1
|
Ghanem M, Justet A, Jaillet M, Vasarmidi E, Boghanim T, Hachem M, Vadel A, Joannes A, Mordant P, Balayev A, Adams T, Mal H, Cazes A, Poté N, Mailleux A, Crestani B. Identification of FGFR4 as a regulator of myofibroblast differentiation in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2024; 327:L818-L830. [PMID: 39350729 DOI: 10.1152/ajplung.00184.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 11/13/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with limited therapeutic options. Fibroblast growth factor receptor-4 (FGFR4) is a known receptor for several paracrine fibroblast growth factors (FGFs). FGFR4 is also the main receptor for FGF19, an endocrine FGF that was demonstrated by our group to have antifibrotic properties in the lung. We aimed to determine whether FGFR4 could modulate pulmonary fibrogenesis. We assessed FGFR4 mRNA and protein levels in IPF and control lungs. In vitro, we determined the effect of transforming growth factor-β (TGF-β), endothelin-1, and platelet-derived growth factor (PDGF) on FGFR4 expression in human lung fibroblasts. We determined the effect of FGFR4 inhibition, using a specific pharmacological inhibitor (FGF401), or genetic deletion in murine embryonic fibroblasts (MEFs) on TGF-β-induced myofibroblastic differentiation. In vivo, we evaluated the development of bleomycin-induced lung fibrosis in Fgfr4-deficient (Fgfr4-/-) mice compared with wild-type littermates (WT) and after FGF401 treatment in WT mice compared with a control group receiving the solvent only. FGFR4 was decreased in IPF lungs, as compared with control lungs, at mRNA and protein levels. In vitro, FGFR4 was downregulated after treatment with TGF-β, endothelin-1, and PDGF. In vitro, FGFR4 inhibition by FGF401 prevented TGF-β1-induced collagen and ACTA2 increase in lung fibroblasts. Similar results were observed in Fgfr4-/- MEFs. In vivo, FGFR4 genetic deficiency or FGFR4 pharmacological inhibition did not modulate bleomycin-induced pulmonary fibrosis. Our data suggest that FGFR4 exerts profibrotic properties by enhancing TGF-β signaling in vitro. However, the inhibition of FGFR4 is not sufficient to prevent the development of pulmonary fibrosis in vivo.NEW & NOTEWORTHY FGFR4 has been reported to have antifibrotic effects in the liver. We aimed to determine the involvement of FGFR4 during IPF. Our data suggest that FGFR4 exerts profibrotic properties by enhancing TGF-β signaling in vitro. However, the inhibition of FGFR4 is not sufficient to prevent the development of pulmonary fibrosis in vivo. To our knowledge, this is the first study to assess the profibrotic action of FGFR4 during pulmonary fibrosis.
Collapse
Affiliation(s)
- Mada Ghanem
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
| | - Aurélien Justet
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Madeleine Jaillet
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
| | - Eirini Vasarmidi
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
| | - Tiara Boghanim
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
| | - Mouna Hachem
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
| | - Aurélie Vadel
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
| | - Audrey Joannes
- INSERM U1085, IRSET Institut de Recherche sur la Santé, l'Environnement et le Travail, Université de Rennes-1, Rennes, France
| | - Pierre Mordant
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Chirurgie Thoracique et vasculaire, Paris, France
| | - Agshin Balayev
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Taylor Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Hervé Mal
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie et Transplantation, Paris, France
| | - Aurélie Cazes
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
- Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Département d'Anatomopathologie, Paris, France
| | - Nicolas Poté
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
- Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Département d'Anatomopathologie, Paris, France
| | - Arnaud Mailleux
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
| | - Bruno Crestani
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, UMR1152, FHU APOLLO, Labex INFLAMEX, Faculté de médecine Xavier Bichat, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, Centre de Référence des Maladies Pulmonaires Rares, Paris, France
| |
Collapse
|
2
|
Riccetti MR, Green J, Taylor TJ, Perl AKT. Prenatal FGFR2 Signaling via PI3K/AKT Specifies the PDGFRA + Myofibroblast. Am J Respir Cell Mol Biol 2024; 70:63-77. [PMID: 37734036 PMCID: PMC10768833 DOI: 10.1165/rcmb.2023-0245oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023] Open
Abstract
It is well known that FGFR2 (fibroblast growth factor receptor 2) signaling is critical for proper lung development. Recent studies demonstrate that epithelial FGFR2 signaling during the saccular phase of lung development (sacculation) regulates alveolar type 1 (AT1) and AT2 cell differentiation. During sacculation, PDGFRA (platelet-derived growth factor receptor-α)-positive lung fibroblasts exist as three functional subtypes: contractile myofibroblasts, extracellular matrix-producing matrix fibroblasts, and lipofibroblasts. All three subtypes are required during alveolarization to establish a niche that supports AT2 epithelial cell self-renewal and AT1 epithelial cell differentiation. FGFR2 signaling directs myofibroblast differentiation in PDGFRA+ fibroblasts during alveolar reseptation after pneumonectomy. However, it remains unknown if FGFR2 signaling regulates PDGFRA+ myo-, matrix, or lipofibroblast differentiation during sacculation. In this study, FGFR2 signaling was inhibited by temporal expression of a secreted dominant-negative FGFR2b (dnFGFR2) by AT2 cells from embryonic day (E) 16.5 to E18.5. Fibroblast and epithelial differentiation were analyzed at E18.5 and postnatal days 7 and 21. At all time points, the number of myofibroblasts was reduced and the number of lipo-/matrix fibroblasts was increased. AT2 cells are increased and AT1 cells are reduced postnatally, but not at E18.5. Similarly, in organoids made with PDGFRA+ fibroblasts from dnFGFR2 lungs, increased AT2 cells and reduced AT1 cells were observed. In vitro treatment of primary wild-type E16.5 adherent saccular lung fibroblasts with recombinant dnFGFR2b/c resulted in reduced myofibroblast contraction. Treatment with the PI3K/AKT activator 740 Y-P rescued the lack of myofibroblast differentiation caused by dnFGFR2b/2c. Moreover, treatment with the PI3K/AKT activator 740 Y-P rescued myofibroblast differentiation in E18.5 fibroblasts isolated from dnFGFR2 lungs.
Collapse
Affiliation(s)
- Matthew R. Riccetti
- Division of Neonatology and Pulmonary Biology and
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Jenna Green
- Division of Neonatology and Pulmonary Biology and
| | - Thomas J. Taylor
- Division of Neonatology and Pulmonary Biology and
- College of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio; and
| | - Anne-Karina T. Perl
- Division of Neonatology and Pulmonary Biology and
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
3
|
Belgacemi R, Cherry C, El Alam I, Frauenpreis A, Glass I, Bellusci S, Danopoulos S, Al Alam D. Preferential FGF18/FGFR activity in pseudoglandular versus canalicular stage human lung fibroblasts. Front Cell Dev Biol 2023; 11:1220002. [PMID: 37701781 PMCID: PMC10493313 DOI: 10.3389/fcell.2023.1220002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/17/2023] [Indexed: 09/14/2023] Open
Abstract
Fibroblast growth factor (FGF) signaling is necessary for proper lung branching morphogenesis, alveolarization, and vascular development. Dysregulation of FGF activity has been implicated in various lung diseases. Recently, we showed that FGF18 promotes human lung branching morphogenesis by regulating mesenchymal progenitor cells. However, the underlying mechanisms remain unclear. Thus, we aimed to determine the role of FGF18 and its receptors (FGFR) in regulating mesenchymal cell proliferation, migration, and differentiation from pseudoglandular to canalicular stage. We performed siRNA assays to identify the specific FGFR(s) associated with FGF18-induced biological processes. We found that FGF18 increased proliferation and migration in human fetal lung fibroblasts (HFLF) from both stages. FGFR2/FGFR4 played a significant role in pseudoglandular stage. HFLF proliferation, while FGFR3/FGFR4 were involved in canalicular stage. FGF18 enhanced HFLF migration through FGFR2 and FGFR4 in pseudoglandular and canalicular stage, respectively. Finally, we provide evidence that FGF18 treatment leads to reduced expression of myofibroblast markers (ACTA2 and COL1A1) and increased expression of lipofibroblast markers (ADRP and PPARγ) in both stages HFLF. However, the specific FGF18/FGFR complex involved in this process varies depending on the stage. Our findings suggest that in context of human lung development, FGF18 tends to associate with distinct FGFRs to initiate specific biological processes on mesenchymal cells.
Collapse
Affiliation(s)
- Randa Belgacemi
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Caroline Cherry
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Imad El Alam
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Andrew Frauenpreis
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Ian Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Saverio Bellusci
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UG-MLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany
| | - Soula Danopoulos
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Denise Al Alam
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
4
|
Myrou A, Aslanidis T, Makedou K, Mitsianis A, Thisiadou A, Karalazou P, Chatzopoulos G, Papadopoulos A, Kalis A, Giagkoulis D, Lezgidis F, Savopoulos C. Fibroblast Growth Factor 23 in COVID-19: An Observational Study. Cureus 2023; 15:e42561. [PMID: 37637614 PMCID: PMC10460241 DOI: 10.7759/cureus.42561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
INTRODUCTION Fibroblast growth factor 23 (FGF23) belongs structurally to the endocrine FGF protein family, which also includes FGF19 and FGF21. In the past decade, FGF23 has emerged as a possible diagnostic, prognostic biomarker, and therapeutic target in several conditions. Data about COVID-19 and FGF23 is still limited, yet they suggest interesting interactions. OBJECTIVE In the present study, the levels of FGF23 were investigated in COVID-19 patients. These levels were also correlated with other inflammatory markers. MATERIALS AND METHODS In our prospective observational study, blood samples were collected from 81 patients admitted with COVID-19 (31 males and 50 females). We analyzed the relation of serum FGF23 levels with biochemistry, total blood count, coagulation parameters, and demographic data. RESULTS The distribution of FGF23 serum levels according to sex and age (n28-40=8, n41-60=28, n65-75= 25, n75+=20) was similar. No significant correlation between FGF23 and any other biochemistry, total blood count, and coagulation parameter was revealed in the whole sample. Nevertheless, there was a variation in the results among different age groups. CONCLUSION FGF23 levels seem to vary in symptomatic COVID-19 infection, but well-organized studies with larger numbers of patients in each group are needed to determine any reliable correlation between FGF23 and other laboratory parameters.
Collapse
Affiliation(s)
- Athena Myrou
- Department of Internal Medicine, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Thessaloniki, GRC
| | - Theodoros Aslanidis
- Department of Intensive Care Unit, St. Paul Agios Pavlos General Hospital, Thessaloniki, GRC
| | - Keli Makedou
- Department of Biochemistry, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Thessaloniki, GRC
| | - Athanasios Mitsianis
- Department of Internal Medicine, Mpodosakeio General Prefecture Hospital, Ptolemaida, GRC
| | - Aikaterini Thisiadou
- Department of Internal Medicine, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Thessaloniki, GRC
| | - Paraskevi Karalazou
- Department of Internal Medicine, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Thessaloniki, GRC
| | - Georgios Chatzopoulos
- Department of Internal Medicine, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Thessaloniki, GRC
| | - Anastasios Papadopoulos
- Department of Internal Medicine, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Thessaloniki, GRC
| | - Antonios Kalis
- Department of Internal Medicine, Mpodosakeio General Prefecture Hospital, Ptolemaida, GRC
| | - Dimitrios Giagkoulis
- Department of Internal Medicine, Mpodosakeio General Prefecture Hospital, Ptolemaida, GRC
| | - Fotios Lezgidis
- Department of Internal Medicine, Mpodosakeio General Prefecture Hospital, Ptolemaida, GRC
| | - Christos Savopoulos
- Department of Internal Medicine, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Thessaloniki, GRC
| |
Collapse
|
5
|
Danopoulos S, Belgacemi R, Hein RFC, Miller AJ, Deutsch GH, Glass I, Spence JR, Al Alam D. FGF18 promotes human lung branching morphogenesis through regulating mesenchymal progenitor cells. Am J Physiol Lung Cell Mol Physiol 2023; 324:L433-L444. [PMID: 36791060 PMCID: PMC10027085 DOI: 10.1152/ajplung.00316.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Fibroblast growth factor (FGF) signaling is known to play an important role in lung organogenesis. However, we recently demonstrated that FGF10 fails to induce branching in human fetal lungs as is observed in mouse. Our previous human fetal lung RNA sequencing data exhibited increased FGF18 during the pseudoglandular stage of development, suggestive of its importance in human lung branching morphogenesis. Whereas it has been previously reported that FGF18 is critical during alveologenesis, few studies have described its implication in lung branching, specifically in human. Therefore, we aimed to determine the role of FGF18 in human lung branching morphogenesis. Human fetal lung explants within the pseudoglandular stage of development were treated with recombinant human FGF18 in air-liquid interface culture. Explants were analyzed grossly to assess differences in branching pattern, as well as at the cellular and molecular levels. FGF18 treatment promoted branching in explant cultures and demonstrated increased epithelial proliferation as well as maintenance of the double positive SOX2/SOX9 distal bud progenitor cells, confirming its role in human lung branching morphogenesis. In addition, FGF18 treated explants displayed increased expression of SOX9, FN1, and COL2A1 within the mesenchyme, all factors that are important to chondrocyte differentiation. In humans, cartilaginous airways extend deep into the lung up to the 12th generation of branching whereas in mouse these are restricted to the trachea and main bronchi. Therefore, our data suggest that FGF18 promotes human lung branching morphogenesis through regulating mesenchymal progenitor cells.
Collapse
Affiliation(s)
- Soula Danopoulos
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, United States
- Division of Neonatology, Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, California, United States
| | - Randa Belgacemi
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, United States
| | - Renee F C Hein
- Department of Cell and Developmental biology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Alyssa J Miller
- Department of Cell and Developmental biology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Gail H Deutsch
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, Washington, United States
| | - Ian Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States
| | - Jason R Spence
- Department of Cell and Developmental biology, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Denise Al Alam
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, United States
- Division of Neonatology, Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, California, United States
| |
Collapse
|
6
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
7
|
Duhig EE. Usual interstitial pneumonia: a review of the pathogenesis and discussion of elastin fibres, type II pneumocytes and proposed roles in the pathogenesis. Pathology 2022; 54:517-525. [PMID: 35778287 DOI: 10.1016/j.pathol.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/11/2022] [Accepted: 05/22/2022] [Indexed: 10/17/2022]
Abstract
The pathogenesis of idiopathic pulmonary fibrosis (IPF) and its histological counterpart, usual interstitial pneumonia (UIP) remains debated. IPF/UIP is a disease characterised by respiratory restriction, and while there have been recent advances in treatment, mortality remains high. Genetic and environmental factors predispose to its development and aberrant alveolar repair is thought to be central. Following alveolar injury, the type II pneumocyte (AEC2) replaces the damaged thin type I pneumocytes. Despite the interstitial fibroblast being considered instrumental in formation of the fibrosis, there has been little consideration for a role for AEC2 in the repair of the septal interstitium. Elastin is a complex protein that conveys flexibility and recoil to the lung. The fibroblast is presumed to produce elastin but there is evidence that the AEC2 may have a role in production or deposition. While the lung is an elastic organ, the role of elastin in repair of lung injury and its possible role in UIP has not been explored in depth. In this paper, pathogenetic mechanisms of UIP involving AEC2 and elastin are reviewed and the possible role of AEC2 in elastin generation is proposed.
Collapse
Affiliation(s)
- Edwina E Duhig
- Sullivan Nicolaides Pathology, The John Flynn Hospital, Tugun, Qld, Australia; UQ Thoracic Research Centre, The Prince Charles Hospital, Chermside, Qld, Australia; Faculty of Medicine, The University of Queensland, Herston, Qld, Australia.
| |
Collapse
|
8
|
Yanucil C, Kentrup D, Li X, Grabner A, Schramm K, Martinez EC, Li J, Campos I, Czaya B, Heitman K, Westbrook D, Wende AR, Sloan A, Roche JM, Fornoni A, Kapiloff MS, Faul C. FGF21-FGFR4 signaling in cardiac myocytes promotes concentric cardiac hypertrophy in mouse models of diabetes. Sci Rep 2022; 12:7326. [PMID: 35513431 PMCID: PMC9072546 DOI: 10.1038/s41598-022-11033-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor (FGF) 21, a hormone that increases insulin sensitivity, has shown promise as a therapeutic agent to improve metabolic dysregulation. Here we report that FGF21 directly targets cardiac myocytes by binding β-klotho and FGF receptor (FGFR) 4. In combination with high glucose, FGF21 induces cardiac myocyte growth in width mediated by extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. While short-term FGF21 elevation can be cardio-protective, we find that in type 2 diabetes (T2D) in mice, where serum FGF21 levels are elevated, FGFR4 activation induces concentric cardiac hypertrophy. As T2D patients are at risk for heart failure with preserved ejection fraction (HFpEF), we propose that induction of concentric hypertrophy by elevated FGF21-FGFR4 signaling may constitute a novel mechanism promoting T2D-associated HFpEF such that FGFR4 blockade might serve as a cardio-protective therapy in T2D. In addition, potential adverse cardiac effects of FGF21 mimetics currently in clinical trials should be investigated.
Collapse
Affiliation(s)
- Christopher Yanucil
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Tinsley Harrison Tower 611L, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Dominik Kentrup
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Tinsley Harrison Tower 611L, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA
| | - Xueyi Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, 1651 Page Mill Road, Mail Code 5356, Palo Alto, CA, USA
| | - Alexander Grabner
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Karla Schramm
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Eliana C Martinez
- Department of Pediatrics and Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, FL, Miami, USA
| | - Jinliang Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, 1651 Page Mill Road, Mail Code 5356, Palo Alto, CA, USA
- Department of Pediatrics and Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, FL, Miami, USA
| | - Isaac Campos
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Tinsley Harrison Tower 611L, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
| | - Brian Czaya
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Tinsley Harrison Tower 611L, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Kylie Heitman
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Tinsley Harrison Tower 611L, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
| | - David Westbrook
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Tinsley Harrison Tower 611L, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
| | - Adam R Wende
- Division of Molecular & Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexis Sloan
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Johanna M Roche
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alessia Fornoni
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Michael S Kapiloff
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, 1651 Page Mill Road, Mail Code 5356, Palo Alto, CA, USA.
- Department of Pediatrics and Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, FL, Miami, USA.
| | - Christian Faul
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Tinsley Harrison Tower 611L, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
9
|
Guidi R, Xu D, Choy DF, Ramalingam TR, Lee WP, Modrusan Z, Liang Y, Marsters S, Ashkenazi A, Huynh A, Mills J, Flanagan S, Hambro S, Nunez V, Leong L, Cook A, Tran TH, Austin CD, Cao Y, Clarke C, Panettieri RA, Koziol-White C, Jester WF, Wang F, Wilson MS. Steroid-induced fibroblast growth factors drive an epithelial-mesenchymal inflammatory axis in severe asthma. Sci Transl Med 2022; 14:eabl8146. [PMID: 35442706 PMCID: PMC10301263 DOI: 10.1126/scitranslmed.abl8146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Asthma and inflammatory airway diseases restrict airflow in the lung, compromising gas exchange and lung function. Inhaled corticosteroids (ICSs) can reduce inflammation, control symptoms, and improve lung function; however, a growing number of patients with severe asthma do not benefit from ICS. Using bronchial airway epithelial brushings from patients with severe asthma or primary human cells, we delineated a corticosteroid-driven fibroblast growth factor (FGF)-dependent inflammatory axis, with FGF-responsive fibroblasts promoting downstream granulocyte colony-stimulating factor (G-CSF) production, hyaluronan secretion, and neutrophilic inflammation. Allergen challenge studies in mice demonstrate that the ICS, fluticasone propionate, inhibited type 2-driven eosinophilia but induced a concomitant increase in FGFs, G-CSF, hyaluronan, and neutrophil infiltration. We developed a model of steroid-induced neutrophilic inflammation mediated, in part, by induction of an FGF-dependent epithelial-mesenchymal axis, which may explain why some individuals do not benefit from ICS. In further proof-of-concept experiments, we found that combination therapy with pan-FGF receptor inhibitors and corticosteroids prevented both eosinophilic and steroid-induced neutrophilic inflammation. Together, these results establish FGFs as therapeutic targets for severe asthma patients who do not benefit from ICS.
Collapse
Affiliation(s)
- Riccardo Guidi
- Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - Daqi Xu
- Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - David F. Choy
- Biomarker Discovery OMNI, Genentech, South San Francisco, CA 94080, USA
| | | | - Wyne P. Lee
- Translational Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Zora Modrusan
- Next Generation Sequencing (NGS), Genentech, South San Francisco, CA 94080, USA
| | - Yuxin Liang
- Next Generation Sequencing (NGS), Genentech, South San Francisco, CA 94080, USA
| | - Scot Marsters
- Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Avi Ashkenazi
- Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Alison Huynh
- Necropsy, Genentech, South San Francisco, CA 94080, USA
| | - Jessica Mills
- Necropsy, Genentech, South San Francisco, CA 94080, USA
| | - Sean Flanagan
- Necropsy, Genentech, South San Francisco, CA 94080, USA
| | | | - Victor Nunez
- Necropsy, Genentech, South San Francisco, CA 94080, USA
| | - Laurie Leong
- Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Ashley Cook
- Pathology, Genentech, South San Francisco, CA 94080, USA
| | | | - Cary D. Austin
- Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Yi Cao
- OMNI Bioinformatics, Genentech, South San Francisco, CA 94080, USA
| | - Christine Clarke
- OMNI Bioinformatics, Genentech, South San Francisco, CA 94080, USA
| | - Reynold A. Panettieri
- Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Cynthia Koziol-White
- Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - William F. Jester
- Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Fen Wang
- Center for Cancer Biology and Nutrition, Texas A&M University, Houston, TX 77030, USA
| | - Mark S. Wilson
- Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| |
Collapse
|
10
|
Singh R, Vidal B, Ascanio J, Redhu NS, Ruiz de Somocurcio J, Majid A, VanderLaan PA, Gangadharan SP. A Pilot Gene Expression and Histopathologic Analysis of Tracheal Resections in Tracheobronchomalacia. Ann Thorac Surg 2021; 114:1925-1932. [PMID: 34547297 DOI: 10.1016/j.athoracsur.2021.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/19/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The airway structures and mRNA expression of genes that regulate airway inflammation and remodeling may be altered in the trachea of patients with tracheobronchomalacia (TBM). METHODS Fourteen tracheal specimens from 2005-to-2018 were used in this study. Surgical resection specimens from patients with TBM and tracheal stenosis (TS) were compared to control tracheal specimens obtained from autopsy cases. We investigated the mRNA expression of genes encoding fibroblast growth factor (FGF), binding protein 2 (FGFBP2), FGF receptor R3 (FGFR3), interleukin-1 beta (IL1β), tumor growth factor-beta 1 (TGFβ1), tissue inhibitor of metalloproteinases 1 (TIMP1), and intercellular adhesion molecule 1 (ICAM1), as well as established markers of airway inflammation including interferon-gamma (IFNγ) and tumor necrosis factor (TNF). The relative expression of target transcripts was assessed by qRT-PCR. A histological examination of the same resected airway specimens was performed on formalin-fixed paraffin embedded tissue sections. RESULTS FGFBP2 and FGFR3 showed higher expression in TBM compared to TS and control groups (p<0.05, p<0.01, respectively). Furthermore, both TGFβ1 and TIMP1 were elevated in TBM compared to controls (p<0.05). Conversely, ICAM1 was downregulated in TBM versus TS and controls (p<0.05). IL1β, IFNγ, and TNF were increased in TBM although did not achieve statistical significance. Histologically, compared to control airways, both TBM and TS demonstrated submucosal fibrotic changes, with TBM additionally demonstrating alterations in elastin fiber quality and density in the posterior membrane. CONCLUSIONS Significant changes in gene expression are observed in the tracheal walls of patients with TBM and TS compared to controls.
Collapse
Affiliation(s)
- Rani Singh
- Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Barbara Vidal
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Juan Ascanio
- Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Naresh Singh Redhu
- Division of GI/Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jorge Ruiz de Somocurcio
- Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Adnan Majid
- Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Paul A VanderLaan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Sidhu P Gangadharan
- Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
11
|
Inde Z, Croker BA, Yapp C, Joshi GN, Spetz J, Fraser C, Qin X, Xu L, Deskin B, Ghelfi E, Webb G, Carlin AF, Zhu YP, Leibel SL, Garretson AF, Clark AE, Duran JM, Pretorius V, Crotty-Alexander LE, Li C, Lee JC, Sodhi C, Hackam DJ, Sun X, Hata AN, Kobzik L, Miller J, Park JA, Brownfield D, Jia H, Sarosiek KA. Age-dependent regulation of SARS-CoV-2 cell entry genes and cell death programs correlates with COVID-19 severity. SCIENCE ADVANCES 2021; 7:eabf8609. [PMID: 34407940 PMCID: PMC8373124 DOI: 10.1126/sciadv.abf8609] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/25/2021] [Indexed: 05/02/2023]
Abstract
Novel coronavirus disease 2019 (COVID-19) severity is highly variable, with pediatric patients typically experiencing less severe infection than adults and especially the elderly. The basis for this difference is unclear. We find that mRNA and protein expression of angiotensin-converting enzyme 2 (ACE2), the cell entry receptor for the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19, increases with advancing age in distal lung epithelial cells. However, in humans, ACE2 expression exhibits high levels of intra- and interindividual heterogeneity. Further, cells infected with SARS-CoV-2 experience endoplasmic reticulum stress, triggering an unfolded protein response and caspase-mediated apoptosis, a natural host defense system that halts virion production. Apoptosis of infected cells can be selectively induced by treatment with apoptosis-modulating BH3 mimetic drugs. Notably, epithelial cells within young lungs and airways are more primed to undergo apoptosis than those in adults, which may naturally hinder virion production and support milder COVID-19 severity.
Collapse
Affiliation(s)
- Zintis Inde
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Ben A Croker
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Clarence Yapp
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Image and Data Analysis Core, Harvard Medical School, Boston, MA, USA
| | - Gaurav N Joshi
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Integrated Cellular Imaging Core, Emory University, Atlanta, GA, USA
| | - Johan Spetz
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Cameron Fraser
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Xingping Qin
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Le Xu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Brian Deskin
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Elisa Ghelfi
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gabrielle Webb
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aaron F Carlin
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yanfang Peipei Zhu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Sandra L Leibel
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Aaron F Garretson
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Alex E Clark
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jason M Duran
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Victor Pretorius
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | | | - Chendi Li
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jamie Casey Lee
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Chhinder Sodhi
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - David J Hackam
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Xin Sun
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Aaron N Hata
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lester Kobzik
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jeffrey Miller
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jin-Ah Park
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Douglas Brownfield
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hongpeng Jia
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Kristopher A Sarosiek
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Ushakumary MG, Riccetti M, Perl AKT. Resident interstitial lung fibroblasts and their role in alveolar stem cell niche development, homeostasis, injury, and regeneration. Stem Cells Transl Med 2021; 10:1021-1032. [PMID: 33624948 PMCID: PMC8235143 DOI: 10.1002/sctm.20-0526] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/13/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Developing, regenerating, and repairing a lung all require interstitial resident fibroblasts (iReFs) to direct the behavior of the epithelial stem cell niche. During lung development, distal lung fibroblasts, in the form of matrix-, myo-, and lipofibroblasts, form the extra cellular matrix (ECM), create tensile strength, and support distal epithelial differentiation, respectively. During de novo septation in a murine pneumonectomy lung regeneration model, developmental processes are reactivated within the iReFs, indicating progenitor function well into adulthood. In contrast to the regenerative activation of fibroblasts upon acute injury, chronic injury results in fibrotic activation. In murine lung fibrosis models, fibroblasts can pathologically differentiate into lineages beyond their normal commitment during homeostasis. In lung injury, recently defined alveolar niche cells support the expansion of alveolar epithelial progenitors to regenerate the epithelium. In human fibrotic lung diseases like bronchopulmonary dysplasia (BPD), idiopathic pulmonary fibrosis (IPF), and chronic obstructive pulmonary disease (COPD), dynamic changes in matrix-, myo-, lipofibroblasts, and alveolar niche cells suggest differential requirements for injury pathogenesis and repair. In this review, we summarize the role of alveolar fibroblasts and their activation stage in alveolar septation and regeneration and incorporate them into the context of human lung disease, discussing fibroblast activation stages and how they contribute to BPD, IPF, and COPD.
Collapse
Affiliation(s)
- Mereena George Ushakumary
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew Riccetti
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Anne-Karina T Perl
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
13
|
Abdellatif MA, Eyada E, Rabie W, Abdelaziz A, Shahin W. Genetic and Biochemical Predictors of Neonatal Bronchopulmonary Dysplasia. J Pediatr Genet 2021; 11:173-178. [DOI: 10.1055/s-0040-1721740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/08/2020] [Indexed: 10/22/2022]
Abstract
AbstractBronchopulmonary dysplasia (BPD) is a common complication of prematurity with a multifactorial etiology, influenced by both genetic susceptibility and environmental factors on the immature lung. Fibroblast growth factor receptor-3 and -4 (FGFR-3 and FGFR-4) are abundantly expressed in both the epithelium and mesenchyme in the developing mammalian lung. FGFR-4 may play a role in developing BPD as it is associated with airway inflammation and remodeling; studies showed a link between BPD and a polymorphism in the FGFR-4 gene. The aim of this study was to study the significance of FGFR-4 in developing BPD and to investigate the correlation between its serum level and its genetic polymorphism in relation to development of BPD in preterms. This case–control study was performed on 80 preterm neonates (<32 weeks) divided into two groups: group I included 50 preterms with respiratory distress syndrome (RDS) who developed BPD and group II included 30 preterms with RDS only. The mean serum level of FGFR-4 was significantly lower in group I than in group II (p-value < 0.05). There was no significant correlation between the serum levels of FGFR-4 and the degree of severity of BPD. Allele variation in the FGFR-4 gene was similar in both groups. The serum level of FGFR-4 was significantly lower in preterms with BPD, although the gene polymorphism was not significantly different in the studied groups.
Collapse
Affiliation(s)
- May A.K. Abdellatif
- Department of Paediatrics, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman Eyada
- Department of Paediatrics, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Walaa Rabie
- Department of Clinical and Chemical Pathology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Azza Abdelaziz
- Department of Paediatrics, Ahmed Maher Teaching Hospital, Cairo, Egypt
| | - Walaa Shahin
- Department of Paediatrics, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
Inde Z, Yapp C, Joshi GN, Spetz J, Fraser C, Deskin B, Ghelfi E, Sodhi C, Hackam DJ, Kobzik L, Croker BA, Brownfield D, Jia H, Sarosiek KA. Age-dependent regulation of SARS-CoV-2 cell entry genes and cell death programs correlates with COVID-19 disease severity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.13.276923. [PMID: 32935109 PMCID: PMC7491524 DOI: 10.1101/2020.09.13.276923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) maintains cardiovascular and renal homeostasis but also serves as the entry receptor for the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), the causal agent of novel coronavirus disease 2019 (COVID-19). COVID-19 disease severity is typically lower in pediatric patients than adults (particularly the elderly), but higher rates of hospitalizations requiring intensive care are observed in infants than in older children - the reasons for these differences are unknown. ACE2 is expressed in several adult tissues and cells, including alveolar type 2 cells of the distal lung epithelium, but expression at other ages is largely unexplored. Here we show that ACE2 transcripts are expressed in the lung and trachea shortly after birth, downregulated during childhood, and again expressed at high levels in late adulthood. Notably, the repertoire of cells expressing ACE2 protein in the mouse lung and airways shifts during key phases of lung maturation. In particular, podoplanin-positive cells, which are likely alveolar type I cells responsible for gas exchange, express ACE2 only in advanced age. Similar patterns of expression were evident in analysis of human lung tissue from over 100 donors, along with extreme inter- and intra-individual heterogeneity in ACE2 protein expression in epithelial cells. Furthermore, we find that apoptosis, which is a natural host defense system against viral infection, is dynamically regulated during lung maturation, resulting in periods of heightened apoptotic priming and dependence on pro-survival BCL-2 family proteins including MCL-1. Infection of human lung cells with SARS-CoV-2 triggers an unfolded protein stress response and upregulation of the endogenous MCL-1 inhibitor Noxa; in young individuals, MCL-1 inhibition is sufficient to trigger apoptosis in lung epithelial cells and may thus limit virion production and inflammatory signaling. Overall, we identify strong and distinct correlates of COVID-19 disease severity across lifespan and advance our understanding of the regulation of ACE2 and cell death programs in the mammalian lung. Furthermore, our work provides the framework for translation of apoptosis modulating drugs as novel treatments for COVID-19.
Collapse
Affiliation(s)
- Zintis Inde
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA
| | - Clarence Yapp
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA
- Image and Data Analysis Core, Harvard Medical School, Boston, MA
| | - Gaurav N. Joshi
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA
- Integrated Cellular Imaging Core, Emory University, Atlanta, GA
| | - Johan Spetz
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA
| | - Cameron Fraser
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA
| | - Brian Deskin
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
| | - Elisa Ghelfi
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
| | - Chhinder Sodhi
- Department of Surgery, Johns Hopkins University, Baltimore, MD
| | - David J. Hackam
- Department of Surgery, Johns Hopkins University, Baltimore, MD
| | - Lester Kobzik
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
| | - Ben A. Croker
- Division of Allergy, Immunology and Rheumatology, University of California, San Diego, CA
| | - Douglas Brownfield
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
| | - Hongpeng Jia
- Department of Surgery, Johns Hopkins University, Baltimore, MD
| | - Kristopher A. Sarosiek
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA
| |
Collapse
|
15
|
Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, Ni Z, Zhang B, Zhang D, Luo F, Chen H, Sun X, Feng JQ, Qi H, Chen L. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther 2020; 5:181. [PMID: 32879300 PMCID: PMC7468161 DOI: 10.1038/s41392-020-00222-7] [Citation(s) in RCA: 473] [Impact Index Per Article: 94.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing evidences suggest that the fibroblast growth factor/FGF receptor (FGF/FGFR) signaling has crucial roles in a multitude of processes during embryonic development and adult homeostasis by regulating cellular lineage commitment, differentiation, proliferation, and apoptosis of various types of cells. In this review, we provide a comprehensive overview of the current understanding of FGF signaling and its roles in organ development, injury repair, and the pathophysiology of spectrum of diseases, which is a consequence of FGF signaling dysregulation, including cancers and chronic kidney disease (CKD). In this context, the agonists and antagonists for FGF-FGFRs might have therapeutic benefits in multiple systems.
Collapse
Affiliation(s)
- Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiaoyan Tan
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuo Huang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Dali Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianding Sun
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Huabing Qi
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
16
|
Riccetti M, Gokey JJ, Aronow B, Perl AKT. The elephant in the lung: Integrating lineage-tracing, molecular markers, and single cell sequencing data to identify distinct fibroblast populations during lung development and regeneration. Matrix Biol 2020; 91-92:51-74. [PMID: 32442602 PMCID: PMC7434667 DOI: 10.1016/j.matbio.2020.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/26/2022]
Abstract
During lung development, the mesenchyme and epithelium are dependent on each other for instructive morphogenic cues that direct proliferation, cellular differentiation and organogenesis. Specification of epithelial and mesenchymal cell lineages occurs in parallel, forming cellular subtypes that guide the formation of both transitional developmental structures and the permanent architecture of the adult lung. While epithelial cell types and lineages have been relatively well-defined in recent years, the definition of mesenchymal cell types and lineage relationships has been more challenging. Transgenic mouse lines with permanent and inducible lineage tracers have been instrumental in identifying lineage relationships among epithelial progenitor cells and their differentiation into distinct airway and alveolar epithelial cells. Lineage tracing experiments with reporter mice used to identify fibroblast progenitors and their lineage trajectories have been limited by the number of cell specific genes and the developmental timepoint when the lineage trace was activated. In this review, we discuss major developmental mesenchymal lineages, focusing on time of origin, major cell type, and other lineage derivatives, as well as the transgenic tools used to find and define them. We describe lung fibroblasts using function, location, and molecular markers in order to compare and contrast cells with similar functions. The temporal and cell-type specific expression of fourteen "fibroblast lineage" genes were identified in single-cell RNA-sequencing data from LungMAP in the LGEA database. Using these lineage signature genes as guides, we clustered murine lung fibroblast populations from embryonic day 16.5 to postnatal day 28 (E16.5-PN28) and generated heatmaps to illustrate expression of transcription factors, signaling receptors and ligands in a temporal and population specific manner.
Collapse
Affiliation(s)
- Matthew Riccetti
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jason J Gokey
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Bruce Aronow
- Department of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, United States
| | - Anne-Karina T Perl
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
17
|
Halim NSS, Ch'ng ES, Kardia E, Ali SA, Radzi R, Yahaya BH. Aerosolised Mesenchymal Stem Cells Expressing Angiopoietin-1 Enhances Airway Repair. Stem Cell Rev Rep 2020; 15:112-125. [PMID: 30178289 DOI: 10.1007/s12015-018-9844-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The aim of this study was to investigate the effects of MSCs and MSC-expressing ANGPT1 (MSC-pANGPT1) treatment via aerosolisation in alleviating the asthma-related airway inflammation in the rabbit model. METHODS Rabbits were sensitised and challenged with both intraperitoneal injection and inhalation of ovalbumin (Ova). MSCs and MSC-pANGPT1 cells were aerosolised into rabbit lungs using the MicroSprayer® Aerosolizer Model IA-1B 48 h after injury. The post mortem was performed 3 days following cell delivery. Histopathological assessments of the lung tissues and inflammatory response were quantitatively scored following treatments. RESULT(S) Administration of aerosolised MSCs and MSC-pANGPT1 were significantly reduced inflammation of the airways (p < 0.001), as reflected by improved of structural changes such as thickness of the basement membrane, epithelium, mucosa and sub-mucosa regions. The airway inflammation score of both treatment groups revealed a significant reduction of inflammation and granulocyte infiltration at the peribronchiale and perivascular regions (p < 0.05). Administration of aerosolised MSCs alone was resulted in significant reduction in the levels of pro-inflammatory genes (IL-4 and TGF-β) while treatment with aerosolised MSC-pANGPT1 led to further reduction of various pro-inflammatory genes to the base-line values (IL4, TNF, MMP9 and TGF-β). Treatment with both aerosolised MSCs and MSC-pANGPT1 cells was also alleviated the number of airway inflammatory cells in the bronchoalveolar lavage (BAL) fluid and goblet cell hyperplasia. CONCLUSION(S) Our findings suggest that treatment with MSCs alone attenuated airway inflammation and structural changes of the airway. Treatment with MSC-pANGPT1 provided an additional effect in reducing the expression levels of various pro-inflammatory genes. Both of these treatment enhancing airway repair and therefore may provide a basis for the development of an innovative approach for the treatment and prevention of airway inflammatory diseases.
Collapse
Affiliation(s)
- N S S Halim
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - E S Ch'ng
- Oncological and Radiological Science Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - E Kardia
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - S A Ali
- Oncological and Radiological Science Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - R Radzi
- Animal Research Facilities, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Bertam, Penang, Malaysia
| | - B H Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia.
| |
Collapse
|
18
|
Yin Y, Ornitz DM. FGF9 and FGF10 activate distinct signaling pathways to direct lung epithelial specification and branching. Sci Signal 2020; 13:eaay4353. [PMID: 32127497 PMCID: PMC7271816 DOI: 10.1126/scisignal.aay4353] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factors (FGFs) 9 and 10 are essential during the pseudoglandular stage of lung development. Mesothelium-produced FGF9 is principally responsible for mesenchymal growth, whereas epithelium-produced FGF9 and mesenchyme-produced FGF10 guide lung epithelial development, and loss of either of these ligands affects epithelial branching. Because FGF9 and FGF10 activate distinct FGF receptors (FGFRs), we hypothesized that they would control distinct developmental processes. Here, we found that FGF9 signaled through epithelial FGFR3 to directly promote distal epithelial fate specification and inhibit epithelial differentiation. By contrast, FGF10 signaled through epithelial FGFR2b to promote epithelial proliferation and differentiation. Furthermore, FGF9-FGFR3 signaling functionally opposed FGF10-FGFR2b signaling, and FGFR3 preferentially used downstream phosphoinositide 3-kinase (PI3K) pathways, whereas FGFR2b relied on downstream mitogen-activated protein kinase (MAPK) pathways. These data demonstrate that, within lung epithelial cells, different FGFRs function independently; they bind receptor-specific ligands and direct distinct developmental functions through the activation of distinct downstream signaling pathways.
Collapse
Affiliation(s)
- Yongjun Yin
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
19
|
Hagan AS, Zhang B, Ornitz DM. Identification of a FGF18-expressing alveolar myofibroblast that is developmentally cleared during alveologenesis. Development 2020; 147:dev.181032. [PMID: 31862844 DOI: 10.1242/dev.181032] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022]
Abstract
Alveologenesis is an essential developmental process that increases the surface area of the lung through the formation of septal ridges. In the mouse, septation occurs postnatally and is thought to require the alveolar myofibroblast (AMF). Though abundant during alveologenesis, markers for AMFs are minimally detected in the adult. After septation, the alveolar walls thin to allow efficient gas exchange. Both loss of AMFs or retention and differentiation into another cell type during septal thinning have been proposed. Using a novel Fgf18:CreERT2 allele to lineage trace AMFs, we demonstrate that most AMFs are developmentally cleared during alveologenesis. Lung mesenchyme also contains other poorly described cell types, including alveolar lipofibroblasts (ALF). We show that Gli1:CreERT2 marks both AMFs as well as ALFs, and lineage tracing shows that ALFs are retained in adult alveoli while AMFs are lost. We further show that multiple immune cell populations contain lineage-labeled particles, suggesting a phagocytic role in the clearance of AMFs. The demonstration that the AMF lineage is depleted during septal thinning through a phagocytic process provides a mechanism for the clearance of a transient developmental cell population.
Collapse
Affiliation(s)
- Andrew S Hagan
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Bo Zhang
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
20
|
Kim MH, Jung SY, Song KH, Park JI, Ahn J, Kim EH, Park JK, Hwang SG, Woo HJ, Song JY. A new FGFR inhibitor disrupts the TGF-β1-induced fibrotic process. J Cell Mol Med 2019; 24:830-840. [PMID: 31692229 PMCID: PMC6933341 DOI: 10.1111/jcmm.14793] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 01/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is chronic and irreversible damage to the lung characterized by fibroblast activation and matrix deposition. Although recently approved novel anti‐fibrotic agents can improve the lung function and survival of patients with PF, the overall outcomes remain poor. In this study, a novel imidazopurine compound, 3‐(2‐chloro‐6‐fluorobenzyl)‐1,6,7‐trimethyl‐1H‐imidazo[2,1‐f]purine‐2,4(3H,8H)‐dione (IM‐1918), markedly inhibited transforming growth factor (TGF)‐β‐stimulated reporter activity and reduced the expression of representative fibrotic markers, such as connective tissue growth factor, fibronectin, collagen and α‐smooth muscle actin, on human lung fibroblasts. However, IM‐1918 neither decreased Smad‐2 and Smad‐3 nor affected p38MAPK and JNK. Instead, IM‐1918 reduced Akt and extracellular signal‐regulated kinase 1/2 phosphorylation increased by TGF‐β. Additionally, IM‐1918 inhibited the phosphorylation of fibroblast growth factor receptors 1 and 3. In a bleomycin‐induced murine lung fibrosis model, IM‐1918 profoundly reduced fibrotic areas and decreased collagen and α‐smooth muscle actin accumulation. These results suggest that IM‐1918 can be applied to treat lung fibrosis.
Collapse
Affiliation(s)
- Mi-Hyoung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.,Laboratory of Immunology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seung-Youn Jung
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Kyung-Hee Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Jeong-In Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Jiyeon Ahn
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Eun-Ho Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Jong Kuk Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Sang-Gu Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Hee-Jong Woo
- Laboratory of Immunology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jie-Young Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| |
Collapse
|
21
|
Danopoulos S, Thornton ME, Grubbs BH, Frey MR, Warburton D, Bellusci S, Al Alam D. Discordant roles for FGF ligands in lung branching morphogenesis between human and mouse. J Pathol 2018; 247:254-265. [PMID: 30357827 DOI: 10.1002/path.5188] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/26/2018] [Accepted: 10/18/2018] [Indexed: 01/08/2023]
Abstract
Fibroblast growth factor (FGF) signaling plays an important role in lung organogenesis. Over recent decades, FGF signaling in lung development has been extensively studied in animal models. However, little is known about the expression, localization, and functional roles of FGF ligands during human fetal lung development. Therefore, we aimed to determine the expression and function of several FGF ligands and receptors in human lung development. Using in situ hybridization (ISH) and RNA sequencing, we assessed their expression and distribution in native human fetal lung. Human fetal lung explants were treated with recombinant FGF7, FGF9, or FGF10 in air-liquid interface culture. Explants were analyzed grossly to observe differences in branching pattern as well as at the cellular and molecular level. ISH demonstrated that FGF7 is expressed in both the epithelium and mesenchyme; FGF9 is mainly localized in the distal epithelium, whereas FGF10 demonstrated diffuse expression throughout the parenchyma, with some expression in the smooth muscle cells (SMCs). FGFR2 expression was high in both proximal and distal epithelial cells as well as the SMCs. FGFR3 was expressed mostly in the epithelial cells, with lower expression in the mesenchyme, while FGFR4 was highly expressed throughout the mesenchyme and in the distal epithelium. Using recombinant FGFs, we demonstrated that FGF7 and FGF9 had similar effects on human fetal lung as on mouse fetal lung; however, FGF10 caused the human explants to expand and form cysts as opposed to inducing epithelial branching as seen in the mouse. In conjunction with decreased branching, treatment with recombinant FGF7, FGF9, and FGF10 also resulted in decreased double-positive SOX2/SOX9 progenitor cells, which are exclusively present in the distal epithelial tips in early human fetal lung. Although FGF ligand localization may be somewhat comparable between developing mouse and human lungs, their functional roles may differ substantially. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Soula Danopoulos
- Department of Pediatric Surgery, Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew E Thornton
- Department of Obstetrics and Gynecology, Maternal Fetal Medicine Division, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan H Grubbs
- Department of Pediatric Surgery, Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Obstetrics and Gynecology, Maternal Fetal Medicine Division, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark R Frey
- Department of Pediatric Surgery, Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David Warburton
- Department of Pediatric Surgery, Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Saverio Bellusci
- Department of Pediatric Surgery, Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany
| | - Denise Al Alam
- Department of Pediatric Surgery, Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
22
|
Insulin-Like Growth Factor-1 Signaling in Lung Development and Inflammatory Lung Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6057589. [PMID: 30018981 PMCID: PMC6029485 DOI: 10.1155/2018/6057589] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/06/2018] [Indexed: 12/19/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) was firstly identified as a hormone that mediates the biological effects of growth hormone. Accumulating data have indicated the role of IGF-1 signaling pathway in lung development and diseases such as congenital disorders, cancers, inflammation, and fibrosis. IGF-1 signaling modulates the development and differentiation of many types of lung cells, including airway basal cells, club cells, alveolar epithelial cells, and fibroblasts. IGF-1 signaling deficiency results in alveolar hyperplasia in humans and disrupted lung architecture in animal models. The components of IGF-1 signaling pathways are potentiated as biomarkers as they are dysregulated locally or systemically in lung diseases, whereas data may be inconsistent or even paradoxical among different studies. The usage of IGF-1-based therapeutic agents urges for more researches in developmental disorders and inflammatory lung diseases, as the majority of current data are collected from limited number of animal experiments and are generally less exuberant than those in lung cancer. Elucidation of these questions by further bench-to-bedside researches may provide us with rational clinical diagnostic approaches and agents concerning IGF-1 signaling in lung diseases.
Collapse
|
23
|
Li R, Herriges JC, Chen L, Mecham RP, Sun X. FGF receptors control alveolar elastogenesis. Development 2017; 144:4563-4572. [PMID: 29122839 DOI: 10.1242/dev.149443] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 09/28/2017] [Indexed: 12/21/2022]
Abstract
Alveologenesis, the final step of lung development, is characterized by the formation of millions of alveolar septa that constitute the vast gas-exchange surface area. The genetic network driving alveologenesis is poorly understood compared with earlier steps in lung development. FGF signaling through receptors Fgfr3 and Fgfr4 is crucial for alveologenesis, but the mechanisms through which they mediate this process remain unclear. Here we show that in Fgfr3;Fgfr4 (Fgfr3;4) global mutant mice, alveolar simplification is first observed at the onset of alveologenesis at postnatal day 3. This is preceded by disorganization of elastin, indicating defects in the extracellular matrix (ECM). Although Fgfr3 and Fgfr4 are expressed in the mesenchyme and epithelium, inactivation in the mesenchyme, but not the epithelium, recapitulated the defects. Expression analysis of components of the elastogenesis machinery revealed that Mfap5 (also known as Magp2), which encodes an elastin-microfibril bridging factor, is upregulated in Fgfr3;4 mutants. Mfap5 mutation in the Fgfr3;4 mutant background partially attenuated the alveologenesis defects. These data demonstrate that, during normal lung maturation, FGF signaling restricts expression of the elastogenic machinery in the lung mesenchyme to control orderly formation of the elastin ECM, thereby driving alveolar septa formation to increase the gas-exchange surface.
Collapse
Affiliation(s)
- Rongbo Li
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John C Herriges
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lin Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Robert P Mecham
- Department of Cell Biology & Physiology, Washington University School of Medicine, Saint Louis, MO 631103, USA
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA .,Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
24
|
Skronska-Wasek W, Mutze K, Baarsma HA, Bracke KR, Alsafadi HN, Lehmann M, Costa R, Stornaiuolo M, Novellino E, Brusselle GG, Wagner DE, Yildirim AÖ, Königshoff M. Reduced Frizzled Receptor 4 Expression Prevents WNT/β-Catenin-driven Alveolar Lung Repair in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2017; 196:172-185. [PMID: 28245136 DOI: 10.1164/rccm.201605-0904oc] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD), in particular emphysema, is characterized by loss of parenchymal alveolar tissue and impaired tissue repair. Wingless and INT-1 (WNT)/β-catenin signaling is reduced in COPD; however, the mechanisms thereof, specifically the role of the frizzled (FZD) family of WNT receptors, remain unexplored. OBJECTIVES To identify and functionally characterize specific FZD receptors that control downstream WNT signaling in impaired lung repair in COPD. METHODS FZD expression was analyzed in lung homogenates and alveolar epithelial type II (ATII) cells of never-smokers, smokers, patients with COPD, and two experimental COPD models by quantitative reverse transcriptase-polymerase chain reaction, immunoblotting, and immunofluorescence. The functional effects of cigarette smoke on FZD4, WNT/β-catenin signaling, and elastogenic components were investigated in primary ATII cells in vitro and in three-dimensional lung tissue cultures ex vivo. Gain- and loss-of-function approaches were applied to determine the effects of FZD4 signaling on alveolar epithelial cell wound healing and repair, as well as on expression of elastogenic components. MEASUREMENTS AND MAIN RESULTS FZD4 expression was reduced in human and experimental COPD lung tissues as well as in primary human ATII cells from patients with COPD. Cigarette smoke exposure down-regulated FZD4 expression in vitro and in vivo, along with reduced WNT/β-catenin activity. Inhibition of FZD4 decreased WNT/β-catenin-driven epithelial cell proliferation and wound closure, and it interfered with ATII-to-ATI cell transdifferentiation and organoid formation, which were augmented by FZD4 overexpression. Moreover, FZD4 restoration by overexpression or pharmacological induction led to induction of WNT/β-catenin signaling and expression of elastogenic components in three-dimensional lung tissue cultures ex vivo. CONCLUSIONS Reduced FZD4 expression in COPD contributes to impaired alveolar repair capacity.
Collapse
Affiliation(s)
- Wioletta Skronska-Wasek
- 1 Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Kathrin Mutze
- 1 Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Hoeke A Baarsma
- 1 Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Ken R Bracke
- 2 Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Hani N Alsafadi
- 1 Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Mareike Lehmann
- 1 Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Rita Costa
- 1 Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Mariano Stornaiuolo
- 3 Department of Pharmacy, University of Naples Federico II, Naples, Italy; and
| | - Ettore Novellino
- 3 Department of Pharmacy, University of Naples Federico II, Naples, Italy; and
| | - Guy G Brusselle
- 2 Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Darcy E Wagner
- 1 Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Ali Ö Yildirim
- 1 Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Melanie Königshoff
- 1 Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany.,4 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Denver, Aurora, Colorado
| |
Collapse
|
25
|
Abstract
Fibroblast growth factors (FGF) are mitogenic signal mediators that induce cell proliferation and survival. Although cardiac myocytes are post-mitotic, they have been shown to be able to respond to local and circulating FGFs. While precise molecular mechanisms are not well characterized, some FGF family members have been shown to induce cardiac remodeling under physiologic conditions by mediating hypertrophic growth in cardiac myocytes and by promoting angiogenesis, both events leading to increased cardiac function and output. This FGF-mediated physiologic scenario might transition into a pathologic situation involving cardiac cell death, fibrosis and inflammation, and eventually cardiac dysfunction and heart failure. As discussed here, cardiac actions of FGFs - with the majority of studies focusing on FGF2, FGF21 and FGF23 - and their specific FGF receptors (FGFR) and precise target cell types within the heart, are currently under experimental investigation. Especially cardiac effects of endocrine FGFs entered center stage over the past five years, as they might provide communication routes that couple metabolic mechanisms, such as bone-regulated phosphate homeostasis, or metabolic stress, such as hyperphosphatemia associated with kidney injury, with changes in cardiac structure and function. In this context, it has been shown that elevated serum FGF23 can directly tackle cardiac myocytes via FGFR4 thereby contributing to cardiac hypertrophy in models of chronic kidney disease, also called uremic cardiomyopathy. Precise characterization of FGFs and their origin and regulation of expression, and even more importantly, the identification of the FGFR isoforms that mediate their cardiac actions should help to develop novel pharmacological interventions for heart failure, such as FGFR4 inhibition to tackle uremic cardiomyopathy.
Collapse
Affiliation(s)
- Christian Faul
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA; Department of Cell Biology and Anatomy, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
26
|
Guzy RD, Li L, Smith C, Dorry SJ, Koo HY, Chen L, Ornitz DM. Pulmonary fibrosis requires cell-autonomous mesenchymal fibroblast growth factor (FGF) signaling. J Biol Chem 2017; 292:10364-10378. [PMID: 28487375 DOI: 10.1074/jbc.m117.791764] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive pulmonary scarring, decline in lung function, and often results in death within 3-5 five years after diagnosis. Fibroblast growth factor (FGF) signaling has been implicated in the pathogenesis of IPF; however, the mechanism through which FGF signaling contributes to pulmonary fibrosis remains unclear. We hypothesized that FGF receptor (FGFR) signaling in fibroblasts is required for the fibrotic response to bleomycin. To test this, mice with mesenchyme-specific tamoxifen-inducible inactivation of FGF receptors 1, 2, and 3 (Col1α2-CreER; TCKO mice) were lineage labeled and administered intratracheal bleomycin. Lungs were collected for histologic analysis, whole lung RNA and protein, and dissociated for flow cytometry and FACS. Bleomycin-treated Col1α2-CreER; TCKO mice have decreased pulmonary fibrosis, collagen production, and fewer α-smooth muscle actin-positive (αSMA+) myofibroblasts compared with controls. Freshly isolated Col1α2-CreER; TCKO mesenchymal cells from bleomycin-treated mice have decreased collagen expression compared with wild type mesenchymal cells. Furthermore, lineage labeled FGFR-deficient fibroblasts have decreased enrichment in fibrotic areas and decreased proliferation. These data identify a cell autonomous requirement for mesenchymal FGFR signaling in the development of pulmonary fibrosis, and for the enrichment of the Col1α2-CreER-positive (Col1α2+) mesenchymal lineage in fibrotic tissue following bleomycin exposure. We conclude that mesenchymal FGF signaling is required for the development of pulmonary fibrosis, and that therapeutic strategies aimed directly at mesenchymal FGF signaling could be beneficial in the treatment of IPF.
Collapse
Affiliation(s)
- Robert D Guzy
- From the Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois 60637, .,the Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Ling Li
- the Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Craig Smith
- the Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Samuel J Dorry
- From the Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois 60637
| | - Hyun Young Koo
- From the Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois 60637
| | - Lin Chen
- the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - David M Ornitz
- the Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| |
Collapse
|
27
|
Endale M, Ahlfeld S, Bao E, Chen X, Green J, Bess Z, Weirauch MT, Xu Y, Perl AK. Temporal, spatial, and phenotypical changes of PDGFRα expressing fibroblasts during late lung development. Dev Biol 2017; 425:161-175. [PMID: 28408205 DOI: 10.1016/j.ydbio.2017.03.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/07/2017] [Accepted: 03/21/2017] [Indexed: 12/16/2022]
Abstract
Many studies have investigated the source and role of epithelial progenitors during lung development; such information is limited for fibroblast populations and their complex role in the developing lung. In this study, we characterized the spatial location, mRNA expression and Immunophenotyping of PDGFRα+ fibroblasts during sacculation and alveolarization. Confocal microscopy identified spatial association of PDGFRα expressing fibroblasts with proximal epithelial cells of the branching bronchioles and the dilating acinar tubules at E16.5; with distal terminal saccules at E18.5; and with alveolar epithelial cells at PN7 and PN28. Immunohistochemistry for alpha smooth muscle actin revealed that PDGFRα+ fibroblasts contribute to proximal peribronchiolar smooth muscle at E16.5 and to transient distal alveolar myofibroblasts at PN7. Time series RNA-Seq analyses of PDGFRα+ fibroblasts identified differentially expressed genes that, based on gene expression similarity were clustered into 7 major gene expression profile patterns. The presence of myofibroblast and smooth muscle precursors at E16.5 and PN7 was reflected by a two-peak gene expression profile on these days and gene ontology enrichment in muscle contraction. Additional molecular and functional differences between peribronchiolar smooth muscle cells at E16.5 and transient intraseptal myofibroblasts at PN7 were suggested by a single peak in gene expression at PN7 with functional enrichment in cell projection and muscle cell differentiation. Immunophenotyping of subsets of PDGFRα+ fibroblasts by flow cytometry confirmed the predicted increase in proliferation at E16.5 and PN7, and identified subsets of CD29+ myofibroblasts and CD34+ lipofibroblasts. These data can be further mined to develop novel hypotheses and valuable understanding of the molecular and cellular basis of alveolarization.
Collapse
Affiliation(s)
- Mehari Endale
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Shawn Ahlfeld
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Erik Bao
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | | | - Jenna Green
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Zach Bess
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Matthew T Weirauch
- Center of Autoimmune Genomics and Ethology, USA; Divisions of Biomedical Informatics and Developmental Biology, USA
| | - Yan Xu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Anne Karina Perl
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
28
|
McGowan S. Understanding the developmental pathways pulmonary fibroblasts may follow during alveolar regeneration. Cell Tissue Res 2017; 367:707-719. [PMID: 28062913 DOI: 10.1007/s00441-016-2542-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/19/2016] [Indexed: 10/20/2022]
Abstract
Although pulmonary alveolar interstitial fibroblasts are less specialized than their epithelial and endothelial neighbors, they play essential roles during development and in response to lung injury. At birth, they must adapt to the sudden mechanical changes imposed by the onset of respiration and to a higher ambient oxygen concentration. In diseases such as bronchopulmonary dysplasia and interstitial fibrosis, their adaptive responses are overwhelmed leading to compromised gas-exchange function. Thus, although fibroblasts do not directly participate in gas-exchange, they are essential for creating and maintaining an optimal environment at the alveolar epithelial-endothelial interface. This review summarizes new information and concepts about the ontogeny differentiation, and function of alveolar fibroblasts. Alveolar development will be emphasized, because the development of strategies to evoke alveolar repair and regeneration hinges on thoroughly understanding the way that resident fibroblasts populate specific locations in which extracellular matrix must be produced and remodeled. Other recent reviews have described the disruption that diseases cause to the fibroblast niche and so my objective is to illustrate how the unique developmental origins and differentiation pathways could be harnessed favorably to augment certain fibroblast subpopulations and to optimize the conditions for alveolar regeneration.
Collapse
Affiliation(s)
- Stephen McGowan
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA. .,Division of Pulmonary, Critical Care, and Occupational Medicine, C33B GH, Department of Internal Medicine, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| |
Collapse
|
29
|
El Agha E, Seeger W, Bellusci S. Therapeutic and pathological roles of fibroblast growth factors in pulmonary diseases. Dev Dyn 2016; 246:235-244. [PMID: 27783451 DOI: 10.1002/dvdy.24468] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022] Open
Abstract
Fibroblast growth factors (FGFs) constitute a large family of polypeptides that are involved in many biological processes, ranging from prenatal cell-fate specification and organogenesis to hormonal and metabolic regulation in postnatal life. During embryonic development, these growth factors are important mediators of the crosstalk among ectoderm-, mesoderm-, and endoderm-derived cells, and they instruct the spatial and temporal growth of organs and tissues such as the brain, bone, lung, gut, and others. The involvement of FGFs in postnatal lung homeostasis is a growing field, and there is emerging literature about their roles in lung pathophysiology. In this review, the involvement of FGF signaling in a wide array of lung diseases will be summarized. Developmental Dynamics 246:235-244, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elie El Agha
- Excellence Cluster Cardio-Pulmonary System (ECCPS), member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary System (ECCPS), member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Saverio Bellusci
- Excellence Cluster Cardio-Pulmonary System (ECCPS), member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Giessen, Germany.,College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
30
|
Simintiras CA, Fröhlich T, Sathyapalan T, Arnold GJ, Ulbrich SE, Leese HJ, Sturmey RGS. Modelling oviduct fluid formation in vitro. Reproduction 2016; 153:REP-15-0508. [PMID: 27738189 DOI: 10.1530/rep-15-0508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 10/13/2016] [Indexed: 02/28/2024]
Abstract
Oviduct fluid is the microenvironment that supports early reproductive processes including fertilisation, embryo cleavage, and genome activation. However, the composition and regulation of this critical environment remains rather poorly defined. This study uses an in vitro preparation of the bovine oviduct epithelium, to investigate the formation and composition of in vitro derived oviduct fluid (ivDOF) within a controlled environment. We confirm the presence of oviduct specific glycoprotein 1 in ivDOF and show that the amino acid and carbohydrate content resembles that of previously reported in vivo data. In parallel, using a different culture system, a panel of oviduct epithelial solute carrier genes, and the corresponding flux of amino acids within ivDOF in response to steroid hormones were investigated. We next incorporated fibroblasts directly beneath the epithelium. This dual culture arrangement represents more faithfully the in vivo environment and impacts on ivDOF composition. Lastly, physiological and pathophysiological endocrine states were modelled and their impact on the in vitro oviduct preparation evaluated. These experiments help clarify the dynamic function of the oviduct in vitro and suggest a number of future research avenues, such as investigating epithelial-fibroblast interactions, probing the molecular aetiologies of subfertility, and optimising embryo culture media.
Collapse
Affiliation(s)
- Constantine A Simintiras
- C Simintiras, Centre for Cardiovascular and Metabolic Research (CCMR), Hull York Medical School (HYMS), Kingston upon Hull, United Kingdom of Great Britain and Northern Ireland
| | - Thomas Fröhlich
- T Fröhlich, Laboratory for Functional Genome Analysis (LAFUGA), LMU Munich, Munich, Germany
| | - Thozhukat Sathyapalan
- T Sathyapalan, Michael White Centre for Diabetes and Endocrinology, Hull York Medical School (HYMS), Kingston upon Hull, Hu32rw, United Kingdom of Great Britain and Northern Ireland
| | - Georg J Arnold
- G Arnold, Laboratory for Functional Genome Analysis (LAFUGA), LMU Munich, Munich, Germany
| | - Susanne E Ulbrich
- S Ulbrich, Animal Physiology, ETH Zurich, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Henry J Leese
- H Leese, Centre for Cardiovascular and Metabolic Research (CCMR), Hull York Medical School (HYMS), Kingston upon Hull, United Kingdom of Great Britain and Northern Ireland
| | - Roger G S Sturmey
- R Sturmey, Centre for Cardiovascular and Metabolic Research (CCMR), Hull York Medical School (HYMS), Kingston upon Hull, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
31
|
Loscertales M, Nicolaou F, Jeanne M, Longoni M, Gould DB, Sun Y, Maalouf FI, Nagy N, Donahoe PK. Type IV collagen drives alveolar epithelial-endothelial association and the morphogenetic movements of septation. BMC Biol 2016; 14:59. [PMID: 27412481 PMCID: PMC4942891 DOI: 10.1186/s12915-016-0281-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/01/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Type IV collagen is the main component of the basement membrane that gives strength to the blood-gas barrier (BGB). In mammals, the formation of a mature BGB occurs primarily after birth during alveologenesis and requires the formation of septa from the walls of the saccule. In contrast, in avians, the formation of the BGB occurs rapidly and prior to hatching. Mutation in basement membrane components results in an abnormal alveolar phenotype; however, the specific role of type IV collagen in regulating alveologenesis remains unknown. RESULTS We have performed a microarray expression analysis in late chick lung development and found that COL4A1 and COL4A2 were among the most significantly upregulated genes during the formation of the avian BGB. Using mouse models, we discovered that mutations in murine Col4a1 and Col4a2 genes affected the balance between lung epithelial progenitors and differentiated cells. Mutations in Col4a1 derived from the vascular component were sufficient to cause defects in vascular development and the BGB. We also show that Col4a1 and Col4a2 mutants displayed disrupted myofibroblast proliferation, differentiation and migration. Lastly, we revealed that addition of type IV collagen protein induced myofibroblast proliferation and migration in monolayer culture and increased the formation of mesenchymal-epithelial septal-like structures in co-culture. CONCLUSIONS Our study showed that type IV collagen and, therefore the basement membrane, play fundamental roles in coordinating alveolar morphogenesis. In addition to its role in the formation of epithelium and vasculature, type IV collagen appears to be key for alveolar myofibroblast development by inducing their proliferation, differentiation and migration throughout the developing septum.
Collapse
Affiliation(s)
- Maria Loscertales
- The Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| | - Fotini Nicolaou
- The Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Marion Jeanne
- Departments of Ophthalmology and Anatomy, Institute for Human Genetics, University of California, San Francisco, School of Medicine, San Francisco, CA, 94143, USA
| | - Mauro Longoni
- The Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Douglas B Gould
- Departments of Ophthalmology and Anatomy, Institute for Human Genetics, University of California, San Francisco, School of Medicine, San Francisco, CA, 94143, USA
| | - Yunwei Sun
- The Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Faouzi I Maalouf
- The Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Nandor Nagy
- The Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094, Hungary
| | - Patricia K Donahoe
- The Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
32
|
Veerappan A, Thompson M, Savage AR, Silverman ML, Chan WS, Sung B, Summers B, Montelione KC, Benedict P, Groh B, Vicencio AG, Peinado H, Worgall S, Silver RB. Mast cells and exosomes in hyperoxia-induced neonatal lung disease. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1218-32. [DOI: 10.1152/ajplung.00299.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 04/26/2016] [Indexed: 11/22/2022] Open
Abstract
Chronic lung disease of prematurity (CLD) is a frequent sequela of premature birth and oxygen toxicity is a major associated risk factor. Impaired alveolarization, scarring, and inflammation are hallmarks of CLD. Mast cell hyperplasia is a feature of CLD but the role of mast cells in its pathogenesis is unknown. We hypothesized that mast cell hyperplasia is a consequence of neonatal hyperoxia and contributes to CLD. Additionally, mast cell products may have diagnostic and prognostic value in preterm infants predisposed to CLD. To model CLD, neonatal wild-type and mast cell-deficient mice were placed in an O2 chamber delivering hyperoxic gas mixture [inspired O2 fraction (FiO2) of 0.8] (HO) for 2 wk and then returned to room air (RA) for an additional 3 wk. Age-matched controls were kept in RA (FiO2 of 0.21). Lungs from HO mice had increased numbers of mast cells, alveolar simplification and enlargement, and increased lung compliance. Mast cell deficiency proved protective by preserving air space integrity and lung compliance. The mast cell mediators β-hexosaminidase (β-hex), histamine, and elastase increased in the bronchoalveolar lavage fluid of HO wild-type mice. Tracheal aspirate fluids (TAs) from oxygenated and mechanically ventilated preterm infants were analyzed for mast cell products. In TAs from infants with confirmed cases of CLD, β-hex was elevated over time and correlated with FiO2. Mast cell exosomes were also present in the TAs. Collectively, these data show that mast cells play a significant role in hyperoxia-induced lung injury and their products could serve as potential biomarkers in evolving CLD.
Collapse
Affiliation(s)
- A. Veerappan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - M. Thompson
- Department of Pediatrics, Weill Cornell Medicine, New York, New York
| | - A. R. Savage
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - M. L. Silverman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - W. S. Chan
- Department of Pediatrics, Weill Cornell Medicine, New York, New York
| | - B. Sung
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York; and
| | - B. Summers
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - K. C. Montelione
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - P. Benedict
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - B. Groh
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - A. G. Vicencio
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - H. Peinado
- Department of Pediatrics, Weill Cornell Medicine, New York, New York
| | - S. Worgall
- Department of Pediatrics, Weill Cornell Medicine, New York, New York
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York; and
| | - R. B. Silver
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| |
Collapse
|
33
|
Solleti SK, Srisuma S, Bhattacharya S, Rangel-Moreno J, Bijli KM, Randall TD, Rahman A, Mariani TJ. Serpine2 deficiency results in lung lymphocyte accumulation and bronchus-associated lymphoid tissue formation. FASEB J 2016; 30:2615-26. [PMID: 27059719 DOI: 10.1096/fj.201500159r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/28/2016] [Indexed: 11/11/2022]
Abstract
Serine proteinase inhibitor, clade E, member 2 (SERPINE2), is a cell- and extracellular matrix-associated inhibitor of thrombin. Although SERPINE2 is a candidate susceptibility gene for chronic obstructive pulmonary disease, the physiologic role of this protease inhibitor in lung development and homeostasis is unknown. We observed spontaneous monocytic-cell infiltration in the lungs of Serpine2-deficient (SE2(-/-)) mice, beginning at or before the time of lung maturity, which resulted in lesions that resembled bronchus-associated lymphoid tissue (BALT). The initiation of lymphocyte accumulation in the lungs of SE2(-/-) mice involved the excessive expression of chemokines, cytokines, and adhesion molecules that are essential for BALT induction, organization, and maintenance. BALT-like lesion formation in the lungs of SE2(-/-) mice was also associated with a significant increase in the activation of thrombin, a recognized target of SE2, and excess stimulation of NF-κB, a major regulator of chemokine expression and inflammation. Finally, systemic delivery of thrombin rapidly stimulated lung chemokine expression in vivo These data uncover a novel mechanism whereby loss of serine protease inhibition leads to lung lymphocyte accumulation.-Solleti, S. K., Srisuma, S., Bhattacharya, S., Rangel-Moreno, J., Bijli, K. M., Randall, T. D., Rahman, A., Mariani, T. J. Serpine2 deficiency results in lung lymphocyte accumulation and bronchus-associated lymphoid tissue formation.
Collapse
Affiliation(s)
- Siva Kumar Solleti
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Sorachai Srisuma
- Department of Physiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Soumyaroop Bhattacharya
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Kaiser M Bijli
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA; Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University/Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
| | - Troy D Randall
- Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, Rochester, New York, USA; Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Arshad Rahman
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Thomas J Mariani
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA;
| |
Collapse
|
34
|
Olave N, Lal CV, Halloran B, Pandit K, Cuna AC, Faye-Petersen OM, Kelly DR, Nicola T, Benos PV, Kaminski N, Ambalavanan N. Regulation of alveolar septation by microRNA-489. Am J Physiol Lung Cell Mol Physiol 2015; 310:L476-87. [PMID: 26719145 DOI: 10.1152/ajplung.00145.2015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 12/26/2015] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRs) are small conserved RNA that regulate gene expression. Bioinformatic analysis of miRNA profiles during mouse lung development indicated a role for multiple miRNA, including miRNA-489. miR-489 increased on completion of alveolar septation [postnatal day 42 (P42)], associated with decreases in its conserved target genes insulin-like growth factor-1 (Igf1) and tenascin C (Tnc). We hypothesized that dysregulation of miR-489 and its target genes Igf1 and Tnc contribute to hyperoxia-induced abnormal lung development. C57BL/6 mice were exposed to normoxia (21%) or hyperoxia (85% O2) from P4 to P14, in combination with intranasal locked nucleic acid against miR-489 to inhibit miR-489, cytomegalovirus promoter (pCMV)-miR-489 to overexpress miR-489, or empty vector. Hyperoxia reduced miR-489 and increased Igf1 and Tnc. Locked nucleic acid against miR-489 improved lung development during hyperoxia and did not alter it during normoxia, whereas miR-489 overexpression inhibited lung development during normoxia. The 3' untranslated region in vitro reporter studies confirmed Igf1 and Tnc as targets of miR-489. While miR-489 was of epithelial origin and present in exosomes, its targets Igf1 and Tnc were produced by fibroblasts. Infants with bronchopulmonary dysplasia (BPD) had reduced lung miR-489 and increased Igf1 and Tnc compared with normal preterm or term infants. These results suggest increased miR-489 is an inhibitor of alveolar septation. During hyperoxia or BPD, reduced miR-489 and increased Igf1 and Tnc may be inadequate attempts at compensation. Further inhibition of miR-489 may permit alveolar septation to proceed. The use of specific miRNA antagonists or agonists may be a therapeutic strategy for inhibited alveolarization, such as in BPD.
Collapse
Affiliation(s)
- Nelida Olave
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Charitharth V Lal
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brian Halloran
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kusum Pandit
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alain C Cuna
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Ona M Faye-Petersen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David R Kelly
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Teodora Nicola
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Panayiotis V Benos
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Naftali Kaminski
- Division of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Namasivayam Ambalavanan
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama; Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama;
| |
Collapse
|
35
|
Abstract
This article highlights some of the significant advances in our understanding of lung developmental biology made over the last few years, which challenge existing paradigms and are relevant to a fundamental understanding of this process. Additional comments address how these new insights may be informative for chronic lung diseases that occur, or initiate, in the neonatal period. This is not meant to be an exhaustive review of the molecular biology of lung development. For a more comprehensive, contemporary review of the cellular and molecular aspects of lung development, readers can refer to recent reviews by others.
Collapse
|
36
|
Reduced supply of monocyte-derived macrophages leads to a transition from nodular to diffuse lesions and tissue cell activation in silica-induced pulmonary fibrosis in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2923-38. [PMID: 26456580 DOI: 10.1016/j.ajpath.2015.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/16/2015] [Accepted: 07/09/2015] [Indexed: 01/15/2023]
Abstract
Pulmonary fibrosis (PF) is an intractable disorder with a poor prognosis. Lung macrophages have been reported to regulate both progression and remission of bleomycin-induced diffuse PF. However, it remains unclear how macrophages contribute to silica-induced progressive nodular PF and the associated tissue cell responses in vivo. We found that lack of monocyte-derived macrophages results in the formation of diffuse PF after silica instillation. We found that the proportion and the number of monocyte-derived macrophages were persistently higher in silica-induced progressive PF compared with bleomycin-induced PF. Surprisingly, in Ccr2(-/-) mice, in which monocyte-derived macrophage infiltration is impaired, silica administration induced diffuse PF with loose nodule formation and greater activation of tissue cells. In the diffuse lesions, the distribution of epithelial cells, distribution of myofibroblasts, and architecture of the basement membrane were disrupted. Consistent with the development of diffuse lesions, genes that were differentially expressed in CD45(-) tissue cells from the lung of wild-type and Ccr2(-/-) mice were highly enriched in human diffuse, progressive PF. In gene ontology network analyses, many of these genes were associated with tissue remodeling and included genes not previously associated with PF, such as Mmp14, Thbs2, and Fgfr4. Overall, these results indicate that monocyte-derived macrophages prevent transition from nodular to diffuse silica-induced PF, potentially by regulating tissue cell responses.
Collapse
|
37
|
Silva DMG, Nardiello C, Pozarska A, Morty RE. Recent advances in the mechanisms of lung alveolarization and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1239-72. [PMID: 26361876 DOI: 10.1152/ajplung.00268.2015] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/09/2015] [Indexed: 02/08/2023] Open
Abstract
Alveolarization is the process by which the alveoli, the principal gas exchange units of the lung, are formed. Along with the maturation of the pulmonary vasculature, alveolarization is the objective of late lung development. The terminal airspaces that were formed during early lung development are divided by the process of secondary septation, progressively generating an increasing number of alveoli that are of smaller size, which substantially increases the surface area over which gas exchange can take place. Disturbances to alveolarization occur in bronchopulmonary dysplasia (BPD), which can be complicated by perturbations to the pulmonary vasculature that are associated with the development of pulmonary hypertension. Disturbances to lung development may also occur in persistent pulmonary hypertension of the newborn in term newborn infants, as well as in patients with congenital diaphragmatic hernia. These disturbances can lead to the formation of lungs with fewer and larger alveoli and a dysmorphic pulmonary vasculature. Consequently, affected lungs exhibit a reduced capacity for gas exchange, with important implications for morbidity and mortality in the immediate postnatal period and respiratory health consequences that may persist into adulthood. It is the objective of this Perspectives article to update the reader about recent developments in our understanding of the molecular mechanisms of alveolarization and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Diogo M G Silva
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Claudio Nardiello
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Pozarska
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
38
|
Ruiz-Camp J, Morty RE. Divergent fibroblast growth factor signaling pathways in lung fibroblast subsets: where do we go from here? Am J Physiol Lung Cell Mol Physiol 2015; 309:L751-5. [PMID: 26342090 DOI: 10.1152/ajplung.00298.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 08/31/2015] [Indexed: 01/18/2023] Open
Abstract
Lung fibroblasts play a key role in postnatal lung development, namely, the formation of the alveolar gas exchange units, through the process of secondary septation. Although evidence initially highlighted roles for fibroblasts in the production and remodeling of the lung extracellular matrix, more recent studies have described the presence of different fibroblast subsets in the developing lung. These subsets include myofibroblasts and lipofibroblasts and their precursors. These cells are believed to play different roles in alveologenesis and are localized to different regions of the developing septa. The precise roles played by these different fibroblast subsets remain unclear. Understanding the signaling pathways that control the discrete functions of these fibroblast subsets would help to clarify the roles and the regulation of lung fibroblasts during lung development. Here, we critically evaluate a recent report that described divergent fibroblast growth factor (FGF) signaling pathways in two different subsets of lung fibroblasts that express different levels of green fluorescent protein (GFP) driven by the platelet-derived growth factor receptor-α promoter. The GFP expression was used as a surrogate for lipofibroblasts (GFP(low)) and myofibroblasts (GFP(high)). It was suggested that Fgf10/Fgf1 and Fgf18/Fgfr3 autocrine pathways may be operative in GFP(low) and GFP(high) cells, respectively, and that these pathways might regulate the proliferation and migration of different fibroblast subsets during alveologenesis. These observations lay important groundwork for the further exploration of FGF function during normal lung development, as well as in aberrant lung development associated with bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Jordi Ruiz-Camp
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
39
|
McGowan SE, McCoy DM. Fibroblast growth factor signaling in myofibroblasts differs from lipofibroblasts during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol 2015; 309:L463-74. [PMID: 26138642 DOI: 10.1152/ajplung.00013.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/26/2015] [Indexed: 02/06/2023] Open
Abstract
Pulmonary alveolar fibroblasts produce extracellular matrix in a temporally and spatially regulated pattern to yield a durable yet pliable gas-exchange surface. Proliferation ensures a sufficient complement of cells, but they must differentiate into functionally distinct subtypes: contractile myofibroblasts (MF), which generate elastin and regulate air-flow at the alveolar ducts, and, in mice and rats, lipofibroblasts (LF), which store neutral lipids. PDGF-A is required but acts in conjunction with other differentiation factors arising from adjacent epithelia or within fibroblasts. We hypothesized that FGF receptor (FGFR) expression and function vary for MF and LF and contributes to their divergent differentiation. Whereas approximately half of the FGFR3 was extracellular in MF, FGFR2 and FGFR4 were primarily intracellular. Intracellular FGFR3 localized to the multivesicular body, and its abundance may be modified by Sprouty and interaction with heat shock protein-90. FGF18 mRNA is more abundant in MF, whereas FGF10 mRNA predominated in LF, which also express FGFR1 IIIb, a receptor for FGF10. FGF18 diminished fibroblast proliferation and was chemotactic for cultured fibroblasts. Although PDGF receptor-α (PDGFR-α) primarily signals through phosphoinositide 3-kinase and Akt, p42/p44 MAP kinase (Erk1/2), a major signaling pathway for FGFRs, influenced the abundance of cell-surface PDGFR-α. Observing different FGFR and ligand profiles in MF and LF is consistent with their divergent differentiation although both subpopulations express PDGFR-α. These studies also emphasize the importance of particular cellular locations of FGFR3 and PDGFR-α, which may modify their effects during alveolar development or repair.
Collapse
Affiliation(s)
- Stephen E McGowan
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Diann M McCoy
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
40
|
Solleti SK, Simon DM, Srisuma S, Arikan MC, Bhattacharya S, Rangasamy T, Bijli KM, Rahman A, Crossno JT, Shapiro SD, Mariani TJ. Airway epithelial cell PPARγ modulates cigarette smoke-induced chemokine expression and emphysema susceptibility in mice. Am J Physiol Lung Cell Mol Physiol 2015; 309:L293-304. [PMID: 26024894 DOI: 10.1152/ajplung.00287.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/26/2015] [Indexed: 11/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a highly prevalent, chronic inflammatory lung disease with limited existing therapeutic options. While modulation of peroxisome proliferator-activating receptor (PPAR)-γ activity can modify inflammatory responses in several models of lung injury, the relevance of the PPARG pathway in COPD pathogenesis has not been previously explored. Mice lacking Pparg specifically in airway epithelial cells displayed increased susceptibility to chronic cigarette smoke (CS)-induced emphysema, with excessive macrophage accumulation associated with increased expression of chemokines, Ccl5, Cxcl10, and Cxcl15. Conversely, treatment of mice with a pharmacological PPARγ activator attenuated Cxcl10 and Cxcl15 expression and macrophage accumulation in response to CS. In vitro, CS increased lung epithelial cell chemokine expression in a PPARγ activation-dependent fashion. The ability of PPARγ to regulate CS-induced chemokine expression in vitro was not specifically associated with peroxisome proliferator response element (PPRE)-mediated transactivation activity but was correlated with PPARγ-mediated transrepression of NF-κB activity. Pharmacological or genetic activation of PPARγ activity abrogated CS-dependent induction of NF-κB activity. Regulation of NF-κB activity involved direct PPARγ-NF-κB interaction and PPARγ-mediated effects on IKK activation, IκBα degradation, and nuclear translocation of p65. Our data indicate that PPARG represents a disease-relevant pathophysiological and pharmacological target in COPD. Its activation state likely contributes to NF-κB-dependent, CS-induced chemokine-mediated regulation of inflammatory cell accumulation.
Collapse
Affiliation(s)
- Siva Kumar Solleti
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, Rochester, New York
| | - Dawn M Simon
- Emory-Children's Center Pulmonary, Apnea, Cystic Fibrosis and Sleep Clinic, Atlanta, Georgia
| | - Sorachai Srisuma
- Faculty of Medicine, Department of Physiology, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Meltem C Arikan
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Soumyaroop Bhattacharya
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, Rochester, New York;
| | - Tirumalai Rangasamy
- Division of Pulmonary & Critical Care Medicine, University of Rochester Medical Center, Rochester, New York
| | - Kaiser M Bijli
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, Rochester, New York; Atlanta VA and Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University, Atlanta, Georgia
| | - Arshad Rahman
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, Rochester, New York
| | - Joseph T Crossno
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, Colorado
| | - Steven D Shapiro
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas J Mariani
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, Rochester, New York;
| |
Collapse
|
41
|
Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:215-66. [PMID: 25772309 PMCID: PMC4393358 DOI: 10.1002/wdev.176] [Citation(s) in RCA: 1461] [Impact Index Per Article: 146.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of MedicineSt. Louis, MO, USA
- *
Correspondence to:
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, Kyoto UniversitySakyo, Kyoto, Japan
| |
Collapse
|
42
|
Young SM, Liu S, Joshi R, Batie MR, Kofron M, Guo J, Woods JC, Varisco BM. Localization and stretch-dependence of lung elastase activity in development and compensatory growth. J Appl Physiol (1985) 2015; 118:921-31. [PMID: 25614601 DOI: 10.1152/japplphysiol.00954.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/20/2015] [Indexed: 01/08/2023] Open
Abstract
Synthesis and remodeling of the lung matrix is necessary for primary and compensatory lung growth. Because cyclic negative force is applied to developing lung tissue during the respiratory cycle, we hypothesized that stretch is a critical regulator of lung matrix remodeling. By using quantitative image analysis of whole-lung and whole-lobe elastin in situ zymography images, we demonstrated that elastase activity increased twofold during the alveolar stage of postnatal lung morphogenesis in the mouse. Remodeling was restricted to alveolar walls and ducts and was nearly absent in dense elastin band structures. In the mouse pneumonectomy model of compensatory lung growth, elastase activity increased threefold, peaking at 14 days postpneumonectomy and was higher in the accessory lobe compared with other lobes. Remodeling during normal development and during compensatory lung growth was different with increased major airway and pulmonary arterial remodeling during development but not regeneration, and with homogenous remodeling throughout the parenchyma during development, but increased remodeling only in subpleural regions during compensatory lung growth. Left lung wax plombage prevented increased lung elastin during compensatory lung growth. To test whether the adult lung retains an innate capacity to remodel elastin, we developed a confocal microscope-compatible stretching device. In ex vivo adult mouse lung sections, lung elastase activity increased exponentially with strain and in peripheral regions of lung more than in central regions. Our study demonstrates that lung elastase activity is stretch-dependent and supports a model in which externally applied forces influence the composition, structure, and function of the matrix during periods of alveolar septation.
Collapse
Affiliation(s)
- Sarah Marie Young
- College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Sheng Liu
- Division of Critical Care Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio; Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Rashika Joshi
- Division of Critical Care Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio; Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Matthew R Batie
- Clinical Engineering, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Matthew Kofron
- Department of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Jinbang Guo
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital, Cincinnati, Ohio; Department of Radiology, Cincinnati Children's Hospital, Cincinnati, Ohio; and Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Brian Michael Varisco
- Division of Critical Care Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio; Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio
| |
Collapse
|
43
|
Ganguly K, Martin TM, Concel VJ, Upadhyay S, Bein K, Brant KA, George L, Mitra A, Thimraj TA, Fabisiak JP, Vuga LJ, Fattman C, Kaminski N, Schulz H, Leikauf GD. Secreted phosphoprotein 1 is a determinant of lung function development in mice. Am J Respir Cell Mol Biol 2015; 51:637-51. [PMID: 24816281 DOI: 10.1165/rcmb.2013-0471oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Secreted phosphoprotein 1 (Spp1) is located within quantitative trait loci associated with lung function that was previously identified by contrasting C3H/HeJ and JF1/Msf mouse strains that have extremely divergent lung function. JF1/Msf mice with diminished lung function had reduced lung SPP1 transcript and protein during the peak stage of alveologenesis (postnatal day [P]14-P28) as compared with C3H/HeJ mice. In addition to a previously identified genetic variant that altered runt-related transcription factor 2 (RUNX2) binding in the Spp1 promoter, we identified another promoter variant in a putative RUNX2 binding site that increased the DNA protein binding. SPP1 induced dose-dependent mouse lung epithelial-15 cell proliferation. Spp1((-/-)) mice have decreased specific total lung capacity/body weight, higher specific compliance, and increased mean airspace chord length (Lm) compared with Spp1((+/+)) mice. Microarray analysis revealed enriched gene ontogeny categories, with numerous genes associated with lung development and/or respiratory disease. Insulin-like growth factor 1, Hedgehog-interacting protein, wingless-related mouse mammary tumor virus integration site 5A, and NOTCH1 transcripts decreased in the lung of P14 Spp1((-/-)) mice as determined by quantitative RT-PCR analysis. SPP1 promotes pneumocyte growth, and mice lacking SPP1 have smaller, more compliant lungs with enlarged airspace (i.e., increased Lm). Microarray analysis suggests a dysregulation of key lung developmental transcripts in gene-targeted Spp1((-/-)) mice, particularly during the peak phase of alveologenesis. In addition to its known roles in lung disease, this study supports SPP1 as a determinant of lung development in mice.
Collapse
Affiliation(s)
- Koustav Ganguly
- 1 Department of Environmental and Occupational Health, Graduate School of Public Health
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
LaFemina MJ, Sutherland KM, Bentley T, Gonzales LW, Allen L, Chapin CJ, Rokkam D, Sweerus KA, Dobbs LG, Ballard PL, Frank JA. Claudin-18 deficiency results in alveolar barrier dysfunction and impaired alveologenesis in mice. Am J Respir Cell Mol Biol 2014; 51:550-8. [PMID: 24787463 DOI: 10.1165/rcmb.2013-0456oc] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Claudins are a family of transmembrane proteins that are required for tight junction formation. Claudin (CLDN)-18.1, the only known lung-specific tight junction protein, is the most abundant claudin in alveolar epithelial type (AT) 1 cells, and is regulated by lung maturational agonists and inflammatory mediators. To determine the function of CLDN18 in the alveolar epithelium, CLDN18 knockout (KO) mice were generated and studied by histological, biochemical, and physiological approaches, in addition to whole-genome microarray. Alveolar epithelial barrier function was assessed after knockdown of CLDN18 in isolated lung cells. CLDN18 levels were measured by quantitative PCR in lung samples from fetal and postnatal human infants. We found that CLDN18 deficiency impaired alveolar epithelial barrier function in vivo and in vitro, with evidence of increased paracellular permeability and architectural distortion at AT1-AT1 cell junctions. Although CLDN18 KO mice were born without evidence of a lung abnormality, histological and gene expression analysis at Postnatal Day 3 and Week 4 identified impaired alveolarization. CLDN18 KO mice also had evidence of postnatal lung injury, including acquired AT1 cell damage. Human fetal lungs at 23-24 weeks gestational age, the highest-risk period for developing bronchopulmonary dysplasia, a disease of impaired alveolarization, had significantly lower CLDN18 expression relative to postnatal lungs. Thus, CLDN18 deficiency results in epithelial barrier dysfunction, injury, and impaired alveolarization in mice. Low expression of CLDN18 in human fetal lungs supports further investigation into a role for this tight junction protein in bronchopulmonary dysplasia.
Collapse
|
45
|
McGowan SE, McCoy DM. Regulation of fibroblast lipid storage and myofibroblast phenotypes during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol 2014; 307:L618-31. [PMID: 25150063 DOI: 10.1152/ajplung.00144.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Signaling through platelet-derived growth factor receptor-α (PDGFRα) is required for alveolar septation and participates in alveolar regeneration after pneumonectomy. In both adipose tissue and skeletal muscle, bipotent pdgfrα-expressing progenitors expressing delta-like ligand-1 or sex-determining region Y box 9 (Sox9) may differentiate into either lipid storage cells or myofibroblasts. We analyzed markers of mesenchymal progenitors and differentiation in lung fibroblasts (LF) with different levels (absent, low, or high) of pdgfrα gene expression. A larger proportion of pdgfrα-expressing than nonexpressing LF contained Sox9. Neutral lipids, CD166, and Tcf21 were more abundant in LF with a lower compared with a higher level of pdgfrα gene expression. PDGF-A increased Sox9 in primary LF cultures, suggesting that active signaling through PDGFRα is required to maintain Sox9. As alveolar septation progresses from postnatal day (P) 8 to P12, fewer pdgfrα-expressing LF contain Sox9, whereas more of these LF contain myocardin-like transcription factor-A, showing that Sox9 diminishes as LF become myofibroblasts. At P8, neutral lipid droplets predominate in LF with the lower level of pdgfrα gene expression, whereas transgelin (tagln) was predominantly expressed in LF with higher pdgfrα gene expression. Targeted deletion of pdgfrα in LF, which expressed tagln, reduced Sox9 in α-actin (α-SMA, ACTA2)-containing LF, whereas it increased the abundance of cell surface delta-like protein-1 (as well as peroxisome proliferator-activated receptor-γ and tcf21 mRNA in LF, which also expressed stem cell antigen-1). Thus pdgfrα deletion differentially alters delta-like protein-1 and Sox9, suggesting that targeting different downstream pathways in PDGF-A-responsive LF could identify strategies that promote lung regeneration without initiating fibrosis.
Collapse
Affiliation(s)
- Stephen E McGowan
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Diann M McCoy
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
46
|
Bhattacharya S, Zhou Z, Yee M, Chu CY, Lopez AM, Lunger VA, Solleti SK, Resseguie E, Buczynski B, Mariani TJ, O'Reilly MA. The genome-wide transcriptional response to neonatal hyperoxia identifies Ahr as a key regulator. Am J Physiol Lung Cell Mol Physiol 2014; 307:L516-23. [PMID: 25150061 DOI: 10.1152/ajplung.00200.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Premature infants requiring supplemental oxygen are at increased risk for developing bronchopulmonary dysplasia (BPD). Rodent models involving neonatal exposure to excessive oxygen concentrations (hyperoxia) have helped to identify mechanisms of BPD-associated pathology. Genome-wide assessments of the effects of hyperoxia in neonatal mouse lungs could identify novel BPD-related genes and pathways. Newborn C57BL/6 mice were exposed to 100% oxygen for 10 days, and whole lung tissue RNA was used for high-throughput, sequencing-based transcriptomic analysis (RNA-Seq). Significance Analysis of Microarrays and Ingenuity Pathway Analysis were used to identify genes and pathways affected. Expression patterns for selected genes were validated by qPCR. Mechanistic relationships between genes were further tested in cultured mouse lung epithelial cells. We identified 300 genes significantly and substantially affected following acute neonatal hyperoxia. Canonical pathways dysregulated in hyperoxia lungs included nuclear factor (erythryoid-derived-2)-like 2-mediated oxidative stress signaling, p53 signaling, eNOS signaling, and aryl hydrocarbon receptor (Ahr) pathways. Cluster analysis identified Ccnd1, Cdkn1a, and Ahr as critical regulatory nodes in the response to hyperoxia, with Ahr serving as the major effector node. A mechanistic role for Ahr was assessed in lung epithelial cells, and we confirmed its ability to regulate the expression of multiple hyperoxia markers, including Cdkn1a, Pdgfrb, and A2m. We conclude that a global assessment of gene regulation in the acute neonatal hyperoxia model of BPD-like pathology has identified Ahr as one driver of gene dysregulation.
Collapse
Affiliation(s)
- Soumyaroop Bhattacharya
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; and
| | - Zhongyang Zhou
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Min Yee
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; Perinatal and Pediatric Origins of Disease Program, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Chin-Yi Chu
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; and
| | - Ashley M Lopez
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; and
| | - Valerie A Lunger
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; and
| | - Siva Kumar Solleti
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; and
| | - Emily Resseguie
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; Perinatal and Pediatric Origins of Disease Program, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Bradley Buczynski
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; Perinatal and Pediatric Origins of Disease Program, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Thomas J Mariani
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; and
| | - Michael A O'Reilly
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; Perinatal and Pediatric Origins of Disease Program, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
47
|
Watanabe-Takano H, Takano K, Sakamoto A, Matsumoto K, Tokuhisa T, Endo T, Hatano M. DA-Raf-dependent inhibition of the Ras-ERK signaling pathway in type 2 alveolar epithelial cells controls alveolar formation. Proc Natl Acad Sci U S A 2014; 111:E2291-300. [PMID: 24843139 PMCID: PMC4050578 DOI: 10.1073/pnas.1321574111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Alveolar formation is coupled to the spatiotemporally regulated differentiation of alveolar myofibroblasts (AMYFs), which contribute to the morphological changes of interalveolar walls. Although the Ras-ERK signaling pathway is one of the key regulators for alveolar formation in developing lungs, the intrinsic molecular and cellular mechanisms underlying its role remain largely unknown. By analyzing the Ras-ERK signaling pathway during postnatal development of lungs, we have identified a critical role of DA-Raf1 (DA-Raf)-a dominant-negative antagonist for the Ras-ERK signaling pathway-in alveolar formation. DA-Raf-deficient mice displayed alveolar dysgenesis as a result of the blockade of AMYF differentiation. DA-Raf is predominantly expressed in type 2 alveolar epithelial cells (AEC2s) in developing lungs, and DA-Raf-dependent MEK1/2 inhibition in AEC2s suppresses expression of tissue inhibitor of matalloprotienase 4 (TIMP4), which prevents a subsequent proteolytic cascade matrix metalloproteinase (MMP)14-MMP2. Furthermore, MMP14-MMP2 proteolytic cascade regulates AMYF differentiation and alveolar formation. Therefore, DA-Raf-dependent inhibition of the Ras-ERK signaling pathway in AEC2s is required for alveolar formation via triggering MMP2 activation followed by AMYF differentiation. These findings reveal a pivotal role of the Ras-ERK signaling pathway in the dynamic regulation of alveolar development.
Collapse
Affiliation(s)
- Haruko Watanabe-Takano
- Departments of Biomedical Science andDepartment of Biology, Graduate School of Science andJapan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan; and
| | - Kazunori Takano
- Department of Biology, Graduate School of Science andGraduate School of Advanced Integration Science, Chiba University, Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | - Akemi Sakamoto
- Developmental Genetics, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kenji Matsumoto
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
| | - Takeshi Tokuhisa
- Developmental Genetics, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Takeshi Endo
- Department of Biology, Graduate School of Science andGraduate School of Advanced Integration Science, Chiba University, Yayoicho, Inage-ku, Chiba 263-8522, Japan;
| | | |
Collapse
|
48
|
Liu S, Young SM, Varisco BM. Dynamic expression of chymotrypsin-like elastase 1 over the course of murine lung development. Am J Physiol Lung Cell Mol Physiol 2014; 306:L1104-16. [PMID: 24793170 DOI: 10.1152/ajplung.00126.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Postnatal lung development requires coordination of three processes (surface area expansion, microvascular growth, and matrix remodeling). Because normal elastin structure is important for lung morphogenesis, because physiological remodeling of lung elastin has never been defined, and because elastin remodeling is angiogenic, we sought to test the hypothesis that, during lung development, elastin is remodeled in a defined temporal-spatial pattern, that a novel protease is associated with this remodeling, and that angiogenesis is associated with elastin remodeling. By elastin in situ zymography, lung elastin remodeling increased 24-fold between embryonic day (E) 15.5 and postnatal day (PND) 14. Remodeling was restricted to major vessels and airways on PND1 with a sevenfold increase in alveolar wall elastin remodeling from PND1 to PND14. By inhibition assays and literature review, we identified chymotrypsin-like elastase 1 (CELA1) as a potential mediator of elastin remodeling. CELA1 mRNA levels increased 12-fold from E15.5 to PND9, and protein levels increased 3.4-fold from E18.5 to PND9. By costaining experiments, the temporal-spatial pattern of CELA1 expression matched that of elastin remodeling, and 58-85% of CELA1(+) cells were <10 μm from an elastase signal. An association between elastin remodeling and angiogenesis was tested by similar methods. At PND7 and PND14, 60-95% of angiogenin(+) cells were associated with elastin remodeling. Both elastase inhibition and CELA1 silencing impaired angiogenesis in vitro. Our data defines the temporal-spatial pattern of elastin remodeling during lung development, demonstrates an association of this remodeling with CELA1, and supports a role for elastin remodeling in regulating angiogenesis.
Collapse
Affiliation(s)
- Sheng Liu
- Division of Critical Care Medicine, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; and
| | - Sarah Marie Young
- Division of Critical Care Medicine, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; and
| | - Brian Michael Varisco
- Division of Critical Care Medicine, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
49
|
Thane K, Ingenito EP, Hoffman AM. Lung regeneration and translational implications of the postpneumonectomy model. Transl Res 2014; 163:363-76. [PMID: 24316173 DOI: 10.1016/j.trsl.2013.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/30/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
Lung regeneration research is yielding data with increasing translational value. The classical models of lung development, postnatal alveolarization, and postpneumonectomy alveolarization have contributed to a broader understanding of the cellular participants including stem-progenitor cells, cell-cell signaling pathways, and the roles of mechanical deformation and other physiologic factors that have the potential to be modulated in human and animal patients. Although recent information is available describing the lineage fate of lung fibroblasts, genetic fate mapping, and clonal studies are lacking in the study of lung regeneration and deserve further examination. In addition to increasing knowledge concerning classical alveolarization (postnatal, postpneumonectomy), there is increasing evidence for remodeling of the adult lung after partial pneumonectomy. Though limited in scope, compelling data have emerged describing restoration of lung tissue mass in the adult human and in large animal models. The basis for this long-term adaptation to pneumonectomy is poorly understood, but investigations into mechanisms of lung regeneration in older animals that have lost their capacity for rapid re-alveolarization are warranted, as there would be great translational value in modulating these mechanisms. In addition, quantitative morphometric analysis has progressed in conjunction with developments in advanced imaging, which allow for longitudinal and nonterminal evaluation of pulmonary regenerative responses in animals and humans. This review focuses on the cellular and molecular events that have been observed in animals and humans after pneumonectomy because this model is closest to classical regeneration in other mammalian systems and has revealed several new fronts of translational research that deserve consideration.
Collapse
Affiliation(s)
- Kristen Thane
- Department of Clinical Sciences, Regenerative Medicine Laboratory, Tufts University Cummings School of Veterinary Medicine, North Grafton, Mass
| | - Edward P Ingenito
- Division of Pulmonary, Critical Care, and Sleep Medicine, Brigham and Women's Hospital, Boston, Mass
| | - Andrew M Hoffman
- Department of Clinical Sciences, Regenerative Medicine Laboratory, Tufts University Cummings School of Veterinary Medicine, North Grafton, Mass.
| |
Collapse
|
50
|
Liu S, Parameswaran H, Young SM, Varisco BM. JNK suppresses pulmonary fibroblast elastogenesis during alveolar development. Respir Res 2014; 15:34. [PMID: 24661418 PMCID: PMC3987842 DOI: 10.1186/1465-9921-15-34] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/07/2014] [Indexed: 12/01/2022] Open
Abstract
Background The formation of discrete elastin bands at the tips of secondary alveolar septa is important for normal alveolar development, but the mechanisms regulating the lung elastogenic program are incompletely understood. JNK suppress elastin synthesis in the aorta and is important in a host of developmental processes. We sought to determine whether JNK suppresses pulmonary fibroblast elastogenesis during lung development. Methods Alveolar size, elastin content, and mRNA of elastin-associated genes were quantitated in wild type and JNK-deficient mouse lungs, and expression profiles were validated in primary lung fibroblasts. Tropoelastin protein was quantitated by Western blot. Changes in lung JNK activity throughout development were quantitated, and pJNK was localized by confocal imaging and lineage tracing. Results By morphometry, alveolar diameters were increased by 7% and lung elastin content increased 2-fold in JNK-deficient mouse lungs compared to wild type. By Western blot, tropoelastin protein was increased 5-fold in JNK-deficient lungs. Postnatal day 14 (PND14) lung JNK activity was 11-fold higher and pJNK:JNK ratio 6-fold higher compared to PN 8 week lung. Lung tropoelastin, emilin-1, fibrillin-1, fibulin-5, and lysyl oxidase mRNAs inversely correlated with lung JNK activity during alveolar development. Phosphorylated JNK localized to pulmonary lipofibroblasts. PND14 JNK-deficient mouse lungs contained 7-fold more tropoelastin, 2,000-fold more emilin-1, 800-fold more fibrillin-1, and 60-fold more fibulin-5 than PND14 wild type lungs. Primarily lung fibroblasts from wild type and JNK-deficient mice showed similar differences in elastogenic mRNAs. Conclusions JNK suppresses fibroblast elastogenesis during the alveolar stage of lung development.
Collapse
Affiliation(s)
| | | | | | - Brian M Varisco
- Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA.
| |
Collapse
|