1
|
Hall R, Hall IP, Sayers I. Genetic risk factors for the development of pulmonary disease identified by genome-wide association. Respirology 2018; 24:204-214. [PMID: 30421854 DOI: 10.1111/resp.13436] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/31/2018] [Accepted: 09/20/2018] [Indexed: 12/17/2022]
Abstract
Chronic respiratory diseases are a major cause of morbidity and mortality. Asthma and chronic obstructive pulmonary disease (COPD) combined affect over 500 million people worldwide. While environmental factors are important in disease progression, asthma and COPD have long been known to be heritable with genetic components playing an important role in the risk of developing disease. Identification of genetic variation contributing to disease progression is important for a number of reasons including identification of risk alleles, understanding underlying disease mechanisms and development of novel therapies. Genome-wide association studies (GWAS) have been successful in identifying many loci associated with lung function, COPD and asthma. In recent years, meta-analyses and improved imputation have facilitated the growth of GWAS in terms of numbers of subjects and the number of single nucleotide polymorphisms (SNP) that can be interrogated. As a consequence, there has been a significant increase in the number of signals associated with asthma, COPD and lung function. SNP that have shown association with lung function reassuringly show a significant overlap with SNP associated with COPD giving a glimpse at pathways that may be involved in COPD mechanisms including genes in, for example, developmental pathways. In asthma, association signals are often in or near genes involved in both adaptive and innate immune response pathways, epithelial cell homeostasis and airway structural changes. The challenges now are translating these genetic signals into a new understanding of lung biology, understanding how variants impact health and disease and how they may provide opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Robert Hall
- Division of Respiratory Medicine, NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Ian P Hall
- Division of Respiratory Medicine, NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Ian Sayers
- Division of Respiratory Medicine, NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Ghosh M, Miller YE, Nakachi I, Kwon JB, Barón AE, Brantley AE, Merrick DT, Franklin WA, Keith RL, Vandivier RW. Exhaustion of Airway Basal Progenitor Cells in Early and Established Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2018; 197:885-896. [PMID: 29211494 PMCID: PMC6020409 DOI: 10.1164/rccm.201704-0667oc] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 12/01/2017] [Indexed: 12/17/2022] Open
Abstract
RATIONALE Up to 40% of smokers develop chronic obstructive pulmonary disease (COPD) over a period that spans decades. Despite the importance of COPD, much remains to be learned about susceptibility and pathogenesis, especially during early, prediagnostic stages of disease. Airway basal progenitor cells are crucial for lung health and resilience because of their ability to repair injured airways. In COPD, the normal airway epithelium is replaced with increased basal and secretory (mucous) cells and decreased ciliated cells, suggesting that progenitors are impaired. OBJECTIVES To examine airway basal progenitor cells and lung function in smokers with and without COPD. METHODS Bronchial biopsies taken from smokers at risk for COPD and lung cancer were used to acquire airway basal progenitor cells. They were evaluated for count, self-renewal, and multipotentiality (ability to differentiate to basal, mucous, and ciliated cells), and progenitor count was examined for its relationship with lung function. MEASUREMENTS AND MAIN RESULTS Basal progenitor count, self-renewal, and multipotentiality were all reduced in COPD versus non-COPD. COPD progenitors produced an epithelium with increased basal and mucous cells and decreased ciliated cells, replicating the COPD phenotype. Progenitor depletion correlated with lung function and identified a subset of subjects without COPD with lung function that was midway between non-COPD with high progenitor counts and those with COPD. CONCLUSIONS Basal progenitor dysfunction relates to the histologic and physiologic manifestations of COPD and identifies a subset that may represent an early, prediagnostic stage of COPD, indicating that progenitor exhaustion is involved in COPD pathogenesis.
Collapse
Affiliation(s)
- Moumita Ghosh
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - York E. Miller
- COPD Program, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and
- Veterans Affairs Eastern Colorado Healthcare System, Denver, Colorado
| | - Ichiro Nakachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan; and
| | - Jennifer B. Kwon
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Anna E. Barón
- Department of Biostatistics and Bioinformatics, University of Colorado School of Public Health, Aurora, Colorado
| | - Alexandra E. Brantley
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Daniel T. Merrick
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Wilbur A. Franklin
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Robert L. Keith
- COPD Program, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and
- Veterans Affairs Eastern Colorado Healthcare System, Denver, Colorado
| | - R. William Vandivier
- COPD Program, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and
| |
Collapse
|
3
|
Translating Lung Function Genome-Wide Association Study (GWAS) Findings. ADVANCES IN GENETICS 2016; 93:57-145. [DOI: 10.1016/bs.adgen.2015.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Schwartz AG, Cote ML. Epidemiology of Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 893:21-41. [PMID: 26667337 DOI: 10.1007/978-3-319-24223-1_2] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lung cancer continues to be one of the most common causes of cancer death despite understanding the major cause of the disease: cigarette smoking. Smoking increases lung cancer risk 5- to 10-fold with a clear dose-response relationship. Exposure to environmental tobacco smoke among nonsmokers increases lung cancer risk about 20%. Risks for marijuana and hookah use, and the new e-cigarettes, are yet to be consistently defined and will be important areas for continued research as use of these products increases. Other known environmental risk factors include exposures to radon, asbestos, diesel, and ionizing radiation. Host factors have also been associated with lung cancer risk, including family history of lung cancer, history of chronic obstructive pulmonary disease and infections. Studies to identify genes associated with lung cancer susceptibility have consistently identified chromosomal regions on 15q25, 6p21 and 5p15 associated with lung cancer risk. Risk prediction models for lung cancer typically include age, sex, cigarette smoking intensity and/or duration, medical history, and occupational exposures, however there is not yet a risk prediction model currently recommended for general use. As lung cancer screening becomes more widespread, a validated model will be needed to better define risk groups to inform screening guidelines.
Collapse
Affiliation(s)
- Ann G Schwartz
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Michele L Cote
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
5
|
Green CE, Turner AM. Role of chronic obstructive pulmonary disease in lung cancer pathogenesis. World J Respirol 2013; 3:67-76. [DOI: 10.5320/wjr.v3.i3.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/26/2013] [Accepted: 09/04/2013] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are two important smoking related conditions. However, COPD has been shown to be an independent risk factor for lung cancer regardless of smoking history, suggesting that COPD and lung cancer may share a common pathogenesis. This review summarizes the epidemiology of lung cancer and COPD briefly, as well as discussing the potential for shared genetic risk, and shared genomic mechanisms, such as epigenetic changes or DNA damage induced by smoking. How key areas of COPD pathogenesis, such as inflammation, oxidative stress and protease imbalance may contribute to subsequent development of cancer will also be covered. Finally the possibility that consequences of COPD, such as hypoxia, influence carcinogenesis will be reviewed. By understanding the pathogenesis of COPD and lung cancer in detail it is possible that new treatments may be developed and the risk of lung cancer in COPD may be reduced.
Collapse
|
6
|
Wain LV, Soler Artigas M, Tobin MD. What can genetics tell us about the cause of fixed airflow obstruction? Clin Exp Allergy 2012; 42:1176-82. [PMID: 22805464 DOI: 10.1111/j.1365-2222.2012.03967.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of chronic morbidity and mortality worldwide with smoking being the most important risk factor of the disease. However, lung function and COPD are known to also have a genetic component and a deeper knowledge of the genetic architecture of the disease could lead to further understanding of predisposition to COPD and also to development of new therapeutic interventions. Genetic linkage studies and candidate gene association studies have not provided evidence to convincingly identify the genes underlying lung function or COPD. However, recent large genome-wide association studies (GWAS) including tens of thousands of individuals have identified 26 variants at different loci in the human genome that show robust association with quantitative lung function measures in the general population. A growing number of these variants are being shown to be associated with COPD. Following the identification of these new lung function loci, the challenge now lies in refining the signals to identify the causative variants underlying the association signals and relating these signals to the molecular pathways that underlie lung function.
Collapse
Affiliation(s)
- L V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | | |
Collapse
|
7
|
Howden R, Kleeberger SR. Genetic and Environmental Influences on Gas Exchange. Compr Physiol 2012; 2:2595-614. [DOI: 10.1002/cphy.c110060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer represent two diseases that share a strong risk factor in smoking, and COPD increases risk of lung cancer even after adjusting for the effects of smoking. These diseases not only occur jointly within an individual but also there is evidence of shared occurrence within families. Understanding the genetic contributions to these diseases, both individually and jointly, is needed to identify the highest risk group for screening and targeted prevention, as well as aiding in the development of targeted treatments. The chromosomal regions that have been identified as being associated either jointly or independently with lung cancer, COPD, nicotine addiction, and lung function are presented. Studies jointly measuring genetic variation in lung cancer and COPD have been limited by the lack of detailed COPD diagnosis and severity data in lung cancer populations, the lack of lung cancer-specific phenotypes (histology and tumor markers) in COPD populations, and the lack of inclusion of minorities. African Americans, who smoke fewer cigarettes per day and have different linkage disequilibrium and disease patterns than whites, and Asians, also with different patterns of exposure to lung carcinogens and linkage patterns, will provide invaluable information to better understand shared and independent genetic contributions to lung cancer and COPD to more fully define the highest risk group of individuals who will most benefit from screening and to develop molecular signatures to aid in targeted treatment and prevention efforts.
Collapse
|
9
|
Acquaah-Mensah GK, Malhotra D, Vulimiri M, McDermott JE, Biswal S. Suppressed expression of T-box transcription factors is involved in senescence in chronic obstructive pulmonary disease. PLoS Comput Biol 2012; 8:e1002597. [PMID: 22829758 PMCID: PMC3400575 DOI: 10.1371/journal.pcbi.1002597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 05/02/2012] [Indexed: 01/13/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major global health problem. The etiology of COPD has been associated with apoptosis, oxidative stress, and inflammation. However, understanding of the molecular interactions that modulate COPD pathogenesis remains only partly resolved. We conducted an exploratory study on COPD etiology to identify the key molecular participants. We used information-theoretic algorithms including Context Likelihood of Relatedness (CLR), Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE), and Inferelator. We captured direct functional associations among genes, given a compendium of gene expression profiles of human lung epithelial cells. A set of genes differentially expressed in COPD, as reported in a previous study were superposed with the resulting transcriptional regulatory networks. After factoring in the properties of the networks, an established COPD susceptibility locus and domain-domain interactions involving protein products of genes in the generated networks, several molecular candidates were predicted to be involved in the etiology of COPD. These include COL4A3, CFLAR, GULP1, PDCD1, CASP10, PAX3, BOK, HSPD1, PITX2, and PML. Furthermore, T-box (TBX) genes and cyclin-dependent kinase inhibitor 2A (CDKN2A), which are in a direct transcriptional regulatory relationship, emerged as preeminent participants in the etiology of COPD by means of senescence. Contrary to observations in neoplasms, our study reveals that the expression of genes and proteins in the lung samples from patients with COPD indicate an increased tendency towards cellular senescence. The expression of the anti-senescence mediators TBX transcription factors, chromatin modifiers histone deacetylases, and sirtuins was suppressed; while the expression of TBX-regulated cellular senescence markers such as CDKN2A, CDKN1A, and CAV1 was elevated in the peripheral lung tissue samples from patients with COPD. The critical balance between senescence and anti-senescence factors is disrupted towards senescence in COPD lungs.
Collapse
Affiliation(s)
- George K Acquaah-Mensah
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Worcester, Massachusetts, United States of America.
| | | | | | | | | |
Collapse
|
10
|
Guo Y, Gong Y, Shi G, Yang K, Pan C, Li M, Li Q, Cheng Q, Dai R, Fan L, Wan H. Single-nucleotide polymorphisms in the TSPYL-4 and NT5DC1 genes are associated with susceptibility to chronic obstructive pulmonary disease. Mol Med Rep 2012; 6:631-8. [PMID: 22736055 DOI: 10.3892/mmr.2012.964] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 06/18/2012] [Indexed: 11/06/2022] Open
Abstract
The risk of developing chronic obstructive pulmonary disease (COPD) is partially determined by genetic and environmental factors. Many published candidate gene studies show conflicting results due to ethnic differences and sample sizes. The number of these studies carried out in Chinese populations is small. To investigate candidate genes and haplotypes for susceptibility to COPD in a southern Han Chinese population, we performed genotyping of DNA samples in 200 COPD patients and 250 control subjects by analyzing 54 single-nucleotide polymorphisms (SNPs) in 23 genes associated with the development of COPD and/or pulmonary function identified by genome-wide association studies (GWAS). We also performed linkage disequilibrium (LD) and haplotype analysis according to the results of genotyping. The frequencies of the SNP [rs3749893 of testis‑specific protein Y-encoded-like 4 (TSPYL-4) gene] G allele and SNP [rs1052443 of 5'-nucleotidase domain containing 1 (NT5DC1) gene] A allele were significantly higher in the cases studied compared to the control subjects (P=0.032, P<0.05, OR=0.692, 95% CI 0.495‑0.970; P=0.0205, P<0.05, OR=0.670, 95% CI 0.477-0.941, respectively). Results showed that two blocks of SNPs (rs1052443 and rs3749893; rs11155242 and rs6937121) had sufficient precision to allow construction of a haplotype block. We constructed the TSPYL-4 and NT5DC1 haplotypes of the cases and controls, but no significant difference between the two groups was found. rs3749893 A allele of TSPYL-4 and rs1052443 C allele of NT5DC1 were associated with a protective effect against the deterioration of pulmonary function. In conclusion, TSPYL-4 and NT5DC1 gene polymorphisms are associated with susceptibility to COPD and pulmonary function.
Collapse
Affiliation(s)
- Yi Guo
- Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University (SJTU), School of Medicine, Shanghai 200025, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Antas P, Holland S, Sterling T. Abnormal spontaneous interleukin 8 receptor expression: a brief report of two cases. Rev Soc Bras Med Trop 2012; 45:134-7. [PMID: 22370847 PMCID: PMC3981535 DOI: 10.1590/s0037-86822012000100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 01/17/2011] [Indexed: 11/21/2022] Open
Abstract
Interleukin 8 (CXCL8) is an autocrine chemokine specific for the chemoattraction and activation of granulocytes, NKT cells and T lymphocytes. Patients with tuberculosis and latent Mycobacterium tuberculosis infection were assessed for the spontaneous expression of CXCR1 (CD128) and CXCR2 on lymphocytes and monocytes. Compared with ex vivo profiles, increased spontaneous CXCR2 expression and normal CXCR1 expression were found on lymphocytes in two out of 59 individuals. Monocytes showed normal ex vivo profiles for both receptors. After stimulation with purified protein derivative, the in vitro levels of CXCL8 were below the median levels of all patients with prior tuberculosis. Spontaneous CXCR2 modulation did not cause notable variation in the in vitro levels of CXCL8.
Collapse
Affiliation(s)
- Paulo Antas
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ.
| | | | | |
Collapse
|
12
|
Foreman MG, Zhang L, Murphy J, Hansel NN, Make B, Hokanson JE, Washko G, Regan EA, Crapo JD, Silverman EK, DeMeo DL, and the COPDGene Investigators. Early-onset chronic obstructive pulmonary disease is associated with female sex, maternal factors, and African American race in the COPDGene Study. Am J Respir Crit Care Med 2011; 184:414-20. [PMID: 21562134 PMCID: PMC3175544 DOI: 10.1164/rccm.201011-1928oc] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 05/05/2011] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The characterization of young adults who develop late-onset diseases may augment the detection of novel genes and promote new pathogenic insights. METHODS We analyzed data from 2,500 individuals of African and European ancestry in the COPDGene Study. Subjects with severe, early-onset chronic obstructive pulmonary disease (COPD) (n=70, age < 55 yr, FEV1 < 50% predicted) were compared with older subjects with COPD (n =306, age >64 yr, FEV1 <50% predicted). MEASUREMENTS AND MAIN RESULTS Subjects with severe, early-onset COPD were predominantly females (66%), P =0.0004. Proportionally,early-onset COPD was seen in 42% (25 of 59) of African Americans versus 14% (45 of 317) of non-Hispanic whites, P <0.0001. Other risk factors included current smoking (56 vs. 17%, P < 0.0001) and self-report of asthma (39 vs. 25%, P =0.008). Maternal smoking (70 vs. 44%, P=0.0001) and maternal COPD (23 vs.12%, P=0.03) were reported more commonly in subjects with early-onset COPD. Multivariable regression analysis found association with African American race, odds ratio (OR), 7.5 (95% confidence interval [CI], 2.3–24; P ¼=0.0007); maternal COPD, OR, 4.7 (95% CI,1.3–17; P=0.02); female sex, OR, 3.1 (95% CI, 1.1–8.7; P=0.03); and each pack-year of smoking, OR, 0.98 (95% CI, 0.96–1.0; P ¼ 0.03). CONCLUSIONS These observations support the hypothesis that severe, early-onset COPD is prevalent in females and is influenced by maternal factors. Future genetic studies should evaluate (1) gene-by-sex interactions to address sex-specific genetic contributions and (2) gene-by-race interactions.
Collapse
Affiliation(s)
| | | | | | | | - Barry Make
- National Jewish Health, Denver, Colorado
| | | | | | | | | | - Edwin K. Silverman
- Pulmonary and Critical Care Division, and
- Channing Laboratory, Brigham and Women's Hospital, Boston, Massachusetts
| | - Dawn L. DeMeo
- Pulmonary and Critical Care Division, and
- Channing Laboratory, Brigham and Women's Hospital, Boston, Massachusetts
| | - and the COPDGene Investigators
- Morehouse School of Medicine, Atlanta, Georgia
- National Jewish Health, Denver, Colorado
- Johns Hopkins School of Medicine, Baltimore, Maryland
- University of Colorado Denver, Denver, Colorado; and
- Pulmonary and Critical Care Division, and
- Channing Laboratory, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
Collaborators
Jeffrey Curtis, Ella Kazerooni, Nicola Hanania, Philip Alapat, Venkata Bandi, Kalpalatha Guntupalli, Elizabeth Guy, Antara Mallampalli, Charles Trinh, Mustafa Atik, Dawn DeMeo, Craig Hersh, George Washko, Francine Jacobson, R Graham Barr, Byron Thomashow, John Austin, Neil MacIntyre, Lacey Washington, H Page McAdams, Richard Rosiello, Timothy Bresnahan, Charlene McEvoy, Joseph Tashjian, Robert Wise, Nadia Hansel, Robert Brown, Gregory Diette, Richard Casaburi, Janos Porszasz, Hans Fischer, Matt Budoff, Amir Sharafkhaneh, Charles Trinh, Hirani Kamal, Roham Darvishi, Dennis Niewoehner, Tadashi Allen, Quentin Anderson, Kathryn Rice, Marilyn Foreman, Gloria Westney, Eugene Berkowitz, Russell Bowler, Adam Friedlander, David Lynch, Joyce Schroeder, John Newell, Gerard Criner, Victor Kim, Nathaniel Marchetti, Aditi Satti, A James Mamary, Robert Steiner, Chandra Dass, William Bailey, Mark Dransfield, Hrudaya Nath, Joe Ramsdell, Paul Friedman, Geoffrey McLennan, Edwin J R van Beek, Brad Thompson, Dwight Look, Fernando Martinez, MeiLan Han, Ella Kazerooni, Christine Wendt, Tadashi Allen, Frank Sciurba, Joel Weissfeld, Carl Fuhrman, Jessica Bon, San Antonio, Antonio Anzueto, Sandra Adams, Carlos Orozco, Mario Ruiz, James Crapo, Edwin Silverman, Barry Make, Elizabeth Regan, Sarah Moyle, Douglas Stinson, Terri Beaty, Barbara Klanderman, Nan Laird, Christoph Lange, Michael Cho, Stephanie Santorico, John Hokanson, Dawn DeMeo, Nadia Hansel, Craig Hersh, Jacqueline Hetmanski, Tanda Murray, David Lynch, Joyce Schroeder, John Newell, John Reilly, Harvey Coxson, Judy Philip, Eric Hoffman, George Washko, Raul San Jose Estepar, James Ross, Rebecca Leek, Jordan Zach, Alex Kluiber, Jered Sieren, Heather Baumhauer, Verity McArthur, Dzimitry Kazlouski, Andrew Allen, Tanya Mann, Anastasia Rodionova, Robert Jensen, Homayoon Farzadegan, Stacey Meyerer, Shivam Chandan, Samantha Bragan, James Murphy, Douglas Everett, Carla Wilson, Ruthie Knowles, Amber Powell, Joe Piccoli, Maura Robinson, Margaret Forbes, Martina Wamboldt, John Hokanson, Marci Sontag, Jennifer Black-Shinn, Gregory Kinney,
Collapse
|
13
|
Lakhdar R, Denden S, Kassab A, Leban N, Knani J, Lefranc G, Miled A, Chibani JB, Khelil AH. Update in chronic obstructive pulmonary disease: role of antioxidant and metabolizing gene polymorphisms. Exp Lung Res 2011; 37:364-75. [PMID: 21721950 DOI: 10.3109/01902148.2011.580416] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by systemic and local chronic inflammation and oxidative stress. The sources of the increased oxidative stress in COPD patients derive from the increased burden of inhaled oxidants such as cigarette smoke and other forms of particulate or gaseous air pollution and from the increase in reactive oxygen species (ROS) generated by several inflammatory, immune, and structural airways cells. There is increasing evidence that genetic factors may also contribute to the pathogenesis if COPD, particularly antioxidant genes, which may confer a susceptibility to environmental insults such as cigarette smoke and thereafter development of COPD. Consequently, heme oxygenase-1 (HO-1), superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), microsomal epoxide hydrolase (EPHX1), and cytochrome P450 (CYP) genetic polymorphisms may have an important role in COPD pathogenesis. In this review the authors summarized the most recent findings dealing with these antioxidant genes contributing to the free radical neutralization and xenobiotic enzymes playing a role in different phases of cell detoxification reactions related to the redox status imbalance in COPD, with an emphasis on their possible roles in disease progression.
Collapse
Affiliation(s)
- Ramzi Lakhdar
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, Monastir, Tunisia.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lindsey JY, Ganguly K, Brass DM, Li Z, Potts EN, Degan S, Chen H, Brockway B, Abraham SN, Berndt A, Stripp BR, Foster WM, Leikauf GD, Schulz H, Hollingsworth JW. c-Kit is essential for alveolar maintenance and protection from emphysema-like disease in mice. Am J Respir Crit Care Med 2011; 183:1644-52. [PMID: 21471107 PMCID: PMC3136992 DOI: 10.1164/rccm.201007-1157oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 03/10/2011] [Indexed: 02/05/2023] Open
Abstract
RATIONALE Previously, we demonstrated a candidate region for susceptibility to airspace enlargement on mouse chromosome 5. However, the specific candidate genes within this region accounting for emphysema-like changes remain unrecognized. c-Kit is a receptor tyrosine kinase within this candidate gene region that has previously been recognized to contribute to the survival, proliferation, and differentiation of hematopoietic stem cells. Increases in the percentage of cells expressing c-Kit have previously been associated with protection against injury-induced emphysema. OBJECTIVES Determine whether genetic variants of c-Kit are associated with spontaneous airspace enlargement. METHODS Perform single-nucleotide polymorphism association studies in the mouse strains at the extremes of airspace enlargement phenotype for variants in c-Kit tyrosine kinase. Characterize mice bearing functional variants of c-Kit compared with wild-type controls for the development of spontaneous airspace enlargement. Epithelial cell proliferation was measured in culture. MEASUREMENTS AND MAIN RESULTS Upstream regulatory single-nucleotide polymorphisms in the divergent mouse strains were associated with the lung compliance difference observed between the extreme strains. c-Kit mutant mice (Kit(W-sh)/(W-sh)), when compared with genetic controls, developed altered lung histology, increased total lung capacity, increased residual volume, and increased lung compliance that persist into adulthood. c-Kit inhibition with imatinib attenuated in vitro proliferation of cells expressing epithelial cell adhesion molecule. CONCLUSIONS Our findings indicate that c-Kit sustains and/or maintains normal alveolar architecture in the lungs of mice. In vitro data suggest that c-Kit can regulate epithelial cell clonal expansion. The precise mechanisms that c-Kit contributes to the development of airspace enlargement and increased lung compliance remain unclear and warrants further investigation.
Collapse
Affiliation(s)
- James Y. Lindsey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - Koustav Ganguly
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - David M. Brass
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - Zhuowei Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - Erin N. Potts
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - Simone Degan
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - Huaiyong Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - Brian Brockway
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - Soman N. Abraham
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - Annerose Berndt
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - Barry R. Stripp
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - W. Michael Foster
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - George D. Leikauf
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - Holger Schulz
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - John W. Hollingsworth
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| |
Collapse
|
15
|
Hersh CP, Silverman EK, Gascon J, Bhattacharya S, Klanderman BJ, Litonjua AA, Lefebvre V, Sparrow D, Reilly JJ, Anderson WH, Lomas DA, Mariani TJ. SOX5 is a candidate gene for chronic obstructive pulmonary disease susceptibility and is necessary for lung development. Am J Respir Crit Care Med 2011; 183:1482-9. [PMID: 21330457 PMCID: PMC3137139 DOI: 10.1164/rccm.201010-1751oc] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 02/17/2011] [Indexed: 12/17/2022] Open
Abstract
RATIONALE Chromosome 12p has been linked to chronic obstructive pulmonary disease (COPD) in the Boston Early-Onset COPD Study (BEOCOPD), but a susceptibility gene in that region has not been identified. OBJECTIVES We used high-density single-nucleotide polymorphism (SNP) mapping to implicate a COPD susceptibility gene and an animal model to determine the potential role of SOX5 in lung development and COPD. METHODS On chromosome 12p, we genotyped 1,387 SNPs in 386 COPD cases from the National Emphysema Treatment Trial and 424 control smokers from the Normative Aging Study. SNPs with significant associations were then tested in the BEOCOPD study and the International COPD Genetics Network. Based on the human results, we assessed histology and gene expression in the lungs of Sox5(-/-) mice. MEASUREMENTS AND MAIN RESULTS In the case-control analysis, 27 SNPs were significant at P ≤ 0.01. The most significant SNP in the BEOCOPD replication was rs11046966 (National Emphysema Treatment Trial-Normative Aging Study P = 6.0 × 10(-4), BEOCOPD P = 1.5 × 10(-5), combined P = 1.7 × 10(-7)), located 3' to the gene SOX5. Association with rs11046966 was not replicated in the International COPD Genetics Network. Sox5(-/-) mice showed abnormal lung development, with a delay in maturation before the saccular stage, as early as E16.5. Lung pathology in Sox5(-/-) lungs was associated with a decrease in fibronectin expression, an extracellular matrix component critical for branching morphogenesis. CONCLUSIONS Genetic variation in the transcription factor SOX5 is associated with COPD susceptibility. A mouse model suggests that the effect may be due, in part, to its effects on lung development and/or repair processes.
Collapse
Affiliation(s)
- Craig P Hersh
- Channing Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Himes BE, Klanderman B, Ziniti J, Senter-Sylvia J, Soto-Quiros ME, Avila L, Celedón JC, Lange C, Mariani TJ, Lasky-Su J, Hersh CP, Raby BA, Silverman EK, Weiss ST, DeMeo DL. Association of SERPINE2 with asthma. Chest 2011; 140:667-674. [PMID: 21436250 DOI: 10.1378/chest.10-2973] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND The "Dutch hypothesis" suggests that asthma and COPD have common genetic determinants. The serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 2 (SERPINE2) gene previously has been associated with COPD. We sought to determine whether SERPINE2 is associated with asthma and asthma-related phenotypes. METHODS We measured the association of 39 SERPINE2 single-nucleotide polymorphisms (SNPs) with asthma-related phenotypes in 655 parent-child trios from the Childhood Asthma Management Program (CAMP), and we measured the association of 19 SERPINE2 SNPs with asthma in a case-control design of 359 CAMP probands and 846 population control subjects. We attempted to replicate primary asthma-related phenotype findings in one independent population and primary asthma affection status findings in two independent populations. We compared association results with CAMP proband expression quantitative trait loci. RESULTS Nine of 39 SNPs had P < .05 for at least one phenotype in CAMP, and two of these replicated in an independent population of 426 people with childhood asthma. Six of 19 SNPs had P < .05 for association with asthma in CAMP/Illumina. None of these replicated in two independent populations. The expression quantitative trait loci revealed that five SNPs associated with asthma in CAMP/Illumina and one SNP associated with FEV(1) in CAMP are strongly correlated with SERPINE2 expression levels. Comparison of results to previous COPD studies identified five SNPs associated with both asthma- and COPD-related phenotypes. CONCLUSIONS Our results weakly support SERPINE2 as a Dutch hypothesis candidate gene through nominally significant associations with asthma and related traits. Further study of SERPINE2 is necessary to verify its involvement in asthma and COPD.
Collapse
Affiliation(s)
- Blanca E Himes
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Children's Hospital Informatics Program, Boston, MA.
| | - Barbara Klanderman
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - John Ziniti
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Jody Senter-Sylvia
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Manuel E Soto-Quiros
- Division of Pediatric Pulmonology, Hospital Nacional de Niños, San José, Costa Rica
| | - Lydiana Avila
- Division of Pediatric Pulmonology, Hospital Nacional de Niños, San José, Costa Rica
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, Allergy and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Christoph Lange
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Thomas J Mariani
- Division of Neonatology and Center for Pediatric Biomedical Research, University of Rochester, Rochester, NY
| | - Jessica Lasky-Su
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Craig P Hersh
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Benjamin A Raby
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Edwin K Silverman
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Scott T Weiss
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Dawn L DeMeo
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
17
|
Eisner MD, Anthonisen N, Coultas D, Kuenzli N, Perez-Padilla R, Postma D, Romieu I, Silverman EK, Balmes JR. An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 182:693-718. [PMID: 20802169 DOI: 10.1164/rccm.200811-1757st] [Citation(s) in RCA: 634] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
RATIONALE Although cigarette smoking is the most important cause of chronic obstructive pulmonary disease (COPD), a substantial proportion of COPD cases cannot be explained by smoking alone. OBJECTIVES To evaluate the risk factors for COPD besides personal cigarette smoking. METHODS We constituted an ad hoc subcommittee of the American Thoracic Society Environmental and Occupational Health Assembly. An international group of members was invited, based on their scientific expertise in a specific risk factor for COPD. For each risk factor area, the committee reviewed the literature, summarized the evidence, and developed conclusions about the likelihood of it causing COPD. All conclusions were based on unanimous consensus. MEASUREMENTS AND MAIN RESULTS The population-attributable fraction for smoking as a cause of COPD ranged from 9.7 to 97.9%, but was less than 80% in most studies, indicating a substantial burden of disease attributable to nonsmoking risk factors. On the basis of our review, we concluded that specific genetic syndromes and occupational exposures were causally related to the development of COPD. Traffic and other outdoor pollution, secondhand smoke, biomass smoke, and dietary factors are associated with COPD, but sufficient criteria for causation were not met. Chronic asthma and tuberculosis are associated with irreversible loss of lung function, but there remains uncertainty about whether there are important phenotypic differences compared with COPD as it is typically encountered in clinical settings. CONCLUSIONS In public health terms, a substantive burden of COPD is attributable to risk factors other than smoking. To prevent COPD-related disability and mortality, efforts must focus on prevention and cessation of exposure to smoking and these other, less well-recognized risk factors.
Collapse
|
18
|
Hersh CP, Pillai SG, Zhu G, Lomas DA, Bakke P, Gulsvik A, DeMeo DL, Klanderman BJ, Lazarus R, Litonjua AA, Sparrow D, Reilly JJ, Agusti A, Calverley PMA, Donner CF, Levy RD, Make BJ, Paré PD, Rennard SI, Vestbo J, Wouters EFM, Scholand MB, Coon H, Hoidal J, Silverman EK. Multistudy fine mapping of chromosome 2q identifies XRCC5 as a chronic obstructive pulmonary disease susceptibility gene. Am J Respir Crit Care Med 2010; 182:605-13. [PMID: 20463177 PMCID: PMC2937234 DOI: 10.1164/rccm.200910-1586oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 05/11/2010] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Several family-based studies have identified genetic linkage for lung function and airflow obstruction to chromosome 2q. OBJECTIVES We hypothesized that merging results of high-resolution single nucleotide polymorphism (SNP) mapping in four separate populations would lead to the identification of chronic obstructive pulmonary disease (COPD) susceptibility genes on chromosome 2q. METHODS Within the chromosome 2q linkage region, 2,843 SNPs were genotyped in 806 COPD cases and 779 control subjects from Norway, and 2,484 SNPs were genotyped in 309 patients with severe COPD from the National Emphysema Treatment Trial and 330 community control subjects. Significant associations from the combined results across the two case-control studies were followed up in 1,839 individuals from 603 families from the International COPD Genetics Network (ICGN) and in 949 individuals from 127 families in the Boston Early-Onset COPD Study. MEASUREMENTS AND MAIN RESULTS Merging the results of the two case-control analyses, 14 of the 790 overlapping SNPs had a combined P < 0.01. Two of these 14 SNPs were consistently associated with COPD in the ICGN families. The association with one SNP, located in the gene XRCC5, was replicated in the Boston Early-Onset COPD Study, with a combined P = 2.51 x 10(-5) across the four studies, which remains significant when adjusted for multiple testing (P = 0.02). Genotype imputation confirmed the association with SNPs in XRCC5. CONCLUSIONS By combining data from COPD genetic association studies conducted in four independent patient samples, we have identified XRCC5, an ATP-dependent DNA helicase, as a potential COPD susceptibility gene.
Collapse
Affiliation(s)
- Craig P Hersh
- Channing Laboratory, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cha SI, Kang HG, Choi JE, Kim MJ, Park J, Lee WK, Kim CH, Jung TH, Park JY. SERPINE2 polymorphisms and chronic obstructive pulmonary disease. J Korean Med Sci 2009; 24:1119-25. [PMID: 19949669 PMCID: PMC2775861 DOI: 10.3346/jkms.2009.24.6.1119] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 12/10/2008] [Indexed: 11/20/2022] Open
Abstract
A number of genome-wide linkage analyses have identified the 2q33.3-2q37.2 region as most likely to contain the genes that contribute to the susceptibility to chronic obstructive pulmonary disease (COPD). It was hypothesized that the SERPINE2 gene, which is one of the genes located at the 2q33.3-2q37.2 region, may act as a low-penetrance susceptibility gene for COPD. To test this hypothesis, the association of four SERPINE2 single nucleotide polymorphisms (SNPs; rs16865421A>G, rs7583463A>C, rs729631C>G, and rs6734100C>G) with the risk of COPD was investigated in a case-control study of 311 COPD patients and 386 controls. The SNP rs16865421 was associated with a significantly decreased risk of COPD in a dominant model for the polymorphic allele (adjusted odds ratio [OR]=0.66, 95% confidence interval [CI]=0.45-0.97, P=0.03). In haplotype analysis, the GACC haplotype carrying the polymorphic allele at the rs16865421 was associated with a significantly decreased risk of COPD when compared to the AACC haplotype (adjusted OR=0.58, 95% CI=0.38-0.89, P=0.01), and this effect was evident in younger individuals (adjusted OR=0.30, 95% CI=0.14-0.64, P=0.002). This study suggests that the SERPINE2 gene contributes to the susceptibility to COPD.
Collapse
Affiliation(s)
- Seung Ick Cha
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Hyo-Gyoung Kang
- Department of Biochemistry, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jin Eun Choi
- Department of Biochemistry, Kyungpook National University School of Medicine, Daegu, Korea
| | - Min Jung Kim
- Department of Biochemistry, Kyungpook National University School of Medicine, Daegu, Korea
| | | | - Won Kee Lee
- Department of Preventive Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Chang Ho Kim
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Tae Hoon Jung
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Jae Yong Park
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
- Department of Biochemistry, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
20
|
Hersh CP, Hansel NN, Barnes KC, Lomas DA, Pillai SG, Coxson HO, Mathias RA, Rafaels NM, Wise RA, Connett JE, Klanderman BJ, Jacobson FL, Gill R, Litonjua AA, Sparrow D, Reilly JJ, Silverman EK, ICGN Investigators. Transforming growth factor-beta receptor-3 is associated with pulmonary emphysema. Am J Respir Cell Mol Biol 2009; 41:324-31. [PMID: 19131638 PMCID: PMC2742752 DOI: 10.1165/rcmb.2008-0427oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 12/10/2008] [Indexed: 11/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous syndrome, including emphysema and airway disease. Phenotypes defined on the basis of chest computed tomography (CT) may decrease disease heterogeneity and aid in the identification of candidate genes for COPD subtypes. To identify these genes, we performed genome-wide linkage analysis in extended pedigrees from the Boston Early-Onset COPD Study, stratified by emphysema status (defined by chest CT scans) of the probands, followed by genetic association analysis of positional candidate genes. A region on chromosome 1p showed strong evidence of linkage to lung function traits in families of emphysema-predominant probands in the stratified analysis (LOD score = 2.99 in families of emphysema-predominant probands versus 1.98 in all families). Association analysis in 949 individuals from 127 early-onset COPD pedigrees revealed association for COPD-related traits with an intronic single-nucleotide polymorphism (SNP) in transforming growth factor-beta receptor-3 (TGFBR3) (P = 0.005). This SNP was significantly associated with COPD affection status comparing 389 cases from the National Emphysema Treatment Trial to 472 control smokers (P = 0.04), and with FEV(1) (P = 0.004) and CT emphysema (P = 0.05) in 3,117 subjects from the International COPD Genetics Network. Gene-level replication of association with lung function was seen in 427 patients with COPD from the Lung Health Study. In conclusion, stratified linkage analysis followed by association testing identified TGFBR3 (betaglycan) as a potential susceptibility gene for COPD. Published human microarray and murine linkage studies have also demonstrated the importance of TGFBR3 in emphysema and lung function, and our group and others have previously found association of COPD-related traits with TGFB1, a ligand for TGFBR3.
Collapse
Affiliation(s)
- Craig P Hersh
- Channing Laboratory and Center for Genomic Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
Collaborators
David A Lomas, Edwin K Silverman, Alvar Agusti, Peter M A Calverley, Claudio F Donner, Robert D Levy, Barry J Make, Peter D Paré, Stephen I Rennard, Jørgen Vestbo, Emiel F M Wouters,
Collapse
|
21
|
Bossé Y. Genetics of chronic obstructive pulmonary disease: a succinct review, future avenues and prospective clinical applications. Pharmacogenomics 2009; 10:655-67. [PMID: 19374520 DOI: 10.2217/pgs.09.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is influenced by genetic and environmental factors. A large number of candidate gene-association studies and genome-wide linkage scans have been conducted to elucidate the genetic architecture underlying this disease. The compilation of these studies clearly revealed the complex genetic nature of COPD. Multiple genes acting on specific environmental backgrounds are likely to be the tenet of this multifactorial disorder. Encouragingly, reproducible susceptibility genes, such as SERPINE2, were recently identified. Advances in genomic research offer unprecedented capabilities to interrogate the human genome and are likely to accelerate the discovery of new genes. A comprehensive catalogue of genes implicated in the pathogenesis of COPD has great potential to lead to the development of new therapies and explain interindividual response to treatment.
Collapse
Affiliation(s)
- Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Pavillon Margeritte-d'Youville, Y4190, 2725, Chemin Sainte-Foy, Quebec City, Quebec, G1V 4G5, Canada.
| |
Collapse
|
22
|
Germolec D, Burns-Naas L, Gerberick G, Ladics G, Ryan C, Pruett S, Yucesoy B, Luebke R. Immunotoxicogenomics. Genomics 2008. [DOI: 10.3109/9781420067064-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Abstract
Although a hereditary contribution to emphysema has been long suspected, severe alpha1-antitrypsin deficiency remains the only conclusively proven genetic risk factor for chronic obstructive pulmonary disease (COPD). Recently, genome-wide linkage analysis has led to the identification of two promising candidate genes for COPD: TGFB1 and SERPINE2. Like multiple other COPD candidate gene associations, even these positionally identified genes have not been universally replicated across all studies. Differences in phenotype definition may contribute to nonreplication in genetic studies of heterogeneous disorders such as COPD. The use of precisely measured phenotypes, including emphysema quantification on high-resolution chest computed tomography scans, has aided in the discovery of additional genes for clinically relevant COPD-related traits. The use of computed tomography scans to assess emphysema and airway disease as well as newer genetic technologies, including gene expression microarrays and genome-wide association studies, has great potential to detect novel genes affecting COPD susceptibility, severity, and response to treatment.
Collapse
|
24
|
SLC11A1 polymorphisms are associated with the risk of chronic obstructive pulmonary disease in a Korean population. Biochem Genet 2008; 46:506-19. [PMID: 18504650 DOI: 10.1007/s10528-008-9166-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 01/18/2008] [Indexed: 10/22/2022]
Abstract
The solute carrier family 11 member 1 (SLC11A1) protein plays important roles in macrophage activation and displays pleiotropic effects on various macrophage functions, including the regulation of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and oxidative burst. Considering the important roles of macrophage in the pathogenesis of chronic obstructive pulmonary disease (COPD), we hypothesized that the SLC11A1 gene may act as a low-penetrance susceptibility gene for COPD. To test this hypothesis, we first examined the frequencies of 12 candidate polymorphisms in the SLC11A1 gene in 27 healthy Korean individuals, and then genotyped 3 haplotype-tagging polymorphisms [IVS4 + 14G > C (rs3731865), D543 N (rs17235409), and (*)86A > G (rs1059823)] in 83 COPD patients and 203 healthy controls. Individuals with at least one variant allele of the D543 N and (*)86A > G polymorphisms were at a significantly increased risk for COPD compared with carriers with each homozygous wild-type allele [adjusted odds ratio (OR) = 2.23, 95% confidence interval (CI) = 1.24-4.02, P = 0.007; and adjusted OR = 1.92, 95% CI = 1.10-3.35, P = 0.022, respectively]. Consistent with the findings of the genotyping analysis, the 122 haplotype carrying both the 543 N and (*)86G alleles was associated with a significantly increased risk for COPD compared with the 111 haplotype with the 542D and (*)86A alleles (adjusted OR = 2.05, 95% CI = 1.19-3.51, P = 0.009 and Bonferroni corrected P = 0.027). These findings suggest that the SLC11A1 polymorphisms could be used as markers for genetic susceptibility to COPD. However, further studies with large numbers of subjects are needed to confirm our findings.
Collapse
|
25
|
Desai AA, Hysi P, Garcia JGN. Integrating genomic and clinical medicine: searching for susceptibility genes in complex lung diseases. Transl Res 2008; 151:181-93. [PMID: 18355765 PMCID: PMC3616408 DOI: 10.1016/j.trsl.2007.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 10/31/2007] [Accepted: 10/31/2007] [Indexed: 12/30/2022]
Abstract
The integration of molecular, genomic, and clinical medicine in the post-genome era provides the promise of novel information on genetic variation and pathophysiologic cascades. The current challenge is to translate these discoveries rapidly into viable biomarkers that identify susceptible populations and into the development of precisely targeted therapies. In this article, we describe the application of comparative genomics, microarray platforms, genetic epidemiology, statistical genetics, and bioinformatic approaches within examples of complex pulmonary pathobiology. Our search for candidate genes, which are gene variations that drive susceptibility to and severity of enigmatic acute and chronic lung disorders, provides a logical framework to understand better the evolution of genomic medicine. The dissection of the genetic basis of complex diseases and the development of highly individualized therapies remain lofty but achievable goals.
Collapse
Affiliation(s)
- Ankit A Desai
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | | | | |
Collapse
|
26
|
Contopoulos-Ioannidis DG, Kouri I, Ioannidis JP. Pharmacogenetics of the response to beta 2 agonist drugs: a systematic overview of the field. Pharmacogenomics 2008; 8:933-58. [PMID: 17716228 DOI: 10.2217/14622416.8.8.933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The response to beta2-agonist treatment shows large repeatability within individuals and may thus be determined by genetic influences. Here we present a systematic overview of the available genetic association and linkage data for beta2-agonist treatment response. Systematic searches identified 66 eligible articles, as of March 2007, pertaining either to B2AR gene polymorphisms and short-acting or long-acting beta2-agonists or to another 29 different genes. We systematize these study results according to gene, agent and type of outcomes addressed. The systematic review highlights major challenges in the field, including extreme multiplicity of analyses; lack of consensus for main phenotypes of interest; typically small sample sizes; and poor replicability of the proposed genetic variants. Future studies will benefit from standardization of analyses and outcomes, hypothesis-free genome-wide association testing platforms, potentially additional fine mapping around new discovered variants, and large-scale collaborative studies with prospective plans for replication among several teams, with transparent public recording of all data.
Collapse
|
27
|
The role of gene polymorphisms in the pathogenesis of chronic obstructive pulmonary disease. Biologia (Bratisl) 2008. [DOI: 10.2478/s11756-008-0020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Lee SH, Goswami S, Grudo A, Song LZ, Bandi V, Goodnight-White S, Green L, Hacken-Bitar J, Huh J, Bakaeen F, Coxson HO, Cogswell S, Storness-Bliss C, Corry DB, Kheradmand F. Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med 2007; 13:567-9. [PMID: 17450149 DOI: 10.1038/nm1583] [Citation(s) in RCA: 402] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 02/06/2007] [Indexed: 11/09/2022]
Abstract
Chronic obstructive pulmonary disease and emphysema are common destructive inflammatory diseases that are leading causes of death worldwide. Here we show that emphysema is an autoimmune disease characterized by the presence of antielastin antibody and T-helper type 1 (T(H)1) responses, which correlate with emphysema severity. These findings link emphysema to adaptive immunity against a specific lung antigen and suggest the potential for autoimmune pathology of other elastin-rich tissues such as the arteries and skin of smokers.
Collapse
Affiliation(s)
- Seung-Hyo Lee
- Department of Medicine, Section of Pulmonary and Critical Care, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Glutathione S-transferase genotypes modify lung function decline in the general population: SAPALDIA cohort study. Respir Res 2007; 8:2. [PMID: 17217536 PMCID: PMC1781067 DOI: 10.1186/1465-9921-8-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 01/11/2007] [Indexed: 11/29/2022] Open
Abstract
Background Understanding the environmental and genetic risk factors of accelerated lung function decline in the general population is a first step in a prevention strategy against the worldwide increasing respiratory pathology of chronic obstructive pulmonary disease (COPD). Deficiency in antioxidative and detoxifying Glutathione S-transferase (GST) gene has been associated with poorer lung function in children, smokers and patients with respiratory diseases. In the present study, we assessed whether low activity variants in GST genes are also associated with accelerated lung function decline in the general adult population. Methods We examined with multiple regression analysis the association of polymorphisms in GSTM1, GSTT1 and GSTP1 genes with annual decline in FEV1, FVC, and FEF25–75 during 11 years of follow-up in 4686 subjects of the prospective SAPALDIA cohort representative of the Swiss general population. Effect modification by smoking, gender, bronchial hyperresponisveness and age was studied. Results The associations of GST genotypes with FEV1, FVC, and FEF25–75 were comparable in direction, but most consistent for FEV1. GSTT1 homozygous gene deletion alone or in combination with GSTM1 homozygous gene deletion was associated with excess decline in FEV1 in men, but not women, irrespective of smoking status. The additional mean annual decline in FEV1 in men with GSTT1 and concurrent GSTM1 gene deletion was -8.3 ml/yr (95% confidence interval: -12.6 to -3.9) relative to men without these gene deletions. The GSTT1 effect on the FEV1 decline comparable to the observed difference in FEV1 decline between never and persistent smoking men. Effect modification by gender was statistically significant. Conclusion Our results suggest that genetic GSTT1 deficiency is a prevalent and strong determinant of accelerated lung function decline in the male general population.
Collapse
|
30
|
Abstract
Familial aggregation of chronic obstructive pulmonary disease (COPD) has been demonstrated, suggesting that genetic factors likely influence the variable development of chronic airflow obstruction in response to smoking. A variety of approaches have been used to identify novel COPD susceptibility genes, including association studies, linkage analysis, and rare variant analysis. Future directions for COPD research include genomewide association studies and animal model genetic studies.
Collapse
Affiliation(s)
- Edwin K Silverman
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Wood AM, Stockley RA. The genetics of chronic obstructive pulmonary disease. Respir Res 2006; 7:130. [PMID: 17054776 PMCID: PMC1626465 DOI: 10.1186/1465-9921-7-130] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 10/20/2006] [Indexed: 01/19/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease caused by the interaction of genetic susceptibility and environmental influences. There is increasing evidence that genes link to disease pathogenesis and heterogeneity by causing variation in protease anti-protease systems, defence against oxidative stress and inflammation. The main methods of genomic research for complex disease traits are described, together with the genes implicated in COPD thus far, their roles in disease causation and the future for this area of investigation.
Collapse
Affiliation(s)
- Alice M Wood
- Department of Medical Sciences, University of Birmingham, Birmingham, UK
| | - Robert A Stockley
- Lung Investigation Unit, University Hospitals Birmingham, Birmingham, B15 2TH, UK
| |
Collapse
|
32
|
Patel AC, Morton JD, Kim EY, Alevy Y, Swanson S, Tucker J, Huang G, Agapov E, Phillips TE, Fuentes ME, Iglesias A, Aud D, Allard JD, Dabbagh K, Peltz G, Holtzman MJ. Genetic segregation of airway disease traits despite redundancy of calcium-activated chloride channel family members. Physiol Genomics 2006; 25:502-13. [PMID: 16569774 PMCID: PMC6366330 DOI: 10.1152/physiolgenomics.00321.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Complex airway diseases such as asthma and chronic obstructive pulmonary disease exhibit stereotyped traits (especially airway hyperreactivity and mucous cell metaplasia) that are variably expressed in each patient. Here, we used a mouse model for virus-induced long-term expression of these traits to determine whether individual traits can be genetically segregated and thereby linked to separate determinants. We showed that an F2 intercross population derived from susceptible and nonsusceptible mouse strains can manifest individual phenotypic extremes that exhibit one or the other disease trait. Functional genomic analysis of these extremes further indicated that a member of the calcium-activated chloride channel (CLCA) gene family designated mClca3 was inducible with mucous cell metaplasia but not airway hyperreactivity. In confirmation of this finding, we found that mClca3 gene transfer to mouse airway epithelium was sufficient to induce mucous cell metaplasia but not airway hyperreactivity. However, newly developed mClca3(-/-) mice exhibited the same degree of mucous cell metaplasia and airway hyperreactivity as wild-type mice. Bioinformatic analysis of the Clca locus led to the identification of mClca5, and gene transfer indicated that mClca5 also selectively drives mucous cell metaplasia. Thus, in addition to the capacity of CLCA family members to exhibit diverse functional activities, there is also preserved function so that more than one family member mediates mucous cell metaplasia. Nonetheless, Clca expression appears to be a selective determinant of mucous cell metaplasia so that shared homologies between CLCA family members may still represent a useful target for focused therapeutic intervention in hypersecretory airway disease.
Collapse
Affiliation(s)
- Anand C Patel
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hersh CP, Demeo DL, Lazarus R, Celedón JC, Raby BA, Benditt JO, Criner G, Make B, Martinez FJ, Scanlon PD, Sciurba FC, Utz JP, Reilly JJ, Silverman EK. Genetic association analysis of functional impairment in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2006; 173:977-84. [PMID: 16456143 PMCID: PMC2662917 DOI: 10.1164/rccm.200509-1452oc] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Patients with severe chronic obstructive pulmonary disease (COPD) may have varying levels of disability despite similar levels of lung function. This variation may reflect different COPD subtypes, which may have different genetic predispositions. OBJECTIVES To identify genetic associations for COPD-related phenotypes, including measures of exercise capacity, pulmonary function, and respiratory symptoms. METHODS In 304 subjects from the National Emphysema Treatment Trial, we genotyped 80 markers in 22 positional and/or biologically plausible candidate genes. Regression models were used to test for association, using a test-replication approach to guard against false-positive results. For significant associations, effect estimates were recalculated using the entire cohort. Positive associations with dyspnea were confirmed in families from the Boston Early-Onset COPD Study. RESULTS The test-replication approach identified four genes-microsomal epoxide hydrolase (EPHX1), latent transforming growth factor-beta binding protein-4 (LTBP4), surfactant protein B (SFTPB), and transforming growth factor-beta1 (TGFB1)-that were associated with COPD-related phenotypes. In all subjects, single-nucleotide polymorphisms (SNPs) in EPHX1 (p < or = 0.03) and in LTBP4 (p < or = 0.03) were associated with maximal output on cardiopulmonary exercise testing. Markers in LTBP4 (p < or = 0.05) and SFTPB (p = 0.005) were associated with 6-min walk test distance. SNPs in EPHX1 were associated with carbon monoxide diffusing capacity (p < or = 0.04). Three SNPs in TGFB1 were associated with dyspnea (p < or = 0.002), one of which replicated in the family study (p = 0.02). CONCLUSIONS Polymorphisms in several genes seem to be associated with COPD-related traits other than FEV(1). These associations may identify genes in pathways important for COPD pathogenesis.
Collapse
Affiliation(s)
- Craig P Hersh
- Channing Laboratory, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Demeo DL, Mariani TJ, Lange C, Srisuma S, Litonjua AA, Celedon JC, Lake SL, Reilly JJ, Chapman HA, Mecham BH, Haley KJ, Sylvia JS, Sparrow D, Spira AE, Beane J, Pinto-Plata V, Speizer FE, Shapiro SD, Weiss ST, Silverman EK. The SERPINE2 gene is associated with chronic obstructive pulmonary disease. Am J Hum Genet 2006; 78:253-64. [PMID: 16358219 PMCID: PMC1380249 DOI: 10.1086/499828] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 11/17/2005] [Indexed: 11/03/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex human disease likely influenced by multiple genes, cigarette smoking, and gene-by-smoking interactions, but only severe alpha 1-antitrypsin deficiency is a proven genetic risk factor for COPD. Prior linkage analyses in the Boston Early-Onset COPD Study have demonstrated significant linkage to a key intermediate phenotype of COPD on chromosome 2q. We integrated results from murine lung development and human COPD gene-expression microarray studies with human COPD linkage results on chromosome 2q to prioritize candidate-gene selection, thus identifying SERPINE2 as a positional candidate susceptibility gene for COPD. Immunohistochemistry demonstrated expression of serpine2 protein in mouse and human adult lung tissue. In family-based association testing of 127 severe, early-onset COPD pedigrees from the Boston Early-Onset COPD Study, we observed significant association with COPD phenotypes and 18 single-nucleotide polymorphisms (SNPs) in the SERPINE2 gene. Association of five of these SNPs with COPD was replicated in a case-control analysis, with cases from the National Emphysema Treatment Trial and controls from the Normative Aging Study. Family-based and case-control haplotype analyses supported similar regions of association within the SERPINE2 gene. When significantly associated SNPs in these haplotypic regions were included as covariates in linkage models, LOD score attenuation was observed most markedly in a smokers-only linkage model (LOD 4.41, attenuated to 1.74). After the integration of murine and human microarray data to inform candidate-gene selection, we observed significant family-based association and independent replication of association in a case-control study, suggesting that SERPINE2 is a COPD-susceptibility gene and is likely influenced by gene-by-smoking interaction.
Collapse
Affiliation(s)
- Dawn L Demeo
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Matheson MC, Ellis JA, Raven J, Walters EH, Abramson MJ. Association of IL8, CXCR2 and TNF-alpha polymorphisms and airway disease. J Hum Genet 2006; 51:196-203. [PMID: 16429233 DOI: 10.1007/s10038-005-0344-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 11/04/2005] [Indexed: 10/25/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease characterised by inflammation of the peripheral airways involving many inflammatory cells and mediators. IL8 is an important inflammatory mediator that is responsible for the migration and activation of neutrophils. Cellular activity of IL8 is mediated by the receptor CXCR2, and transcription of IL8 is controlled by the cytokine tumour necrosis factor (TNFalpha). The aim of our study was to investigate the influence of single nucleotide polymorphisms in IL8, CXCR2 and TNF-alpha on lung function and respiratory symptoms in subjects from Melbourne, Australia. A total of 1,232 participants completed a detailed respiratory questionnaire, spirometry and measurement of gas transfer. Genotyping for the IL8 -251 T-->A, CXCR2 +785C-->T and TNF-alpha -308G-->A polymorphisms was performed using the tetra-primer ARMS-PCR method. The TNF-alpha A allele was associated with a reduced FEF(25-75) (P = 0.03). Inheritance of the CXCR2 T allele was associated with significantly higher diffusing capacity (P = 0.03) and FEF(25-75) (P = 0.02). No association with the IL8 -251 polymorphism was found. Our results suggest that TNF-alpha is associated with COPD-related phenotypes and the CXCR2 +785 SNP may be important in protecting against pulmonary inflammation. These genes may be important candidates in the modulation of the inflammatory response in the airways.
Collapse
Affiliation(s)
- Melanie C Matheson
- Department of Epidemiology and Preventive Medicine, Monash University, Victoria, Australia.
- Centre for Molecular, Environmental, Genetic & Analytic Epidemiology, School of Population Health, The University of Melbourne, Level 2 / 723 Swanston Street, Carlton, Victoria, 3053, Australia.
| | - Justine A Ellis
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Joan Raven
- Department of Allergy, Immunology & Respiratory Medicine, The Alfred Hospital, Victoria, Australia
| | - E Haydn Walters
- Cardio-Respiratory Research Group, School of Medicine, University of Tasmania, Hobart, Australia
| | - Michael J Abramson
- Department of Epidemiology and Preventive Medicine, Monash University, Victoria, Australia
| |
Collapse
|
36
|
Schwartz AG, Ruckdeschel JC. Familial lung cancer: genetic susceptibility and relationship to chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2006; 173:16-22. [PMID: 16141445 PMCID: PMC2662980 DOI: 10.1164/rccm.200502-235pp] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lung cancer continues to be the leading cause of cancer death, and although most lung cancer is attributable to cigarette smoking, underlying genetic susceptibility is suggested by studies demonstrating familial aggregation. The first family linkage study of lung cancer has identified linkage of lung, laryngeal, and pharyngeal cancer in families to a region on chromosome 6q23-25. Because lung cancer and chronic obstructive pulmonary disease (COPD) are known to aggregate in families beyond shared risk associated with smoking, the linkage results are compared and contrasted with results from genomewide linkage and association studies and candidate gene studies searching for genes for lung cancer, lung function, and COPD. Linkage on chromosome 6q to both lung cancer and lung function, and on 12 to lung cancer, COPD, and lung function, together with overlap in candidate genes for these outcomes, suggests that future research into underlying genetic mechanisms of lung disease would benefit from broadening the collection of family history data and better defining the "high risk" population. As familial risk of lung disease is better defined, referral into screening programs and prevention trials can be better targeted to reach families with both a history of lung cancer and COPD.
Collapse
Affiliation(s)
- Ann G Schwartz
- Karmanos Cancer Institute, 110 East Warren Avenue, Detroit, MI 48201, USA.
| | | |
Collapse
|
37
|
Chien JW, Zhao LP, Hansen JA, Fan WH, Parimon T, Clark JG. Genetic variation in bactericidal/permeability-increasing protein influences the risk of developing rapid airflow decline after hematopoietic cell transplantation. Blood 2005; 107:2200-7. [PMID: 16304058 PMCID: PMC1895720 DOI: 10.1182/blood-2005-06-2338] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Innate immunity is involved in the biology of graft versus host disease and common airway diseases. We screened 15 genes in this pathway using a linkage disequilibrium-based approach to identify potential candidate genes that may be involved in the development of airflow obstruction after hematopoietic cell transplantation. Sixty-nine single-nucleotide polymorphisms were selected for assessment in a discovery cohort (n = 363). Significant associations were validated in a validation cohort (n = 209). Expression of the candidate gene was demonstrated by detecting gene transcript and protein in malignant and normal small airway epithelial cells. In the discovery cohort, 133 patients developed significant airflow decline. Four patient and donor bactericidal/permeability-increasing (BPI) haplotypes were associated with a 2-fold to 3-fold increased risk of developing significant airflow decline (P values, .004-.038). This association was confirmed in the validation cohort, which had 66 patients with significant airflow decline, with 9 significant haplotypes (P values, .013-.043). BPI gene transcript and protein were detected in airway epithelial cells. These results suggest mutations in the BPI gene significantly influence the risk of developing rapid airflow decline after hematopoietic cell transplantation and may represent a novel therapeutic target for this form of airway disease.
Collapse
Affiliation(s)
- Jason W Chien
- Pulmonary and Critical Care Section, Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave North, D5-280, Seattle, WA 98109-1024, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Kelleher CM, Silverman EK, Broekelmann T, Litonjua AA, Hernandez M, Sylvia JS, Stoler J, Reilly JJ, Chapman HA, Speizer FE, Weiss ST, Mecham RP, Raby BA. A functional mutation in the terminal exon of elastin in severe, early-onset chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2005; 33:355-62. [PMID: 16081882 PMCID: PMC2715343 DOI: 10.1165/rcmb.2005-0206oc] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We describe a novel variant in the terminal exon of human elastin, c.2318 G > A, resulting in an amino acid substitution of glycine 773 to aspartate (G773D) in a pedigree with severe early-onset chronic obstructive pulmonary disease (COPD). Transfection studies with elastin cDNAs demonstrate that the glycine to aspartate change compromises the ability of the mutant protein to undergo normal elastin assembly. Other functional consequences of this amino acid substitution include altered proteolytic susceptibility of the C-terminal region of elastin and reduced interaction of the exon 36 sequence with matrix receptors on cells. These results suggest that the G773D variant confers structural and functional consequences relevant to the pathogenesis of COPD.
Collapse
Affiliation(s)
- Cassandra M Kelleher
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fabbri L, Peters SP, Pavord I, Wenzel SE, Lazarus SC, Macnee W, Lemaire F, Abraham E. Allergic rhinitis, asthma, airway biology, and chronic obstructive pulmonary disease in AJRCCM in 2004. Am J Respir Crit Care Med 2005; 171:686-98. [PMID: 15790866 DOI: 10.1164/rccm.2412006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Leonardo Fabbri
- Medical, Oncological, and Radiological Sciences, University of Modena, Modena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Stemmler S, Arinir U, Klein W, Rohde G, Hoffjan S, Wirkus N, Reinitz-Rademacher K, Bufe A, Schultze-Werninghaus G, Epplen JT. Association of interleukin-8 receptor α polymorphisms with chronic obstructive pulmonary disease and asthma. Genes Immun 2005; 6:225-30. [PMID: 15772681 DOI: 10.1038/sj.gene.6364181] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are common complex diseases characterized by airflow obstruction and inflammatory processes in the small airways. lnterleukin 8 (IL-8) is a potent proinflammatory cytokine which interacts with the IL-8 receptor alpha (IL8RA, CXCR1) and beta (IL8RB, CXCR2), leading to activation and migration of leukocytes. In order to evaluate the role of the IL8RA gene in the pathogenesis of COPD and asthma, we screened the coding region of IL8RA for mutations by means of single-strand conformation polymorphism analysis in 50 COPD patients and identified three exchanges (M31R, S276T and R335C). These three polymorphisms were subsequently genotyped in 182 adult patients with COPD, 68 adult patients and 130 children with asthma as well as 454 healthy controls. The frequencies of the IL8RA 31R and 335C alleles were significantly increased in patients with COPD and in children with asthma compared to healthy controls (P=0.0073 and 0.023, respectively). Thus, these polymorphisms may play a role in the pathogenesis of COPD and asthma.
Collapse
Affiliation(s)
- S Stemmler
- Department of Human Genetics, Ruhr-University, Bochum, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|