1
|
Mahmood NMS, Mahmud AMR, Maulood IM. Vascular actions of Ang 1-7 and Ang 1-8 through EDRFs and EDHFs in non-diabetes and diabetes mellitus. Nitric Oxide 2025; 156:9-26. [PMID: 40032212 DOI: 10.1016/j.niox.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
The renin-angiotensin system (RAS) plays a pivotal role in regulating vascular homeostasis, while angiotensin 1-8 (Ang 1-8) traditionally dominates as a vasoconstrictor factor. However, the discovery of angiotensin 1-7 (Ang 1-7) and Ang 1-8 has revealed counter-regulatory mechanisms mediated through endothelial-derived relaxing factors (EDRFs) and endothelial-derived hyperpolarizing factors (EDHFs). This review delves into the vascular actions of Ang 1-7 and Ang 1-8 in both non-diabetes mellitus (non-DM) and diabetes mellitus (DM) conditions, highlighting their effects on vascular endothelial cell (VECs) function as well. In a non-DM vasculature context, Ang 1-8 demonstrate dual effect including vasoconstriction and vasodilation, respectively. Additionally, Ang 1-7 induces vasodilation upon nitric oxide (NO) production as a prominent EDRFs in distinct mechanisms. Further research elucidating the precise mechanisms underlying the vascular actions of Ang 1-7 and Ang 1-8 in DM will facilitate the development of tailored therapeutic interventions aimed at preserving vascular health and preventing cardiovascular complications.
Collapse
Affiliation(s)
- Nazar M Shareef Mahmood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq.
| | - Almas M R Mahmud
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ismail M Maulood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
2
|
Batlle D, Hassler L, Wysocki J. ACE2, From the Kidney to SARS-CoV-2: Donald Seldin Award Lecture 2023. Hypertension 2025; 82:166-180. [PMID: 39624896 DOI: 10.1161/hypertensionaha.124.22064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
ACE2 (angiotensin-converting enzyme 2) is a monocarboxypeptidase that cleaves Ang II (angiotensin II) among other substrates. ACE2 is present in the cell membrane of many organs, most abundantly in epithelial cells of kidney proximal tubules and the small intestine, and also exists in soluble forms in plasma and body fluids. Membrane-bound ACE2 exerts a renoprotective action by metabolizing Ang II and therefore attenuating the undesirable actions of excess Ang II. Therefore, soluble ACE2, by downregulating this peptide, may exert a therapeutic action. Our laboratory has designed ACE2 truncates that pass the glomerular filtration barrier to target the kidney renin-angiotensin system directly and, therefore, compensate for loss of kidney membrane-bound ACE2. Membrane-bound ACE2 is also the essential receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Soluble ACE2 proteins have been studied as a way to intercept SARS-CoV-2 from binding to membrane-bound ACE2 and prevent cell entry of SARS-CoV-2 altogether. We bioengineered a soluble ACE2 protein, termed ACE2 618-DDC-ABD, with increased binding affinity for SARS-CoV-2 and prolonged duration of action, which, when administered intranasally, provides near-complete protection from lethality in k18hACE2 mice infected with different SARS-CoV-2 variants. The main advantage of soluble ACE2 proteins for the neutralization of SARS-CoV-2 is their immediate onset of action and universality for current and future emerging SARS-CoV-2 variants. It is notable that ACE2 is critically involved in 2 dissimilar functions: as a receptor for cell entry of many coronaviruses and as an enzyme in the metabolism of Ang II, and yet in both cases, it is a therapeutic target.
Collapse
Affiliation(s)
- Daniel Batlle
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Luise Hassler
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jan Wysocki
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
3
|
Esendagli D, Sarı N, Akhan S, Arslan S, Doğan Öntaş İA, Yılmaz G, Aksoy F, Kant A, Yaşar KK, Ünlü EC, Akıllı IK, Çelen MK, Mermutluoğlu Ç, Dayan S, Kara E, Durhan G, Ünal S, Demirkol B, Arafat L, Çetinkaya E, Çörtük M, Koçak ND, Parmaksız ET, İnkaya AÇ. Inhaled Aviptadil Is a New Hope for Recovery of Lung Damage due to COVID-19. Med Princ Pract 2025; 34:191-200. [PMID: 39870064 PMCID: PMC11936437 DOI: 10.1159/000543773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
OBJECTIVE We are still in search of new therapeutic options for COVID-19 to prevent new infections, enable fast recovery, and reduce the long-lasting symptoms or sequelae. This study aimed to investigate the short- and long-term effects of inhaled aviptadil on hospitalized, adult COVID-19 patients. METHODS A multicenter, prospective, placebo-controlled, comparative, randomized, double-blind clinical trial was conducted. Patients were randomized 1:1 to either inhaled aviptadil or placebo, in addition to the standard care. The primary endpoint is the time from hospitalization to discharge within 30 days of treatment. The secondary endpoints are clinical and radiological score improvements. RESULTS The study involved 80 patients enrolled from 9 clinical centers. The mean age was 55.8 ± 18.5 years, and 27 of them (33.8%) were female. The average time to discharge was 7.8 ± 4.0 days in aviptadil group and 10 ± 5.0 days in placebo (p = 0.049). Modified Borg scales were not statistically different on day 3 (p = 0.090), but significantly lower in the aviptadil group on day 7 (p = 0.033). The CT lung damage score was not different on day 1 for both groups (p = 0.962); improvement on day 28 was significantly greater in the aviptadil group (p = 0.028). The death rate was also lower in the aviptadil group (5.1%) when compared to the placebo (12.2%). There was no drop-out due to side effects. CONCLUSION Study shows that inhaled aviptadil is well tolerated and can be used as a supplementary intervention to fasten the recovery of respiratory manifestations in hospitalized patients for COVID-19 pneumonia. OBJECTIVE We are still in search of new therapeutic options for COVID-19 to prevent new infections, enable fast recovery, and reduce the long-lasting symptoms or sequelae. This study aimed to investigate the short- and long-term effects of inhaled aviptadil on hospitalized, adult COVID-19 patients. METHODS A multicenter, prospective, placebo-controlled, comparative, randomized, double-blind clinical trial was conducted. Patients were randomized 1:1 to either inhaled aviptadil or placebo, in addition to the standard care. The primary endpoint is the time from hospitalization to discharge within 30 days of treatment. The secondary endpoints are clinical and radiological score improvements. RESULTS The study involved 80 patients enrolled from 9 clinical centers. The mean age was 55.8 ± 18.5 years, and 27 of them (33.8%) were female. The average time to discharge was 7.8 ± 4.0 days in aviptadil group and 10 ± 5.0 days in placebo (p = 0.049). Modified Borg scales were not statistically different on day 3 (p = 0.090), but significantly lower in the aviptadil group on day 7 (p = 0.033). The CT lung damage score was not different on day 1 for both groups (p = 0.962); improvement on day 28 was significantly greater in the aviptadil group (p = 0.028). The death rate was also lower in the aviptadil group (5.1%) when compared to the placebo (12.2%). There was no drop-out due to side effects. CONCLUSION Study shows that inhaled aviptadil is well tolerated and can be used as a supplementary intervention to fasten the recovery of respiratory manifestations in hospitalized patients for COVID-19 pneumonia.
Collapse
Affiliation(s)
- Dorina Esendagli
- Department of Chest Diseases, Faculty of Medicine, Başkent University, Ankara, Turkey
| | - Nuran Sarı
- Department of Infectious Diseases and Clinical Microbiology, Başkent University Ankara, Ankara, Turkey
| | - Sıla Akhan
- Department of Infectious Diseases and Clinical Microbiology, Kocaeli University, İzmit, Turkey
| | - Sonay Arslan
- Department of Infectious Diseases and Clinical Microbiology, Kocaeli University, İzmit, Turkey
| | - İrem Asena Doğan Öntaş
- Department of Infectious Diseases and Clinical Microbiology, Kocaeli University, İzmit, Turkey
| | - Gürdal Yılmaz
- Department of Infectious Diseases and Clinical Microbiology, Karadeniz Technical University, Trabzon, Turkey
| | - Firdevs Aksoy
- Department of Infectious Diseases and Clinical Microbiology, Karadeniz Technical University, Trabzon, Turkey
| | - Aydın Kant
- Department of Chest Diseases, Vakfıkebir State Hospital, Trabzon, Turkey
| | - Kadriye Kart Yaşar
- Department of Infectious Diseases and Clinical Microbiology, Bakırköy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, İstanbul, Turkey
| | - Esra Canbolat Ünlü
- Department of Infectious Diseases and Clinical Microbiology, Bakırköy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, İstanbul, Turkey
| | - Işıl Kibar Akıllı
- Department of Chest Diseases, Bakırköy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, İstanbul, Turkey
| | - Mustafa Kemal Çelen
- Department of Infectious Diseases and Clinical Microbiology, Dicle University, Diyarbakır, Turkey
| | - Çiğdem Mermutluoğlu
- Department of Infectious Diseases and Clinical Microbiology, Dicle University, Diyarbakır, Turkey
| | - Saim Dayan
- Department of Infectious Diseases and Clinical Microbiology, Dicle University, Diyarbakır, Turkey
| | - Emre Kara
- Department of Clinical Pharmacy, Hacettepe University, Ankara, Turkey
| | - Gamze Durhan
- Department of Radiology, Hacettepe University, Ankara, Turkey
| | - Serhat Ünal
- Department of Infectious Diseases and Clinical Microbiology, Hacettepe University, Ankara, Turkey
| | - Barış Demirkol
- Department of Chest Diseases, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, İstanbul, Turkey
| | - Levent Arafat
- Department of Chest Diseases, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, İstanbul, Turkey
| | - Erdoğan Çetinkaya
- Department of Chest Diseases, University of Health Sciences, Hamidiye Faculty of Medicine, İstanbul, Turkey
| | - Mustafa Çörtük
- Department of Chest Diseases, Atlas University, İstanbul, Turkey
| | - Nagihan Durmuş Koçak
- Department of Chest Diseases, Sancaktepe Şehit Prof Dr İlhan Varank Training and Research Hospital, İstanbul, Turkey
| | - Elif Torun Parmaksız
- Department of Chest Diseases, Sancaktepe Şehit Prof Dr İlhan Varank Training and Research Hospital, İstanbul, Turkey
| | - Ahmet Çağkan İnkaya
- Department of Infectious Diseases and Clinical Microbiology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Yan J, Hong J. COVID-19 Associated Myocarditis: Prevalence, Pathophysiology, Diagnosis, and Management. Cardiol Rev 2025; 33:77-81. [PMID: 37607078 DOI: 10.1097/crd.0000000000000597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a pandemic and affected public health greatly. While COVID-19 primarily damages the lungs, leading to cough, sore throat, pneumonia, or acute respiratory distress syndrome, it also infects other organs and tissues, including the cardiovascular system. In particular, myocarditis is a well-recognized severe complication of COVID-19 infection and could result in adverse outcomes. Angiotensin-Converting Enzyme2 is thought to play a pivotal role in SARS-CoV-2 infection, and immune overresponse causes overwhelming damage to the host's myocardium. Direct viral infection and injury do take a part as well, but more evidence is needed to strengthen this proposal. The clinical abnormalities include elevated cardiac biomarkers and electrocardiogram changes and impaired cardiac function that might be presented in echocardiography and cardiovascular magnetic resonance imaging. If necessary, the endomyocardial biopsy would give more forceful information to diagnosis and aid in treatment. Comparisons between COVID-19 myocarditis and other viral myocarditis are also discussed briefly.
Collapse
Affiliation(s)
- Ji Yan
- From the Department of Internal and Emergency Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Hong
- From the Department of Internal and Emergency Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Wimalawansa SJ. Unveiling the Interplay-Vitamin D and ACE-2 Molecular Interactions in Mitigating Complications and Deaths from SARS-CoV-2. BIOLOGY 2024; 13:831. [PMID: 39452140 PMCID: PMC11504239 DOI: 10.3390/biology13100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/26/2024]
Abstract
The interaction of the SARS-CoV-2 spike protein with membrane-bound angiotensin-converting enzyme-2 (ACE-2) receptors in epithelial cells facilitates viral entry into human cells. Despite this, ACE-2 exerts significant protective effects against coronaviruses by neutralizing viruses in circulation and mitigating inflammation. While SARS-CoV-2 reduces ACE-2 expression, vitamin D increases it, counteracting the virus's harmful effects. Vitamin D's beneficial actions are mediated through complex molecular mechanisms involving innate and adaptive immune systems. Meanwhile, vitamin D status [25(OH)D concentration] is inversely correlated with severity, complications, and mortality rates from COVID-19. This study explores mechanisms through which vitamin D inhibits SARS-CoV-2 replication, including the suppression of transcription enzymes, reduced inflammation and oxidative stress, and increased expression of neutralizing antibodies and antimicrobial peptides. Both hypovitaminosis D and SARS-CoV-2 elevate renin levels, the rate-limiting step in the renin-angiotensin-aldosterone system (RAS); it increases ACE-1 but reduces ACE-2 expression. This imbalance leads to elevated levels of the pro-inflammatory, pro-coagulatory, and vasoconstricting peptide angiotensin-II (Ang-II), leading to widespread inflammation. It also causes increased membrane permeability, allowing fluid and viruses to infiltrate soft tissues, lungs, and the vascular system. In contrast, sufficient vitamin D levels suppress renin expression, reducing RAS activity, lowering ACE-1, and increasing ACE-2 levels. ACE-2 cleaves Ang-II to generate Ang(1-7), a vasodilatory, anti-inflammatory, and anti-thrombotic peptide that mitigates oxidative stress and counteracts the harmful effects of SARS-CoV-2. Excess ACE-2 molecules spill into the bloodstream as soluble receptors, neutralizing and facilitating the destruction of the virus. These combined mechanisms reduce viral replication, load, and spread. Hence, vitamin D facilitates rapid recovery and minimizes transmission to others. Overall, vitamin D enhances the immune response and counteracts the pathological effects of SARS-CoV-2. Additionally, data suggests that widely used anti-hypertensive agents-angiotensin receptor blockers and ACE inhibitors-may lessen the adverse impacts of SARS-CoV-2, although they are less potent than vitamin D.
Collapse
|
6
|
Bogojevic M, Bansal V, Pattan V, Singh R, Tekin A, Sharma M, La Nou AT, LeMahieu AM, Hanson AC, Schulte PJ, Deo N, Qamar S, Zec S, Valencia Morales DJ, Perkins N, Kaufman M, Denson JL, Melamed R, Banner‐Goodspeed VM, Christie AB, Tarabichi Y, Heavner S, Kumar VK, Walkey AJ, Gajic O, Bhagra S, Kashyap R, Lal A, Domecq JP. Association of hypothyroidism with outcomes in hospitalized adults with COVID-19: Results from the International SCCM Discovery Viral Infection and Respiratory Illness Universal Study (VIRUS): COVID-19 Registry. Clin Endocrinol (Oxf) 2024; 101:85-93. [PMID: 35180316 PMCID: PMC9111656 DOI: 10.1111/cen.14699] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/12/2022] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19) is associated with high rates of morbidity and mortality. Primary hypothyroidism is a common comorbid condition, but little is known about its association with COVID-19 severity and outcomes. This study aims to identify the frequency of hypothyroidism in hospitalized patients with COVID-19 as well as describe the differences in outcomes between patients with and without pre-existing hypothyroidism using an observational, multinational registry. METHODS In an observational cohort study we enrolled patients 18 years or older, with laboratory-confirmed severe acute respiratory syndrome coronavirus-2 infection between March 2020 and February 2021. The primary outcomes were (1) the disease severity defined as per the World Health Organization Scale for Clinical Improvement, which is an ordinal outcome corresponding with the highest severity level recorded during a patient's index COVID-19 hospitalization, (2) in-hospital mortality and (3) hospital-free days. Secondary outcomes were the rate of intensive care unit (ICU) admission and ICU mortality. RESULTS Among the 20,366 adult patients included in the study, pre-existing hypothyroidism was identified in 1616 (7.9%). The median age for the Hypothyroidism group was 70 (interquartile range: 59-80) years, and 65% were female and 67% were White. The most common comorbidities were hypertension (68%), diabetes (42%), dyslipidemia (37%) and obesity (28%). After adjusting for age, body mass index, sex, admission date in the quarter year since March 2020, race, smoking history and other comorbid conditions (coronary artery disease, hypertension, diabetes and dyslipidemia), pre-existing hypothyroidism was not associated with higher odds of severe disease using the World Health Organization disease severity index (odds ratio [OR]: 1.02; 95% confidence interval [CI]: 0.92, 1.13; p = .69), in-hospital mortality (OR: 1.03; 95% CI: 0.92, 1.15; p = .58) or differences in hospital-free days (estimated difference 0.01 days; 95% CI: -0.45, 0.47; p = .97). Pre-existing hypothyroidism was not associated with ICU admission or ICU mortality in unadjusted as well as in adjusted analysis. CONCLUSIONS In an international registry, hypothyroidism was identified in around 1 of every 12 adult hospitalized patients with COVID-19. Pre-existing hypothyroidism in hospitalized patients with COVID-19 was not associated with higher disease severity or increased risk of mortality or ICU admissions. However, more research on the possible effects of COVID-19 on the thyroid gland and its function is needed in the future.
Collapse
Affiliation(s)
- Marija Bogojevic
- Department of Medicine, Division of Pulmonary and Critical Care MedicineMultidisciplinary Epidemiology and Translational Research in Intensive Care Group (METRIC), Mayo ClinicRochesterMinnesotaUSA
- Division of Endocrinology and Metabolism, Department of MedicineSUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Vikas Bansal
- Department of Medicine, Division of Pulmonary and Critical Care MedicineMultidisciplinary Epidemiology and Translational Research in Intensive Care Group (METRIC), Mayo ClinicRochesterMinnesotaUSA
| | - Vishwanath Pattan
- Division of Endocrinology and Metabolism, Department of MedicineSUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Romil Singh
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Aysun Tekin
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Mayank Sharma
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Abigail T. La Nou
- Division of Critical Care Medicine Mayo Clinic Health SystemEau ClaireWisconsinUSA
| | - Allison M. LeMahieu
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | - Andrew C. Hanson
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | - Phillip J. Schulte
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | - Neha Deo
- Mayo Clinic Alix School of MedicineRochesterMinnesotaUSA
| | - Shahraz Qamar
- Postbaccalaureate Research Education Program, Mayo Clinic College of Medicine and ScienceRochesterMinnesotaUSA
| | - Simon Zec
- Department of Medicine, Division of Pulmonary and Critical Care MedicineMultidisciplinary Epidemiology and Translational Research in Intensive Care Group (METRIC), Mayo ClinicRochesterMinnesotaUSA
| | - Diana J. Valencia Morales
- Department of Medicine, Division of Pulmonary and Critical Care MedicineMultidisciplinary Epidemiology and Translational Research in Intensive Care Group (METRIC), Mayo ClinicRochesterMinnesotaUSA
| | - Nicholas Perkins
- Department of Medicine, Prisma HealthGreenvilleSouth CarolinaUSA
| | - Margit Kaufman
- Department of Anesthesiology & Critical CareEnglewood Hospital and Medical CenterEnglewoodNew JerseyUSA
| | - Joshua L. Denson
- Section of Pulmonary Diseases, Critical Care, and Environmental MedicineTulane University School of MedicineNew OrleansLouisianaUSA
| | - Roman Melamed
- Department of Critical CareAbbott Northwestern Hospital, Allina HealthMinneapolisMinnesotaUSA
| | - Valerie M. Banner‐Goodspeed
- Department of Anesthesia, Critical Care & Pain MedicineBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Amy B. Christie
- Department of Trauma Critical Care, The Medical Center Navicent HealthMercer University School of MedicineMaconGeorgiaUSA
| | - Yasir Tarabichi
- Division of Pulmonary and Critical Care MedicineMetroHealthClevelelandOhioUSA
| | - Smith Heavner
- Department of Public Health ScienceClemson UniversityClemsonSouth CarolinaUSA
| | | | - Allan J. Walkey
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Pulmonary CenterBoston University School of MedicineBostonMassachusettsUSA
| | - Ognjen Gajic
- Department of Medicine, Division of Pulmonary and Critical Care MedicineMultidisciplinary Epidemiology and Translational Research in Intensive Care Group (METRIC), Mayo ClinicRochesterMinnesotaUSA
| | - Sumit Bhagra
- Division of EndocrinologyMayo Clinic Health SystemAustinMinnesotaUSA
| | - Rahul Kashyap
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Amos Lal
- Department of Medicine, Division of Pulmonary and Critical Care MedicineMultidisciplinary Epidemiology and Translational Research in Intensive Care Group (METRIC), Mayo ClinicRochesterMinnesotaUSA
| | - Juan Pablo Domecq
- Division of Nephrology and Hypertension, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
- Division of Critical Care, Department of Internal MedicineMayo Clinic Health SystemMankatoMinnesotaUSA
| | | |
Collapse
|
7
|
Gupta T, Kumar M, Kaur UJ, Rao A, Bharti R. Mapping ACE2 and TMPRSS2 co-expression in human brain tissue: implications for SARS-CoV-2 neurological manifestations. J Neurovirol 2024; 30:316-326. [PMID: 38600308 DOI: 10.1007/s13365-024-01206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
The Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily targets respiratory cells, but emerging evidence shows neurological involvement, with the virus directly affecting neurons and glia. SARS-CoV-2 entry into a target cell requires co-expression of ACE2 (Angiotensin-converting enzyme-2) and TMPRSS2 (Trans membrane serine protease-2). Relevant literature on human neurological tissue is sparse and mostly focused on the olfactory areas. This prompted our study to map brain-wide expression of these entry proteins and assess age-related changes. The normal brain tissue samples were collected from cerebral cortex, hippocampus, basal ganglia, thalamus, hypothalamus, brain stem and cerebellum; and were divided into two groups - up to 40 years (n = 10) and above 40 years (n = 10). ACE2 and TMPRSS2 gene expression analysis was done using qRT-PCR and protein co-expression was seen by immunofluorescence. The ACE2 and TMPRSS2 gene expression was observed to be highest in hypothalamus and thalamus regions, respectively. Immunoreactivity for both ACE-2 and TMPRSS2 was observed in all examined brain regions, confirming the presence of these viral entry receptors. Co-localisation was maximum in hypothalamus. Our study did not find any trend related to different age groups. The expression of both these viral entry receptors suggests that normal human brain is susceptibility to SARS-CoV-2, perhaps which could be related to the cognitive and neurological impairment that occur in patients.
Collapse
Affiliation(s)
- Tulika Gupta
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Munish Kumar
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ujjwal Jit Kaur
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Asha Rao
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana Bharti
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
8
|
Triebel H, Castrop H. The renin angiotensin aldosterone system. Pflugers Arch 2024; 476:705-713. [PMID: 38233636 PMCID: PMC11033231 DOI: 10.1007/s00424-024-02908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
In this review, we will cover (i) the proteolytic cascade of the RAAS, (ii) its regulation by multiple feedback-controlled parameters, and (iii) the major effects of the RAAS. For the effects of the RAAS, we focus on the role of the RAAS in the regulation of volume homeostasis and vascular tone, as major determinants of arterial blood pressure.
Collapse
Affiliation(s)
- Hannah Triebel
- Institute of Physiology, University of Regensburg, Universitätsstr. 31, 93040, Regensburg, Germany
| | - Hayo Castrop
- Institute of Physiology, University of Regensburg, Universitätsstr. 31, 93040, Regensburg, Germany.
| |
Collapse
|
9
|
Hatch CJ, Piombo SD, Fang JS, Gach JS, Ewald ML, Van Trigt WK, Coon BG, Tong JM, Forthal DN, Hughes CCW. SARS-CoV-2 infection of endothelial cells, dependent on flow-induced ACE2 expression, drives hypercytokinemia in a vascularized microphysiological system. Front Cardiovasc Med 2024; 11:1360364. [PMID: 38576426 PMCID: PMC10991679 DOI: 10.3389/fcvm.2024.1360364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for COVID-19, has caused nearly 7 million deaths worldwide. Severe cases are marked by an aggressive inflammatory response known as hypercytokinemia, contributing to endothelial damage. Although vaccination has reduced hospitalizations, hypercytokinemia persists in breakthrough infections, emphasizing the need for disease models mimicking this response. Using a 3D microphysiological system (MPS), we explored the vascular role in SARS-CoV-2-induced hypercytokinemia. Methods The vascularized micro-organ (VMO) MPS, consisting of human-derived primary endothelial cells (ECs) and stromal cells within an extracellular matrix, was used to model SARS-CoV-2 infection. A non-replicative pseudotyped virus fused to GFP was employed, allowing visualization of viral entry into human ECs under physiologic flow conditions. Expression of ACE2, TMPRSS2, and AGTR1 was analyzed, and the impact of viral infection on ACE2 expression, vascular inflammation, and vascular morphology was assessed. Results The VMO platform facilitated the study of COVID-19 vasculature infection, revealing that ACE2 expression increased significantly in direct response to shear stress, thereby enhancing susceptibility to infection by pseudotyped SARS-CoV-2. Infected ECs secreted pro-inflammatory cytokines, including IL-6 along with coagulation factors. Cytokines released by infected cells were able to activate downstream, non-infected EC, providing an amplification mechanism for inflammation and coagulopathy. Discussion Our findings highlight the crucial role of vasculature in COVID-19 pathogenesis, emphasizing the significance of flow-induced ACE2 expression and subsequent inflammatory responses. The VMO provides a valuable tool for studying SARS-CoV-2 infection dynamics and evaluating potential therapeutics.
Collapse
Affiliation(s)
- Christopher J. Hatch
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| | - Sebastian D. Piombo
- Department of Pediatrics, School of Medicine, Institute for Clinical and Translational Science, University of California, Irvine, CA, United States
| | - Jennifer S. Fang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Johannes S. Gach
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, CA, United States
| | - Makena L. Ewald
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - William K. Van Trigt
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Brian G. Coon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jay M. Tong
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| | - Donald N. Forthal
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| |
Collapse
|
10
|
Bajire SK, Shastry RP. Synergistic effects of COVID-19 and Pseudomonas aeruginosa in chronic obstructive pulmonary disease: a polymicrobial perspective. Mol Cell Biochem 2024; 479:591-601. [PMID: 37129767 PMCID: PMC10152025 DOI: 10.1007/s11010-023-04744-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
This article discusses the connection between the novel coronavirus disease 2019 (COVID-19) caused by the coronavirus-2 (SARS-CoV-2) and chronic obstructive pulmonary disease (COPD). COPD is a multifaceted respiratory illness that is typically observed in individuals with chronic exposure to chemical irritants or severe lung damage caused by various pathogens, including SARS-CoV-2 and Pseudomonas aeruginosa. The pathogenesis of COPD is complex, involving a variety of genotypes and phenotypic characteristics that result in severe co-infections and a poor prognosis if not properly managed. We focus on the role of SARS-CoV-2 infection in severe COPD exacerbations in connection to P. aeruginosa infection, covering pathogenesis, diagnosis, and therapy. This review also includes a thorough structural overview of COPD and recent developments in understanding its complicated and chronic nature. While COVID-19 is clearly linked to emphysema and chronic bronchitis at different stages of the disease, our understanding of the precise interaction between microbial infections during COPD, particularly with SARS-CoV-2 in the lungs, remains inadequate. Therefore, it is crucial to understand the host-pathogen relationship from the clinician's perspective in order to effectively manage COPD. This article aims to provide a comprehensive overview of the subject matter to assist clinicians in their efforts to improve the treatment and management of COPD, especially in light of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sukesh Kumar Bajire
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
11
|
Kesika P, Thangaleela S, Sisubalan N, Radha A, Sivamaruthi BS, Chaiyasut C. The Role of the Nuclear Factor-Kappa B (NF-κB) Pathway in SARS-CoV-2 Infection. Pathogens 2024; 13:164. [PMID: 38392902 PMCID: PMC10892479 DOI: 10.3390/pathogens13020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
COVID-19 is a global health threat caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is associated with a significant increase in morbidity and mortality. The present review discusses nuclear factor-kappa B (NF-κB) activation and its potential therapeutical role in treating COVID-19. COVID-19 pathogenesis, the major NF-κB pathways, and the involvement of NF-κB in SARS-CoV-2 have been detailed. Specifically, NF-κB activation and its impact on managing COVID-19 has been discussed. As a central player in the immune and inflammatory responses, modulating NF-κB activation could offer a strategic avenue for managing SARS-CoV-2 infection. Understanding the NF-κB pathway's role could aid in developing treatments against SARS-CoV-2. Further investigations into the intricacies of NF-κB activation are required to reveal effective therapeutic strategies for managing and combating the SARS-CoV-2 infection and COVID-19.
Collapse
Affiliation(s)
- Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Subramanian Thangaleela
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Natarajan Sisubalan
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arumugam Radha
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | | | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
12
|
Cianfarini C, Hassler L, Wysocki J, Hassan A, Nicolaescu V, Elli D, Gula H, Ibrahim AM, Randall G, Henkin J, Batlle D. Soluble Angiotensin-Converting Enzyme 2 Protein Improves Survival and Lowers Viral Titers in Lethal Mouse Model of Severe Acute Respiratory Syndrome Coronavirus Type 2 Infection with the Delta Variant. Cells 2024; 13:203. [PMID: 38334597 PMCID: PMC10854654 DOI: 10.3390/cells13030203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/10/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) utilizes angiotensin-converting enzyme 2 (ACE2) as its main receptor for cell entry. We bioengineered a soluble ACE2 protein termed ACE2 618-DDC-ABD that has increased binding to SARS-CoV-2 and prolonged duration of action. Here, we investigated the protective effect of this protein when administered intranasally to k18-hACE2 mice infected with the aggressive SARS-CoV-2 Delta variant. k18-hACE2 mice were infected with the SARS-CoV-2 Delta variant by inoculation of a lethal dose (2 × 104 PFU). ACE2 618-DDC-ABD (10 mg/kg) or PBS was administered intranasally six hours prior and 24 and 48 h post-viral inoculation. All animals in the PBS control group succumbed to the disease on day seven post-infection (0% survival), whereas, in contrast, there was only one casualty in the group that received ACE2 618-DDC-ABD (90% survival). Mice in the ACE2 618-DDC-ABD group had minimal disease as assessed using a clinical score and stable weight, and both brain and lung viral titers were markedly reduced. These findings demonstrate the efficacy of a bioengineered soluble ACE2 decoy with an extended duration of action in protecting against the aggressive Delta SARS-CoV-2 variant. Together with previous work, these findings underline the universal protective potential against current and future emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Cosimo Cianfarini
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, 710 North Fairbanks Court, Chicago, IL 60611, USA
- Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Luise Hassler
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, 710 North Fairbanks Court, Chicago, IL 60611, USA
| | - Jan Wysocki
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, 710 North Fairbanks Court, Chicago, IL 60611, USA
| | - Abdelsabour Hassan
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, 710 North Fairbanks Court, Chicago, IL 60611, USA
| | - Vlad Nicolaescu
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL 60637, USA
| | - Derek Elli
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL 60637, USA
| | - Haley Gula
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL 60637, USA
| | - Amany M. Ibrahim
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL 60637, USA
| | - Glenn Randall
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL 60637, USA
| | - Jack Henkin
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208, USA
| | - Daniel Batlle
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, 710 North Fairbanks Court, Chicago, IL 60611, USA
| |
Collapse
|
13
|
Holmes D, Colaneri M, Palomba E, Gori A. Exploring post-SEPSIS and post-COVID-19 syndromes: crossovers from pathophysiology to therapeutic approach. Front Med (Lausanne) 2024; 10:1280951. [PMID: 38249978 PMCID: PMC10797045 DOI: 10.3389/fmed.2023.1280951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Sepsis, driven by several infections, including COVID-19, can lead to post-sepsis syndrome (PSS) and post-acute sequelae of COVID-19 (PASC). Both these conditions share clinical and pathophysiological similarities, as survivors face persistent multi-organ dysfunctions, including respiratory, cardiovascular, renal, and neurological issues. Moreover, dysregulated immune responses, immunosuppression, and hyperinflammation contribute to these conditions. The lack of clear definitions and diagnostic criteria hampers comprehensive treatment strategies, and a unified therapeutic approach is significantly needed. One potential target might be the renin-angiotensin system (RAS), which plays a significant role in immune modulation. In fact, RAS imbalance can exacerbate these responses. Potential interventions involving RAS include ACE inhibitors, ACE receptor blockers, and recombinant human ACE2 (rhACE2). To address the complexities of PSS and PASC, a multifaceted approach is required, considering shared immunological mechanisms and the role of RAS. Standardization, research funding, and clinical trials are essential for advancing treatment strategies for these conditions.
Collapse
Affiliation(s)
- Darcy Holmes
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marta Colaneri
- Department of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy
| | - Emanuele Palomba
- Department of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy
| | - Andrea Gori
- Department of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| |
Collapse
|
14
|
Nizam NN, Mahmud S, Ark SMA, Kamruzzaman M, Hasan MK. Bakuchiol, a natural constituent and its pharmacological benefits. F1000Res 2023; 12:29. [PMID: 38021404 PMCID: PMC10683784 DOI: 10.12688/f1000research.129072.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Background and aims Natural compounds extracted from medicinal plants have recently gained attention in therapeutics as they are considered to have lower Toxicity and higher tolerability relative to chemically synthesized compounds. Bakuchiol from Psoralea corylifolia L. is one such compound; it is a type of meroterpene derived from the leaves and seeds of Psoralea corylifolia plants. Natural sources of bakuchiol have been used in traditional Chinese and Indian medicine for centuries due to its preventive benefits against tumors and inflammation. It plays a strong potential role as an antioxidant with impressive abilities to remove Reactive Oxygen Species (ROS). This review has focused on bakuchiol's extraction, therapeutic applications, and pharmacological benefits. Methods A search strategy has been followed to retrieve the relevant newly published literature on the pharmacological benefits of bakuchiol. After an extensive study of the retrieved articles and maintaining the inclusion and exclusion criteria, 110 articles were finally selected for this review. Results Strong support of primary research on the protective effects via antitumorigenic, anti-inflammatory, antioxidative, antimicrobial, and antiviral activities are delineated. Conclusions From ancient to modern life, medicinal plants have always been drawing the attention of human beings to alleviate ailments for a healthy and balanced lifestyle. This review is a comprehensive approach to highlighting bona fide essential pharmacological benefits and mechanisms underlying their therapeutic applications.
Collapse
Affiliation(s)
- Nuder Nower Nizam
- Department of Public Health, American International University Bangladesh, Dhaka, 1229, Bangladesh
| | - Sohel Mahmud
- Department of Biochemistry and Molecular Biology, Tajgaon College, Dhaka, National University, Bangladesh, Gazipur, 1704, Bangladesh
| | - S M Albar Ark
- Department of Biochemistry and Molecular Biology, Tajgaon College, Dhaka, National University, Bangladesh, Gazipur, 1704, Bangladesh
| | - Mohammad Kamruzzaman
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md. Kamrul Hasan
- Department of Biochemistry and Molecular Biology, Tajgaon College, Dhaka, National University, Bangladesh, Gazipur, 1704, Bangladesh
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
| |
Collapse
|
15
|
Lin EC, Chiang YC, Lin HY, Tseng SY, Hsieh YT, Shieh JA, Huang YH, Tsai HT, Feng SW, Peng TY, Lee IT. Unraveling the Link between Periodontitis and Coronavirus Disease 2019: Exploring Pathogenic Pathways and Clinical Implications. Biomedicines 2023; 11:2789. [PMID: 37893162 PMCID: PMC10604139 DOI: 10.3390/biomedicines11102789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Periodontitis involves the inflammation of the periodontal tissue, leading to tissue loss, while coronavirus disease 2019 (COVID-19) is a highly transmissible respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is amplified by poor systemic health. Key facilitators of SARS-CoV-2's entry into host cells are angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). This review reveals that periodontal pockets can serve as a hotspot for virus accumulation, rendering surrounding epithelia more susceptible to infection. Given that ACE2 is expressed in oral mucosa, it is reasonable to suggest that poor periodontal health could increase the risk of COVID-19 infection. However, recent studies have not provided sufficient evidence to imply a significant effect of COVID-19 on periodontal health, necessitating further and more long-term investigations. Nevertheless, there are hypotheses linking the mechanisms of the two diseases, such as the involvement of interleukin-17 (IL-17). Elevated IL-17 levels are observed in both COVID-19 and periodontitis, leading to increased osteoclast activity and bone resorption. Lastly, bidirectional relationships between periodontitis and systemic diseases like diabetes are acknowledged. Given that COVID-19 symptoms may worsen with these conditions, maintaining good oral health and managing systemic diseases are suggested as potential ways to protect against COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tzu-Yu Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (E.-C.L.); (Y.-C.C.); (H.-Y.L.); (S.-Y.T.); (Y.-T.H.); (J.-A.S.); (Y.-H.H.); (H.-T.T.); (S.-W.F.)
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (E.-C.L.); (Y.-C.C.); (H.-Y.L.); (S.-Y.T.); (Y.-T.H.); (J.-A.S.); (Y.-H.H.); (H.-T.T.); (S.-W.F.)
| |
Collapse
|
16
|
Hu T, Li L, Ma Q. Research Progress of Immunomodulation on Anti-COVID-19 and the Effective Components from Traditional Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1337-1360. [PMID: 37465964 DOI: 10.1142/s0192415x23500611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
SARS-CoV-2 has posed a threat to the health of people around the world because of its strong transmission and high virulence. Currently, there is no specific medicine for the treatment of COVID-19. However, for a wide variety of medicines used to treat COVID-19, traditional Chinese medicine (TCM) plays a major role. In this paper, the effective treatment of COVID-19 using TCM was consulted first, and several Chinese medicines that were frequently used apart from their huge role in treating it were found. Then, when exploring the active ingredients of these herbs, it was discovered that most of them contained flavonoids. Therefore, the structure and function of the potential active substances of flavonoids, including flavonols, flavonoids, and flavanes, respectively, are discussed in this paper. According to the screening data, these flavonoids can bind to the key proteins of SARS-CoV-2, 3CLpro, PLpro, and RdRp, respectively, or block the interface between the viral spike protein and ACE2 receptor, which could inhibit the proliferation of coronavirus and prevent the virus from entering human cells. Besides, the effects of flavonoids on the human body systems are expounded on in this paper, including the respiratory system, digestive system, and immune system, respectively. Normally, flavonoids boost the body's immune system. However, they can suppress the immune system when over immunized. Ultimately, this study hopes to provide a reference for the clinical drug treatment of COVID-19 patients, and more TCM can be put into the market accordingly, which is expected to promote the development of TCM on the international stage.
Collapse
Affiliation(s)
- Ting Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Li Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qin Ma
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/ Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P. R. China
| |
Collapse
|
17
|
Hassler L, Wysocki J, Ahrendsen JT, Ye M, Gelarden I, Nicolaescu V, Tomatsidou A, Gula H, Cianfarini C, Forster P, Khurram N, Singer BD, Randall G, Missiakas D, Henkin J, Batlle D. Intranasal soluble ACE2 improves survival and prevents brain SARS-CoV-2 infection. Life Sci Alliance 2023; 6:e202301969. [PMID: 37041017 PMCID: PMC10098141 DOI: 10.26508/lsa.202301969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
A soluble ACE2 protein bioengineered for long duration of action and high affinity to SARS-CoV-2 was administered either intranasally (IN) or intraperitoneally (IP) to SARS-CoV-2-inoculated k18hACE2 mice. This decoy protein (ACE2 618-DDC-ABD) was given either IN or IP, pre- and post-inoculation, or IN, IP, or IN + IP but only post-inoculation. Survival by day 5 was 0% in untreated mice, 40% in the IP-pre, and 90% in the IN-pre group. In the IN-pre group, brain histopathology was essentially normal and lung histopathology significantly improved. Consistent with this, brain SARS-CoV-2 titers were undetectable and lung titers reduced in the IN-pre group. When ACE2 618-DDC-ABD was administered only post-inoculation, survival was 30% in the IN + IP, 20% in the IN, and 20% in the IP group. We conclude that ACE2 618-DDC-ABD results in markedly improved survival and provides organ protection when given intranasally as compared with when given either systemically or after viral inoculation, and that lowering brain titers is a critical determinant of survival and organ protection.
Collapse
Affiliation(s)
- Luise Hassler
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Wysocki
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Jared T Ahrendsen
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Minghao Ye
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Ian Gelarden
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Vlad Nicolaescu
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, IL, USA
| | - Anastasia Tomatsidou
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, IL, USA
| | - Haley Gula
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, IL, USA
| | - Cosimo Cianfarini
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Peter Forster
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Nigar Khurram
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Glenn Randall
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, IL, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, IL, USA
| | - Jack Henkin
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL, USA
| | - Daniel Batlle
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
18
|
Murali R, Wanjari UR, Mukherjee AG, Gopalakrishnan AV, Kannampuzha S, Namachivayam A, Madhyastha H, Renu K, Ganesan R. Crosstalk between COVID-19 Infection and Kidney Diseases: A Review on the Metabolomic Approaches. Vaccines (Basel) 2023; 11:vaccines11020489. [PMID: 36851366 PMCID: PMC9959335 DOI: 10.3390/vaccines11020489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a respiratory disorder. Various organ injuries have been reported in response to this virus, including kidney injury and, in particular, kidney tubular injury. It has been discovered that infection with the virus does not only cause new kidney disease but also increases treatment difficulty and mortality rates in people with kidney diseases. In individuals hospitalized with COVID-19, urinary metabolites from several metabolic pathways are used to distinguish between patients with acute kidney injury (AKI) and those without. This review summarizes the pathogenesis, pathophysiology, treatment strategies, and role of metabolomics in relation to AKI in COVID-19 patients. Metabolomics is likely to play a greater role in predicting outcomes for patients with kidney disease and COVID-19 with varying levels of severity in the near future as data on metabolic profiles expand rapidly. Here, we also discuss the correlation between COVID-19 and kidney diseases and the available metabolomics approaches.
Collapse
Affiliation(s)
- Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence: (A.V.G.); (R.G.)
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Kaviyarasi Renu
- Center of Molecular Medicine and Diagnostics (COMMAND), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (A.V.G.); (R.G.)
| |
Collapse
|
19
|
Costa GMJ, Lacerda SMSN, Figueiredo AFA, Wnuk NT, Brener MRG, Andrade LM, Campolina-Silva GH, Kauffmann-Zeh A, Pacifico LGG, Versiani AF, Antunes MM, Souza FR, Cassali GD, Caldeira-Brant AL, Chiarini-Garcia H, de Souza FG, Costa VV, da Fonseca FG, Nogueira ML, Campos GRF, Kangussu LM, Martins EMN, Antonio LM, Bittar C, Rahal P, Aguiar RS, Mendes BP, Procópio MS, Furtado TP, Guimaraes YL, Menezes GB, Martinez-Marchal A, Orwig KE, Brieño-Enríquez M, Furtado MH. High SARS-CoV-2 tropism and activation of immune cells in the testes of non-vaccinated deceased COVID-19 patients. BMC Biol 2023; 21:36. [PMID: 36797789 PMCID: PMC9933832 DOI: 10.1186/s12915-022-01497-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/06/2022] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Cellular entry of SARS-CoV-2 has been shown to rely on angiotensin-converting enzyme 2 (ACE2) receptors, whose expression in the testis is among the highest in the body. Additionally, the risk of mortality seems higher among male COVID-19 patients, and though much has been published since the first cases of COVID-19, there remain unanswered questions regarding SARS-CoV-2 impact on testes and potential consequences for reproductive health. We investigated testicular alterations in non-vaccinated deceased COVID-19-patients, the precise location of the virus, its replicative activity, and the immune, vascular, and molecular fluctuations involved in the pathogenesis. RESULTS We found that SARS-CoV-2 testicular tropism is higher than previously thought and that reliable viral detection in the testis requires sensitive nanosensors or RT-qPCR using a specific methodology. Through an in vitro experiment exposing VERO cells to testicular macerates, we observed viral content in all samples, and the subgenomic RNA's presence reinforced the replicative activity of SARS-CoV-2 in testes of the severe COVID-19 patients. The cellular structures and viral particles, observed by transmission electron microscopy, indicated that macrophages and spermatogonial cells are the main SARS-CoV-2 lodging sites, where new virions form inside the endoplasmic reticulum Golgi intermediate complex. Moreover, we showed infiltrative infected monocytes migrating into the testicular parenchyma. SARS-CoV-2 maintains its replicative and infective abilities long after the patient's infection. Further, we demonstrated high levels of angiotensin II and activated immune cells in the testes of deceased patients. The infected testes show thickening of the tunica propria, germ cell apoptosis, Sertoli cell barrier loss, evident hemorrhage, angiogenesis, Leydig cell inhibition, inflammation, and fibrosis. CONCLUSIONS Our findings indicate that high angiotensin II levels and activation of mast cells and macrophages may be critical for testicular pathogenesis. Importantly, our findings suggest that patients who become critically ill may exhibit severe alterations and harbor the active virus in the testes.
Collapse
Affiliation(s)
- Guilherme M. J. Costa
- grid.8430.f0000 0001 2181 4888Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Samyra M. S. N. Lacerda
- grid.8430.f0000 0001 2181 4888Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - André F. A. Figueiredo
- grid.8430.f0000 0001 2181 4888Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Natália T. Wnuk
- grid.8430.f0000 0001 2181 4888Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Marcos R. G. Brener
- grid.8430.f0000 0001 2181 4888Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Lídia M. Andrade
- grid.8430.f0000 0001 2181 4888Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | | | | | | | - Alice F. Versiani
- grid.419029.70000 0004 0615 5265Faculdade de Medicina de São Jose do Rio Preto, São Jose do Rio Preto, SP Brazil ,grid.176731.50000 0001 1547 9964Department of Pathology, University of Texas Medical Branch, Galveston, TX USA
| | - Maísa M. Antunes
- grid.8430.f0000 0001 2181 4888Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Fernanda R. Souza
- grid.8430.f0000 0001 2181 4888Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Geovanni D. Cassali
- grid.8430.f0000 0001 2181 4888Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - André L. Caldeira-Brant
- grid.8430.f0000 0001 2181 4888Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil ,grid.21925.3d0000 0004 1936 9000Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Hélio Chiarini-Garcia
- grid.8430.f0000 0001 2181 4888Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Fernanda G. de Souza
- grid.8430.f0000 0001 2181 4888Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Vivian V. Costa
- grid.8430.f0000 0001 2181 4888Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Flavio G. da Fonseca
- grid.8430.f0000 0001 2181 4888Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Maurício L. Nogueira
- grid.419029.70000 0004 0615 5265Faculdade de Medicina de São Jose do Rio Preto, São Jose do Rio Preto, SP Brazil ,grid.176731.50000 0001 1547 9964Department of Pathology, University of Texas Medical Branch, Galveston, TX USA
| | - Guilherme R. F. Campos
- grid.419029.70000 0004 0615 5265Faculdade de Medicina de São Jose do Rio Preto, São Jose do Rio Preto, SP Brazil
| | - Lucas M. Kangussu
- grid.8430.f0000 0001 2181 4888Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Estefânia M. N. Martins
- grid.466576.00000 0004 0635 4678Centro de Desenvolvimento da Tecnologia Nuclear-CDTN/CNEN, Belo Horizonte, MG Brazil
| | - Loudiana M. Antonio
- grid.8430.f0000 0001 2181 4888Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Cintia Bittar
- grid.410543.70000 0001 2188 478XUniversidade Estadual Paulista, São José do Rio Preto, SP Brazil
| | - Paula Rahal
- grid.410543.70000 0001 2188 478XUniversidade Estadual Paulista, São José do Rio Preto, SP Brazil
| | - Renato S. Aguiar
- grid.8430.f0000 0001 2181 4888Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | | | | | | | - Yuri L. Guimaraes
- Clínica MF Fertilidade Masculina, Belo Horizonte, MG Brazil ,Departamentos de Urologia e de Reprodução Humana da Rede Mater Dei de Saúde, Belo Horizonte, MG Brazil
| | - Gustavo B. Menezes
- grid.8430.f0000 0001 2181 4888Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Ana Martinez-Marchal
- grid.21925.3d0000 0004 1936 9000Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Kyle E. Orwig
- grid.21925.3d0000 0004 1936 9000Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Miguel Brieño-Enríquez
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, USA.
| | - Marcelo H. Furtado
- Clínica MF Fertilidade Masculina, Belo Horizonte, MG Brazil ,Departamentos de Urologia e de Reprodução Humana da Rede Mater Dei de Saúde, Belo Horizonte, MG Brazil
| |
Collapse
|
20
|
Sun J, Liu Y, Chen C, Quarm AK, Xi S, Sun T, Zhang D, Qian J, Ding H, Gao J. Cyclophilin D-mediated angiotensin II-induced NADPH oxidase 4 activation in endothelial mitochondrial dysfunction that can be rescued by gallic acid. Eur J Pharmacol 2023; 940:175475. [PMID: 36563952 DOI: 10.1016/j.ejphar.2022.175475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Vascular endothelial dysfunction plays a central role in the most dreadful human diseases, including stroke, tumor metastasis, and the coronavirus disease 2019 (COVID-19). Strong evidence suggests that angiotensin II (Ang II)-induced mitochondrial dysfunction is essential for endothelial dysfunction pathogenesis. However, the precise molecular mechanisms remain obscure. Here, polymerase-interacting protein 2 (Poldip 2) was found in the endothelial mitochondrial matrix and no effects on Poldip 2 and NADPH oxidase 4 (NOX 4) expression treated by Ang II. Interestingly, we first found that Ang II-induced NOX 4 binds with Poldip 2 was dependent on cyclophilin D (CypD). CypD knockdown (KD) significantly inhibited the binding of NOX 4 to Poldip 2, and mitochondrial ROS generation in human umbilical vein endothelial cells (HUVECs). Similar results were also found in cyclosporin A (CsA) treated HUVECs. Our previous study suggested a crosstalk between extracellular regulated protein kinase (ERK) phosphorylation and CypD expression, and gallic acid (GA) inhibited mitochondrial dysfunction in neurons depending on regulating the ERK-CypD axis. Here, we confirmed that GA inhibited Ang II-induced NOX 4 activation and mitochondrial dysfunction via ERK/CypD/NOX 4/Poldip 2 pathway, which provide novel mechanistic insight into CypD act as a key regulator of the NOX 4/Poldip 2 axis in Ang II-induced endothelial mitochondrial dysfunction and GA might be beneficial in the treatment of wide variety of diseases, such as COVID-19, which is worthy further research.
Collapse
Affiliation(s)
- Jing Sun
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China; Department of Traditional Chinese Medicine & Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Yunxi Liu
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chen Chen
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Anthony Kwesi Quarm
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Siyu Xi
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Tingkai Sun
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Dingqi Zhang
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jinjun Qian
- Department of Neurology, The Fourth People's Hospital of Zhenjiang, Zhenjiang, 212001, PR China
| | - Hongqun Ding
- Department of Clinical Laboratory Diagnostics, School of Medicine, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jing Gao
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
21
|
Virtucio ILS, Punzalan JM, Billones JB. Virtual Screening for SARS-COV-2 Entry Inhibitors by Dual Targeting of TMPRSS2 and CTSL. PHARMACOPHORE 2023. [DOI: 10.51847/6imwqjwvpa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
22
|
Muacevic A, Adler JR, Anderson C, Sheraton M. Seizures, Vitamin D Deficiency, and Severe Hypophosphatemia: The Unique Presentation of a SARS-CoV-2 Case. Cureus 2023; 15:e33303. [PMID: 36606109 PMCID: PMC9809502 DOI: 10.7759/cureus.33303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2023] [Indexed: 01/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a virus that belongs to the species severe acute respiratory syndrome-related coronavirus (SARSr-CoV), which is related to the SARS-CoV-1 virus that caused the 2002-2004 SARS outbreak. SARS-CoV-2 causes coronavirus disease 2019 (COVID-19). It has been associated with electrolyte abnormalities. In this report, we discuss the case of a SARS-CoV-2-infected person presenting with recurrent seizure episodes resulting from hypophosphatemia. A 52-year-old male patient with questionable prior seizure history presented to the emergency department (ED) twice within eight days with recurring seizure episodes. While the physical examination at the first presentation was significant for a head laceration with post-ictal confusion, that at the second presentation was only significant for post-ictal confusion. Laboratory examination at the first visit revealed SARS-CoV-2 positivity, hypokalemia, hypophosphatemia, and low vitamin D levels. On the second visit, the patient was again found to have hypophosphatemia. CT of the head and the cervical spine, as well as radiographs of the chest done on the first visit, were all normal. On his first visit, the patient's electrolyte abnormalities were corrected, and he was discharged with antiepileptic medications after 24 hours of observation and consultation with neurology. However, his vitamin D levels, the results of which came back only after his first discharge, were corrected only during his second visit. This time, he was discharged from the ED and had an effective resolution of symptoms. SARS-CoV-2 infections can result in vitamin D deficiency and hypophosphatemia, resulting in seizures, and hence should be treated with both replacement therapies and antiepileptic medications. This case also highlights the importance of obtaining phosphorus and vitamin D levels in SARS-CoV-2-infected patients with seizures.
Collapse
|
23
|
Juthi RT, Sazed SA, Sarmin M, Haque R, Alam MS. COVID-19 and diarrhea: putative mechanisms and management. Int J Infect Dis 2023; 126:125-131. [PMID: 36403817 PMCID: PMC9672967 DOI: 10.1016/j.ijid.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19), has recently posed a threat to global health by spreading at a high rate and taking millions of lives worldwide. Along with the respiratory symptoms, there are gastrointestinal manifestations and one of the most common gastrointestinal symptoms is diarrhea which is seen in a significant percentage of COVID-19 patients. LITERATURE REVIEW Several studies have shown the plausible correlation between overexpressed angiotensin converting enzyme 2 (ACE2) in enterocytes and SARS-CoV-2, as ACE2 is the only known receptor for the virus entry. Along with the dysregulated ACE2, there are other contributing factors such as gut microbiome dysbiosis, adverse effects of antiviral and antibiotics for treating infections and inflammatory response to SARS-CoV-2 which bring about increased permeability of gut cells and subsequent occurrence of diarrhea. Few studies found that the SARS-CoV-2 is capable of damaging liver cells too. No single effective treatment option is available. LIMITATIONS Confirmed pathophysiology is still unavailable. Studies regarding global population are also insufficient. CONCLUSION In this review, based on the previous works and literature, we summarized the putative molecular pathophysiology of COVID-19 associated diarrhea, concomitant complications and the standard practices of management of diarrhea and hepatic manifestations in international setups.
Collapse
Affiliation(s)
- Rifat Tasnim Juthi
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Saiful Arefeen Sazed
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Monira Sarmin
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rashidul Haque
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh.
| |
Collapse
|
24
|
Wang Y, Ma J, Jiang Y. Transcription factor Nrf2 as a potential therapeutic target for COVID-19. Cell Stress Chaperones 2023; 28:11-20. [PMID: 36417098 PMCID: PMC9685020 DOI: 10.1007/s12192-022-01296-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/08/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) is caused by a novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2). Critically ill patients with SARS-COV-2 infection frequently exhibit signs of high oxidative stress and systemic inflammation, which accounts for most of the mortality. Antiviral strategies to inhibit the pathogenic consequences of COVID-19 are urgently required. The nuclear factor erythroid 2-related transcription factor (Nrf2) is a transcription factor that is involved in antioxidant and anti-inflammatory defense in several tissues and cells. This review tries to present an overview of the role of Nrf2 in the treatment of COVID-19.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jing Ma
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yongfang Jiang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
25
|
Chen D, Randhawa GS, Soltysiak MP, de Souza CP, Kari L, Singh SM, Hill KA. Mutational Patterns Observed in SARS-CoV-2 Genomes Sampled From Successive Epochs Delimited by Major Public Health Events in Ontario, Canada: Genomic Surveillance Study. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2022; 3:e42243. [PMID: 38935965 PMCID: PMC11135226 DOI: 10.2196/42243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 06/29/2024]
Abstract
BACKGROUND The emergence of SARS-CoV-2 variants with mutations associated with increased transmissibility and virulence is a public health concern in Ontario, Canada. Characterizing how the mutational patterns of the SARS-CoV-2 genome have changed over time can shed light on the driving factors, including selection for increased fitness and host immune response, that may contribute to the emergence of novel variants. Moreover, the study of SARS-CoV-2 in the microcosm of Ontario, Canada can reveal how different province-specific public health policies over time may be associated with observed mutational patterns as a model system. OBJECTIVE This study aimed to perform a comprehensive analysis of single base substitution (SBS) types, counts, and genomic locations observed in SARS-CoV-2 genomic sequences sampled in Ontario, Canada. Comparisons of mutational patterns were conducted between sequences sampled during 4 different epochs delimited by major public health events to track the evolution of the SARS-CoV-2 mutational landscape over 2 years. METHODS In total, 24,244 SARS-CoV-2 genomic sequences and associated metadata sampled in Ontario, Canada from January 1, 2020, to December 31, 2021, were retrieved from the Global Initiative on Sharing All Influenza Data database. Sequences were assigned to 4 epochs delimited by major public health events based on the sampling date. SBSs from each SARS-CoV-2 sequence were identified relative to the MN996528.1 reference genome. Catalogues of SBS types and counts were generated to estimate the impact of selection in each open reading frame, and identify mutation clusters. The estimation of mutational fitness over time was performed using the Augur pipeline. RESULTS The biases in SBS types and proportions observed support previous reports of host antiviral defense activity involving the SARS-CoV-2 genome. There was an increase in U>C substitutions associated with adenosine deaminase acting on RNA (ADAR) activity uniquely observed during Epoch 4. The burden of novel SBSs observed in SARS-CoV-2 genomic sequences was the greatest in Epoch 2 (median 5), followed by Epoch 3 (median 4). Clusters of SBSs were observed in the spike protein open reading frame, ORF1a, and ORF3a. The high proportion of nonsynonymous SBSs and increasing dN/dS metric (ratio of nonsynonymous to synonymous mutations in a given open reading frame) to above 1 in Epoch 4 indicate positive selection of the spike protein open reading frame. CONCLUSIONS Quantitative analysis of the mutational patterns of the SARS-CoV-2 genome in the microcosm of Ontario, Canada within early consecutive epochs of the pandemic tracked the mutational dynamics in the context of public health events that instigate significant shifts in selection and mutagenesis. Continued genomic surveillance of emergent variants will be useful for the design of public health policies in response to the evolving COVID-19 pandemic.
Collapse
Affiliation(s)
- David Chen
- Department of Biology, Western University, London, ON, Canada
| | - Gurjit S Randhawa
- School of Mathematical and Computational Sciences, University of Prince Edward Island, Charlottetown, PE, Canada
| | | | - Camila Pe de Souza
- Department of Statistical and Actuarial Sciences, Western University, London, ON, Canada
| | - Lila Kari
- School of Computer Science, University of Waterloo, Waterloo, ON, Canada
| | - Shiva M Singh
- Department of Biology, Western University, London, ON, Canada
| | - Kathleen A Hill
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|
26
|
Štukovnik Z, Bren U. Recent Developments in Electrochemical-Impedimetric Biosensors for Virus Detection. Int J Mol Sci 2022; 23:ijms232415922. [PMID: 36555560 PMCID: PMC9788240 DOI: 10.3390/ijms232415922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Viruses, including influenza viruses, MERS-CoV (Middle East respiratory syndrome coronavirus), SARS-CoV (severe acute respiratory syndrome coronavirus), HAV (Hepatitis A virus), HBV (Hepatitis B virus), HCV (Hepatitis C virus), HIV (human immunodeficiency virus), EBOV (Ebola virus), ZIKV (Zika virus), and most recently SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), are responsible for many diseases that result in hundreds of thousands of deaths yearly. The ongoing outbreak of the COVID-19 disease has raised a global concern and intensified research on the detection of viruses and virus-related diseases. Novel methods for the sensitive, rapid, and on-site detection of pathogens, such as the recent SARS-CoV-2, are critical for diagnosing and treating infectious diseases before they spread and affect human health worldwide. In this sense, electrochemical impedimetric biosensors could be applied for virus detection on a large scale. This review focuses on the recent developments in electrochemical-impedimetric biosensors for the detection of viruses.
Collapse
Affiliation(s)
- Zala Štukovnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, 6000 Koper, Slovenia
- Institute for Environmental Protection and Sensors, Beloruska ulica 7, 2000 Maribor, Slovenia
| |
Collapse
|
27
|
Hassler L, Wysocki J, Ahrendsen JT, Ye M, Gelarden I, Nicolaescu V, Tomatsidou A, Gula H, Cianfarini C, Khurram N, Kanwar Y, Singer BD, Randall G, Missiakas D, Henkin J, Batlle D. Superiority of intranasal over systemic administration of bioengineered soluble ACE2 for survival and brain protection against SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.05.519032. [PMID: 36523403 PMCID: PMC9753780 DOI: 10.1101/2022.12.05.519032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The present study was designed to investigate the effects of a soluble ACE2 protein termed ACE2 618-DDC-ABD, bioengineered to have long duration of action and high binding affinity to SARS-CoV-2, when administered either intranasally (IN) or intraperitoneally (IP) and before or after SARS-CoV-2 inoculation. K18hACE2 mice permissive for SARS-CoV-2 infection were inoculated with 2Ã-10 4 PFU wildtype SARS-CoV-2. In one protocol, ACE2 618-DDC-ABD was given either IN or IP, pre- and post-viral inoculation. In a second protocol, ACE2 618-DDC-ABD was given either IN, IP or IN+IP but only post-viral inoculation. In addition, A549 and Vero E6 cells were used to test neutralization of SARS-CoV-2 variants by ACE2 618-DDC-ABD at different concentrations. Survival by day 5 was 0% in infected untreated mice, and 40% in mice from the ACE2 618-DDC-ABD IP-pre treated group. By contrast, in the IN-pre group survival was 90%, histopathology of brain and kidney was essentially normal and markedly improved in the lungs. When ACE2 618-DDC-ABD was administered only post viral inoculation, survival was 30% in the IN+IP group, 20% in the IN and 0% in the IP group. Brain SARS-CoV-2 titers were high in all groups except for the IN-pre group where titers were undetectable in all mice. In cells permissive for SARS-CoV-2 infection, ACE2 618-DDC-ABD neutralized wildtype SARS-CoV-2 at high concentrations, whereas much lower concentrations neutralized omicron BA. 1. We conclude that ACE2 618-DDC-ABD provides much better survival and organ protection when administered intranasally than when given systemically or after viral inoculation and that lowering brain titers is a critical determinant of survival and organ protection.
Collapse
|
28
|
Chavda VP, Bezbaruah R, Deka K, Nongrang L, Kalita T. The Delta and Omicron Variants of SARS-CoV-2: What We Know So Far. Vaccines (Basel) 2022; 10:1926. [PMID: 36423021 PMCID: PMC9698608 DOI: 10.3390/vaccines10111926] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
The world has not yet completely overcome the fear of the havoc brought by SARS-CoV-2. The virus has undergone several mutations since its initial appearance in China in December 2019. Several variations (i.e., B.1.616.1 (Kappa variant), B.1.617.2 (Delta variant), B.1.617.3, and BA.2.75 (Omicron variant)) have emerged throughout the pandemic, altering the virus's capacity to spread, risk profile, and even symptoms. Humanity faces a serious threat as long as the virus keeps adapting and changing its fundamental function to evade the immune system. The Delta variant has two escape alterations, E484Q and L452R, as well as other mutations; the most notable of these is P681R, which is expected to boost infectivity, whereas the Omicron has about 60 mutations with certain deletions and insertions. The Delta variant is 40-60% more contagious in comparison to the Alpha variant. Additionally, the AY.1 lineage, also known as the "Delta plus" variant, surfaced as a result of a mutation in the Delta variant, which was one of the causes of the life-threatening second wave of coronavirus disease 2019 (COVID-19). Nevertheless, the recent Omicron variants represent a reminder that the COVID-19 epidemic is far from ending. The wave has sparked a fervor of investigation on why the variant initially appeared to propagate so much more rapidly than the other three variants of concerns (VOCs), whether it is more threatening in those other ways, and how its type of mutations, which induce minor changes in its proteins, can wreck trouble. This review sheds light on the pathogenicity, mutations, treatments, and impact on the vaccine efficacy of the Delta and Omicron variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Kangkan Deka
- NETES Institute of Pharmaceutical Science, Mirza, Guwahati 781125, Assam, India
| | - Lawandashisha Nongrang
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Tutumoni Kalita
- Girijananda Chowdhury Institute of Pharmaceutical Science, Azara, Guwahati 781017, Assam, India
| |
Collapse
|
29
|
Aghamohammadi M, Sirouspour M, Goncalves AS, França TCC, LaPlante SR, Shahdousti P. Modeling studies on the role of vitamins B1 (thiamin), B3 (nicotinamide), B6 (pyridoxamine), and caffeine as potential leads for the drug design against COVID-19. J Mol Model 2022; 28:380. [PMID: 36342543 PMCID: PMC9640828 DOI: 10.1007/s00894-022-05356-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
In response to the COVID-19 pandemic, and the lack of effective and safe antivirals against it, we adopted a new approach in which food supplements with vital antiviral characteristics, low toxicity, and fast excretion have been targeted. The structures and chemical properties of the food supplements were compared to the promising antivirals against SARS-COV-2. Our goal was to exploit the food supplements to mimic the topical antivirals' functions but circumventing their severe side effects, which has limited the necessary dosage needed to exhibit the desired antiviral activity. On this line, after a comparative structural analysis of the chemicals mentioned above, and investigation of their potential mechanisms of action, we selected caffeine and some compounds of the vitamin B family and further applied molecular modeling techniques to evaluate their interactions with the RDB domain of the Spike protein of SARS-CoV-2 (SC2Spike) and its corresponding binding site on human ACE-2 (HssACE2). Our results pointed to vitamins B1 and B6 in the neutral form as potential binders to the HssACE2 RDB binding pocket that might be able to impair the SARS-CoV-2 mechanism of cell invasion, qualifying as potential leads for experimental investigation against COVID-19.
Collapse
Affiliation(s)
| | | | - Arlan S Goncalves
- Department of Chemistry, Federal Institute of Espirito Santo, Vila Velha, ES, Brazil.,Graduate Program in Chemistry, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Tanos Celmar Costa França
- Université de Québec, INRS - Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard Des Prairies, Laval, Québec, H7V 1B7, Canada.,Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro, RJ, Brazil.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Steven R LaPlante
- Université de Québec, INRS - Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard Des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Parvin Shahdousti
- Department of Chemistry, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| |
Collapse
|
30
|
Goel S, Singh R, Singh V, Singh H, Kumari P, Chopra H, Sharma R, Nepovimova E, Valis M, Kuca K, Emran TB. Metformin: Activation of 5′ AMP-activated protein kinase and its emerging potential beyond anti-hyperglycemic action. Front Genet 2022; 13:1022739. [PMID: 36386794 PMCID: PMC9659887 DOI: 10.3389/fgene.2022.1022739] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Metformin is a plant-based drug belonging to the class of biguanides and is known to treat type-2 diabetes mellitus (T2DM). The drug, combined with controlling blood glucose levels, improves the body’s response to insulin. In addition, trials have identified the cardioprotective potential of metformin in the diabetic population receiving the drug. Activation of 5′ AMP-activated protein kinase (AMPK) is the major pathway for these potential beneficial effects of metformin. Historically, much emphasis has been placed on the potential indications of metformin beyond its anti-diabetic use. This review aims to appraise other potential uses of metformin primarily mediated by the activation of AMPK. We also discuss various mechanisms, other than AMPK activation, by which metformin could produce beneficial effects for different conditions. Databases including PubMed/MEDLINE and Embase were searched for literature relevant to the review’s objective. Reports from both research and review articles were considered. We found that metformin has diverse effects on the human body systems. It has been shown to exert anti-inflammatory, antioxidant, cardioprotective, metabolic, neuroprotective, anti-cancer, and antimicrobial effects and has now even been identified as effective against SARS-CoV-2. Above all, the AMPK pathway has been recognized as responsible for metformin’s efficiency and effectiveness. Owing to its extensive potential, it has the capability to become a part of treatment regimens for diseases apart from T2DM.
Collapse
Affiliation(s)
- Sanjay Goel
- Government Medical College, Patiala, Punjab, India
| | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- *Correspondence: Ravinder Singh, ; Talha Bin Emran,
| | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Harmanjit Singh
- Department of Pharmacology, Government Medical College and Hospital, Chandigarh, India
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Neurology Clinic, University Hospital, Hradec Králové, Czechia
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- *Correspondence: Ravinder Singh, ; Talha Bin Emran,
| |
Collapse
|
31
|
Markers of Infection-Mediated Cardiac Damage in Influenza and COVID-19. Pathogens 2022; 11:pathogens11101191. [PMID: 36297248 PMCID: PMC9607279 DOI: 10.3390/pathogens11101191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/18/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction: Influenza and the coronavirus disease 2019 (COVID-19) are two potentially severe viral infections causing significant morbidity and mortality. The causative viruses, influenza A/B and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) can cause both pulmonary and extra-pulmonary disease, including cardiovascular involvement. The objective of this study was to determine the levels of cardiac biomarkers in hospitalized patients infected with influenza or COVID-19 and their correlation with secondary outcomes. Methods: We performed a retrospective comparative analysis of cardiac biomarkers in patients hospitalized at our department with influenza or COVID-19 by measuring high-sensitivity troponin-T (hs-TnT) and creatinine kinase (CK) in plasma. Secondary outcomes were intensive care unit (ICU) admission and all-cause in-hospital mortality. Results: We analyzed the data of 250 influenza patients and 366 COVID-19 patients. 58.6% of patients with influenza and 46.2% of patients with COVID-19 presented with increased hs-TnT levels. Patients of both groups with increased hs-TnT levels were significantly more likely to require ICU treatment or to die during their hospital stay. Compared with COVID-19, cardiac biomarkers were significantly higher in patients affected by influenza of all age groups, regardless of pre-existing cardiovascular disease. In patients aged under 65 years, no significant difference in ICU admission and mortality was detected between influenza and COVID-19, whereas significantly more COVID-19 patients 65 years or older died or required intensive care treatment. Conclusions: Our study shows that increased cardiac biomarkers are associated with higher mortality and ICU admission in both, influenza and SARS-CoV-2-infected patients. Cardiac biomarkers are higher in the influenza cohort; however, this does not translate into worse outcomes when compared with the COVID-19 cohort.
Collapse
|
32
|
Lessons from SARS-CoV, MERS-CoV, and SARS-CoV-2 Infections: What We Know So Far. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:1156273. [PMID: 35992513 PMCID: PMC9391183 DOI: 10.1155/2022/1156273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/19/2022] [Indexed: 01/08/2023]
Abstract
Within past decades, human infections with emerging and reemerging zoonotic viral pathogens have raised the eminent public health concern. Since November 2002, three highly pathogenic and major deadly human coronaviruses of the βετα-genera (β-hCoVs), namely, severe acute respiratory distress syndrome-coronavirus (SARS-CoV), middle east respiratory syndrome-coronavirus (MERS-CoV), and SARS-CoV-2, have been globally emerged and culminated in the occurrence of SARS epidemic, MERS outbreak, and coronavirus disease 19 (COVID-19) pandemic, respectively. The global emergence and spread of these three major deadly β-hCoVs have extremely dreadful impacts on human health and become an economic burden. Unfortunately, clear specific and highly efficient medical countermeasures for these three β-hCoVs and their underlying fatal illnesses remain under development. Although they belong to the same family and share many features and convergent evolution, these three deadly β-hCoVs have some important and obvious differences. By utilizing their lessons and gaining a deeper understanding of these β-hCoVs, we can identify areas of improvement and provide preparedness plans for fighting and controlling the future reemerging human infections that might arise from them or from other potential pathogenic hCoVs. Therefore, this review summarizes the state-of-the-art information and compares the similarities and dissimilarities between SARS-CoV, MERS-CoV, and SARS-CoV-2, in terms of their evolution trait, genome organization, host cell entry mechanisms, tissue infectivity tropisms, transmission routes and contagiousness, and the clinical characteristics, laboratory features, and immunological abnormalities of their related illnesses. It also provides an overview of the emerging SARS-CoV-2 variants. Additionally, it discusses the challenges of the most proposed treatment options for SARS-CoV-2 infections.
Collapse
|
33
|
Bigay J, Le Grand R, Martinon F, Maisonnasse P. Vaccine-associated enhanced disease in humans and animal models: Lessons and challenges for vaccine development. Front Microbiol 2022; 13:932408. [PMID: 36033843 PMCID: PMC9399815 DOI: 10.3389/fmicb.2022.932408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The fight against infectious diseases calls for the development of safe and effective vaccines that generate long-lasting protective immunity. In a few situations, vaccine-mediated immune responses may have led to exacerbated pathology upon subsequent infection with the pathogen targeted by the vaccine. Such vaccine-associated enhanced disease (VAED) has been reported, or at least suspected, in animal models, and in a few instances in humans, for vaccine candidates against the respiratory syncytial virus (RSV), measles virus (MV), dengue virus (DENV), HIV-1, simian immunodeficiency virus (SIV), feline immunodeficiency virus (FIV), severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), and the Middle East respiratory syndrome coronavirus (MERS-CoV). Although alleviated by clinical and epidemiological evidence, a number of concerns were also initially raised concerning the short- and long-term safety of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is causing the ongoing COVID-19 pandemic. Although the mechanisms leading to this phenomenon are not yet completely understood, the individual and/or collective role of antibody-dependent enhancement (ADE), complement-dependent enhancement, and cell-dependent enhancement have been highlighted. Here, we review mechanisms that may be associated with the risk of VAED, which are important to take into consideration, both in the assessment of vaccine safety and in finding ways to define models and immunization strategies that can alleviate such concerns.
Collapse
Affiliation(s)
| | | | - Frédéric Martinon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud-INSERM U1184, CEA, Fontenay-Aux-Roses, France
| | | |
Collapse
|
34
|
Cohen AA, van Doremalen N, Greaney AJ, Andersen H, Sharma A, Starr TN, Keeffe JR, Fan C, Schulz JE, Gnanapragasam PNP, Kakutani LM, West AP, Saturday G, Lee YE, Gao H, Jette CA, Lewis MG, Tan TK, Townsend AR, Bloom JD, Munster VJ, Bjorkman PJ. Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science 2022; 377:eabq0839. [PMID: 35857620 PMCID: PMC9273039 DOI: 10.1126/science.abq0839] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022]
Abstract
To combat future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles that present randomly arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded rather than variable, immunodominant, and exposed. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD nanoparticles in mice and macaques and observed stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains, including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants, including Omicrons, and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest that mosaic-8 RBD nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.
Collapse
Affiliation(s)
- Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences and Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | | | | | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences and Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jonathan E. Schulz
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | - Leesa M. Kakutani
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Greg Saturday
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Yu E. Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Claudia A. Jette
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Tiong K. Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Alain R. Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
- Chinese Academy of Medical Sciences, Oxford Institute, University of Oxford, Oxford OX3 9DS, UK
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Vincent J. Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
35
|
Jamison DA, Anand Narayanan S, Trovão NS, Guarnieri JW, Topper MJ, Moraes-Vieira PM, Zaksas V, Singh KK, Wurtele ES, Beheshti A. A comprehensive SARS-CoV-2 and COVID-19 review, Part 1: Intracellular overdrive for SARS-CoV-2 infection. Eur J Hum Genet 2022; 30:889-898. [PMID: 35577935 PMCID: PMC9108708 DOI: 10.1038/s41431-022-01108-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/20/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
COVID-19, the disease caused by SARS-CoV-2, has claimed approximately 5 million lives and 257 million cases reported globally. This virus and disease have significantly affected people worldwide, whether directly and/or indirectly, with a virulent pathogen that continues to evolve as we race to learn how to prevent, control, or cure COVID-19. The focus of this review is on the SARS-CoV-2 virus' mechanism of infection and its proclivity at adapting and restructuring the intracellular environment to support viral replication. We highlight current knowledge and how scientific communities with expertize in viral, cellular, and clinical biology have contributed to increase our understanding of SARS-CoV-2, and how these findings may help explain the widely varied clinical observations of COVID-19 patients.
Collapse
Affiliation(s)
| | - S Anand Narayanan
- COVID-19 International Research Team, Medford, MA, USA.
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA.
| | - Nídia S Trovão
- COVID-19 International Research Team, Medford, MA, USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Joseph W Guarnieri
- COVID-19 International Research Team, Medford, MA, USA
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael J Topper
- COVID-19 International Research Team, Medford, MA, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Pedro M Moraes-Vieira
- COVID-19 International Research Team, Medford, MA, USA
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities research Center (OCRC), University of Campinas, Campinas, SP, Brazil
- Experimental Medicine Research Cluster, University of Campinas, Campinas, Brazil
| | - Viktorija Zaksas
- COVID-19 International Research Team, Medford, MA, USA
- Center for Translational Data Science, University of Chicago, Chicago, IL, USA
| | - Keshav K Singh
- COVID-19 International Research Team, Medford, MA, USA
- Department of Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eve Syrkin Wurtele
- COVID-19 International Research Team, Medford, MA, USA
- Center for Metabolic Biology, Bioinformatics and Computational Biology, and Genetics Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
| |
Collapse
|
36
|
Yusuf AP, Zhang JY, Li JQ, Muhammad A, Abubakar MB. Herbal medications and natural products for patients with covid-19 and diabetes mellitus: Potentials and challenges. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100280. [PMID: 35463625 PMCID: PMC9014648 DOI: 10.1016/j.phyplu.2022.100280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 04/21/2023]
Abstract
BACKGROUND The presence of diabetes mellitus (DM) among COVID-19 patients is associated with increased hospitalization, morbidity, and mortality. Evidence has shown that hyperglycemia potentiates SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection and plays a central role in severe COVID-19 and diabetes comorbidity. In this review, we explore the therapeutic potentials of herbal medications and natural products in the management of COVID-19 and DM comorbidity and the challenges associated with the preexisting or concurrent use of these substances. METHODS Research papers that were published from January 2016 to December 2021 were retrieved from PubMed, ScienceDirect, and Google Scholar databases. Papers reporting clinical evidence of antidiabetic activities and any available evidence of the anti-COVID-19 potential of ten selected natural products were retrieved and analyzed for discussion in this review. RESULTS A total of 548 papers (73 clinical trials on the antidiabetic activities of the selected natural products and 475 research and review articles on their anti-COVID-19 potential) were retrieved from the literature search for further analysis. A total of 517 articles (reviews and less relevant research papers) were excluded. A cumulative sum of thirty-one (31) research papers (20 clinical trials and 10 others) met the criteria and have been discussed in this review. CONCLUSION The findings of this review suggest that phenolic compounds are the most promising phytochemicals in the management of COVID-19 and DM comorbidity. Curcumin and propolis have shown substantial evidence against COVID-19 and DM in humans and are thus, considered the best potential therapeutic options.
Collapse
Key Words
- 8-OHDG, 8-hydroxy-2’-deoxyguanosine
- ACE2
- ACE2, Angiotensin-converting enzyme 2
- ADMA, asymmetric de-methyl-arginine
- ARDS, acute respiratory distress syndrome
- COVID-19
- Comorbidity
- DM, diabetes mellitus
- Diabetes
- FBS, fasting blood sugar
- GLUT-4, glucose transporter-4
- GSK-3β, glycogen synthase kinase-3β
- HDL, high-density lipoprotein
- HOMA, homeostasis model assessment
- Herbal medication
- IAPP, islet amyloid polypeptide
- IFN, interferon
- IFNAR2, interferon-alpha receptor 2
- IL-6, interleukin-6
- LDL, low-density lipoprotein
- MDA, malondialdehyde
- Mpro, main protease
- Natural products
- PLpro, papain-like protease
- PON1, paraoxonase-1
- RBD, receptor-binding domain
- RCT, randomized control trial
- RdRp, RNA-dependent RNA polymerase
- SARS-CoV-2, severe acute respiratory syndrome coronavirus-2
- SFJDC, Shufeng Jiedu Capsule
- T1D, type 1 diabetes
- T2D, type 2 diabetes
- TAC, total antioxidant capacity
- TMPRSS2, transmembrane protease serine 2
- hs-CRP, high-sensitivity C-reactive protein
Collapse
Affiliation(s)
- Abdurrahman Pharmacy Yusuf
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, P.M.B 65, Minna, Niger State, Nigeria
| | - Jian-Ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Jing-Quan Li
- The first Affiliated Hospital, Hainan Medical University, Haikou, P.R. China
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University Zaria, 810107, Kaduna State, Nigeria
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B. 2254, Sokoto, Nigeria
| |
Collapse
|
37
|
Hassler L, Wysocki J, Gelarden I, Sharma I, Tomatsidou A, Ye M, Gula H, Nicoleascu V, Randall G, Pshenychnyi S, Khurram N, Kanwar Y, Missiakas D, Henkin J, Yeldandi A, Batlle D. A Novel Soluble ACE2 Protein Provides Lung and Kidney Protection in Mice Susceptible to Lethal SARS-CoV-2 Infection. J Am Soc Nephrol 2022; 33:1293-1307. [PMID: 35236774 PMCID: PMC9257820 DOI: 10.1681/asn.2021091209] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/06/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) uses full-length angiotensin converting enzyme 2 (ACE2) as a main receptor to enter target cells. The goal of this study was to demonstrate the preclinical efficacy of a novel soluble ACE2 protein with increased duration of action and binding capacity in a lethal mouse model of COVID-19. METHODS A human soluble ACE2 variant fused with an albumin binding domain (ABD) was linked via a dimerization motif hinge-like 4-cysteine dodecapeptide (DDC) to improve binding capacity to SARS-CoV-2. This novel soluble ACE2 protein (ACE2-1-618-DDC-ABD) was then administered intranasally and intraperitoneally to mice before intranasal inoculation of SARS-CoV-2 and then for two additional days post viral inoculation. RESULTS Untreated animals became severely ill, and all had to be humanely euthanized by day 6 or 7 and had pulmonary alveolar hemorrhage with mononuclear infiltrates. In contrast, all but one mouse infected with a lethal dose of SARS-CoV-2 that received ACE2-1-618-DDC-ABD survived. In the animals inoculated with SARS-CoV-2 that were untreated, viral titers were high in the lungs and brain, but viral titers were absent in the kidneys. Some untreated animals, however, had variable degrees of kidney proximal tubular injury as shown by attenuation of the proximal tubular brush border and increased NGAL and TUNEL staining. Viral titers in the lung and brain were reduced or nondetectable in mice that received ACE2-1-618-DDC-ABD, and the animals developed only moderate disease as assessed by a near-normal clinical score, minimal weight loss, and improved lung and kidney injury. CONCLUSIONS This study demonstrates the preclinical efficacy of a novel soluble ACE2 protein, termed ACE2-1-618-DDC-ABD, in a lethal mouse model of SARS-CoV-2 infection that develops severe lung injury and variable degrees of moderate kidney proximal tubular injury.
Collapse
Affiliation(s)
- Luise Hassler
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Jan Wysocki
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Ian Gelarden
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Isha Sharma
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Anastasia Tomatsidou
- Department of Microbiology, The University of Chicago, Chicago, Illinois
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, Illinois
| | - Minghao Ye
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Haley Gula
- Department of Microbiology, The University of Chicago, Chicago, Illinois
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, Illinois
| | - Vlad Nicoleascu
- Department of Microbiology, The University of Chicago, Chicago, Illinois
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, Illinois
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, Illinois
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, Illinois
| | - Sergii Pshenychnyi
- Recombinant Protein Production Core, Northwestern University, Evanston, Illinois
| | - Nigar Khurram
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Yashpal Kanwar
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Dominique Missiakas
- Department of Microbiology, The University of Chicago, Chicago, Illinois
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, Illinois
| | - Jack Henkin
- Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois
| | - Anjana Yeldandi
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Daniel Batlle
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
38
|
Jacob S, Kapadia R, Soule T, Luo H, Schellenberg KL, Douville RN, Pfeffer G. Neuromuscular Complications of SARS-CoV-2 and Other Viral Infections. Front Neurol 2022; 13:914411. [PMID: 35812094 PMCID: PMC9263266 DOI: 10.3389/fneur.2022.914411] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
In this article we review complications to the peripheral nervous system that occur as a consequence of viral infections, with a special focus on complications of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We discuss neuromuscular complications in three broad categories; the direct consequences of viral infection, autoimmune neuromuscular disorders provoked by viral infections, and chronic neurodegenerative conditions which have been associated with viral infections. We also include discussion of neuromuscular disorders that are treated by immunomodulatory therapies, and how this affects patient susceptibility in the current context of the coronavirus disease 2019 (COVID-19) pandemic. COVID-19 is associated with direct consequences to the peripheral nervous system via presumed direct viral injury (dysgeusia/anosmia, myalgias/rhabdomyolysis, and potentially mononeuritis multiplex) and autoimmunity (Guillain Barré syndrome and variants). It has important implications for people receiving immunomodulatory therapies who may be at greater risk of severe outcomes from COVID-19. Thus far, chronic post-COVID syndromes (a.k.a: long COVID) also include possible involvement of the neuromuscular system. Whether we may observe neuromuscular degenerative conditions in the longer term will be an important question to monitor in future studies.
Collapse
Affiliation(s)
- Sarah Jacob
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ronak Kapadia
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tyler Soule
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Honglin Luo
- Centre for Heart and Lung Innovation, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kerri L. Schellenberg
- Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Renée N. Douville
- Division of Neurodegenerative Disorders, Department of Biology, Albrechtsen St. Boniface Research Centre, University of Winnipeg, Winnipeg, MB, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, Alberta Child Health Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
39
|
Ashkenazy N, Patel NA, Sridhar J, Yannuzzi NA, Belin PJ, Kaplan R, Kothari N, Benitez Bajandas GA, Kohly RP, Roizenblatt R, Pinhas A, Mundae R, Rosen RB, Ryan EH, Chiang A, Chang LK, Khurana RN, Finn AP. Hemi- and Central Retinal Vein Occlusion Associated with COVID-19 Infection in Young Patients without Known Risk Factors. Ophthalmol Retina 2022; 6:520-530. [PMID: 35278727 PMCID: PMC8907133 DOI: 10.1016/j.oret.2022.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Venous thromboembolic complications have been reported in association with coronavirus disease 2019 (COVID-19) infection. We raised awareness regarding a potential temporal association between COVID-19 infection and retinal vein occlusion (RVO). DESIGN Multicenter, retrospective, nonconsecutive case series. SUBJECTS Patients presenting with hemi-RVO (HRVO) or central RVO (CRVO) between March 2020 and March 2021, with confirmed COVID-19 infection, were included. The exclusion criteria were as follows: age >50 years, hypertension, diabetes, glaucoma, obesity, underlying hypercoagulable states, and those requiring intubation during hospitalization. METHODS This was a multicenter, retrospective, nonconsecutive case series including patients presenting with hemi-RVO (HRVO) or central RVO (CRVO) between March 2020 and March 2021, with confirmed COVID-19 infection. The exclusion criteria were as follows: age >50 years, hypertension, diabetes, glaucoma, obesity, underlying hypercoagulable states, and those requiring intubation during hospitalization. MAIN OUTCOME MEASURES Ophthalmic findings, including presenting and final visual acuity (VA), imaging findings, and clinical course. RESULTS Twelve eyes of 12 patients with CRVO (9 of 12) or HRVO (3 of 12) after COVID-19 infection were included. The median age was 32 years (range, 18-50 years). Three patients were hospitalized, but none were intubated. The median time from COVID-19 diagnosis to ophthalmic symptoms was 6.9 weeks. The presenting VA ranged from 20/20 to counting fingers, with over half (7 of 12) having a VA of ≥20/40. OCT revealed macular edema in 42% of the eyes; of these, 80% (4 of 5) were treated with anti-VEGF injections. Ninety-two percent (11 of 12) had partial or complete resolution of ocular findings at final follow-up. Four eyes (33%) had retinal thinning, as determined using OCT, by the end of the study interval. The final VA ranged from 20/20 to 20/60, with 11 of the 12 (92%) eyes achieving a VA of ≥20/40 at a median final follow-up period of 13 weeks (range, 4-52 weeks). CONCLUSIONS Although we acknowledge the high seroprevalence of COVID-19 and that a causal relationship cannot be established, we reported this series to raise awareness regarding the potential risk of retinal vascular events due to a heightened thromboinflammatory state associated with COVID-19 infection.
Collapse
Affiliation(s)
- Noy Ashkenazy
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Nimesh A Patel
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida; Massachusetts Eye and Ear Infirmary, Harvard University, Boston, Massachusetts
| | - Jayanth Sridhar
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Nicolas A Yannuzzi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | | | - Radha P Kohly
- Department of Ophthalmology, Sunnybrook Health Sciences Center, Toronto, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | | | - Alexander Pinhas
- New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Rusdeep Mundae
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota
| | - Richard B Rosen
- New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Edwin H Ryan
- VitreoRetinal Surgery, PLLC, Minneapolis, Minnesota
| | - Allen Chiang
- Mid Atlantic Retina, Wills Eye Hospital Retina Service, Philadelphia, Pennsylvania
| | - Louis K Chang
- Northern California Retina Vitreous Associates, Mountain View, California
| | - Rahul N Khurana
- Northern California Retina Vitreous Associates, Mountain View, California; Department of Ophthalmology, University of California, San Francisco, California
| | - Avni P Finn
- Northern California Retina Vitreous Associates, Mountain View, California; Department of Ophthalmology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
40
|
Williams JE, Moramarco J. The Role of Acupuncture for Long COVID: Mechanisms and Models. Med Acupunct 2022; 34:159-166. [DOI: 10.1089/acu.2021.0090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
41
|
Beduk D, Ilton de Oliveira Filho J, Beduk T, Harmanci D, Zihnioglu F, Cicek C, Sertoz R, Arda B, Goksel T, Turhan K, Salama KN, Timur S. 'All In One' SARS-CoV-2 variant recognition platform: Machine learning-enabled point of care diagnostics. BIOSENSORS & BIOELECTRONICS: X 2022; 10:100105. [PMID: 35036904 PMCID: PMC8743487 DOI: 10.1016/j.biosx.2022.100105] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 04/29/2023]
Abstract
Point of care (PoC) devices are highly demanding to control current pandemic, originated from severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Though nucleic acid-based methods such as RT-PCR are widely available, they require sample preparation and long processing time. PoC diagnostic devices provide relatively faster and stable results. However they require further investigation to provide high accuracy and be adaptable for the new variants. In this study, laser-scribed graphene (LSG) sensors are coupled with gold nanoparticles (AuNPs) as stable promising biosensing platforms. Angiotensin Converting Enzyme 2 (ACE2), an enzymatic receptor, is chosen to be the biorecognition unit due to its high binding affinity towards spike proteins as a key-lock model. The sensor was integrated to a homemade and portable potentistat device, wirelessly connected to a smartphone having a customized application for easy operation. LODs of 5.14 and 2.09 ng/mL was achieved for S1 and S2 protein in the linear range of 1.0-200 ng/mL, respectively. Clinical study has been conducted with nasopharyngeal swabs from 63 patients having alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2) variants, patients without mutation and negative patients. A machine learning model was developed with accuracy of 99.37% for the identification of the SARS-Cov-2 variants under 1 min. With the increasing need for rapid and improved disease diagnosis and monitoring, the PoC platform proved its potential for real time monitoring by providing accurate and fast variant identification without any expertise and pre sample preparation, which is exactly what societies need in this time of pandemic.
Collapse
Affiliation(s)
- Duygu Beduk
- Central Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100, Bornova, Izmir, Turkey
| | - José Ilton de Oliveira Filho
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tutku Beduk
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Duygu Harmanci
- Central Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100, Bornova, Izmir, Turkey
| | - Figen Zihnioglu
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Candan Cicek
- Department of Medical Microbiology, Faculty of Medicine, Ege University, 35100, Bornova, Izmir, Turkey
| | - Ruchan Sertoz
- Department of Medical Microbiology, Faculty of Medicine, Ege University, 35100, Bornova, Izmir, Turkey
| | - Bilgin Arda
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Ege University, 35100, Bornova, Izmir, Turkey
| | - Tuncay Goksel
- Department of Pulmonary Medicine, Faculty of Medicine, Ege University, 35100, Bornova, Izmir, Turkey
- EGESAM-Ege University Translational Pulmonary Research Center, 35100, Bornova, Izmir, Turkey
| | - Kutsal Turhan
- Department of Thoracic Surgery, Faculty of Medicine Ege University, 35100, Bornova, Izmir, Turkey
| | - Khaled Nabil Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Suna Timur
- Central Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100, Bornova, Izmir, Turkey
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
42
|
Lu X, Cui Z, Ma X, Pan F, Li L, Wang J, Sun P, Li H, Yang L, Liang B. The association of obesity with the progression and outcome of COVID-19: The insight from an artificial-intelligence-based imaging quantitative analysis on computed tomography. Diabetes Metab Res Rev 2022; 38:e3519. [PMID: 35062046 PMCID: PMC9015278 DOI: 10.1002/dmrr.3519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022]
Abstract
AIMS To explore the association of obesity with the progression and outcome of coronavirus disease 2019 (COVID-19) at the acute period and 5-month follow-up from the perspectives of computed tomography (CT) imaging with artificial intelligence (AI)-based quantitative evaluation, which may help to predict the risk of obese COVID-19 patients progressing to severe and critical disease. MATERIALS AND METHODS This retrospective cohort enrolled 213 hospitalized COVID-19 patients. Patients were classified into three groups according to their body mass index (BMI): normal weight (from 18.5 to <24 kg/m2 ), overweight (from 24 to <28 kg/m2 ) and obesity (≥28 kg/m2 ). RESULTS Compared with normal-weight patients, patients with higher BMI were associated with more lung involvements in lung CT examination (lung lesions volume [cm3 ], normal weight vs. overweight vs. obesity; 175.5[34.0-414.9] vs. 261.7[73.3-576.2] vs. 395.8[101.6-1135.6]; p = 0.002), and were more inclined to deterioration at the acute period. At the 5-month follow-up, the lung residual lesion was more serious (residual total lung lesions volume [cm3 ], normal weight vs. overweight vs. obesity; 4.8[0.0-27.4] vs. 10.7[0.0-55.5] vs. 30.1[9.5-91.1]; p = 0.015), and the absorption rates were lower for higher BMI patients (absorption rates of total lung lesions volume [%], normal weight vs. overweight vs. obesity; 99.6[94.0-100.0] vs. 98.9[85.2-100.0] vs. 88.5[66.5-95.2]; p = 0.013). The clinical-plus-AI parameter model was superior to the clinical-only parameter model in the prediction of disease deterioration (areas under the ROC curve, 0.884 vs. 0.794, p < 0.05). CONCLUSIONS Obesity was associated with severe pneumonia lesions on CT and adverse clinical outcomes. The AI-based model with combinational use of clinical and CT parameters had incremental prognostic value over the clinical parameters alone.
Collapse
Affiliation(s)
- Xiaoting Lu
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Molecular ImagingWuhanChina
| | - Zhenhai Cui
- Department of EndocrinologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic DisordersWuhanChina
| | - Xiang Ma
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Molecular ImagingWuhanChina
| | - Feng Pan
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Molecular ImagingWuhanChina
| | - Lingli Li
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Molecular ImagingWuhanChina
| | - Jiazheng Wang
- Clinical & Technical SolutionsPhilips HealthcareWuhanChina
| | - Peng Sun
- Clinical & Technical SolutionsPhilips HealthcareWuhanChina
| | - Huiqing Li
- Department of EndocrinologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic DisordersWuhanChina
| | - Lian Yang
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Molecular ImagingWuhanChina
| | - Bo Liang
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Molecular ImagingWuhanChina
| |
Collapse
|
43
|
Majeed M, Nagabhushanam K, Prakasan P, Mundkur L. Can Selenium Reduce the Susceptibility and Severity of SARS-CoV-2?-A Comprehensive Review. Int J Mol Sci 2022; 23:4809. [PMID: 35563199 PMCID: PMC9105991 DOI: 10.3390/ijms23094809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
The SARS-CoV-2 infection is a highly contagious viral infection, which has claimed millions of lives in the last two years. The infection can cause acute respiratory distress, myocarditis, and systemic inflammatory response in severe cases. The interaction of the viral spike protein with the angiotensin-converting enzyme in various tissues causes damage to vital organs and tissues, leading to complications in the post-infection period. Vaccines and antiviral drugs have improved patient response to the infection, but the long-term effect on vital organs is still unknown. Investigations are now focused on supportive nutrient therapies, which can mitigate the susceptibility as well as the long-term complications of COVID-19. Selenium is one such micronutrient that plays a vital role in preventing oxidative stress induced by the virus. Further, selenium is important for effective immune response, controlling systemic inflammation, and maintain overall health of humans. We examine the role of selenium in various aspects of SARS-CoV-2 infection and address the importance of selenium supplementation in reducing the susceptibility and severity of infection in this review.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami-Sabinsa Group Limited, 19/1&19/2, I Main, II Phase, Peenya Industrial Area, Bangalore 560-058, Karnataka, India; (M.M.); (P.P.)
- Sabinsa Corporation, 20 Lake Drive, East Windsor, NJ 08520, USA;
| | | | - Priji Prakasan
- Sami-Sabinsa Group Limited, 19/1&19/2, I Main, II Phase, Peenya Industrial Area, Bangalore 560-058, Karnataka, India; (M.M.); (P.P.)
| | - Lakshmi Mundkur
- Sami-Sabinsa Group Limited, 19/1&19/2, I Main, II Phase, Peenya Industrial Area, Bangalore 560-058, Karnataka, India; (M.M.); (P.P.)
| |
Collapse
|
44
|
Sonaglioni A, Albini A, Noonan DM, Brucato A, Lombardo M, Santalucia P. A Case of Acute Pericarditis After COVID-19 Vaccination. FRONTIERS IN ALLERGY 2022; 2:733466. [PMID: 35387019 PMCID: PMC8974729 DOI: 10.3389/falgy.2021.733466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023] Open
Abstract
A two-dose regimen of Pfizer-BioNTech COVID-19 vaccination confers 95% protection against COronaVIrus Disease 19 (COVID-19) and the safety profile is adequate. To the submission date, there were no reports in literature of acute pericarditis after BNT162b2 vaccination. However, pericarditis has been reported as a rare event associated with COVID-19 infection, which could be due to the pro-inflammatory effects of the spike protein. Recent evidence of post-vaccine myocarditis has been published. Herein we describe the case of a middle-aged healthy women who developed symptoms and signs of acute pericarditis 7-10 days after the second dose of Pfizer-BioNTech COVID-19 vaccination. Although a direct effect cannot be stated, it is important to report a potential adverse vaccine reaction effect that could be associated with the expression of SARS-CoV-2 spike protein induced from the mRNA of the vaccine.
Collapse
Affiliation(s)
- Andrea Sonaglioni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Adriana Albini
- Scientific and Technological Pole, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Douglas M Noonan
- Scientific and Technological Pole, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Antonio Brucato
- Dipartimento Scienze Biomediche e Cliniche Luigi Sacco, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy
| | - Michele Lombardo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Paola Santalucia
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| |
Collapse
|
45
|
Yousefi B, Banihashemian SZ, Feyzabadi ZK, Hasanpour S, Kokhaei P, Abdolshahi A, Emadi A, Eslami M. Potential therapeutic effect of oxygen-ozone in controlling of COVID-19 disease. Med Gas Res 2022; 12:33-40. [PMID: 34677149 PMCID: PMC8562402 DOI: 10.4103/2045-9912.325989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/29/2021] [Accepted: 06/20/2021] [Indexed: 12/24/2022] Open
Abstract
Atmospheric ozone is produced when nitrogen oxides react with volatile organic compounds. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome contains a unique N-terminal fragment in the Spike protein, which allows it to bind to air pollutants in the environment. 'Our approach in this review is to study ozone and its effect on the SARS-CoV-2 virus and patients with coronavirus disease 2019 (COVID-19). Article data were collected from PubMed, Scopus, and Google Scholar databases. Ozone therapy has antiviral properties, improves blood flow, facilitates the transfer of oxygen in hypoxemic tissues, and reduces blood coagulation phenomena in COVID-19 patients. Ozone has immunomodulatory effects by modulating cytokines (reduction of interleukin-1, interleukin-6, tumor necrosis factor-α, and interleukin-10), induction of interferon-γ, anti-inflammatory properties by modulating NOD-, LRR- and pyrin domain-containing protein 3, inhibition of cytokine storm (blocking nuclear factor-κB and stimulating nuclear factor erythroid 2-related factor 2 pathway), stimulates cellular/humoral immunity/phagocytic function and blocks angiotensin-converting enzyme 2. In direct oxygen-ozone injection, oxygen reacts with several biological molecules such as thiol groups in albumin to form ozonoids. Intravenous injection of ozonated saline significantly increases the length of time a person can remain hypoxic. The rectal ozone protocol is rectal ozone insufflation, resulting in clinical improvement in oxygen saturation and biochemical improvement (fibrinogen, D-dimer, urea, ferritin, LDH, interleukin-6, and C-reactive protein). In general, many studies have shown the positive effect of ozone therapy as a complementary therapy in the recovery of COVID-19 patients. All the findings indicate that systemic ozone therapy is nontoxic and has no side effects in these patients.
Collapse
Affiliation(s)
- Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | | | | | - Sahar Hasanpour
- Department of Microbiology and Mycology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parviz Kokhaei
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Anna Abdolshahi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Emadi
- Deputy of Research and Technology, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
46
|
Fakhruddin KS, Haiat A, Ngo HC, Panduwawala C, Chang JWW, Samaranayake LP. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) viral positivity and their burden in saliva of asymptomatic carriers - a systematic review and meta-analysis. Acta Odontol Scand 2022; 80:182-190. [PMID: 34689688 DOI: 10.1080/00016357.2021.1977385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS The coronavirus disease 2019 (COVID-19) due to the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can present either as an asymptomatic carrier state or an acute respiratory disease, with or without severe pneumonia. The asymptomatic carriers are a challenge for the dental profession as the infection could be transmitted via virus-laden, and saliva in dental settings through aerosol-generating procedures (AGPSs). The aim of this review was to perform a systematic review of SARS-CoV-2 in the saliva of asymptomatic individuals. MATERIALS AND METHODS PubMed, Google scholar, and MedRxiv databases were searched between and a systematic review and meta-analysis of the available data were performed to assess the viral burden in the saliva of asymptomatic carriers of SARS-CoV-2. All investigators of the included studies used qRT-PCR to detect SARS-CoV-2 and yield quantitative data (the Ct values) appertaining to the viral load. RESULTS A total of 322 records in the English literature were identified, and eight studies with 2642 SARS-CoV-2-positive and asymptomatic individuals were included in the final analysis. Of these, 16.7% (95% CI: 11-23%) yielded SARS-CoV-2-positive saliva samples in comparison to 13.1% (95% CI: 12-17%) of the respiratory specimens (nasopharyngeal or nose-throat swabs). CONCLUSION As approximately 1 in 5 to 1 in 10 asymptomatic individuals harbour SARS-CoV-2 in either saliva or respiratory secretions, our results highlight the need for continued vigilance and the critical importance of maintaining strict, additional infection control regimens for the foreseeable future to mitigate the potential risks of COVID-19 transmission in dentistry.
Collapse
Affiliation(s)
- Kausar S. Fakhruddin
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Anahita Haiat
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
| | - Hien C. Ngo
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
| | | | - Jefferey W. Wei Chang
- Faculty of Dentistry, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Lakshman P. Samaranayake
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
- Faculty of Dentistry, University of Hong Kong, Hong Kong, People’s Republic of China
| |
Collapse
|
47
|
Ferrario CM, Groban L, Wang H, Sun X, VonCannon JL, Wright KN, Ahmad S. The renin–angiotensin system biomolecular cascade: a 2022 update of newer insights and concepts. Kidney Int Suppl (2011) 2022; 12:36-47. [DOI: 10.1016/j.kisu.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/14/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
|
48
|
Hollenberg MD, Epstein M. The innate immune response, microenvironment proteinases, and the COVID-19 pandemic: pathophysiologic mechanisms and emerging therapeutic targets. Kidney Int Suppl (2011) 2022; 12:48-62. [PMID: 35316977 PMCID: PMC8931295 DOI: 10.1016/j.kisu.2021.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/19/2021] [Accepted: 12/11/2021] [Indexed: 12/13/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, causing considerable mortality and morbidity worldwide, has fully engaged the biomedical community in attempts to elucidate the pathophysiology of COVID-19 and develop robust therapeutic strategies. To this end, the predominant research focus has been on the adaptive immune response to COVID-19 infections stimulated by mRNA and protein vaccines and on the duration and persistence of immune protection. In contrast, the role of the innate immune response to the viral challenge has been underrepresented. This overview focuses on the innate immune response to COVID-19 infection, with an emphasis on the roles of extracellular proteases in the tissue microenvironment. Proteinase-mediated signaling caused by enzymes in the extracellular microenvironment occurs upstream of the increased production of inflammatory cytokines that mediate COVID-19 pathology. These enzymes include the coagulation cascade, kinin-generating plasma kallikrein, and the complement system, as well as angiotensin-generating proteinases of the renin-angiotensin system. Furthermore, in the context of several articles in this Supplement elucidating and detailing the trajectory of diverse profibrotic pathways, we extrapolate these insights to explore how fibrosis and profibrotic pathways participate importantly in the pathogenesis of COVID-19. We propose that the lessons garnered from understanding the roles of microenvironment proteinases in triggering the innate immune response to COVID-19 pathology will identify potential therapeutic targets and inform approaches to the clinical management of COVID-19. Furthermore, the information may also provide a template for understanding the determinants of COVID-19-induced tissue fibrosis that may follow resolution of acute infection (so-called "long COVID"), which represents a major new challenge to our healthcare systems.
Collapse
Affiliation(s)
- Morley D. Hollenberg
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Murray Epstein
- Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
49
|
Cohen AA, van Doremalen N, Greaney AJ, Andersen H, Sharma A, Starr TN, Keeffe JR, Fan C, Schulz JE, Gnanapragasam PN, Kakutani LM, West AP, Saturday G, Lee YE, Gao H, Jette CA, Lewis MG, Tan TK, Townsend AR, Bloom JD, Munster VJ, Bjorkman PJ. Mosaic RBD nanoparticles protect against multiple sarbecovirus challenges in animal models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.25.485875. [PMID: 35378752 PMCID: PMC8978945 DOI: 10.1101/2022.03.25.485875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To combat future SARS-CoV-2 variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles presenting randomly-arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against conserved/relatively-occluded, rather than variable/immunodominant/exposed, epitopes. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD-nanoparticles in mice and macaques, observing stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants including Omicron and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest mosaic-8 RBD-nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.
Collapse
Affiliation(s)
- Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | | | | | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jonathan E. Schulz
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | - Leesa M. Kakutani
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Greg Saturday
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Yu E. Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Claudia A. Jette
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Tiong K. Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Alain R. Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
- Chinese Academy of Medical Sciences, Oxford Institute, University of Oxford, Oxford OX3 9DS, UK
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Vincent J. Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
50
|
Lee JH, Lee CE, Yoo Y, Shin E, An J, Park SY, Song WJ, Kwon HS, Cho YS, Moon HB, Kim TB. Soluble ACE2 and TMPRSS2 Levels in the Serum of Asthmatic Patients. J Korean Med Sci 2022; 37:e65. [PMID: 35226423 PMCID: PMC8885452 DOI: 10.3346/jkms.2022.37.e65] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/23/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine subtype 2 (TMPRSS2) are key proteins mediating viral entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although gene expressions of ACE2 and TMPRSS2 have been analyzed in various organs and diseases, their soluble forms have been less studied, particularly in asthma. Therefore, we aimed to measure circulating ACE2 and TMPRSS2 in the serum of asthmatics and examine their relationship with clinical characteristics. METHODS Clinical data and serum samples of 400 participants were obtained from an asthma cohort. The soluble ACE2 (sACE2) and soluble TMPRSS2 (sTMPRSS2) level was measured by enzyme-linked immunosorbent assay, and the values underwent a natural log transformation. Associations between sACE2 and TMPRSS2 levels and various clinical variables were analyzed. RESULTS The patients younger than 70 years old, those with eosinophilic asthma (eosinophils ≥ 200 cells/µL), and inhaled corticosteroids (ICS) non-users were associated with higher levels of sACE2. Blood eosinophils and fractionated exhaled nitric oxide levels were positively correlated with serum ACE2. In contrast, lower levels of sTMPRSS2 were noted in patients below 70 years and those with eosinophilic asthma, while no association was noted between ICS use and sTMPRSS2. The level of sTMPRSS2 also differed according to sex, smoking history, coexisting hypertension, and forced expiratory volume in 1 second/forced vital capacity (FEV1/FVC) ratio. The proportion of sputum neutrophils was positively correlated with sTMPRSS2, while the FEV1/FVC ratio reported a negative correlation with sTMPRSS2. CONCLUSION The levels of ACE2 and TMPRSS2 were differently expressed according to age, ICS use, and several inflammatory markers. These findings suggest variable susceptibility and prognosis of SARS-CoV-2 infection among asthmatic patients.
Collapse
Affiliation(s)
- Ji-Hyang Lee
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chae Eun Lee
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Youngsang Yoo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Gangneung Asan Hospital, Gangneung, Korea
| | - Eunyong Shin
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin An
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Pulmonary and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Seo Young Park
- Department of Statistics and Data Science, Korea National Open University, Seoul, Korea
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyouk-Soo Kwon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - You Sook Cho
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee-Bom Moon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|