1
|
Margelidon-Cozzolino V, Balsamelli J, Carrard J, Ait Yahia S, Gevaert MH, Demoulin-Alexikova S, Pichavant M, Tsicopoulos A, Chenivesse C, Lejeune S, de Nadai P. Dog allergen-induced asthma in mice: a relevant model of T2 low severe asthma with airway remodelling. Inflamm Res 2025; 74:52. [PMID: 40082266 PMCID: PMC11906515 DOI: 10.1007/s00011-025-02004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/15/2025] [Accepted: 01/25/2025] [Indexed: 03/16/2025] Open
Abstract
OBJECTIVE AND DESIGN Airway remodelling (AR) is a disabling phenomenon in patients with severe asthma, yet suitable models are lacking. We previously developed a dog allergen-induced murine asthma model characterized by T2low Th17-driven neutrophilic airway inflammation and AR. To assess its relevance to human AR associated with T2low severe asthma, a condition characterised by poor response to inhaled steroids, we tested the steroid sensitivity of the key features of this model. MATERIAL Asthma was induced in C57BL/6 J mice by intranasal sensitization, followed by a three-week challenge with dog allergen. TREATMENT Daily intraperitoneal 1 mg kg-1 dexamethasone was administrated during the last week of challenge. METHODS We measured airway resistances in response to methacholine, cellular inflammation in bronchoalveolar lavage, lung cytokines, and quantified AR features, in response to dexamethasone. RESULTS Dexamethasone-treated mice showed persistent airway hyperresponsiveness, neutrophilic inflammation, and Il17a overexpression, whereas Il22 expression was abrogated. Pathological AR features, including mucus hyperproduction, subepithelial fibrosis and smooth muscle hypertrophy were not eliminated by dexamethasone. CONCLUSIONS Our dog allergen-induced murine model of asthma mirrors the steroid-insensitive traits of human severe T2low asthma with AR, making it a relevant tool for identifying novel therapeutic targets in this orphan asthma subset.
Collapse
Affiliation(s)
- Victor Margelidon-Cozzolino
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France.
- Groupement Des Hôpitaux de L'Institut Catholique de Lille (GHICL), Lille, France.
- Service de Pneumologie, Hôpital Saint-Philibert, Rue du Grand But, 59160, Lomme, France.
| | - Joanne Balsamelli
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Julie Carrard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Saliha Ait Yahia
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Marie-Hélène Gevaert
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, Lille, France
| | - Silvia Demoulin-Alexikova
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Muriel Pichavant
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Anne Tsicopoulos
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Cécile Chenivesse
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
- CRISALIS (Clinical Research Initiative In Severe Asthma: a Lever for Innovation & Science), F-CRIN Network, INSERM US015, Toulouse, France
| | - Stéphanie Lejeune
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
- Univ. Lille, Department of Pediatric Pulmonology and Allergy, Hôpital Jeanne de Flandre, CHU Lille, 59000, Lille, France
| | - Patricia de Nadai
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| |
Collapse
|
2
|
Immormino RM, Wang Y, Zhang Y, Kapita CM, Thomas KO, Carson AS, Kesselring J, Smeekens J, Kulis MD, Moran TP, Iweala OI. Deficiency of H3K27 histone demethylase UTX in T cells blunts allergic sensitization and anaphylaxis to peanut. Immunohorizons 2025; 9:vlaf008. [PMID: 40065718 PMCID: PMC11893976 DOI: 10.1093/immhor/vlaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Whether epigenetic factor UTX, a histone H3 lysine 27 (H3K27) demethylase, is critical for type 2 immunity, including allergic sensitization and antigen-driven anaphylaxis, is unclear. We used UTXfl/fl x Lck-Cre mice with UTX-deficient T cells (UTX-TCD) to determine whether T cell-specific UTX expression regulates antigen-specific IgE production after airway sensitization to peanut and anaphylaxis following intraperitoneal (i.p.) peanut challenge. UTX-TCD mice sensitized via the airway with peanut and lipopolysaccharide (LPS), a bacterial component and environmental adjuvant found in house dust, made 2-fold less peanut-IgE and 3.5-fold less peanut-IgG1 than comparably sensitized UTXfl/fl mice, despite higher total IgE and total IgG1 serum antibody levels pre-sensitization. Peanut-induced anaphylaxis was blunted in UTX-TCD mice, with maximum drop in core body temperature after i.p. peanut challenge two-fold lower than in UTXfl/fl mice. Compared to UTXfl/fl controls, UTX-TCD mice had reduced frequencies of CD4+ T-follicular helper (Tfh) cells and germinal center B cells, but higher frequencies of IL-4+ T-helper (Th)2, Tfh2, and IL-13+ Tfh13 cells in airway-draining mediastinal lymph nodes. UTX-TCD mice also skewed toward type 2 antibody and T-helper immune responses independent of allergic sensitization, with fewer IL-10-producing splenic Treg and T-follicular regulatory (Tfr) cells. Our results suggest that UTX expression in T cells impact the production of antigen-specific antibody responses required for allergic sensitization and antigen-specific allergic reactions, suggesting a role for H3K27 histone demethylase UTX in regulating type 2 immunity.
Collapse
Affiliation(s)
- Robert M Immormino
- Department of Pediatrics, Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yinghui Wang
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Rheumatology, Allergy, and Immunology and Thurston Arthritis Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yugen Zhang
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Rheumatology, Allergy, and Immunology and Thurston Arthritis Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Camille M Kapita
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Rheumatology, Allergy, and Immunology and Thurston Arthritis Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kevin O Thomas
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Rheumatology, Allergy, and Immunology and Thurston Arthritis Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Audrey S Carson
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Rheumatology, Allergy, and Immunology and Thurston Arthritis Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Janelle Kesselring
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Johanna Smeekens
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael D Kulis
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Timothy P Moran
- Department of Pediatrics, Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Onyinye I Iweala
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Rheumatology, Allergy, and Immunology and Thurston Arthritis Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
3
|
Grunwell JR, Fitzpatrick AM. Asthma Phenotypes and Biomarkers. Respir Care 2025. [PMID: 40013975 DOI: 10.1089/respcare.12352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Asthma experienced by both adults and children is a phenotypically heterogeneous condition. Severe asthma, characterized by ongoing symptoms and airway inflammation despite high doses of inhaled and/or systemic corticosteroids, is the focus of research efforts to understand this underlying heterogeneity. Clinical phenotypes in both adult and pediatric asthma have been determined using supervised definition-driven classification and unsupervised data-driven clustering methods. Efforts to understand the underlying inflammatory patterns of severe asthma have led to the seminal discovery of type 2-high versus type 2-low phenotypes and to the development of biologics targeted at type 2-high inflammation to reduce the rates of severe asthma exacerbations. Type 2-high asthma is characterized by upregulation of T helper 2 immune pathways including interleukin (IL)-4, IL-5, and IL-13 along with eosinophilic airway inflammation, sometimes allergic sensitization, and responsiveness to treatment with corticosteroids. Type 2-low asthma is poorly responsive to corticosteroids and is not as well characterized as type 2-high asthma. Type 2-low asthma is limited by being defined as the absence of type 2-high inflammatory markers. Choosing a biologic for the treatment of severe asthma involves the evaluation of a panel of biomarkers such as blood eosinophils, total and specific immunoglobulin E/allergic sensitization, and fractional exhaled nitric oxide. In this review, we focus on the underlying pathobiology of adult and pediatric asthma, discuss the different phenotype-based treatment options for adult and pediatric type 2-high with or without allergic asthma and type 2-low asthma, and describe a clinical phenotyping approach to patients to guide out-patient therapy. Finally, we end with a discussion of whether pediatric asthma exacerbations necessitating admission to an ICU constitute their own high-risk phenotype and/or whether it is a part of other previously defined high-risk subgroups such as difficult-to-control asthma, exacerbation-prone asthma, and severe treatment-resistant asthma.
Collapse
Affiliation(s)
- Jocelyn R Grunwell
- Dr. Grunwell is affiliated with Division of Critical Care Medicine, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | - Anne M Fitzpatrick
- Dr. Fitzpatrick is affiliated with Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis, and Sleep Medicine, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
4
|
Tu W, Wang H, Zhang Y, Huang J, Diao Y, Zhou J, Tan Y, Li X. Investigation of the Molecular Mechanism of Asthma in Meishan Pigs Using Multi-Omics Analysis. Animals (Basel) 2025; 15:200. [PMID: 39858200 PMCID: PMC11759154 DOI: 10.3390/ani15020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Asthma has been extensively studied in humans and animals, but the molecular mechanisms underlying asthma in Meishan pigs, a breed with distinct genetic and physiological characteristics, remain elusive. Understanding these mechanisms could provide insights into veterinary medicine and human asthma research. We investigated asthma pathogenesis in Meishan pigs through transcriptomic and metabolomic analyses of blood samples taken during autumn and winter. Asthma in Meishan pigs is related to inflammation, mitochondrial oxidative phosphorylation, and tricarboxylic acid (TCA) cycle disorders. Related genes include CXCL10, CCL8, CCL22, CCL21, OLR1, and ACKR1, while metabolites include succinic acid, riboflavin-5-phosphate, and fumaric acid. Transcriptomic sequencing was performed on panting and normal Meishan pigs, and differentially expressed genes underwent functional enrichment screening. Metabolomic analysis revealed differential metabolites and pathways between groups. Combined analyses indicated that lung inflammation is influenced by genetic, allergenic, and environmental factors disrupting oxidative phosphorylation in lung mitochondria, affecting the TCA cycle. Mitochondrial reactive oxygen species, glutathione S-transferases, arginase 1 and RORC in immune regulation, the Notch pathway, YPEL4 in cell proliferation, and MARCKS in airway mucus secretion play roles in asthma pathogenesis. This study highlights that many cytokines and signaling pathways contribute to asthma. Further studies are needed to elucidate their complex interactions.
Collapse
Affiliation(s)
- Weilong Tu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (W.T.); (H.W.); (Y.Z.); (J.H.); (Y.D.); (J.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Hongyang Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (W.T.); (H.W.); (Y.Z.); (J.H.); (Y.D.); (J.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Yingying Zhang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (W.T.); (H.W.); (Y.Z.); (J.H.); (Y.D.); (J.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Ji Huang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (W.T.); (H.W.); (Y.Z.); (J.H.); (Y.D.); (J.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Yuduan Diao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (W.T.); (H.W.); (Y.Z.); (J.H.); (Y.D.); (J.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Jieke Zhou
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (W.T.); (H.W.); (Y.Z.); (J.H.); (Y.D.); (J.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Yongsong Tan
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (W.T.); (H.W.); (Y.Z.); (J.H.); (Y.D.); (J.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Xin Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (W.T.); (H.W.); (Y.Z.); (J.H.); (Y.D.); (J.Z.)
| |
Collapse
|
5
|
Tsukuda TK, Tsuji K, Nishimori A, Ito T, Kobayashi Y, Suzuki T, Yokoyama A. Elevated Proportions of Circulating CXCR5 + Follicular Helper T Cells Reflect the Presence of Airway Obstruction in Asthma. J Immunol Res 2024; 2024:2020514. [PMID: 39346781 PMCID: PMC11427719 DOI: 10.1155/2024/2020514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/14/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Materials and Methods Using flow cytometry, we identified and quantified Group 2 innate lymphocytes, T helper 2 cells, follicular helper T cells, and T helper 17 cells in peripheral blood samples from 49 individuals with asthma. We then conducted cross-sectional analyses to assess relationships between levels of these immune cells and lung function parameters, including the percentage predicted forced expiratory volume in 1 s (%FEV1). We also examined correlations between the proportions of immune cells and type 2 biomarkers. Results Proportions of CXCR5+ follicular helper T cells in human peripheral blood, as opposed to Group 2 innate lymphoid cells (ILC2) or T helper 2 cells, were significantly higher in cases with %FEV1 < 80% compared to those with %FEV1 ≥ 80%. Further, these proportions correlated negatively with %FEV1 and positively with blood eosinophil counts. Conclusions The proportion of circulating follicular helper T cells, but not T helper 2 cells or Group 2 innate lymphoid cells, may reflect the presence of airway obstruction caused by persistent type 2 inflammation.
Collapse
Affiliation(s)
- Tsukie Kin Tsukuda
- Department of Respiratory Medicine and AllergologyKochi Medical SchoolKochi University, Kochi, Japan
| | - Kimiko Tsuji
- Department of Respiratory Medicine and AllergologyKochi Medical SchoolKochi University, Kochi, Japan
| | - Akari Nishimori
- Department of Respiratory Medicine and AllergologyKochi Medical SchoolKochi University, Kochi, Japan
| | - Takehiko Ito
- Department of Respiratory Medicine and AllergologyKochi Medical SchoolKochi University, Kochi, Japan
| | - Yuka Kobayashi
- Department of Respiratory Medicine and AllergologyKochi Medical SchoolKochi University, Kochi, Japan
| | - Taro Suzuki
- Department of Respiratory Medicine and AllergologyKochi Medical SchoolKochi University, Kochi, Japan
| | - Akihito Yokoyama
- Department of Respiratory Medicine and AllergologyKochi Medical SchoolKochi University, Kochi, Japan
| |
Collapse
|
6
|
Liu T, Woodruff PG, Zhou X. Advances in non-type 2 severe asthma: from molecular insights to novel treatment strategies. Eur Respir J 2024; 64:2300826. [PMID: 38697650 PMCID: PMC11325267 DOI: 10.1183/13993003.00826-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Asthma is a prevalent pulmonary disease that affects more than 300 million people worldwide and imposes a substantial economic burden. While medication can effectively control symptoms in some patients, severe asthma attacks, driven by airway inflammation induced by environmental and infectious exposures, continue to be a major cause of asthma-related mortality. Heterogeneous phenotypes of asthma include type 2 (T2) and non-T2 asthma. Non-T2 asthma is often observed in patients with severe and/or steroid-resistant asthma. This review covers the molecular mechanisms, clinical phenotypes, causes and promising treatments of non-T2 severe asthma. Specifically, we discuss the signalling pathways for non-T2 asthma including the activation of inflammasomes, interferon responses and interleukin-17 pathways, and their contributions to the subtypes, progression and severity of non-T2 asthma. Understanding the molecular mechanisms and genetic determinants underlying non-T2 asthma could form the basis for precision medicine in severe asthma treatment.
Collapse
Affiliation(s)
- Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Hargitai R, Parráková L, Szatmári T, Monfort-Lanzas P, Galbiati V, Audouze K, Jornod F, Staal YCM, Burla S, Chary A, Gutleb AC, Lumniczky K, Vandebriel RJ, Gostner JM. Chemical respiratory sensitization-Current status of mechanistic understanding, knowledge gaps and possible identification methods of sensitizers. FRONTIERS IN TOXICOLOGY 2024; 6:1331803. [PMID: 39135743 PMCID: PMC11317441 DOI: 10.3389/ftox.2024.1331803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/27/2024] [Indexed: 08/15/2024] Open
Abstract
Respiratory sensitization is a complex immunological process eventually leading to hypersensitivity following re-exposure to the chemical. A frequent consequence is occupational asthma, which may occur after long latency periods. Although chemical-induced respiratory hypersensitivity has been known for decades, there are currently no comprehensive and validated approaches available for the prospective identification of chemicals that induce respiratory sensitization, while the expectations of new approach methodologies (NAMs) are high. A great hope is that due to a better understanding of the molecular key events, new methods can be developed now. However, this is a big challenge due to the different chemical classes to which respiratory sensitizers belong, as well as because of the complexity of the response and the late manifestation of symptoms. In this review article, the current information on respiratory sensitization related processes is summarized by introducing it in the available adverse outcome pathway (AOP) concept. Potentially useful models for prediction are discussed. Knowledge gaps and gaps of regulatory concern are identified.
Collapse
Affiliation(s)
- Rita Hargitai
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Lucia Parráková
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Tünde Szatmári
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Pablo Monfort-Lanzas
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
- Institute of Bioinformatics, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università Degli Studi di Milano (UNIMI), Milano, Italy
| | | | | | - Yvonne C. M. Staal
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sabina Burla
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Aline Chary
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C. Gutleb
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Katalin Lumniczky
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Rob J. Vandebriel
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Johanna M. Gostner
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| |
Collapse
|
8
|
Wilkinson CL, Nakano K, Grimm SA, Whitehead GS, Arao Y, Blackshear PJ, Karmaus PW, Fessler MB, Cook DN, Nakano H. GM-CSF-dependent CD301b+ lung dendritic cells confer tolerance to inhaled allergens. RESEARCH SQUARE 2024:rs.3.rs-4414130. [PMID: 38883724 PMCID: PMC11177951 DOI: 10.21203/rs.3.rs-4414130/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The severity of allergic asthma is driven by the balance between allergen-specific T regulatory (Treg) and T helper (Th)2 cells. However, it is unclear whether specific subsets of conventional dendritic cells (cDCs) promote the differentiation of these two T cell lineaeges. We have identified a subset of lung resident type 2 cDCs (cDC2s) that display high levels of CD301b and have potent Treg-inducing activity ex vivo. Single cell RNA sequencing and adoptive transfer experiments show that during allergic sensitization, many CD301b+ cDC2s transition in a stepwise manner to CD200+ cDC2s that selectively promote Th2 differentiation. GM-CSF augments the development and maintenance of CD301b+ cDC2s in vivo, and also selectively expands Treg-inducing CD301b+ cDC2s derived from bone marrow. Upon their adoptive transfer to recipient mice, lung-derived CD301b+ cDC2s confer immunological tolerance to inhaled allergens. Thus, GM-CSF maintains lung homeostasis by increasing numbers of Treg-inducing CD301b+ cDC2s.
Collapse
Affiliation(s)
- Christina L. Wilkinson
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Keiko Nakano
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Sara A. Grimm
- Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Gregory S. Whitehead
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Yukitomo Arao
- Signal Transduction Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Perry J. Blackshear
- Signal Transduction Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Peer W. Karmaus
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Michael B. Fessler
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Donald N. Cook
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | - Hideki Nakano
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
9
|
Li Q, Jiang G, Lv Y. Inhibition of phosphoinositide 3-kinase activity attenuates neutrophilic airway inflammation and inhibits pyrin domain-containing 3 inflammasome activation in an ovalbumin-lipopolysaccharide-induced asthma murine model. Mol Biol Rep 2024; 51:698. [PMID: 38811424 PMCID: PMC11136729 DOI: 10.1007/s11033-024-09360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Existing investigations suggest that the blockade of phosphoinositide 3-kinase (PI3K) activity contributes to inflammatory solution in allergic asthma, but whether this inhibition directly attenuates neutrophilic airway inflammation in vivo is still unclear. We explored the pharmacological effects of LY294002, a specific inhibitor of PI3K on the progression of neutrophilic airway inflammation and investigated the underlying mechanism. METHODS AND RESULTS Female C57BL/6 mice were intranasally sensitized with ovalbumin (OVA) together with lipopolysaccharide (LPS) on days 0 and 6, and challenged with OVA on days 14-17 to establish a neutrophilic airway disease model. In the challenge phase, a subset of mice was treated intratracheally with LY294002. We found that treatment of LY294002 attenuates clinic symptoms of inflammatory mice. Histological studies showed that LY294002 significantly inhibited inflammatory cell infiltration and mucus production. The treatment also significantly inhibited OVA-LPS induced increases in inflammatory cell counts, especially neutrophil counts, and IL-17 levels in bronchoalveolar lavage fluid (BALF). LY294002 treated mice exhibited significantly increased IL-10 levels in BALF compared to the untreated mice. In addition, LY294002 reduced the plasma concentrations of IL-6 and IL-17. The anti-inflammatory effects of LY29402 were correlated with the downregulation of NLRP3 inflammasome. CONCLUSIONS Our findings suggested that LY294002 as a potential pharmacological target for neutrophilic airway inflammation.
Collapse
Affiliation(s)
- Qun Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Bengbu Medical University, Anhui, China
| | - Guiyun Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Yunxiang Lv
- Department of Pulmonary and Critical Care MedicineAnhui Clinical and Preclinical Key Laboratory of Respiratory DiseaseMolecular Diagnosis Center, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, Anhui, China.
| |
Collapse
|
10
|
Dhupar R, Powers AA, Eisenberg SH, Gemmill RM, Bardawil CE, Udoh HM, Cubitt A, Nangle LA, Soloff AC. Orchestrating Resilience: How Neuropilin-2 and Macrophages Contribute to Cardiothoracic Disease. J Clin Med 2024; 13:1446. [PMID: 38592275 PMCID: PMC10934188 DOI: 10.3390/jcm13051446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Immunity has evolved to balance the destructive nature of inflammation with wound healing to overcome trauma, infection, environmental insults, and rogue malignant cells. The inflammatory response is marked by overlapping phases of initiation, resolution, and post-resolution remodeling. However, the disruption of these events can lead to prolonged tissue damage and organ dysfunction, resulting long-term disease states. Macrophages are the archetypic phagocytes present within all tissues and are important contributors to these processes. Pleiotropic and highly plastic in their responses, macrophages support tissue homeostasis, repair, and regeneration, all while balancing immunologic self-tolerance with the clearance of noxious stimuli, pathogens, and malignant threats. Neuropilin-2 (Nrp2), a promiscuous co-receptor for growth factors, semaphorins, and integrins, has increasingly been recognized for its unique role in tissue homeostasis and immune regulation. Notably, recent studies have begun to elucidate the role of Nrp2 in both non-hematopoietic cells and macrophages with cardiothoracic disease. Herein, we describe the unique role of Nrp2 in diseases of the heart and lung, with an emphasis on Nrp2 in macrophages, and explore the potential to target Nrp2 as a therapeutic intervention.
Collapse
Affiliation(s)
- Rajeev Dhupar
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical and Research Services, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Amy A. Powers
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Seth H. Eisenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Robert M. Gemmill
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Charles E. Bardawil
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Hannah M. Udoh
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Andrea Cubitt
- aTyr Pharma, San Diego, CA 92121, USA; (A.C.); (L.A.N.)
| | | | - Adam C. Soloff
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical and Research Services, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
11
|
Nakano K, Whitehead GS, Lyons-Cohen MR, Grimm SA, Wilkinson CL, Izumi G, Livraghi-Butrico A, Cook DN, Nakano H. Chemokine CCL19 promotes type 2 T-cell differentiation and allergic airway inflammation. J Allergy Clin Immunol 2024; 153:487-502.e9. [PMID: 37956733 PMCID: PMC10922373 DOI: 10.1016/j.jaci.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Allergic asthma is driven largely by allergen-specific TH2 cells, which develop in regional lymph nodes on the interaction of naive CD4+ T cells with allergen-bearing dendritic cells that migrate from the lung. This migration event is dependent on CCR7 and its chemokine ligand, CCL21. However, is has been unclear whether the other CCR7 ligand, CCL19, has a role in allergic airway disease. OBJECTIVE This study sought to define the role of CCL19 in TH2 differentiation and allergic airway disease. METHODS Ccl19-deficient mice were studied in an animal model of allergic asthma. Dendritic cells or fibroblastic reticular cells from wild-type and Ccl19-deficient mice were cultured with naive CD4+ T cells, and cytokine production was measured by ELISA. Recombinant CCL19 was added to CD4+ T-cell cultures, and gene expression was assessed by RNA-sequencing and quantitative PCR. Transcription factor activation was assessed by flow cytometry. RESULTS Lungs of Ccl19-deficient mice had less allergic airway inflammation, reduced airway hyperresponsiveness, and less IL-4 and IL-13 production compared with lungs of Ccl19-sufficient animals. Naive CD4+ T cells cocultured with Ccl19-deficient dendritic cells or fibroblastic reticular cells produced lower amounts of type 2 cytokines than did T cells cocultured with their wild-type counterparts. Recombinant CCL19 increased phosphorylation of STAT5 and induced expression of genes associated with TH2 cell and IL-2 signaling pathways. CONCLUSIONS These results reveal a novel, TH2 cell-inducing function of CCL19 in allergic airway disease and suggest that strategies to block this pathway might help to reduce the incidence or severity of allergic asthma.
Collapse
Affiliation(s)
- Keiko Nakano
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Gregory S Whitehead
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Miranda R Lyons-Cohen
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Christina L Wilkinson
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Gentaro Izumi
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | | | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC.
| | - Hideki Nakano
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC.
| |
Collapse
|
12
|
Pathak MP, Patowary P, Chattopadhyay P, Barbhuiyan PA, Islam J, Gogoi J, Wankhar W. Obesity-associated Airway Hyperresponsiveness: Mechanisms Underlying Inflammatory Markers and Possible Pharmacological Interventions. Endocr Metab Immune Disord Drug Targets 2024; 24:1053-1068. [PMID: 37957906 DOI: 10.2174/0118715303256440231028072049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 11/15/2023]
Abstract
Obesity is rapidly becoming a global health problem affecting about 13% of the world's population affecting women and children the most. Recent studies have stated that obese asthmatic subjects suffer from an increased risk of asthma, encounter severe symptoms, respond poorly to anti-asthmatic drugs, and ultimately their quality-of-life decreases. Although, the association between airway hyperresponsiveness (AHR) and obesity is a growing concern among the public due to lifestyle and environmental etiologies, however, the precise mechanism underlying this association is yet to establish. Apart from aiming at the conventional antiasthmatic targets, treatment should be directed towards ameliorating obesity pathogenesis too. Understanding the pathogenesis underlying the association between obesity and AHR is limited, however, a plethora of obesity pathologies have been reported viz., increased pro-inflammatory and decreased anti-inflammatory adipokines, depletion of ROS controller Nrf2/HO-1 axis, NLRP3 associated macrophage polarization, hypertrophy of WAT, and down-regulation of UCP1 in BAT following down-regulated AMPKα and melanocortin pathway that may be correlated with AHR. Increased waist circumference (WC) or central obesity was thought to be related to severe AHR, however, some recent reports suggest body mass index (BMI), not WC tends to exaggerate airway closure in AHR due to some unknown mechanisms. This review aims to co-relate the above-mentioned mechanisms that may explain the copious relation underlying obesity and AHR with the help of published reports. A proper understanding of these mechanisms discussed in this review will ensure an appropriate treatment plan for patients through advanced pharmacological interventions.
Collapse
Affiliation(s)
| | - Pompy Patowary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
| | | | | | - Johirul Islam
- Department of Pharmaceutical Sciences, School of Health Sciences, Assam Kaziranga University, Jorhat, India
| | - Jyotchna Gogoi
- Department of Biochemistry, Faculty of Science, Assam Down Town University, Guwahati, India
| | - Wankupar Wankhar
- Department of Dialysis, Faculty of Paramedical Science, Assam Down Town University, Guwahati, India
| |
Collapse
|
13
|
Yin Y, Ouyang S, Li Q, Du Y, Xiong S, Zhang M, Wang W, Zhang T, Liu C, Gao Y. Salivary interleukin-17A and interferon-γ levels are elevated in children with food allergies in China. Front Immunol 2023; 14:1232187. [PMID: 38090557 PMCID: PMC10715589 DOI: 10.3389/fimmu.2023.1232187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Food allergies have a substantial impact on patient health, but their mechanisms are poorly understood, and strategies for diagnosing, preventing, and treating food allergies are not optimal. This study explored the levels of and relationship between IL-17A and IFN-γ in the saliva of children with food allergies, which will form the basis for further mechanistic discoveries as well as prevention and treatment measures for food allergies. Methods A case-control study with 1:1 matching was designed. Based on the inclusion criteria, 20 case-control pairs were selected from patients at the Skin and Allergy Clinic and children of employees. IL-17A and IFN-γ levels in saliva were measured with a Luminex 200 instrument. A general linear model was used to analyze whether the salivary IL-17A and IFN-γ levels in the food allergy group differed from those in the control group. Results The general linear model showed a significant main effect of group (allergy vs. healthy) on the levels of IL-17A and IFN-γ. The mean IL-17A level (0.97 ± 0.09 pg/ml) in the food allergy group was higher than that in the healthy group (0.69 ± 0.09 pg/ml). The mean IFN-γ level (3.0 ± 0.43 pg/ml) in the food allergy group was significantly higher than that in the healthy group (1.38 ± 0.43 pg/ml). IL-17A levels were significantly positively related to IFN-γ levels in children with food allergies (r=0.79) and in healthy children (r=0.98). Discussion The salivary IL-17A and IFN-γ levels in children with food allergies were higher than those in healthy children. This finding provides a basis for research on new methods of diagnosing food allergies and measuring the effectiveness of treatment.
Collapse
Affiliation(s)
- Yan Yin
- Department of Integrated Early Childhood Development, Capital Institute of Pediatrics, Beijing, China
| | - Shengrong Ouyang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Qin Li
- Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yuyang Du
- Department of Allergy, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Shiqiu Xiong
- Department of Allergy, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Min Zhang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Wei Wang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Ting Zhang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Chuanhe Liu
- Department of Allergy, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Ying Gao
- Department of Dermatology, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
14
|
Dehdar K, Raoufy MR. Brain structural and functional alterations related to anxiety in allergic asthma. Brain Res Bull 2023; 202:110727. [PMID: 37562517 DOI: 10.1016/j.brainresbull.2023.110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Psychiatric disorders are common in patients with allergic asthma, and they can have a significant impact on their quality of life and disease control. Recent studies have suggested that there may be potential immune-brain communication mechanisms in asthma, which can activate inflammatory responses in different brain areas, leading to structural and functional alterations and behavioral changes. However, the precise mechanisms underlying these alterations remain unclear. In this paper, we comprehensively review the relevant research on asthma-induced brain structural and functional alterations that lead to the initiation and promotion of anxiety. We summarize the possible pathways for peripheral inflammation to affect the brain's structure and function. Our review highlights the importance of addressing neuropsychiatric disorders in the clinical guidelines of asthma, to improve the quality of life of these patients. We suggest that a better understanding of the mechanisms underlying psychiatric comorbidities in asthma could lead to the development of more effective treatments for these patients.
Collapse
Affiliation(s)
- Kolsoum Dehdar
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
15
|
Cai J, Tao H, Liu H, Hu Y, Han S, Pu W, Li L, Li G, Li C, Zhang J. Intrinsically bioactive and biomimetic nanoparticle-derived therapies alleviate asthma by regulating multiple pathological cells. Bioact Mater 2023; 28:12-26. [PMID: 37214258 PMCID: PMC10193170 DOI: 10.1016/j.bioactmat.2023.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Asthma is a serious global public health concern. Airway neutrophilic inflammation is closely related to severe asthma, for which effective and safe therapies remain to be developed. Here we report nanotherapies capable of simultaneously regulating multiple target cells relevant to the pathogenesis of neutrophilic asthma. A nanotherapy LaCD NP based on a cyclic oligosaccharide-derived bioactive material was engineered. LaCD NP effectively accumulated in the injured lungs of asthmatic mice and mainly distributed in neutrophils, macrophages, and airway epithelial cells after intravenous or inhalation delivery, thereby ameliorating asthmatic symptoms and attenuating pulmonary neutrophilic inflammation as well as reducing airway hyperresponsiveness, remodeling, and mucus production. Surface engineering via neutrophil cell membrane further enhanced targeting and therapeutic effects of LaCD NP. Mechanistically, LaCD NP can inhibit the recruitment and activation of neutrophils, especially reducing the neutrophil extracellular traps formation and NLRP3 inflammasome activation in neutrophils. Also, LaCD NP can suppress macrophage-mediated pro-inflammatory responses and prevent airway epithelial cell death and smooth muscle cell proliferation, by mitigating neutrophilic inflammation and its direct effects on relevant cells. Importantly, LaCD NP showed good safety performance. Consequently, LaCD-derived multi-bioactive nanotherapies are promising for effective treatment of neutrophilic asthma and other neutrophil-associated diseases.
Collapse
Affiliation(s)
- Jiajun Cai
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Hui Tao
- Department of Pharmacology, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Huan Liu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yi Hu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Songling Han
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Wendan Pu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Lanlan Li
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Gang Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| |
Collapse
|
16
|
Wang Y, Wan R, Hu C. Leptin/obR signaling exacerbates obesity-related neutrophilic airway inflammation through inflammatory M1 macrophages. Mol Med 2023; 29:100. [PMID: 37488474 PMCID: PMC10367413 DOI: 10.1186/s10020-023-00702-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Obesity-related asthma is a kind of nonallergic asthma with excessive neutrophil infiltration in the airways. However, the underlying mechanisms have been poorly elucidated. Among the adipokines related to obesity, leptin is related to the inflammatory response. However, little is understood about how leptin acts on the leptin receptor (obR) in neutrophilic airway inflammation in obesity-associated asthma. We explored the inflammatory effects of leptin/obR signaling in an obesity-related neutrophilic airway inflammation mouse model. METHODS We established a neutrophilic airway inflammation mouse model using lipopolysaccharide (LPS)/ovalbumin (OVA) sensitization and OVA challenge (LPS + OVA/OVA) in lean, obese, or db/db (obR deficiency) female mice. Histopathological, bronchoalveolar lavage fluid (BALF) inflammatory cell, and lung inflammatory cytokine analyses were used to analyze airway inflammation severity. Western blotting, flow cytometry, reverse transcription-polymerase chain reaction (RT-PCR), and enzyme-linked immunosorbent assay (ELISA) were used to evaluate the underlying mechanisms. In vitro bone marrow-derived macrophage (BMDM) and bone marrow-derived neutrophil experiments were performed. RESULTS We found that the serum leptin level was higher in obese than in lean female mice. Compared to LPS/OVA + OVA-treated lean female mice, LPS/OVA + OVA-treated obese female mice had higher peribronchial inflammation levels, neutrophil counts, Th1/Th17-related inflammatory cytokine levels, M1 macrophage polarization levels, and long isoform obR activation, which could be decreased by the obR blockade (Allo-Aca) or obR deficiency, suggesting a critical role of leptin/obR signaling in the pathogenesis of obesity-related neutrophilic airway inflammation in female mice. In in vitro experiments, leptin synergized with LPS/IFN-γ to promote the phosphorylation of the long isoform obR and JNK/STAT3/AKT signaling pathway members to increase M1 macrophage polarization, which was reversed by Allo-Aca. Moreover, leptin/obR-mediated M1 macrophage activity significantly elevated CXCL2 production and neutrophil recruitment by regulating the JNK/STAT3/AKT pathways. In clinical studies, obese patients with asthma had higher serum leptin levels and M1 macrophage polarization levels in induced sputum than non-obese patients with asthma. Serum leptin levels were positively correlated with M1 macrophage polarization levels in patients with asthma. CONCLUSIONS Our results demonstrate leptin/obR signaling plays an important role in the pathogenesis of obesity-related neutrophilic airway inflammation in females by promoting M1 macrophage polarization.
Collapse
Affiliation(s)
- Yang Wang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Rongjun Wan
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Chengping Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
17
|
Calise J, DeBerg H, Garabatos N, Khosa S, Bajzik V, Calderon LB, Aldridge K, Rosasco M, Ferslew BC, Zhu T, Smulders R, Wheatley LM, Laidlaw TM, Qin T, Chichili GR, Adelman DC, Farrington M, Robinson D, Jeong D, Jones SM, Sanda S, Larson D, Kwok WW, Baloh C, Nepom GT, Wambre E. Distinct trajectories distinguish antigen-specific T cells in peanut-allergic individuals undergoing oral immunotherapy. J Allergy Clin Immunol 2023; 152:155-166.e9. [PMID: 37003475 PMCID: PMC10330178 DOI: 10.1016/j.jaci.2023.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Despite similar clinical symptoms, peanut-allergic (PA) individuals may respond quite differently to the same therapeutic interventions. OBJECTIVE This study aimed to determine whether inherent qualities of cell response at baseline could influence response to peanut oral immunotherapy (PnOIT). METHODS We first performed ex vivo T-cell profiling on peanut-reactive CD154+CD137+ T (pTeff) cells from 90 challenge-confirmed PA individuals. We developed a gating strategy for unbiased assessment of the phenotypic distribution of rare pTeff cells across different memory CD4+ T-cell subsets to define patient immunotype. In longitudinal samples of 29 PA participants enrolled onto the IMPACT trial of PnOIT, we determined whether patient immunotype at baseline could influence response to PnOIT. RESULTS Our data emphasize the heterogeneity of pTeff cell responses in PA participants with 2 mutually exclusive phenotypic entities (CCR6-CRTH2+ and CCR6+CRTH2-). Our findings lead us to propose that peanut allergy can be classified broadly into at least 2 discrete subtypes, termed immunotypes, with distinct immunologic and clinical characteristics that are based on the proportion of TH2A pTeff cells. PnOIT induced elimination of TH2A pTeff cells in the context of the IMPACT clinical trial. Only 1 PA patient with a low level of TH2A pTeff cells at baseline experienced long-lasting benefit of remission after PnOIT discontinuation. CONCLUSION Dividing PA patients according to their individual peanut-specific T-cell profile may facilitate patient stratification in clinical settings by identifying which immunotypes might respond best to different therapies.
Collapse
Affiliation(s)
- Justine Calise
- Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Wash
| | - Hannah DeBerg
- Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Wash
| | - Nahir Garabatos
- Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Wash
| | - Sugandhika Khosa
- Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Wash
| | - Veronique Bajzik
- Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Wash
| | | | - Kelly Aldridge
- Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Wash
| | - Mario Rosasco
- Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Wash
| | | | - Tong Zhu
- Astellas Pharma Global Development Inc, Northbrook, Ill
| | | | - Lisa M Wheatley
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Tanya M Laidlaw
- Immune Tolerance Network, Benaroya Research Institute at Virginia Mason, Seattle, Wash; Department of Medicine, Harvard Medical School, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Tielin Qin
- Immune Tolerance Network, Benaroya Research Institute at Virginia Mason, Seattle, Wash
| | | | | | | | | | - David Jeong
- Virginia Mason Medical Center, Seattle, Wash
| | - Stacie M Jones
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, Ark
| | - Srinath Sanda
- Immune Tolerance Network, UCSF Diabetes Center & UCSF School of Medicine, San Francisco, Calif
| | - David Larson
- Immune Tolerance Network, Benaroya Research Institute at Virginia Mason, Seattle, Wash
| | - William W Kwok
- Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Wash
| | - Carolyn Baloh
- Immune Tolerance Network, Benaroya Research Institute at Virginia Mason, Seattle, Wash; Department of Medicine, Harvard Medical School, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Gerald T Nepom
- Immune Tolerance Network, Benaroya Research Institute at Virginia Mason, Seattle, Wash
| | - Erik Wambre
- Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Wash.
| |
Collapse
|
18
|
Zeng J, Li M, Zhao Q, Chen M, Zhao L, Wei S, Yang H, Zhao Y, Wang A, Shen J, Du F, Chen Y, Deng S, Wang F, Zhang Z, Li Z, Wang T, Wang S, Xiao Z, Wu X. Small molecule inhibitors of RORγt for Th17 regulation in inflammatory and autoimmune diseases. J Pharm Anal 2023; 13:545-562. [PMID: 37440911 PMCID: PMC10334362 DOI: 10.1016/j.jpha.2023.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 07/15/2023] Open
Abstract
As a ligand-dependent transcription factor, retinoid-associated orphan receptor γt (RORγt) that controls T helper (Th) 17 cell differentiation and interleukin (IL)-17 expression plays a critical role in the progression of several inflammatory and autoimmune conditions. An emerging novel approach to the therapy of these diseases thus involves controlling the transcriptional capacity of RORγt to decrease Th17 cell development and IL-17 production. Several RORγt inhibitors including both antagonists and inverse agonists have been discovered to regulate the transcriptional activity of RORγt by binding to orthosteric- or allosteric-binding sites in the ligand-binding domain. Some of small-molecule inhibitors have entered clinical evaluations. Therefore, in current review, the role of RORγt in Th17 regulation and Th17-related inflammatory and autoimmune diseases was highlighted. Notably, the recently developed RORγt inhibitors were summarized, with an emphasis on their optimization from lead compounds, efficacy, toxicity, mechanisms of action, and clinical trials. The limitations of current development in this area were also discussed to facilitate future research.
Collapse
Affiliation(s)
- Jiuping Zeng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Qianyun Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Long Zhao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shulin Wei
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Huan Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Anqi Wang
- School of Medicine, Chengdu University, Chengdu, 610106, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Zhi Li
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Tiangang Wang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| |
Collapse
|
19
|
Lajiness JD, Cook-Mills JM. Catching Our Breath: Updates on the Role of Dendritic Cell Subsets in Asthma. Adv Biol (Weinh) 2023; 7:e2200296. [PMID: 36755197 PMCID: PMC10293089 DOI: 10.1002/adbi.202200296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2023] [Indexed: 02/10/2023]
Abstract
Dendritic cells (DCs), as potent antigen presenting cells, are known to play a central role in the pathophysiology of asthma. The understanding of DC biology has evolved over the years to include multiple subsets of DCs with distinct functions in the initiation and maintenance of asthma. Furthermore, asthma is increasingly recognized as a heterogeneous disease with potentially diverse underlying mechanisms. The goal of this review is to summarize the role of DCs and the various subsets therein in the pathophysiology of asthma and highlight some of the crucial animal models shaping the field today. Potential future avenues of investigation to address existing gaps in knowledge are discussed.
Collapse
Affiliation(s)
- Jacquelyn D Lajiness
- Department of Pediatrics, Division of Neonatology, Indiana University School of Medicine, 1030 West Michigan Street, Suite C 4600, Indianapolis, IN, 46202-5201, USA
| | - Joan M Cook-Mills
- Department of Pediatrics, Department of Microbiology and Immunology, Pediatric Pulmonary, Asthma, and Allergy Basic Research Program, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut Street, R4-202A, Indianapolis, IN, 46202, USA
| |
Collapse
|
20
|
Jiang Y, Nguyen TV, Jin J, Yu ZN, Song CH, Chai OH. Bergapten ameliorates combined allergic rhinitis and asthma syndrome after PM2.5 exposure by balancing Treg/Th17 expression and suppressing STAT3 and MAPK activation in a mouse model. Biomed Pharmacother 2023; 164:114959. [PMID: 37267637 DOI: 10.1016/j.biopha.2023.114959] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023] Open
Abstract
Combined allergic rhinitis and asthma syndrome (CARAS) causes chronic respiratory inflammation in allergic individuals. Long-term exposure to particulate matter 2.5 (PM2.5; particles 2.5 µm or less in diameter) can aggravate respiratory damage. Bergapten (5-methoxysporalen) is a furocoumarin mostly found in bergamot essential oil and has significant antioxidant, anticancer, and anti-inflammatory activity. This study created a model in which CARAS was exacerbated by PM2.5 exposure, in BALB/c mice and explored the potential of bergapten as a therapeutic agent. The bergapten medication increased ovalbumin (OVA)-specific immunoglobulin (Ig) G2a level in serum and decreased OVA-specific IgE and IgG1 expression. Clinical nasal symptoms diminished significantly, with weakened inflammatory reaction in both the nasal mucosa and lungs. Furthermore, bergapten controlled the T helper (Th)1 to Th2 ratio by increasing cytokines associated with Th1-like interleukin (IL)-12 and interferon gamma and decreasing the Th2 cytokines IL-4, IL-5, and IL-13. Factors closely related to the balance between regulatory T cells and Th17 (such as IL-10, IL-17, Forkhead box protein P3, and retinoic-related orphan receptor gamma) were also regulated. Notably, pro-inflammatory cytokines IL-6, IL-1β, and tumor necrosis factor-alpha were reduced by bergapten, which suppressed the activation of both the signal transducer and activator of transcription 3 signaling pathway and the mitogen-activated protein kinase signaling pathway. Therefore, bergapten might have potential as a therapeutic agent for CARAS.
Collapse
Affiliation(s)
- Yuna Jiang
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea
| | - Thi Van Nguyen
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea
| | - Juan Jin
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea
| | - Zhen Nan Yu
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea
| | - Chang Ho Song
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea; Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54896, Jeonbuk, the Republic of Korea.
| | - Ok Hee Chai
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea; Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54896, Jeonbuk, the Republic of Korea.
| |
Collapse
|
21
|
Wei C, Wang Y, Hu C. Bioinformatic analysis and experimental validation of the potential gene in the airway inflammation of steroid-resistant asthma. Sci Rep 2023; 13:8098. [PMID: 37208441 DOI: 10.1038/s41598-023-35214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/15/2023] [Indexed: 05/21/2023] Open
Abstract
Steroid-resistant asthma is a troublesome clinical problem in public health. The pathogenesis of steroid-resistant asthma is complex and remains to be explored. In our work, the online Gene Expression Omnibus microarray dataset GSE7368 was used to explore differentially expressed genes (DEGs) between steroid-resistant asthma patients and steroid-sensitive asthma patients. Tissue-specific gene expression of DEGs was analyzed using BioGPS. The enrichment analyses were performed using GO, KEGG, and GSEA analysis. The protein-protein interaction network and key gene cluster were constructed using STRING, Cytoscape, MCODE, and Cytohubba. A steroid-resistant neutrophilic asthma mouse model was established using lipopolysaccharide (LPS) and ovalbumin (OVA). An LPS-stimulated J744A.1 macrophage model was prepared to validate the underlying mechanism of the interesting DEG gene using the quantitative reverse transcription-polymerase chain reaction (qRT-PCR). A total of 66 DEGs were identified, most of which were present in the hematologic/immune system. Enrichment analysis displayed that the enriched pathways were the IL-17 signaling pathway, MAPK signal pathway, Toll-like receptor signaling pathway, and so on. DUSP2, as one of the top upregulated DEGs, has not been clearly demonstrated in steroid-resistant asthma. In our study, we observed that the salubrinal administration (DUSP2 inhibitor) reversed neutrophilic airway inflammation and cytokine responses (IL-17A, TNF-α) in a steroid-resistant asthma mouse model. We also found that salubrinal treatment reduced inflammatory cytokines (CXCL10 and IL-1β) in LPS-stimulated J744A.1 macrophages. DUSP2 may be a candidate target for the therapy of steroid-resistant asthma.
Collapse
Affiliation(s)
- Chaochao Wei
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Haikou, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Affiliated Hainan Hospital of Hainan Medical University, Haikou, People's Republic of China
- Department of Oncology, Xiangya Hospital Central South University, Changsha, People's Republic of China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Yang Wang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Chengping Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
22
|
Assessment of immune responses and intestinal flora in BALB/c mice model of wheat food allergy via different sensitization methods. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Mannion JM, McLoughlin RM, Lalor SJ. The Airway Microbiome-IL-17 Axis: a Critical Regulator of Chronic Inflammatory Disease. Clin Rev Allergy Immunol 2023; 64:161-178. [PMID: 35275333 PMCID: PMC10017631 DOI: 10.1007/s12016-022-08928-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
Abstract
The respiratory tract is home to a diverse microbial community whose influence on local and systemic immune responses is only beginning to be appreciated. Increasing reports have linked changes in this microbiome to a range of pulmonary and extrapulmonary disorders, including asthma, chronic obstructive pulmonary disease and rheumatoid arthritis. Central to many of these findings is the role of IL-17-type immunity as an important driver of inflammation. Despite the crucial role played by IL-17-mediated immune responses in protection against infection, overt Th17 cell responses have been implicated in the pathogenesis of several chronic inflammatory diseases. However, our knowledge of the influence of bacteria that commonly colonise the respiratory tract on IL-17-driven inflammatory responses remains sparse. In this article, we review the current knowledge on the role of specific members of the airway microbiota in the modulation of IL-17-type immunity and discuss how this line of research may support the testing of susceptible individuals and targeting of inflammation at its earliest stages in the hope of preventing the development of chronic disease.
Collapse
Affiliation(s)
- Jenny M Mannion
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rachel M McLoughlin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stephen J Lalor
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
24
|
Dijoux E, Klein M, Misme-Aucouturier B, Cheminant MA, de Carvalho M, Collin L, Hassoun D, Delage E, Gourdel M, Loirand G, Sauzeau V, Magnan A, Bouchaud G. Allergic Sensitization Driving Immune Phenotyping and Disease Severity in a Mouse Model of Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:246-261. [PMID: 37021509 PMCID: PMC10079520 DOI: 10.4168/aair.2023.15.2.246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 04/07/2023]
Abstract
PURPOSE Asthma is a frequent chronic inflammatory bronchial disease affecting more than 300 million patients worldwide, 70% of whom are secondary to allergy. The diversity of asthmatic endotypes contributes to their complexity. The inter-relationship between allergen and other exposure and the airway microbiome adds to the phenotypic diversity and defines the natural course of asthma. Here, we compared the mouse models of house dust mite (HDM)-induced allergic asthma. Allergic sensitization was performed via various routes and associated with outcomes. METHODS Mice were sensitized with HDM via the oral, nasal or percutaneous routes. Lung function, barrier integrity, immune response and microbiota composition were analyzed. RESULTS Severe impairment of respiratory function was observed in the mice sensitized by the nasal and cutaneous paths. It was associated with epithelial dysfunction characterized by an increased permeability secondary to junction protein disruption. Such sensitization paths induced a mixed eosinophilic and neutrophilic inflammatory response with high interleukin (IL)-17 airway secretion. In contrast, orally sensitized mice showed a mild impairment of respiratory function. Epithelial dysfunction was mild with increased mucus production, but preserved epithelial junctions. Regarding lung microbiota, sensitization provoked a significant loss of diversity. At the genus level, Cutibacterium, Acinetobacter, Streptococcus and Lactobacillus were found to be modulated according to the sensitization pathway. An increase in theanti-inflammatory microbiota metabolites was observed in the oral-sensitization group. CONCLUSIONS Our study highlights the strong impact of the sensitization route on the pathophysiology and the critical phenotypic diversity of allergic asthma in a mouse model.
Collapse
Affiliation(s)
- Eléonore Dijoux
- Nantes Université, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Martin Klein
- Nantes Université, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | | | | | | | - Louise Collin
- Nantes Université, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Dorian Hassoun
- Nantes Université, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Erwan Delage
- Université de Nantes, CNRS UMR 6004, LS2N, Nantes, France
| | - Mathilde Gourdel
- Nantes Université, CNRS, INSERM, L'institut du Thorax, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, Nantes, France
| | - Gervaise Loirand
- Nantes Université, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Vincent Sauzeau
- Nantes Université, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Antoine Magnan
- Hôpital Foch, Suresnes, France
- UMR 0892 Virologie et Immunologie Moléculaire, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université Paris-Saclay INRAE, Paris, France
| | - Grégory Bouchaud
- Nantes Université, CNRS, INSERM, L'institut du Thorax, Nantes, France
- INRAe, Biopolymères Interactions Assemblages (BIA), Nantes, France.
| |
Collapse
|
25
|
Bryant N, Muehling LM. T-cell responses in asthma exacerbations. Ann Allergy Asthma Immunol 2022; 129:709-718. [PMID: 35918022 PMCID: PMC9987567 DOI: 10.1016/j.anai.2022.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Asthma is a chronic lung disease comprising multiple endotypes and characterized by periodic exacerbations. A diverse array of T cells has been found to contribute to all endotypes of asthma in pathogenic and regulatory roles. Here, we review the contributions of CD4+, CD8+, and unconventional T cells in allergic and nonallergic asthma. DATA SOURCES Review of published literature pertaining to conventional and unconventional T-cell types in asthma. STUDY SELECTIONS Recent peer-reviewed articles pertaining to T cells in asthma, with additional peer-reviewed studies for context. RESULTS Much research in asthma has focused on the roles of CD4+ TH cells. Roles for TH2 cells in promoting allergic asthma pathogenesis have been well-described, and the recent description of pathogenic TH2A cells provides additional insight into these responses. Other TH types, notably TH1 and TH17, have been linked to neutrophilic and steroid-resistant asthma phenotypes. Beyond CD4+ T cells, CD8+ Tc2 cells are also strongly associated with allergic asthma. An emerging area for study is unconventional T-cell types, including γδT, invariant natural killer T, and mucosal-associated invariant T cells. Although data in asthma remain limited for these cells, their ability to bridge innate and adaptive responses likely makes them key players in asthma. A number of asthma therapies target T-cell responses, and, although data are limited, they seem to modulate T-cell populations. CONCLUSION Given the diversity and heterogeneity of asthma and T-cell responses, there remain many rich avenues for research to better understand the pathogenesis of asthma. Despite the breadth of T cells in asthma, approved therapeutics remain limited to TH2 networks.
Collapse
Affiliation(s)
- Naomi Bryant
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lyndsey M Muehling
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
26
|
Influence of the environment on the characteristics of asthma. Sci Rep 2022; 12:20522. [PMID: 36443644 PMCID: PMC9705565 DOI: 10.1038/s41598-022-25028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Few studies have compared the prevalence of asthma in urban and rural settings or explored the issue of whether these two manifestations of the disease may represent different phenotypes. The aim of this study was: (a) to establish whether the prevalence of asthma differs between rural and urban settings, and b) to identify differences in the clinical presentation of asthma in these two environments. Descriptive epidemiological study involving individuals aged 18 or over from a rural (n = 516) and an urban population (n = 522). In the first phase, individuals were contacted by letter in order to organize the administration of a first validated questionnaire (Q1) designed to establish the possible prevalence of bronchial asthma. In the second phase, patients who had presented association patterns in the set of variables related to asthma in Q1 completed a second validated questionnaire (Q2), designed to identify the characteristics of asthma. According to Q1, the prevalence of asthma was 15% (n = 78) and 11% (n = 59) in rural and urban populations respectively. Sixty-five individuals with asthma from the rural population and all 59 individuals from the urban population were contacted and administered the Q2. Thirty-seven per cent of the individuals surveyed had previously been diagnosed with bronchial asthma (35% in the rural population and 40% in the urban setting). In the urban asthmatic population there was a predominance of women, a greater personal history of allergic rhinitis and a family history of allergic rhinitis and/or eczema. Asthma was diagnosed in adulthood in 74.8% of the patients, with no significant differences between the two populations. Regarding symptoms, cough (morning, daytime and night) and expectoration were more frequent in the urban population. The prevalence of asthma does not differ between urban and rural settings. The differences in exposure that characterize each environment may lead to different manifestations of the disease and may also affect its severity.
Collapse
|
27
|
Wang Y, Wan R, Peng W, Zhao X, Bai W, Hu C. Quercetin alleviates ferroptosis accompanied by reducing M1 macrophage polarization during neutrophilic airway inflammation. Eur J Pharmacol 2022; 938:175407. [PMID: 36417973 DOI: 10.1016/j.ejphar.2022.175407] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Ferroptosis is a kind of regulated cell death, supporting the pathological process of lung inflammation, including asthma. Quercetin (QCT), a kind of natural dietary flavonoid, exerts anti-inflammatory and anti-ferroptosis effects in various diseases. However, the role of QCT in ferroptosis-associated airway inflammation of neutrophilic asthma remains to be described. Our study aimed to investigate the therapeutic effects of QCT on neutrophilic airway inflammation of asthma. Ferrostatin-1 (Fer-1), as a kind of ferroptosis inhibitor, was used to demonstrate whether neutrophilic airway inflammation of asthma relied on ferroptosis. In our study, the alleviation effect of QCT on neutrophilic airway inflammation was similar to Fer-1. Moreover, the significantly decreased levels of ferroptosis anti-oxidant protein (GPX4 and SLC7A11), increased malondialdehyde (MDA) levels, upregulated levels of 4-hydroxynonenal (4-HNE) expression by immunohistochemistry, and distorted mitochondria morphological changes in the lung tissues suggested lung ferroptosis in neutrophilic airway inflammation, which could be reversed by QCT treatment. In vitro experiments showed that QCT reduced LPS-induced ferroptosis through upregulating cell viability and levels of ferroptosis anti-oxidant protein (SLC7A11 and GPX4), reducing inflammatory cytokines, and decreasing the levels of MDA. Furthermore, ferroptosis was accompanied by enhancing M1 phenotype in neutrophilic airway inflammation, and QCT suppressed ferroptosis by inhibiting the pro-inflammatory M1 profile in vitro and in vivo, just as Fer-1 did. In conclusion, our study found that QCT ameliorated ferroptosis-associated neutrophilic airway inflammation accompanied by inhibiting M1 macrophage polarization. QCT may be a promising ferroptosis inhibitor for neutrophilic airway inflammation.
Collapse
Affiliation(s)
- Yang Wang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Rongjun Wan
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Wang Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Xincheng Zhao
- Xiangya School of Medicine, Central South University, Hunan, 410008, PR China
| | - Wenxuan Bai
- Xiangya School of Medicine, Central South University, Hunan, 410008, PR China
| | - Chengping Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
28
|
Hong L, Herjan T, Bulek K, Xiao J, Comhair SAA, Erzurum SC, Li X, Liu C. Mechanisms of Corticosteroid Resistance in Type 17 Asthma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1860-1869. [PMID: 36426949 PMCID: PMC9666330 DOI: 10.4049/jimmunol.2200288] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022]
Abstract
IL-17A plays an important role in the pathogenesis of asthma, particularly the neutrophilic corticosteroid (CS)-resistant subtype of asthma. Clinical studies suggest that a subset of asthma patients, i.e., Th17/IL-17A-mediated (type 17) CS-resistant neutrophilic asthma, may improve with Th17/IL-17A pathway blockade. However, little is known about the mechanisms underlying type 17 asthma and CS response. In this article, we show that blood levels of lipocalin-2 (LCN2) and serum amyloid A (SAA) levels are positively correlated with IL-17A levels and are not inhibited by high-dose CS usage in asthma patients. In airway cell culture systems, IL-17A induces these two secreted proteins, and their induction is enhanced by CS. Furthermore, plasma LCN2 and SAA levels are increased in mice on a preclinical type 17 asthma model, correlated to IL-17A levels, and are not reduced by glucocorticoid (GC). In the mechanistic studies, we identify CEBPB as the critical transcription factor responsible for the synergistic induction of LCN2 and SAA by IL-17A and GC. IL-17A and GC collaboratively regulate CEBPB at both transcriptional and posttranscriptional levels. The posttranscriptional regulation of CEBPB is mediated in part by Act1, the adaptor and RNA binding protein in IL-17A signaling, which directly binds CEBPB mRNA and inhibits its degradation. Overall, our findings suggest that blood LCN2 and SAA levels may be associated with a type 17 asthma subtype and provide insight into the molecular mechanism of the IL-17A-Act1/CEBPB axis on these CS-resistant genes.
Collapse
Affiliation(s)
- Lingzi Hong
- Inflammation and Immunity, Cleveland Clinic, Cleveland, OH; and
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Tomasz Herjan
- Inflammation and Immunity, Cleveland Clinic, Cleveland, OH; and
| | - Katarzyna Bulek
- Inflammation and Immunity, Cleveland Clinic, Cleveland, OH; and
| | - Jianxin Xiao
- Inflammation and Immunity, Cleveland Clinic, Cleveland, OH; and
| | | | | | - Xiaoxia Li
- Inflammation and Immunity, Cleveland Clinic, Cleveland, OH; and
| | - Caini Liu
- Inflammation and Immunity, Cleveland Clinic, Cleveland, OH; and
| |
Collapse
|
29
|
Min Z, Zhou J, Mao R, Cui B, Cheng Y, Chen Z. Pyrroloquinoline Quinone Administration Alleviates Allergic Airway Inflammation in Mice by Regulating the JAK-STAT Signaling Pathway. Mediators Inflamm 2022; 2022:1267841. [PMID: 36345503 PMCID: PMC9637035 DOI: 10.1155/2022/1267841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/18/2022] [Accepted: 09/24/2022] [Indexed: 11/12/2023] Open
Abstract
The current asthma therapies are inadequate for many patients with severe asthma. Pyrroloquinoline quinone (PQQ) is a naturally-occurring redox cofactor and nutrient that can exert a multitude of physiological effects, including anti-inflammatory and antioxidative effects. We sought to explore the effects of PQQ on allergic airway inflammation and reveal the underlying mechanisms. In vitro, the effects of PQQ on the secretion of epithelial-derived cytokines by house dust mite- (HDM-) incubated 16-HBE cells and on the differentiation potential of CD4+ T cells were investigated. In vivo, PQQ was administered to mice with ovalbumin- (OVA-) induced asthma, and lung pathology and inflammatory cell infiltration were assessed. The changes in T cell subsets and signal transducers and activators of transcription (STATs) were evaluated by flow cytometry. Pretreatment with PQQ significantly decreased HDM-stimulated thymic stromal lymphopoietin (TSLP) production in a dose-dependent manner in 16-HBE cells and inhibited Th2 cell differentiation in vitro. Treatment with PQQ significantly reduced bronchoalveolar lavage fluid (BALF) inflammatory cell counts in the OVA-induced mouse model. PQQ administration also changed the secretion of IFN-γ and IL-4 as well as the percentages of Th1, Th2, Th17, and Treg cells in the peripheral blood and lung tissues, along with inhibition the phosphorylation of STAT1, STAT3, and STAT6 while promoting that of STAT4 in allergic airway inflammation model mice. PQQ can alleviate allergic airway inflammation in mice by improving the immune microenvironment and regulating the JAK-STAT signaling pathway. Our findings suggest that PQQ has great potential as a novel therapeutic agent for inflammatory diseases, including asthma.
Collapse
Affiliation(s)
- Zhihui Min
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiebai Zhou
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, China
| | - Ruolin Mao
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, China
| | - Bo Cui
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, China
| | - Yunfeng Cheng
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihong Chen
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Chen S, Yu L, Deng Y, Liu Y, Wang L, Li D, Yang K, Liu S, Tao A, Chen R. Early IL-17A Prevention Rather Than Late IL-17A Neutralization Attenuates Toluene Diisocyanate-Induced Mixed Granulocytic Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:528-548. [PMID: 36174994 PMCID: PMC9523423 DOI: 10.4168/aair.2022.14.5.528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/10/2022] [Accepted: 07/05/2022] [Indexed: 06/16/2023]
Abstract
PURPOSE Interleukin (IL)-17A plays a critical role in the pathogenesis of allergic airway inflammation. Yet, the exact roles of IL-17A in asthma are still controversial. Thus, the aim of this study was to dissect the roles of IL-17A in toluene diisocyanate (TDI)-induced mixed granulocytic asthma and to assess the effects of neutralizing antibody in different effector phases on TDI-induced asthma. METHODS IL-17A functions in allergic airway inflammation were evaluated using mice deficient in IL-17A (Il17a-/-) or IL-17A monoclonal antibody (IL-17A mab, intraperitoneally, 50 μg per mouse, 100 μg per mouse). Moreover, the effects of exogenous recombinant IL (rIL)-17A in vivo (murine rIL-17A, intranasally, 1 μg per mouse) and in vitro (human rIL-17A, 100 ng/mL) were investigated. RESULTS TDI-induced mixed granulocytic airway inflammation was IL-17A-dependent because airway hyperreactivity, neutrophil and eosinophil infiltration, airway smooth muscle thickness, epithelium injury, dysfunctional T helper (Th) 2 and Th17 responses, granulocytic chemokine production and mucus overproduction were more markedly reduced in the Il17a-/- mice or by IL-17A neutralization during the sensitization phase of wild-type (WT) mice. By contrast, IL-17A neutralization during the antigen-challenge phase aggravated TDI-induced eosinophils recruitment, with markedly elevated Th2 response. In line with this, instillation of rIL-17 during antigen sensitization exacerbated airway inflammation by promoting neutrophils aggregation, while rIL-17A during the antigen-challenge phase protected the mice from TDI-induced airway eosinophilia. Moreover, rIL-17A exerted distinct effects on eosinophil- or neutrophil-related signatures in vitro. CONCLUSIONS Our data demonstrated that IL-17A was required for the initiation of TDI-induced asthma, but functioned as a negative regulator of established allergic inflammation, suggesting that early abrogation of IL-17A signaling, but not late IL-17A neutralization, may prevent the progression of TDI-induced asthma and could be used as a therapeutic strategy for severe asthmatics in clinical settings.
Collapse
Affiliation(s)
- Shuyu Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen Key Laboratory of Respiratory Diseases, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Yu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen Key Laboratory of Respiratory Diseases, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Yao Deng
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen Key Laboratory of Respiratory Diseases, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Yuanyuan Liu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen Key Laboratory of Respiratory Diseases, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lingwei Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen Key Laboratory of Respiratory Diseases, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Difei Li
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen Key Laboratory of Respiratory Diseases, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Kai Yang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen Key Laboratory of Respiratory Diseases, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shengming Liu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ailin Tao
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen Key Laboratory of Respiratory Diseases, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China.
| |
Collapse
|
31
|
Luo W, Hu J, Xu W, Dong J. Distinct spatial and temporal roles for Th1, Th2, and Th17 cells in asthma. Front Immunol 2022; 13:974066. [PMID: 36032162 PMCID: PMC9411752 DOI: 10.3389/fimmu.2022.974066] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
Immune response in the asthmatic respiratory tract is mainly driven by CD4+ T helper (Th) cells, represented by Th1, Th2, and Th17 cells, especially Th2 cells. Asthma is a heterogeneous and progressive disease, reflected by distinct phenotypes orchestrated by τh2 or non-Th2 (Th1 and Th17) immune responses at different stages of the disease course. Heterogeneous cytokine expression within the same Th effector state in response to changing conditions in vivo and interlineage relationship among CD4+ T cells shape the complex immune networks of the inflammatory airway, making it difficult to find one panacea for all asthmatics. Here, we review the role of three T helper subsets in the pathogenesis of asthma from different stages, highlighting timing is everything in the immune system. We also discuss the dynamic topography of Th subsets and pathogenetic memory Th cells in asthma.
Collapse
Affiliation(s)
- Weihang Luo
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jindong Hu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Weifang Xu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
- *Correspondence: Jingcheng Dong, ; Weifang Xu,
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Jingcheng Dong, ; Weifang Xu,
| |
Collapse
|
32
|
Kang Q, Li L, Pang Y, Zhu W, Meng L. An update on Ym1 and its immunoregulatory role in diseases. Front Immunol 2022; 13:891220. [PMID: 35967383 PMCID: PMC9366555 DOI: 10.3389/fimmu.2022.891220] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
Ym1 is a rodent-specific chitinase-like protein (CLP) lacking catalytic activity, whose cellular origins are mainly macrophages, neutrophils and other cells. Although the detailed function of Ym1 remains poorly understood, Ym1 has been generally recognized as a fundamental feature of alternative activation of macrophages in mice and hence one of the prevalent detecting targets in macrophage phenotype distinguishment. Studies have pointed out that Ym1 may have regulatory effects, which are multifaceted and even contradictory, far more than just a mere marker. Allergic lung inflammation, parasite infection, autoimmune diseases, and central nervous system diseases have been found associations with Ym1 to varying degrees. Thus, insights into Ym1’s role in diseases would help us understand the pathogenesis of different diseases and clarify the genuine roles of CLPs in mammals. This review summarizes the information on Ym1 from the gene to its expression and regulation and focuses on the association between Ym1 and diseases.
Collapse
Affiliation(s)
- Qi Kang
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Department of Clinical Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Luyao Li
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Department of Clinical Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yucheng Pang
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Department of Clinical Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| |
Collapse
|
33
|
Huang D, Zhang C, Wang P, Li X, Gao L, Zhao C. JMJD3 Promotes Porphyromonas gingivalis Lipopolysaccharide-Induced Th17-Cell Differentiation by Modulating the STAT3-RORc Signaling Pathway. DNA Cell Biol 2022; 41:778-787. [PMID: 35867069 PMCID: PMC9416562 DOI: 10.1089/dna.2022.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The immune response mediated by Th17 cells is essential in the pathogenesis of periodontitis. Emerging evidence has demonstrated that lipopolysaccharide from Porphyromonas gingivalis (Pg-LPS) could promote Th17-cell differentiation directly, while the downstream signaling remains elusive. This study was aimed to explore the role of JMJD3 (a JmjC family histone demethylase) and signal transducers and activators of transcription 3 (STAT3) in Th17-cell differentiation triggered by Pg-LPS and clarify the interaction between them. We found that the expression of JMJD3 and STAT3 was significantly increased under Th17-polarizing conditions. Pg-LPS could promote Th17-cell differentiation from CD4+ T cells, with an increased expression of JMJD3 and STAT3 compared to the culture without Pg-LPS. The coimmunoprecipitation results showed that the interactions of JMJD3 and STAT3, STAT3 and retinoid-related orphan nuclear receptor γt (RORγt) were enhanced following Pg-LPS stimulation during Th17-cell differentiation. Further blocking assays were performed and the results showed that inhibition of STAT3 or JMJD3 both suppressed the Th17-cell differentiation, JMJD3 inhibitor could reduce the expression of STAT3 and p-STAT3, while JMJD3 expression was not affected when STAT3 was inhibited. Taken together, this study found that JMJD3 could promote Pg-LPS induced Th17-cell differentiation by modulating the STAT3-RORc signaling pathway.
Collapse
Affiliation(s)
- Doudou Huang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chi Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Panpan Wang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiting Li
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Li Gao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chuanjiang Zhao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Fagundes BO, de Sousa TR, Nascimento A, Fernandes LA, Sgnotto FDR, Orfali RL, Aoki V, Duarte AJDS, Sanabani SS, Victor JR. IgG from Adult Atopic Dermatitis (AD) Patients Induces Nonatopic Neonatal Thymic Gamma-Delta T Cells (γδT) to Acquire IL-22/IL-17 Secretion Profile with Skin-Homing Properties and Epigenetic Implications Mediated by miRNA. Int J Mol Sci 2022; 23:6872. [PMID: 35743310 PMCID: PMC9224404 DOI: 10.3390/ijms23126872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022] Open
Abstract
γδT cells mature in the human thymus, and mainly produce IL-17A or IFN-γ, but can also produce IL-22 and modulate a variety of immune responses. Here, we aimed to evaluate whether IgG from AD patients (AD IgG) can functionally modulate thymic nonatopic γδT cells. Thymic tissues were obtained from 12 infants who had not had an atopic history. Thymocytes were cultured in mock condition, or in the presence of either AD IgG or therapeutic intravenous IgG (IVIg). Following these treatments, intracellular cytokine production, phenotype, and microRNA expression profiles were investigated. AD IgG could downregulate α4β7, upregulate CLA, and induce the production of IFN-γ, IL-17, and IL-22 in γδT cells. Although both AD IgG and IVIg could directly interact with γδT cell membranes, AD IgG could reduce γδT cell apoptosis. AD IgG could upregulate nine miRNAs compared to IVIg, and six when compared to the mock condition. In parallel, some miRNAs were downregulated. Target gene prediction and functional analysis indicated that some target genes were enriched in the negative regulation of cellular transcription. This study shows that AD IgG influences the production of IL-17 and IL-22 by intrathymic nonatopic γδT cells, and demonstrates epigenetic implications mediated by miRNAs.
Collapse
Affiliation(s)
- Beatriz Oliveira Fagundes
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil; (B.O.F.); (T.R.d.S.); (R.L.O.); (V.A.); (A.J.d.S.D.)
| | - Thamires Rodrigues de Sousa
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil; (B.O.F.); (T.R.d.S.); (R.L.O.); (V.A.); (A.J.d.S.D.)
| | - Andrezza Nascimento
- Post-Graduation Program in Translational Medicine, Federal University of Sao Paulo, Sao Paulo 04039-002, Brazil; (A.N.); (L.A.F.)
| | - Lorena Abreu Fernandes
- Post-Graduation Program in Translational Medicine, Federal University of Sao Paulo, Sao Paulo 04039-002, Brazil; (A.N.); (L.A.F.)
| | | | - Raquel Leão Orfali
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil; (B.O.F.); (T.R.d.S.); (R.L.O.); (V.A.); (A.J.d.S.D.)
| | - Valéria Aoki
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil; (B.O.F.); (T.R.d.S.); (R.L.O.); (V.A.); (A.J.d.S.D.)
| | - Alberto José da Silva Duarte
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil; (B.O.F.); (T.R.d.S.); (R.L.O.); (V.A.); (A.J.d.S.D.)
- Division of Pathology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil; (B.O.F.); (T.R.d.S.); (R.L.O.); (V.A.); (A.J.d.S.D.)
- Laboratory of Medical Investigation LIM-03, Division of Pathology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Jefferson Russo Victor
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil; (B.O.F.); (T.R.d.S.); (R.L.O.); (V.A.); (A.J.d.S.D.)
- Faculdades Metropolitanas Unidas (FMU), Health Sciences School, Sao Paulo 04505-002, Brazil
- Medical School, Universidade Santo Amaro (UNISA), Sao Paulo 04829-300, Brazil
| |
Collapse
|
35
|
Blockade of NLRP3/Caspase-1/IL-1β Regulated Th17/Treg Immune Imbalance and Attenuated the Neutrophilic Airway Inflammation in an Ovalbumin-Induced Murine Model of Asthma. J Immunol Res 2022; 2022:9444227. [PMID: 35664352 PMCID: PMC9159827 DOI: 10.1155/2022/9444227] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/28/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Asthma is a heterogeneous inflammatory disorder of the airways, and multiple studies have addressed the vital role of the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3)/caspase-1/interleukin-1β (IL-1β) pathway in asthma, but its impact on ovalbumin- (OVA-) induced neutrophilic asthma remains unclear. Here, we explored this pathway's effect on airway inflammation in neutrophilic asthma to clarify whether blocking this signaling could alleviate asthmatic airway inflammation. Using an established OVA-induced neutrophilic asthma mouse model, we provided asthmatic mice with a highly selective NLRP3 inhibitor, MCC950, and a specific caspase-1 inhibitor, Ac-YVAD-cmk. Our results indicated that asthmatic mice exhibited increased airway hyperresponsiveness, neutrophil infiltration, and airway mucus hypersecretion, upregulated retinoid-related orphan receptor-γt (RORγt) mRNA expression, and downregulated fork head box p3 (Foxp3) mRNA expression, which was concurrent with NLRP3 inflammasome activation and upregulation of caspase-1, IL-1β, and IL-18 expression in lung. Treatment of NLRP3 inflammasome inhibitors significantly attenuated airway hyperresponsiveness, airway inflammation, and reversed T helper 17 (Th17)/regulatory T (Treg) cell imbalance in asthmatic mice. We propose that the NLRP3/caspase-1/IL-1β pathway plays an important role in the pathological process of neutrophilic asthma and provides evidence that blocking this pathway could potentially be a treatment strategy to ameliorate airway inflammation in asthma after validation with future experimental and clinical studies.
Collapse
|
36
|
Allergic airway inflammation induces upregulation of the expression of IL-23R by macrophages and not in CD3 + T cells and CD11c +F4/80 - dendritic cells of the lung. Cell Tissue Res 2022; 389:85-98. [PMID: 35475923 PMCID: PMC9200692 DOI: 10.1007/s00441-021-03538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/06/2021] [Indexed: 11/05/2022]
Abstract
Interleukin 23 and the interleukin 23 receptor (IL-23-IL23R) are described as the major enhancing factors for Interleukin 17 (IL-17) in allergic airway inflammation. IL-17 is considered to induce neutrophilic inflammation in the lung, which is often observed in severe, steroid-resistant asthma-phenotypes. For that reason, understanding of IL-23 and IL-17 axis is very important for future therapy strategies, targeting neutrophil pathway of bronchial asthma. This study aimed to investigate the distribution and expression of IL-23R under physiological and inflammatory conditions. Therefore, a house dust mite (HDM) model of allergic airway inflammation was performed by treating mice with HDM intranasally. Immunofluorescence staining with panel of antibodies was performed in lung tissues to examine the macrophage, dendritic cell, and T cell subpopulations. The allergic airway inflammation was quantified by histopathological analysis, ELISA measurements, and airway function. HDM-treated mice exhibited a significant allergic airway inflammation including higher amounts of NE+ cells in lung parenchyma. We found only a small amount of IL-23R positives, out of total CD3+T cells, and no upregulation in HDM-treated animals. In contrast, the populations of F4/80+ macrophages and CD11c+F4/80− dendritic cells (DCs) with IL-23R expression were found to be higher. But HDM treatment leads to a significant increase of IL-23R+ macrophages, only. IL-23R was expressed by every examined macrophage subpopulation, whereas only Mϕ1 and hybrids between Mϕ1 and Mϕ2 phenotype and not Mϕ2 were found to upregulate IL-23R. Co-localization of IL-23R and IL-17 was only observed in F4/80+ macrophages, suggesting F4/80+ macrophages express IL-23R along with IL-17 in lung tissue. The study revealed that macrophages involving the IL-23 and IL-17 pathway may provide a potential interesting therapeutic target in neutrophilic bronchial asthma.
Collapse
|
37
|
Immormino RM, Jania CM, Tilley SL, Moran TP. Neuropilin‐2 regulates airway inflammation in a neutrophilic asthma model. Immun Inflamm Dis 2022; 10:e575. [PMID: 34861108 PMCID: PMC8926497 DOI: 10.1002/iid3.575] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 01/22/2023] Open
Abstract
Background Asthma is a heterogenous disease that can be classified into eosinophilic (type 2‐high) and noneosinophilic (type 2‐low) endotypes. The type 2‐low endotype of asthma can be characterized by the presence of neutrophilic airway inflammation that is poorly responsive to corticosteroids. Dysregulated innate immune responses to microbial products including Toll‐like receptor (TLR) ligands have been associated with the pathogenesis of neutrophilic asthma. The key molecules that regulate inflammatory responses in individuals with neutrophilic asthma remain unclear. We previously reported that the immunoregulatory receptor neuropilin‐2 (NRP2) is expressed by murine and human alveolar macrophage (AM) and suppresses lipopolysaccharide (LPS)‐induced neutrophilic airway inflammation. Methods Here, we investigated the immunoregulatory role of NRP2 in a mouse model of neutrophilic asthma. Results We found that TLR ligands, but not T helper 2 (Th2)‐promoting adjuvants, induced NRP2 expression by AM. Using an LPS‐mediated model of neutrophilic asthma, we demonstrate that NRP2 was increased in AM and other lung antigen‐presenting cells following airway challenge with antigen. Conditional deletion of NRP2 in myeloid cells exacerbated airway inflammation in a neutrophilic asthma model. In contrast, myeloid‐specific ablation of NRP2 did not affect airway inflammation in a Th2‐mediated eosinophilic asthma model. Myeloid‐specific ablation of NRP2 did not affect Th1/Th17 responses to inhaled antigens or expression of neutrophil chemokines but rather resulted in impaired efferocytosis by AM, which is necessary for effective resolution of airway inflammation. Conclusion Our findings suggest that NRP2 is a negative regulator of airway inflammation associated with neutrophilic asthma.
Collapse
Affiliation(s)
- Robert M. Immormino
- Center for Environmental Medicine, Asthma and Lung Biology University of North Carolina Chapel Hill North Carolina USA
| | - Corey M. Jania
- Department of Medicine University of North Carolina Chapel Hill North Carolina USA
| | - Stephen L. Tilley
- Department of Medicine University of North Carolina Chapel Hill North Carolina USA
| | - Timothy P. Moran
- Center for Environmental Medicine, Asthma and Lung Biology University of North Carolina Chapel Hill North Carolina USA
- Department of Pediatrics University of North Carolina Chapel Hill North Carolina USA
| |
Collapse
|
38
|
Whitehead GS, Thomas SY, Nakano K, Royer DJ, Burke CG, Nakano H, Cook DN. A neutrophil/TGF-β axis limits the pathogenicity of allergen-specific CD4+ T cells. JCI Insight 2022; 7:150251. [PMID: 35191395 PMCID: PMC8876454 DOI: 10.1172/jci.insight.150251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
The intensity and longevity of inflammatory responses to inhaled allergens is determined largely by the balance between effector and regulatory immune responses, but the mechanisms that determine the relative magnitudes of these opposing forces remain poorly understood. We have found that the type of adjuvant used during allergic sensitization has a profound effect on both the nature and longevity of the pulmonary inflammation triggered by subsequent reexposure to that same provoking allergen. TLR ligand adjuvants and house dust extracts primed immune responses characterized by a mixed neutrophilic and eosinophilic inflammation that was suppressed by multiple daily allergen challenges. During TLR ligand–mediated allergic sensitization, mice displayed transient airway neutrophilia, which triggered the release of TGF-β into the airway. This neutrophil-dependent production of TGF-β during sensitization had a delayed, suppressive effect on eosinophilic responses to subsequent allergen challenge. Neutrophil depletion during sensitization did not affect numbers of Foxp3+ Tregs but increased proportions of Gata3+CD4+ T cells, which, upon their transfer to recipient mice, triggered stronger eosinophilic inflammation. Thus, a neutrophil/TGF-β axis acts during TLR-mediated allergic sensitization to fine-tune the phenotype of developing allergen-specific CD4+ T cells and limit their pathogenicity, suggesting a novel immunotherapeutic approach to control eosinophilia in asthma.
Collapse
|
39
|
Margelidon-Cozzolino V, Tsicopoulos A, Chenivesse C, de Nadai P. Role of Th17 Cytokines in Airway Remodeling in Asthma and Therapy Perspectives. FRONTIERS IN ALLERGY 2022; 3:806391. [PMID: 35386663 PMCID: PMC8974749 DOI: 10.3389/falgy.2022.806391] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/07/2022] Open
Abstract
Airway remodeling is a frequent pathological feature of severe asthma leading to permanent airway obstruction in up to 50% of cases and to respiratory disability. Although structural changes related to airway remodeling are well-characterized, immunological processes triggering and maintaining this phenomenon are still poorly understood. As a consequence, no biotherapy targeting cytokines are currently efficient to treat airway remodeling and only bronchial thermoplasty may have an effect on bronchial nerves and smooth muscles with uncertain clinical relevance. Th17 cytokines, including interleukin (IL)-17 and IL-22, play a role in neutrophilic inflammation in severe asthma and may be involved in airway remodeling. Indeed, IL-17 is increased in sputum from severe asthmatic patients, induces the expression of "profibrotic" cytokines by epithelial, endothelial cells and fibroblasts, and provokes human airway smooth muscle cell migration in in vitro studies. IL-22 is also increased in asthmatic samples, promotes myofibroblast differentiation, epithelial-mesenchymal transition and proliferation and migration of smooth muscle cells in vitro. Accordingly, we also found high levels of IL-17 and IL-22 in a mouse model of dog-allergen induced asthma characterized by a strong airway remodeling. Clinical trials found no effect of therapy targeting IL-17 in an unselected population of asthmatic patients but showed a potential benefit in a sub-population of patients exhibiting a high level of airway reversibility, suggesting a potential role on airway remodeling. Anti-IL-22 therapies have not been evaluated in asthma yet but were demonstrated efficient in severe atopic dermatitis including an effect on skin remodeling. In this review, we will address the role of Th17 cytokines in airway remodeling through data from in vitro, in vivo and translational studies, and examine the potential place of Th17-targeting therapies in the treatment of asthma with airway remodeling.
Collapse
Affiliation(s)
- Victor Margelidon-Cozzolino
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Anne Tsicopoulos
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Cécile Chenivesse
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
- CRISALIS (Clinical Research Initiative in Severe Asthma: a Lever for Innovation & Science), F-CRIN Network, INSERM US015, Toulouse, France
| | - Patricia de Nadai
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
40
|
Tan YY, Zhou HQ, Lin YJ, Yi LT, Chen ZG, Cao QD, Guo YR, Wang ZN, Chen SD, Li Y, Wang DY, Qiao YK, Yan Y. FGF2 is overexpressed in asthma and promotes airway inflammation through the FGFR/MAPK/NF-κB pathway in airway epithelial cells. Mil Med Res 2022; 9:7. [PMID: 35093168 PMCID: PMC8800304 DOI: 10.1186/s40779-022-00366-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/09/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Airway inflammation is the core pathological process of asthma, with the key inflammatory regulators incompletely defined. Recently, fibroblast growth factor 2 (FGF2) has been reported to be an inflammatory regulator; however, its role in asthma remains elusive. This study aimed to investigate the immunomodulatory role of FGF2 in asthma. METHODS First, FGF2 expression was characterised in clinical asthma samples and the house dust mite (HDM)-induced mouse chronic asthma model. Second, recombinant mouse FGF2 (rm-FGF2) protein was intranasally delivered to determine the effect of FGF2 on airway inflammatory cell infiltration. Third, human airway epithelium-derived A549 cells were stimulated with either HDM or recombinant human interleukin-1β (IL-1β) protein combined with or without recombinant human FGF2. IL-1β-induced IL-6 or IL-8 release levels were determined using enzyme-linked immunosorbent assay, and the involved signalling transduction was explored via Western blotting. RESULTS Compared with the control groups, the FGF2 protein levels were significantly upregulated in the bronchial epithelium and alveolar areas of clinical asthma samples (6.70 ± 1.79 vs. 16.32 ± 2.40, P = 0.0184; 11.20 ± 2.11 vs. 21.00 ± 3.00, P = 0.033, respectively) and HDM-induced asthmatic mouse lung lysates (1.00 ± 0.15 vs. 5.14 ± 0.42, P < 0.001). Moreover, FGF2 protein abundance was positively correlated with serum total and anti-HDM IgE levels in the HDM-induced chronic asthma model (R2 = 0.857 and 0.783, P = 0.0008 and 0.0043, respectively). Elevated FGF2 protein was mainly expressed in asthmatic bronchial epithelium and alveolar areas and partly co-localised with infiltrated inflammatory cell populations in HDM-induced asthmatic mice. More importantly, intranasal instillation of rm-FGF2 aggravated airway inflammatory cell infiltration (2.45 ± 0.09 vs. 2.88 ± 0.14, P = 0.0288) and recruited more subepithelial neutrophils after HDM challenge [(110.20 ± 29.43) cells/mm2 vs. (238.10 ± 42.77) cells/mm2, P = 0.0392] without affecting serum IgE levels and Th2 cytokine transcription. In A549 cells, FGF2 was upregulated through HDM stimulation and promoted IL-1β-induced IL-6 or IL-8 release levels (up to 1.41 ± 0.12- or 1.44 ± 0.14-fold change vs. IL-1β alone groups, P = 0.001 or 0.0344, respectively). The pro-inflammatory effect of FGF2 is likely mediated through the fibroblast growth factor receptor (FGFR)/mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NF-κB) pathway. CONCLUSION Our findings suggest that FGF2 is a potential inflammatory modulator in asthma, which can be induced by HDM and acts through the FGFR/MAPK/NF-κB pathway in the airway epithelial cells.
Collapse
Affiliation(s)
- Yuan-Yang Tan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Hui-Qin Zhou
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Yu-Jing Lin
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Liu-Tong Yi
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Zhuang-Gui Chen
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qing-Dong Cao
- Department of Cardiothoracic Surgery, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Yan-Rong Guo
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Zhao-Ni Wang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Shou-Deng Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, 119228, Singapore
| | | | - Yan Yan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China. .,Central Laboratory, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
41
|
Yang Z, Mitländer H, Vuorinen T, Finotto S. Mechanism of Rhinovirus Immunity and Asthma. Front Immunol 2021; 12:731846. [PMID: 34691038 PMCID: PMC8526928 DOI: 10.3389/fimmu.2021.731846] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Abstract
The majority of asthma exacerbations in children are caused by Rhinovirus (RV), a positive sense single stranded RNA virus of the Picornavirus family. The host has developed virus defense mechanisms that are mediated by the upregulation of interferon-activated signaling. However, the virus evades the immune system by inducing immunosuppressive cytokines and surface molecules like programmed cell death protein 1 (PD-1) and its ligand (PD-L1) on immunocompetent cells. Initially, RV infects epithelial cells, which constitute a physiologic mucosal barrier. Upon virus entrance, the host cell immediately recognizes viral components like dsRNA, ssRNA, viral glycoproteins or CpG-DNA by host pattern recognition receptors (PRRs). Activation of toll like receptors (TLR) 3, 7 and 8 within the endosome and through MDA-5 and RIG-I in the cytosol leads to the production of interferon (IFN) type I and other antiviral agents. Every cell type expresses IFNAR1/IFNAR2 receptors thus allowing a generalized antiviral activity of IFN type I resulting in the inhibition of viral replication in infected cells and preventing viral spread to non-infected cells. Among immune evasion mechanisms of the virus, there is downregulation of IFN type I and its receptor as well as induction of the immunosuppressive cytokine TGF-β. TGF-β promotes viral replication and is associated with induction of the immunosuppression signature markers LAP3, IDO and PD-L1. This article reviews the recent advances on the regulation of interferon type I expression in association with RV infection in asthmatics and the immunosuppression induced by the virus.
Collapse
Affiliation(s)
- Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hannah Mitländer
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tytti Vuorinen
- Medical Microbiology, Turku University Hospital, Institut of Biomedicine, University of Turku, Turku, Finland
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
42
|
Georas SN. Inhaled Adjuvants and Eosinophilic Airway Inflammation in Asthma: Is a Little Bit of Lipopolysaccharide the Key to Allergen Sensitization? THE JOURNAL OF IMMUNOLOGY 2021; 207:1699-1701. [PMID: 34544811 DOI: 10.4049/jimmunol.2100542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Steve N Georas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
43
|
Martinez J, Cook DN. What's the deal with efferocytosis and asthma? Trends Immunol 2021; 42:904-919. [PMID: 34503911 PMCID: PMC9843639 DOI: 10.1016/j.it.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 01/19/2023]
Abstract
Mucosal sites, such as the lung, serve as crucial, yet vulnerable barriers to environmental insults such as pathogens, allergens, and toxins. Often, these exposures induce massive infiltration and death of short-lived immune cells in the lung, and efficient clearance of these cells is important for preventing hyperinflammation and resolving immunopathology. Herein, we review recent advances in our understanding of efferocytosis, a process whereby phagocytes clear dead cells in a noninflammatory manner. We further discuss how efferocytosis impacts the onset and severity of asthma in humans and mammalian animal models of disease. Finally, we explore how recently identified genetic perturbations or biological pathway modulations affect pathogenesis and shed light on novel therapies aimed at treating or preventing asthma.
Collapse
Affiliation(s)
- Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Donald N Cook
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
44
|
Lourenço LO, Ribeiro AM, Lopes FDTQDS, Tibério IDFLC, Tavares-de-Lima W, Prado CM. Different Phenotypes in Asthma: Clinical Findings and Experimental Animal Models. Clin Rev Allergy Immunol 2021; 62:240-263. [PMID: 34542807 DOI: 10.1007/s12016-021-08894-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Asthma is a respiratory allergic disease presenting a high prevalence worldwide, and it is responsible for several complications throughout life, including death. Fortunately, asthma is no longer recognized as a unique manifestation but as a very heterogenic manifestation. Its phenotypes and endotypes are known, respectively, as pathologic and molecular features that might not be directly associated with each other. The increasing number of studies covering this issue has brought significant insights and knowledge that are constantly expanding. In this review, we intended to summarize this new information obtained from clinical studies, which not only allowed for the creation of patient clusters by means of personalized medicine and a deeper molecular evaluation, but also created a connection with data obtained from experimental models, especially murine models. We gathered information regarding sensitization and trigger and emphasizing the most relevant phenotypes and endotypes, such as Th2-high asthma and Th2-low asthma, which included smoking and obesity-related asthma and mixed and paucigranulocytic asthma, not only in physiopathology and the clinic but also in how these phenotypes can be determined with relative similarity using murine models. We also further investigated how clinical studies have been treating patients using newly developed drugs focusing on specific biomarkers that are more relevant according to the patient's clinical manifestation of the disease.
Collapse
Affiliation(s)
- Luiz Otávio Lourenço
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Santos, SP, Brazil
| | - Alessandra Mussi Ribeiro
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Santos, SP, Brazil
| | | | | | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Carla Máximo Prado
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Santos, SP, Brazil. .,Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
45
|
Alobaidi A, Alsamarai A, Alsamarai MA. Inflammation in Asthma Pathogenesis: Role of T cells, Macrophages, Epithelial Cells and Type 2 Inflammation. Antiinflamm Antiallergy Agents Med Chem 2021; 20:317-332. [PMID: 34544350 DOI: 10.2174/1871523020666210920100707] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/06/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Asthma is a chronic disease with abnormal inflammatory and immunological responses. The disease initiated by antigens in subjects with genetic susceptibility. However, environmental factors play a role in the initiation and exacerbation of asthma attack. Asthma is T helper 2 (Th2)-cell-mediated disease. Recent studies indicated that asthma is not a single disease entity, but it is with multiple phenotypes and endotypes. The pathophysiological changes in asthma included a series of subsequent continuous vicious circle of cellular activation contributed to induction of chemokines and cytokines that potentiate inflammation. The heterogeneity of asthma influenced the treatment response. The asthma pathogenesis driven by varied set of cells such as eosinophils, basophils, neutrophils, mast cells, macrophages, epithelial cells and T cells. In this review the role of T cells, macrophage, and epithelial cells are discussed.
Collapse
Affiliation(s)
- Amina Alobaidi
- Kirkuk University College of Veterinary Medicine, Kirkuk. Iraq
| | - Abdulghani Alsamarai
- Aalborg Academy College of Medicine [AACOM], Denmark. Tikrit University College of Medicine, [TUCOM], Tikrit. Iraq
| | | |
Collapse
|
46
|
Zhang X, Xie J, Sun H, Wei Q, Nong G. miR‑29a‑3p regulates the epithelial‑mesenchymal transition via the SPARC/ERK signaling pathway in human bronchial epithelial cells. Int J Mol Med 2021; 48:171. [PMID: 34278471 PMCID: PMC8285050 DOI: 10.3892/ijmm.2021.5004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
Neutrophilic asthma (NA) is a subtype of asthma that responds poorly to corticosteroid treatment. In certain diseases, microRNA (miR)‑29a‑3p is considered to be a key regulatory molecule for remodeling of the extracellular matrix. However, the effect of miR‑29a‑3p on airway remodeling is unknown. The present study aimed to investigate the role of miR‑29a‑3p in NA. A mouse model of NA was established and these animals were compared to normal controls. Both groups of mice were subjected to lung function tests and histopathological analysis. Human bronchial epithelial cells (16HBE) were grown in culture and incubated with secreted protein acidic rich in cysteine (SPARC) and a miR‑29a‑3p mimic. The expression of miR‑29a‑3p, SPARC and epithelial‑mesenchymal transition (EMT)‑related markers were measured using reverse transcription‑quantitative PCR and western blotting. Luciferase reporter assay was performed to identify the direct regulatory relationship between miR‑29a‑3p and SPARC. miR‑29a‑3p expression was significantly decreased, while SPARC expression was increased in the NA mouse model with a phenotype of EMT. Overexpression of SPARC downregulated the expression of E‑cadherin, while it increased the expression of vimentin in 16HBE cells. miR‑29a‑3p administration reversed the SPARC‑induced effects on E‑cadherin and vimentin expression. Luciferase assays confirmed that SPARC was the target gene for miR‑29a‑3p. Furthermore, SPARC overexpression increased the protein expression of phosphorylated (p)‑ERK, while transfection with miR‑29a‑3p mimics significantly inhibited this increase. The data suggested that EMT in the NA mouse model was associated with decreased levels of miR‑29a‑3p and elevated SPARC. Furthermore, SPARC could induce the formation of EMT in 16HBE cells in vitro and this was directly targeted by miR‑29a‑3p and mediated by p‑ERK, suggesting that miR‑29a‑3p may participate in the airway remodeling of NA.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Pediatric Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jun Xie
- Pediatric Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hongmei Sun
- Pediatric Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qin Wei
- Pediatric Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Guangmin Nong
- Pediatric Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
47
|
Lu Y, Zhou Y, Lin Y, Li W, Tian S, Hao X, Guo H. Preventive effects of donkey milk powder on the ovalbumin-induced asthmatic mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
48
|
Izumi G, Nakano H, Nakano K, Whitehead GS, Grimm SA, Fessler MB, Karmaus PW, Cook DN. CD11b + lung dendritic cells at different stages of maturation induce Th17 or Th2 differentiation. Nat Commun 2021; 12:5029. [PMID: 34413303 PMCID: PMC8377117 DOI: 10.1038/s41467-021-25307-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC) in the lung that induce Th17 differentiation remain incompletely understood, in part because conventional CD11b+ DCs (cDC2) are heterogeneous. Here, we report a population of cDCs that rapidly accumulates in lungs of mice following house dust extract inhalation. These cells are Ly-6C+, are developmentally and phenotypically similar to cDC2, and strongly promote Th17 differentiation ex vivo. Single cell RNA-sequencing (scRNA-Seq) of lung cDC2 indicates 5 distinct clusters. Pseudotime analysis of scRNA-Seq data and adoptive transfer experiments with purified cDC2 subpopulations suggest stepwise developmental progression of immature Ly-6C+Ly-6A/E+ cDC2 to mature Ly-6C-CD301b+ lung resident cDC2 lacking Ccr7 expression, which then further mature into CD200+ migratory cDC2 expressing Ccr7. Partially mature Ly-6C+Ly-6A/E-CD301b- cDC2, which express Il1b, promote Th17 differentiation. By contrast, CD200+ mature cDC2 strongly induce Th2, but not Th17, differentiation. Thus, Th17 and Th2 differentiation are promoted by lung cDC2 at distinct stages of maturation.
Collapse
Affiliation(s)
- Gentaro Izumi
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hideki Nakano
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.
| | - Keiko Nakano
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Gregory S Whitehead
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Peer W Karmaus
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.
| |
Collapse
|
49
|
Victor JR, Lezmi G, Leite-de-Moraes M. New Insights into Asthma Inflammation: Focus on iNKT, MAIT, and γδT Cells. Clin Rev Allergy Immunol 2021; 59:371-381. [PMID: 32246390 DOI: 10.1007/s12016-020-08784-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Asthma is a chronic immunological disease affecting all age groups, but often starting in childhood. Although it has long been ascribed to a single pathology, recent studies have highlighted its heterogeneity due to the potential involvement of various pathogenic mechanisms. Here, we present our current understanding of the role of innate-like T (ILT) cells in asthma pathogenesis. These cells constitute a specific family mainly comprising γδT, invariant natural killer (iNKT) and mucosal-associated invariant (MAIT) T cells. They all share the ability to massively secrete a wide range of cytokines in a T-cell receptor (TCR)-dependent or -independent manner. ILT cells are prevalent in mucosal tissues, including airways, where their innate and adaptive immune functions consist primarily in protecting tissue integrity. However, ILT cells may also have detrimental effects leading to asthma symptoms. The immune mechanisms through which this pathogenic effect occurs will be discussed in this overview.
Collapse
Affiliation(s)
- Jefferson Russo Victor
- Laboratory of Medical Investigation LIM 56, Division of Clinical Dermatology, Medical School, University of Sao Paulo, Sao Paulo, Brazil
- Division of Environmental Health, FMU, Laureate International Universities, Sao Paulo, Brazil
| | - Guillaume Lezmi
- Laboratory of Immunoregulation and Immunopathology, INEM (Institut Necker-Enfants Malades), CNRS UMR8253, INSERM UMR1151, and Université Paris Descartes, 75015, Paris, France
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie et d'Allergologie Pédiatriques, Paris, France
| | - Maria Leite-de-Moraes
- Laboratory of Immunoregulation and Immunopathology, INEM (Institut Necker-Enfants Malades), CNRS UMR8253, INSERM UMR1151, and Université Paris Descartes, 75015, Paris, France.
| |
Collapse
|
50
|
Mthembu N, Ikwegbue P, Brombacher F, Hadebe S. Respiratory Viral and Bacterial Factors That Influence Early Childhood Asthma. FRONTIERS IN ALLERGY 2021; 2:692841. [PMID: 35387053 PMCID: PMC8974778 DOI: 10.3389/falgy.2021.692841] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Asthma is a chronic respiratory condition characterised by episodes of shortness of breath due to reduced airway flow. The disease is triggered by a hyperreactive immune response to innocuous allergens, leading to hyper inflammation, mucus production, changes in structural cells lining the airways, and airway hyperresponsiveness. Asthma, although present in adults, is considered as a childhood condition, with a total of about 6.2 million children aged 18 and below affected globally. There has been progress in understanding asthma heterogeneity in adults, which has led to better patient stratification and characterisation of multiple asthma endotypes with distinct, but overlapping inflammatory features. The asthma inflammatory profile in children is not well-defined and heterogeneity of the disease is less described. Although many factors such as genetics, food allergies, antibiotic usage, type of birth, and cigarette smoke exposure can influence asthma development particularly in children, respiratory infections are thought to be the major contributing factor in poor lung function and onset of the disease. In this review, we focus on viral and bacterial respiratory infections in the first 10 years of life that could influence development of asthma in children. We also review literature on inflammatory immune heterogeneity in asthmatic children and how this overlaps with early lung development, poor lung function and respiratory infections. Finally, we review animal studies that model early development of asthma and how these studies could inform future therapies and better understanding of this complex disease.
Collapse
Affiliation(s)
- Nontobeko Mthembu
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Paul Ikwegbue
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Immunology, Health Science Faculty, International Centre for Genetic Engineering and Biotechnology (ICGEB) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Sabelo Hadebe
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|