1
|
Byun G, Choi Y, Lee JT, Bell ML. Effects of Prenatal Exposure to PM 2.5 Chemical Components on Adverse Birth Outcomes and Under-5 Mortality in South Korea. Epidemiology 2025; 36:531-540. [PMID: 40257114 PMCID: PMC12118620 DOI: 10.1097/ede.0000000000001868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/02/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Exposure to fine particulate matter (PM 2.5 ) during pregnancy has been associated with adverse birth outcomes. However, limited evidence exists on the effects of specific PM 2.5 components. We investigated the association of prenatal exposure to PM 2.5 and its components with birth outcomes and mortality at age <5 years in four metropolitan cities in South Korea. METHODS We obtained data from Statistic Korea linking birth records for 2013-2015 to death records under age 5 years. Data for PM 2.5 and 10 of its components were collected from four monitoring stations. We calculated exposures during pregnancy and each trimester for a total of 324,566 births. We used logistic regression to estimate the associations between exposure and risk of preterm birth (PTB) (<37 weeks), low birth weight (<2.5 kg), small for gestational age (birth weight <10 th percentile for the same gestational age), and under-5 mortality. RESULTS An interquartile range (8.7 µg/m 3 ) increase in exposure to PM 2.5 during the entire pregnancy was associated with increased odds of PTB (odds ratio [OR] = 1.17; 95% confidence interval [CI] = 1.11, 1.23). We observed no association with low birth weight, small for gestational age, or under-5 mortality for the entire pregnancy exposure. Elemental carbon and secondary inorganic aerosols showed higher effect estimates for PTB than did other components. CONCLUSIONS In urban populations of South Korea, exposure to PM 2.5 during pregnancy was associated with an increased risk of PTB. Different components showed varying associations with adverse birth outcomes.
Collapse
Affiliation(s)
- Garam Byun
- From the School of the Environment, Yale University, New Haven, CT
- Research and Management Center for Health Risk of Particulate Matter, Seoul, Republic of Korea
| | - Yongsoo Choi
- From the School of the Environment, Yale University, New Haven, CT
- Research and Management Center for Health Risk of Particulate Matter, Seoul, Republic of Korea
| | - Jong-Tae Lee
- Research and Management Center for Health Risk of Particulate Matter, Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Department of Public Health Sciences, Graduate School of Korea University, Seoul, Republic of Korea
- School of Health Policy and Management, College of Health Sciences, Korea University, Seoul, Republic of Korea
| | - Michelle L. Bell
- From the School of the Environment, Yale University, New Haven, CT
- School of Health Policy and Management, College of Health Sciences, Korea University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Parikh MN, Manning ER, Niu L, Ruehlmann AK, Folger AT, Brunst KJ, Brokamp C. Increasing temporal sensitivity of omics association studies with epigenome-wide distributed lag models. Am J Epidemiol 2025; 194:1418-1425. [PMID: 39317692 PMCID: PMC12055467 DOI: 10.1093/aje/kwae375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Current methods for identifying temporal windows of effect for time-varying exposures in omics settings can control false discovery rates at the biomarker level but cannot efficiently screen for timing-specific effects in high dimensions. Current approaches leverage separate models for site screening and identification of susceptible time windows, and these can miss associations that vary over time. We introduce the epigenome-wide distributed lag model (EWDLM), a novel approach that combines traditional false discovery rate methods with the distributed lag model (DLM) to screen for timing-specific effects in high dimensional settings. This is accomplished by marginalizing DLM effect estimates over time and correcting for multiple comparisons. In a simulation investigating timing-specific effects of ambient air pollution during pregnancy on DNA methylation across the epigenome at age 12 years, the EWDLM achieved an increased sensitivity for associations limited to specific periods of time compared with traditional 2-stage approaches. In a real-world EWDLM analysis, 353 cytosine-phosphate-guanine sites were identified at which DNA methylation measured at age 12 years was significantly associated with fine particulate matter exposure during pregnancy. The EWDLM provides an efficient and sensitive way to screen epigenomic data sets for associations with exposures localized to specific time periods.
Collapse
Affiliation(s)
- Milan N Parikh
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Erika Rasnick Manning
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Liang Niu
- Department of Environmental & Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Anna Kotsakis Ruehlmann
- Department of Environmental & Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Alonzo T Folger
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Kelly J Brunst
- Department of Environmental & Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Cole Brokamp
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
3
|
Balmes JR, Hicks A, Johnson MM, Nadeau KC. The Effect of Wildfires on Asthma and Allergies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2025; 13:280-287. [PMID: 39672379 PMCID: PMC11807743 DOI: 10.1016/j.jaip.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Climate change is a major driver of the frequency and severity of wildfires caused by extended periods of drought and hotter, drier weather superimposed on the legacy of fire suppression in the Mountain West of the United States. In recent years, increased wildfire smoke has negated the improvements in air quality made by clean energy transitions. Wildfire smoke is a complex mixture of gases and solids, a chief constituent of which is fine particulate matter (PM2.5). Exposure to PM2.5 is associated with adverse respiratory outcomes, including exacerbations of asthma and chronic obstructive pulmonary disease. In the face of increasing wildfire smoke exposures, it is critical that adaptation and mitigation strategies be put in place to minimize health effects. Individual strategies include modifying behavior and creating clean air spaces in homes to avoid wildfire smoke exposure. Community strategies include regulations promoting fire-resistant buildings and landscaping; establishing wildfire monitoring and alert systems; providing safe clean spaces where individuals can minimize wildfire smoke exposure and find evacuation routes; and creating health care response teams. Mitigation to prevent wildfires includes forest management and establishing monitoring systems and protocols to control forest fires in the wildland urban interface before they increase in size and intensity. Research into understanding the mechanism by which wildfire smoke mediates adverse health effects can inform guidelines to mitigate its health effects further.
Collapse
Affiliation(s)
- John R Balmes
- Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, Calif; Department of Medicine, University of California, San Francisco, Calif
| | - Anne Hicks
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Mary M Johnson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Mass.
| |
Collapse
|
4
|
Galeano-Sánchez D, Morales-González V, Monsalve DM, Ramırez-Santana C, Acosta-Ampudia Y. Airborne culprits: A comprehensive review of PM, silica, and TCDD in autoimmune diseases. J Transl Autoimmun 2024; 9:100253. [PMID: 40196868 PMCID: PMC11973973 DOI: 10.1016/j.jtauto.2024.100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/05/2024] [Indexed: 04/09/2025] Open
Abstract
Autoimmune diseases (ADs) are immunological disorders arising from the breakdown of immune tolerance, influenced by various internal and external factors. Persistent exposure to environmental factors, particularly air pollution, is linked to systemic inflammation, oxidative stress, and apoptosis, which contribute to the development of ADs. This review examines the impact of air pollutants, including particulate matter, silica, and TCDD, by analyzing epidemiological studies, animal models, and in vitro assays. It focuses on how air pollution disrupts the immune system, leading to apoptosis, increased oxidative stress, cytokine production, autoantigen release, autoantibody production, and autoreactivity, which are particularly significant in ADs like rheumatoid arthritis, systemic lupus erythematosus, Sjögren's syndrome, and systemic sclerosis. In essence, this approach aims to provide a profound understanding of how exposure to air pollution can initiate or contribute to ADs, offering potential avenues for more targeted preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Daniel Galeano-Sánchez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogota, Colombia
| | - Victoria Morales-González
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogota, Colombia
| | - Diana M. Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogota, Colombia
| | - Carolina Ramırez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogota, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogota, Colombia
| |
Collapse
|
5
|
Mulder RH, Neumann A, Felix JF, Suderman M, Cecil CAM. Characterising developmental dynamics of adult epigenetic clock sites. EBioMedicine 2024; 109:105425. [PMID: 39471750 PMCID: PMC11550723 DOI: 10.1016/j.ebiom.2024.105425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND DNA methylation (DNAm), an epigenetic mechanism that regulates gene activity in response to genetic and environmental influences, changes as we age. DNAm at specific sites on the genome can be used to calculate 'epigenetic clocks', which are powerful biomarkers of age, as well as of ageing. However, little is known about how these clock sites 'behave' during development and what factors influence their variability in early life. This knowledge could be used to optimise healthy ageing well before the onset of age-related conditions. METHODS We leveraged results from two longitudinal population-based cohorts (N = 5019 samples from 2348 individuals) to characterise trajectories of adult clock sites from birth to early adulthood. To explore what factors may drive early individual differences at these clock sites, we also tested for enrichment of genetic factors and prenatal exposures based on existing epigenome-wide association meta-analyses. FINDINGS We find that clock sites (i) diverge widely in their developmental trajectories, often showing non-linear change over time; (ii) are substantially more likely than non-clock sites to vary between individuals already from birth, differences that are predictive of DNAm variation at later ages; and (iii) show enrichment for genetic influences and prenatal environmental exposures, including prenatal smoking, diet and maternal physical health conditions. INTERPRETATION These results suggests that age(ing)-related epigenetic processes might originate-and differ between individuals-already very early in development. Understanding what drives these differences may in future help us to devise better strategies to promote healthy ageing. FUNDING This research was conducted while C.A.M.C. was a Hevolution/AFAR New Investigator Awardee in Aging Biology and Geroscience Research. Full personal funding details, as well as cohort funding details, can be found in the Acknowledgements.
Collapse
Affiliation(s)
- Rosa H Mulder
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
6
|
Li J, Deng Z, Soerensen SJC, Kachuri L, Cardenas A, Graff RE, Leppert JT, Langston ME, Chung BI. Ambient air pollution and urological cancer risk: A systematic review and meta-analysis of epidemiological evidence. Nat Commun 2024; 15:5116. [PMID: 38879581 PMCID: PMC11180144 DOI: 10.1038/s41467-024-48857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/13/2024] [Indexed: 06/19/2024] Open
Abstract
Exposure to ambient air pollution has significant adverse health effects; however, whether air pollution is associated with urological cancer is largely unknown. We conduct a systematic review and meta-analysis with epidemiological studies, showing that a 5 μg/m3 increase in PM2.5 exposure is associated with a 6%, 7%, and 9%, increased risk of overall urological, bladder, and kidney cancer, respectively; and a 10 μg/m3 increase in NO2 is linked to a 3%, 4%, and 4% higher risk of overall urological, bladder, and prostate cancer, respectively. Were these associations to reflect causal relationships, lowering PM2.5 levels to 5.8 μg/m3 could reduce the age-standardized rate of urological cancer by 1.5 ~ 27/100,000 across the 15 countries with the highest PM2.5 level from the top 30 countries with the highest urological cancer burden. Implementing global health policies that can improve air quality could potentially reduce the risk of urologic cancer and alleviate its burden.
Collapse
Affiliation(s)
- Jinhui Li
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA.
| | - Zhengyi Deng
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA
| | - Simon John Christoph Soerensen
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Linda Kachuri
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Andres Cardenas
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Rebecca E Graff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - John T Leppert
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Urology, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Marvin E Langston
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin I Chung
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA
| |
Collapse
|
7
|
Arroum T, Hish GA, Burghardt KJ, McCully JD, Hüttemann M, Malek MH. Mitochondrial Transplantation's Role in Rodent Skeletal Muscle Bioenergetics: Recharging the Engine of Aging. Biomolecules 2024; 14:493. [PMID: 38672509 PMCID: PMC11048484 DOI: 10.3390/biom14040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Mitochondria are the 'powerhouses of cells' and progressive mitochondrial dysfunction is a hallmark of aging in skeletal muscle. Although different forms of exercise modality appear to be beneficial to attenuate aging-induced mitochondrial dysfunction, it presupposes that the individual has a requisite level of mobility. Moreover, non-exercise alternatives (i.e., nutraceuticals or pharmacological agents) to improve skeletal muscle bioenergetics require time to be effective in the target tissue and have another limitation in that they act systemically and not locally where needed. Mitochondrial transplantation represents a novel directed therapy designed to enhance energy production of tissues impacted by defective mitochondria. To date, no studies have used mitochondrial transplantation as an intervention to attenuate aging-induced skeletal muscle mitochondrial dysfunction. The purpose of this investigation, therefore, was to determine whether mitochondrial transplantation can enhance skeletal muscle bioenergetics in an aging rodent model. We hypothesized that mitochondrial transplantation would result in sustained skeletal muscle bioenergetics leading to improved functional capacity. METHODS Fifteen female mice (24 months old) were randomized into two groups (placebo or mitochondrial transplantation). Isolated mitochondria from a donor mouse of the same sex and age were transplanted into the hindlimb muscles of recipient mice (quadriceps femoris, tibialis anterior, and gastrocnemius complex). RESULTS The results indicated significant increases (ranging between ~36% and ~65%) in basal cytochrome c oxidase and citrate synthase activity as well as ATP levels in mice receiving mitochondrial transplantation relative to the placebo. Moreover, there were significant increases (approx. two-fold) in protein expression of mitochondrial markers in both glycolytic and oxidative muscles. These enhancements in the muscle translated to significant improvements in exercise tolerance. CONCLUSIONS This study provides initial evidence showing how mitochondrial transplantation can promote skeletal muscle bioenergetics in an aging rodent model.
Collapse
Affiliation(s)
- Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (M.H.)
| | - Gerald A. Hish
- Unit for Laboratory Animal Medicine (ULAM), University of Michigan, Ann Arbor, MI 48109, USA
| | - Kyle J. Burghardt
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - James D. McCully
- Department of Cardiac Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (M.H.)
| | - Moh H. Malek
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- Integrative Physiology of Exercise Laboratory, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
8
|
Lee S, Sbihi H, MacIsaac JL, Balshaw R, Ambalavanan A, Subbarao P, Mandhane PJ, Moraes TJ, Turvey SE, Duan Q, Brauer M, Brook JR, Kobor MS, Jones MJ. Persistent DNA Methylation Changes across the First Year of Life and Prenatal NO2 Exposure in a Canadian Prospective Birth Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47004. [PMID: 38573328 DOI: 10.1289/ehp13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
BACKGROUND Evidence suggests that prenatal air pollution exposure alters DNA methylation (DNAm), which could go on to affect long-term health. It remains unclear whether DNAm alterations present at birth persist through early life. Identifying persistent DNAm changes would provide greater insight into the molecular mechanisms contributing to the association of prenatal air pollution exposure with atopic diseases. OBJECTIVES This study investigated DNAm differences associated with prenatal nitrogen dioxide (NO 2 ) exposure (a surrogate measure of traffic-related air pollution) at birth and 1 y of age and examined their role in atopic disease. We focused on regions showing persistent DNAm differences from birth to 1 y of age and regions uniquely associated with postnatal NO 2 exposure. METHODS Microarrays measured DNAm at birth and at 1 y of age for an atopy-enriched subset of Canadian Health Infant Longitudinal Development (CHILD) study participants. Individual and regional DNAm differences associated with prenatal NO 2 (n = 128 ) were identified, and their persistence at age 1 y were investigated using linear mixed effects models (n = 124 ). Postnatal-specific DNAm differences (n = 125 ) were isolated, and their association with NO 2 in the first year of life was examined. Causal mediation investigated whether DNAm differences mediated associations between NO 2 and age 1 y atopy or wheeze. Analyses were repeated using biological sex-stratified data. RESULTS At birth (n = 128 ), 18 regions of DNAm were associated with NO 2 , with several annotated to HOX genes. Some of these regions were specifically identified in males (n = 73 ), but not females (n = 55 ). The effect of prenatal NO 2 across CpGs within altered regions persisted at 1 y of age. No significant mediation effects were identified. Sex-stratified analyses identified postnatal-specific DNAm alterations. DISCUSSION Regional cord blood DNAm differences associated with prenatal NO 2 persisted through at least the first year of life in CHILD participants. Some differences may represent sex-specific alterations, but replication in larger cohorts is needed. The early postnatal period remained a sensitive window to DNAm perturbations. https://doi.org/10.1289/EHP13034.
Collapse
Affiliation(s)
- Samantha Lee
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Hind Sbihi
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Robert Balshaw
- Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Padmaja Subbarao
- Department of Pediatrics & Translational Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Piushkumar J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Medicine, USCI University, Kuala Lumpur, Malaysia
| | - Theo J Moraes
- Department of Pediatrics & Translational Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Stuart E Turvey
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qingling Duan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- School of Computing, Queen's University, Kingston, Ontario, Canada
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Mulder RH, Neumann A, Felix JF, Suderman M, Cecil CAM. What makes clocks tick? Characterizing developmental dynamics of adult epigenetic clock sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584597. [PMID: 38559237 PMCID: PMC10979995 DOI: 10.1101/2024.03.12.584597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
DNA methylation (DNAm) at specific sites can be used to calculate 'epigenetic clocks', which in adulthood are used as indicators of age(ing). However, little is known about how these clock sites 'behave' during development and what factors influence their variability in early life. This knowledge could be used to optimize healthy aging well before the onset of age-related conditions. Here, we leveraged results from two longitudinal population-based cohorts (N=5,019 samples from 2,348 individuals) to characterize trajectories of adult clock sites from birth to early adulthood. We find that clock sites (i) diverge widely in their developmental trajectories, often showing non-linear change over time; (ii) are substantially more likely than non-clock sites to vary between individuals already from birth, differences that are predictive of DNAm variation at later ages; and (iii) show enrichment for genetic and prenatal environmental exposures, supporting an early-origins perspective to epigenetic aging.
Collapse
Affiliation(s)
- Rosa H. Mulder
- Department of Child and Adolescent Psychiatry / Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry / Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janine F. Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Charlotte A. M. Cecil
- Department of Child and Adolescent Psychiatry / Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
10
|
Bowman WS, Schmidt RJ, Sanghar GK, Thompson GR, Ji H, Zeki AA, Haczku A. "Air That Once Was Breath" Part 1: Wildfire-Smoke-Induced Mechanisms of Airway Inflammation - "Climate Change, Allergy and Immunology" Special IAAI Article Collection: Collegium Internationale Allergologicum Update 2023. Int Arch Allergy Immunol 2024; 185:600-616. [PMID: 38452750 PMCID: PMC11487202 DOI: 10.1159/000536578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Wildfires are a global concern due to their wide-ranging environmental, economic, and public health impacts. Climate change contributes to an increase in the frequency and intensity of wildfires making smoke exposure a more significant and recurring health concern for individuals with airway diseases. Some of the most prominent effects of wildfire smoke exposure are asthma exacerbations and allergic airway sensitization. Likely due to the delayed recognition of its health impacts in comparison with cigarette smoke and industrial or traffic-related air pollution, research on the composition, the mechanisms of toxicity, and the cellular/molecular pathways involved is poor or non-existent. SUMMARY This review discusses potential underlying pathological mechanisms of wildfire-smoke-related allergic airway disease and asthma. We focused on major gaps in understanding the role of wildfire smoke composition in the development of airway disease and the known and potential mechanisms involving cellular and molecular players of oxidative injury at the epithelial barrier in airway inflammation. We examine how PM2.5, VOCs, O3, endotoxin, microbes, and toxic gases may affect oxidative stress and inflammation in the respiratory mucosal barrier. We discuss the role of AhR in mediating smoke's effects in alarmin release and IL-17A production and how glucocorticoid responsiveness may be impaired by IL-17A-induced signaling and epigenetic changes leading to steroid-resistant severe airway inflammation. KEY MESSAGE Effective mitigation of wildfire-smoke-related respiratory health effects would require comprehensive research efforts aimed at a better understanding of the immune regulatory effects of wildfire smoke in respiratory health and disease.
Collapse
Affiliation(s)
- Willis S. Bowman
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, Sacramento, CA, USA
| | - Gursharan K. Sanghar
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - George R. Thompson
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Hong Ji
- UC Davis Lung Center, University of California, Davis, CA, USA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, Davis, CA, USA
| | - Amir A. Zeki
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Angela Haczku
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| |
Collapse
|
11
|
Zhang Y, Wei J, Zhao S, Zeng Q, Sun S, Cao W. Ambient fine particulate matter constituents and semen quality among adult men in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133313. [PMID: 38147745 DOI: 10.1016/j.jhazmat.2023.133313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/23/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
Exposure to ambient fine particulate matter (PM2.5) was associated with decreased semen quality, but the relationship between PM2.5 constituents and semen quality was unclear. We recruited 27,824 adult men attending an infertility clinic in Wuhan, China, between 2014 and 2020. We used a four-dimensional spatiotemporal deep forest model to estimate concentrations of PM2.5 mass and its chemical constituents, including organic matter (OM), black carbon (BC), sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), and chloride (Cl-). We employed linear regression models to estimate the association between PM2.5 mass and its constituents with various sperm parameters. Exposure to PM2.5 was associated with a reduction in sperm quality, with a percent change of - 5.69% (95% confidence interval [CI]: -8.53%, -2.85%) for sperm density, - 15.09% (95% CI: -22.24%, -7.94%) for sperm total count, - 1.63% (95% CI: -2.36%, -0.91%) for sperm progressive motility, and - 2.30% (95% CI: -3.04%, -1.55%) for sperm total motility. Among specific constituents, exposure to OM, BC, Cl-, or NO3- was associated with a reduction in these four semen quality parameters. The association was more pronounced among older men or individuals with lower levels of education. Our findings suggest that PM2.5 mass and each constituent were associated with decreased semen quality in adult men.
Collapse
Affiliation(s)
- Yangchang Zhang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA
| | - Shi Zhao
- Centre for Health Systems and Policy Research, Chinese University of Hong Kong, 999077, the Hong Kong Special Administrative Region of China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Wangnan Cao
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
12
|
Jiménez T, Domínguez-Castillo A, Fernández de Larrea-Baz N, Lucas P, Sierra MÁ, Maeso S, Llobet R, Pino MN, Martínez-Cortés M, Pérez-Gómez B, Pollán M, Lope V, García-Pérez J. Mammographic density and exposure to air pollutants in premenopausal women: a cross-sectional study. Environ Health Prev Med 2024; 29:65. [PMID: 39581598 PMCID: PMC11604911 DOI: 10.1265/ehpm.24-00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/02/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Mammographic density (MD) is a well-established risk factor for breast cancer. Air pollution is a major public health concern and a recognized carcinogen. We aim to investigate the association between MD and exposure to specific air pollutants (SO2, CO, NO, NO2, NOx, PM2.5, PM10, and O3) in premenopausal females. METHODS This cross-sectional study, carried out in Spain, included 769 participants who attended their gynecological examinations. Hourly concentrations of the pollutants were extracted from the Air Quality Monitoring System of Madrid City over a 3-year period. Individual long-term exposure to pollutants was assessed by geocoding residential addresses and monitoring stations, and applying ordinary kriging to the 3-year annual mean concentrations of each pollutant to interpolate the surface of Madrid. This exposure variable was categorized into quartiles. In a first analysis, we used multiple linear regression models with the log-transformed percent MD as a continuous variable. In a second analysis, we used MD as a dichotomous variable ("high" density (MD > 50%) vs. "low" density (MD ≤ 50%)) and applied multiple logistic regression models to estimate odds ratios (ORs). We also analyzed the correlation among the pollutants, and performed a principal component analysis (PCA) to reduce the dimensionality of this set of eight correlated pollutants into a smaller set of uncorrelated variables (principal components (PCs)). Finally, the initial analyses were applied to the PCs to detect underlying patterns of emission sources. RESULTS The first analysis detected no association between MD and exposure to any of the pollutants. The second analysis showed non-statistically significant increased risks (ORQ4; IC95%) of high MD were detected in women with higher exposure to SO2 (1.50; 0.90-2.48), and PM2.5 (1.27; 0.77-2.10). In contrast, non-significant ORs < 1 were found in all exposure quartiles for NO (ORQ2 = 0.72, ORQ3 = 0.68, ORQ4 = 0.78), and PM10 (ORQ2 = 0.69, ORQ3 = 0.82, ORQ4 = 0.72). PCA identified two PCs (PC1: "traffic pollution" and PC2: "natural pollution"), and no association was detected between MD and proximity to these two PCs. CONCLUSIONS In general, our results show a lack of association between residential exposure to specific air pollutants and MD in premenopausal females. Future research is needed to confirm or refute these findings.
Collapse
Affiliation(s)
- Tamara Jiménez
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid (UAM), C/Arzobispo Morcillo, 4, 28029, Madrid, Spain
- HM CINAC (Centro Integral de Neurociencias AC), Hospital Universitario Puerta del Sur, Fundación HM Hospitales, Av. Carlos V, 70, 28938 Móstoles, Spain
| | - Alejandro Domínguez-Castillo
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública – CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Nerea Fernández de Larrea-Baz
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública – CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Pilar Lucas
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública – CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - María Ángeles Sierra
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública – CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Sergio Maeso
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Rafael Llobet
- Institute of Computer Technology, Universitat Politècnica de València, Valencia, Spain
| | - Marina Nieves Pino
- Servicio de Prevención y Promoción de la Salud, Madrid Salud, Madrid City Council, 62 Mediterraneo Avenue, Floor 6, Madrid, Spain
| | | | - Beatriz Pérez-Gómez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública – CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Marina Pollán
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública – CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Virginia Lope
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública – CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Javier García-Pérez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública – CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| |
Collapse
|
13
|
Tuminello S, Nguyen E, Durmus N, Alptekin R, Yilmaz M, Crisanti MC, Snuderl M, Chen Y, Shao Y, Reibman J, Taioli E, Arslan AA. World Trade Center Exposure, DNA Methylation Changes, and Cancer: A Review of Current Evidence. EPIGENOMES 2023; 7:31. [PMID: 38131903 PMCID: PMC10742700 DOI: 10.3390/epigenomes7040031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction: Known carcinogens in the dust and fumes from the destruction of the World Trade Center (WTC) towers on 9 November 2001 included metals, asbestos, and organic pollutants, which have been shown to modify epigenetic status. Epigenome-wide association analyses (EWAS) using uniform (Illumina) methodology have identified novel epigenetic profiles of WTC exposure. Methods: We reviewed all published data, comparing differentially methylated gene profiles identified in the prior EWAS studies of WTC exposure. This included DNA methylation changes in blood-derived DNA from cases of cancer-free "Survivors" and those with breast cancer, as well as tissue-derived DNA from "Responders" with prostate cancer. Emerging molecular pathways related to the observed DNA methylation changes in WTC-exposed groups were explored and summarized. Results: WTC dust exposure appears to be associated with DNA methylation changes across the genome. Notably, WTC dust exposure appears to be associated with increased global DNA methylation; direct dysregulation of cancer genes and pathways, including inflammation and immune system dysregulation; and endocrine system disruption, as well as disruption of cholesterol homeostasis and lipid metabolism. Conclusion: WTC dust exposure appears to be associated with biologically meaningful DNA methylation changes, with implications for carcinogenesis and development of other chronic diseases.
Collapse
Affiliation(s)
- Stephanie Tuminello
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
| | - Emelie Nguyen
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10016, USA
| | - Nedim Durmus
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ramazan Alptekin
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Muhammed Yilmaz
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Matija Snuderl
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Yu Chen
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Joan Reibman
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Emanuela Taioli
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10016, USA
| | - Alan A. Arslan
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
- Department of Obstetrics and Gynecology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
14
|
Hang Y, Meng X, Xi Y, Zhang D, Lin X, Liang F, Tian H, Li T, Wang T, Cao J, Fu Q, Dey S, Li S, Huang K, Kan H, Shi X, Liu Y. Atmospheric elemental carbon pollution and its regional health disparities in China. ENVIRONMENTAL RESEARCH LETTERS : ERL [WEB SITE] 2023; 18:124017. [PMID: 39036363 PMCID: PMC11259311 DOI: 10.1088/1748-9326/ad0862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Previous studies have reported that atmospheric elemental carbon (EC) may pose potentially elevated toxicity when compared to total ambient fine particulate matter (PM2.5). However, most research on EC has been conducted in the US and Europe, whereas China experiences significantly higher EC pollution levels. Investigating the health impact of EC exposure in China presents considerable challenges due to the absence of a monitoring network to document long-term EC levels. Despite extensive studies on total PM2.5 in China over the past decade and a significant decrease in its concentration, changes in EC levels and the associated mortality burden remain largely unknown. In our study, we employed a combination of satellite remote sensing, available ground observations, machine learning techniques, and atmospheric big data to predict ground EC concentrations across China for the period 2005-2018, achieving a spatial resolution of 10 km. Our findings reveal that the national average annual mean EC concentration has remained relatively stable since 2005, even as total PM2.5 levels have substantially decreased. Furthermore, we calculated the all-cause non-accidental deaths attributed to long-term EC exposure in China using baseline mortality data and pooled mortality risk from a cohort study. This analysis unveiled significant regional disparities in the mortality burden resulting from long-term EC exposure in China. These variations can be attributed to varying levels of effectiveness in EC regulations across different regions. Specifically, our study highlights that these regulations have been effective in mitigating EC-related health risks in first-tier cities. However, in regions characterized by a high concentration of coal-power plants and industrial facilities, additional efforts are necessary to control emissions. This observation underscores the importance of tailoring environmental policies and interventions to address the specific challenges posed by varying emission sources and regional contexts.
Collapse
Affiliation(s)
- Yun Hang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States of America
| | - Xia Meng
- School of Public Health, Fudan University, Shanghai 200032, People’s Republic of China
| | - Yuzhi Xi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States of America
| | - Danlu Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States of America
| | - Xiuran Lin
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States of America
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Hezhong Tian
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, People’s Republic of China
| | - Tijian Wang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Qingyan Fu
- State Ecologic Environmental Scientific Observation and Research Station at Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai 200235, People’s Republic of China
| | - Sagnik Dey
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shenshen Li
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Kan Huang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People’s Republic of China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai 200032, People’s Republic of China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, People’s Republic of China
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States of America
| |
Collapse
|
15
|
Zhai S, Zeng J, Zhang Y, Huang J, Li X, Wang W, Zhang T, Deng Y, Yin F, Ma Y. Combined health effects of PM 2.5 components on respiratory mortality in short-term exposure using BKMR: A case study in Sichuan, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165365. [PMID: 37437633 DOI: 10.1016/j.scitotenv.2023.165365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/16/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
One of the major causes of global mortality is respiratory diseases. Fine particulate matter (PM2.5) increased the risk of respiratory death in short-term exposure. PM2.5 is the chemical mixture of components with different health effects. The combined health effects of PM2.5 are determined by the role of each component and the potential interaction between components, but they have not been studied in short-term exposure. Sichuan Province (SC), with high respiratory mortality and heavy PM2.5 pollution, had distinctive regional differences in four regions in sources and proportions of PM2.5, so it was divided into four regions to explore the combined health effects of PM2.5 components on respiratory mortality in short-term exposure and to identify the main hazardous components. Due to the multicollinear, interactive, and nonlinear characteristics of the associations between PM2.5 components and respiratory mortality, Bayesian kernel machine regression (BKMR) was used to characterize the combined health effects, along with quantile-based g-computation (QGC) as a reference. Positive combined effects of PM2.5 were found in all four regions of Sichuan using BKMR with excess risks (ER) of 0.0101-0.0132 (95 % CI: 0.0093-0.0158) and in the central basin and northwest basin using QGC with relative risks (RR) of 1.0064 (95 % CI: 1.0039, 1.0089) and 1.0044 (95 % CI: 1.0022, 1.0066), respectively. In addition, the adverse health effect was larger in cold seasons than that in warm seasons, so vulnerable people should reduce outdoor activities in heavily polluted days, especially in the cold season. For the components of PM2.5, the BC and OM mainly from traffic, dominated the adverse health effects on respiratory mortality. Furthermore, NO3- might aggravate the adverse health effects of BC/OM. Therefore, BC/OM and NO3- should be focused together in air pollution control.
Collapse
Affiliation(s)
- Siwei Zhai
- West China School of Public Health and West China Fourth Hospital, Sichuan University, China
| | - Jing Zeng
- Sichuan Provincial Disease Prevention and Control Center, China
| | - Yi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, China
| | - Jingfei Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, China
| | - Xuelin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, China
| | - Wei Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, China
| | - Tao Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, China
| | - Ying Deng
- Sichuan Provincial Disease Prevention and Control Center, China
| | - Fei Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, China
| | - Yue Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, China.
| |
Collapse
|
16
|
Wang C, Amini H, Xu Z, Peralta AA, Yazdi MD, Qiu X, Wei Y, Just A, Heiss J, Hou L, Zheng Y, Coull BA, Kosheleva A, Baccarelli AA, Schwartz JD. Long-term exposure to ambient fine particulate components and leukocyte epigenome-wide DNA Methylation in older men: the Normative Aging Study. Environ Health 2023; 22:54. [PMID: 37550674 PMCID: PMC10405403 DOI: 10.1186/s12940-023-01007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Epigenome-wide association studies of ambient fine particulate matter (PM2.5) have been reported. However, few have examined PM2.5 components (PMCs) and sources or included repeated measures. The lack of high-resolution exposure measurements is the key limitation. We hypothesized that significant changes in DNA methylation might vary by PMCs and the sources. METHODS We predicted the annual average of 14 PMCs using novel high-resolution exposure models across the contiguous U.S., between 2000-2018. The resolution was 50 m × 50 m in the Greater Boston Area. We also identified PM2.5 sources using positive matrix factorization. We repeatedly collected blood samples and measured leukocyte DNAm with the Illumina HumanMethylation450K BeadChip in the Normative Aging Study. We then used median regression with subject-specific intercepts to estimate the associations between long-term (one-year) exposure to PMCs / PM2.5 sources and DNA methylation at individual cytosine-phosphate-guanine CpG sites. Significant probes were identified by the number of independent degrees of freedom approach, using the number of principal components explaining > 95% of the variation of the DNA methylation data. We also performed regional and pathway analyses to identify significant regions and pathways. RESULTS We included 669 men with 1,178 visits between 2000-2013. The subjects had a mean age of 75 years. The identified probes, regions, and pathways varied by PMCs and their sources. For example, iron was associated with 6 probes and 6 regions, whereas nitrate was associated with 15 probes and 3 regions. The identified pathways from biomass burning, coal burning, and heavy fuel oil combustion sources were associated with cancer, inflammation, and cardiovascular diseases, whereas there were no pathways associated with all traffic. CONCLUSIONS Our findings showed that the effects of PM2.5 on DNAm varied by its PMCs and sources.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Heresh Amini
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Public Health, Faculty of Health and Medical Sciences, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Zongli Xu
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, USA
| | - Adjani A Peralta
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Mahdieh Danesh Yazdi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Xinye Qiu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Allan Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jonathan Heiss
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, 10032, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
17
|
Danesh Yazdi M, Nassan FL, Kosheleva A, Wang C, Xu Z, Di Q, Requia WJ, Comfort NT, Wu H, Laurent LC, DeHoff P, Vokonas P, Baccarelli AA, Schwartz JD. Intermediate and long-term exposure to air pollution and temperature and the extracellular microRNA profile of participants in the normative aging study (NAS). ENVIRONMENTAL RESEARCH 2023; 229:115949. [PMID: 37084943 PMCID: PMC10335853 DOI: 10.1016/j.envres.2023.115949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/27/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The molecular effects of intermediate and long-term exposure to air pollution and temperature, such as those on extracellular microRNA (ex-miRNA) are not well understood but may have clinical consequences. OBJECTIVES To assess the association between exposure to ambient air pollution and temperature and ex-miRNA profiles. METHODS Our study population consisted of 734 participants in the Normative Aging Study (NAS) between 1999 and 2015. We used high-resolution models to estimate four-week, eight-week, twelve-week, six-month, and one-year moving averages of PM2.5, O3, NO2, and ambient temperature based on geo-coded residential addresses. The outcome of interest was the extracellular microRNA (ex-miRNA) profile of each participant over time. We used a longitudinal quantile regression approach to estimate the association between the exposures and each ex-miRNA. Results were corrected for multiple comparisons and ex-miRNAs that were still significantly associated with the exposures were further analyzed using KEGG pathway analysis and Ingenuity Pathway Analysis. RESULTS We found 151 significant associations between levels of PM2.5, O3, NO2, and ambient temperature and 82 unique ex-miRNAs across multiple quantiles. Most of the significant results were associations with intermediate-term exposure to O3, long-term exposure to PM2.5, and both intermediate and long-term exposure to ambient temperature. The exposures were most often associated with the 75th and 90th percentile of the outcomes. Pathway analyses of significant ex-miRNAs revealed their involvement in biological pathways involving cell function and communication as well as clinical diseases such as cardiovascular disease, respiratory disease, and neurological disease. CONCLUSION Our results show that intermediate and long-term exposure to all our exposures of interest were associated with changes in the ex-miRNA profile of study participants. Further studies on environmental risk factors and ex-miRNAs are warranted.
Collapse
Affiliation(s)
- Mahdieh Danesh Yazdi
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA; Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Feiby L Nassan
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Biogen Inc, Cambridge, MA, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Cuicui Wang
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Zongli Xu
- Laboratory of Molecular Carcinogenesis and Biostatistics Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Weeberb J Requia
- School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil
| | - Nicole T Comfort
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Peter DeHoff
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Pantel Vokonas
- Department of Veterans Affairs, Boston, MA, USA; Department of Medicine, Boston University Chobanian and Avidisian School of Medicine, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
18
|
Torres-Blas I, Horsler H, Paredes UM, Perkins M, Priestnall SL, Brekke P. Impact of exposure to urban air pollution on grey squirrel (Sciurus carolinensis) lung health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121312. [PMID: 36893972 DOI: 10.1016/j.envpol.2023.121312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The increased rate of global urbanisation has recently exacerbated the significant public health problem of traffic related air pollution. Despite the known significant impact on human health, little is known about the effects of air pollution on wildlife health. The lung is the primary target organ for the effects of exposure to air pollution, leading to lung inflammation, altering the lung epigenome, culminating in respiratory disease. In this study, we aimed to assess lung health and DNA methylation profiles in Eastern grey squirrel (Sciurus carolinensis) populations living across an urban-rural air pollution gradient. Squirrel lung health was assessed in four populations situated across the most polluted inner-city boroughs to the less polluted edges of Greater London. We also assessed lung DNA methylation across three London sites and a further two rural sites in Sussex and North Wales. Lung and tracheal diseases were present in 28% and 13% of the squirrels respectively. Specifically, focal inflammation (13%), focal macrophages with vacuolated cytoplasm (3%) and endogenous lipid pneumonia (3%). There was no significant difference in prevalence of lung, tracheal diseases, anthracosis (carbon presence) or lung DNA methylation levels between urban sites and urban and rural sites respectively or NO2 levels. BALT (Bronchus-Associated Lymphoid Tissue) was significantly smaller in the site with highest NO2 and contained the highest carbon loading compared to sites with lower NO2, however differences in carbon loading in between sites were not significant. High pollution site individuals also had significantly higher numbers of alveolar macrophages which suggests that grey squirrels are exposed to and respond to traffic-related air pollution and further research is needed to understand the impact of traffic-related air pollutants on wildlife health.
Collapse
Affiliation(s)
- Irene Torres-Blas
- Dept Pathobiology & Population Sciences, The Royal Veterinary College, Hawkshead Lane, N Mymms, Hatfield, AL9 7TA, UK; Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Helen Horsler
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ursula M Paredes
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Matthew Perkins
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Simon L Priestnall
- Dept Pathobiology & Population Sciences, The Royal Veterinary College, Hawkshead Lane, N Mymms, Hatfield, AL9 7TA, UK
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK.
| |
Collapse
|
19
|
Reddam A, Bollati V, Wu H, Favero C, Tarantini L, Hoxha M, Comfort N, Gold DR, Phipatanakul W, Baccarelli AA. Air pollution and human endogenous retrovirus methylation in the school inner-city asthma intervention study. Toxicol Sci 2023; 193:166-174. [PMID: 37042721 PMCID: PMC10230279 DOI: 10.1093/toxsci/kfad035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are transposable genomic elements generally repressed through DNA methylation. HERVs can be demethylated and expressed in response to environmental stimuli. Therefore, more research is needed to understand the influence of environmental exposures on HERV methylation. Air pollutants are commonly linked with global hypomethylation, and as HERVs comprise of nearly 8% of repetitive elements in the human genome, our objective was to examine the association between air pollutant exposure and HERV methylation. We investigated 180 students with asthma participating in the School Inner-City Asthma Intervention Study, which evaluated the efficacy of classroom air filters and school-wide pest management on air pollutant/allergen exposure and asthma. Both air pollutants measured in classrooms and asthma outcomes assessed by surveys were collected pre- and post-intervention. Buccal swabs were also collected pre- and post-intervention, and methylation levels from 9 transposable genomic elements (HERV-E, -FRD, -K, -L, -R, -W, -9, and HRES and LINE1) were measured. Adjusting for relevant covariates, the overall air pollutant mixture was cross-sectionally associated with higher HERV-W and lower HERV-L and LINE1 methylation. Coarse PM was cross-sectionally associated with higher HERV-K methylation and CO2 with lower LINE1 methylation. These results suggest that exposure to air pollutants is associated with HERV-W and HERV-K hypermethylation and HERV-L and LINE1 hypomethylation in children with asthma. Future studies are needed to characterize the links between HERV methylation and possible adverse outcomes.
Collapse
Affiliation(s)
- Aalekhya Reddam
- Department of Environmental Health Sciences; Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Valentina Bollati
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Haotian Wu
- Department of Environmental Health Sciences; Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Chiara Favero
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Letizia Tarantini
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Mirjam Hoxha
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Nicole Comfort
- Department of Environmental Health Sciences; Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Diane R Gold
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Wanda Phipatanakul
- Asthma Clinical Research Center, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences; Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| |
Collapse
|
20
|
Gaskins AJ, Hood RB, Ford JB, Hauser R, Knight AK, Smith AK, Everson TM. Traffic-related air pollution and supplemental folic acid intake in relation to DNA methylation in granulosa cells. Clin Epigenetics 2023; 15:84. [PMID: 37179367 PMCID: PMC10183139 DOI: 10.1186/s13148-023-01503-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Higher exposure to traffic-related air pollution (TRAP) is related to lower fertility, with specific adverse effects on the ovary. Folic acid may attenuate these effects. Our goal was to explore the relation of TRAP exposure and supplemental folic acid intake with epigenetic aging and CpG-specific DNA methylation (DNAm) in granulosa cells (GC). Our study included 61 women undergoing ovarian stimulation at a fertility center (2005-2015). DNAm levels were profiled in GC using the Infinium MethylationEPIC BeadChip. TRAP was defined using a spatiotemporal model to estimate residence-based nitrogen dioxide (NO2) exposure. Supplemental folic acid intake was measured with a validated food frequency questionnaire. We used linear regression to evaluate whether NO2 or supplemental folic acid was associated with epigenetic age acceleration according to the Pan-tissue, mural GC, and GrimAge clocks or DNAm across the genome adjusting for potential confounders and accounting for multiple testing with a false discovery rate < 0.1. RESULTS There were no associations between NO2 or supplemental folic acid intake and epigenetic age acceleration of GC. NO2 and supplemental folic acid were associated with 9 and 11 differentially methylated CpG sites. Among these CpGs, only cg07287107 exhibited a significant interaction (p-value = 0.037). In women with low supplemental folic acid, high NO2 exposure was associated with 1.7% higher DNAm. There was no association between NO2 and DNAm in women with high supplemental folic acid. The genes annotated to the top 250 NO2-associated CpGs were enriched for carbohydrate and protein metabolism, postsynaptic potential and dendrite development, and membrane components and exocytosis. The genes annotated to the top 250 supplemental folic acid-associated CpGs were enriched for estrous cycle, learning, cognition, synaptic organization and transmission, and size and composition of neuronal cell bodies. CONCLUSIONS We found no associations between NO2, supplemental folic acid, and DNAm age acceleration of GC. However, there were 20 differentially methylated CpGs and multiple enriched GO terms associated with both exposures suggesting that differences in GC DNAm could be a plausible mechanism underlying the effects of TRAP and supplemental folic acid on ovarian function.
Collapse
Affiliation(s)
- Audrey J Gaskins
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA.
| | - Robert B Hood
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Anna K Knight
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
21
|
Czaja AJ. Incorporating the Molecular Mimicry of Environmental Antigens into the Causality of Autoimmune Hepatitis. Dig Dis Sci 2023:10.1007/s10620-023-07967-5. [PMID: 37160542 PMCID: PMC10169207 DOI: 10.1007/s10620-023-07967-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Molecular mimicry between foreign and self-antigens has been implicated as a cause of autoimmune hepatitis in experimental models and cross-reacting antibodies in patients. This review describes the experimental and clinical evidence for molecular mimicry as a cause of autoimmune hepatitis, indicates the limitations and uncertainties of this premise, and encourages investigations that assess diverse environmental antigens as sources of disease-relevant molecular mimics. Pertinent articles were identified in PubMed using multiple search phrases. Several pathogens have linear or conformational epitopes that mimic the self-antigens of autoimmune hepatitis. The occurrence of an acute immune-mediated hepatitis after vaccination for severe acute respiratory syndrome (SARS)-associated coronavirus 2 (SARS-CoV-2) has suggested that vaccine-induced peptides may mimic disease-relevant tissue antigens. The intestinal microbiome is an under-evaluated source of gut-derived antigens that could also engage in molecular mimicry. Chaperone molecules may enhance the pathogenicity of molecular mimics, and they warrant investigation. Molecular mimics of immune dominant epitopes within cytochrome P450 IID6, the autoantigen most closely associated with autoimmune hepatitis, should be sought in diverse environmental antigens and assessed for pathogenicity. Avoidance strategies, dietary adjustments, vaccine improvement, and targeted manipulation of the intestinal microbiota may emerge as therapeutic possibilities. In conclusion, molecular mimicry may be a missing causality of autoimmune hepatitis. Molecular mimics of key immune dominant epitopes of disease-specific antigens must be sought in diverse environmental antigens. The ubiquity of molecular mimicry compels rigorous assessments of peptide mimics for immunogenicity and pathogenicity in experimental models. Molecular mimicry may complement epigenetic modifications as causative mechanisms of autoimmune hepatitis.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
22
|
Downward GS, Vermeulen R. Ambient Air Pollution and All-Cause and Cause-Specific Mortality in an Analysis of Asian Cohorts. Res Rep Health Eff Inst 2023; 2016:1-53. [PMID: 37424069 PMCID: PMC7266370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
INTRODUCTION Much of what is currently known about the adverse effects of ambient air pollution comes from studies conducted in high-income regions, with relatively low air pollution levels. The aim of the current project is to examine the relationship between exposure to ambient air pollution (as predicted from satellite-based models) and all-cause and cause-specific mortality in several Asian cohorts. METHODS Cohorts were recruited from the Asia Cohort Consortium (ACC). The geocoded residences of participants were assigned levels of ambient particulate material with aerodynamic diameter of 2.5 μm or less (PM2.5) and nitrogen dioxide (NO2) utilizing global satellite-derived models and assigned for the year of enrollment (or closest available year). The association between ambient exposure and mortality was established with Cox proportional hazard models, after adjustment for common confounders. Both single- and two-pollutant models were generated. Model robustness was evaluated, and hazard ratios were calculated for each cohort separately and combined via random effect meta-analysis for pooled risk estimates. RESULTS Six cohort studies from the ACC participated: the Community-based Cancer Screening Program (CBCSCP, Taiwan), the Golestan Cohort Study (Iran), the Health Effects for Arsenic Longitudinal Study (HEALS, Bangladesh), the Japan Public Health Center-based Prospective Study (JPHC), the Korean Multi-center Cancer Cohort Study (KMCC), and the Mumbai Cohort Study (MCS, India). The cohorts represented over 340,000 participants. Mean exposures to PM2.5 ranged from 8 to 58 μg/m3. Mean exposures to NO2 ranged from 7 to 23 ppb. For PM2.5, a positive, borderline nonsignificant relationship was observed between PM2.5 and cardiovascular mortality. Other relationships with PM2.5 tended toward the null in meta-analysis. For NO2, an overall positive relationship was observed between exposure to NO2 and all cancers and lung cancer. A borderline association between NO2 and nonmalignant lung disease was also observed. The findings within individual cohorts remained consistent across a variety of subgroups and alternative analyses, including two-pollutant models. CONCLUSIONS In a pooled examination of cohort studies across Asia, ambient PM2.5 exposure appears to be associated with an increased risk of cardiovascular mortality and ambient NO2 exposure is associated with an increased cancer (and lung cancer) mortality. This project has shown that satellite-derived models of pollution can be used in examinations of mortality risk in areas with either incomplete or missing air pollution monitoring.
Collapse
Affiliation(s)
- G S Downward
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | - R Vermeulen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| |
Collapse
|
23
|
He B, Xu HM, Liu HW, Zhang YF. Unique regulatory roles of ncRNAs changed by PM 2.5 in human diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114812. [PMID: 36963186 DOI: 10.1016/j.ecoenv.2023.114812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
PM2.5 is a type of particulate matter with an aerodynamic diameter smaller than 2.5 µm, and exposure to PM2.5 can adversely damage human health. PM2.5 may impair health through oxidative stress, inflammatory reactions, immune function alterations and chromosome or DNA damage. Through increasing in-depth studies, researchers have found that noncoding RNAs (ncRNAs), particularly microRNAs (miRNAs), circular RNAs (circRNAs) as well as long noncoding RNAs (lncRNAs), might play significant roles in PM2.5-related human diseases via some of the abovementioned mechanisms. Therefore, in this review, we mainly discuss the regulatory function of ncRNAs altered by PM2.5 in human diseases and summarize the potential molecular mechanisms. The findings reveal that these ncRNAs might induce or promote diseases via inflammation, the oxidative stress response, cell autophagy, apoptosis, cell junction damage, altered cell proliferation, malignant cell transformation, disruption of synaptic function and abnormalities in the differentiation and status of immune cells. Moreover, according to a bioinformatics analysis, the altered expression of potential genes caused by these ncRNAs might be related to the development of some human diseases. Furthermore, some ncRNAs, including lncRNAs, miRNAs and circRNAs, or processes in which they are involved may be used as biomarkers for relevant diseases and potential targets to prevent these diseases. Additionally, we performed a meta-analysis to identify more promising diagnostic ncRNAs as biomarkers for related diseases.
Collapse
Affiliation(s)
- Bo He
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Medicine, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Hao-Wen Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
24
|
Choi YJ, Cho J, Hong YC, Lee DW, Moon S, Park SJ, Lee KS, Shin CH, Lee YA, Kim BN, Kaminsky Z, Kim JI, Lim YH. DNA methylation is associated with prenatal exposure to sulfur dioxide and childhood attention-deficit hyperactivity disorder symptoms. Sci Rep 2023; 13:3501. [PMID: 36859453 PMCID: PMC9977725 DOI: 10.1038/s41598-023-29843-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Epigenetic influence plays a role in the association between exposure to air pollution and attention deficit hyperactivity disorder (ADHD); however, research regarding sulfur dioxide (SO2) is scarce. Herein, we investigate the associations between prenatal SO2 exposure and ADHD rating scale (ARS) at ages 4, 6 and 8 years repeatedly in a mother-child cohort (n = 329). Whole blood samples were obtained at ages 2 and 6 years, and genome-wide DNA methylation (DNAm) was analyzed for 51 children using the Illumina Infinium HumanMethylation BeadChip. We analyzed the associations between prenatal SO2 exposure and DNAm levels at ages 2 and 6, and further investigated the association between the DNAm and ARS at ages 4, 6 and 8. Prenatal SO2 exposure was associated with ADHD symptoms. From candidate gene analysis, DNAm levels at the 6 CpGs at age 2 were associated with prenatal SO2 exposure levels. Of the 6 CpGs, cg07583420 (INS-IGF2) was persistently linked with ARS at ages 4, 6 and 8. Epigenome-wide analysis showed that DNAm at 6733 CpG sites were associated with prenatal SO2 exposure, of which 58 CpGs involved in Notch signalling pathway were further associated with ARS at age 4, 6 and 8 years, persistently. DNAm at age 6 was not associated with prenatal SO2 exposure. Changes in DNAm levels associated with prenatal SO2 exposure during early childhood are associated with increases in ARS in later childhood.
Collapse
Affiliation(s)
- Yoon-Jung Choi
- National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea.,Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinwoo Cho
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Dong-Wook Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Public Healthcare Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sungji Moon
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo Jin Park
- Department of Surgery, Wonkwang University Sanbon Hospital, Gunpo, Republic of Korea
| | - Kyung-Shin Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Public Health Research Institute, National Medical Center, Seoul, Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Zachary Kaminsky
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, 222-1 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
| | - Youn-Hee Lim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Section of Environmental Epidemiology, Department of Public Health, University of Copenhagen, Østerster Farimagsgade 5, 1014, København K, Copenhagen, Denmark.
| |
Collapse
|
25
|
Yang Y, Yang T, Zhou J, Cao Z, Liao Z, Zhao Y, Su X, He J, Hua J. Prenatal exposure to concentrated ambient PM 2.5 results in spatial memory defects regulated by DNA methylation in male mice offspring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35142-35152. [PMID: 36526934 PMCID: PMC10017658 DOI: 10.1007/s11356-022-24663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Ambient fine particulate matter (PM2.5) exposures during pregnancy could lead to adverse birth outcomes, including neurobehavioral development defects. However, limited studies explored the effects and potential epigenetic mechanisms of maternal PM2.5 exposure on offspring spatial memory defects. This study aims to explore the effects and underlying epigenetic mechanisms of maternal concentrated ambient PM2.5 exposure in male mice offspring with spatial memory defects. Pregnant female C57BL/6 mice were exposed daily to concentrated ambient PM2.5 (CAP) or filtered air (FA) throughout gestation, with the concentration of particulates (102.99 ± 78.74 μg/m3) and (2.78 ± 1.19 μg/m3), respectively. Adult male mice offspring were subsequently assessed for spatial learning and memory ability using Morris Water Maze tests and locomotor activities in open field tests. The hippocampus of the male mice offspring was harvested to test mRNA expression and DNA methylation. Results from the probe test of Morris Water Maze showed that the mice offspring in the CAP group had shorter swimming distance travelled in the target quadrant, shorter duration in the target quadrant, and less number of entries into the target quadrant (p < 0.05), suggesting spatial memory impairments. The acquisition trials of Morris Water Maze did not show a significant difference in learning ability between the groups. The mRNA level of interleukin 6 (IL-6) in the CAP group hippocampus (10.80 ± 7.03) increased significantly compared to the FA group (1.08 ± 0.43). Interestingly, the methylation levels of the CpG sites in the IL-6 promoter region declined significantly in the CAP group, (5.66 ± 0.83)% vs. (4.79 ± 0.48)%. Prenatal exposure to concentrated ambient PM2.5 induced long-lasting spatial memory defects in male mice offspring. The underlying biological mechanism might be mediated by an inflammatory reaction which is regulated by DNA methylation.
Collapse
Affiliation(s)
- Yingying Yang
- Department of Women and Children's Health Care, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Tingting Yang
- Department of Social Medicine, School of Public Health, Fudan University, Shanghai, China
| | - Ji Zhou
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai, China
- Shanghai Typhoon Institute, CMA, Shanghai, China
- Department of Atmospheric and Oceanic Sciences, & Institute of Atmospheric Sciences, Fudan University, Shanghai, China
| | - Zhijuan Cao
- Department of Women and Children's Health Care, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Yan Zhao
- Department of Women and Children's Health Care, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiujuan Su
- Department of Women and Children's Health Care, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia He
- School of Medicine, Tongji University, Shanghai, China
| | - Jing Hua
- Department of Women and Children's Health Care, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
26
|
Bai J, Tang L, Luo Y, Han Z, Li C, Sun Y, Sun Q, Lu J, Qiu H, Zhao Z, Huo T, Xiong W, Zhang Q. Vitamin B complex blocks the dust fall PM 2 .5 -induced acute lung injury through DNA methylation in rats. ENVIRONMENTAL TOXICOLOGY 2023; 38:403-414. [PMID: 36282901 DOI: 10.1002/tox.23689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to explore whether vitamin B complex (folic acid, B6 , and B12 ) could avert DNA methylation changes associated with inflammation induced by acute PM2.5 exposure. Sprague-Dawley rats were administered by gavage with different concentrations of vitamin B complex once a day for 28 days, and then by intratracheal instillation with saline or PM2.5 once every 2 days for three times. Vitamin B continued to be taken during the PM2.5 exposure. Rats were sacrificed 24 h after the last exposure. The results showed that vitamin B complex could block the pathological changes and injury in lungs induced by PM2.5 . Meanwhile, vitamin B complex could prevent the abnormal DNA methylation of IL-4 and IFN-γ to antagonize the imbalance of IL-4/IFN-γ associated with inflammation. It was further found that vitamin B complex could regulate DNA methyltransferases (DNMTs) and increase the S-adenosylmethionine (SAM)/S-Adenosyl-L-homocysteine (SAH) ratio to reverse the hypomethylation of genomic DNA and the abnormal DNA methylation of IL-4 and IFN-γ. In conclusion, vitamin B complex has a protective effect on acute lung injury by attenuating abnormal DNA methylation induced by PM2.5 in rats. This study may provide a new insight into the physiological function of vitamin B to prevent the health effects induced by PM2.5 .
Collapse
Affiliation(s)
- Jun Bai
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Lanlan Tang
- School of Public Health, Southwest Medical University, Luzhou, China
- Chengdu Jintang Municipal Center for Disease Control and Prevention, Chengdu, China
| | - Yajun Luo
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Zhixia Han
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Chenwen Li
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Yaochuan Sun
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, China
| | - Qian Sun
- Luzhou Ecological Environment Monitoring Center of Sichuan Province, Luzhou, China
| | - Ji Lu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hao Qiu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhenhu Zhao
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Tingting Huo
- School of Environmental and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Wei Xiong
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Qingbi Zhang
- School of Public Health, Southwest Medical University, Luzhou, China
| |
Collapse
|
27
|
Impact of air pollution on ischemic heart disease: Evidence, mechanisms, clinical perspectives. Atherosclerosis 2023; 366:22-31. [PMID: 36696748 DOI: 10.1016/j.atherosclerosis.2023.01.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/23/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Ambient air pollution, and especially particulate matter (PM) air pollution <2.5 μm in diameter (PM2.5), has clearly emerged as an important yet often overlooked risk factor for atherosclerosis and ischemic heart disease (IHD). In this review, we examine the available evidence demonstrating how acute and chronic PM2.5 exposure clinically translates into a heightened coronary atherosclerotic burden and an increased risk of acute ischemic coronary events. Moreover, we provide insights into the pathophysiologic mechanisms underlying PM2.5-mediated atherosclerosis, focusing on the specific biological mechanism through which PM2.5 exerts its detrimental effects. Further, we discuss about the possible mechanisms that explain the recent findings reporting a strong association between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, increased PM2.5 exposure, and morbidity and mortality from IHD. We also address the possible mitigation strategies that should be implemented to reduce the impact of PM2.5 on cardiovascular morbidity and mortality, and underscoring the strong need of clinical trials demonstrating the efficacy of specific interventions (including both PM2.5 reduction and/or specific drugs) in reducing the incidence of IHD. Finally, we introduce the emerging concept of the exposome, highlighting the close relationship between PM2.5 and other environmental exposures (i.e.: traffic noise and climate change) in terms of common underlying pathophysiologic mechanisms and possible mitigation strategies.
Collapse
|
28
|
Deolmi M, Decarolis NM, Motta M, Makrinioti H, Fainardi V, Pisi G, Esposito S. Early Origins of Chronic Obstructive Pulmonary Disease: Prenatal and Early Life Risk Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2294. [PMID: 36767660 PMCID: PMC9915555 DOI: 10.3390/ijerph20032294] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The main risk factor for chronic obstructive pulmonary disease (COPD) is active smoking. However, a considerable amount of people with COPD never smoked, and increasing evidence suggests that adult lung disease can have its origins in prenatal and early life. This article reviews some of the factors that can potentially affect lung development and lung function trajectories throughout the lifespan from genetics and prematurity to respiratory tract infections and childhood asthma. Maternal smoking and air pollution exposure were also analyzed among the environmental factors. The adoption of preventive strategies to avoid these risk factors since the prenatal period may be crucial to prevent, delay the onset or modify the progression of COPD lung disease throughout life.
Collapse
Affiliation(s)
- Michela Deolmi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Nicola Mattia Decarolis
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Matteo Motta
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Heidi Makrinioti
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 01451, USA
| | - Valentina Fainardi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Giovanna Pisi
- Cystic Fibrosis Unit, Pediatric Clinic, Az. Ospedaliera-Universitaria di Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43124 Parma, Italy
| |
Collapse
|
29
|
Parida T, Daka G, Murapala D, Kolli SK, Malla RR, Namuduri S. PM2.5: Epigenetic Alteration in Lung Physiology and Lung Cancer Pathogenesis. Crit Rev Oncog 2023; 28:51-58. [PMID: 38050981 DOI: 10.1615/critrevoncog.2023049651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Particulate matter (PM) has a very negative impact on human health, specifically the respiratory system. PM comes in many forms, among these is PM2.5,which is a major risk factor for lung cancer and other cardiovascular diseases. PM is inherent in emissions from industrial production, manufacturing, vehicle exhaust, mining, and cigarette smoking. For this reason, the composition of PM differs from area to area although its primary constituents are heavy metals and petroleum elements. PM has a long and toxic impact on human health. After extended exposure to PM2.5 the mortality rate for lung cancer patients increases. Already, lung cancer is the leading cause of death globally with the highest mortality rate. PM2.5 creates epigenetic changes in miRNA, histone modification, and DNA methylation, causing tumorigenesis followed by lung cancer.
Collapse
Affiliation(s)
- Tamanna Parida
- Department of Environmental Science, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Gopamma Daka
- Department of Environmental Science, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Deepthi Murapala
- Department of Environmental Science, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Suresh Kumar Kolli
- Department of Environmental Science, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Srinivas Namuduri
- Department of Environmental Science, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| |
Collapse
|
30
|
Perera BPU, Morgan RK, Polemi KM, Sala-Hamrick KE, Svoboda LK, Dolinoy DC. PIWI-Interacting RNA (piRNA) and Epigenetic Editing in Environmental Health Sciences. Curr Environ Health Rep 2022; 9:650-660. [PMID: 35917009 DOI: 10.1007/s40572-022-00372-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW: The epigenome modulates gene expression in response to environmental stimuli. Modifications to the epigenome are potentially reversible, making them a promising therapeutic approach to mitigate environmental exposure effects on human health. This review details currently available genome and epigenome editing technologies and highlights ncRNA, including piRNA, as potential tools for targeted epigenome editing. RECENT FINDINGS: Zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR) associated nuclease (CRISPR/Cas) research has significantly advanced genome editing technology, with broad promise in genetic research and targeted therapies. Initial epigenome-directed therapies relied on global modification and suffered from limited specificity. Adapted from current genome editing tools, zinc finger protein (ZFP), TALE, and CRISPR/nuclease-deactivated Cas (dCas) systems now confer locus-specific epigenome editing, with promising applicability in the field of environmental health sciences. However, high incidence of off-target effects and time taken for screening limit their use. FUTURE DEVELOPMENT: ncRNA serve as a versatile biomarker with well-characterized regulatory mechanisms that can easily be adapted to edit the epigenome. For instance, the transposon silencing mechanism of germline PIWI-interacting RNAs (piRNA) could be engineered to specifically methylate a given gene, overcoming pitfalls of current global modifiers. Future developments in epigenome editing technologies will inform risk assessment through mechanistic investigation and serve as potential modes of intervention to mitigate environmentally induced adverse health outcomes later in life.
Collapse
Affiliation(s)
- Bambarendage P U Perera
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Rachel K Morgan
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Katelyn M Polemi
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Kimmie E Sala-Hamrick
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Laurie K Svoboda
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
- School of Public Health, Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
31
|
Rasking L, Roelens C, Sprangers B, Thienpont B, Nawrot TS, De Vusser K. Lupus, DNA Methylation, and Air Pollution: A Malicious Triad. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15050. [PMID: 36429769 PMCID: PMC9690025 DOI: 10.3390/ijerph192215050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) remains elusive to this day; however, genetic, epigenetic, and environmental factors have been implicated to be involved in disease pathogenesis. Recently, it was demonstrated that in systemic lupus erythematosus (SLE) patients, interferon-regulated genes are hypomethylated in naïve CD4+ T cells, CD19+ B lymphocytes, and CD14+ monocytes. This suggests that interferon-regulated genes may have been epigenetically poised in SLE patients for rapid expression upon stimulation by different environmental factors. Additionally, environmental studies have identified DNA (hypo)methylation changes as a potential mechanism of environmentally induced health effects in utero, during childhood and in adults. Finally, epidemiologic studies have firmly established air pollution as a crucial SLE risk factor, as studies showed an association between fine particulate matter (PM2.5) and traditional SLE biomarkers related to disease flare, hospital admissions, and an increased SLEDAI score. In this review, the relationship between aberrant epigenetic regulation, the environment, and the development of SLE will be discussed.
Collapse
Affiliation(s)
- Leen Rasking
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Céline Roelens
- Depatment of Nephrology and Kidney Transplantation, University Hospital Leuven, 3000 Leuven, Belgium
| | - Ben Sprangers
- Depatment of Nephrology and Kidney Transplantation, University Hospital Leuven, 3000 Leuven, Belgium
- Department of Microbiology and Immunology, Leuven University, 3000 Leuven, Belgium
| | - Bernard Thienpont
- Department of Human Genetics, Leuven University, 3000 Leuven, Belgium
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Department of Public Health and Primary Care, Environment and Health Unit, Leuven University, 3000 Leuven, Belgium
| | - Katrien De Vusser
- Depatment of Nephrology and Kidney Transplantation, University Hospital Leuven, 3000 Leuven, Belgium
- Department of Microbiology and Immunology, Leuven University, 3000 Leuven, Belgium
| |
Collapse
|
32
|
Aslam I, Roeffaers MBJ. Carbonaceous Nanoparticle Air Pollution: Toxicity and Detection in Biological Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223948. [PMID: 36432235 PMCID: PMC9698098 DOI: 10.3390/nano12223948] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 05/27/2023]
Abstract
Among the different air pollutants, particulate matter (PM) is of great concern due to its abundant presence in the atmosphere, which results in adverse effects on the environment and human health. The different components of PM can be classified based on their physicochemical properties. Carbonaceous particles (CPs) constitute a major fraction of ultrafine PM and have the most harmful effects. Herein, we present a detailed overview of the main components of CPs, e.g., carbon black (CB), black carbon (BC), and brown carbon (BrC), from natural and anthropogenic sources. The emission sources and the adverse effects of CPs on the environment and human health are discussed. Particularly, we provide a detailed overview of the reported toxic effects of CPs in the human body, such as respiratory effects, cardiovascular effects, neurodegenerative effects, carcinogenic effects, etc. In addition, we also discuss the challenges faced by and limitations of the available analytical techniques for the qualitative and quantitative detection of CPs in atmospheric and biological samples. Considering the heterogeneous nature of CPs and biological samples, a detailed overview of different analytical techniques for the detection of CPs in (real-exposure) biological samples is also provided. This review provides useful insights into the classification, toxicity, and detection of CPs in biological samples.
Collapse
|
33
|
Starling AP, Wood C, Liu C, Kechris K, Yang IV, Friedman C, Thomas DSK, Peel JL, Adgate JL, Magzamen S, Martenies SE, Allshouse WB, Dabelea D. Ambient air pollution during pregnancy and DNA methylation in umbilical cord blood, with potential mediation of associations with infant adiposity: The Healthy Start study. ENVIRONMENTAL RESEARCH 2022; 214:113881. [PMID: 35835166 PMCID: PMC10402394 DOI: 10.1016/j.envres.2022.113881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/11/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Prenatal exposure to ambient air pollution has been associated with adverse offspring health outcomes. Childhood health effects of prenatal exposures may be mediated through changes to DNA methylation detectable at birth. METHODS Among 429 non-smoking women in a cohort study of mother-infant pairs in Colorado, USA, we estimated associations between prenatal exposure to ambient fine particulate matter (PM2.5) and ozone (O3), and epigenome-wide DNA methylation of umbilical cord blood cells at delivery (2010-2014). We calculated average PM2.5 and O3 in each trimester of pregnancy and the full pregnancy using inverse-distance-weighted interpolation. We fit linear regression models adjusted for potential confounders and cell proportions to estimate associations between air pollutants and methylation at each of 432,943 CpGs. Differentially methylated regions (DMRs) were identified using comb-p. Previously in this cohort, we reported positive associations between 3rd trimester O3 exposure and infant adiposity at 5 months of age. Here, we quantified the potential for mediation of that association by changes in DNA methylation in cord blood. RESULTS We identified several DMRs for each pollutant and period of pregnancy. The greatest number of significant DMRs were associated with third trimester PM2.5 (21 DMRs). No single CpGs were associated with air pollutants at a false discovery rate <0.05. We found that up to 8% of the effect of 3rd trimester O3 on 5-month adiposity may be mediated by locus-specific methylation changes, but mediation estimates were not statistically significant. CONCLUSIONS Differentially methylated regions in cord blood were identified in association with maternal exposure to PM2.5 and O3. Genes annotated to the significant sites played roles in cardiometabolic disease, immune function and inflammation, and neurologic disorders. We found limited evidence of mediation by DNA methylation of associations between third trimester O3 exposure and 5-month infant adiposity.
Collapse
Affiliation(s)
- Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cuining Liu
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ivana V Yang
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Chloe Friedman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah S K Thomas
- Department of Geography and Earth Sciences, University of North Carolina Charlotte, NC, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Epidemiology, Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
| | - Sheena E Martenies
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - William B Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
34
|
Issah I, Arko-Mensah J, Rozek LS, Rentschler K, Agyekum TP, Dwumoh D, Batterman S, Robins TG, Fobil JN. Association between global DNA methylation (LINE-1) and occupational particulate matter exposure among informal electronic-waste recyclers in Ghana. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2406-2424. [PMID: 34404291 DOI: 10.1080/09603123.2021.1969007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
This study examined the associations between PM (2.5 and 10) and global DNA methylation among 100 e-waste workers and 51 non-e-waste workers serving as controls. Long interspersed nucleotide repetitive elements-1 (LINE-1) was measured by pyrosequencing. Personal PM2.5 and PM10 were measured over a 4-hour work-shift using real-time particulate monitors incorporated into a backpack . Linear regression models were used to assess the association between PM and LINE-1 DNA methylation. The concentrations of PM2.5 and PM10 were significantly higher among the e-waste workers than the controls (77.32 vs 34.88, p < 0.001 and 210.21 vs 121.92, p < 0.001, respectively). PM2.5 exposure was associated with increased LINE-1 CpG2 DNA methylation (β = 0.003; 95% CI; 0.001, 0.006; p = 0.022) but not with the average of all 4 CpG sites of LINE-1. In summary, high levels of PM2.5 exposure was associated with increased levels of global DNA methylation in a site-specific manner.
Collapse
Affiliation(s)
- Ibrahim Issah
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Katie Rentschler
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Thomas P Agyekum
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - Duah Dwumoh
- Department of Biostatistics, University of Ghana School of Public Health, Legon, Ghana
| | - Stuart Batterman
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Thomas G Robins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Julius N Fobil
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| |
Collapse
|
35
|
Parikh MN, Brokamp C, Rasnick E, Ding L, Mersha TB, Bowers K, Folger AT. Epigenome-wide association of neonatal methylation and trimester-specific prenatal PM 2.5 exposure. Environ Epidemiol 2022; 6:e227. [PMID: 36249271 PMCID: PMC9556110 DOI: 10.1097/ee9.0000000000000227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/26/2022] [Indexed: 11/07/2022] Open
Abstract
Exposure to particulate matter with an aerodynamic diameter smaller than 2.5 microns (PM2.5) can affect birth outcomes through physiological pathways such as inflammation. One potential way PM2.5 affects physiology could be through altering DNA methylation (DNAm). Considering that exposures during specific windows of gestation may have unique effects on DNAm, we hypothesized a timing-specific association between PM2.5 exposure during pregnancy and DNAm in the neonatal epithelial-cell epigenome. Methods After collecting salivary samples from a cohort of 91 neonates, DNAm was assessed at over 850,000 cytosine-guanine dinucleotide (CpG) methylation sites on the epigenome using the MethylationEPIC array. Daily ambient PM2.5 concentrations were estimated based on the mother's address of primary residence during pregnancy. PM2.5 was averaged over the first two trimesters, separately and combined, and tested for association with DNAm through an epigenome-wide association (EWA) analysis. For each EWA, false discovery rate (FDR)-corrected P < 0.05 constituted a significant finding and every CpG site with uncorrected P < 0.0001 was selected to undergo pathway and network analysis to identify molecular functions enriched by them. Results Our analysis showed that cg18705808 was associated with the combined average of PM2.5. Pathway and network analysis revealed little similarity between the first two trimesters. Previous studies reported that TMEM184A, the gene regulated by cg18705808, has a putative role in inflammatory pathways. Conclusions The differences in pathway and network analyses could potentially indicate trimester-specific effects of PM2.5 on DNAm. Further analysis with greater temporal resolution would be valuable to fully characterize the effect of PM2.5 on DNAm and child development.
Collapse
Affiliation(s)
- Milan N. Parikh
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Cole Brokamp
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Erika Rasnick
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Lili Ding
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Tesfaye B. Mersha
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Katherine Bowers
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Alonzo T. Folger
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
36
|
Dutta P, Sengupta A, Chakraborty S. Epigenetics: a new warrior against cardiovascular calcification, a forerunner in modern lifestyle diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62093-62110. [PMID: 34601672 DOI: 10.1007/s11356-021-15718-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Arterial and aortic valve calcifications are the most prevalent pathophysiological conditions among all the reported cases of cardiovascular calcifications. It increases with several risk factors like age, hypertension, external stimuli, mechanical forces, lipid deposition, malfunction of genes and signaling pathways, enhancement of naturally occurring calcium inhibitors, and many others. Modern-day lifestyle is affected by numerous environmental factors and harmful toxins that impair our health rather than providing benefits. Applying the combinatorial approach or targeting the exact mechanism could be a new strategy for drug designing or attenuating the severity of calcification. Most of the non-communicable diseases are life-threatening; thus, altering the phenotype and not the genotype may reveal the gateway for fighting with upcoming hurdles. Overall, this review summarizes the reason behind the generation of arterial and aortic valve calcification and its related signaling pathways and also the detrimental effects of calcification. In addition, the individual process of epigenetics and how the implementation of this process becomes a novel approach for diminishing the harmful effect of calcification are discussed. Noteworthy, as epigenetics is linked with genetics and environmental factors necessitates further clinical trials for complete and in-depth understanding and application of this strategy in a more specific and prudent manner.
Collapse
Affiliation(s)
- Parna Dutta
- Department of Life Sciences, Presidency University, 86/1, College Street, Baker building, 2nd floor, Kolkata, West Bengal, 700073, India
| | - Arunima Sengupta
- Department of Life science & Bio-technology, Jadavpur University, Kolkata, 700032, India
| | - Santanu Chakraborty
- Department of Life Sciences, Presidency University, 86/1, College Street, Baker building, 2nd floor, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
37
|
Saeliw T, Permpoon T, Iadsee N, Tencomnao T, Hu VW, Sarachana T, Green D, Sae-Lee C. LINE-1 and Alu methylation signatures in autism spectrum disorder and their associations with the expression of autism-related genes. Sci Rep 2022; 12:13970. [PMID: 35978033 PMCID: PMC9385849 DOI: 10.1038/s41598-022-18232-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Long interspersed nucleotide element-1 (LINE-1) and Alu elements are retrotransposons whose abilities cause abnormal gene expression and genomic instability. Several studies have focused on DNA methylation profiling of gene regions, but the locus-specific methylation of LINE-1 and Alu elements has not been identified in autism spectrum disorder (ASD). Here we interrogated locus- and family-specific methylation profiles of LINE-1 and Alu elements in ASD whole blood using publicly-available Illumina Infinium 450 K methylation datasets from heterogeneous ASD and ASD variants (Chromodomain Helicase DNA-binding 8 (CHD8) and 16p11.2del). Total DNA methylation of repetitive elements were notably hypomethylated exclusively in ASD with CHD8 variants. Methylation alteration in a family-specific manner including L1P, L1H, HAL, AluJ, and AluS families were observed in the heterogeneous ASD and ASD with CHD8 variants. Moreover, LINE-1 and Alu methylation within target genes is inversely related to the expression level in each ASD variant. The DNA methylation signatures of the LINE-1 and Alu elements in ASD whole blood, as well as their associations with the expression of ASD-related genes, have been identified. If confirmed in future larger studies, these findings may contribute to the identification of epigenomic biomarkers of ASD.
Collapse
Affiliation(s)
- Thanit Saeliw
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tiravut Permpoon
- Research Division, SiMR, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nutta Iadsee
- Research Division, SiMR, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.,Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Tewarit Sarachana
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.,SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Daniel Green
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Chanachai Sae-Lee
- Research Division, SiMR, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
38
|
Dou JF, Middleton LYM, Zhu Y, Benke KS, Feinberg JI, Croen LA, Hertz-Picciotto I, Newschaffer CJ, LaSalle JM, Fallin D, Schmidt RJ, Bakulski KM. Prenatal vitamin intake in first month of pregnancy and DNA methylation in cord blood and placenta in two prospective cohorts. Epigenetics Chromatin 2022; 15:28. [PMID: 35918756 PMCID: PMC9344645 DOI: 10.1186/s13072-022-00460-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Prenatal vitamin use is recommended before and during pregnancies for normal fetal development. Prenatal vitamins do not have a standard formulation, but many contain calcium, folic acid, iodine, iron, omega-3 fatty acids, zinc, and vitamins A, B6, B12, and D, and usually they contain higher concentrations of folic acid and iron than regular multivitamins in the US Nutrient levels can impact epigenetic factors such as DNA methylation, but relationships between maternal prenatal vitamin use and DNA methylation have been relatively understudied. We examined use of prenatal vitamins in the first month of pregnancy in relation to cord blood and placenta DNA methylation in two prospective pregnancy cohorts: the Early Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk Learning Early Signs (MARBLES) studies. RESULTS In placenta, prenatal vitamin intake was marginally associated with -0.52% (95% CI -1.04, 0.01) lower mean array-wide DNA methylation in EARLI, and associated with -0.60% (-1.08, -0.13) lower mean array-wide DNA methylation in MARBLES. There was little consistency in the associations between prenatal vitamin intake and single DNA methylation site effect estimates across cohorts and tissues, with only a few overlapping sites with correlated effect estimates. However, the single DNA methylation sites with p-value < 0.01 (EARLI cord nCpGs = 4068, EARLI placenta nCpGs = 3647, MARBLES cord nCpGs = 4068, MARBLES placenta nCpGs = 9563) were consistently enriched in neuronal developmental pathways. CONCLUSIONS Together, our findings suggest that prenatal vitamin intake in the first month of pregnancy may be related to lower placental global DNA methylation and related to DNA methylation in brain-related pathways in both placenta and cord blood.
Collapse
Affiliation(s)
- John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA
| | - Lauren Y M Middleton
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA
| | - Yihui Zhu
- Department of Public Health Sciences and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA, USA
| | - Kelly S Benke
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jason I Feinberg
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Lisa A Croen
- Kaiser Permanente Northern California, Oakland, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA, USA
| | - Craig J Newschaffer
- College of Health and Human Development, Penn State University, State College, PA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA, USA
| | - Daniele Fallin
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA.
| |
Collapse
|
39
|
Chen TF, Lee SH, Zheng WR, Hsu CC, Cho KH, Kuo LW, Chou CCK, Chiu MJ, Tee BL, Cheng TJ. White matter pathology in alzheimer's transgenic mice with chronic exposure to low-level ambient fine particulate matter. Part Fibre Toxicol 2022; 19:44. [PMID: 35768852 PMCID: PMC9245233 DOI: 10.1186/s12989-022-00485-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/29/2022] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Air pollution, especially fine particulate matter (PM), can cause brain damage, cognitive decline, and an increased risk of neurodegenerative disease, especially alzheimer's disease (AD). Typical pathological findings of amyloid and tau protein accumulation have been detected in the brain after exposure in animal studies. However, these observations were based on high levels of PM exposure, which were far from the WHO guidelines and those present in our environment. In addition, white matter involvement by air pollution has been less reported. Thus, this experiment was designed to simulate the true human world and to discuss the possible white matter pathology caused by air pollution. RESULTS 6 month-old female 3xTg-AD mice were divided into exposure and control groups and housed in the Taipei Air Pollutant Exposure System (TAPES) for 5 months. The mice were subjected to the Morris water maze test after exposure and were then sacrificed with brain dissection for further analyses. The mean mass concentration of PM2.5 during the exposure period was 13.85 μg/m3. After exposure, there was no difference in spatial learning function between the two groups, but there was significant decay of memory in the exposure group. Significantly decreased total brain volume and more neuronal death in the cerebral and entorhinal cortex and demyelination of the corpus callosum were noted by histopathological staining after exposure. However, there was no difference in the accumulation of amyloid or tau on immunohistochemistry staining. For the protein analysis, amyloid was detected at significantly higher levels in the cerebral cortex, with lower expression of myelin basic protein in the white matter. A diffuse tensor image study also revealed insults in multiple white matter tracts, including the optic tract. CONCLUSIONS In conclusion, this pilot study showed that even chronic exposure to low PM2.5 concentrations still caused brain damage, such as gross brain atrophy, cortical neuron damage, and multiple white matter tract damage. Typical amyloid cascade pathology did not appear prominently in the vulnerable brain region after exposure. These findings imply that multiple pathogenic pathways induce brain injury by air pollution, and the optic nerve may be another direct invasion route in addition to olfactory nerve.
Collapse
Affiliation(s)
- Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Han Lee
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Room 720, No. 17, Xuzhou Rd, Taipei, 100, Taiwan
| | - Wan-Ru Zheng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Room 720, No. 17, Xuzhou Rd, Taipei, 100, Taiwan
| | - Ching-Chou Hsu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Room 720, No. 17, Xuzhou Rd, Taipei, 100, Taiwan
| | - Kuan-Hung Cho
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Charles C-K Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Boon Lead Tee
- Department of Neurology, Memory and Aging Center, University of California at San Francisco, San Francisco, CA, USA
| | - Tsun-Jen Cheng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Room 720, No. 17, Xuzhou Rd, Taipei, 100, Taiwan.
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
40
|
Czaja AJ. Epigenetic Aspects and Prospects in Autoimmune Hepatitis. Front Immunol 2022; 13:921765. [PMID: 35844554 PMCID: PMC9281562 DOI: 10.3389/fimmu.2022.921765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
The observed risk of autoimmune hepatitis exceeds its genetic risk, and epigenetic factors that alter gene expression without changing nucleotide sequence may help explain the disparity. Key objectives of this review are to describe the epigenetic modifications that affect gene expression, discuss how they can affect autoimmune hepatitis, and indicate prospects for improved management. Multiple hypo-methylated genes have been described in the CD4+ and CD19+ T lymphocytes of patients with autoimmune hepatitis, and the circulating micro-ribonucleic acids, miR-21 and miR-122, have correlated with laboratory and histological features of liver inflammation. Both epigenetic agents have also correlated inversely with the stage of liver fibrosis. The reduced hepatic concentration of miR-122 in cirrhosis suggests that its deficiency may de-repress the pro-fibrotic prolyl-4-hydroxylase subunit alpha-1 gene. Conversely, miR-155 is over-expressed in the liver tissue of patients with autoimmune hepatitis, and it may signify active immune-mediated liver injury. Different epigenetic findings have been described in diverse autoimmune and non-autoimmune liver diseases, and these changes may have disease-specificity. They may also be responses to environmental cues or heritable adaptations that distinguish the diseases. Advances in epigenetic editing and methods for blocking micro-ribonucleic acids have improved opportunities to prove causality and develop site-specific, therapeutic interventions. In conclusion, the role of epigenetics in affecting the risk, clinical phenotype, and outcome of autoimmune hepatitis is under-evaluated. Full definition of the epigenome of autoimmune hepatitis promises to enhance understanding of pathogenic mechanisms and satisfy the unmet clinical need to improve therapy for refractory disease.
Collapse
Affiliation(s)
- Albert J. Czaja
- *Correspondence: Albert J. Czaja, ; orcid.org/0000-0002-5024-3065
| |
Collapse
|
41
|
Vijay A, Jha PK, Parveen S, Goel S, Prabhakar A, Sharma S, Kumar B, Chatterjee T, Bajaj N, Nair V, Sharma M, Ashraf MZ. Aberrant promoter hypermethylation regulates thrombomodulin in high altitude induced deep vein thrombosis. Thromb Res 2022; 215:5-13. [DOI: 10.1016/j.thromres.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022]
|
42
|
Silva Rodriguez ME, Silveyra P. Air Pollution Exposure as a Relevant Risk Factor for Chronic Obstructive Pulmonary Disease Exacerbations in Male and Female Patients. EUROPEAN MEDICAL JOURNAL 2022. [DOI: 10.33590/emj/21-00228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a multifactorial lung inflammatory disease that affects 174 million people worldwide, with a recently reported increased incidence in female patients. Patients with COPD are especially vulnerable to the detrimental effects of environmental exposures, especially from air particulate and gaseous pollutants; exposure to air pollution severely influences COPD outcomes, resulting in acute exacerbations, hospitalisations, and death. Here, a literature review of the recent work addressing air pollution-induced acute exacerbations of COPD (AECOPD) was conducted in order to determine whether sex was considered as a biological variable in these studies, and whether air pollution exposure affected patients with COPD in a sex-specific manner. It was found that, while the majority of studies enrolled both male and female patients, only a few reported results were disaggregated by sex. Most studies had a higher enrolment of male patients, only four compared AECOPD outcomes between sexes, and only one study identified sex differences in AECOPD, with females displaying higher rates. Overall, this analysis of the literature confirmed that air pollution exposure is a trigger for AECOPD hospitalisations and revealed a significant gap in the knowledge of sex-specific effects of air pollutants on COPD outcomes, highlighting the need for more studies to consider sex as a biological variable.
Collapse
Affiliation(s)
| | - Patricia Silveyra
- School of Public Health, Indiana University Bloomington, Indiana, USA
| |
Collapse
|
43
|
Tachibana K, Kawazoe S, Onoda A, Umezawa M, Takeda K. Effects of Prenatal Exposure to Titanium Dioxide Nanoparticles on DNA Methylation and Gene Expression Profile in the Mouse Brain. FRONTIERS IN TOXICOLOGY 2022; 3:705910. [PMID: 35295148 PMCID: PMC8915839 DOI: 10.3389/ftox.2021.705910] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Objectives: Titanium dioxide nanoparticles (TiO2-NP) are important materials used in commercial practice. Reportedly, TiO2-NP exposure during pregnancy can affect the development of the central nervous system in mouse offspring; however, the underlying mechanism remains unknown. In the present study, we investigated the impact of prenatal TiO2-NP exposure on global DNA methylation and mRNA expression patterns in the brains of neonatal mice. Materials and Methods: Pregnant C57BL/6J mice were intratracheally administered a TiO2-NP suspension (100 μg/mouse) on gestational day 10.5, and brains were collected from male and female offspring at day 1 postpartum. After extraction of methylated DNA by immunoprecipitation, the DNA methylation profile was analyzed using a mouse CpG island microarray. Total RNA was obtained, and mRNA expression profiles were comprehensively assessed using microarray analysis. Results: Among genes in the CpG island microarray, DNA methylation was increased in 614 and 2,924 genes and decreased in 6,220 and 6,477 genes in male and female offspring, respectively. Combined with mRNA microarray analysis, 88 and 89 genes were upregulated (≥1.5-fold) accompanied by demethylation of CpG islands, whereas 13 and 33 genes were downregulated (≤0.67-fold) accompanied by methylation of CpG islands in male and female offspring mice, respectively. Gene Set Enrichment Analysis (GSEA) revealed that these genes were enriched in gene ontology terms related to the regulation of transcription factors, cell proliferation, and organism development. Additionally, MeSH terms related to stem cells and morphogenesis were enriched. Conclusion: Prenatal TiO2-NP exposure induced genome-wide alterations in DNA methylation and mRNA expression in the brains of male and female offspring. Based on GSEA findings, it can be speculated that prenatal TiO2-NP exposure causes adverse effects on brain functions by altering the DNA methylation state of the fetal brain, especially neural stem cells, resulting in the subsequent abnormal regulation of transcription factors that modulate development and differentiation.
Collapse
Affiliation(s)
- Ken Tachibana
- Division of Toxicology and Health Science, Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Sanyo-onoda, Japan.,The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Shotaro Kawazoe
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Atsuto Onoda
- Division of Toxicology and Health Science, Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Sanyo-onoda, Japan.,The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Masakazu Umezawa
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika, Japan
| | - Ken Takeda
- Division of Toxicology and Health Science, Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Sanyo-onoda, Japan.,The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| |
Collapse
|
44
|
Legaki E, Arsenis C, Taka S, Papadopoulos NG. DNA methylation biomarkers in asthma and rhinitis: Are we there yet? Clin Transl Allergy 2022; 12:e12131. [PMID: 35344303 PMCID: PMC8967268 DOI: 10.1002/clt2.12131] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 12/16/2022] Open
Abstract
The study of epigenetics has improved our understanding of mechanisms underpinning gene‐environment interactions and is providing new insights in the pathophysiology of respiratory allergic diseases. We reviewed the literature on DNA methylation patterns across different tissues in asthma and/or rhinitis and attempted to elucidate differentially methylated loci that could be used to characterize asthma or rhinitis. Although nasal and bronchial epithelia are similar in their histological structure and cellular composition, genetic and epigenetic regulation may differ across tissues. Advanced methods have enabled comprehensive, high‐throughput methylation profiling of different tissues (bronchial or nasal epithelial cells, whole blood or isolated mononuclear cells), in subjects with respiratory conditions, aiming to elucidate gene regulation mechanisms and identify new biomarkers. Several genes and CpGs have been suggested as asthma biomarkers, though research on allergic rhinitis is still lacking. The most common differentially methylated loci presented in both blood and nasal samples are ACOT7, EPX, KCNH2, SIGLEC8, TNIK, FOXP1, ATPAF2, ZNF862, ADORA3, ARID3A, IL5RA, METRNL and ZFPM1. Overall, there is substantial variation among studies, (i.e. sample sizes, age groups and disease phenotype). Greater variability of analysis method detailed phenotypic characterization and age stratification should be taken into account in future studies.
Collapse
Affiliation(s)
- Evangelia Legaki
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Christos Arsenis
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Styliani Taka
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Nikolaos G. Papadopoulos
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| |
Collapse
|
45
|
C. Chi G, Liu Y, MacDonald JW, M. Reynolds L, Enquobahrie DA, L. Fitzpatrick A, Kerr KF, J. Budoff M, Lee SI, Siscovick D, D. Kaufman J. Epigenome-wide analysis of long-term air pollution exposure and DNA methylation in monocytes: results from the Multi-Ethnic Study of Atherosclerosis. Epigenetics 2022; 17:297-313. [PMID: 33818294 PMCID: PMC8920186 DOI: 10.1080/15592294.2021.1900028] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Air pollution might affect atherosclerosis through DNA methylation changes in cells crucial to atherosclerosis, such as monocytes. We conducted an epigenome-wide study of DNA methylation in CD14+ monocytes and long-term ambient air pollution exposure in adults participating in the Multi-Ethnic Study of Atherosclerosis (MESA). We also assessed the association between differentially methylated signals and cis-gene expression. Using spatiotemporal models, one-year average concentrations of outdoor fine particulate matter (PM2.5) and oxides of nitrogen (NOX) were estimated at participants' homes. We assessed DNA methylation and gene expression using Illumina 450k and HumanHT-12 v4 Expression BeadChips, respectively (n = 1,207). We used bump hunting and site-specific approaches to identify differentially methylated signals (false discovery rate of 0.05) and used linear models to assess associations between differentially methylated signals and cis-gene expression. Four differentially methylated regions (DMRs) located on chromosomes 5, 6, 7, and 16 (within or near SDHAP3, ZFP57, HOXA5, and PRM1, respectively) were associated with PM2.5. The DMRs on chromosomes 5 and 6 also associated with NOX. The DMR on chromosome 5 had the smallest p-value for both PM2.5 (p = 1.4×10-6) and NOX (p = 7.7×10-6). Three differentially methylated CpGs were identified for PM2.5, and cg05926640 (near TOMM20) had the smallest p-value (p = 5.6×10-8). NOX significantly associated with cg11756214 within ZNF347 (p = 5.6×10-8). Several differentially methylated signals were also associated with cis-gene expression. The DMR located on chromosome 7 was associated with the expression of HOXA5, HOXA9, and HOXA10. The DMRs located on chromosomes 5 and 16 were associated with expression of MRPL36 and DEXI, respectively. The CpG cg05926640 was associated with expression of ARID4B, IRF2BP2, and TOMM20. We identified differential DNA methylation in monocytes associated with long-term air pollution exposure. Methylation signals associated with gene expression might help explain how air pollution contributes to cardiovascular disease.
Collapse
Affiliation(s)
- Gloria C. Chi
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA,CONTACT Gloria C. Chi 1 DNA Way, South San Francisco, CA 94080
| | - Yongmei Liu
- Department of Epidemiology & Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Lindsay M. Reynolds
- Department of Epidemiology & Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Daniel A. Enquobahrie
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Annette L. Fitzpatrick
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA,Department of Family Medicine, School of Medicine, University of Washington, Seattle, Washington, USA,Department of Global Health, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Kathleen F. Kerr
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Matthew J. Budoff
- Division of Cardiology, Los Angeles Biomedical Research Institute at Harbor–UCLA Medical Center, Torrance, California, USA
| | - Su-in Lee
- Department of Computer Science & Engineering, University of Washington, Seattle, Washington, USA,Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | - Joel D. Kaufman
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA,Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
46
|
The Dynamic Regulation of G-Quadruplex DNA Structures by Cytosine Methylation. Int J Mol Sci 2022; 23:ijms23052407. [PMID: 35269551 PMCID: PMC8910436 DOI: 10.3390/ijms23052407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
It is well known that certain non B-DNA structures, including G-quadruplexes, are key elements that can regulate gene expression. Here, we explore the theory that DNA modifications, such as methylation of cytosine, could act as a dynamic switch by promoting or alleviating the structural formation of G-quadruplex structures in DNA or RNA. The interaction between epigenetic DNA modifications, G4 formation, and the 3D architecture of the genome is a complex and developing area of research. Although there is growing evidence for such interactions, a great deal still remains to be discovered. In vivo, the potential effect that cytosine methylation may have on the formation of DNA structures has remained largely unresearched, despite this being a potential mechanism through which epigenetic factors could regulate gene activity. Such interactions could represent novel mechanisms for important biological functions, including altering nucleosome positioning or regulation of gene expression. Furthermore, promotion of strand-specific G-quadruplex formation in differentially methylated genes could have a dynamic role in directing X-inactivation or the control of imprinting, and would be a worthwhile focus for future research.
Collapse
|
47
|
Gohar J, Do WL, Miller-Kleinhenz J, Conneely K, Krishnamurti U, D'Angelo O, Gogineni K, Torres M, Gabram-Mendola S, McCullough LE. Neighborhood characteristics and breast tumor methylation: using epigenomics to explore cancer outcome disparities. Breast Cancer Res Treat 2022; 191:653-663. [PMID: 34978015 DOI: 10.1007/s10549-021-06430-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Social exposures may drive epigenetic alterations that affect racial disparities in breast cancer outcomes. This study examined the association between neighborhood-level factors and DNA methylation in non-Hispanic Black and White women diagnosed with breast cancer. METHODS Genome-wide DNA methylation was measured using the EPIC array in the tumor tissue of 96 women. Linear regression models were used to examine the association between nine neighborhood-level factors and methylation, regressing β values for each cytosine-phosphate guanine dinucleotide (CpG) site on neighborhood-level factors while adjusting for covariates. Neighborhood data were obtained from the Opportunity Atlas. We used a false discovery rate (FDR) threshold < 0.05, and for CpGs below this threshold, we examined interactions with race. We employed multivariable Cox proportional-hazards models to estimate whether aberrant methylation was associated with all-cause mortality. RESULTS 26 of the CpG sites were associated with job density or college education (FDR < 0.05). Further exploration of these 26 CpG sites revealed no interactions by race, but a single probe in TMEM204 was associated with all-cause mortality. CONCLUSION We identified novel associations between neighborhood-level factors and the breast tumor DNA methylome. Our data are the first to show that dysregulation in neighborhood associated CpG sites may be associated with all-cause mortality. Neighborhood-level factors may contribute to differential tumor methylation in genes related to tumor progression and metastasis. This contributes to the increasing body of evidence that area-level factors (such as neighborhood characteristics) may play an important role in cancer disparities through modulation of the breast tumor epigenome.
Collapse
Affiliation(s)
- Jazib Gohar
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, 30322, USA
| | - Whitney L Do
- Department of Global Health, Emory University Rollins School of Public Health, Atlanta, GA, 30322, USA
| | - Jasmine Miller-Kleinhenz
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, 30322, USA
| | - Karen Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Uma Krishnamurti
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Olivia D'Angelo
- Department of Surgery, Jackson Memorial Hospital/University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Keerthi Gogineni
- Department of Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Mylin Torres
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Lauren E McCullough
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, 30322, USA.
| |
Collapse
|
48
|
Honkova K, Rossnerova A, Chvojkova I, Milcova A, Margaryan H, Pastorkova A, Ambroz A, Rossner P, Jirik V, Rubes J, Sram RJ, Topinka J. Genome-Wide DNA Methylation in Policemen Working in Cities Differing by Major Sources of Air Pollution. Int J Mol Sci 2022; 23:ijms23031666. [PMID: 35163587 PMCID: PMC8915177 DOI: 10.3390/ijms23031666] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
DNA methylation is the most studied epigenetic mechanism that regulates gene expression, and it can serve as a useful biomarker of prior environmental exposure and future health outcomes. This study focused on DNA methylation profiles in a human cohort, comprising 125 nonsmoking city policemen (sampled twice), living and working in three localities (Prague, Ostrava and Ceske Budejovice) of the Czech Republic, who spent the majority of their working time outdoors. The main characterization of the localities, differing by major sources of air pollution, was defined by the stationary air pollution monitoring of PM2.5, B[a]P and NO2. DNA methylation was analyzed by a genome-wide microarray method. No season-specific DNA methylation pattern was discovered; however, we identified 13,643 differentially methylated CpG loci (DML) for a comparison between the Prague and Ostrava groups. The most significant DML was cg10123377 (log2FC = −1.92, p = 8.30 × 10−4) and loci annotated to RPTOR (total 20 CpG loci). We also found two hypomethylated loci annotated to the DNA repair gene XRCC5. Groups of DML annotated to the same gene were linked to diabetes mellitus (KCNQ1), respiratory diseases (PTPRN2), the dopaminergic system of the brain and neurodegenerative diseases (NR4A2). The most significant possibly affected pathway was Axon guidance, with 86 potentially deregulated genes near DML. The cluster of gene sets that could be affected by DNA methylation in the Ostrava groups mainly includes the neuronal functions and biological processes of cell junctions and adhesion assembly. The study demonstrates that the differences in the type of air pollution between localities can affect a unique change in DNA methylation profiles across the human genome.
Collapse
Affiliation(s)
- Katerina Honkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.R.); (I.C.); (A.M.); (H.M.); (R.J.S.); (J.T.)
- Correspondence: ; Tel.: +420-775-406-170
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.R.); (I.C.); (A.M.); (H.M.); (R.J.S.); (J.T.)
| | - Irena Chvojkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.R.); (I.C.); (A.M.); (H.M.); (R.J.S.); (J.T.)
| | - Alena Milcova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.R.); (I.C.); (A.M.); (H.M.); (R.J.S.); (J.T.)
| | - Hasmik Margaryan
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.R.); (I.C.); (A.M.); (H.M.); (R.J.S.); (J.T.)
| | - Anna Pastorkova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.P.); (A.A.); (P.R.J.)
| | - Antonin Ambroz
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.P.); (A.A.); (P.R.J.)
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.P.); (A.A.); (P.R.J.)
| | - Vitezslav Jirik
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic;
| | - Jiri Rubes
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic;
| | - Radim J. Sram
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.R.); (I.C.); (A.M.); (H.M.); (R.J.S.); (J.T.)
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.R.); (I.C.); (A.M.); (H.M.); (R.J.S.); (J.T.)
| |
Collapse
|
49
|
Shen H, Zhang N, Liu Y, Yang X, He Y, Li Q, Shen X, Zhu Y, Yang Y. The Interaction Between Pulmonary Fibrosis and COVID-19 and the Application of Related Anti-Fibrotic Drugs. Front Pharmacol 2022; 12:805535. [PMID: 35069217 PMCID: PMC8766975 DOI: 10.3389/fphar.2021.805535] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is a highly contagious respiratory disease, which mainly affects the lungs. Critically ill patients are easily complicated by cytokine storms, acute respiratory distress syndrome (ARDS), and respiratory failure, which seriously threaten their lives. Pulmonary fibrosis (PF) is a common interstitial lung disease, and its pathogenesis may involve the participation of a variety of immune cells and inflammatory factors. Current studies have shown that patients with COVID-19 may be complicated by pulmonary fibrosis, and patients with pulmonary fibrosis may also be at higher risk of contracting COVID-19 than healthy people. Pulmonary fibrosis is an important risk factor leading to the aggravation of COVID-19 disease. COVID-19 complicated by cytokine storm and ARDS mechanism pathways are similar to the pathogenesis of pulmonary fibrosis. The potential interaction between pulmonary fibrosis and COVID-19 can cause acute exacerbation of the patient's condition, but the potential mechanism between the two has not been fully elucidated. Most of the drug treatment programs for COVID-19-related pulmonary fibrosis are currently formulated about the relevant guidelines for idiopathic pulmonary fibrosis (IPF), and there is no clear drug treatment program recommendation. This article aims to summarize the relevant mechanism pathways of COVID-19 and pulmonary fibrosis, explore the interrelationships and possible mechanisms, and discuss the value and risks of existing and potential COVID-19-related pulmonary fibrosis treatment drugs, to provide reference for anti-fibrosis treatment for patients.
Collapse
Affiliation(s)
- Hao Shen
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Nu Zhang
- Department of Pharmacy, People’s Hospital of Fushun County, Fushun, China
| | - Yuqing Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuerong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuanyuan He
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Shen
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yulian Zhu
- Department of Pharmacy, Ziyang People’s Hospital, Ziyang, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
50
|
Guo C, Lv S, Liu Y, Li Y. Biomarkers for the adverse effects on respiratory system health associated with atmospheric particulate matter exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126760. [PMID: 34396970 DOI: 10.1016/j.jhazmat.2021.126760] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/17/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of epidemiological evidence have confirmed the atmospheric particulate matter (PM2.5) exposure was positively correlated with the morbidity and mortality of respiratory diseases. Nevertheless, its pathogenesis remains incompletely understood, probably resulting from the activation of oxidative stress, inflammation, altered genetic and epigenetic modifications in the lung upon PM2.5 exposure. Currently, biomarker investigations have been widely used in epidemiological and toxicological studies, which may help in understanding the biologic mechanisms underlying PM2.5-elicited adverse health outcomes. Here, the emerging biomarkers to indicate PM2.5-respiratory system interactions were summarized, primarily related to oxidative stress (ROS, MDA, GSH, etc.), inflammation (Interleukins, FENO, CC16, etc.), DNA damage (8-OHdG, γH2AX, OGG1) and also epigenetic modulation (DNA methylation, histone modification, microRNAs). The identified biomarkers shed light on PM2.5-elicited inflammation, fibrogenesis and carcinogenesis, thus may favor more precise interventions in public health. It is worth noting that some inconsistent findings may possibly relate to the inter-study differentials in the airborne PM2.5 sample, exposure mode and targeted subjects, as well as methodological issues. Further research, particularly by -omics technique to identify novel, specific biomarkers, is warranted to illuminate the causal relationship between PM2.5 pollution and deleterious lung outcomes.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|