1
|
Sul C, Lewis C, Dee N, Burns N, Oshima K, Schmidt E, Vohwinkel C, Nozik E. Release of extracellular superoxide dismutase into alveolar fluid protects against acute lung injury and inflammation in Staphylococcus aureus pneumonia. Am J Physiol Lung Cell Mol Physiol 2023; 324:L445-L455. [PMID: 36749572 PMCID: PMC10026994 DOI: 10.1152/ajplung.00217.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) remains a significant cause of morbidity and mortality in critically ill patients. Oxidative stress and inflammation play a crucial role in the pathogenesis of ARDS. Extracellular superoxide dismutase (EC-SOD) is abundant in the lung and is an important enzymatic defense against superoxide. Human single-nucleotide polymorphism in matrix binding region of EC-SOD leads to the substitution of arginine to glycine at position 213 (R213G) and results in release of EC-SOD into alveolar fluid, without affecting enzyme activity. We hypothesized that R213G EC-SOD variant protects against lung injury and inflammation via the blockade of neutrophil recruitment in infectious model of methicillin-resistant S. aureus (MRSA) pneumonia. After inoculation with MRSA, wild-type (WT) mice had impaired integrity of alveolar-capillary barrier and increased levels of IL-1β, IL-6, and TNF-α in the broncho-alveolar lavage fluid (BALF), while infected mice expressing R213G EC-SOD variant maintained the integrity of alveolar-capillary interface and had attenuated levels of proinflammatory cytokines. MRSA-infected mice expressing R213G EC-SOD variant also had attenuated neutrophil numbers in BALF and decreased expression of neutrophil chemoattractant CXCL1 by the alveolar epithelial ATII cells, compared with the infected WT group. The decreased neutrophil numbers in R213G mice were not due to increased rate of apoptosis. Mice expressing R213G variant had a differential effect on neutrophil functionality-the generation of neutrophil extracellular traps (NETs) but not myeloperoxidase (MPO) levels were attenuated in comparison with WT controls. Despite having the same bacterial load in the lung as WT controls, mice expressing R213G EC-SOD variant were protected from extrapulmonary dissemination of bacteria.
Collapse
Affiliation(s)
- Christina Sul
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Caitlin Lewis
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Nathan Dee
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Nana Burns
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kaori Oshima
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Eric Schmidt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Christine Vohwinkel
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Eva Nozik
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
2
|
Dang W, Tao Y, Xu X, Zhao H, Zou L, Li Y. The role of lung macrophages in acute respiratory distress syndrome. Inflamm Res 2022; 71:1417-1432. [PMID: 36264361 PMCID: PMC9582389 DOI: 10.1007/s00011-022-01645-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute and diffuse inflammatory lung injury in a short time, one of the common severe manifestations of the respiratory system that endangers human life and health. As an innate immune cell, macrophages play a key role in the inflammatory response. For a long time, the role of pulmonary macrophages in ARDS has tended to revolve around the polarization of M1/M2. However, with the development of single-cell RNA sequencing, fate mapping, metabolomics, and other new technologies, a deeper understanding of the development process, classification, and function of macrophages in the lung are acquired. Here, we discuss the function of pulmonary macrophages in ARDS from the two dimensions of anatomical location and cell origin and describe the effects of cell metabolism and intercellular interaction on the function of macrophages. Besides, we explore the treatments for targeting macrophages, such as enhancing macrophage phagocytosis, regulating macrophage recruitment, and macrophage death. Considering the differences in responsiveness of different research groups to these treatments and the tremendous dynamic changes in the gene expression of monocyte/macrophage, we discussed the possibility of characterizing the gene expression of monocyte/macrophage as the biomarkers. We hope that this review will provide new insight into pulmonary macrophage function and therapeutic targets of ARDS.
Collapse
Affiliation(s)
- Wenpei Dang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xinxin Xu
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Hui Zhao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Lijuan Zou
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yongsheng Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
3
|
Li H, Hong W, Zeng Z, Gong S, Wu F, Wang Z, Tian H, Cheng J, Sun R, Gao M, Liang C, Cao W, Hu G, Li Y, Wei L, Zhou Y, Ran P. Association Between Extracellular Superoxide Dismutase Activity and 1-Year All-Cause Mortality in Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease: A Prospective Cohort Study. Front Med (Lausanne) 2022; 9:811975. [PMID: 35360751 PMCID: PMC8963916 DOI: 10.3389/fmed.2022.811975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background and ObjectivesAccumulating evidence suggests that oxidative stress is involved in the development of chronic obstructive pulmonary disease (COPD) and its progression. Activity of extracellular superoxide dismutase (ecSOD), the only extracellular enzyme eliminating superoxide radicals, has been reported to decline in acute exacerbations of COPD (AECOPD). However, the association between serum ecSOD activity and 1-year all-cause mortality in AECOPD patients remains unclear. The objective of our study was to explore the usefulness of ecSOD activity on admission in AECOPD as an objective predictor for 1-year all-cause mortality.MethodsWe measured serum ecSOD activity in AECOPD patients on admission in a prospective cohort study. We also recorded their laboratory and clinical data. Multivariate Cox regression was used to analyze the association between ecSOD activity and the risk of 1-year all-cause mortality. Restricted cubic spline curves were used to visualize the relationship between ecSOD activity and the hazard ratio of 1-year all-cause mortality.ResultsA total of 367 patients were followed up for 1 year, and 29 patients died during a 1-year follow-up period. Compared with survivors, the non-survivors were older (79.52 ± 8.39 vs. 74.38 ± 9.34 years old, p = 0.004) and had increased levels of tobacco consumption (47.07 ± 41.67 vs. 33.83 ± 31.79 pack-years, p = 0.037). Having an ecSOD activity ≤ 98.8 U/ml was an independent risk factor of 1-year all-cause mortality after adjustment for baseline differences, clinical variables and comorbidities [hazard ratio = 5.51, 95% confidence interval (CI): 2.35–12.95, p < 0.001].ConclusionLower serum ecSOD activity was a strong and independent predictor of 1-year all-cause mortality in AECOPD patients.
Collapse
Affiliation(s)
- Haiqing Li
- Department of Respiratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zixiong Zeng
- Department of Respiratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shan Gong
- Department of Respiratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zihui Wang
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Heshen Tian
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Juan Cheng
- Department of Respiratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruiting Sun
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mi Gao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chunxiao Liang
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weitao Cao
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guoping Hu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Guoping Hu
| | - Yuqun Li
- Department of Respiratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liping Wei
- Department of Respiratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Pixin Ran
| |
Collapse
|
4
|
Yan Z, Spaulding HR. Extracellular superoxide dismutase, a molecular transducer of health benefits of exercise. Redox Biol 2020; 32:101508. [PMID: 32220789 PMCID: PMC7109453 DOI: 10.1016/j.redox.2020.101508] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular superoxide dismutase (EcSOD) is the only extracellular scavenger of superoxide anion (O2.-) with unique binding capacity to cell surface and extracellular matrix through its heparin-binding domain. Enhanced EcSOD activity prevents oxidative stress and damage, which are fundamental in a variety of disease pathologies. In this review we will discuss the findings in humans and animal studies supporting the benefits of EcSOD induced by exercise training in reducing oxidative stress in various tissues. In particularly, we will highlight the importance of skeletal muscle EcSOD, which is induced by endurance exercise and redistributed through the circulation to the peripheral tissues, as a molecular transducer of exercise training to confer protection against oxidative stress and damage in various disease conditions.
Collapse
Affiliation(s)
- Zhen Yan
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| | - Hannah R Spaulding
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
5
|
Association of combined genetic variations in SOD3, GPX3, PON1, and GSTT1 with hypertension and severity of coronary artery disease. Heart Vessels 2020; 35:918-929. [PMID: 32034489 DOI: 10.1007/s00380-020-01564-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/24/2020] [Indexed: 12/27/2022]
Abstract
Oxidative stress plays a critical role in the pathophysiology of hypertension (HT) and the progression of atherosclerotic coronary artery disease (CAD). Genetic variations in superoxide dismutase (SOD), glutathione peroxidase 3 (GPX3), paraoxonase 1 (PON1) and glutathione S-transferase theta 1 (GSTT1) may modulate their gene functions, affecting protein functions. These changes could have an impact on the pathogenesis of HT and progression of CAD. The present study investigated the associations of individual and combined antioxidant-related gene polymorphisms with the incidence of HT and severity of CAD. Two study populations were enrolled. The HT-associated study comprised 735 control and 735 hypertensive subjects (mean age 59.3 ± 9.0 years), matched for age and sex. The CAD study, hospital-based subjects (mean age 62.1 ± 9.5 years), included 279 CAD patients and 165 non-CAD subjects. Gene polymorphisms were identified in genomic DNA using polymerase chain reaction (PCR)-based technique. Genetic variations were assessed for their associations with HT and severity of CAD. Antioxidant gene variants, SOD3 rs2536512-GG, GPX3 rs3828599-GG, PON1 rs705379-TT, and GSTT1-/- and +/-, were independently associated with the incidence of HT. A combination of four HT-associated genotypes, as a genetic risk score (GRS), revealed an association of GRS 5 and GRS ≥ 6 with increased susceptibility to HT and CAD, and further with multivessel coronary atherosclerosis (multivessel CAD) compared with GRS 0-2 [respective ORs(95% CI) for GRS ≥ 6 = 2.37 (1.46-3.85), 3.26 (1.29-8.25), and 4.36 (1.36-14.0)]. Combined polymorphisms in these four antioxidant-related genes were associated with the incidences of HT and CAD, and with the severity of coronary atherosclerosis.
Collapse
|
6
|
Janciauskiene S. The Beneficial Effects of Antioxidants in Health And Diseases. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:182-202. [PMID: 32558487 DOI: 10.15326/jcopdf.7.3.2019.0152] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reactive oxygen and nitrogen species can be generated endogenously (by mitochondria, peroxisomes, and phagocytic cells) and exogenously (by pollutions, UV exposure, xenobiotic compounds, and cigarette smoke). The negative effects of free radicals are neutralized by antioxidant molecules synthesized in our body, like glutathione, uric acid, or ubiquinone, and those obtained from the diet, such as vitamins C, E, and A, and flavonoids. Different microelements like selenium and zinc have no antioxidant action themselves but are required for the activity of many antioxidant enzymes. Furthermore, circulating blood proteins are suggested to account for more than 50% of the combined antioxidant effects of urate, ascorbate, and vitamin E. Antioxidants together constitute a mutually supportive defense against reactive oxygen and nitrogen species to maintain the oxidant/antioxidant balance. This article outlines the oxidative and anti-oxidative molecules involved in the pathogenesis of chronic obstructive lung disease. The role of albumin and alpha-1 antitrypsin in antioxidant defense is also discussed.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, Member of German Centre for Lung Research (DZL), Hannover, Germany; Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
7
|
Decharatchakul N, Settasatian C, Settasatian N, Komanasin N, Kukongviriyapan U, Intharaphet P, Senthong V. Association of genetic polymorphisms in SOD2, SOD3, GPX3, and GSTT1 with hypertriglyceridemia and low HDL-C level in subjects with high risk of coronary artery disease. PeerJ 2019; 7:e7407. [PMID: 31396447 PMCID: PMC6679910 DOI: 10.7717/peerj.7407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background Oxidative stress modulates insulin resistant-related atherogenic dyslipidemia: hypertriglyceridemia (HTG) and low high-density lipoprotein cholesterol (HDL-C) level. Gene polymorphisms in superoxide dismutase (SOD2 and SOD3), glutathione peroxidase-3 (GPX3), and glutathione S-transferase theta-1 (GSTT1) may enable oxidative stress-related lipid abnormalities and severity of coronary atherosclerosis. The present study investigated the associations of antioxidant-related gene polymorphisms with atherogenic dyslipidemia and atherosclerotic severity in subjects with high risk of coronary artery disease (CAD). Methods Study population comprises of 396 subjects with high risk of CAD. Gene polymorphisms: SOD2 rs4880, SOD3 rs2536512 and rs2855262, GPX rs3828599, and GSTT1 (deletion) were evaluated the associations with HTG, low HDL-C, high TG/HDL-C ratio, and severity of coronary atherosclerosis. Results SOD2 rs4880-CC, SOD3 rs2536512-AA, rs2855262-CC, and GPX3 rs3828599-AA, but not GSTT1-/- individually increased risk of HTG combined with low HDL-C level. With a combination of five risk-genotypes as a genetic risk score (GRS), GRS ≥ 6 increased risks of low HDL-C, high TG/HDL-C ratio, and HTG combined with low HDL-C, comparing with GRS 0–2 [respective adjusted ORs (95% CI) = 2.70 (1.24–5.85), 3.11 (1.55–6.23), and 5.73 (2.22–14.77)]. Gene polymorphisms, though, were not directly associated with severity of coronary atherosclerosis; high TG/HDL-C ratio was associated with coronary atherosclerotic severity [OR = 2.26 (95% CI [1.17–4.34])]. Conclusion Combined polymorphisms in antioxidant-related genes increased the risk of dyslipidemia related to atherosclerotic severity, suggesting the combined antioxidant-related gene polymorphisms as predictor of atherogenic dyslipidemia.
Collapse
Affiliation(s)
- Nisa Decharatchakul
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand.,Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Chatri Settasatian
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nongnuch Settasatian
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nantarat Komanasin
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Upa Kukongviriyapan
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Phongsak Intharaphet
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,Queen Sirikit Heart Center of the Northeast, Khon Kaen University, Khon Kaen, Thailand
| | - Vichai Senthong
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand.,Queen Sirikit Heart Center of the Northeast, Khon Kaen University, Khon Kaen, Thailand.,Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
8
|
Rogobete AF, Sandesc D, Bedreag OH, Papurica M, Popovici SE, Bratu T, Popoiu CM, Nitu R, Dragomir T, AAbed HIM, Ivan MV. MicroRNA Expression is Associated with Sepsis Disorders in Critically Ill Polytrauma Patients. Cells 2018; 7:E271. [PMID: 30551680 PMCID: PMC6316368 DOI: 10.3390/cells7120271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
A critically ill polytrauma patient is one of the most complex cases to be admitted to the intensive care unit, due to both the primary traumatic complications and the secondary post-traumatic interactions. From a molecular, genetic, and epigenetic point of view, numerous biochemical interactions are responsible for the deterioration of the clinical status of a patient, and increased mortality rates. From a molecular viewpoint, microRNAs are one of the most complex macromolecular systems due to the numerous modular reactions and interactions that they are involved in. Regarding the expression and activity of microRNAs in sepsis, their usefulness has reached new levels of significance. MicroRNAs can be used both as an early biomarker for sepsis, and as a therapeutic target because of their ability to block the complex reactions involved in the initiation, maintenance, and augmentation of the clinical status.
Collapse
Affiliation(s)
- Alexandru Florin Rogobete
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
- Clinic of Anesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", 300723 Timisoara, Romania.
| | - Dorel Sandesc
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
- Clinic of Anesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", 300723 Timisoara, Romania.
| | - Ovidiu Horea Bedreag
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
- Clinic of Anesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", 300723 Timisoara, Romania.
| | - Marius Papurica
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
- Clinic of Anesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", 300723 Timisoara, Romania.
| | - Sonia Elena Popovici
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Tiberiu Bratu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Calin Marius Popoiu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Razvan Nitu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Tiberiu Dragomir
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Hazzaa I M AAbed
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| | - Mihaela Viviana Ivan
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
| |
Collapse
|
9
|
Markus T, Ley D, Hansson SR, Wieloch T, Ruscher K. Neuroprotective dobutamine treatment upregulates superoxide dismutase 3, anti-oxidant and survival genes and attenuates genes mediating inflammation. BMC Neurosci 2018. [PMID: 29523072 PMCID: PMC5845293 DOI: 10.1186/s12868-018-0415-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Labor subjects the fetus to an hypoxic episode and concomitant adrenomodullary catecholamine surge that may provide protection against the hypoxic insult. The beta1-adrenergic agonist dobutamine protects against hypoxia/aglycemia induced neuronal damage. We aimed to identify the associated protective biological processes involved. Results Hippocampal slices from 6 days old mice showed significant changes of gene expression comparing slices with or without dobutamine (50 mM) in the following two experimental paradigms: (1) control conditions versus lipopolysacharide (LPS) stimulation and (2) oxygen–glucose deprivation (OGD), versus combined LPS/OGD. Dobutamine depressed the inflammatory response by modifying the toll-like receptor-4 signalling pathways, including interferon regulatory factors and nuclear factor κ B activation in experimental paradigm 1. The anti-oxidant defense genes superoxide dismutase 3 showed an upregulation in the OGD paradigm while thioredoxin reductase was upregulated in LPS paradigm. The survival genes Bag-3, Tinf2, and TMBIM-1, were up-regulated in paradigm 1. Moreover, increased levels of SOD3 were verified on the protein level 24 h after OGD and control stimulation in cultures with or without preconditioning with LPS and dobutamine, respectively. Conclusions Neuroprotective treatment with dobutamine depresses expression of inflammatory mediators and promotes the defense against oxidative stress and depresses apoptotic genes in a model of neonatal brain hypoxia/ischemia interpreted as pharmacological preconditioning. We conclude that beta1-adrenoceptor activation might be an efficient strategy for identifying novel pharmacological targets for protection of the neonatal brain. Electronic supplementary material The online version of this article (10.1186/s12868-018-0415-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tina Markus
- Department of Pediatrics, Lund University, Lund, Sweden
| | - David Ley
- Department of Pediatrics, Lund University, Lund, Sweden
| | - Stefan R Hansson
- Department of Obstetrics and Gynecology, Lund University, Lund, Sweden
| | - Tadeusz Wieloch
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, 22184, Lund, Sweden
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, 22184, Lund, Sweden.
| |
Collapse
|
10
|
Call JA, Donet J, Martin KS, Sharma AK, Chen X, Zhang J, Cai J, Galarreta CA, Okutsu M, Du Z, Lira VA, Zhang M, Mehrad B, Annex BH, Klibanov AL, Bowler RP, Laubach VE, Peirce SM, Yan Z. Muscle-derived extracellular superoxide dismutase inhibits endothelial activation and protects against multiple organ dysfunction syndrome in mice. Free Radic Biol Med 2017; 113:212-223. [PMID: 28982599 PMCID: PMC5740866 DOI: 10.1016/j.freeradbiomed.2017.09.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022]
Abstract
Multiple organ dysfunction syndrome (MODS) is a detrimental clinical complication in critically ill patients with high mortality. Emerging evidence suggests that oxidative stress and endothelial activation (induced expression of adhesion molecules) of vital organ vasculatures are key, early steps in the pathogenesis. We aimed to ascertain the role and mechanism(s) of enhanced extracellular superoxide dismutase (EcSOD) expression in skeletal muscle in protection against MODS induced by endotoxemia. We showed that EcSOD overexpressed in skeletal muscle-specific transgenic mice (TG) redistributes to other peripheral organs through the circulation and enriches at the endothelium of the vasculatures. TG mice are resistant to endotoxemia (induced by lipopolysaccharide [LPS] injection) in developing MODS with significantly reduced mortality and organ damages compared with the wild type littermates (WT). Heterogenic parabiosis between TG and WT mice conferred a significant protection to WT mice, whereas mice with R213G knock-in mutation, a human single nucleotide polymorphism leading to reduced binding EcSOD in peripheral organs, exacerbated the organ damages. Mechanistically, EcSOD inhibits vascular cell adhesion molecule 1 expression and inflammatory leukocyte adhesion to the vascular wall of vital organs, blocking an early step of the pathology in organ damage under endotoxemia. Therefore, enhanced expression of EcSOD in skeletal muscle profoundly protects against MODS by inhibiting endothelial activation and inflammatory cell adhesion, which could be a promising therapy for MODS.
Collapse
Affiliation(s)
- Jarrod A Call
- Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA; Departments of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jean Donet
- Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA; Departments of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Kyle S Martin
- Departments of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Ashish K Sharma
- Departments of Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Xiaobin Chen
- Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA; Department of Cardiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Jiuzhi Zhang
- Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA; Department of Critical Care Medicine and Institute of Critical Care Medicine, First Affiliate Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning Province 116011, China
| | - Jie Cai
- Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA; Department of Infectious Disease, First Affiliate Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province 210029, China
| | - Carolina A Galarreta
- Departments of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA
| | - Mitsuharu Okutsu
- Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA; Departments of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Zhongmin Du
- Departments of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Vitor A Lira
- Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA; Departments of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Mei Zhang
- Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA; Departments of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Borna Mehrad
- Departments of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Brian H Annex
- Departments of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Russell P Bowler
- Division of Pulmonary Medicine, Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Victor E Laubach
- Departments of Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Shayn M Peirce
- Departments of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Zhen Yan
- Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA; Departments of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Departments of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; Departments of Molecular Physiology & Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
11
|
Li H, Zhang C, He L, Zhang F, Luo F, Yuan Y, Li Q. Association of extracellular superoxide dismutase (EC-SOD) polymorphisms with risk of type 2 diabetes mellitus in a Chinese Han population. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11819-11827. [PMID: 31966546 PMCID: PMC6966074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/08/2017] [Indexed: 06/10/2023]
Abstract
We aimed to investigate whether the EC-SOD rs2536512, rs8192291 and rs1799895 polymorphisms and haplotypes are associated with T2DM in a Chinese Han population. A total of 540 Chinese Han patients with T2DM and 562 healthy subjects were enrolled in our study since October 2013, and all of them had no blood relationship. An iPlex GLOD SNP genotyping analysis of the EC-SOD rs2536512, rs8192291 and rs1799895 was carried out in a 384 well plate format using the Sequenom MassARRAY® System (Sequenom, Inc. San Diego, USA). We observed that the CT (OR=1.58, 95% CI=1.20-2.08) and TT (OR=15.27, 95% CI=4.34-53.75) genotypes of rs8192291 were associated with T2DM susceptibility compared with the CC genotype. In dominant and recessive models, rs8192291 was correlated with a moderate statistically increased susceptibility of T2DM compared with the reference genotype. The GTC, GCC and GCG haplotypes were associated with risk of T2DM. In summary, rs8192291 polymorphism and haplotypes may become a useful biomarker for prediction of the susceptibility of this disease. Further experiments are necessary to validate our results.
Collapse
Affiliation(s)
- Haoyun Li
- Department of Endocrinology, Zhengzhou Central Hospital, Zhengzhou UniversityZhengzhou, China
| | - Changmeng Zhang
- Department of Orthopaedics, Zhengzhou Central Hospital, Zhengzhou UniversityZhengzhou, China
| | - Li He
- Department of Endocrinology, Zhengzhou Central Hospital, Zhengzhou UniversityZhengzhou, China
| | - Fengjiao Zhang
- Department of Endocrinology, Zhengzhou Central Hospital, Zhengzhou UniversityZhengzhou, China
| | - Fang Luo
- Department of Endocrinology, Zhengzhou Central Hospital, Zhengzhou UniversityZhengzhou, China
| | - Yizhe Yuan
- Department of Endocrinology, Zhengzhou Central Hospital, Zhengzhou UniversityZhengzhou, China
| | - Qingchu Li
- Department of Endocrinology, Zhengzhou Central Hospital, Zhengzhou UniversityZhengzhou, China
| |
Collapse
|
12
|
Janssen WJ, Nozik-Grayck E. Power of Place: Intravascular Superoxide Dismutase for Prevention of Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2017; 56:147-149. [PMID: 28145771 PMCID: PMC5359654 DOI: 10.1165/rcmb.2016-0407ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- William J Janssen
- 1 Department of Medicine National Jewish Health Denver, Colorado and
| | - Eva Nozik-Grayck
- 2 Cardiovascular Pulmonary Research Laboratories University of Colorado Denver Aurora, Colorado
| |
Collapse
|
13
|
Early Prediction of Sepsis Incidence in Critically Ill Patients Using Specific Genetic Polymorphisms. Biochem Genet 2016; 55:193-203. [PMID: 27943002 DOI: 10.1007/s10528-016-9785-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/02/2016] [Indexed: 01/13/2023]
Abstract
Several diagnostic methods for the evaluation and monitoring were used to find out the pro-inflammatory status, as well as incidence of sepsis in critically ill patients. One such recent method is based on investigating the genetic polymorphisms and determining the molecular and genetic links between them, as well as other sepsis-associated pathophysiologies. Identification of genetic polymorphisms in critical patients with sepsis can become a revolutionary method for evaluating and monitoring these patients. Similarly, the complications, as well as the high costs associated with the management of patients with sepsis, can be significantly reduced by early initiation of intensive care.
Collapse
|
14
|
Extracellular Superoxide Dismutase Enhances Recruitment of Immature Neutrophils to the Liver. Infect Immun 2016; 84:3302-3312. [PMID: 27600509 DOI: 10.1128/iai.00603-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive intracellular pathogen that causes spontaneous abortion in pregnant women, as well as septicemia, meningitis, and gastroenteritis, primarily in immunocompromised individuals. Although L. monocytogenes can usually be effectively treated with antibiotics, there is still around a 25% mortality rate with individuals who develop clinical listeriosis. Neutrophils are innate immune cells required for the clearance of pathogenic organisms, including L. monocytogenes The diverse roles of neutrophils during both infectious and noninfectious inflammation have recently gained much attention. However, the impact of reactive oxygen species, and the enzymes that control their production, on neutrophil recruitment and function is not well understood. Using congenic mice with varying levels of extracellular superoxide dismutase (ecSOD) activity, we have recently shown that the presence of ecSOD decreases clearance of L. monocytogenes while increasing the recruitment of neutrophils that are not protective in the liver. The data presented here show that ecSOD activity does not lead to a cell-intrinsic increase in neutrophil-homing potential or a decrease in protection against L. monocytogenes Instead, ecSOD activity enhances the production of neutrophil-attracting factors and protects hyaluronic acid (HA) from damage. Furthermore, neutrophils from the livers of ecSOD-expressing mice have decreased intracellular and surface-bound myeloperoxidase, are less capable of killing phagocytosed L. monocytogenes, and have decreased oxidative burst. Collectively, our data reveal that ecSOD activity modulates neutrophil recruitment and function in a cell-extrinsic fashion, highlighting the importance of the enzyme in protecting tissues from oxidative damage.
Collapse
|
15
|
Kwon MJ, Lee KY, Lee HW, Kim JH, Kim TY. SOD3 Variant, R213G, Altered SOD3 Function, Leading to ROS-Mediated Inflammation and Damage in Multiple Organs of Premature Aging Mice. Antioxid Redox Signal 2015; 23:985-99. [PMID: 25927599 DOI: 10.1089/ars.2014.6035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIMS Among the isoforms of superoxide dismutase, SOD3 is uniquely associated with the extracellular matrix (ECM) by virtue of its heparin-binding domain (HBD). Substitution of arginine by glycine at amino acid 213 (R213G) of its HBD was first identified in patients with heart failure, followed by many studies that focused on the role of this variant (SOD3(R213G)) in ischemic heart disease and cardiovascular disease. However, the biological significance of this mutation in a physiological context is largely unknown. RESULTS As a first step, we generated SOD3(R213G) transgenic mice, in which the variant gene was driven by the β-actin promoter allowing expression in all tissues. Unexpectedly, we found that SOD3(R213G) transgenic mice exhibited premature aging, including hair graying, abnormal gait, and a shortened life span. Specifically, the aged mice showed systemic inflammation and organ degeneration. In addition, aged SOD3(R213G) mice are susceptible to neutrophil-mediated inflammation. Among other functions, the neutrophils of SOD3(R213G) mice produce high amounts of reactive oxygen species, which would normally be controlled by SOD3 in ECM. INNOVATION These findings showed for the first time that arginine 213 in the HBD of SOD3 is critical for maintaining proper organ function through moderating the normal innate immune response, which would otherwise lead to chronic inflammation and degenerative diseases in aged mice. CONCLUSION Therefore, patients with this variant may be treated with SOD3 as a therapeutic strategy to prevent or cure these diseases.
Collapse
Affiliation(s)
- Myung-Ja Kwon
- 1 Department of Dermatology, Catholic Research Institute of Medical Science , College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyo-Young Lee
- 2 Department of Hospital Pathology, College of Medicine, The Catholic University of Korea , Seoul, Republic of Korea
| | - Han-Woong Lee
- 3 Department of Biochemistry, College of Life Science and Biotechnology , Yonsei University, Seoul, Republic of Korea
| | - Jung-Ho Kim
- 1 Department of Dermatology, Catholic Research Institute of Medical Science , College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Yoon Kim
- 1 Department of Dermatology, Catholic Research Institute of Medical Science , College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
16
|
Chen W, Ware LB. Prognostic factors in the acute respiratory distress syndrome. Clin Transl Med 2015; 4:65. [PMID: 26162279 PMCID: PMC4534483 DOI: 10.1186/s40169-015-0065-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/19/2015] [Indexed: 01/11/2023] Open
Abstract
Despite improvements in critical care, acute respiratory distress syndrome (ARDS) remains a devastating clinical problem with high rates of morbidity and mortality. A better understanding of the prognostic factors associated with ARDS is crucial for facilitating risk stratification and developing new therapeutic interventions that aim to improve clinical outcomes. In this article, we present an up-to-date summary of factors that predict mortality in ARDS in four categories: (1) clinical characteristics; (2) physiological parameters and oxygenation; (3) genetic polymorphisms and biomarkers; and (4) scoring systems. In addition, we discuss how a better understanding of clinical and basic pathogenic mechanisms can help to inform prognostication, decision-making, risk stratification, treatment selection, and improve study design for clinical trials.
Collapse
Affiliation(s)
- Wei Chen
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, USA,
| | | |
Collapse
|
17
|
Acosta-Herrera M, Pino-Yanes M, Blanco J, Ballesteros JC, Ambrós A, Corrales A, Gandía F, Subirá C, Domínguez D, Baluja A, Añón JM, Adalia R, Pérez-Méndez L, Flores C, Villar J. Common variants of NFE2L2 gene predisposes to acute respiratory distress syndrome in patients with severe sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:256. [PMID: 26077880 PMCID: PMC4484894 DOI: 10.1186/s13054-015-0981-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/05/2015] [Indexed: 12/20/2022]
Abstract
Introduction The purpose of this study was to investigate whether common variants across the nuclear factor erythroid 2-like 2 (NFE2L2) gene contribute to the development of the acute respiratory distress syndrome (ARDS) in patients with severe sepsis. NFE2L2 is involved in the response to oxidative stress, and it has been shown to be associated with the development of ARDS in trauma patients. Methods We performed a case–control study of 321 patients fulfilling international criteria for severe sepsis and ARDS who were admitted to a Spanish network of post-surgical and critical care units, as well as 871 population-based controls. Six tagging single-nucleotide polymorphisms (SNPs) of NFE2L2 were genotyped, and, after further imputation of additional 34 SNPs, association testing with ARDS susceptibility was conducted using logistic regression analysis. Results After multiple testing adjustments, our analysis revealed 10 non-coding SNPs in tight linkage disequilibrium (0.75 ≤ r2 ≤ 1) that were associated with ARDS susceptibility as a single association signal. One of those SNPs (rs672961) was previously associated with trauma-induced ARDS and modified the promoter activity of the NFE2L2 gene, showing an odds ratio of 1.93 per T allele (95 % confidence interval, 1.17–3.18; p = 0.0089). Conclusions Our findings support the involvement of NFE2L2 gene variants in ARDS susceptibility and reinforce further exploration of the role of oxidant stress response as a risk factor for ARDS in critically ill patients.
Collapse
Affiliation(s)
- Marialbert Acosta-Herrera
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain. .,Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario 145, 38010, Santa Cruz de Tenerife, Spain. .,Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n - 4th floor, south wing, 35019, Las Palmas de Gran Canaria, Spain.
| | - Maria Pino-Yanes
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain. .,Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario 145, 38010, Santa Cruz de Tenerife, Spain.
| | - Jesús Blanco
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain. .,Intensive Care Unit, Hospital Universitario Río Hortega, Valladolid, Spain.
| | | | - Alfonso Ambrós
- Intensive Care Unit, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain.
| | - Almudena Corrales
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain. .,Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario 145, 38010, Santa Cruz de Tenerife, Spain.
| | - Francisco Gandía
- Intensive Care Unit, Hospital Clínico de Valladolid, Valladolid, Spain.
| | - Carlés Subirá
- Intensive Care Unit, Fundació ALTHAIA, Manresa, Spain.
| | - David Domínguez
- Department Anesthesia, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
| | - Aurora Baluja
- Department Anesthesiology, Hospital Clínico Universitario, Santiago de Compostela, Spain.
| | | | - Ramón Adalia
- Department of Anesthesiology, Hospital Clinic de Barcelona, Barcelona, Spain.
| | - Lina Pérez-Méndez
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain. .,Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario 145, 38010, Santa Cruz de Tenerife, Spain.
| | - Carlos Flores
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain. .,Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario 145, 38010, Santa Cruz de Tenerife, Spain. .,Applied Genomics Group, Laboratory of Genetics, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Tenerife, Spain.
| | - Jesus Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain. .,Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n - 4th floor, south wing, 35019, Las Palmas de Gran Canaria, Spain. .,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.
| | | |
Collapse
|
18
|
Erranz MB, Wilhelm BJ, Riquelme VR, Cruces RP. [Genetic predisposition and Pediatric Acute Respiratory Distress Syndrome: New tools for genetic study]. REVISTA CHILENA DE PEDIATRIA 2015; 86:73-79. [PMID: 26235685 DOI: 10.1016/j.rchipe.2015.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is the most severe form of respiratory failure. Theoretically, any acute lung condition can lead to ARDS, but only a small percentage of individuals actually develop the disease. On this basis, genetic factors have been implicated in the risk of developing ARDS. Based on the pathophysiology of this disease, many candidate genes have been evaluated as potential modifiers in patient, as well as in animal models, of ARDS. Recent experimental data and clinical studies suggest that variations of genes involved in key processes of tissue, cellular and molecular lung damage may influence susceptibility and prognosis of ARDS. However, the pathogenesis of pediatric ARDS is complex, and therefore, it can be expected that many genes might contribute. Genetic variations such as single nucleotide polymorphisms and copy-number variations are likely associated with susceptibility to ARDS in children with primary lung injury. Genome-wide association (GWA) studies can objectively examine these variations, and help identify important new genes and pathogenetic pathways for future analysis. This approach might also have diagnostic and therapeutic implications, such as predicting patient risk or developing a personalized therapeutic approach to this serious syndrome.
Collapse
Affiliation(s)
- M Benjamín Erranz
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - B Jan Wilhelm
- Departamento de Pediatría, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - V Raquel Riquelme
- Unidad de Paciente Crítico Pediátrica, Hospital El Carmen de Maipú, Santiago, Chile
| | - R Pablo Cruces
- Unidad de Paciente Crítico Pediátrica, Hospital El Carmen de Maipú, Santiago, Chile; Centro de Investigación de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
19
|
Cantu E, Shah RJ, Lin W, Daye ZJ, Diamond JM, Suzuki Y, Ellis JH, Borders CF, Andah GA, Beduhn B, Meyer NJ, Ruschefski M, Aplenc R, Feng R, Christie JD. Oxidant stress regulatory genetic variation in recipients and donors contributes to risk of primary graft dysfunction after lung transplantation. J Thorac Cardiovasc Surg 2015; 149:596-602. [PMID: 25439478 PMCID: PMC4346512 DOI: 10.1016/j.jtcvs.2014.09.077] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/19/2014] [Accepted: 09/23/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Oxidant stress pathway activation during ischemia reperfusion injury may contribute to the development of primary graft dysfunction (PGD) after lung transplantation. We hypothesized that oxidant stress gene variation in recipients and donors is associated with PGD. METHODS Donors and recipients from the Lung Transplant Outcomes Group (LTOG) cohort were genotyped using the Illumina IBC chip filtered for oxidant stress pathway genes. Single nucleotide polymorphisms (SNPs) grouped into SNP sets based on haplotype blocks within 49 oxidant stress genes selected from gene ontology pathways and literature review were tested for PGD association using a sequencing kernel association test. Analyses were adjusted for clinical confounding variables and population stratification. RESULTS Three hundred ninety-two donors and 1038 recipients met genetic quality control standards. Thirty percent of patients developed grade 3 PGD within 72 hours. Donor NADPH oxidase 3 (NOX3) was associated with PGD (P = .01) with 5 individual significant loci (P values between .006 and .03). In recipients, variation in glutathione peroxidase (GPX1) and NRF-2 (NFE2L2) was significantly associated with PGD (P = .01 for both). The GPX1 association included 3 individual loci (P values between .006 and .049) and the NFE2L2 association included 2 loci (P = .03 and .05). Significant epistatic effects influencing PGD susceptibility were evident between 3 different donor blocks of NOX3 and recipient NFE2L2 (P = .026, P = .017, and P = .031). CONCLUSIONS Our study has prioritized GPX1, NOX3, and NFE2L2 genes for future research in PGD pathogenesis, and highlights a donor-recipient interaction of NOX3 and NFE2L2 that increases the risk of PGD.
Collapse
Affiliation(s)
- Edward Cantu
- Cardiovascular Surgery Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Rupal J. Shah
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Wei Lin
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Zhongyin J. Daye
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Joshua M. Diamond
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Yoshikazu Suzuki
- Cardiovascular Surgery Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - John H. Ellis
- Cardiovascular Surgery Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Catherine F. Borders
- Cardiovascular Surgery Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Gerald A. Andah
- Cardiovascular Surgery Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ben Beduhn
- Cardiovascular Surgery Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Nuala J. Meyer
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Melanie Ruschefski
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Richard Aplenc
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Rui Feng
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jason D. Christie
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | |
Collapse
|
20
|
Meyer NJ. Future clinical applications of genomics for acute respiratory distress syndrome. THE LANCET RESPIRATORY MEDICINE 2013; 1:793-803. [PMID: 24461759 DOI: 10.1016/s2213-2600(13)70134-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute respiratory distress syndrome remains a substantial cause of morbidity and mortality in intensive care units, yet no specific pharmacotherapy has proven useful in reducing the duration of mechanical ventilation or improving survival. One factor that might hamper the development of treatment for acute respiratory distress syndrome is the heterogeneous nature of the population who present with the syndrome. In this Review, the potential of genomic approaches-genetic association, gene expression, metabolomic, proteomic, and systems biology applications-for the identification of molecular endotypes within acute respiratory distress syndrome and potentially for the prediction, diagnosis, prognosis, and treatment of this difficult disorder are discussed.
Collapse
Affiliation(s)
- Nuala J Meyer
- Department of Medicine Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Meyer NJ, Feng R, Li M, Zhao Y, Sheu CC, Tejera P, Gallop R, Bellamy S, Rushefski M, Lanken PN, Aplenc R, O'Keefe GE, Wurfel MM, Christiani DC, Christie JD. IL1RN coding variant is associated with lower risk of acute respiratory distress syndrome and increased plasma IL-1 receptor antagonist. Am J Respir Crit Care Med 2013; 187:950-9. [PMID: 23449693 PMCID: PMC3707367 DOI: 10.1164/rccm.201208-1501oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 03/01/2013] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Acute respiratory distress syndrome (ARDS) behaves as a complex genetic trait, yet knowledge of genetic susceptibility factors remains incomplete. OBJECTIVES To identify genetic risk variants for ARDS using large scale genotyping. METHODS A multistage genetic association study was conducted of three critically ill populations phenotyped for ARDS. Stage I, a trauma cohort study (n = 224), was genotyped with a 50K gene-centric single-nucleotide polymorphism (SNP) array. We tested SNPs associated with ARDS at P < 5 × 10(-4) for replication in stage II, a trauma case-control population (n = 778). SNPs replicating their association in stage II (P < 0.005) were tested in a stage III nested case-control population of mixed subjects in the intensive care unit (n = 2,063). Logistic regression was used to adjust for potential clinical confounders. We performed ELISA to test for an association between ARDS-associated genotype and plasma protein levels. MEASUREMENTS AND MAIN RESULTS A total of 12 SNPs met the stage I threshold for an association with ARDS. rs315952 in the IL1RN gene encoding IL-1 receptor antagonist (IL1RA) replicated its association with reduced ARDS risk in stages II (P < 0.004) and III (P < 0.02), and was robust to clinical adjustment (combined odds ratio = 0.81; P = 4.2 × 10(-5)). Plasma IL1RA level was associated with rs315952C in a subset of critically ill subjects. The effect of rs315952 was independent from the tandem repeat variant in IL1RN. CONCLUSIONS The IL1RN SNP rs315952C is associated with decreased risk of ARDS in three populations with heterogeneous ARDS risk factors, and with increased plasma IL1RA response. IL1RA may attenuate ARDS risk.
Collapse
Affiliation(s)
- Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Song Z, Yao C, Yin J, Tong C, Zhu D, Sun Z, Jiang J, Shao M, Zhang Y, Deng Z, Tao Z, Sun S, Bai C. Genetic variation in the TNF receptor-associated factor 6 gene is associated with susceptibility to sepsis-induced acute lung injury. J Transl Med 2012; 10:166. [PMID: 22901274 PMCID: PMC3478205 DOI: 10.1186/1479-5876-10-166] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/09/2012] [Indexed: 12/31/2022] Open
Abstract
Background Recent studies showed that overwhelming inflammatory response mediated by the toll-like receptor (TLR)-related pathway was important in the development of acute lung injury (ALI). The aim of this study was to determine whether common genetic variation in four genes of the TLR signaling pathway were associated with sepsis-induced ALI susceptibility and risk of death in Chinese Han population. Methods Fourteen tag single nucleotide polymorphisms (tagSNPs) in MyD88, IRAK1, IRAK4 and TRAF6 were genotyped in samples of sepsis-induced ALI (n = 272) and sepsis alone patients (n = 276), and tested for association in this case-control collection. Then, we investigated correlation between the associated SNP and the mRNA expression level of the corresponding gene. And we also investigated correlation between the associated SNP and tumor necrosis factor alpha (TNF-α) as well as interleukin-6 (IL-6) concentrations in peripheral blood mononuclear cells (PBMCs) exposed to lipopolysaccharides (LPS) ex vivo. The mRNA expression level was determined using real-time quantitative Polymerase Chain Reaction (PCR) assays, and concentrations of TNF-α and IL-6 were measured by enzyme-linked immunosorbent assay (ELISA). Results The association analysis revealed that rs4755453, an intronic SNP of TRAF6, was significantly associated with susceptibility to sepsis-induced ALI. The C allele frequency of rs4755453 in the sepsis alone group was significantly higher than that in the sepsis-induced ALI group (P = 0.00026, odds ratio (OR) = 0.52, 95% confidence interval (CI) 0.37–0.74). These associations remained significant after adjustment for covariates in multiple logistic regression analysis and for multiple comparisons. TRAF6 mRNA expression levels in PBMCs from homozygotes of the rs4755453G allele were significantly higher than that in heterozygotes and homozygotes of the rs4755453C allele at baseline (P = 0.012 and P = 0.003, respectively) as well as after LPS stimulation (P = 0.009 and P = 0.005). Moreover, the concentrations of TNF-α and IL-6 in cell culture supernatants were also significantly higher in the subjects with rs4755453GG genotype than in subjects with CG and CC genotype. None of the 14 tagSNPs showed associations with risk of death and severity among ALI cases. Conclusions Our findings indicated that common genetic variants in TRAF6 were significantly associated with susceptibility to sepsis-induced ALI in Chinese Han population. This was the first genetic evidence supporting a role for TRAF6 in ALI.
Collapse
Affiliation(s)
- Zhenju Song
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Leikauf GD, Pope-Varsalona H, Concel VJ, Liu P, Bein K, Berndt A, Martin TM, Ganguly K, Jang AS, Brant KA, Dopico RA, Upadhyay S, Di YPP, Li Q, Hu Z, Vuga LJ, Medvedovic M, Kaminski N, You M, Alexander DC, McDunn JE, Prows DR, Knoell DL, Fabisiak JP. Integrative assessment of chlorine-induced acute lung injury in mice. Am J Respir Cell Mol Biol 2012; 47:234-44. [PMID: 22447970 DOI: 10.1165/rcmb.2012-0026oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The genetic basis for the underlying individual susceptibility to chlorine-induced acute lung injury is unknown. To uncover the genetic basis and pathophysiological processes that could provide additional homeostatic capacities during lung injury, 40 inbred murine strains were exposed to chlorine, and haplotype association mapping was performed. The identified single-nucleotide polymorphism (SNP) associations were evaluated through transcriptomic and metabolomic profiling. Using ≥ 10% allelic frequency and ≥ 10% phenotype explained as threshold criteria, promoter SNPs that could eliminate putative transcriptional factor recognition sites in candidate genes were assessed by determining transcript levels through microarray and reverse real-time PCR during chlorine exposure. The mean survival time varied by approximately 5-fold among strains, and SNP associations were identified for 13 candidate genes on chromosomes 1, 4, 5, 9, and 15. Microarrays revealed several differentially enriched pathways, including protein transport (decreased more in the sensitive C57BLKS/J lung) and protein catabolic process (increased more in the resistant C57BL/10J lung). Lung metabolomic profiling revealed 95 of the 280 metabolites measured were altered by chlorine exposure, and included alanine, which decreased more in the C57BLKS/J than in the C57BL/10J strain, and glutamine, which increased more in the C57BL/10J than in the C57BLKS/J strain. Genetic associations from haplotype mapping were strengthened by an integrated assessment using transcriptomic and metabolomic profiling. The leading candidate genes associated with increased susceptibility to acute lung injury in mice included Klf4, Sema7a, Tns1, Aacs, and a gene that encodes an amino acid carrier, Slc38a4.
Collapse
Affiliation(s)
- George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, PA 15219-3130, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Superoxide dismutase 3 limits collagen-induced arthritis in the absence of phagocyte oxidative burst. Mediators Inflamm 2012; 2012:730469. [PMID: 22529530 PMCID: PMC3317049 DOI: 10.1155/2012/730469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/21/2011] [Accepted: 12/12/2011] [Indexed: 01/04/2023] Open
Abstract
Extracellular superoxide dismutase (SOD3), an enzyme mediating dismutation of superoxide into hydrogen peroxide, has been shown to reduce inflammation by inhibiting macrophage migration into injured tissues. In inflamed tissues, superoxide is produced by the phagocytic NOX2 complex, which consists of the catalytic subunit NOX2 and several regulatory subunits (e.g., NCF1). To analyze whether SOD3 can regulate inflammation in the absence of functional NOX2 complex, we injected an adenoviral vector overexpressing SOD3 directly into the arthritic paws of Ncf1∗/∗ mice with collagen-induced arthritis. SOD3 reduced arthritis severity in both oxidative burst-deficient Ncf1∗/∗ mice and also in wild-type mice. The NOX2 complex independent anti-inflammatory effect of SOD3 was further characterized in peritonitis, and SOD3 was found to reduce macrophage infiltration independently of NOX2 complex functionality. We conclude that the SOD3-mediated anti-inflammatory effect on arthritis and peritonitis operates independently of NOX2 complex derived oxidative burst.
Collapse
|
25
|
Break TJ, Jun S, Indramohan M, Carr KD, Sieve AN, Dory L, Berg RE. Extracellular superoxide dismutase inhibits innate immune responses and clearance of an intracellular bacterial infection. THE JOURNAL OF IMMUNOLOGY 2012; 188:3342-50. [PMID: 22393157 DOI: 10.4049/jimmunol.1102341] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Reactive oxygen species and reactive nitrogen species play important roles during immune responses to bacterial pathogens. Extracellular superoxide dismutase (ecSOD) regulates extracellular concentrations of reactive oxygen species and reactive nitrogen species and contributes to tissue protection during inflammatory insults. The participation of ecSOD in immune responses seems therefore intuitive, yet is poorly understood. In the current study, we used mice with varying levels of ecSOD activity to investigate the involvement of this enzyme in immune responses against Listeria monocytogenes. Surprisingly, our data demonstrate that despite enhanced neutrophil recruitment to the liver, ecSOD activity negatively affected host survival and bacterial clearance. Increased ecSOD activity was accompanied by decreased colocalization of neutrophils with bacteria, as well as increased neutrophil apoptosis, which reduced overall and neutrophil-specific TNF-α production. Liver leukocytes from mice lacking ecSOD produced equivalent NO· compared with liver leukocytes from mice expressing ecSOD. However, during infection, there were higher levels of peroxynitrite (NO(3)·(-)) in livers from mice lacking ecSOD compared with livers from mice expressing ecSOD. Neutrophil depletion studies revealed that high levels of ecSOD activity resulted in neutrophils with limited protective capacity, whereas neutrophils from mice lacking ecSOD provided superior protection compared with neutrophils from wild-type mice. Taken together, our data demonstrate that ecSOD activity reduces innate immune responses during bacterial infection and provides a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Timothy J Break
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Case AJ, Mezhir JJ, O'Leary BR, Hrabe JE, Domann FE. Rational design of a secreted enzymatically inactive mutant of extracellular superoxide dismutase. Redox Rep 2012; 17:239-45. [PMID: 23339859 PMCID: PMC3569055 DOI: 10.1179/1351000212y.0000000028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Extracellular superoxide dismutase (SOD3) is a secreted enzyme that regulates levels of extracellular superoxide and protects the extracellular matrix from degradation by reactive species. The SOD3 protein contains a heparin-binding domain and resides in a microenvironment rich in other heparin-bound growth factors, raising the possibility that SOD3 may have some biological role independent of its catalytic activity. To begin to address this, we designed and created enzymatically inactive mutant constructs targeting either the copper coordinating (i.e. H96 and H98) or superoxide channeling (i.e. N180 and R186) amino acid residues of SOD3. All constructs expressed equal quantities of immature intracellular SOD proteins, but only the N180A, R186A, and combination N180A/R186A mutants produced fully processed and secreted extracellular protein. Furthermore, while SOD activity was significantly inhibited in the single N180A and R186A mutants, the activity was completely abrogated in the N180A/R186A double mutant. Overall, the use of this novel tool may have broad reaching impacts into various fields of biology and medicine, and will aid in the delineation of cellular processes that are regulated by solely the SOD3 protein, its reactive oxygen species substrates and products, or the combination of both.
Collapse
Affiliation(s)
- Adam J. Case
- Free Radical and Radiation Biology ProgramDepartment of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - James J. Mezhir
- Department of SurgeryCarver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Brianne R. O'Leary
- Department of SurgeryCarver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer E. Hrabe
- Department of SurgeryCarver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Frederick E. Domann
- Free Radical and Radiation Biology ProgramDepartment of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
27
|
Christie JD, Wurfel MM, Feng R, O'Keefe GE, Bradfield J, Ware LB, Christiani DC, Calfee CS, Cohen MJ, Matthay M, Meyer NJ, Kim C, Li M, Akey J, Barnes KC, Sevransky J, Lanken PN, May AK, Aplenc R, Maloney JP, Hakonarson H. Genome wide association identifies PPFIA1 as a candidate gene for acute lung injury risk following major trauma. PLoS One 2012; 7:e28268. [PMID: 22295056 PMCID: PMC3266233 DOI: 10.1371/journal.pone.0028268] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 11/04/2011] [Indexed: 12/29/2022] Open
Abstract
Acute Lung Injury (ALI) is a syndrome with high associated mortality characterized by severe hypoxemia and pulmonary infiltrates in patients with critical illness. We conducted the first investigation to use the genome wide association (GWA) approach to identify putative risk variants for ALI. Genome wide genotyping was performed using the Illumina Human Quad 610 BeadChip. We performed a two-stage GWA study followed by a third stage of functional characterization. In the discovery phase (Phase 1), we compared 600 European American trauma-associated ALI cases with 2266 European American population-based controls. We carried forward the top 1% of single nucleotide polymorphisms (SNPs) at p<0.01 to a replication phase (Phase 2) comprised of a nested case-control design sample of 212 trauma-associated ALI cases and 283 at-risk trauma non-ALI controls from ongoing cohort studies. SNPs that replicated at the 0.05 level in Phase 2 were subject to functional validation (Phase 3) using expression quantitative trait loci (eQTL) analyses in stimulated B-lymphoblastoid cell lines (B-LCL) in family trios. 159 SNPs from the discovery phase replicated in Phase 2, including loci with prior evidence for a role in ALI pathogenesis. Functional evaluation of these replicated SNPs revealed rs471931 on 11q13.3 to exert a cis-regulatory effect on mRNA expression in the PPFIA1 gene (p = 0.0021). PPFIA1 encodes liprin alpha, a protein involved in cell adhesion, integrin expression, and cell-matrix interactions. This study supports the feasibility of future multi-center GWA investigations of ALI risk, and identifies PPFIA1 as a potential functional candidate ALI risk gene for future research.
Collapse
Affiliation(s)
- Jason D. Christie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Mark M. Wurfel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Harborview Medical Center, University of Washington, Seattle, Washington, United States of America
| | - Rui Feng
- Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Grant E. O'Keefe
- Department of Surgery, Harborview Medical Center, University of Washington, Seattle, Washington, United States of America
| | - Jonathan Bradfield
- Division of Human Genetics, Center for Applied Genomics, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - David C. Christiani
- Department of Environmental Health, Harvard School of Public Health and Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Carolyn S. Calfee
- Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, California, United States of America
| | - Mitchell J. Cohen
- Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Michael Matthay
- Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, California, United States of America
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Cecilia Kim
- Division of Human Genetics, Center for Applied Genomics, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joshua Akey
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Kathleen C. Barnes
- Division of Pulmonary, Allergy, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jonathan Sevransky
- Division of Pulmonary, Allergy, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Paul N. Lanken
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Addison K. May
- Department of Surgical Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Richard Aplenc
- Division of Oncology, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - James P. Maloney
- Division of Pulmonary and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, Colorado, United States of America
| | - Hakon Hakonarson
- Division of Human Genetics, Center for Applied Genomics, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | | |
Collapse
|
28
|
Teoh-Fitzgerald MLT, Fitzgerald MP, Jensen TJ, Futscher BW, Domann FE. Genetic and epigenetic inactivation of extracellular superoxide dismutase promotes an invasive phenotype in human lung cancer by disrupting ECM homeostasis. Mol Cancer Res 2011; 10:40-51. [PMID: 22064654 DOI: 10.1158/1541-7786.mcr-11-0501] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular superoxide dismutase (EcSOD) is an important superoxide scavenger in the lung in which its loss, sequence variation, or abnormal expression contributes to lung diseases; however, the role of EcSOD in lung cancer has yet to be studied. We hypothesized that EcSOD loss could affect malignant progression in lung, and could be either genetic or epigenetic in nature. To test this, we analyzed EcSOD expression, gene copy number, promoter methylation, and chromatin accessibility in normal lung and carcinoma cells. We found that normal airway epithelial cells expressed abundant EcSOD and had an unmethylated promoter, whereas EcSOD-negative lung cancer cells displayed aberrant promoter hypermethylation and decreased chromatin accessibility. 5-aza-dC induced EcSOD suggesting that cytosine methylation was causal, in part, to silencing. In 48/50 lung tumors, EcSOD mRNA was significantly lower as early as stage I, and the EcSOD promoter was hypermethylated in 8/10 (80%) adenocarcinomas compared with 0/5 normal lung samples. In addition, 20% of the tumors showed loss of heterozygosity (LOH) of EcSOD. Reexpression of EcSOD attenuated the malignant phenotype of lung carcinoma cells by significantly decreasing invasion and survival. Finally, EcSOD decreased heparanase and syndecan-1 mRNAs in part by reducing NF-κB. By contrast, MnSOD and CuZnSOD showed no significant changes in lung tumors and had no effect on heparanase expression. Taken together, the loss of EcSOD expression is unique among the superoxide dismutases in lung cancer and is the result of EcSOD promoter methylation and LOH, suggesting that its early loss may contribute to ECM remodeling and malignant progression.
Collapse
Affiliation(s)
- Melissa L T Teoh-Fitzgerald
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Carver College of Medicine and The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
29
|
Lakhdar R, Denden S, Kassab A, Leban N, Knani J, Lefranc G, Miled A, Chibani JB, Khelil AH. Update in chronic obstructive pulmonary disease: role of antioxidant and metabolizing gene polymorphisms. Exp Lung Res 2011; 37:364-75. [PMID: 21721950 DOI: 10.3109/01902148.2011.580416] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by systemic and local chronic inflammation and oxidative stress. The sources of the increased oxidative stress in COPD patients derive from the increased burden of inhaled oxidants such as cigarette smoke and other forms of particulate or gaseous air pollution and from the increase in reactive oxygen species (ROS) generated by several inflammatory, immune, and structural airways cells. There is increasing evidence that genetic factors may also contribute to the pathogenesis if COPD, particularly antioxidant genes, which may confer a susceptibility to environmental insults such as cigarette smoke and thereafter development of COPD. Consequently, heme oxygenase-1 (HO-1), superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), microsomal epoxide hydrolase (EPHX1), and cytochrome P450 (CYP) genetic polymorphisms may have an important role in COPD pathogenesis. In this review the authors summarized the most recent findings dealing with these antioxidant genes contributing to the free radical neutralization and xenobiotic enzymes playing a role in different phases of cell detoxification reactions related to the redox status imbalance in COPD, with an emphasis on their possible roles in disease progression.
Collapse
Affiliation(s)
- Ramzi Lakhdar
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, Monastir, Tunisia.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Comhair SAA, Gaston BM, Ricci KS, Hammel J, Dweik RA, Teague WG, Meyers D, Ampleford EJ, Bleecker ER, Busse WW, Calhoun WJ, Castro M, Chung KF, Curran-Everett D, Israel E, Jarjour WN, Moore W, Peters SP, Wenzel S, Hazen SL, Erzurum SC. Detrimental effects of environmental tobacco smoke in relation to asthma severity. PLoS One 2011; 6:e18574. [PMID: 21572527 PMCID: PMC3087715 DOI: 10.1371/journal.pone.0018574] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 03/04/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Environmental tobacco smoke (ETS) has adverse effects on the health of asthmatics, however the harmful consequences of ETS in relation to asthma severity are unknown. METHODS In a multicenter study of severe asthma, we assessed the impact of ETS exposure on morbidity, health care utilization and lung functions; and activity of systemic superoxide dismutase (SOD), a potential oxidative target of ETS that is negatively associated with asthma severity. FINDINGS From 2002-2006, 654 asthmatics (non-severe 366, severe 288) were enrolled, among whom 109 non-severe and 67 severe asthmatics were routinely exposed to ETS as ascertained by history and validated by urine cotinine levels. ETS-exposure was associated with lower quality of life scores; greater rescue inhaler use; lower lung function; greater bronchodilator responsiveness; and greater risk for emergency room visits, hospitalization and intensive care unit admission. ETS-exposure was associated with lower levels of serum SOD activity, particularly in asthmatic women of African heritage. INTERPRETATION ETS-exposure of asthmatic individuals is associated with worse lung function, higher acuity of exacerbations, more health care utilization, and greater bronchial hyperreactivity. The association of diminished systemic SOD activity to ETS exposure provides for the first time a specific oxidant mechanism by which ETS may adversely affect patients with asthma.
Collapse
Affiliation(s)
- Suzy A. A. Comhair
- Departments of Pathobiology, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail: (SAAC); (SCE)
| | - Benjamin M. Gaston
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kristin S. Ricci
- Departments of Pathobiology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jeffrey Hammel
- Departments of Pathobiology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Raed A. Dweik
- Departments of Pathobiology, Cleveland Clinic, Cleveland, Ohio, United States of America
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - W. Gerald Teague
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Deborah Meyers
- Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Elizabeth J. Ampleford
- Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Eugene R. Bleecker
- Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - William W. Busse
- Department of Internal Medicine, University of Wisconsin, Madison, Wisconsin, United State of America
| | - William J. Calhoun
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Mario Castro
- Internal Medicine/Pulmonary and Critical Care Medicine, Washington University, St Louis, Missouri, United States of America
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College School of Medicine, London, United Kingdom
| | - Douglas Curran-Everett
- Division of Biostatistics, National Jewish Center, Denver, Colorado, United States of America
| | - Elliot Israel
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - W. Nizar Jarjour
- Department of Internal Medicine, University of Wisconsin, Madison, Wisconsin, United State of America
| | - Wendy Moore
- Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Stephen P. Peters
- Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Sally Wenzel
- Asthma Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stanley L. Hazen
- Department of Cell Biology and Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Serpil C. Erzurum
- Departments of Pathobiology, Cleveland Clinic, Cleveland, Ohio, United States of America
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail: (SAAC); (SCE)
| | | |
Collapse
|
31
|
Zhou T, Garcia JG, Zhang W. Integrating microRNAs into a system biology approach to acute lung injury. Transl Res 2011; 157:180-90. [PMID: 21420028 PMCID: PMC3073780 DOI: 10.1016/j.trsl.2011.01.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/15/2011] [Accepted: 01/18/2011] [Indexed: 01/02/2023]
Abstract
Acute lung injury (ALI), including the ventilator-induced lung injury (VILI) and the more severe acute respiratory distress syndrome (ARDS), are common and complex inflammatory lung diseases potentially affected by various genetic and nongenetic factors. Using the candidate gene approach, genetic variants associated with immune response and inflammatory pathways have been identified and implicated in ALI. Because gene expression is an intermediate phenotype that resides between the DNA sequence variation and the higher level cellular or whole-body phenotypes, the illustration of gene expression regulatory networks potentially could enhance understanding of disease susceptibility and the development of inflammatory lung syndromes. MicroRNAs (miRNAs) have emerged as a novel class of gene regulators that play critical roles in complex diseases including ALI. Comparisons of global miRNA profiles in animal models of ALI and VILI identified several miRNAs (eg, miR-146a and miR-155) previously implicated in immune response and inflammatory pathways. Therefore, via regulation of target genes in these biological processes and pathways, miRNAs potentially contribute to the development of ALI. Although this line of inquiry exists at a nascent stage, miRNAs have the potential to be critical components of a comprehensive model for inflammatory lung disease built by a systems biology approach that integrates genetic, genomic, proteomic, epigenetic as well as environmental stimuli information. Given their particularly recognized role in regulation of immune and inflammatory responses, miRNAs also serve as novel therapeutic targets and biomarkers for ALI/ARDS or VILI, thus facilitating the realization of personalized medicine for individuals with acute inflammatory lung disease.
Collapse
Affiliation(s)
- Tong Zhou
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joe G.N. Garcia
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wei Zhang
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL 60612, USA
- Institute for Human Genetics, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
32
|
Cardinal-Fernández P, Nin N, Lorente JA. [Acute lung injury and acute respiratory distress syndrome: a genomic perspective]. Med Intensiva 2011; 35:361-72. [PMID: 21429625 DOI: 10.1016/j.medin.2011.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/20/2010] [Accepted: 02/02/2011] [Indexed: 11/16/2022]
Abstract
Genomics have allowed important advances in the knowledge of the etiology and pathogenesis of complex disease entities such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Genomic medicine aims to personalize and optimize diagnosis, prognosis and treatment by determining the influence of genetic polymorphisms in specific diseases. The scientific community must cope with the important challenge of securing rapid transfer of knowledge to clinical practice, in order to prevent patients from becoming exposed to unnecessary risks. In the present article we describe the main concepts of genomic medicine pertaining to ALI/ARDS, and its currently recognized clinical applications.
Collapse
Affiliation(s)
- P Cardinal-Fernández
- Unidad de Cuidados Intensivos, CASMU-IAMPP-Hospital Central de las Fuerzas Armadas, Montevideo, Uruguay.
| | | | | |
Collapse
|
33
|
Vertegel AA, Reukov V, Maximov V. Enzyme-nanoparticle conjugates for biomedical applications. Methods Mol Biol 2011; 679:165-82. [PMID: 20865396 DOI: 10.1007/978-1-60761-895-9_14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Enzymes hold a great promise as therapeutic agents because of their unique specificity and high level of activity. Yet, clinically important enzyme drugs are for less common than conventional low molecular weight drugs due to a number of disadvantages. Most important among these are poor stability, potential immunogenicity, and potential systemic toxicity. Recent developments in synthesis and characterization of nanoparticles and exciting novel properties of some classes of nanomaterials have boosted interest in the potential use of nanoparticles as carriers of enzyme drugs. In certain cases, use of enzymes attached to nanoparticles can help to overcome some of the above problems and improve the prospects of clinical applications of enzyme drugs. Here, we review recent data on the use of nanoparticles as carriers for several clinically important enzyme drugs and discuss advantages and potential limitations of such constructs. While promising preliminary results were obtained with regard to their performance in vitro and in some animal models, further investigations and clinical trials, as well as addressing regulatory issues, are warranted to make these delivery systems suitable for clinical applications.
Collapse
|
34
|
Tollefson AK, Oberley-Deegan RE, Butterfield KT, Nicks ME, Weaver MR, Remigio LK, Decsesznak J, Chu H, Bratton DL, Riches DW, Bowler RP. Endogenous enzymes (NOX and ECSOD) regulate smoke-induced oxidative stress. Free Radic Biol Med 2010; 49:1937-46. [PMID: 20887783 PMCID: PMC3780970 DOI: 10.1016/j.freeradbiomed.2010.09.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 09/15/2010] [Accepted: 09/22/2010] [Indexed: 01/25/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death in the United States and the incidence is increasing as the population ages. Cigarette smoking is the primary risk factor; however, only a minority of smokers develop the disease. Inhalation of cigarette smoke introduces an abundance of free radicals into the lungs, causing oxidative stress and inflammation. We hypothesized that after the initial burst of oxidative stress associated with cigarette smoke exposure, a sustained source of endogenous free radical production is modulated by the antioxidant enzyme extracellular superoxide dismutase (ECSOD) and the superoxide-generating complex NADPH oxidase (NOX). Primary mouse macrophages exposed to cigarette smoke extract exhibited increased oxidative stress as indicated by fluorogenic dyes and isoprostane concentration, which was suppressed in the presence of both a superoxide dismutase mimetic and a NOX inhibitor. Similarly, primary macrophages isolated from ECSOD-overexpressing mice or NOX-deficient mice showed reduced oxidative stress in response to cigarette smoke treatment. In addition, both reduced glutathione and cytokines (MIP2 and IFNγ) were increased in bronchoalveolar lavage fluid of wild-type mice exposed to cigarette smoke but not in ECSOD-overexpressing or NOX-deficient mice. These data suggest that the mechanisms underlying the host defense against cigarette smoke-induced oxidative damage and subsequent development of COPD may include endogenous oxidases and antioxidant enzymes.
Collapse
Affiliation(s)
| | | | | | - Michael E. Nicks
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Michael R. Weaver
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Linda K. Remigio
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | | | - H.W. Chu
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
- University of Colorado at Denver and Health Sciences Center, Denver, CO 80262, USA
| | - Donna L. Bratton
- University of Colorado at Denver and Health Sciences Center, Denver, CO 80262, USA
| | - David W. Riches
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
- University of Colorado at Denver and Health Sciences Center, Denver, CO 80262, USA
| | - Russell P. Bowler
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
- University of Colorado at Denver and Health Sciences Center, Denver, CO 80262, USA
| |
Collapse
|
35
|
Lin JL, Thomas PS. Current perspectives of oxidative stress and its measurement in chronic obstructive pulmonary disease. COPD 2010; 7:291-306. [PMID: 20673039 DOI: 10.3109/15412555.2010.496818] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cigarette smoking, the principal aetiology of chronic obstructive pulmonary disease (COPD) in the developed countries, delivers and generates oxidative stress within the lungs. This imbalance of oxidant burden and antioxidant capacity has been implicated as an important contributing factor in the pathogenesis of COPD. Oxidative processes and free radical generation orchestrate the inflammation, mucous gland hyperplasia, and apoptosis of the airway lining epithelium which characterises COPD. Pivotal oxidative stress/pro-inflammatory molecules include reactive oxygen species such as the superoxides and hydroxyl radicals, pro-inflammatory cytokines including leukotrienes, interleukins, tumour necrosis factor alpha, and activated transcriptional factors such as nuclear factor kappa-B and activator protein 1. The lung has a large reserve of antioxidant agents such as glutathione and superoxide dismutase to counter oxidants. However, smoking also causes the depletion of antioxidants, which further contributes to oxidative tissue damage. The downregulation of antioxidant pathways has also been associated with acute exacerbations of COPD. The delivery of redox-protective antioxidants may have preventative and therapeutic potential of COPD. Although these observations have yet to translate into common clinical practice, preliminary clinical trials and studies of animal models have shown that interventions to counter this oxidative imbalance may have potential to better manage COPD. There is, thus, a need for the ability to monitor such interventions and exhaled breath condensate is rapidly emerging as a novel and noninvasive approach in the sampling of airway epithelial lining fluid which could be used for repeated analysis of oxidative stress and inflammation in the lungs.
Collapse
Affiliation(s)
- Jiun-Lih Lin
- University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
36
|
|
37
|
Yao H, Arunachalam G, Hwang JW, Chung S, Sundar IK, Kinnula VL, Crapo JD, Rahman I. Extracellular superoxide dismutase protects against pulmonary emphysema by attenuating oxidative fragmentation of ECM. Proc Natl Acad Sci U S A 2010; 107:15571-6. [PMID: 20713693 PMCID: PMC2932580 DOI: 10.1073/pnas.1007625107] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular superoxide dismutase (ECSOD or SOD3) is highly expressed in lungs and functions as a scavenger of O(2)(*-). ECM fragmentation, which can be triggered by oxidative stress, participates in the pathogenesis of chronic obstructive pulmonary disease (COPD) through attracting inflammatory cells into the lungs. The level of SOD3 is significantly decreased in lungs of patients with COPD. However, the role of endogenous SOD3 in the development/progression of emphysema is unknown. We hypothesized that SOD3 protects against emphysema by attenuating oxidative fragmentation of ECM in mice. To test this hypothesis, SOD3-deficient, SOD3-transgenic, and WT C57BL/6J mice were exposed to cigarette smoke (CS) for 3 d (300 mg total particulate matter/m(3)) to 6 mo (100 mg/m(3) total particulate matter) or by intratracheal elastase injection. Airspace enlargement, lung inflammation, lung mechanical properties, and exercise tolerance were determined at different time points during CS exposure or after elastase administration. CS exposure and elastase administration caused airspace enlargement as well as impaired lung function and exercise capacity in SOD3-null mice, which were improved in mice overexpressing SOD3 and by pharmacological SOD mimetic. These phenomena were associated with SOD3-mediated protection against oxidative fragmentation of ECM, such as heparin sulfate and elastin, thereby attenuating lung inflammatory response. In conclusion, SOD3 attenuates emphysema and reduces oxidative fragmentation of ECM in mouse lung. Thus, pharmacological augmentation of SOD3 in the lung may have a therapeutic potential in the intervention of COPD/emphysema.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642
| | - Gnanapragasam Arunachalam
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642
| | - Jae-woong Hwang
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642
| | - Sangwoon Chung
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642
| | - Isaac K. Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642
| | - Vuokko L. Kinnula
- Pulmonary Division, Department of Medicine, University of Helsinki and Helsinki University Hospital, FIN-00029 Helsinki, Finland; and
| | - James D. Crapo
- Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206
| | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
38
|
Piotrowski WJ, Kurmanowska Z, Antczak A, Marczak J, Ciebiada M, Górski P. Exhaled 8-isoprostane in sarcoidosis: relation to superoxide anion production by bronchoalveolar lavage cells. Inflamm Res 2010; 59:1027-32. [PMID: 20521080 PMCID: PMC2978317 DOI: 10.1007/s00011-010-0222-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 05/09/2010] [Accepted: 05/11/2010] [Indexed: 11/18/2022] Open
Abstract
Objective This study was designed to examine the mutual relationship between 8-isoprostane in exhaled breath condensate (EBC) and superoxide anion generation by bronchoalveolar lavage fluid (BALF) cells in patients with sarcoidosis. Design About 29 patients with sarcoidosis, 34 healthy never smokers (control group for EBC) and 15 healthy never smokers (control group for BAL) were examined. EBC was collected directly before bronchoscopy. 8-Isoprostane was measured by ELISA, and superoxide anion by colorimetry. Results Exhaled breath condensate 8-isoprostane is increased in sarcoidosis (median, 25–75 percentile): 2.50; 2.50–3.90 versus 6.20; 2.50–16.95 pg/ml, p ≤ 0.05). Spontaneous superoxide anion release from BALF cells was significantly elevated only in patients with a high percentage of lymphocytes in BALF (6.42 ± 1.24 vs. 23.52 ± 4.30 nmol/106 cells, p ≤ 0.01). There were no correlations between 8-isoprostane and spontaneous or stimulated superoxide anion release. Conclusions We confirmed higher concentrations of EBC 8-isoprostane in sarcoidosis and higher spontaneous release of superoxide anion from BALF cells in patients with sarcoidosis. The increase of EBC 8-isoprostane is not directly related to superoxide anion released from BALF cells.
Collapse
Affiliation(s)
- Wojciech J Piotrowski
- Department of Pneumology and Allergy, Medical University of Lodz, Kopcinskiego Str 22, 90-153, Lodz, Poland.
| | | | | | | | | | | |
Collapse
|
39
|
Matthay MA, Idell S. Update on acute lung injury and critical care medicine 2009. Am J Respir Crit Care Med 2010; 181:1027-32. [PMID: 20460547 PMCID: PMC3269230 DOI: 10.1164/rccm.201001-0074up] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 02/12/2010] [Indexed: 01/23/2023] Open
Affiliation(s)
- Michael A Matthay
- Department of Medicine, University of California-San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0624, USA.
| | | |
Collapse
|
40
|
Comhair SAA, Erzurum SC. Redox control of asthma: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2010; 12:93-124. [PMID: 19634987 PMCID: PMC2824520 DOI: 10.1089/ars.2008.2425] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An imbalance in reducing and oxidizing (redox) systems favoring a more oxidative environment is present in asthma and linked to the pathophysiology of the defining symptoms and signs including airflow limitation, hyper-reactivity, and airway remodeling. High levels of hydrogen peroxide, nitric oxide ((*)NO), and 15-F(2t)-isoprostane in exhaled breath, and excessive oxidative protein products in lung epithelial lining fluid, peripheral blood, and urine provide abundant evidence for pathologic oxidizing processes in asthma. Parallel studies document loss of reducing potential by nonenzymatic and enzymatic antioxidants. The essential first line antioxidant enzymes superoxide dismutases (SOD) and catalase are reduced in asthma as compared to healthy individuals, with lowest levels in those patients with the most severe asthma. Loss of SOD and catalase activity is related to oxidative modifications of the enzymes, while other antioxidant gene polymorphisms are linked to susceptibility to develop asthma. Monitoring of exhaled (*)NO has entered clinical practice because it is useful to optimize asthma care, and a wide array of other biochemical oxidative and nitrative biomarkers are currently being evaluated for asthma monitoring and phenotyping. Novel therapeutic strategies that target correction of redox abnormalities show promise for the treatment of asthma.
Collapse
Affiliation(s)
- Suzy A A Comhair
- Pathobiology, Lerner Research Institute, and the Respiratory Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
41
|
Reddy AJ, Kleeberger SR. Genetic polymorphisms associated with acute lung injury. Pharmacogenomics 2009; 10:1527-39. [PMID: 19761373 DOI: 10.2217/pgs.09.89] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Acute lung injury and acute respiratory distress syndrome are the result of intense inflammation in the lungs leading to respiratory failure. The causes of acute lung injury/acute respiratory distress syndrome are numerous (e.g., pneumonia, sepsis and trauma) but the reasons why certain individuals develop lung injury in response to these stimuli and others do not are not well understood. There is ample evidence in the literature that gene-host and gene-environment interactions may play a large role in the morbidity and mortality associated with this syndrome. In this review, we initially discuss methods for identification of candidate acute lung injury/acute respiratory distress syndrome susceptibility genes using a number of model systems including in vitro cell systems and inbred mice. We then describe examples of polymorphisms in genes that have been associated with the pathogenesis of acute lung injury/acute respiratory distress syndrome in human case-control studies. Systematic bench to bedside approaches to understand the genetic contribution to acute lung injury/acute respiratory distress syndrome have provided important insight to this complex disease and continuation of these investigations could lead to the development of novel prevention or intervention strategies.
Collapse
Affiliation(s)
- Anita J Reddy
- Respiratory Institute, Cleveland Clinic Health System, OH, USA
| | | |
Collapse
|
42
|
Banerjee S, Zmijewski JW, Lorne E, Liu G, Sha Y, Abraham E. Modulation of SCF beta-TrCP-dependent I kappaB alpha ubiquitination by hydrogen peroxide. J Biol Chem 2009; 285:2665-75. [PMID: 19933270 DOI: 10.1074/jbc.m109.060822] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Reactive oxygen species are known to participate in the regulation of intracellular signaling pathways, including activation of NF-kappaB. Recent studies have indicated that increases in intracellular concentrations of hydrogen peroxide (H(2)O(2)) have anti-inflammatory effects in neutrophils, including inhibition of the degradation of I kappaB alpha after TLR4 engagement. In the present experiments, we found that culture of lipopolysaccharide-stimulated neutrophils and HEK 293 cells with H(2)O(2) resulted in diminished ubiquitination of I kappaB alpha and decreased SCF(beta-TrCP) ubiquitin ligase activity. Exposure of neutrophils or HEK 293 cells to H(2)O(2) was associated with reduced binding between phosphorylated I kappaB alpha and SCF(beta-TrCP) but no change in the composition of the SCF(beta-TrCP) complex. Lipopolysaccharide-induced SCF(beta-TrCP) ubiquitin ligase activity as well as binding of beta-TrCP to phosphorylated I kappaB alpha was decreased in the lungs of acatalasemic mice and mice treated with the catalase inhibitor aminotriazole, situations in which intracellular concentrations of H(2)O(2) are increased. Exposure to H(2)O(2) resulted in oxidative modification of cysteine residues in beta-TrCP. Cysteine 308 in Blade 1 of the beta-TrCP beta-propeller region was found to be required for maximal binding between beta-TrCP and phosphorylated I kappaB alpha. These findings suggest that the anti-inflammatory effects of H(2)O(2) may result from its ability to decrease ubiquitination as well as subsequent degradation of I kappaB alpha through inhibiting the association between I kappaB alpha and SCF(beta-TrCP).
Collapse
Affiliation(s)
- Sami Banerjee
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0012, USA
| | | | | | | | | | | |
Collapse
|
43
|
Oberley-Deegan RE, Regan EA, Kinnula VL, Crapo JD. Extracellular Superoxide Dismutase and Risk of COPD. COPD 2009; 6:307-12. [DOI: 10.1080/15412550903085193] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Gao L, Barnes KC. Recent advances in genetic predisposition to clinical acute lung injury. Am J Physiol Lung Cell Mol Physiol 2009; 296:L713-25. [PMID: 19218355 DOI: 10.1152/ajplung.90269.2008] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
It has been well established that acute lung injury (ALI), and the more severe presentation of acute respiratory distress syndrome (ARDS), constitute complex traits characterized by a multigenic and multifactorial etiology. Identification and validation of genetic variants contributing to disease susceptibility and severity has been hampered by the profound heterogeneity of the clinical phenotype and the role of environmental factors, which includes treatment, on outcome. The critical nature of ALI and ARDS, compounded by the impact of phenotypic heterogeneity, has rendered the amassing of sufficiently powered studies especially challenging. Nevertheless, progress has been made in the identification of genetic variants in select candidate genes, which has enhanced our understanding of the specific pathways involved in disease manifestation. Identification of novel candidate genes for which genetic association studies have confirmed a role in disease has been greatly aided by the powerful tool of high-throughput expression profiling. This article will review these studies to date, summarizing candidate genes associated with ALI and ARDS, acknowledging those that have been replicated in independent populations, with a special focus on the specific pathways for which candidate genes identified so far can be clustered.
Collapse
Affiliation(s)
- Li Gao
- The Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21224, USA
| | | |
Collapse
|
45
|
Meyer NJ, Christie JD. Extracellular superoxide dismutase haplotypes and acute lung injury: reading into the genome to understand mortality? Am J Respir Crit Care Med 2009; 179:89-91. [PMID: 19119150 DOI: 10.1164/rccm.200810-1565ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|