1
|
Bu W, Yu M, Ma X, Shen Z, Ruan J, Qu Y, Huang R, Xue P, Ma Y, Tang J, Zhao X. Gender-specific effects of prenatal polystyrene nanoparticle exposure on offspring lung development. Toxicol Lett 2025; 407:1-16. [PMID: 40088994 DOI: 10.1016/j.toxlet.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/21/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Nanoplastics are widely present in the environment. Exposure to environmental pollutants during pregnancy can have adverse effects on fetal development and health. Establishing a link between nanoplastics and Bronchopulmonary Dysplasia (BPD) requires further investigation. In this study, we examined the impact of prenatal exposure to 80 nm polystyrene nanoparticles (PS-NPs) on offspring lung development, taking into account potential gender-specific effects. Pregnant female mice were exposed to PS-NPs through oropharyngeal aspiration, and critical data on lung development were collected at postnatal days 1, 7, and 21. We found that exposure to PS-NPs reduced birth weight in female offspring and significantly increased lung weight in both male and female offspring by PND 21. Maternal exposure led to a reduction in alveolar numbers across offspring, with distinct underlying mechanisms observed between sexes. In female offspring, the reduction in alveolar numbers was linked to disrupted surfactant protein expression, significant inflammation, and increased apoptosis and fibrosis. In male offspring, impaired angiogenesis was the primary factor contributing to the increased risk of BPD. The impact on alveolar development was substantial in both genders. This study underscores the gender-specific impacts of prenatal nanoplastic exposure on lung development and offers new evidence and direction for future research on the cross-generational respiratory toxicity of PS-NPs.
Collapse
Affiliation(s)
- Wenxia Bu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Mengjiao Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xinyi Ma
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Zhaoping Shen
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Jialing Ruan
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yi Qu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Ruiyao Huang
- Department of Clinical Medicine, Nantong University Xinglin College, Nantong 226000, China
| | - Peng Xue
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yuanyuan Ma
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
2
|
Antounians L, Figueira RL, Kukreja B, Litvack ML, Zani-Ruttenstock E, Khalaj K, Montalva L, Doktor F, Obed M, Blundell M, Wu T, Chan C, Wagner R, Lacher M, Wilson MD, Post M, Kalish BT, Zani A. Fetal hypoplastic lungs have multilineage inflammation that is reversed by amniotic fluid stem cell extracellular vesicle treatment. SCIENCE ADVANCES 2024; 10:eadn5405. [PMID: 39058789 PMCID: PMC11277482 DOI: 10.1126/sciadv.adn5405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Antenatal administration of extracellular vesicles from amniotic fluid stem cells (AFSC-EVs) reverses features of pulmonary hypoplasia in models of congenital diaphragmatic hernia (CDH). However, it remains unknown which lung cellular compartments and biological pathways are affected by AFSC-EV therapy. Herein, we conducted single-nucleus RNA sequencing (snRNA-seq) on rat fetal CDH lungs treated with vehicle or AFSC-EVs. We identified that intra-amniotically injected AFSC-EVs reach the fetal lung in rats with CDH, where they promote lung branching morphogenesis and epithelial cell differentiation. Moreover, snRNA-seq revealed that rat fetal CDH lungs have a multilineage inflammatory signature with macrophage enrichment, which is reversed by AFSC-EV treatment. Macrophage enrichment in CDH fetal rat lungs was confirmed by immunofluorescence, flow cytometry, and inhibition studies with GW2580. Moreover, we validated macrophage enrichment in human fetal CDH lung autopsy samples. Together, this study advances knowledge on the pathogenesis of pulmonary hypoplasia and further evidence on the value of an EV-based therapy for CDH fetuses.
Collapse
Affiliation(s)
- Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Bharti Kukreja
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Michael L. Litvack
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Elke Zani-Ruttenstock
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Louise Montalva
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Mikal Obed
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Matisse Blundell
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Taiyi Wu
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Cadia Chan
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Richard Wagner
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Michael D. Wilson
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5T 1P5, Canada
| | - Brian T. Kalish
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
- Division of Neonatology, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
- Department of Surgery, University of Toronto, Toronto M5T 1P5, Canada
| |
Collapse
|
3
|
Mirershadi F, Ahmadi M, Rahbarghazi R, Heiran H, Keyhanmanesh R. C-Kit + cells can modulate asthmatic condition via differentiation into pneumocyte-like cells and alteration of inflammatory responses via ERK/NF-ƙB pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:96-102. [PMID: 35656445 PMCID: PMC9118279 DOI: 10.22038/ijbms.2021.59946.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/21/2021] [Indexed: 11/06/2022]
Abstract
Objectives The exact role of the progenitor cell types in the dynamic healing of asthmatic lungs is lacking. This investigation was proposed to evaluate the effect of intratracheally administered rat bone marrow-derived c-kit+ cells on ovalbumin-induced sensitized male rats. Materials and Methods Forty rats were randomly divided into 4 groups; healthy rats received phosphate-buffered saline (PBS) (C); sensitized rats received PBS (S); PBS containing C-kit- cells (S+C-kit-); and PBS containing C-kit+ cells (S+C-kit+). After two weeks, circulatory CD4+/CD8+ T-cell counts and pulmonary ERK/NF-ƙB signaling pathway as well as the probability of cellular differentiation were assessed. Results The results showed that transplanted C-Kit+ cells were engrafted into pulmonary tissue and differentiated into epithelial cells. C-Kit+ cells could increase the number of CD4+ cells in comparison with the S group (P<0.001); however, they diminished the level of CD8+ cells (P<0.01). Moreover, data demonstrated increased p-ERK/ERK ratio (P<0.001) and NF-ƙB level (P<0.05) in sensitized rats compared with the C group. The administration of C-kit+, but not C-Kit-, decreased p-ERK/ERK ratio and NF-ƙB level compared with those of the S group (P<0.05). Conclusion The study revealed that C-Kit+ cells engrafted into pulmonary tissue reduced the NF-ƙB protein level and diminished p-ERK/ERK ratio, leading to suppression of inflammatory response in asthmatic lungs.
Collapse
Affiliation(s)
- Fatemeh Mirershadi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, Department of Physiology, Ardabil Branch, Islamic Azad University, Ardabil, Iran, Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran, Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran,Corresponding authors: Rana Keyhanmanesh. Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran. Tel/Fax: +98-4133364664; ; and Reza Rahbarghazi. Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hossein Heiran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Corresponding authors: Rana Keyhanmanesh. Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran. Tel/Fax: +98-4133364664; ; and Reza Rahbarghazi. Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Foster BM, Langsten KL, Mansour A, Shi L, Kerr BA. Tissue distribution of stem cell factor in adults. Exp Mol Pathol 2021; 122:104678. [PMID: 34450114 PMCID: PMC8516741 DOI: 10.1016/j.yexmp.2021.104678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/22/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
Stem cell factor (SCF) is an essential cytokine during development and is necessary for gametogenesis, hematopoiesis, mast cell development, stem cell function, and melanogenesis. Here, we measure SCF concentration and distribution in adult humans and mice using gene expression analysis, tissue staining, and organ protein lysates. We demonstrate continued SCF expression in many cell types and tissues into adulthood. Tissues with high expression in adult humans included stomach, spleen, kidney, lung, and pancreas. In mice, we found high SCF expression in the esophagus, ovary, uterus, kidney, and small intestine. Future studies may correlate our findings of increased, organ-specific SCF concentrations within adult tissues with increased risk of SCF/CD117-related disease.
Collapse
Affiliation(s)
- Brittni M Foster
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Kendall L Langsten
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Ammar Mansour
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Lihong Shi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Bethany A Kerr
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, United States of America.
| |
Collapse
|
5
|
Yuan Q, Basit A, Liang W, Qu R, Luan Y, Ren C, Li A, Xu X, Liu X, Yang C, Kuo A, Pierce R, Zhang L, Turk B, Hu X, Li F, Cui W, Li R, Huang D, Mo L, Sessa WC, Lee PJ, Kluger Y, Su B, Tang W, He J, Wu D. Pazopanib ameliorates acute lung injuries via inhibition of MAP3K2 and MAP3K3. Sci Transl Med 2021; 13:13/591/eabc2499. [PMID: 33910977 DOI: 10.1126/scitranslmed.abc2499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/30/2020] [Accepted: 01/04/2021] [Indexed: 11/02/2022]
Abstract
Acute lung injury (ALI) causes high mortality and lacks any pharmacological intervention. Here, we found that pazopanib ameliorated ALI manifestations and reduced mortality in mouse ALI models and reduced edema in human lung transplantation recipients. Pazopanib inhibits mitogen-activated protein kinase kinase kinase 2 (MAP3K2)- and MAP3K3-mediated phosphorylation of NADPH oxidase 2 subunit p47phox at Ser208 to increase reactive oxygen species (ROS) formation in myeloid cells. Genetic inactivation of MAP3K2 and MAP3K3 in myeloid cells or hematopoietic mutation of p47phox Ser208 to alanine attenuated ALI manifestations and abrogates anti-ALI effects of pazopanib. This myeloid MAP3K2/MAP3K3-p47phox pathway acted via paracrine H2O2 to enhance pulmonary vasculature integrity and promote lung epithelial cell survival and proliferation, leading to increased pulmonary barrier function and resistance to ALI. Thus, pazopanib has the potential to be effective for treating ALI.
Collapse
Affiliation(s)
- Qianying Yuan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Abdul Basit
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Wenhua Liang
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Rihao Qu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yi Luan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chunguang Ren
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ao Li
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xin Xu
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Xiaoqing Liu
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Chun Yang
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Andrew Kuo
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Richard Pierce
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Longbo Zhang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Benjamin Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xin Hu
- Department of Biostatistics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fangyong Li
- Department of Biostatistics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Weixue Cui
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Run Li
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Danxia Huang
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Lili Mo
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Patty J Lee
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Bing Su
- Shanghai Institute of Immunology, Shanghai Jiaotong University, Shanghai 200025, China.
| | - Wenwen Tang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jianxing He
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China.
| | - Dianqing Wu
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
6
|
Mak ACY, Sajuthi S, Joo J, Xiao S, Sleiman PM, White MJ, Lee EY, Saef B, Hu D, Gui H, Keys KL, Lurmann F, Jain D, Abecasis G, Kang HM, Nickerson DA, Germer S, Zody MC, Winterkorn L, Reeves C, Huntsman S, Eng C, Salazar S, Oh SS, Gilliland FD, Chen Z, Kumar R, Martínez FD, Wu AC, Ziv E, Hakonarson H, Himes BE, Williams LK, Seibold MA, Burchard EG. Lung Function in African American Children with Asthma Is Associated with Novel Regulatory Variants of the KIT Ligand KITLG/SCF and Gene-By-Air-Pollution Interaction. Genetics 2020; 215:869-886. [PMID: 32327564 PMCID: PMC7337089 DOI: 10.1534/genetics.120.303231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/22/2020] [Indexed: 01/12/2023] Open
Abstract
Baseline lung function, quantified as forced expiratory volume in the first second of exhalation (FEV1), is a standard diagnostic criterion used by clinicians to identify and classify lung diseases. Using whole-genome sequencing data from the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine project, we identified a novel genetic association with FEV1 on chromosome 12 in 867 African American children with asthma (P = 1.26 × 10-8, β = 0.302). Conditional analysis within 1 Mb of the tag signal (rs73429450) yielded one major and two other weaker independent signals within this peak. We explored statistical and functional evidence for all variants in linkage disequilibrium with the three independent signals and yielded nine variants as the most likely candidates responsible for the association with FEV1 Hi-C data and expression QTL analysis demonstrated that these variants physically interacted with KITLG (KIT ligand, also known as SCF), and their minor alleles were associated with increased expression of the KITLG gene in nasal epithelial cells. Gene-by-air-pollution interaction analysis found that the candidate variant rs58475486 interacted with past-year ambient sulfur dioxide exposure (P = 0.003, β = 0.32). This study identified a novel protective genetic association with FEV1, possibly mediated through KITLG, in African American children with asthma. This is the first study that has identified a genetic association between lung function and KITLG, which has established a role in orchestrating allergic inflammation in asthma.
Collapse
Affiliation(s)
- Angel C Y Mak
- Department of Medicine, University of California, San Francisco, California 94143
| | - Satria Sajuthi
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado 80206
| | - Jaehyun Joo
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Shujie Xiao
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan 48202
| | - Patrick M Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Pennsylvania, 19104
- Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Marquitta J White
- Department of Medicine, University of California, San Francisco, California 94143
| | - Eunice Y Lee
- Department of Medicine, University of California, San Francisco, California 94143
| | - Benjamin Saef
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, California 94143
| | - Hongsheng Gui
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan 48202
| | - Kevin L Keys
- Department of Medicine, University of California, San Francisco, California 94143
- Berkeley Institute for Data Science, University of California, Berkeley, California 94720
| | | | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, Washington 98195
| | - Gonçalo Abecasis
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan 48109
| | - Hyun Min Kang
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan 48109
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
- Northwest Genomics Center, Seattle, Washington, 98195
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, 98195
| | | | | | | | | | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, California 94143
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, California 94143
| | - Sandra Salazar
- Department of Medicine, University of California, San Francisco, California 94143
| | - Sam S Oh
- Department of Medicine, University of California, San Francisco, California 94143
| | - Frank D Gilliland
- Department of Preventive Medicine, Division of Environmental Health, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Zhanghua Chen
- Department of Preventive Medicine, Division of Environmental Health, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Rajesh Kumar
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611
| | - Fernando D Martínez
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona 85721
| | - Ann Chen Wu
- Precision Medicine Translational Research (PRoMoTeR) Center, Department of Population Medicine, Harvard Medical School and Pilgrim Health Care Institute, Boston, Massachusetts 02215
| | - Elad Ziv
- Department of Medicine, University of California, San Francisco, California 94143
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Pennsylvania, 19104
- Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan 48202
| | - Max A Seibold
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, California 94143
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143
| |
Collapse
|
7
|
Abstract
KIT is a receptor tyrosine kinase that after binding to its ligand stem cell factor activates signaling cascades linked to biological processes such as proliferation, differentiation, migration and cell survival. Based on studies performed on SCF and/or KIT mutant animals that presented anemia, sterility, and/or pigmentation disorders, KIT signaling was mainly considered to be involved in the regulation of hematopoiesis, gametogenesis, and melanogenesis. More recently, novel animal models and ameliorated cellular and molecular techniques have led to the discovery of a widen repertoire of tissue compartments and functions that are being modulated by KIT. This is the case for the lung, heart, nervous system, gastrointestinal tract, pancreas, kidney, liver, and bone. For this reason, the tyrosine kinase inhibitors that were originally developed for the treatment of hemato-oncological diseases are being currently investigated for the treatment of non-oncological disorders such as asthma, rheumatoid arthritis, and alzheimer's disease, among others. The beneficial effects of some of these tyrosine kinase inhibitors have been proven to depend on KIT inhibition. This review will focus on KIT expression and regulation in healthy and pathologic conditions other than cancer. Moreover, advances in the development of anti-KIT therapies, including tyrosine kinase inhibitors, and their application will be discussed.
Collapse
|
8
|
Baek SJ, Chun JM, Kang TW, Seo YS, Kim SB, Seong B, Jang Y, Shin GH, Kim C. Identification of Epigenetic Mechanisms Involved in the Anti-Asthmatic Effects of Descurainia sophia Seed Extract Based on a Multi-Omics Approach. Molecules 2018; 23:molecules23112879. [PMID: 30400597 PMCID: PMC6278437 DOI: 10.3390/molecules23112879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 01/17/2023] Open
Abstract
Asthma, a heterogeneous disease of the airways, is common around the world, but little is known about the molecular mechanisms underlying the interactions between DNA methylation and gene expression in relation to this disease. The seeds of Descurainia sophia are traditionally used to treat coughs, asthma and edema, but their effects on asthma have not been investigated by multi-omics analysis. We undertook this study to assess the epigenetic effects of ethanol extract of D. sophia seeds (DSE) in an ovalbumin (OVA)-induced mouse model of asthma. We profiled genome-wide DNA methylation by Methyl-seq and characterized the transcriptome by RNA-seq in mouse lung tissue under three conditions: saline control, OVA-induced, and DSE-treated. In total, 1995 differentially methylated regions (DMRs) were identified in association with anti-asthmatic effects, most in promoter and coding regions. Among them, 25 DMRs were negatively correlated with the expression of the corresponding 18 genes. These genes were related to development of the lung, respiratory tube and respiratory system. Our findings provide insights into the anti-asthmatic effects of D. sophia seeds and reveal the epigenetic targets of anti-inflammatory processes in mice.
Collapse
Affiliation(s)
- Su-Jin Baek
- Bioinformatics Group, R&D Center, Insilicogen Corporation, 35, Techno 9-ro, Yuseong-gu, Daejeon 34027, Korea.
| | - Jin Mi Chun
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| | - Tae-Wook Kang
- Bioinformatics Group, R&D Center, Insilicogen Corporation, 35, Techno 9-ro, Yuseong-gu, Daejeon 34027, Korea.
| | - Yun-Soo Seo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| | - Sung-Bae Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| | - Boseok Seong
- Future Medicine Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| | - Yunji Jang
- Future Medicine Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| | - Ga-Hee Shin
- Bioinformatics Group, R&D Center, Insilicogen Corporation, 35, Techno 9-ro, Yuseong-gu, Daejeon 34027, Korea.
| | - Chul Kim
- Future Medicine Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| |
Collapse
|
9
|
Vishweswaraiah S, George L, Purushothaman N, Ganguly K. A candidate gene identification strategy utilizing mouse to human big-data mining: "3R-tenet" in COPD genetic research. Respir Res 2018; 19:92. [PMID: 29871630 PMCID: PMC5989378 DOI: 10.1186/s12931-018-0795-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/27/2018] [Indexed: 12/13/2022] Open
Abstract
Background Early life impairments leading to lower lung function by adulthood are considered as risk factors for chronic obstructive pulmonary disease (COPD). Recently, we compared the lung transcriptomic profile between two mouse strains with extreme total lung capacities to identify plausible pulmonary function determining genes using microarray analysis (GSE80078). Advancement of high-throughput techniques like deep sequencing (eg. RNA-seq) and microarray have resulted in an explosion of genomic data in the online public repositories which however remains under-exploited. Strategic curation of publicly available genomic data with a mouse-human translational approach can effectively implement “3R- Tenet” by reducing screening experiments with animals and performing mechanistic studies using physiologically relevant in vitro model systems. Therefore, we sought to analyze the association of functional variations within human orthologs of mouse lung function candidate genes in a publicly available COPD lung RNA-seq data-set. Methods Association of missense single nucleotide polymorphisms, insertions, deletions, and splice junction variants were analyzed for susceptibility to COPD using RNA-seq data of a Korean population (GSE57148). Expression of the associated genes were studied using the Gene Paint (mouse embryo) and Human Protein Atlas (normal adult human lung) databases. The genes were also assessed for replication of the associations and expression in COPD−/mouse cigarette smoke exposed lung tissues using other datasets. Results Significant association (p < 0.05) of variations in 20 genes to higher COPD susceptibility have been detected within the investigated cohort. Association of HJURP, MCRS1 and TLR8 are novel in relation to COPD. The associated ADAM19 and KIT loci have been reported earlier. The remaining 15 genes have also been previously associated to COPD. Differential transcript expression levels of the associated genes in COPD- and/ or mouse emphysematous lung tissues have been detected. Conclusion Our findings suggest strategic mouse-human datamining approaches can identify novel COPD candidate genes using existing datasets in the online repositories. The candidates can be further evaluated for mechanistic role through in vitro studies using appropriate primary cells/cell lines. Functional studies can be limited to transgenic animal models of only well supported candidate genes. This approach will lead to a significant reduction of animal experimentation in respiratory research. Electronic supplementary material The online version of this article (10.1186/s12931-018-0795-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Leema George
- SRM Research Institute, SRM University, Chennai, 603203, India
| | - Natarajan Purushothaman
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM University, Chennai, 603203, India
| | - Koustav Ganguly
- SRM Research Institute, SRM University, Chennai, 603203, India. .,Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 287, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
10
|
George L, Mitra A, Thimraj TA, Irmler M, Vishweswaraiah S, Lunding L, Hühn D, Madurga A, Beckers J, Fehrenbach H, Upadhyay S, Schulz H, Leikauf GD, Ganguly K. Transcriptomic analysis comparing mouse strains with extreme total lung capacities identifies novel candidate genes for pulmonary function. Respir Res 2017; 18:152. [PMID: 28793908 PMCID: PMC5551015 DOI: 10.1186/s12931-017-0629-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/25/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Failure to attain peak lung function by early adulthood is a risk factor for chronic lung diseases. Previously, we reported that C3H/HeJ mice have about twice total lung capacity (TLC) compared to JF1/MsJ mice. We identified seven lung function quantitative trait loci (QTL: Lfnq1-Lfnq7) in backcross/intercross mice derived from these inbred strains. We further demonstrated, superoxide dismutase 3, extracellular (Sod3), Kit oncogene (Kit) and secreted phosphoprotein 1 (Spp1) located on these Lfnqs as lung function determinants. Emanating from the concept of early origin of lung disease, we sought to identify novel candidate genes for pulmonary function by investigating lung transcriptome in C3H/HeJ and JF1/MsJ mice at the completion of embryonic development, bulk alveolar formation and maturity. METHODS Design-based stereological analysis was performed to study lung structure in C3H/HeJ and JF1/MsJ mice. Microarray was used for lung transcriptomic analysis [embryonic day 18, postnatal days 28, 70]. Quantitative real time polymerase chain reaction (qRT-PCR), western blot and immunohistochemical analysis were used to confirm selected differences. RESULTS Stereological analysis revealed decreased alveolar number density, elastin to collagen ratio and increased mean alveolar volume in C3H/HeJ mice compared to JF1/MsJ. Gene ontology term "extracellular region" was enriched among the decreased JF1/MsJ transcripts. Candidate genes identified using the expression-QTL strategy include: ATP-binding cassette, sub-family G (WHITE), member 1 (Abcg1), formyl peptide receptor 1 (Fpr1), gamma-aminobutyric acid (GABA) B receptor, 1 (Gabbr1); histocompatibility 2 genes: class II antigen E beta (H2-Eb1), D region locus 1 (H2-D1), and Q region locus 4 (H2-Q4); leucine rich repeat containing 6 (testis) (Lrrc6), radial spoke head 1 homolog (Rsph1), and surfactant associated 2 (Sfta2). Noteworthy genes selected as candidates for their consistent expression include: Wnt inhibitor factor 1 (Wif1), follistatin (Fst), chitinase-like 1 (Chil1), and Chil3. CONCLUSIONS Comparison of late embryonic, adolescent and adult lung transcript profiles between mouse strains with extreme TLCs lead to the identification of candidate genes for pulmonary function that has not been reported earlier. Further mechanistic investigations are warranted to elucidate their mode of action in determining lung function.
Collapse
Affiliation(s)
- Leema George
- SRM Research Institute, SRM University, Chennai, 603203 India
| | - Ankita Mitra
- SRM Research Institute, SRM University, Chennai, 603203 India
| | | | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, 85764 Neuherberg, Munich Germany
| | | | - Lars Lunding
- Priority Area Asthma & Allergy, Division of Asthma Exacerbation & Regulation, Research Center Borstel, Airway Research Center North (ARCN), 23845 Borstel, Germany
| | - Dorothea Hühn
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Centre Giessen and Marburg, Philipps-University Marburg, Marburg, Germany
- Present address: Lahn-Dill-Kliniken, Klinikum Wetzlar, Medizinische Klinik II, Forsthausstraße 1, D-35578 Wetzlar, Germany
| | - Alicia Madurga
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), 35392, Giessen, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, 85764 Neuherberg, Munich Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Experimental Genetics, Technische Universität München, 85354 Freising, Germany
| | - Heinz Fehrenbach
- Priority Area Asthma & Allergy, Division of Experimental Pneumology, Research Center Borstel, Airway Research Center North (ARCN), 23845 Borstel, Germany
| | - Swapna Upadhyay
- Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Box 287, SE-171 77 Stockholm, Sweden
- Institute of Lung Biology and Disease, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, 85764 Neuherberg, Munich Germany
| | - Holger Schulz
- Institute of Epidemiology I, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, 85764 Neuherberg, Munich Germany
- Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
| | - George D. Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219 USA
| | - Koustav Ganguly
- SRM Research Institute, SRM University, Chennai, 603203 India
- Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Box 287, SE-171 77 Stockholm, Sweden
- Institute of Lung Biology and Disease, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, 85764 Neuherberg, Munich Germany
- Work Environment Toxicology; Institute of Environmental Medicine, Karolinska Institutet, Box 287, SE-171 77 Stockholm, Sweden
| |
Collapse
|
11
|
Abstract
Chronic obstructive pulmonary disease (COPD) is regarded as a disease of accelerated lung aging. This affliction shows all of the hallmarks of aging, including telomere shortening, cellular senescence, activation of PI3 kinase-mTOR signaling, impaired autophagy, mitochondrial dysfunction, stem cell exhaustion, epigenetic changes, abnormal microRNA profiles, immunosenescence, and a low-grade chronic inflammation (inflammaging). Many of these pathways are driven by chronic exogenous and endogenous oxidative stress. There is also a reduction in antiaging molecules, such as sirtuins and Klotho, which further accelerate the aging process. COPD is associated with several comorbidities (multimorbidity), such as cardiovascular and metabolic diseases, that share the same pathways of accelerated aging. Understanding these mechanisms has helped identify several novel therapeutic targets, and several drugs and dietary interventions are now in development to treat multimorbidity.
Collapse
Affiliation(s)
- Peter J. Barnes
- National Heart and Lung Institute, Imperial College, London SW3 6LY, United Kingdom
| |
Collapse
|
12
|
New Role of Adult Lung c-kit + Cells in a Mouse Model of Airway Hyperresponsiveness. Mediators Inflamm 2016; 2016:3917471. [PMID: 28090152 PMCID: PMC5206449 DOI: 10.1155/2016/3917471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/05/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022] Open
Abstract
Structural changes contribute to airway hyperresponsiveness and airflow obstruction in asthma. Emerging evidence points to the involvement of c-kit+ cells in lung homeostasis, although their potential role in asthma is unknown. Our aim was to isolate c-kit+ cells from normal mouse lungs and to test whether these cells can interfere with hallmarks of asthma in an animal model. Adult mouse GFP-tagged c-kit+ cells, intratracheally delivered in the ovalbumin-induced airway hyperresponsiveness, positively affected airway remodeling and improved airway function. In bronchoalveolar lavage fluid of cell-treated animals, a reduction in the number of inflammatory cells and in IL-4, IL-5, and IL-13 release, along with an increase of IL-10, was observed. In MSC-treated mice, the macrophage polarization to M2-like subset may explain, at least in part, the increment in the level of anti-inflammatory cytokine IL-10. After in vitro stimulation of c-kit+ cells with proinflammatory cytokines, the indoleamine 2,3-dioxygenase and TGFβ were upregulated. These data, together with the increased apoptosis of inflammatory cells in vivo, indicate that c-kit+ cells downregulate immune response in asthma by influencing local environment, possibly by cell-to-cell contact combined to paracrine action. In conclusion, intratracheally administered c-kit+ cells reduce inflammation, positively modulate airway remodeling, and improve function. These data document previously unrecognized properties of c-kit+ cells, able to impede pathophysiological features of experimental airway hyperresponsiveness.
Collapse
|
13
|
Li X, Zhang Y, Liang Y, Cui Y, Yeung SC, Ip MSM, Tse HF, Lian Q, Mak JCW. iPSC-derived mesenchymal stem cells exert SCF-dependent recovery of cigarette smoke-induced apoptosis/proliferation imbalance in airway cells. J Cell Mol Med 2016; 21:265-277. [PMID: 27641240 PMCID: PMC5264148 DOI: 10.1111/jcmm.12962] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/29/2016] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a potential cell‐based therapy for pulmonary emphysema in animal models. Our previous study demonstrated that human induced pluripotent stem cell–derived MSCs (iPSC‐MSCs) were superior over bone marrow–derived MSCs (BM‐MSCs) in attenuating cigarette smoke (CS)‐induced airspace enlargement possibly through mitochondrial transfer. This study further investigated the effects of iPSC‐MSCs on inflammation, apoptosis, and proliferation in a CS‐exposed rat model and examined the effects of the secreted paracrine factor from MSCs as another possible mechanism in an in vitro model of bronchial epithelial cells. Rats were exposed to 4% CS for 1 hr daily for 56 days. At days 29 and 43, human iPSC‐MSCs or BM‐MSCs were administered intravenously. We observed significant attenuation of CS‐induced elevation of circulating 8‐isoprostane and cytokine‐induced neutrophil chemoattractant‐1 after iPSC‐MSC treatment. In line, a superior capacity of iPSC‐MSCs was also observed in ameliorating CS‐induced infiltration of macrophages and neutrophils and apoptosis/proliferation imbalance in lung sections over BM‐MSCs. In support, the conditioned medium (CdM) from iPSC‐MSCs ameliorated CS medium‐induced apoptosis/proliferation imbalance of bronchial epithelial cells in vitro. Conditioned medium from iPSC‐MSCs contained higher level of stem cell factor (SCF) than that from BM‐MSCs. Deprivation of SCF from iPSC‐MSC‐derived CdM led to a reduction in anti‐apoptotic and pro‐proliferative capacity. Taken together, our data suggest that iPSC‐MSCs may possess anti‐apoptotic/pro‐proliferative capacity in the in vivo and in vitro models of CS‐induced airway cell injury partly through paracrine secretion of SCF.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Yuelin Zhang
- Department of Medicine, The University of Hong Kong, Hong Kong.,Department of Ophthalmology, The University of Hong Kong, Hong Kong
| | - Yingmin Liang
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Yuting Cui
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Sze C Yeung
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Mary S M Ip
- Department of Medicine, The University of Hong Kong, Hong Kong.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong
| | - Hung-Fat Tse
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Qizhou Lian
- Department of Medicine, The University of Hong Kong, Hong Kong.,Department of Ophthalmology, The University of Hong Kong, Hong Kong.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong
| | - Judith C W Mak
- Department of Medicine, The University of Hong Kong, Hong Kong.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong.,Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong
| |
Collapse
|
14
|
Veerappan A, Thompson M, Savage AR, Silverman ML, Chan WS, Sung B, Summers B, Montelione KC, Benedict P, Groh B, Vicencio AG, Peinado H, Worgall S, Silver RB. Mast cells and exosomes in hyperoxia-induced neonatal lung disease. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1218-32. [DOI: 10.1152/ajplung.00299.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 04/26/2016] [Indexed: 11/22/2022] Open
Abstract
Chronic lung disease of prematurity (CLD) is a frequent sequela of premature birth and oxygen toxicity is a major associated risk factor. Impaired alveolarization, scarring, and inflammation are hallmarks of CLD. Mast cell hyperplasia is a feature of CLD but the role of mast cells in its pathogenesis is unknown. We hypothesized that mast cell hyperplasia is a consequence of neonatal hyperoxia and contributes to CLD. Additionally, mast cell products may have diagnostic and prognostic value in preterm infants predisposed to CLD. To model CLD, neonatal wild-type and mast cell-deficient mice were placed in an O2 chamber delivering hyperoxic gas mixture [inspired O2 fraction (FiO2) of 0.8] (HO) for 2 wk and then returned to room air (RA) for an additional 3 wk. Age-matched controls were kept in RA (FiO2 of 0.21). Lungs from HO mice had increased numbers of mast cells, alveolar simplification and enlargement, and increased lung compliance. Mast cell deficiency proved protective by preserving air space integrity and lung compliance. The mast cell mediators β-hexosaminidase (β-hex), histamine, and elastase increased in the bronchoalveolar lavage fluid of HO wild-type mice. Tracheal aspirate fluids (TAs) from oxygenated and mechanically ventilated preterm infants were analyzed for mast cell products. In TAs from infants with confirmed cases of CLD, β-hex was elevated over time and correlated with FiO2. Mast cell exosomes were also present in the TAs. Collectively, these data show that mast cells play a significant role in hyperoxia-induced lung injury and their products could serve as potential biomarkers in evolving CLD.
Collapse
Affiliation(s)
- A. Veerappan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - M. Thompson
- Department of Pediatrics, Weill Cornell Medicine, New York, New York
| | - A. R. Savage
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - M. L. Silverman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - W. S. Chan
- Department of Pediatrics, Weill Cornell Medicine, New York, New York
| | - B. Sung
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York; and
| | - B. Summers
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - K. C. Montelione
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - P. Benedict
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - B. Groh
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - A. G. Vicencio
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - H. Peinado
- Department of Pediatrics, Weill Cornell Medicine, New York, New York
| | - S. Worgall
- Department of Pediatrics, Weill Cornell Medicine, New York, New York
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York; and
| | - R. B. Silver
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| |
Collapse
|
15
|
Hollingsworth JW, Leikauf G, Lindsey JY, Schulz H. Comment on Expression of Concern: c-Kit Is Essential for Alveolar Maintenance and Protection from Emphysema-like Disease in Mice. Am J Respir Crit Care Med 2016; 193:581-2. [PMID: 26930438 DOI: 10.1164/rccm.1935comment] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | | | - Holger Schulz
- 4 German Research Center for Environmental Health & Comprehensive Pneumology Center Munich (CPC-M) Munich, Germany
| |
Collapse
|
16
|
Expression of Concern: TLR4 Is Necessary for Hyaluronan-mediated Airway Hyperresponsiveness after Ozone Inhalation; c-Kit Is Essential for Alveolar Maintenance and Protection from Emphysema-like Disease in Mice. Am J Respir Crit Care Med 2015; 192:771. [PMID: 26371821 DOI: 10.1164/rccm.1926eoc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
17
|
Mercado N, Ito K, Barnes PJ. Accelerated ageing of the lung in COPD: new concepts. Thorax 2015; 70:482-9. [PMID: 25739910 DOI: 10.1136/thoraxjnl-2014-206084] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/23/2015] [Indexed: 12/19/2022]
Abstract
The rise in life expectancy worldwide has been accompanied by an increased incidence of age-related diseases, representing an enormous burden on healthcare services and society. All vital organs lose function with age, and this is well described in the lung, with a progressive decline in pulmonary function after the age of about 25 years. The lung ages, like any other organ, with progressive functional impairment and reduced capacity to respond to environmental stresses and injury. Normal physiological ageing results in enlarged alveolar spaces and loss of lung elasticity in the elderly known as 'senile emphysema', whereas in COPD there is destruction of the alveolar walls and fibrosis of peripheral airways. However, COPD shows striking age-associated features, such as an increase in cellular senescence, stem cell exhaustion, increased oxidative stress, alteration in the extracellular matrix and a reduction in endogenous antiageing molecules and protective pathways such as autophagy. In this review we discuss the evidence showing how oxidative stress induces accelerated ageing by upregulating the phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT/mechanistic target of rapamycin signalling pathway resulting in depletion of stem cells, defective autophagy, reduced antioxidant responses and defective mitochondrial function thus generating further oxidative stress. Understanding the mechanisms of accelerated ageing in COPD may identify novel therapeutic approaches.
Collapse
Affiliation(s)
- Nicolas Mercado
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, UK
| | - Kazuhiro Ito
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, UK
| | - Peter J Barnes
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
18
|
Abstract
In ageing populations many patients have multiple diseases characterised by acceleration of the normal ageing process. Better understanding of the signalling pathways and cellular events involved in ageing shows that these are characteristic of many chronic degenerative diseases, such as chronic obstructive pulmonary disease (COPD), chronic cardiovascular and metabolic diseases, and neurodegeneration. Common mechanisms have now been identified in these diseases, which show evidence of cellular senescence with telomere shortening, activation of PI3K–AKT–mTOR signalling, impaired autophagy, mitochondrial dysfunction, stem cell exhaustion, epigenetic changes, abnormal microRNA profiles, immunosenescence and low grade chronic inflammation (“inflammaging”). Many of these pathways are driven by chronic oxidative stress. There is also a reduction in anti-ageing molecules, such as sirtuins and Klotho, which further accelerates the ageing process. Understanding these molecular mechanisms has identified several novel therapeutic targets and several drugs have already been developed that may slow the ageing process, as well as lifestyle interventions, such as diet and physical activity. This indicates that in the future new treatment approaches may target the common pathways involved in multimorbidity and this area of research should be given high priority. Thus, COPD should be considered as a component of multimorbidity and common disease pathways, particularly accelerated ageing, should be targeted.
Collapse
|
19
|
Ganguly K, Martin TM, Concel VJ, Upadhyay S, Bein K, Brant KA, George L, Mitra A, Thimraj TA, Fabisiak JP, Vuga LJ, Fattman C, Kaminski N, Schulz H, Leikauf GD. Secreted phosphoprotein 1 is a determinant of lung function development in mice. Am J Respir Cell Mol Biol 2015; 51:637-51. [PMID: 24816281 DOI: 10.1165/rcmb.2013-0471oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Secreted phosphoprotein 1 (Spp1) is located within quantitative trait loci associated with lung function that was previously identified by contrasting C3H/HeJ and JF1/Msf mouse strains that have extremely divergent lung function. JF1/Msf mice with diminished lung function had reduced lung SPP1 transcript and protein during the peak stage of alveologenesis (postnatal day [P]14-P28) as compared with C3H/HeJ mice. In addition to a previously identified genetic variant that altered runt-related transcription factor 2 (RUNX2) binding in the Spp1 promoter, we identified another promoter variant in a putative RUNX2 binding site that increased the DNA protein binding. SPP1 induced dose-dependent mouse lung epithelial-15 cell proliferation. Spp1((-/-)) mice have decreased specific total lung capacity/body weight, higher specific compliance, and increased mean airspace chord length (Lm) compared with Spp1((+/+)) mice. Microarray analysis revealed enriched gene ontogeny categories, with numerous genes associated with lung development and/or respiratory disease. Insulin-like growth factor 1, Hedgehog-interacting protein, wingless-related mouse mammary tumor virus integration site 5A, and NOTCH1 transcripts decreased in the lung of P14 Spp1((-/-)) mice as determined by quantitative RT-PCR analysis. SPP1 promotes pneumocyte growth, and mice lacking SPP1 have smaller, more compliant lungs with enlarged airspace (i.e., increased Lm). Microarray analysis suggests a dysregulation of key lung developmental transcripts in gene-targeted Spp1((-/-)) mice, particularly during the peak phase of alveologenesis. In addition to its known roles in lung disease, this study supports SPP1 as a determinant of lung development in mice.
Collapse
Affiliation(s)
- Koustav Ganguly
- 1 Department of Environmental and Occupational Health, Graduate School of Public Health
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Suzuki T, Suzuki S, Fujino N, Ota C, Yamada M, Suzuki T, Yamaya M, Kondo T, Kubo H. c-Kit immunoexpression delineates a putative endothelial progenitor cell population in developing human lungs. Am J Physiol Lung Cell Mol Physiol 2014; 306:L855-65. [PMID: 24583878 DOI: 10.1152/ajplung.00211.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Expression of c-Kit and its ligand, stem cell factor (SCF), in developing human lung tissue was investigated by immunohistochemistry. Twenty-eight human fetal lungs [age range 13 to 38 gestational wk (GW)] and 12 postnatal lungs (age range 1-79 yr) were evaluated. We identified c-Kit(+) cells in the lung mesenchyme as early as 13 GW. These mesenchymal c-Kit(+) cells in the lung did not express mast cell tryptase or α-smooth muscle actin. However, these cells did express CD34, VEGFR2, and Tie-2, indicating their endothelial lineage. Three-dimensional reconstructions of confocal laser scanning images revealed that c-Kit(+) cells displayed a closed-end tube formation that did not contain hematopoietic cells. From the pseudoglandular phase to the canalicular phase, c-Kit(+) cells appeared to continuously proliferate, to connect with central pulmonary vessels, and finally, to develop the lung capillary plexus. The spatial distribution of c-Kit- and SCF-positive cells was also demonstrated, and these cells were shown to be in close association. Our results suggest that c-Kit expression in early fetal lungs marks a progenitor population that is restricted to endothelial lineage. This study also suggests the potential involvement of c-Kit signaling in lung vascular development.
Collapse
Affiliation(s)
- Takaya Suzuki
- Dept. of Advanced Preventive Medicine for Infectious Disease, Tohoku Univ. School of Medicine, 2-1 Seiryoumachi, Aobaku, Sendai 980-8575, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Stem cell factor improves lung recovery in rats following neonatal hyperoxia-induced lung injury. Pediatr Res 2013; 74:682-8. [PMID: 24153399 PMCID: PMC4762267 DOI: 10.1038/pr.2013.165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/17/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Stem cell factor (SCF) and its receptor, c-kit, are modulators of angiogenesis. Neonatal hyperoxia-induced lung injury (HILI) is characterized by disordered angiogenesis. The objective of this study was to determine whether exogenous SCF improves recovery from neonatal HILI by improving angiogenesis. METHODS Newborn rats assigned to normoxia (RA: 20.9% O2) or hyperoxia (90% O2) from postnatal day (P) 2 to 15, received daily injections of SCF 100 μg/kg or placebo (PL) from P15 to P21. Lung morphometry was performed at P28. Capillary tube formation in SCF-treated hyperoxia-exposed pulmonary microvascular endothelial cells (HPMECs) was determined by Matrigel assay. RESULTS As compared with RA, hyperoxic-PL pups had decrease in alveolarization and in lung vascular density, and this was associated with increased right ventricular systolic pressure (RVSP), right ventricular hypertrophy, and vascular remodeling. In contrast, SCF-treated hyperoxic pups had increased angiogenesis, improved alveolarization, and attenuation of pulmonary hypertension as evidenced by decreased RVSP, right ventricular hypertrophy, and vascular remodeling. Moreover, in an in vitro model, SCF increased capillary tube formation in hyperoxia-exposed HPMECs. CONCLUSION Exogenous SCF restores alveolar and vascular structure in neonatal rats with HILI by promoting neoangiogenesis. These findings suggest a new strategy to treat lung diseases characterized by dysangiogenesis.
Collapse
|
22
|
de Boer JD, Yang J, van den Boogaard FE, Hoogendijk AJ, de Beer R, van der Zee JS, Roelofs JJTH, van 't Veer C, de Vos AF, van der Poll T. Mast cell-deficient kit mice develop house dust mite-induced lung inflammation despite impaired eosinophil recruitment. J Innate Immun 2013; 6:219-26. [PMID: 24157568 DOI: 10.1159/000354984] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/12/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Mast cells are implicated in allergic and innate immune responses in asthma, although their role in models using an allergen relevant for human disease is incompletely understood. House dust mite (HDM) allergy is common in asthma patients. Our aim was to investigate the role of mast cells in HDM-induced allergic lung inflammation. METHODS Wild-type (Wt) and mast cell-deficient Kit(w-sh) mice on a C57BL/6 background were repetitively exposed to HDM via the airways. RESULTS HDM challenge resulted in a rise in tryptase activity in bronchoalveolar lavage fluid (BALF) of Wt mice, indicative of mast cell activation. Kit(w-sh) mice showed a strongly attenuated HDM- induced recruitment of eosinophils in BALF and lung tissue, accompanied by reduced pulmonary levels of the eosinophil chemoattractant eotaxin. Remarkably, Kit(w-sh) mice demonstrated an unaltered capacity to develop lung pathology and increased mucus production in response to HDM. The increased plasma IgE in response to HDM in Wt mice was absent in Kit(w-sh) mice. CONCLUSION These data contrast with previous reports on the role of mast cells in models using ovalbumin as allergen in that C57BL/6 Kit(w-sh) mice display a selective impairment of eosinophil recruitment without differences in other features of allergic inflammation.
Collapse
Affiliation(s)
- J Daan de Boer
- Center of Infection and Immunity Amsterdam & Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
He S, He Z, Chen Y, Ye J, Zong D, Zhang Y, Chen P. C-Kit/c-Kit ligand interaction of bone marrow endothelial progenitor cells is influenced in a cigarette smoke extract-induced emphysema model. Exp Lung Res 2013; 39:258-67. [PMID: 23786491 DOI: 10.3109/01902148.2013.802828] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Smoking causes lung endothelial cell apoptosis and emphysema. Derived from bone marrow, circulating endothelial progenitor cells (EPCs) maintain vascular integrity by replacing and repairing damaged endothelial cells. Smoking influences the number of circulating EPCs. Recruitment of EPCs from bone marrow to peripheral blood depends on the interaction of c-Kit/soluble c-Kit ligand (sKitL). We hypothesized that smoking might influence c-Kit(+) EPCs/sKitL interaction in bone marrow in the development of smoking-related emphysema. In this study, we used a cigarette smoke extract (CSE)-induced emphysema model. METHODS Mice were injected intraperitoneally with PBS/CSE and sacrificed at day 28. Lung function and pathology of lung tissue were measured to characterize the model. Expressions of c-Kit in the lung tissue were assayed. Bone marrow cells were isolated by red blood cell lysis. EPCs/c-Kit(+) EPCs in nonred blood cells were analyzed by flow cytometry. Expressions of KitL and MMP-9, and activity MMP-9 in bone marrow were measured. RESULTS Our data demonstrated that gene and protein expressions of c-Kit were decreased in the lung tissue in this model. Compared with the control group, the number of bone marrow nonred blood cells was unchanged following CSE treatment, while the depletion of bone marrow EPCs/c-Kit(+) EPCs was significant. The level of sKitL was reduced in the bone marrow in the model. The reduction of sKitL was associated with deregulated KitL expression and decreased MMP-9 activity. CONCLUSIONS The interaction between c-Kit and sKitL in bone marrow EPCs, a critical step in endothelial repair, is negatively affected in a CSE-induced emphysema model.
Collapse
Affiliation(s)
- Shengdong He
- Department of Pulmonary Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Lennartsson J, Rönnstrand L. Stem Cell Factor Receptor/c-Kit: From Basic Science to Clinical Implications. Physiol Rev 2012; 92:1619-49. [DOI: 10.1152/physrev.00046.2011] [Citation(s) in RCA: 485] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stem cell factor (SCF) is a dimeric molecule that exerts its biological functions by binding to and activating the receptor tyrosine kinase c-Kit. Activation of c-Kit leads to its autophosphorylation and initiation of signal transduction. Signaling proteins are recruited to activated c-Kit by certain interaction domains (e.g., SH2 and PTB) that specifically bind to phosphorylated tyrosine residues in the intracellular region of c-Kit. Activation of c-Kit signaling has been found to mediate cell survival, migration, and proliferation depending on the cell type. Signaling from c-Kit is crucial for normal hematopoiesis, pigmentation, fertility, gut movement, and some aspects of the nervous system. Deregulated c-Kit kinase activity has been found in a number of pathological conditions, including cancer and allergy. The observation that gain-of-function mutations in c-Kit can promote tumor formation and progression has stimulated the development of therapeutics agents targeting this receptor, e.g., the clinically used inhibitor imatinib mesylate. Also other clinically used multiselective kinase inhibitors, for instance, sorafenib and sunitinib, have c-Kit included in their range of targets. Furthermore, loss-of-function mutations in c-Kit have been observed and shown to give rise to a condition called piebaldism. This review provides a summary of our current knowledge regarding structural and functional aspects of c-Kit signaling both under normal and pathological conditions, as well as advances in the development of low-molecular-weight molecules inhibiting c-Kit function.
Collapse
Affiliation(s)
- Johan Lennartsson
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden; and Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Lars Rönnstrand
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden; and Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
25
|
Agustí A, Barnes PJ. Update in chronic obstructive pulmonary disease 2011. Am J Respir Crit Care Med 2012; 185:1171-6. [PMID: 22661523 DOI: 10.1164/rccm.201203-0505up] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Alvar Agustí
- Institut del Torax, Hospital Clinic, Villarroel 170, Barcelona, Spain.
| | | |
Collapse
|
26
|
Kubo H. Concise review: clinical prospects for treating chronic obstructive pulmonary disease with regenerative approaches. Stem Cells Transl Med 2012. [PMID: 23197868 DOI: 10.5966/sctm.2012-0065] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is becoming a major cause of death worldwide. COPD is characterized by a progressive and not fully reversible airflow limitation caused by chronic small airway disease and lung parenchymal destruction. Clinically available drugs improve airflow obstruction and respiratory symptoms but cannot cure the disease. Slowing the progressive lung destruction or rebuilding the destroyed lung structure is a promising strategy to cure COPD. In contrast to small animal models, pharmacological lung regeneration is difficult in human COPD. Maturation, aging, and senescence in COPD lung cells, including endogenous stem cells, may affect the regenerative capacity following pharmacological therapy. The lung is a complex organ composed of more than 40 different cell types; therefore, detailed analyses, such as epigenetic modification analysis, in each specific cell type have not been performed in lungs with COPD. Recently, a method for the direct isolation of individual cell types from human lung has been developed, and fingerprints of each cell type in COPD lungs can be analyzed. Research using this technique combined with the recently discovered lung endogenous stem-progenitor populations will give a better understanding about the fate of COPD lung cells and provide a future for cell-based therapy to treat this intractable disease.
Collapse
Affiliation(s)
- Hiroshi Kubo
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
27
|
El-Agamy DS. Targeting c-kit in the therapy of mast cell disorders: current update. Eur J Pharmacol 2012; 690:1-3. [PMID: 22789565 DOI: 10.1016/j.ejphar.2012.06.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/29/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
Abstract
Classically, mast cells have been widely associated with allergic reactions and parasite infections, but recent studies have elucidated the important role of these cells in innate and acquired immunity, wound healing, fibrosis, and chronic inflammatory diseases. Mast cells release an impressive array of proinflammatory and immunoregulatory mediators after activation induced by either immunoglobulin-E (IgE)-dependent or IgE-independent mechanisms. Proliferation, differentiation, survival and activation of mast cells are regulated by stem cell factor (SCF), the ligand for the c-kit tyrosine kinase receptor which is expressed on the mast cell surface. Inappropriate c-kit activation causes accumulation of mast cells in tissues resulting in mastocytosis. A number of activating mutations in c-kit have recently been identified and these mutations results in aberrant mast cell growth. Thus, c-kit inhibitors may have potential application in multiple conditions associated with mast cell disorders including systemic mastocytosis, anaphylaxis, and asthma. The present perspective aims to summarize recent findings in mast cell biology and the role of c-kit tyrosine kinase inhibitors in the treatment of different mast cell associated disorders.
Collapse
Affiliation(s)
- Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
28
|
Peter Y, Sen N, Levantini E, Keller S, Ingenito EP, Ciner A, Sackstein R, Shapiro SD. CD45/CD11b positive subsets of adult lung anchorage-independent cells harness epithelial stem cells in culture. J Tissue Eng Regen Med 2012; 7:572-83. [PMID: 22585451 DOI: 10.1002/term.553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/19/2011] [Accepted: 11/15/2011] [Indexed: 01/02/2023]
Abstract
Compensatory growth is mediated by multiple cell types that interact during organ repair. To elucidate the relationship between stem/progenitor cells that proliferate or differentiate and somatic cells of the lung, we used a novel organotypic ex vivo pneumoexplant system. Applying this technique, we identified a sustained culture of repopulating adult progenitors in the form of free-floating anchorage-independent cells (AICs). AICs did not express integrin proteins α5, β3 and β7, and constituted 37% of the total culture at day 14, yielding a mixed yet conservative population that recapitulated RNA expression patterns of the healthy lung. AICs exhibited rapid proliferation manifested by a marked 60-fold increase in cell numbers by day 21. More than 50% of the AIC population was c-KIT(+) or double-positive for CD45(+) and CD11b(+) antigenic determinants, consistent with cells of hematopoietic origin. The latter subset was found to be enriched with prosurfactant protein-C and SCGB1A1 expressing putative stem cells and with aquaporin-5 producing cells, characteristic of terminally differentiated alveolar epithelial type-1 pneumocytes. At the air/gel interface, AICs undergo remodeling to form a cellular lining, whereas TGF(β)1 treatment modifies protein expression properties to further imply a robust effect of the microenvironment on AIC phenotypic changes. These data confirm the active participation of clonogenic hematopoietic stem cells in a mammalian model of lung repair and validate mixed stem/somatic cell cultures, which license sustained cell viability, proliferation and differentiation, for use in studies of compensatory pulmonary growth.
Collapse
Affiliation(s)
- Yakov Peter
- Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Wansleeben C, Barkauskas CE, Rock JR, Hogan BLM. Stem cells of the adult lung: their development and role in homeostasis, regeneration, and disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:131-48. [DOI: 10.1002/wdev.58] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
|
31
|
Potts-Kant EN, Li Z, Tighe RM, Lindsey JY, Frush BW, Foster WM, Hollingsworth JW. RETRACTED: NAD(P)H:quinone oxidoreductase 1 protects lungs from oxidant-induced emphysema in mice. Free Radic Biol Med 2012; 52:705-715. [PMID: 22198263 PMCID: PMC3267893 DOI: 10.1016/j.freeradbiomed.2011.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/28/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Authors. Since learning of potential discrepancies between the raw data from the animal pulmonary physiology laboratory at Duke that were used to calculate the in vivo pulmonary mechanics and the re-exported machine-generated raw data, some studies published elsewhere have been replicated successfully. However it is not possible to replicate this study as the NQO1-deficient mice on the C57BL/6 background are no longer available from the NCI. The authors recognize that previous work to identify differences in alveolar size can vary dependent on background strain when comparing inbred mouse strains (Soutiere SE et al Resp Physiol Neurobiol 2004;140(3)183–91 doi: 10.1016/j.resp.2004.02.003). Because of the prolonged period of time required to successfully backcross NQO1-deficient animals onto C57BL/6J background and the time required to repeat studies presented in this manuscript the authors think it does not seem feasible to conduct replicate studies in a reasonable timeline. Therefore, the most appropriate course of action is to retract the report as it is the authors' goal to maintain accuracy of the scientific record to the best of their ability. The authors offer sincere apologies to the scientific community.
Collapse
Affiliation(s)
- Erin N Potts-Kant
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Zhuowei Li
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - James Y Lindsey
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Benjamin W Frush
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - W Michael Foster
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - John W Hollingsworth
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|