum Genet 2021; 108:240-256. [PMID: 33434493 PMCID: PMC7895847 DOI: 10.1016/j.ajhg.2020.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
A transcriptome-wide association study (TWAS) integrates data from genome-wide association studies and gene expression mapping studies for investigating the gene regulatory mechanisms underlying diseases. Existing TWAS methods are primarily univariate in nature, focusing on analyzing one outcome trait at a time. However, many complex traits are correlated with each other and share a common genetic basis. Consequently, analyzing multiple traits jointly through multivariate analysis can potentially improve the power of TWASs. Here, we develop a method, moPMR-Egger (multiple outcome probabilistic Mendelian randomization with Egger assumption), for analyzing multiple outcome traits in TWAS applications. moPMR-Egger examines one gene at a time, relies on its cis-SNPs that are in potential linkage disequilibrium with each other to serve as instrumental variables, and tests its causal effects on multiple traits jointly. A key feature of moPMR-Egger is its ability to test and control for potential horizontal pleiotropic effects from instruments, thus maximizing power while minimizing false associations for TWASs. In simulations, moPMR-Egger provides calibrated type I error control for both causal effects testing and horizontal pleiotropic effects testing and is more powerful than existing univariate TWAS approaches in detecting causal associations. We apply moPMR-Egger to analyze 11 traits from 5 trait categories in the UK Biobank. In the analysis, moPMR-Egger identified 13.15% more gene associations than univariate approaches across trait categories and revealed distinct regulatory mechanisms underlying systolic and diastolic blood pressures.
Collapse
Affiliation(s)
- Lu Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|