1
|
Systemic Effects of mitoTEMPO upon Lipopolysaccharide Challenge Are Due to Its Antioxidant Part, While Local Effects in the Lung Are Due to Triphenylphosphonium. Antioxidants (Basel) 2022; 11:antiox11020323. [PMID: 35204206 PMCID: PMC8868379 DOI: 10.3390/antiox11020323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 01/08/2023] Open
Abstract
Mitochondria-targeted antioxidants (mtAOX) are a promising treatment strategy against reactive oxygen species-induced damage. Reports about harmful effects of mtAOX lead to the question of whether these could be caused by the carrier molecule triphenylphosphonium (TPP). The aim of this study was to investigate the biological effects of the mtAOX mitoTEMPO, and TPP in a rat model of systemic inflammatory response. The inflammatory response was induced by lipopolysaccharide (LPS) injection. We show that mitoTEMPO reduced expression of inducible nitric oxide synthase in the liver, lowered blood levels of tissue damage markers such as liver damage markers (aspartate aminotransferase and alanine aminotransferase), kidney damage markers (urea and creatinine), and the general organ damage marker, lactate dehydrogenase. In contrast, TPP slightly, but not significantly, increased the LPS-induced effects. Surprisingly, both mitoTEMPO and TPP reduced the wet/dry ratio in the lung after 24 h. In the isolated lung, both substances enhanced the increase in pulmonary arterial pressure induced by LPS observed within 3 h after LPS treatments but did not affect edema formation at this time. Our data suggest that beneficial effects of mitoTEMPO in organs are due to its antioxidant moiety (TEMPO), except for the lung where its effects are mediated by TPP.
Collapse
|
2
|
Diaz-Rodriguez P, Mariño C, Vázquez JA, Caeiro-Rey JR, Landin M. Targeting joint inflammation for osteoarthritis management through stimulus-sensitive hyaluronic acid based intra-articular hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112254. [PMID: 34474816 DOI: 10.1016/j.msec.2021.112254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/19/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022]
Abstract
Numerous therapeutic strategies have been developed for osteoarthritis (OA) management, including intra-articular (IA) injections. The ideal IA formulation should control cartilage degradation and restore synovial fluid viscosity. To this end, we propose to combine thermo-sensitive polymers (poloxamers) with hyaluronic acid (HA) to develop suitable beta-lapachone (βLap) loaded IA formulations. The development of IA formulations with these components entails several difficulties: low βLap solubility, unknown βLap therapeutic dose and the bonded commitment of easy administration and viscosupplementation. An optimized formulation was designed using artificial intelligence tools based on the experimental results of a wide variety of hydrogels and its therapeutic capacity was evaluated on an ex vivo OA model. The formulation presented excellent rheological properties and significantly decreased the secretion of degradative (MMP13) and pro-inflammatory (CXCL8) molecules. Therefore, the developed formulation is a promising candidate for OA treatment restoring the synovial fluid rheological properties while decreasing inflammation and cartilage degradation.
Collapse
Affiliation(s)
- Patricia Diaz-Rodriguez
- R+D Pharma Group (GI-1645) Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Drug Delivery Systems Group, Department of Chemical Engineering and Pharmaceutical Technology, School of Pharmacy, Universidad de La Laguna, La Laguna, Spain.
| | - Cibrán Mariño
- R+D Pharma Group (GI-1645) Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Antonio Vázquez
- Group of Recycling and Valorisation of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), Vigo, Spain
| | - Jose Ramon Caeiro-Rey
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mariana Landin
- R+D Pharma Group (GI-1645) Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Foulkes MJ, Tolliday FH, Henry KM, Renshaw SA, Jones S. Evaluation of the anti-inflammatory effects of synthesised tanshinone I and isotanshinone I analogues in zebrafish. PLoS One 2020; 15:e0240231. [PMID: 33022012 PMCID: PMC7537861 DOI: 10.1371/journal.pone.0240231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/22/2020] [Indexed: 01/13/2023] Open
Abstract
During inflammation, dysregulated neutrophil behaviour can play a major role in a range of chronic inflammatory diseases, for many of which current treatments are generally ineffective. Recently, specific naturally occurring tanshinones have shown promising anti-inflammatory effects by targeting neutrophils in vivo, yet such tanshinones, and moreover, their isomeric isotanshinone counterparts, are still a largely underexplored class of compounds, both in terms of synthesis and biological effects. To explore the anti-inflammatory effects of isotanshinones, and the tanshinones more generally, a series of substituted tanshinone and isotanshinone analogues was synthesised, alongside other structurally similar molecules. Evaluation of these using a transgenic zebrafish model of neutrophilic inflammation revealed differential anti-inflammatory profiles in vivo, with a number of compounds exhibiting promising effects. Several compounds reduce initial neutrophil recruitment and/or promote resolution of neutrophilic inflammation, of which two also result in increased apoptosis of human neutrophils. In particular, the methoxy-substituted tanshinone 39 specifically accelerates resolution of inflammation without affecting the recruitment of neutrophils to inflammatory sites, making this a particularly attractive candidate for potential pro-resolution therapeutics, as well as a possible lead for future development of functionalised tanshinones as molecular tools and/or chemical probes. The structurally related β-lapachones promote neutrophil recruitment but do not affect resolution. We also observed notable differences in toxicity profiles between compound classes. Overall, we provide new insights into the in vivo anti-inflammatory activities of several novel tanshinones, isotanshinones, and structurally related compounds.
Collapse
Affiliation(s)
- Matthew J. Foulkes
- Department of Chemistry, The University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity & Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Faith H. Tolliday
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity & Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Katherine M. Henry
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity & Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity & Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Simon Jones
- Department of Chemistry, The University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Mokarizadeh N, Karimi P, Kazemzadeh H, Fathi Maroufi N, Sadigh-Eteghad S, Nikanfar S, Rashtchizadeh N. An evaluation on potential anti-inflammatory effects of β-lapachone. Int Immunopharmacol 2020; 87:106810. [DOI: 10.1016/j.intimp.2020.106810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 12/21/2022]
|
5
|
Kim H, Cao W, Oh G, Lee S, Shen A, Khadka D, Lee S, Sharma S, Kim SY, Choe S, Kwak TH, Kim J, Park R, So H. Augmentation of cellular NAD + by NQO1 enzymatic action improves age-related hearing impairment. Aging Cell 2019; 18:e13016. [PMID: 31353811 PMCID: PMC6718544 DOI: 10.1111/acel.13016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/09/2019] [Accepted: 07/07/2019] [Indexed: 12/20/2022] Open
Abstract
Age-related hearing loss (ARHL) is a major neurodegenerative disorder and the leading cause of communication deficit in the elderly population, which remains largely untreated. The development of ARHL is a multifactorial event that includes both intrinsic and extrinsic factors. Recent studies suggest that NAD+ /NADH ratio may play a critical role in cellular senescence by regulating sirtuins, PARP-1, and PGC-1α. Nonetheless, the beneficial effect of direct modulation of cellular NAD+ levels on aging and age-related diseases has not been studied, and the underlying mechanisms remain obscure. Herein, we investigated the effect of β-lapachone (β-lap), a known plant-derived metabolite that modulates cellular NAD+ by conversion of NADH to NAD+ via the enzymatic action of NADH: quinone oxidoreductase 1 (NQO1) on ARHL in C57BL/6 mice. We elucidated that the reduction of cellular NAD+ during the aging process was an important contributor for ARHL; it facilitated oxidative stress and pro-inflammatory responses in the cochlear tissue through regulating sirtuins that alter various signaling pathways, such as NF-κB, p53, and IDH2. However, augmentation of NAD+ by β-lap effectively prevented ARHL and accompanying deleterious effects through reducing inflammation and oxidative stress, sustaining mitochondrial function, and promoting mitochondrial biogenesis in rodents. These results suggest that direct regulation of cellular NAD+ levels by pharmacological agents may be a tangible therapeutic option for treating various age-related diseases, including ARHL.
Collapse
Affiliation(s)
- Hyung‐Jin Kim
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
- NADIANBIO Ltd, Business Incubation Center Iksan Korea
| | - Wa Cao
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| | - Gi‐Su Oh
- NADIANBIO Ltd, Business Incubation Center Iksan Korea
| | - SeungHoon Lee
- NADIANBIO Ltd, Business Incubation Center Iksan Korea
| | - AiHua Shen
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| | - Dipendra Khadka
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| | - Su‐Bin Lee
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| | - Subham Sharma
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| | - Seon Young Kim
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| | - Seong‐Kyu Choe
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| | - Tae Hwan Kwak
- NADIANBIO Ltd, Business Incubation Center Iksan Korea
| | - Jin‐Man Kim
- Department of Pathology and Infection Signaling Network Research Center Chungnam National University School of Medicine Daejeon Korea
| | - Raekil Park
- Department of Biomedical Science & Engineering, Institute of Integrated Technology Gwangju Institute of Science and Technology Gwangju Korea
| | - Hong‐Seob So
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| |
Collapse
|
6
|
Kim DW, Cho JY. NQO1 is Required for β-Lapachone-Mediated Downregulation of Breast-Cancer Stem-Cell Activity. Int J Mol Sci 2018; 19:ijms19123813. [PMID: 30513573 PMCID: PMC6321092 DOI: 10.3390/ijms19123813] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) exhibit self-renewal activity and give rise to other cell types in tumors. Due to the infinite proliferative potential of CSCs, drugs targeting these cells are necessary to completely inhibit cancer development. The β-lapachone (bL) compound is widely used to treat cancer development; however, its effect on cancer stem cells remain elusive. Thus, we investigated the effect of bL on mammosphere formation using breast-cancer stem-cell (BCSC) marker-positive cells, MDA-MB-231. MDA-MB-231 cells, which are negative for reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H):quinone oxidoreductase (NQO1) expression, were constructed to stably express NQO1 (NQO1 stable cells). The effect of bL on these cells was evaluated by wound healing and Transwell cell-culture chambers, ALDEFLUOR assay, and mammosphere formation assay. Here, we show that bL inhibited the proliferative ability of mammospheres derived from BCSC marker-positive cells, MDA-MB-231, in an NQO1-dependent manner. The bL treatment efficiently downregulated the expression level of BCSC markers cluster of differentiation 44 (CD44), aldehyde dehydrogenase 1 family member A1 (ALDH1A1), and discs large (DLG)-associated protein 5 (DLGAP5) that was recently identified as a stem-cell proliferation marker in both cultured cells and mammosphered cells. Moreover, bL efficiently downregulated cell proliferation and migration activities. These results strongly suggest that bL could be a therapeutic agent for targeting breast-cancer stem-cells with proper NQO1 expression.
Collapse
Affiliation(s)
- Dong Wook Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
7
|
Lee JH, Lee HH, Kim HW, Yu JW, Kim KN, Kim KM. Immunomodulatory/anti-inflammatory effect of ZOE-based dental materials. Dent Mater 2016; 33:e1-e12. [PMID: 27726970 DOI: 10.1016/j.dental.2016.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 03/25/2016] [Accepted: 09/03/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The study assessed the cytotoxicity and immunomodulatory/anti-inflammatory effect of extract from zinc oxide-eugenol (ZOE)-based dental materials during setting using immortalized human dental pulp stem cells (IHDPSCs) and mouse bone marrow monocytes (IMBMMs), and identified the responsible extract component. METHODS In accord with the ISO 10993-12, we extracted a mixture of ZOE cement and sealer after a specified time. The extract was analyzed by two types of mass spectrometry (ICP-MS and GC-MS). Cell viability was evaluated with extract and serial concentrations of ZnCl2, ZnSO4, and eugenol liquid by WST assay. The immunomodulatory/anti-inflammatory effect of a ZOE component was determined by RT-PCR to detect the downregulatory effect of inflammatory mRNA expression after lipopolysaccharide (LPS)-induced inflammation. RESULTS Zn2+ and eugenol (2-20ppm) were detected in the ZOE cement and sealer extracts. During the early stage of setting, significant cytotoxicity was observed in IHDPSCs and IMBMMs (p<0.05). The half maximal effective concentration of Zn2+ was 5-8ppm, whereas that of eugenol could not be detected within 80ppm. After extract treatment, the expression of inflammatory mRNA was significantly lower in inflamed IHDPSCs, but not inflamed IMBMMs, than in the LPS control (p<0.05). However, eugenol, not Zn2+, at 5-20ppm downregulated inflammatory mRNA expression in the inflamed IMBMMs with and without the exchange of LPS-pretreated medium. SIGNIFICANCE ZOE was highly cytotoxic, especially during setting, to both cells due to Zn2+ while the immunomodulatory/anti-inflammatory effect of ZOE was induced by eugenol.
Collapse
Affiliation(s)
- Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department and Research Institute of Dental Biomaterials and Bioengineering, BK21 PLUS Project, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Je-Wook Yu
- Department of Microbiology, BK 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyoung-Nam Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, BK21 PLUS Project, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, BK21 PLUS Project, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
8
|
Assessment of β-lapachone loaded in lecithin-chitosan nanoparticles for the topical treatment of cutaneous leishmaniasis in L. major infected BALB/c mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:2003-12. [DOI: 10.1016/j.nano.2015.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/22/2015] [Accepted: 07/17/2015] [Indexed: 12/23/2022]
|
9
|
Lee EJ, Ko HM, Jeong YH, Park EM, Kim HS. β-Lapachone suppresses neuroinflammation by modulating the expression of cytokines and matrix metalloproteinases in activated microglia. J Neuroinflammation 2015; 12:133. [PMID: 26173397 PMCID: PMC4502557 DOI: 10.1186/s12974-015-0355-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/29/2015] [Indexed: 12/22/2022] Open
Abstract
Background β-Lapachone (β-LAP) is a natural naphthoquinone compound isolated from the lapacho tree (Tabebuia sp.), and it has been used for treatment of rheumatoid arthritis, infection, and cancer. In the present study, we investigated whether β-LAP has anti-inflammatory effects under in vitro and in vivo neuroinflammatory conditions. Methods The effects of β-LAP on the expression of inducible nitric oxide synthase (iNOS), cytokines, and matrix metalloproteinases (MMPs) were examined in lipopolysaccharide (LPS)-stimulated BV2 microglial cells and rat primary microglia by ELISA, reverse transcription polymerase chain reaction (RT-PCR), and Western blot analysis. Microglial activation and the expression levels of proinflammatory molecules were measured in the LPS-injected mouse brain by immunohistochemistry and RT-PCR analysis. The detailed molecular mechanism underlying the anti-inflammatory effects of β-LAP was analyzed by electrophoretic mobility shift assay, reporter gene assay, Western blot, and RT-PCR analysis. Results β-LAP inhibited the expression of iNOS, proinflammatory cytokines, and MMPs (MMP-3, MMP-8, MMP-9) at mRNA and protein levels in LPS-stimulated microglia. On the other hand, β-LAP upregulated the expressions of anti-inflammatory molecules such as IL-10, heme oxygenase-1 (HO-1), and the tissue inhibitor of metalloproteinase-2 (TIMP-2). The anti-inflammatory effect of β-LAP was confirmed in an LPS-induced systemic inflammation mouse model. Thus, β-LAP inhibited microglial activation and the expressions of iNOS, proinflammatory cytokines, and MMPs in the LPS-injected mouse brain. Further mechanistic studies revealed that β-LAP exerts anti-inflammatory effects by inhibiting MAPKs, PI3K/AKT, and NF-κB/AP-1 signaling pathways in LPS-stimulated microglia. β-LAP also inhibited reactive oxygen species (ROS) production by suppressing the expression and/or phosphorylation of NADPH oxidase subunit proteins, such as p47phox and gp91phox. The anti-oxidant effects of β-LAP appeared to be related with the increase of HO-1 and NQO1 via the Nrf2/anti-oxidant response element (ARE) pathway and/or the PKA pathway. Conclusions The strong anti-inflammatory/anti-oxidant effects of β-LAP may provide preventive therapeutic potential for various neuroinflammatory disorders. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0355-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eun-Jung Lee
- Department of Molecular Medicine, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Mok-6-dong 911-1, Yangchun-Ku, Seoul, 158-710, South Korea.
| | - Hyun-Myung Ko
- Department of Molecular Medicine, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Mok-6-dong 911-1, Yangchun-Ku, Seoul, 158-710, South Korea.
| | - Yeon-Hui Jeong
- Department of Molecular Medicine, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Mok-6-dong 911-1, Yangchun-Ku, Seoul, 158-710, South Korea.
| | - Eun-Mi Park
- Department of Pharmacology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, 158-710, South Korea.
| | - Hee-Sun Kim
- Department of Molecular Medicine, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Mok-6-dong 911-1, Yangchun-Ku, Seoul, 158-710, South Korea.
| |
Collapse
|
10
|
Kim I, Kim H, Ro J, Jo K, Karki S, Khadka P, Yun G, Lee J. Preclinical Pharmacokinetic Evaluation of β-Lapachone: Characteristics of Oral Bioavailability and First-Pass Metabolism in Rats. Biomol Ther (Seoul) 2015; 23:296-300. [PMID: 25995830 PMCID: PMC4428724 DOI: 10.4062/biomolther.2015.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 03/24/2015] [Accepted: 03/31/2015] [Indexed: 11/18/2022] Open
Abstract
β-Lapachone has drawn increasing attention as an anti-inflammatory and anti-cancer drug. However, its oral bioavailability has not been yet assessed, which might be useful to develop efficient dosage forms possibly required for non-clinical and clinical studies and future market. The aim of the present study was thus to investigate pharmacokinetic properties of β-lapachone as well as its first-pass metabolism in the liver, and small and large intestines after oral administration to measure the absolute bioavailability in rats. A sensitive HPLC method was developed to evaluate levels of β-lapachone in plasma and organ homogenates. The drug degradation profiles were examined in plasma to assess the stability of the drug and in liver and intestinal homogenates to evaluate first-pass metabolism. Pharmacokinetic profiles were obtained after oral and intravenous administration of β-lapachone at doses of 40 mg/kg and 1.5 mg/kg, respectively. The measured oral bioavailability of β-lapachone was 15.5%. The considerable degradation of β-lapachone was seen in the organ homogenates but the drug was quite stable in plasma. In conclusion, we suggest that the fairly low oral bioavailability of β-lapachone may be resulted from the first-pass metabolic degradation of β-lapachone in the liver, small and large intestinal tracts and its low aqueous solubility.
Collapse
Affiliation(s)
- Iksoo Kim
- College of Pharmacy, Chung-Ang University, Seoul 156-756
| | - Hyeongmin Kim
- College of Pharmacy, Chung-Ang University, Seoul 156-756
| | - Jieun Ro
- College of Pharmacy, Chung-Ang University, Seoul 156-756
| | - Kanghee Jo
- College of Pharmacy, Chung-Ang University, Seoul 156-756
| | - Sandeep Karki
- College of Pharmacy, Chung-Ang University, Seoul 156-756
| | - Prakash Khadka
- College of Pharmacy, Chung-Ang University, Seoul 156-756
| | - Gyiae Yun
- Department of Food Science and Technology, Chung-Ang University, Anseong 456-756, Republic of Korea
| | - Jaehwi Lee
- College of Pharmacy, Chung-Ang University, Seoul 156-756
| |
Collapse
|
11
|
Jeon YJ, Bang W, Shin JC, Park SM, Cho JJ, Choi YH, Seo KS, Choi NJ, Shim JH, Chae JI. Downregulation of Sp1 is involved in β-lapachone-induced cell cycle arrest and apoptosis in oral squamous cell carcinoma. Int J Oncol 2015; 46:2606-12. [PMID: 25891355 DOI: 10.3892/ijo.2015.2972] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/08/2015] [Indexed: 11/05/2022] Open
Abstract
β-lapachone (β-lap) is a naturally occurring quinone obtained from the bark of lapacho tree (Tabebuia avellanedae) with anti-proliferative properties against various cancers. The present study investigated the cell proliferation and apoptosis effect of β-lap on two oral squamous cell carcinoma lines (OSCCs). We carried out a series of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl-2H-tetrazolium (MTS) assays, 4',6-diamidino-2-phenylindole (DAPI) staining, cell cycle analysis, and western blot analysis to characterize β-lap and its underlying signaling pathway. We demonstrated that β-lap-treated cells significantly reduced cell proliferation but increased DNA condensation and increased sub-G1 population in OSCCs. Particularly, β-lap suppresses activation of transcription factor specificity protein 1 (Sp1) followed by apoptosis in a concentration-dependent manner in OSCCs. Furthermore, β-lap modulated protein expression levels of cell cycle regulatory proteins and apoptosis-related proteins that are known as Sp1 target genes, resulting in apoptosis. Our results collectively indicated that β-lap was able to modulate Sp1 transactivation and induce apoptosis through the regulation of cell cycle and apoptosis-related proteins. Therefore, β-lap may be used in cancer prevention and therapies to improve clinical outcome as an anticancer drug candidate.
Collapse
Affiliation(s)
- Young-Joo Jeon
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Woong Bang
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jae-Cheon Shin
- Pohang Center for Evaluation of Biomaterials, Pohang, Gyeongbuk 790‑834, Republic of Korea
| | - Seon-Min Park
- Pohang Center for Evaluation of Biomaterials, Pohang, Gyeongbuk 790‑834, Republic of Korea
| | - Jung-Jae Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-052, Republic of Korea
| | - Kang Seok Seo
- Department of Animal Science and Technology, Sunchon National University, Suncheon, Republic of Korea
| | - Nag-Jin Choi
- Department of Animal Science, College of Agricultural and Life Science, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jung-Il Chae
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
12
|
Levosimendan displays anti-inflammatory effects and decreases MPO bioavailability in patients with severe heart failure. Sci Rep 2015; 5:9704. [PMID: 25867530 PMCID: PMC4394753 DOI: 10.1038/srep09704] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 03/06/2015] [Indexed: 11/09/2022] Open
Abstract
Treatment of decompensated heart failure often includes administration of levosimendan. Myeloperoxidase (MPO) is released during polymorphonuclear neutrophil (PMN) degranulation, and mediates dysregulation of vascular tone in heart failure. We evaluated the effects of levosimendan-treatment on MPO in patients with acute decompensation of chronic heart failure over a one week course. Plasma MPO levels were significantly decreased after levosimendan treatment (from 252.1 ± 31.1 pmol/l at baseline to 215.02 ± 27.96 pmol/l at 6 h, p < 0.05). Ex vivo incubation of whole blood with levosimendan decreased MPO release after PMN-stimulation (8.2 ± 1.4-fold increase at baseline vs. 6.0 ± 1.1-fold increase with levosimendan). MPO levels also significantly correlated with diastolic blood pressure over the time course. In a multivariate linear model, the main contributor to systolic, diastolic and mean blood pressure was level of PMN elastase. MPO contributed only in heparin-treated patients, suggesting a more significant role for endothelial-bound MPO than for circulating MPO or elastase with respect to blood pressure regulation. We here provide the first evidence that levosimendan treatment inhibits MPO release by PMNs in decompensated heart failure patients. This mechanism may regulate endothelial function and vascular tone in heart failure patients.
Collapse
|
13
|
Jeon YJ, Bang W, Choi YH, Shim JH, Chae JI. Beta-Lapachone Suppresses Non-small Cell Lung Cancer Proliferation through the Regulation of Specificity Protein 1. Biol Pharm Bull 2015; 38:1302-8. [PMID: 26328485 DOI: 10.1248/bpb.b15-00159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, and non-small cell lung cancer (NSCLC) is the most common pathological type with a reported frequency of about 85% of all cases. Despite recent advances in therapeutic agents and targeted therapies, the prognosis for NSCLC remains poor, and therefore it is important to identify the biological targets of this complex disease since a blockade of such targets would affect multiple downstream signaling cascades. β-Lapachone (β-Lap) is an antiproliferative agent that selectively induces apoptosis-related cell death in a variety of human cancer cells. However, the mechanisms of its action require further investigation. In this study, we show that treatment with β-lap triggers apoptosis and cell-cycle arrest in two NSCLC cell lines: H1299 and NCI-H358. The transcription factor specificity protein 1 (Sp1) was markedly inhibited by β-lap in a dose- and time-dependent manner. Furthermore, β-lap modulated the protein expression levels of the Sp1 regulatory genes, including cell-cycle regulatory proteins and antiapoptotic proteins, resulting in apoptosis. Taken together, our results indicate that β-lap may be a potential antiproliferative agent candidate by inducing apoptotic cell death in NSCLC tissue through downregulation of Sp1.
Collapse
Affiliation(s)
- Young-Joo Jeon
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University
| | | | | | | | | |
Collapse
|
14
|
Yu HY, Kim SO, Jin CY, Kim GY, Kim WJ, Yoo YH, Choi YH. β-lapachone-Induced Apoptosis of Human Gastric Carcinoma AGS Cells Is Caspase-Dependent and Regulated by the PI3K/Akt Pathway. Biomol Ther (Seoul) 2014; 22:184-92. [PMID: 25009698 PMCID: PMC4060078 DOI: 10.4062/biomolther.2014.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/24/2014] [Accepted: 05/07/2014] [Indexed: 12/26/2022] Open
Abstract
β-lapachone is a naturally occurring quinone that selectively induces apoptotic cell death in a variety of human cancer cells in vitro and in vivo; however, its mechanism of action needs to be further elaborated. In this study, we investigated the effects of β-lapachone on the induction of apoptosis in human gastric carcinoma AGS cells. β-lapachone significantly inhibited cellular proliferation, and some typical apoptotic characteristics such as chromatin condensation and an increase in the population of sub-G1 hypodiploid cells were observed in β-lapachone-treated AGS cells. Treatment with β-lapachone caused mitochondrial transmembrane potential dissipation, stimulated the mitochondria-mediated intrinsic apoptotic pathway, as indicated by caspase-9 activation, cytochrome c release, Bcl-2 downregulation and Bax upregulation, as well as death receptor-mediated extrinsic apoptotic pathway, as indicated by activation of caspase-8 and truncation of Bid. This process was accompanied by activation of caspase-3 and concomitant with cleavage of poly(ADP-ribose) polymerase. The general caspase inhibitor, z-VAD-fmk, significantly abolished β-lapachone-induced cell death and inhibited growth. Further analysis demonstrated that the induction of apoptosis by β-lapachone was accompanied by inactivation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. The PI3K inhibitor LY29004 significantly increased β-lapachone-induced apoptosis and growth inhibition. Taken together, these findings indicate that the apoptotic activity of β-lapachone is probably regulated by a caspase-dependent cascade through activation of both intrinsic and extrinsic signaling pathways, and that inhibition of the PI3K/Akt signaling may contribute to β-lapachone-mediated AGS cell growth inhibition and apoptosis induction.
Collapse
Affiliation(s)
- Hai Yang Yu
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714
| | - Sung Ok Kim
- Team for Scientification of Korean Medical Intervention (BK21 Plus) & Department of Herbal Pharmacology, College of Oriental Medicine, Daegu Haany University, Daegu 706-828
| | - Cheng-Yun Jin
- School of Pharmaceutical Science, Zhengzhou University, Henan 450001, China
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju 361-804
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan 602-714
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-052 ; Anti-Aging Research Center & Blue-Bio Industry RIC, Dongeui University, Busan 614-714, Republic of Korea
| |
Collapse
|
15
|
Nomura N, Nunes P, Bouley R, Nair AV, Shaw S, Ueda E, Pathomthongtaweechai N, Lu HAJ, Brown D. High-throughput chemical screening identifies AG-490 as a stimulator of aquaporin 2 membrane expression and urine concentration. Am J Physiol Cell Physiol 2014; 307:C597-605. [PMID: 24944200 DOI: 10.1152/ajpcell.00154.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A reduction or loss of plasma membrane aquaporin 2 (AQP2) in kidney principal cells due to defective vasopressin (VP) signaling through the VP receptor causes excessive urine production, i.e., diabetes insipidus. The amount of AQP2 on the plasma membrane is regulated by a balance of exocytosis and endocytosis and is the rate limiting step for water reabsorption in the collecting duct. We describe here a systematic approach using high-throughput screening (HTS) followed by in vitro and in vivo assays to discover novel compounds that enhance vasopressin-independent AQP2 membrane expression. We performed initial chemical library screening with a high-throughput exocytosis fluorescence assay using LLC-PK1 cells expressing soluble secreted yellow fluorescent protein and AQP2. Thirty-six candidate exocytosis enhancers were identified. These compounds were then rescreened in AQP2-expressing cells to determine their ability to increase AQP2 membrane accumulation. Effective drugs were then applied to kidney slices in vitro. Three compounds, AG-490, β-lapachone, and HA14-1 increased AQP2 membrane accumulation in LLC-PK1 cells, and both AG-490 and β-lapachone were also effective in MDCK cells and principal cells in rat kidney slices. Finally, one compound, AG-490 (an EGF receptor and JAK-2 kinase inhibitor), decreased urine volume and increased urine osmolality significantly in the first 2-4 h after a single injection into VP-deficient Brattleboro rats. In conclusion, we have developed a systematic procedure for identifying new compounds that modulate AQP2 trafficking using initial HTS followed by in vitro assays in cells and kidney slices, and concluding with in vivo testing in an animal model.
Collapse
Affiliation(s)
- Naohiro Nomura
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Paula Nunes
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Richard Bouley
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anil V Nair
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Stanley Shaw
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Erica Ueda
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Nutthapoom Pathomthongtaweechai
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hua A Jenny Lu
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Aires ADL, Ximenes ECPA, Barbosa VX, Góes AJDS, Souza VMO, Albuquerque MCPDA. β-Lapachone: a naphthoquinone with promising antischistosomal properties in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:261-267. [PMID: 24090700 DOI: 10.1016/j.phymed.2013.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/28/2013] [Accepted: 08/09/2013] [Indexed: 06/02/2023]
Abstract
The activity of β-lapachone (3,4-dihydro-2,2-dimethyl-2H-naphthol[1,2-b]pyran-5,6-dione, β-lap) against different stages of Schistosoma mansoni was investigated in mice. Mice infected with 50 cercariae (BH strain) were intraperitoneally treated at a dose of 50 mg/kg for 5 consecutive days, starting on the 1st, 14th, 28th and 45th days after infection, to evaluate the effect of β-lap on skin schistosomula, lung schistosomula, young worms (before oviposition) and adult worms (after oviposition), respectively. All animals were euthanized 60 days after infection. β-Lap significantly reduced (p<0.001) the number of worms in 29.78%, 37.2%, 24.2% and 40.22% when administered during the phases of skin schistosomula, lung schistosomula, young worms and adult worms, respectively. Significant reduction was also achieved in terms of female burden. In all groups, there was significant reduction in the number of eggs and granulomas in the hepatic tissue. When the intervention was performed during the phase of adult worms, β-lap reduced the size of hepatic granulomas and changed the oogram pattern, lowering the percentage of immature eggs and increasing the percentage of mature and dead eggs. Our data indicate that β-lap has moderate antischistosomal properties. Its molecule may also be used as a prototype for synthesis of new naphthoquinone derivatives with potential schistosomicidal properties. Further studies with different formulations containing β-lap are needed to clearly establish the best dose and route of administration and its mechanism of action against schistosomes.
Collapse
Affiliation(s)
- André de Lima Aires
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil; Centro de Ciências da Saúde - Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Vanessa Xavier Barbosa
- Centro de Ciências Biológicas - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Alexandre José da Silva Góes
- Centro de Ciências Biológicas - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Mônica Camelo Pessôa de Azevedo Albuquerque
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil; Centro de Ciências da Saúde - Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
17
|
Gang GT, Hwang JH, Kim YH, Noh JR, Kim KS, Jeong JY, Choi DE, Lee KW, Jung JY, Shong M, Lee CH. Protection of NAD(P)H:quinone oxidoreductase 1 against renal ischemia/reperfusion injury in mice. Free Radic Biol Med 2014; 67:139-49. [PMID: 24189322 DOI: 10.1016/j.freeradbiomed.2013.10.817] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/18/2013] [Accepted: 10/28/2013] [Indexed: 11/21/2022]
Abstract
UNLABELLED Ischemia/reperfusion (I/R) is the most common cause of acute renal injury. I/R-induced reactive oxygen species (ROS) are thought to be a major factor in the development of acute renal injury by promoting the initial tubular damage. NAD(P)H quinone oxidoreductase 1 (NQO1) is a well-known antioxidant protein that regulates ROS generation. The purpose of this study was to investigate whether NQO1 modulates the renal I/R injury (IRI) associated with NADPH oxidase (NOX)-derived ROS production in an animal model. We analyzed renal function, oxidative stress, and tubular apoptosis after IRI. NQO1(-/-) mice showed increased blood urea nitrogen and creatinine levels, tubular damage, oxidative stress, and apoptosis. In the kidneys of NQO1(-/-) mice, the cellular NADPH/NADP(+) ratio was significantly higher and NOX activity was markedly higher than in those of NQO1(+/+) mice. The activation of NQO1 by β-lapachone (βL) significantly improved renal dysfunction and reduced tubular cell damage, oxidative stress, and apoptosis by renal I/R. Moreover, the βL treatment significantly lowered the cellular NADPH/NADP(+) ratio and dramatically reduced NOX activity in the kidneys after IRI. From these results, it was concluded that NQO1 has a protective role against renal injury induced by I/R and that this effect appears to be mediated by decreased NOX activity via cellular NADPH/NADP(+) modulation. These results provide convincing evidence that NQO1 activation might be beneficial for ameliorating renal injury induced by I/R.
Collapse
Affiliation(s)
- Gil-Tae Gang
- Laboratory Animal Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Jung Hwan Hwang
- Laboratory Animal Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Jin Young Jeong
- Nephrology Research Department, Chungnam National University Hospital, Chunggu, Daejeon, Republic of Korea
| | - Dae Eun Choi
- Nephrology Research Department, Chungnam National University Hospital, Chunggu, Daejeon, Republic of Korea
| | - Kang Wook Lee
- Nephrology Research Department, Chungnam National University Hospital, Chunggu, Daejeon, Republic of Korea
| | - Ju-Young Jung
- College of Veterinary Medicine, School of Medicine, Chungnam National University, Daejeon 301-721, Republic of Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, School of Medicine, Chungnam National University, Daejeon 301-721, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 305-806, Republic of Korea.
| |
Collapse
|
18
|
Byun SJ, Son Y, Hwan Cho B, Chung HT, Pae HO. β-Lapachone, a substrate of NAD(P)H:quinone oxidoreductase, induces anti-inflammatory heme oxygenase-1 via AMP-activated protein kinase activation in RAW264.7 macrophages. J Clin Biochem Nutr 2012; 52:106-11. [PMID: 23525626 PMCID: PMC3593126 DOI: 10.3164/jcbn.12-80] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/25/2012] [Indexed: 01/20/2023] Open
Abstract
AMP-activated protein kinase (AMPK), a crucial regulator of energy metabolic homeostasis, is suggested to regulate inflammatory responses, but its precise mechanisms are not fully understood. It has been reported that pharmacological activation of AMPK induces heme oxygenase-1 (HO-1) expression. β-Lapachone (BL), a well-known substrate of NAD(P)H:quinone oxidoreductase (NQO1), has been demonstrated to stimulate AMPK activation via NQO1 activation, and to exert anti-inflammatory effects in macrophages. Here we examined whether AMPK activation by BL would be linked to HO-1 expression in RAW264.7 macrophages and whether HO-1 expression could mediate the anti-inflammatory effects of BL. BL treatment induced concentration- and time-dependent AMPK phosphorylation and HO-1 expression. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, an AMPK activator, also induced HO-1 expression. In contrast, compound C (CC), an inhibitor of AMPK activation, prevented the increase in BL-induced HO-1 expression. BL pretreatment reduced lipopolysaccharide-induced production of tumor necrosis factor-α, a pro-inflammatory cytokine, and expression of inducible nitric oxide synthase, a pro-inflammatory enzyme. These inhibitory effects BL were almost completely abolished by CC and partly by tin protoporphyrin-IX, a competitive inhibitor of HO-1. Accordingly, the present results indicate that BL induces anti-inflammatory HO-1 expression in macrophages via AMPK activation, providing one of possible mechanisms by which BL can exert anti-inflammatory effects.
Collapse
Affiliation(s)
- Seung Jae Byun
- Department of Surgery, Wonkwang University School of Medicine, 460 Iksandae-ro, Iksan 570-749, Republic of Korea
| | | | | | | | | |
Collapse
|
19
|
He T, Banach-Latapy A, Vernis L, Dardalhon M, Chanet R, Huang ME. Peroxiredoxin 1 knockdown potentiates β-lapachone cytotoxicity through modulation of reactive oxygen species and mitogen-activated protein kinase signals. Carcinogenesis 2012; 34:760-9. [PMID: 23239746 DOI: 10.1093/carcin/bgs389] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Peroxiredoxin (Prx) 1 is a member of the thiol-specific peroxidases family and plays diverse roles such as H2O2 scavenger, redox signal transducer and molecular chaperone. Prx1 has been reported to be involved in protecting cancer cells against various therapeutic challenges. We investigated how modulations of intracellular redox system affect cancer cell sensitivity to reactive oxygen species (ROS)-generating drugs. We observed that stable and transient Prx1 knockdown significantly enhanced HeLa cell sensitivity to β-lapachone (β-lap), a potential anticancer agent. Prx1 knockdown markedly potentiated 2 µM β-lap-induced cytotoxicity through ROS accumulation. This effect was largely NAD(P)H:quinone oxidoreductase 1 dependent and associated with a decrease in poly(ADP-ribose) polymerase 1 protein levels, phosphorylation of JNK, p38 and Erk proteins in mitogen-activated protein kinase (MAPK) pathways and a decrease in thioredoxin 1 (Trx1) protein levels. Trx1 serves as an electron donor for Prx1 and is overexpressed in Prx1 knockdown cells. Based on the fact that Prx1 is a major ROS scavenger and a partner of at least ASK1 and JNK, two key components of MAPK pathways, we propose that Prx1 knockdown-induced sensitization to β-lap is achieved through combined action of accumulation of ROS and enhancement of MAPK pathway activation, leading to cell apoptosis. These data support the view that modulation of intracellular redox state could be an alternative approach to enhance cancer cell sensitivity to ROS-generating drugs or to overcome some types of drug resistance.
Collapse
Affiliation(s)
- Tiantian He
- Centre National de la Recherche Scientifique, UMR 3348 Genotoxic Stress and Cancer, Orsay, France
| | | | | | | | | | | |
Collapse
|
20
|
Deng S, Yu K, Zhang B, Yao Y, Liu Y, He H, Zhang H, Cui M, Fu J, Lian Z, Li N. Effects of over-expression of TLR2 in transgenic goats on pathogen clearance and role of up-regulation of lysozyme secretion and infiltration of inflammatory cells. BMC Vet Res 2012; 8:196. [PMID: 23082910 PMCID: PMC3560201 DOI: 10.1186/1746-6148-8-196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 10/17/2012] [Indexed: 01/07/2023] Open
Abstract
Background Toll-like receptor 2 (TLR2) is important to host recognition of invading gram-positive microbes. In goats, these microbes can cause serious mastitis, anthrax, tetanus, and other problems. Transgenic goats constitutively over-expressing TLR2 in many tissues serve as a suitable model for the study of the role of TLR2 over-expression in bacterial clearance. Results Capra hircus TLR2 over-expression vector (p3S-LoxP-TLR2) was used to generate transgenic goats by egg microinjection. The integration efficiency was 8.57%. Real-time PCR and immunohistochemical results confirmed that the goats over-expressing the TLR2 gene (Tg) expressed more TLR2 than wild-type goats (WT). Monocyte-macrophages from the bloodstreams of transgenic goats were stimulated with synthetic bacterial lipoprotein (Pam3CSK4) and by the promotion of interleukin-6 (IL-6) and IL-10 expression in vitro. The oxidative damage was significantly reduced, and lysozyme (LZM) secretion was found to be up-regulated. Ear tissue samples from transgenic goats that had been stimulated with Pam3CSK4 via hypodermic injection showed that transgenic individuals can undergo the inflammation response very quickly. Conclusions Over-expression of TLR2 was found to decrease radical damage to host cells through low-level production of NO and MDA and to promote the clearance of invasive bacteria by up-regulating lysozyme secretion and filtration of inflammatory cells to the infected site.
Collapse
Affiliation(s)
- Shoulong Deng
- National key Lab of Agro-Biotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sitônio MM, Carvalho Júnior CHRD, Campos IDA, Silva JBNF, Lima MDCAD, Góes AJS, Maia MBS, Rolim Neto PJ, Silva TG. Anti-inflammatory and anti-arthritic activities of 3,4-dihydro-2,2-dimethyl-2H-naphthol[1,2-b]pyran-5,6-dione (β-lapachone). Inflamm Res 2012; 62:107-13. [PMID: 23052183 DOI: 10.1007/s00011-012-0557-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 08/07/2012] [Accepted: 09/11/2012] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE AND DESIGN The purpose of this study was to evaluate the anti-inflammatory and anti-arthritic activities of 3,4-dihydro-2,2-dimethyl-2H-naphthol[1,2-b]pyran-5,6-dione (β-lapachone; β-lap) and to elucidate its probable mode of action. METHODS Carrageenan-induced paw edema, cell migration evaluation and production of pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-6 and nitric oxide were used for this study. Freund's complete adjuvant (FCA)-induced arthritis was used as a model of chronic inflammation. β-Lap was tested in doses of 40 and 60 mg/kg, orally. RESULTS In the paw edema test, the dose of 60 mg/kg gave a higher percentage inhibition of edema (49.3 %) than control. β-Lap inhibited neutrophil migration and reduced concentrations of TNF-α, IL-6 and NO in peritoneal exudates of animals with peritonitis. In the arthritis test, β-lap inhibited edema and NO production in the serum of treated animals. CONCLUSION Significant anti-inflammatory and anti-arthritic activities were observed in animals treated with β-lap. The effects of β-lap can be attributed in part to immunomodulation with reduction of pro-inflammatory cytokines and NO.
Collapse
Affiliation(s)
- Marília Maria Sitônio
- Department of Antibiotics, Federal University of Pernambuco, Rua Prof. Artur Sá, Cidade Universitária, Recife/PE, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Xu J, Wagoner G, Douglas JC, Drew PD. β-Lapachone ameliorization of experimental autoimmune encephalomyelitis. J Neuroimmunol 2012; 254:46-54. [PMID: 23010281 DOI: 10.1016/j.jneuroim.2012.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/30/2012] [Accepted: 09/05/2012] [Indexed: 02/08/2023]
Abstract
β-Lapachone is a naturally occurring quinine, originally isolated from the bark of the lapacho tree (Tabebuia avellanedae) which is currently being evaluated in clinical trials for the treatment of cancer. In addition, recent investigations suggest its potential application for treatment of inflammatory diseases. Multiple sclerosis (MS) is an autoimmune disorder characterized by CNS inflammation and demyelination. Reactive T cells including IL-17 and IFN-γ-secreting T cells are believed to initiate MS and the associated animal model system experimental autoimmune encephalomyelitis (EAE). IL-12 family cytokines secreted by peripheral dendritic cells (DCs) and CNS microglia are capable of modulating T-cell phenotypes. The present studies demonstrated that β-lapachone selectively inhibited the expression of IL-12 family cytokines including IL-12 and IL-23 by DCs and microglia, and reduced IL-17 production by CD4(+) T-cells indirectly through suppressing IL-23 expression by microglia. Importantly, our studies also demonstrated that β-lapachone ameliorated the development on EAE. β-Lapachone suppression of EAE was associated with decreased expression of mRNAs encoding IL-12 family cytokines, IL-23R and IL-17RA, and molecules important in Toll-like receptor signaling. Collectively, these studies suggest mechanisms by which β-lapachone suppresses EAE and suggest that β-lapachone may be effective in the treatment of inflammatory diseases such as MS.
Collapse
Affiliation(s)
- Jihong Xu
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | | | | | | |
Collapse
|
23
|
Bhatia M, Zemans RL, Jeyaseelan S. Role of chemokines in the pathogenesis of acute lung injury. Am J Respir Cell Mol Biol 2012; 46:566-572. [PMID: 22323365 PMCID: PMC3361356 DOI: 10.1165/rcmb.2011-0392tr] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 02/02/2012] [Indexed: 12/11/2022] Open
Abstract
Acute lung injury (ALI) is due to an uncontrolled systemic inflammatory response resulting from direct injury to the lung or indirect injury in the setting of a systemic process. Such insults lead to the systemic inflammatory response syndrome (SIRS), which includes activation of leukocytes-alveolar macrophages and sequestered neutrophils-in the lung. Although systemic inflammatory response syndrome is a physiologic response to an insult, systemic leukocyte activation, if excessive, can lead to end organ injury, such as ALI. Excessive recruitment of leukocytes is critical to the pathogenesis of ALI, and the magnitude and duration of the inflammatory process may ultimately determine the outcome in patients with ALI. Leukocyte recruitment is a well orchestrated process that depends on the function of chemokines and their receptors. Understanding the mechanisms that contribute to leukocyte recruitment in ALI may ultimately lead to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Madhav Bhatia
- Department of Pathology, University of Otago, 2 Riccarton Avenue, Christchurch, New Zealand.
| | | | | |
Collapse
|
24
|
Bachiega TF, de Sousa JPB, Bastos JK, Sforcin JM. Clove and eugenol in noncytotoxic concentrations exert immunomodulatory/anti-inflammatory action on cytokine production by murine macrophages. ACTA ACUST UNITED AC 2012; 64:610-6. [PMID: 22420667 DOI: 10.1111/j.2042-7158.2011.01440.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The extract and essential oil of clove (Syzygium aromaticum) are widely used because of their medicinal properties. Eugenol is the most important component of clove, showing several biological properties. Herein we have analysed the immunomodulatory/anti-inflammatory effect of clove and eugenol on cytokine production (interleukin (IL)-1β, IL-6 and IL-10) in vitro. METHODS Macrophages were incubated with clove or eugenol (5, 10, 25, 50 or 100µg/well) for 24h. Concentrations that inhibited the production of cytokines were used before or after incubation with lipopolysaccharide (LPS), to verify a preventive or therapeutic effect. Culture supernatants were harvested for measurement of cytokines by enzyme-linked immunosorbent assay. KEY FINDINGS Clove (100µg/well) inhibited IL-1β, IL-6 and IL-10 production and exerted an efficient action either before or after LPS challenge for all cytokines. Eugenol did not affect IL-1β production but inhibited IL-6 and IL-10 production. The action of eugenol (50 or 100µg/well) on IL-6 production prevented efficiently effects of LPS either before or after its addition, whereas on IL-10 production it counteracted significantly LPS action when added after LPS incubation. CONCLUSIONS Clove exerted immunomodulatory/anti-inflammatory effects by inhibiting LPS action. A possible mechanism of action probably involved the suppression of the nuclear factor-κB pathway by eugenol, since it was the major compound found in clove extract.
Collapse
|
25
|
Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 2011; 44:725-38. [PMID: 21531958 PMCID: PMC7328339 DOI: 10.1165/rcmb.2009-0210st] [Citation(s) in RCA: 1424] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) is well defined in humans, but there is no agreement as to the main features of acute lung injury in animal models. A Committee was organized to determine the main features that characterize ALI in animal models and to identify the most relevant methods to assess these features. We used a Delphi approach in which a series of questionnaires were distributed to a panel of experts in experimental lung injury. The Committee concluded that the main features of experimental ALI include histological evidence of tissue injury, alteration of the alveolar capillary barrier, presence of an inflammatory response, and evidence of physiological dysfunction; they recommended that, to determine if ALI has occurred, at least three of these four main features of ALI should be present. The Committee also identified key "very relevant" and "somewhat relevant" measurements for each of the main features of ALI and recommended the use of least one "very relevant" measurement and preferably one or two additional separate measurements to determine if a main feature of ALI is present. Finally, the Committee emphasized that not all of the measurements listed can or should be performed in every study, and that measurements not included in the list are by no means "irrelevant." Our list of features and measurements of ALI is intended as a guide for investigators, and ultimately investigators should choose the particular measurements that best suit the experimental questions being addressed as well as take into consideration any unique aspects of the experimental design.
Collapse
|
26
|
Rodrigues TG, Fernandes A, Sousa JPB, Bastos JK, Sforcin JM. In vitro and in vivo effects of clove on pro-inflammatory cytokines production by macrophages. Nat Prod Res 2009; 23:319-26. [PMID: 19296372 DOI: 10.1080/14786410802242679] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biological properties of clove have been reported, but little is known about its effect on the immune system. This work was aimed to investigate the effect in vivo of a water-soluble part of hydroalcoholic extract of clove on pro-inflammatory cytokines (IL-1beta and IL-6) production by macrophages of BALB/c mice. The action of the essential oil of clove on the production of these cytokines macrophages was also investigated in vitro. The chemical compositions of the extract and of the oil were also investigated. Treatment of mice with water extract of clove was found to inhibit macrophages to produce both IL-1beta and IL-6. The essential oil of clove also inhibited the production of these cytokines in vitro. Eugenol was found to be the major component of the clove extract and essential oil, and probably is the causative agent of cytokine inhibition. Taken together, these data suggest an anti-inflammatory action of this spice.
Collapse
Affiliation(s)
- T G Rodrigues
- Department of Microbiology and Immunology, Biosciences Institute, UNESP, Botucatu, SP, Brazil
| | | | | | | | | |
Collapse
|
27
|
Wang Z, Rui T, Yang M, Valiyeva F, Kvietys PR. Alveolar Macrophages from Septic Mice Promote Polymorphonuclear Leukocyte Transendothelial Migration via an Endothelial Cell Src Kinase/NADPH Oxidase Pathway. THE JOURNAL OF IMMUNOLOGY 2008; 181:8735-44. [DOI: 10.4049/jimmunol.181.12.8735] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Kung HN, Yang MJ, Chang CF, Chau YP, Lu KS. In vitro and in vivo wound healing-promoting activities of β-lapachone. Am J Physiol Cell Physiol 2008; 295:C931-43. [DOI: 10.1152/ajpcell.00266.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Impaired wound healing is a serious problem for diabetic patients. Wound healing is a complex process that requires the cooperation of many cell types, including keratinocytes, fibroblasts, endothelial cells, and macrophages. β-Lapachone, a natural compound extracted from the bark of the lapacho tree ( Tabebuia avellanedae), is well known for its antitumor, antiinflammatory, and antineoplastic effects at different concentrations and conditions, but its effects on wound healing have not been studied. The purpose of the present study was to investigate the effects of β-lapachone on wound healing and its underlying mechanism. In the present study, we demonstrated that a low dose of β-lapachone enhanced the proliferation in several cells, facilitated the migration of mouse 3T3 fibroblasts and human endothelial EAhy926 cells through different MAPK signaling pathways, and accelerated scrape-wound healing in vitro. Application of ointment with or without β-lapachone to a punched wound in normal and diabetic ( db/ db) mice showed that the healing process was faster in β-lapachone-treated animals than in those treated with vehicle only. In addition, β-lapachone induced macrophages to release VEGF and EGF, which are beneficial for growth of many cells. Our results showed that β-lapachone can increase cell proliferation, including keratinocytes, fibroblasts, and endothelial cells, and migration of fibroblasts and endothelial cells and thus accelerate wound healing. Therefore, we suggest that β-lapachone may have potential for therapeutic use for wound healing.
Collapse
|
29
|
Wu R, Dong W, Zhou M, Zhang F, Marini CP, Ravikumar TS, Wang P. Ghrelin attenuates sepsis-induced acute lung injury and mortality in rats. Am J Respir Crit Care Med 2007; 176:805-13. [PMID: 17626913 PMCID: PMC2020826 DOI: 10.1164/rccm.200604-511oc] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE Our study has shown that plasma levels of ghrelin, a stomach-derived peptide, are significantly reduced in sepsis, and that ghrelin administration improves organ blood flow via a nuclear factor (NF)-kappaB-dependent pathway. However, it remains unknown whether ghrelin has any protective effects on severe sepsis-induced acute lung injury (ALI) and, if so, whether inhibition of NF-kappaB plays any role in it. OBJECTIVES To test the hypothesis that ghrelin reduces severe sepsis-induced ALI and mortality through inhibition of NF-kappaB. METHODS Sepsis was induced in rats by cecal ligation and puncture (CLP). Five hours after CLP, a bolus intravenous injection of 2 nmol of ghrelin was followed by continuous infusion of 12 nmol of ghrelin via a minipump for 15 hours. Samples were harvested 20 hours post-CLP (i.e., severe sepsis). Pulmonary levels of ghrelin and proinflammatory cytokines were measured by ELISA. NF-kappaB p65 and IkappaBalpha expression and NF-kappaB activity were measured by Western blot analysis and ELISA, respectively. Pulmonary blood flow was measured with radioactive microspheres. In additional animals, the necrotic cecum was excised 20 hours post-CLP and 10-day survival was recorded. MEASUREMENTS AND MAIN RESULTS Pulmonary levels of ghrelin decreased significantly 20 hours post-CLP. Ghrelin administration restored pulmonary levels of ghrelin, reduced lung injury, increased pulmonary blood flow, down-regulated proinflammatory cytokines, inhibited NF-kappaB activation, and improved survival in sepsis. Administration of a specific ghrelin receptor antagonist worsened the survival rate after CLP and cecal excision. CONCLUSIONS Ghrelin can be developed as a novel treatment for severe sepsis-induced ALI. The protective effect of ghrelin is mediated through inhibition of NF-kappaB.
Collapse
Affiliation(s)
- Rongqian Wu
- Department of Surgery, North Shore University Hospital, Manhasset, New York, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Moon DO, Choi YH, Kim ND, Park YM, Kim GY. Anti-inflammatory effects of beta-lapachone in lipopolysaccharide-stimulated BV2 microglia. Int Immunopharmacol 2007; 7:506-14. [PMID: 17321474 DOI: 10.1016/j.intimp.2006.12.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/03/2006] [Accepted: 12/17/2006] [Indexed: 11/18/2022]
Abstract
beta-Lapachone (LAPA) is a chemotherapeutic agent that can inhibit the expression of nitric oxide (NO) and inducible NO synthase (iNOS) in alveolar macrophages. No other information on the agent's anti-inflammatory activity has been reported. In the present study, we investigated the molecular mechanism of LAPA on lipopolysaccharide (LPS)-induced responses in BV2 microglia. Treatment of LAPA significantly inhibited NO and PGE(2) release in LPS-stimulated BV2 microglia. The inhibition of iNOS and COX-2 was also observed, suggesting the blockage of transcriptional levels. In addition, LAPA attenuated the expression of mRNA and proteins of proinflammatory cytokines, such as interleukin (IL)-1beta, IL-6 and tumor necrosis factor (TNF)-alpha in a dose-dependent manner. Moreover, LAPA exhibits anti-inflammatory properties by suppressing the NF-kappaB activation by blocking IkappaBalpha degradation and downregulating the ERK, p38 mitogen-activated protein kinase (MAPK) and Akt pathway. The results show that LAPA may be useful as a potential anti-inflammatory agent for attenuating inflammatory diseases.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Faculty of Applied Marine Science, Cheju National University, Jeju, South Korea
| | | | | | | | | |
Collapse
|
31
|
Dal-Pizzol F, Di Leone LP, Ritter C, Martins MR, Reinke A, Pens Gelain D, Zanotto-Filho A, de Souza LF, Andrades M, Barbeiro DF, Bernard EA, Cammarota M, Bevilaqua LRM, Soriano FG, Cláudio J, Moreira F, Roesler R, Schwartsmann G. Gastrin-releasing peptide receptor antagonist effects on an animal model of sepsis. Am J Respir Crit Care Med 2005; 173:84-90. [PMID: 16192447 DOI: 10.1164/rccm.200507-1118oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Several new therapeutic strategies have been described for the treatment of sepsis, but to date none are related to alterations in the bombesin/gastrin-releasing peptide (GRP) receptor pathways. OBJECTIVES To determine the effects of a selective GRP receptor antagonist, RC-3095, on cytokine release from macrophages and its in vivo effects in the cecal ligation and puncture (CLP) model of sepsis and in acute lung injury induced by intratracheal instillation of LPS. METHODS We determined the effects of RC-3095 in the CLP model of sepsis and in acute lung injury induced by intratracheal instillation of LPS. In addition, we determined the effects of RC-3095 on tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta, IL-10, and nitric oxide release from activated macrophages. MEASUREMENTS AND MAIN RESULTS The GRP antagonist attenuated LPS- or CLP-induced TNF-alpha, IL-1beta, and nitric oxide release in cultured macrophages and decreased the mRNA levels of inducible nitric oxide synthase. The administration of RC-3095 (0.3 mg/kg) 6 h after sepsis induction improved survival in the CLP model, and diminished lung damage after intratracheal instillation of LPS. These effects were associated with attenuation on the circulating TNF-alpha and IL-1beta levels and decreased myeloperoxidase activity in several organs. CONCLUSIONS We report that a selective GRP receptor antagonist attenuates the release of proinflammatory cytokines in vitro and in vivo and improves survival in "established" sepsis. These are consistent with the involvement of a new inflammatory pathway relevant to the development of sepsis.
Collapse
Affiliation(s)
- Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, 1105, Avenida Universitária, 88006-000 Criciúma, SC, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
A characteristic feature of all inflammatory disorders is the excessive recruitment of leukocytes to the site of inflammation. The loss of control in trafficking these cells contributes to inflammatory diseases. Leukocyte recruitment is a well-orchestrated process that includes several protein families including the large cytokine subfamily of chemotactic cytokines, the chemokines. Chemokines and their receptors are involved in the pathogenesis of several diseases. Acute lung injury that clinically manifests as acute respiratory distress syndrome (ARDS) is caused by an uncontrolled systemic inflammatory response resulting from clinical events including major surgery, trauma, multiple transfusions, severe burns, pancreatitis, and sepsis. Systemic inflammatory response syndrome involves activation of alveolar macrophages and sequestered neutrophils in the lung. The clinical hallmarks of ARDS are severe hypoxemia, diffuse bilateral pulmonary infiltrates, and normal intracardiac filling pressures. The magnitude and duration of the inflammatory process may ultimately determine the outcome in patients with ARDS. Recent evidence shows that activated leukocytes and chemokines play a key role in the pathogenesis of ARDS. The expanding number of antagonists of chemokine receptors for inflammatory disorders may hold promise for new medicines to combat ARDS.
Collapse
Affiliation(s)
- Padmam Puneet
- Dept. of Pharmacology, National University of Singapore, Singapore 117597
| | | | | |
Collapse
|
33
|
Affiliation(s)
- Martin J Tobin
- Division of Pulmonary and Critical Care Medicine, Loyola University of Chicago Stritch School of Medicine and Hines Veterans Affairs Hospital, Hines, IL 60141, USA.
| |
Collapse
|