1
|
Liao Y, Cavalcante RG, Waller JB, Deng F, Scruggs AM, Huang YJ, Atasoy U, Chen Y, Huang SK. Differences in the DNA methylome of T cells in adults with asthma of varying severity. Clin Epigenetics 2024; 16:139. [PMID: 39380119 PMCID: PMC11459694 DOI: 10.1186/s13148-024-01750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND DNA methylation plays a critical role in asthma development, but differences in DNA methylation among adults with varying asthma severity are less well-defined. OBJECTIVE To examine how DNA methylomic patterns differ among adults with asthma based on asthma severity and airway inflammation. METHODS Peripheral blood T cells from 35 adults with asthma in Beijing, China, were serially collected over time (130 samples total) and analyzed for global DNA methylation using the Illumina MethylationEPIC Array. Differential methylation was compared among subjects with varying airway inflammation and severity, as measured by fraction of exhaled nitric oxide, forced expiratory volume in one second (FEV1), and Asthma Control Test (ACT) scores. RESULTS Significant differences in DNA methylation were noted among subjects with different degrees of airway inflammation and asthma severity. These differences in DNA methylation were annotated to genes that were enriched in pathways related to asthma or T cell function and included gene ontology categories related to MHC class II assembly, T cell activation, interleukin (IL)-1, and IL-12. Genes related to P450 drug metabolism, glutathione metabolism, and developmental pathways were also differentially methylated in comparisons between subjects with high vs low FEV1 and ACT. Notable genes that were differentially methylated based on asthma severity included RUNX3, several members of the HLA family, AGT, PTPRC, PTPRJ, and several genes downstream of the JAK2 and TNF signaling pathway. CONCLUSION These findings demonstrate how adults with asthma of varying severity possess differences in peripheral blood T cell DNA methylation that contribute to differences in clinical indices of asthma.
Collapse
Affiliation(s)
- Yixuan Liao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, No.49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Raymond G Cavalcante
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan B Waller
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Anne M Scruggs
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Yvonne J Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Ulus Atasoy
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, No.49, Huayuan North Road, Haidian District, Beijing, 100191, China.
| | - Steven K Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Liao Y, Cavalcante R, Waller J, Deng F, Scruggs A, Huang Y, Atasoy U, Chen Y, Huang S. Differences in the DNA Methylome of T cells in Adults With Asthma of Varying Severity. RESEARCH SQUARE 2024:rs.3.rs-4476948. [PMID: 38946998 PMCID: PMC11213176 DOI: 10.21203/rs.3.rs-4476948/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background DNA methylation plays a critical role in asthma development, but differences in DNA methylation among adults with varying asthma severity or asthma endotypes are less well-defined. Objective To examine how DNA methylomic patterns differ among adults with asthma based on asthma severity and airway inflammation. Methods Peripheral blood T cells from 35 adults with asthma in Beijing, China were serially collected over time (130 samples total) and analyzed for global DNA methylation using the Illumina MethylationEPIC Array. Differential methylation was compared among subjects with varying airway inflammation and severity, as measured by fraction of exhaled nitric oxide, forced expiratory volume in one second (FEV1), and Asthma Control Test (ACT) scores. Results Significant differences in DNA methylation were noted among subjects with different degrees of airway inflammation and asthma severity. These differences in DNA methylation were annotated to genes that were enriched in pathways related to asthma or T cell function and included gene ontology categories related to MHC class II assembly, T cell activation, interleukin (IL)-1, and IL-12. Genes related to P450 drug metabolism, glutathione metabolism, and developmental pathways were also differentially methylated in comparisons between subjects with high vs low FEV1 and ACT. Notable genes that were differentially methylated based on asthma severity included RUNX3, several members of the HLA family, AGT, PTPRC, PTPRJ, and several genes downstream of the JAK2 and TNF signaling pathway. Conclusion These findings demonstrate how adults with asthma of varying severity possess differences in peripheral blood T cell DNA methylation that contribute to the phenotype and severity of their overall disease.
Collapse
|
3
|
Miller RL, Rivera J, Lichtiger L, Govindarajulu US, Jung KH, Lovinsky-Desir S, Perera F, Balcer Whaley S, Newman M, Grant TL, McCormack M, Perzanowski M, Matsui EC. Associations between mitochondrial biomarkers, urban residential exposures and childhood asthma outcomes over 6 months. ENVIRONMENTAL RESEARCH 2023; 239:117342. [PMID: 37813137 PMCID: PMC10843300 DOI: 10.1016/j.envres.2023.117342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/11/2023]
Abstract
Determining biomarkers of responses to environmental exposures and evaluating whether they predict respiratory outcomes may help optimize environmental and medical approaches to childhood asthma. Relative mitochondrial (mt) DNA abundance and other potential mitochondrial indicators of oxidative stress may provide a sensitive metric of the child's shifting molecular responses to its changing environment. We leveraged two urban childhood cohorts (Environmental Control as Add-on Therapy in Childhood Asthma (ECATCh); Columbia Center for Children's Environmental Health (CCCEH)) to ascertain whether biomarkers in buccal mtDNA associate with airway inflammation and altered lung function over 6 months of time and capture biologic responses to multiple external stressors such as indoor allergens and fine particulate matter (PM2.5). Relative mtDNA content was amplified by qPCR and methylation of transfer RNA phenylalanine/rRNA 12S (TF/RNR1), cytochrome c oxidase (CO1), and carboxypeptidase O (CPO) was measured by pyrosequencing. Data on residential exposures and respiratory outcomes were harmonized between the two cohorts. Repeated measures and multiple regression models were utilized to assess relationships between mitochondrial biomarkers, respiratory outcomes, and residential exposures (PM2.5, allergens), adjusted for potential confounders and time-varying asthma. We found across the 6 month visits, a 0.64 fold higher level of TF/RNR1 methylation was detected among those with asthma in comparison to those without asthma ((parameter estimate (PE) 0.64, standard error 0.28, p = 0.03). In prospective analyses, CPO methylation was associated with subsequent reduced forced vital capacity (FVC; PE -0.03, standard error 0.01, p = 0.02). Bedroom dust mouse allergen, but not indoor PM2.5, was associated with higher methylation of TF/RNR1 (PE 0.015, standard error 0.006, p = 0.01). Select mtDNA measures in buccal cells may indicate children's responses to toxic environmental exposures and associate selectively with asthma and lung function.
Collapse
Affiliation(s)
- Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA; Columbia Center for Childrens Environmental Health, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY, 10032, USA.
| | - Janelle Rivera
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Lydia Lichtiger
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Usha S Govindarajulu
- Center for Biostatistics, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Kyung Hwa Jung
- Division of Pediatric Pulmonary, Columbia University Irving Medical Center, 630 W. 168th St, New York, NY, 10032, USA
| | - Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonary, Columbia University Irving Medical Center, 630 W. 168th St, New York, NY, 10032, USA
| | - Frederica Perera
- Columbia Center for Childrens Environmental Health, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY, 10032, USA
| | - Susan Balcer Whaley
- Department of Population Health, Dell Medical School University of Texas at Austin, 1601 Trinity St., Bldg. B, Stop Z0500, Austin, TX, 78712, USA
| | - Michelle Newman
- Department of Epidemiology and Public Health, University of Maryland, 10 S. Pine St, MSTF 3-34, Baltimore, MD, 21201, USA
| | - Torie L Grant
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meredith McCormack
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew Perzanowski
- Columbia Center for Childrens Environmental Health, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY, 10032, USA
| | - Elizabeth C Matsui
- Department of Population Health, Dell Medical School University of Texas at Austin, 1601 Trinity St., Bldg. B, Stop Z0500, Austin, TX, 78712, USA
| |
Collapse
|
4
|
Percival E, Collison AM, da Silva Sena CR, De Queiroz Andrade E, De Gouveia Belinelo P, Gomes GMC, Oldmeadow C, Murphy VE, Gibson PG, Karmaus W, Mattes J. The association of exhaled nitric oxide with air pollutants in young infants of asthmatic mothers. Environ Health 2023; 22:84. [PMID: 38049853 PMCID: PMC10696885 DOI: 10.1186/s12940-023-01030-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/08/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Exhaled nitric oxide is a marker of airway inflammation. Air pollution induces airway inflammation and oxidative stress. Little is known about the impact of air pollution on exhaled nitric oxide in young infants. METHODS The Breathing for Life Trial recruited pregnant women with asthma into a randomised controlled trial comparing usual clinical care versus inflammometry-guided asthma management in pregnancy. Four hundred fifty-seven infants from the Breathing for Life Trial birth cohort were assessed at six weeks of age. Exhaled nitric oxide was measured in unsedated, sleeping infants. Its association with local mean 24-h and mean seven-day concentrations of ozone, nitric oxide, nitrogen dioxide, carbon monoxide, sulfur dioxide, ammonia, particulate matter less than 10 μm (PM10) and less than 2.5 μm (PM2.5) in diameter was investigated. The air pollutant data were sourced from local monitoring sites of the New South Wales Air Quality Monitoring Network. The association was assessed using a 'least absolute shrinkage and selection operator' (LASSO) approach, multivariable regression and Spearman's rank correlation. RESULTS A seasonal variation was evident with higher median exhaled nitric oxide levels (13.6 ppb) in warmer months and lower median exhaled nitric oxide levels (11.0 ppb) in cooler months, P = 0.008. LASSO identified positive associations for exhaled nitric oxide with 24-h mean ammonia, seven-day mean ammonia, seven-day mean PM10, seven-day mean PM2.5, and seven-day mean ozone; and negative associations for eNO with seven-day mean carbon monoxide, 24-h mean nitric oxide and 24-h mean sulfur dioxide, with an R-square of 0.25 for the penalized coefficients. These coefficients selected by LASSO (and confounders) were entered in multivariable regression. The achieved R-square was 0.27. CONCLUSION In this cohort of young infants of asthmatic mothers, exhaled nitric oxide showed seasonal variation and an association with local air pollution concentrations.
Collapse
Affiliation(s)
- Elizabeth Percival
- Asthma & Breathing Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Adam M Collison
- Asthma & Breathing Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Carla Rebeca da Silva Sena
- Asthma & Breathing Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Ediane De Queiroz Andrade
- Asthma & Breathing Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Patricia De Gouveia Belinelo
- Asthma & Breathing Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Gabriela Martins Costa Gomes
- Asthma & Breathing Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | | | - Vanessa E Murphy
- Asthma & Breathing Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Peter G Gibson
- Asthma & Breathing Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Wilfried Karmaus
- Division of Epidemiology, School of Public Health, and Environmental Health Science, University of Memphis, BiostatisticsMemphis, TN, 38152, USA
| | - Joerg Mattes
- Asthma & Breathing Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.
- Department of Paediatric Respiratory & Sleep Medicine, John Hunter Children's Hospital, Newcastle, NSW, Australia.
| |
Collapse
|
5
|
Kurihara C, Kuniyoshi KM, Rehan VK. Preterm Birth, Developmental Smoke/Nicotine Exposure, and Life-Long Pulmonary Sequelae. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10040608. [PMID: 37189857 DOI: 10.3390/children10040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
This review delineates the main pulmonary issues related to preterm birth, perinatal tobacco/nicotine exposure, and its effects on offspring, focusing on respiratory health and its possible transmission to subsequent generations. We review the extent of the problem of preterm birth, prematurity-related pulmonary effects, and the associated increased risk of asthma later in life. We then review the impact of developmental tobacco/nicotine exposure on offspring asthma and the significance of transgenerational pulmonary effects following perinatal tobacco/nicotine exposure, possibly via its effects on germline epigenetics.
Collapse
Affiliation(s)
- Chie Kurihara
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Katherine M Kuniyoshi
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Virender K Rehan
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Martin-Almeida M, Perez-Garcia J, Herrera-Luis E, Rosa-Baez C, Gorenjak M, Neerincx AH, Sardón-Prado O, Toncheva AA, Harner S, Wolff C, Brandstetter S, Valletta E, Abdel-Aziz MI, Hashimoto S, Berce V, Corcuera-Elosegui P, Korta-Murua J, Buntrock-Döpke H, Vijverberg SJH, Verster JC, Kerssemakers N, Hedman AM, Almqvist C, Villar J, Kraneveld AD, Potočnik U, Kabesch M, der Zee AHMV, Pino-Yanes M, Consortium OBOTS. Epigenome-Wide Association Studies of the Fractional Exhaled Nitric Oxide and Bronchodilator Drug Response in Moderate-to-Severe Pediatric Asthma. Biomedicines 2023; 11:biomedicines11030676. [PMID: 36979655 PMCID: PMC10044864 DOI: 10.3390/biomedicines11030676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Asthma is the most prevalent pediatric chronic disease. Bronchodilator drug response (BDR) and fractional exhaled nitric oxide (FeNO) are clinical biomarkers of asthma. Although DNA methylation (DNAm) contributes to asthma pathogenesis, the influence of DNAm on BDR and FeNO is scarcely investigated. This study aims to identify DNAm markers in whole blood associated either with BDR or FeNO in pediatric asthma. We analyzed 121 samples from children with moderate-to-severe asthma. The association of genome-wide DNAm with BDR and FeNO has been assessed using regression models, adjusting for age, sex, ancestry, and tissue heterogeneity. Cross-tissue validation was assessed in 50 nasal samples. Differentially methylated regions (DMRs) and enrichment in traits and biological pathways were assessed. A false discovery rate (FDR) < 0.1 and a genome-wide significance threshold of p < 9 × 10−8 were used to control for false-positive results. The CpG cg12835256 (PLA2G12A) was genome-wide associated with FeNO in blood samples (coefficient= −0.015, p = 2.53 × 10−9) and nominally associated in nasal samples (coefficient = −0.015, p = 0.045). Additionally, three CpGs were suggestively associated with BDR (FDR < 0.1). We identified 12 and four DMRs associated with FeNO and BDR (FDR < 0.05), respectively. An enrichment in allergic and inflammatory processes, smoking, and aging was observed. We reported novel associations of DNAm markers associated with BDR and FeNO enriched in asthma-related processes.
Collapse
Affiliation(s)
- Mario Martin-Almeida
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
| | - Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
| | - Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
| | - Carlos Rosa-Baez
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
| | - Mario Gorenjak
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Anne H. Neerincx
- Department of Respiratory Medicine, Amsterdam University Medical Centres—Loc. AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Olaia Sardón-Prado
- Division of Pediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain
- Department of Pediatrics, University of the Basque Country (UPV/EHU), 48013 San Sebastián, Spain
| | - Antoaneta A. Toncheva
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Susanne Harner
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Christine Wolff
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Susanne Brandstetter
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Elisa Valletta
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Mahmoud I. Abdel-Aziz
- Department of Respiratory Medicine, Amsterdam University Medical Centres—Loc. AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Simone Hashimoto
- Department of Respiratory Medicine, Amsterdam University Medical Centres—Loc. AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Pediatric Respiratory Medicine, Emma Children’s Hospital, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - Vojko Berce
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Clinic of Pediatrics, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Paula Corcuera-Elosegui
- Division of Pediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain
| | - Javier Korta-Murua
- Division of Pediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain
- Department of Pediatrics, University of the Basque Country (UPV/EHU), 48013 San Sebastián, Spain
| | - Heike Buntrock-Döpke
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Susanne J. H. Vijverberg
- Department of Respiratory Medicine, Amsterdam University Medical Centres—Loc. AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Joris C. Verster
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia
| | - Nikki Kerssemakers
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Anna M Hedman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, 171 77 Stockholm, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, 171 77 Stockholm, Sweden
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, 35010 Las Palmas de Gran Canaria, Spain
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Clinic of Pediatrics, University Medical Centre Maribor, 2000 Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology, and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, D-93049 Regensburg, Germany
| | - Anke H. Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam University Medical Centres—Loc. AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Pediatric Respiratory Medicine, Emma Children’s Hospital, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
- Correspondence: ; Tel.: +34-9223-16502-6343
| | | |
Collapse
|
7
|
Maggi E, Parronchi P, Azzarone BG, Moretta L. A pathogenic integrated view explaining the different endotypes of asthma and allergic disorders. Allergy 2022; 77:3267-3292. [PMID: 35842745 DOI: 10.1111/all.15445] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
The inflammation of allergic diseases is characterized by a complex interaction between type 2 and type 3 immune responses, explaining clinical symptoms and histopathological patterns. Airborne stimuli activate the mucosal epithelium to release a number of molecules impacting the activity of resident immune and environmental cells. Signals from the mucosal barrier, regulatory cells, and the inflamed tissue are crucial conditions able to modify innate and adaptive effector cells providing the selective homing of eosinophils or neutrophils. The high plasticity of resident T- and innate lymphoid cells responding to external signals is the prerequisite to explain the multiplicity of endotypes of allergic diseases. This notion paved the way for the huge use of specific biologic drugs interfering with pathogenic mechanisms of inflammation. Based on the response of the epithelial barrier, the activity of resident regulatory cells, and functions of structural non-lymphoid environmental cells, this review proposes some immunopathogenic scenarios characterizing the principal endotypes which can be associated with a precise phenotype of asthma. Recent literature indicates that similar concepts can also be applied to the inflammation of other non-respiratory allergic disorders. The next challenges will consist in defining specific biomarker(s) of each endotype allowing for a quick diagnosis and the most effective personalized therapy.
Collapse
Affiliation(s)
- Enrico Maggi
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Parronchi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | | | - Lorenzo Moretta
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
8
|
Sharma S, Yang IV, Schwartz DA. Epigenetic regulation of immune function in asthma. J Allergy Clin Immunol 2022; 150:259-265. [PMID: 35717251 PMCID: PMC9378596 DOI: 10.1016/j.jaci.2022.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022]
Abstract
Asthma is a common complex respiratory disease characterized by chronic airway inflammation and partially reversible airflow obstruction resulting from genetic and environmental determinants. Because epigenetic marks influence gene expression and can be modified by both environmental exposures and genetic variation, they are increasingly recognized as relevant to the pathogenesis of asthma and may be a key link between environmental exposures and asthma susceptibility. Unlike changes to DNA sequence, epigenetic signatures are dynamic and reversible, creating an opportunity for not only therapeutic targets but may serve as biomarkers to follow disease course and identify molecular subtypes in heterogeneous diseases such as asthma. In this review, we will examine the relationship between asthma and 3 key epigenetic processes that modify gene expression: DNA methylation, modification of histone tails, and noncoding RNAs. In addition to presenting a comprehensive assessment of the existing epigenetic studies focusing on immune regulation in asthma, we will discuss future directions for epigenetic investigation in allergic airway disease.
Collapse
Affiliation(s)
- Sunita Sharma
- Divisions of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo.
| | - Ivana V Yang
- Divisions of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo; Divisions of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - David A Schwartz
- Divisions of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| |
Collapse
|
9
|
Ekpruke CD, Silveyra P. Sex Differences in Airway Remodeling and Inflammation: Clinical and Biological Factors. FRONTIERS IN ALLERGY 2022; 3:875295. [PMID: 35769576 PMCID: PMC9234861 DOI: 10.3389/falgy.2022.875295] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Asthma is characterized by an increase in the contraction and inflammation of airway muscles, resulting in airflow obstruction. The prevalence of asthma is lower in females than in males until the start of puberty, and higher in adult women than men. This sex disparity and switch at the onset of puberty has been an object of debate among many researchers. Hence, in this review, we have summarized these observations to pinpoint areas needing more research work and to provide better sex-specific diagnosis and management of asthma. While some researchers have attributed it to the anatomical and physiological differences in the male and female respiratory systems, the influences of hormonal interplay after puberty have also been stressed. Other hormones such as leptin have been linked to the sex differences in asthma in both obese and non-obese patients. Recently, many scientists have also demonstrated the influence of the sex-specific genomic framework as a key player, and others have linked it to environmental, social lifestyle, and occupational exposures. The majority of studies concluded that adult men are less susceptible to developing asthma than women and that women display more severe forms of the disease. Therefore, the understanding of the roles played by sex- and gender-specific factors, and the biological mechanisms involved will help develop novel and more accurate diagnostic and therapeutic plans for sex-specific asthma management.
Collapse
Affiliation(s)
- Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, Indiana University Bloomington School of Public Health, Bloomington, IN, United States
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University Bloomington School of Public Health, Bloomington, IN, United States
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Patricia Silveyra
| |
Collapse
|
10
|
Bermick J, Schaller M. Epigenetic regulation of pediatric and neonatal immune responses. Pediatr Res 2022; 91:297-327. [PMID: 34239066 DOI: 10.1038/s41390-021-01630-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation of transcription is a collective term that refers to mechanisms known to regulate gene transcription without changing the underlying DNA sequence. These mechanisms include DNA methylation and histone tail modifications which influence chromatin accessibility, and microRNAs that act through post-transcriptional gene silencing. Epigenetics is known to regulate a variety of biological processes, and the role of epigtenetics in immunity and immune-mediated diseases is becoming increasingly recognized. While DNA methylation is the most widely studied, each of these systems play an important role in the development and maintenance of appropriate immune responses. There is clear evidence that epigenetic mechanisms contribute to developmental stage-specific immune responses in a cell-specific manner. There is also mounting evidence that prenatal exposures alter epigenetic profiles and subsequent immune function in exposed offspring. Early life exposures that are associated with poor long-term health outcomes also appear to impact immune specific epigenetic patterning. Finally, each of these epigenetic mechanisms contribute to the pathogenesis of a wide variety of diseases that manifest during childhood. This review will discuss each of these areas in detail. IMPACT: Epigenetics, including DNA methylation, histone tail modifications, and microRNA expression, dictate immune cell phenotypes. Epigenetics influence immune development and subsequent immune health. Prenatal, perinatal, and postnatal exposures alter immune cell epigenetic profiles and subsequent immune function. Numerous pediatric-onset diseases have an epigenetic component. Several successful strategies for childhood diseases target epigenetic mechanisms.
Collapse
Affiliation(s)
- Jennifer Bermick
- Department of Pediatrics, Division of Neonatology, University of Iowa, Iowa City, IA, USA. .,Iowa Inflammation Program, University of Iowa, Iowa City, IA, USA.
| | - Matthew Schaller
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Role of Epigenetics in the Pathogenesis, Treatment, Prediction, and Cellular Transformation of Asthma. Mediators Inflamm 2021; 2021:9412929. [PMID: 34566492 PMCID: PMC8457970 DOI: 10.1155/2021/9412929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Asthma is a mysterious disease with heterogeneity in etiology, pathogenesis, and clinical phenotypes. Although ongoing studies have provided a better understanding of asthma, its natural history, progression, pathogenesis, diversified phenotypes, and even the exact epigenetic linkage between childhood asthma and adult-onset/old age asthma remain elusive in many aspects. Asthma heritability has been established through genetic studies, but genetics is not the only influencing factor in asthma. The increasing incidence and some unsolved queries suggest that there may be other elements related to asthma heredity. Epigenetic mechanisms link genetic and environmental factors with developmental trajectories in asthma. This review provides an overview of asthma epigenetics and its components, including several epigenetic studies on asthma, and discusses the epigenetic linkage between childhood asthma and adult-onset/old age asthma. Studies involving asthma epigenetics present valuable novel approaches to solve issues related to asthma. Asthma epigenetic research guides us towards gene therapy and personalized T cell therapy, directs the discovery of new therapeutic agents, predicts long-term outcomes in severe cases, and is also involved in the cellular transformation of childhood asthma to adult-onset/old age asthma.
Collapse
|
12
|
Czubaj-Kowal M, Kurzawa R, Mazurek H, Sokołowski M, Friediger T, Polak M, Nowicki GJ. Relationship Between Air Pollution and the Concentration of Nitric Oxide in the Exhaled Air (FeNO) in 8-9-Year-Old School Children in Krakow. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136690. [PMID: 34206247 PMCID: PMC8296872 DOI: 10.3390/ijerph18136690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/13/2021] [Accepted: 06/20/2021] [Indexed: 11/16/2022]
Abstract
The consequences of air pollution pose one of the most serious threats to human health, and especially impact children from large agglomerations. The measurement of nitric oxide concentration in exhaled air (FeNO) is a valuable biomarker in detecting and monitoring airway inflammation. However, only a few studies have assessed the relationship between FeNO and the level of air pollution. The study aims to estimate the concentration of FeNO in the population of children aged 8–9 attending the third grade of public primary schools in Krakow, as well as to determine the relationship between FeNO concentration and dust and gaseous air pollutants. The research included 4580 children aged 8–9 years who had two FeNO measurements in the winter–autumn and spring–summer periods. The degree of air pollution was obtained from the Regional Inspectorate of Environmental Protection in Krakow. The concentration of pollutants was obtained from three measurement stations located in different parts of the city. The FeNO results were related to air pollution parameters. The study showed weak but significant relationships between FeNO and air pollution parameters. The most significant positive correlations were found for CO8h (r = 0.1491, p < 0.001), C6H6 (r = 0.1420, p < 0.001), PM10 (r = 0.1054, p < 0.001) and PM2.5 (r = 0.1112, p < 0.001). We suggest that particulate and gaseous air pollutants impact FeNO concentration in children aged 8–9 years. More research is needed to assess the impact of air pollution on FeNO concentration in children. The results of such studies could help to explain the increase in the number of allergic and respiratory diseases seen in children in recent decades.
Collapse
Affiliation(s)
- Marta Czubaj-Kowal
- Department of Paediatrics, Stefan Żeromski Specialist Hospital in Krakow, Na Skarpie 66 Str., PL-31-913 Krakow, Poland;
- Correspondence: ; Tel.: +48-604-433-428
| | - Ryszard Kurzawa
- Department of Alergology and Pneumonology, Institute of Tuberculosis and Lung Disorders, Prof. Jana Rudnika 3B Str., PL-34-700 Rabka-Zdrój, Poland;
| | - Henryk Mazurek
- Department of Pneumonology and Cystic Fibrosis, Institute of Tuberculosis and Lung Disorders, Prof. Jana Rudnika 3B Str., PL-34-700 Rabka-Zdrój, Poland;
| | - Michał Sokołowski
- Department of Paediatrics, Stefan Żeromski Specialist Hospital in Krakow, Na Skarpie 66 Str., PL-31-913 Krakow, Poland;
| | - Teresa Friediger
- Faculty of Health, Catholic University in Ruzomberok, Námestie A. Hlinku 48 Str., SK-034 01 Ruzomberok, Slovakia;
| | - Maciej Polak
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Grzegórzecka 20 Str., PL-31-531 Krakow, Poland;
| | - Grzegorz Józef Nowicki
- Department of Family Medicine and Community Nursing, Medical University of Lublin, Staszica 6 Str., PL-20-081 Lublin, Poland;
| |
Collapse
|
13
|
Yang Y, Jia M, Ou Y, Adcock IM, Yao X. Mechanisms and biomarkers of airway epithelial cell damage in asthma: A review. CLINICAL RESPIRATORY JOURNAL 2021; 15:1027-1045. [PMID: 34097803 DOI: 10.1111/crj.13407] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Bronchial asthma is a heterogeneous disease with complex pathological mechanisms representing different phenotypes, including severe asthma. The airway epithelium is a major site of complex pathological changes in severe asthma due, in part, to activation of inflammatory and immune mechanisms in response to noxious agents. Current imaging procedures are unable to accurately measure epithelial and airway remodeling. Damage of airway epithelial cells occurs is linked to specific phenotypes and endotypes which provides an opportunity for the identification of biomarkers reflecting epithelial, and airway, remodeling. Identification of patients with more severe epithelial disruption using biomarkers may also provide personalised therapeutic opportunities and/or markers of successful therapeutic intervention. Here, we review the evidence for ongoing epithelial cell dysregulation in the pathogenesis of asthma, the sentinel role of the airway epithelium and how understanding these molecular mechanisms provides the basis for the identification of candidate biomarkers for asthma prediction, prevention, diagnosis, treatment and monitoring.
Collapse
Affiliation(s)
- Yuemei Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Man Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingwei Ou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Emergency Medical, Zhejiang Province People's Hospital, Zhejiang, China
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Saikumar Jayalatha AK, Hesse L, Ketelaar ME, Koppelman GH, Nawijn MC. The central role of IL-33/IL-1RL1 pathway in asthma: From pathogenesis to intervention. Pharmacol Ther 2021; 225:107847. [PMID: 33819560 DOI: 10.1016/j.pharmthera.2021.107847] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-33 (IL-33), a member of the IL-1 family, and its cognate receptor, Interleukin-1 receptor like-1 (IL-1RL1 or ST2), are susceptibility genes for childhood asthma. In response to cellular damage, IL-33 is released from barrier tissues as an 'alarmin' to activate the innate immune response. IL-33 drives type 2 responses by inducing signalling through its receptor IL-1RL1 in several immune and structural cells, thereby leading to type 2 cytokine and chemokine production. IL-1RL1 gene transcript encodes different isoforms generated through alternative splicing. Its soluble isoform, IL-1RL1-a or sST2, acts as a decoy receptor by sequestering IL-33, thereby inhibiting IL1RL1-b/IL-33 signalling. IL-33 and its receptor IL-1RL1 are therefore considered as putative biomarkers or targets for pharmacological intervention in asthma. This review will provide an overview of the genetics and biology of the IL-33/IL-1RL1 pathway in the context of asthma pathogenesis. It will discuss the potential and complexities of targeting the cytokine or its receptor, how genetics or biomarkers may inform precision medicine for asthma targeting this pathway, and the possible positioning of therapeutics targeting IL-33 or its receptor in the expanding landscape of novel biologicals applied in asthma management.
Collapse
Affiliation(s)
- A K Saikumar Jayalatha
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - L Hesse
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - M E Ketelaar
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatric Pulmonology and Paediatric Allergology, Groningen, the Netherlands
| | - G H Koppelman
- University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatric Pulmonology and Paediatric Allergology, Groningen, the Netherlands
| | - M C Nawijn
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands.
| |
Collapse
|
15
|
Sheikhpour M, Maleki M, Ebrahimi Vargoorani M, Amiri V. A review of epigenetic changes in asthma: methylation and acetylation. Clin Epigenetics 2021; 13:65. [PMID: 33781317 PMCID: PMC8008616 DOI: 10.1186/s13148-021-01049-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/04/2021] [Indexed: 12/30/2022] Open
Abstract
Several studies show that childhood and adulthood asthma and its symptoms can be modulated through epigenetic modifications. Epigenetic changes are inheritable modifications that can modify the gene expression without changing the DNA sequence. The most common epigenetic alternations consist of DNA methylation and histone modifications. How these changes lead to asthmatic phenotype or promote the asthma features, in particular by immune pathways regulation, is an understudied topic. Since external effects, like exposure to tobacco smoke, air pollution, and drugs, influence both asthma development and the epigenome, elucidating the role of epigenetic changes in asthma is of great importance. This review presents available evidence on the epigenetic process that drives asthma genes and pathways, with a particular focus on DNA methylation, histone methylation, and acetylation. We gathered and assessed studies conducted in this field over the past two decades. Our study examined asthma in different aspects and also shed light on the limitations and the important factors involved in the outcomes of the studies. To date, most of the studies in this area have been carried out on DNA methylation. Therefore, the need for diagnostic and therapeutic applications through this molecular process calls for more research on the histone modifications in this disease.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Mobina Maleki
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Ebrahimi Vargoorani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Department of Microbiology, College of Basic Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Vahid Amiri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
16
|
Ji N, Fang M, Baptista A, Cepeda C, Greenberg M, Mincey IC, Ohman-Strickland P, Haynes F, Fiedler N, Kipen HM, Laumbach RJ. Exposure to traffic-related air pollution and changes in exhaled nitric oxide and DNA methylation in arginase and nitric oxide synthase in children with asthma. Environ Health 2021; 20:12. [PMID: 33573660 PMCID: PMC7879528 DOI: 10.1186/s12940-020-00678-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Traffic-related air pollution (TRAP) has been associated with increased risk of airway inflammation in children with asthma. While epigenetic changes could potentially modulate TRAP-induced inflammatory responses, few studies have assessed the temporal pattern of exposure to TRAP, epigenetic changes and inflammation in children with asthma. Our goal was to test the time-lag patterns of personal exposure to TRAP, airway inflammation (measured as fractional exhaled nitric oxide, FeNO), and DNA methylation in the promoter regions of genes involved in nitric oxide synthesis among children with asthma. METHODS We measured personal exposure to black carbon (BC) and FeNO for up to 30 days in a panel of children with asthma. We collected 90 buccal cell samples for DNA methylation analysis from 18 children (5 per child). Methylation in promoter regions of nitric oxide synthase (NOS1, NOS2A, NOS3) and arginase (ARG1, ARG2) was assessed by bisulfite pyrosequencing. Linear-mixed effect models were used to test the associations of BC at different lag periods, percent DNA methylation at each site and FeNO level. RESULTS Exposure to BC was positively associated with FeNO, and negatively associated with DNA methylation in NOS3. We found strongest association between FeNO and BC at lag 0-6 h while strongest associations between methylation at positions 1 and 2 in NOS3 and BC were at lag 13-24 h and lag 0-24 h, respectively. The strengths of associations were attenuated at longer lag periods. No significant associations between exposure to TRAP and methylation levels in other NOS and ARG isoforms were observed. CONCLUSIONS Exposure to TRAP was associated with higher levels of FeNO and lower levels of DNA methylation in the promoter regions of the NOS3 gene, indicating that DNA methylation of the NOS3 gene could be an important epigenetic mechanism in physiological responses to TRAP in children with asthma.
Collapse
Affiliation(s)
- N Ji
- Rutgers, The State University of New Jersey, 170 Frelinghuysen Rd, Room 204, Piscataway, NJ, 08854, USA
| | - M Fang
- Rutgers, The State University of New Jersey, 170 Frelinghuysen Rd, Room 204, Piscataway, NJ, 08854, USA
| | | | - C Cepeda
- Rutgers, The State University of New Jersey, 170 Frelinghuysen Rd, Room 204, Piscataway, NJ, 08854, USA
| | | | | | - P Ohman-Strickland
- Rutgers, The State University of New Jersey, 170 Frelinghuysen Rd, Room 204, Piscataway, NJ, 08854, USA
| | - F Haynes
- Rutgers, The State University of New Jersey, 170 Frelinghuysen Rd, Room 204, Piscataway, NJ, 08854, USA
| | - N Fiedler
- Rutgers, The State University of New Jersey, 170 Frelinghuysen Rd, Room 204, Piscataway, NJ, 08854, USA
| | - H M Kipen
- Rutgers, The State University of New Jersey, 170 Frelinghuysen Rd, Room 204, Piscataway, NJ, 08854, USA
| | - R J Laumbach
- Rutgers, The State University of New Jersey, 170 Frelinghuysen Rd, Room 204, Piscataway, NJ, 08854, USA.
| |
Collapse
|
17
|
Gokmirza Ozdemir P, Eker D, Celik V, Beken B, Gurkan H, Yazicioglu M, Sut N. Relationship between arginase genes polymorphisms and preschool wheezing phenotypes. Pediatr Pulmonol 2021; 56:561-570. [PMID: 33369279 DOI: 10.1002/ppul.25202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/05/2020] [Accepted: 11/30/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND The association between arginase I (ARG1) and arginase II (ARG2) genes and asthma has been reported in previous studies, but associations between polymorphisms in ARG genes and preschool wheezing (PSW) phenotypes are still unknown. OBJECTIVE To examine the association between genetic variation in ARG1 and ARG2 genes and PSW phenotypes. METHODS We enrolled 83 patients and 86 healthy controls. The patient group included two subgroups: episodic wheezing (EW) (n = 42, median age 41 months) and multiple-trigger wheezing (MW) (n = 41, median age 39 months). We genotyped six single nucleotide polymorphisms (SNPs) in ARG1 and six SNPs in ARG2. Eighteen haplotypes for ARG1 and 31 haplotypes for ARG2 were constituted, and the distributions of SNPs and haplotypes in patients and controls were analyzed. RESULTS The frequency of the homozygote cytosine-cytosine (CC) genotype of ARG1 rs2781667T>C SNP and the ARG1 haplotype 4 in the MW group was significantly higher than the EW group (p = .002; odd ratios [OR]: 5.25; confidence interval [CI]: 1.9-14.51 and p < .001; OR: 7.77; CI: 2.54-23.74, respectively). The frequency of the ARG1 haplotype 5 was significantly higher but the frequency of ARG1 haplotype 9 was significantly lower in the all patients than in the healty controls (p = .019; OR: 10.34; CI: 1.28-83.53 and p = .015; OR: 0.093; CI:0.01-0.74, respectively). The frequency of the ARG1 haplotype 2 was significantly higher in the EW group than in the MW group (p = .014; OR: 5.68; CI: 1.48-21.8). CONCLUSION Variations in ARG1 may potentially be related to phenotypes and risk of PSW.
Collapse
Affiliation(s)
- Pinar Gokmirza Ozdemir
- Department of Pediatric Allergy and Immunology, Trakya University School of Medicine, Edirne, Turkey
| | - Damla Eker
- Department of Genetics, Trakya University School of Medicine, Edirne, Turkey
| | - Velat Celik
- Department of Pediatric Allergy and Immunology, Trakya University School of Medicine, Edirne, Turkey
| | - Burcin Beken
- Department of Pediatric Allergy and Immunology, Trakya University School of Medicine, Edirne, Turkey
| | - Hakan Gurkan
- Department of Genetics, Trakya University School of Medicine, Edirne, Turkey
| | - Mehtap Yazicioglu
- Department of Pediatric Allergy and Immunology, Trakya University School of Medicine, Edirne, Turkey
| | - Necdet Sut
- Department of Biostatistics, Trakya University School of Medicine, Edirne, Turkey
| |
Collapse
|
18
|
Men S, Yu Y. Prospects for Use of Single-Cell Sequencing to Assess DNA Methylation in Asthma. Med Sci Monit 2020; 26:e925514. [PMID: 33009362 PMCID: PMC7539641 DOI: 10.12659/msm.925514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022] Open
Abstract
Asthma is a complex disease with an increasing prevalence rate caused by the interaction of multiple genetically inherited and environmental factors. Epigenetics link genetic susceptibility and environmental factors. DNA methylation is an epigenetic modification that plays a crucial role in the regulation of growth and development, gene expression, and disease. Relatively little is known about DNA methylation in asthma, with few studies to date using single-cell sequencing to analyze the molecular mechanism by which DNA methylation regulates asthma. Cells with similar phenotypes may be heterogeneous in function and transcription, as may their genetic information. Although multi-omics methods, such as studies of the genome, transcriptome, and epigenome, can be used to evaluate biological processes, these methods are applicable only to groups of cells or tissues and provide averages that may obscure direct correlations among multiple layers of data. Single-cell sequencing technology can clarify the methylation and expression of genes in different populations of cells, in contrast to traditional multi-omics sequencing, which can determine only average values of cell populations. Single-cell sequence can therefore better reflect the pathogenesis of asthma, as it can clarify the function and regulatory mechanism of DNA methylation in asthma, and detect new genes and molecular markers that may become therapeutic targets in this disease.
Collapse
|
19
|
Chen X, Liu F, Niu Z, Mao S, Tang H, Li N, Chen G, Liu S, Lu Y, Xiang H. The association between short-term exposure to ambient air pollution and fractional exhaled nitric oxide level: A systematic review and meta-analysis of panel studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114833. [PMID: 32544661 DOI: 10.1016/j.envpol.2020.114833] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 05/27/2023]
Abstract
Several epidemiological studies have evaluated the fractional exhaled nitric oxide (FeNO) of ambient air pollution but the results were controversial. We therefore conducted a systematic review and meta-analysis to investigate the associations between short-term exposure to air pollutants and FeNO level. We searched PubMed and Web of Science and included a total of 27 articles which focused on associations between ambient air pollutants (PM10, PM2.5, black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3)) exposure and the change of FeNO. Random effect model was used to calculate the percent change of FeNO in association with a 10 or 1 μg/m3 increase in air pollutants exposure concentrations. A 10 μg/m3 increase in short-term PM10, PM2.5, NO2, and SO2 exposure was associated with a 3.20% (95% confidence interval (95%CI): 1.11%, 5.29%), 2.25% (95%CI: 1.51%, 2.99%),4.90% (95%CI: 1.98%, 7.81%), and 8.28% (95%CI: 3.61%, 12.59%) change in FeNO, respectively. A 1 μg/m3 increase in short-term exposure to BC was associated with 3.42% (95%CI: 1.34%, 5.50%) change in FeNO. The association between short-term exposure to O3 and FeNO level was insignificant (P>0.05). Future studies are warranted to investigate the effect of multiple pollutants, different sources and composition of air pollutants on airway inflammation.
Collapse
Affiliation(s)
- Xiaolu Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Feifei Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Zhiping Niu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Shuyuan Mao
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Hong Tang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Na Li
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Gongbo Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Suyang Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Yuanan Lu
- Environmental Health Laboratory, Department of Public Health Sciences, University Hawaii at Manoa, 1960, East West Rd, Biomed Bldg, D105, Honolulu, USA
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China.
| |
Collapse
|
20
|
Bae DJ, Jun JA, Chang HS, Park JS, Park CS. Epigenetic Changes in Asthma: Role of DNA CpG Methylation. Tuberc Respir Dis (Seoul) 2020; 83:1-13. [PMID: 31905427 PMCID: PMC6953489 DOI: 10.4046/trd.2018.0088] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/19/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022] Open
Abstract
For the past three decades, more than a thousand of genetic studies have been performed to find out the genetic variants responsible for the risk of asthma. Until now, all of the discovered single nucleotide polymorphisms have explained genetic effects less than initially expected. Thus, clarification of environmental factors has been brought up to overcome the 'missing' heritability. The most exciting solution is epigenesis because it intervenes at the junction between the genome and the environment. Epigenesis is an alteration of genetic expression without changes of DNA sequence caused by environmental factors such as nutrients, allergens, cigarette smoke, air pollutants, use of drugs and infectious agents during pre- and post-natal periods and even in adulthood. Three major forms of epigenesis are composed of DNA methylation, histone modifications, and specific microRNA. Recently, several studies have been published on epigenesis in asthma and allergy as a powerful tool for research of genetic heritability in asthma albeit epigenetic changes are at the starting point to obtain the data on specific phenotypes of asthma. In this presentation, we mainly review the potential role of DNA CpG methylation in the risk of asthma and its sub-phenotypes including nonsteroidal anti-inflammatory exacerbated respiratory diseases.
Collapse
Affiliation(s)
- Da Jeong Bae
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Ji Ae Jun
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Hun Soo Chang
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, Korea
| | - Jong Sook Park
- Division of Allergy and Respiratory Medicine, Genome Research Center, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Choon Sik Park
- Division of Allergy and Respiratory Medicine, Genome Research Center, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Asthma is one of the most common chronic respiratory diseases linked with increased morbidity and healthcare utilization. The underlying pathophysiological processes and causal relationships of asthma with epigenetic mechanisms are partially understood. Here we review human studies of epigenetic mechanisms in asthma, with a special focus on DNA methylation. RECENT FINDINGS Epigenetic studies of childhood asthma have identified specific methylation signatures associated with allergic inflammation in the airway and immune cells, demonstrating a regulatory role for methylation in asthma pathogenesis. Despite these novel findings, additional research in the role of epigenetic mechanisms underlying asthma endotypes is needed. Similarly, studies of histone modifications are also lacking in asthma. Future studies of epigenetic mechanisms in asthma will benefit from data integration in well phenotyped cohorts. This review provides an overview of the current literature on epigenetic studies in human asthma, with special emphasis on methylation and childhood asthma.
Collapse
Affiliation(s)
- Jose L Gomez
- Pulmonary, Critical Care and Sleep, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
22
|
Hudon Thibeault AA, Laprise C. Cell-Specific DNA Methylation Signatures in Asthma. Genes (Basel) 2019; 10:E932. [PMID: 31731604 PMCID: PMC6896152 DOI: 10.3390/genes10110932] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022] Open
Abstract
Asthma is a complex trait, often associated with atopy. The genetic contribution has been evidenced by familial occurrence. Genome-wide association studies allowed for associating numerous genes with asthma, as well as identifying new loci that have a minor contribution to its phenotype. Considering the role of environmental exposure on asthma development, an increasing amount of literature has been published on epigenetic modifications associated with this pathology and especially on DNA methylation, in an attempt to better understand its missing heritability. These studies have been conducted in different tissues, but mainly in blood or its peripheral mononuclear cells. However, there is growing evidence that epigenetic changes that occur in one cell type cannot be directly translated into another one. In this review, we compare alterations in DNA methylation from different cells of the immune system and of the respiratory tract. The cell types in which data are obtained influences the global status of alteration of DNA methylation in asthmatic individuals compared to control (an increased or a decreased DNA methylation). Given that several genes were cell-type-specific, there is a great need for comparative studies on DNA methylation from different cells, but from the same individuals in order to better understand the role of epigenetics in asthma pathophysiology.
Collapse
Affiliation(s)
- Andrée-Anne Hudon Thibeault
- Département des sciences fondamentales, Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada;
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada
- Quebec Respiratory Health Network, Quebec, G1V 4G5 QC, Canada
| | - Catherine Laprise
- Département des sciences fondamentales, Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada;
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada
- Quebec Respiratory Health Network, Quebec, G1V 4G5 QC, Canada
| |
Collapse
|
23
|
Kuniyoshi KM, Rehan VK. The impact of perinatal nicotine exposure on fetal lung development and subsequent respiratory morbidity. Birth Defects Res 2019; 111:1270-1283. [PMID: 31580538 DOI: 10.1002/bdr2.1595] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/13/2019] [Accepted: 09/05/2019] [Indexed: 01/18/2023]
Abstract
Maternal smoking during pregnancy remains as a significant public health crisis as it did decades ago. Although its prevalence is decreasing in high-income countries, it has worsened globally, along with a concerning emergence of electronic-cigarette usage within the last two decades. Extensive epidemiologic and experimental evidence exists from both human and animal studies, demonstrating the detrimental long-term pulmonary outcomes in the offspring of mothers who smoke during pregnancy. Even secondhand and thirdhand smoke exposure to the developing lung might be as or even more harmful than firsthand smoke exposure. Furthermore, these effects are not limited only to the exposed progeny, but can also be transmitted transgenerationally. There is compelling evidence to support that the majority of the effects of perinatal smoke exposure on the developing lung, including the transgenerational transmission of asthma, is mediated by nicotine. Nicotine exposure induces cell-specific molecular changes in lungs, which offers a unique opportunity to prevent, halt, and/or reverse the resultant damage through targeted molecular interventions. Experimentally, the proposed interventions, such as administration of peroxisome proliferator-activated receptor gamma (PPARγ) agonists can not only block but also potentially reverse the perinatal nicotine exposure-induced respiratory morbidity in the exposed offspring. However, the development of a safe and effective intervention is still many years away. In the meantime, electropuncture at specific acupoints appears to be emerging as a more practical and safe physiologic approach to block the harmful pulmonary consequences of perinatal nicotine exposure.
Collapse
Affiliation(s)
- Katherine M Kuniyoshi
- Department of Pediatrics, David Geffen School of Medicine, The Lundquist Institute for Biomedical Innovation at Harbor, UCLA Medical Center, Torrance, California
| | - Virender K Rehan
- Department of Pediatrics, David Geffen School of Medicine, The Lundquist Institute for Biomedical Innovation at Harbor, UCLA Medical Center, Torrance, California
| |
Collapse
|
24
|
Jiang Y, Niu Y, Xia Y, Liu C, Lin Z, Wang W, Ge Y, Lei X, Wang C, Cai J, Chen R, Kan H. Effects of personal nitrogen dioxide exposure on airway inflammation and lung function. ENVIRONMENTAL RESEARCH 2019; 177:108620. [PMID: 31400563 DOI: 10.1016/j.envres.2019.108620] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Few epidemiological studies have evaluated the respiratory effects of personal exposure to nitrogen dioxide (NO2), a major traffic-related air pollutant. The biological pathway for these effects remains unknown. OBJECTIVES To evaluate the short-term effects of personal NO2 exposure on lung function, fractional exhaled nitric oxide (FeNO) and DNA methylation of genes involved. METHODS We conducted a longitudinal panel study among 40 college students with four repeated measurements in Shanghai from May to October in 2016. We measured DNA methylation of the key encoding genes of inducible nitric oxide synthase (NOS2A) and arginase (ARG2). We applied linear mixed-effect models to assess the effects of NO2 on respiratory outcomes. RESULTS Personal exposure to NO2 was 27.39 ± 23.20 ppb on average. In response to a 10-ppb increase in NO2 exposure, NOS2A methylation (%5 mC) decreased 0.19 at lag 0 d, ARG2 methylation (%5 mC) increased 0.21 and FeNO levels increased 2.82% at lag 1 d; and at lag 2 d the percentage of forced vital capacity, forced expiratory volume in 1 s and peak expiratory flow in predicted values decreased 0.12, 0.37 and 0.67, respectively. The model performance was better compared with those estimated using fixed-site measurements. These effects were robust to the adjustment for co-pollutants and weather conditions. CONCLUSIONS Our study suggests that short-term personal exposure to NO2 is associated with NOS2A hypomethylation, ARG2 hypermethylation, respiratory inflammation and lung function impairment. The use of personal measurements may better predict the respiratory effects of NO2.
Collapse
Affiliation(s)
- Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yongjie Xia
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Zhijing Lin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yihui Ge
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xiaoning Lei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Cuiping Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, 201102, China.
| |
Collapse
|
25
|
Zhang Q, Wang W, Niu Y, Xia Y, Lei X, Huo J, Zhao Q, Zhang Y, Duan Y, Cai J, Ying Z, Li W, Chen R, Fu Q, Kan H. The effects of fine particulate matter constituents on exhaled nitric oxide and DNA methylation in the arginase-nitric oxide synthase pathway. ENVIRONMENT INTERNATIONAL 2019; 131:105019. [PMID: 31330363 DOI: 10.1016/j.envint.2019.105019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/13/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Fine particulate matter (PM2.5) has been widely associated with airway inflammation represented by increased fractional concentration of exhaled nitric oxide (FeNO). However, it remains unclear whether various PM2.5 constituents have different impacts on FeNO and its production process from the arginase (ARG)-nitric oxide synthase (NOS) pathway. OBJECTIVES To investigate the acute effects of PM2.5 constituents on FeNO and DNA methylation of genes involved. METHODS We conducted a longitudinal panel study among 43 young adults in Shanghai, China from May to October in 2016. We monitored the concentrations of 25 constituents of PM2.5. We applied the linear mixed-effect model to evaluate the associations of PM2.5 constituents with FeNO and DNA methylation of the ARG2 and NOS2A genes. RESULTS Following PM2.5 exposure, NOS2A methylation decreased and ARG2 methylation increased only on the concurrent day, whereas FeNO increased most prominently on the second day. Nine constituents (OC, EC, K, Fe, Zn, Ba, Cr, Se, and Pb) showed consistent associations with elevated FeNO and decreased NOS2A methylation or increased ARG2 methylation in single-constituent models and models adjusting for PM2.5 total mass and collinearity. An interquartile range increase of these constituents was associated with respective decrements of 0.27-1.20 in NOS2A methylation (%5mC); increments of 0.48-1.56 in ARG2 methylation (%5mC); and increments of 7.12%-17.54% in FeNO. CONCLUSIONS Our results suggested that OC, EC, and some metallic elements may be mainly responsible for the development and epigenetic regulation of airway inflammatory response induced by short-term PM2.5 exposure.
Collapse
Affiliation(s)
- Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yongjie Xia
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xiaoning Lei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Juntao Huo
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Qianbiao Zhao
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Yihua Zhang
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Yusen Duan
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Zhekang Ying
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Weihua Li
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China.
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai 200235, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Epigenetic marks are emerging as mediators of genetics and the environment on complex disease phenotypes, including childhood asthma and allergy. RECENT FINDINGS Epigenome-wide association studies over the past year have added to the growing body of evidence supporting significant associations of epigenetic regulation of gene expression and asthma and allergy. Studies in children have identified signatures of eosinophils in peripheral blood, Th2 cell transcription factors and cytokines in peripheral blood mononuclear cells, and epithelial dysfunction in the respiratory epithelium. Importantly, studies at birth have begun to decipher the contribution of epigenetic marks to asthma inception. Few studies have also begun to address the contribution of genetics and the environment to these associations. SUMMARY Next generation of epigenome-wide association studies that will deal with confounders, study the influence of the genetics and environment, and incorporate multiple datasets to provide better interpretation of the findings are on the horizon. Identification of key epigenetic marks that are shaped by genetics and the environment, and impact transcription of specific genes will help us have a better understanding of etiology, heterogeneity and severity of asthma, and will also empower us to develop biologically driven therapeutics and biomarkers for secondary prevention of this disease.
Collapse
|
27
|
Zakarya R, Adcock I, Oliver BG. Epigenetic impacts of maternal tobacco and e-vapour exposure on the offspring lung. Clin Epigenetics 2019; 11:32. [PMID: 30782202 PMCID: PMC6381655 DOI: 10.1186/s13148-019-0631-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/11/2019] [Indexed: 12/15/2022] Open
Abstract
In utero exposure to tobacco products, whether maternal or environmental, have harmful effects on first neonatal and later adult respiratory outcomes. These effects have been shown to persist across subsequent generations, regardless of the offsprings' smoking habits. Established epigenetic modifications induced by in utero exposure are postulated as the mechanism underlying the inherited poor respiratory outcomes. As e-cigarette use is on the rise, their potential to induce similar functional respiratory deficits underpinned by an alteration in the foetal epigenome needs to be explored. This review will focus on the functional and epigenetic impact of in utero exposure to maternal cigarette smoke, maternal environmental tobacco smoke, environmental tobacco smoke and e-cigarette vapour on foetal respiratory outcomes.
Collapse
Affiliation(s)
- Razia Zakarya
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Ian Adcock
- Airway Diseases Section, National Heart and Lung Institute, Imperial College London, London, UK
- Biomedical Research Unit, Section of Respiratory Diseases, Royal Brompton and Harefield NHS Trust, London, UK
| | - Brian G Oliver
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia.
- School of Life Sciences, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|
28
|
Kogan V, Millstein J, London SJ, Ober C, White SR, Naureckas ET, Gauderman WJ, Jackson DJ, Barraza-Villarreal A, Romieu I, Raby BA, Breton CV. Genetic-Epigenetic Interactions in Asthma Revealed by a Genome-Wide Gene-Centric Search. Hum Hered 2019; 83:130-152. [PMID: 30669148 PMCID: PMC7365350 DOI: 10.1159/000489765] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES There is evidence to suggest that asthma pathogenesis is affected by both genetic and epigenetic variation independently, and there is some evidence to suggest that genetic-epigenetic interactions affect risk of asthma. However, little research has been done to identify such interactions on a genome-wide scale. The aim of this studies was to identify genes with genetic-epigenetic interactions associated with asthma. METHODS Using asthma case-control data, we applied a novel nonparametric gene-centric approach to test for interactions between multiple SNPs and CpG sites simultaneously in the vicinities of 18,178 genes across the genome. RESULTS Twelve genes, PF4, ATF3, TPRA1, HOPX, SCARNA18, STC1, OR10K1, UPK1B, LOC101928523, LHX6, CHMP4B, and LANCL1, exhibited statistically significant SNP-CpG interactions (false discovery rate = 0.05). Of these, three have previously been implicated in asthma risk (PF4, ATF3, and TPRA1). Follow-up analysis revealed statistically significant pairwise SNP-CpG interactions for several of these genes, including SCARNA18, LHX6, and LOC101928523 (p = 1.33E-04, 8.21E-04, 1.11E-03, respectively). CONCLUSIONS Joint effects of genetic and epigenetic variation may play an important role in asthma pathogenesis. Statistical methods that simultaneously account for multiple variations across chromosomal regions may be needed to detect these types of effects on a genome-wide scale.
Collapse
Affiliation(s)
- Vladimir Kogan
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Joshua Millstein
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA,
| | - Stephanie J London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, RTP, Research Triangle Park, North Carolina, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Steven R White
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - W James Gauderman
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Daniel J Jackson
- University of Wisconsin School of Medicine and Public Health, Madison, Illinois, USA
| | - Albino Barraza-Villarreal
- Department of Environmental Health, Population Health Center, National Institute of Public Health of Mexico, Cuernavaca, Mexico
| | - Isabelle Romieu
- International Agency for Research on Cancer, Section of Nutrition and Metabolism, Lyon, France
| | - Benjamin A Raby
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
29
|
Niu Y, Chen R, Xia Y, Cai J, Lin Z, Liu C, Chen C, Peng L, Zhao Z, Zhou W, Chen J, Kan H. Personal Ozone Exposure and Respiratory Inflammatory Response: The Role of DNA Methylation in the Arginase-Nitric Oxide Synthase Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8785-8791. [PMID: 29985591 DOI: 10.1021/acs.est.8b01295] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Little is known regarding the molecular mechanisms behind respiratory inflammatory response induced by ozone. We performed a longitudinal panel study with four repeated measurements among 43 young adults in Shanghai, China from May to October in 2016. We collected buccal samples and measured the fractional exhaled nitric oxide (FeNO) after 3-day personal ozone monitoring. In buccal samples, we measured concentrations of inducible nitric oxide synthase (iNOS) and arginase (ARG), and DNA methylation of NOS2A and ARG2. We used linear mixed-effect models to analyze the effects of ozone on FeNO, two enzymes and their DNA methylation. A 10 ppb increase in ozone (lag 0-8 h) was significantly associated with a 3.89% increase in FeNO, a 36.33% increase in iNOS, and a decrease of 0.36 in the average methylation (%5mC) of NOS2A. Ozone was associated with decreased ARG and elevated ARG2 methylation, but the associations were not significant. These effects were more pronounced among allergic subjects than healthy subjects. The effects were much stronger when using personal exposure monitoring than fixed-site measurements. Our study demonstrated that personal short-term exposure to ozone may result in acute respiratory inflammation, which may be mainly modulated by NOS2A hypomethylation in the arginase-nitric oxide synthase pathway.
Collapse
Affiliation(s)
- Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
- Shanghai Key Laboratory of Meteorology and Health , Shanghai 200030 , China
| | - Yongjie Xia
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Zhijing Lin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Chen Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Li Peng
- Shanghai Key Laboratory of Meteorology and Health , Shanghai 200030 , China
| | - Zhuohui Zhao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Wenhao Zhou
- Department of Neonates, Children's Hospital , Fudan University , Shanghai 201102 , China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering , Fudan University , Shanghai 200433 , China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development , Fudan University , Shanghai 200032 , China
| |
Collapse
|
30
|
Galeone C, Scelfo C, Bertolini F, Caminati M, Ruggiero P, Facciolongo N, Menzella F. Precision Medicine in Targeted Therapies for Severe Asthma: Is There Any Place for "Omics" Technology? BIOMED RESEARCH INTERNATIONAL 2018; 2018:4617565. [PMID: 29992143 PMCID: PMC6016214 DOI: 10.1155/2018/4617565] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 12/28/2022]
Abstract
According to the current guidelines, severe asthma still represents a controversial topic in terms of definition and management. The introduction of novel biological therapies as a treatment option for severe asthmatic patients paved the way to a personalized approach, which aims at matching the appropriate therapy with the different asthma phenotypes. Traditional asthma phenotypes have been decomposing by an increasing number of asthma subclasses based on functional and physiopathological mechanisms. This is possible thanks to the development and application of different omics technologies. The new asthma classification patterns, particularly concerning severe asthma, include an increasing number of endotypes that have been identified using new omics technologies. The identification of endotypes provides new opportunities for the management of asthma symptoms, but this implies that biological therapies which target inflammatory mediators in the frame of specific patterns of inflammation should be developed. However, the pathway leading to a precision approach in asthma treatment is still at its beginning. The aim of this review is providing a synthetic overview of the current asthma management, with a particular focus on severe asthma, in the light of phenotype and endotype approach, and summarizing the current knowledge about "omics" science and their therapeutic relevance in the field of bronchial asthma.
Collapse
Affiliation(s)
- Carla Galeone
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Chiara Scelfo
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Francesca Bertolini
- Department of Bio and Health Informatics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Marco Caminati
- Asthma Center and Allergy Unit, Verona University Hospital, Piazzale L.A. Scuro, 37134 Verona, Italy
| | - Patrizia Ruggiero
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Nicola Facciolongo
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Francesco Menzella
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
31
|
Saradna A, Do DC, Kumar S, Fu QL, Gao P. Macrophage polarization and allergic asthma. Transl Res 2018; 191:1-14. [PMID: 29066321 PMCID: PMC5776696 DOI: 10.1016/j.trsl.2017.09.002] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/13/2017] [Accepted: 09/20/2017] [Indexed: 12/17/2022]
Abstract
Allergic asthma is associated with airway inflammation and airway hyperresponsiveness. Macrophage polarization has been shown to have a profound impact on asthma pathogenesis. On exposure to local microenvironments, recruited macrophages can be polarized into either classically activated (or M1) or alternatively activated (or M2) phenotypes. Macrophage polarization has been heavily associated with development of asthma. The process of regulation of macrophage polarization involves an intricate interplay between various cytokines, chemokines, transcriptional factors, and immune-regulatory cells. Different signals from the microenvironment are controlled by different receptors on the macrophages to initiate various macrophage polarization pathways. Most importantly, there is an increased attention on the epigenetic changes (eg, microRNAs, DNA methylation, and histone modification) that impact macrophage functional responses and M1/M2 polarization through modulating cellular signaling and signature gene expression. Thus, modulation of macrophage phenotypes through molecular intervention by targeting some of those potential macrophage regulators may have therapeutic potential in the treatment of allergic asthma and other allergic diseases. In this review, we will discuss the origin of macrophages, characterization of macrophages, macrophage polarization in asthma, and the underlying mechanisms regarding allergen-induced macrophage polarization with emphasis on the regulation of epigenetics, which will provide new insights into the therapeutic strategy for asthma.
Collapse
Affiliation(s)
- Arjun Saradna
- Division Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md; Department of Internal Medicine, Maimonides Medical Center, Brooklyn, NY
| | - Danh C Do
- Division Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Shruthi Kumar
- Division Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md; Bangalore Medical College and Research Institute, Bangalore, India
| | - Qing-Ling Fu
- Division Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md; Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peisong Gao
- Division Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
32
|
Shorey-Kendrick LE, McEvoy CT, Ferguson B, Burchard J, Park BS, Gao L, Vuylsteke BH, Milner KF, Morris CD, Spindel ER. Vitamin C Prevents Offspring DNA Methylation Changes Associated with Maternal Smoking in Pregnancy. Am J Respir Crit Care Med 2017; 196:745-755. [PMID: 28422514 DOI: 10.1164/rccm.201610-2141oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
RATIONALE Infants whose mothers smoked during pregnancy demonstrate lifelong decreases in pulmonary function. DNA methylation changes associated with maternal smoking during pregnancy have been described in placenta and cord blood at delivery, in fetal lung, and in buccal epithelium and blood during childhood. We demonstrated in a randomized clinical trial ( ClinicalTrials.gov identifier, NCT00632476) that vitamin C supplementation to pregnant smokers can lessen the impact of maternal smoking on offspring pulmonary function and decrease the incidence of wheeze at 1 year of age. OBJECTIVES To determine whether vitamin C supplementation reduces changes in offspring methylation in response to maternal smoking and whether methylation at specific CpGs is also associated with respiratory outcomes. METHODS Targeted bisulfite sequencing was performed with a subset of placentas, cord blood samples, and buccal samples collected during the NCT00632476 trial followed by independent validation of selected cord blood differentially methylated regions, using bisulfite amplicon sequencing. MEASUREMENTS AND MAIN RESULTS The majority (69.03%) of CpGs with at least 10% methylation difference between placebo and nonsmoker groups were restored (by at least 50%) toward nonsmoker levels with vitamin C treatment. A significant proportion of restored CpGs were associated with phenotypic outcome with greater enrichment among hypomethylated CpGs. CONCLUSIONS We identified a pattern of normalization in DNA methylation by vitamin C supplementation across multiple loci. The consistency of this pattern across tissues and time suggests a systemic and persistent effect on offspring DNA methylation. Further work is necessary to determine how genome-wide changes in DNA methylation may mediate or reflect persistent effects of maternal smoking on lung function.
Collapse
Affiliation(s)
| | - Cindy T McEvoy
- 2 Oregon Health and Science University, Portland, Oregon
| | - Betsy Ferguson
- 1 Oregon National Primate Research Center, Beaverton, Oregon; and
| | - Julja Burchard
- 2 Oregon Health and Science University, Portland, Oregon
| | - Byung S Park
- 1 Oregon National Primate Research Center, Beaverton, Oregon; and.,2 Oregon Health and Science University, Portland, Oregon
| | - Lina Gao
- 1 Oregon National Primate Research Center, Beaverton, Oregon; and.,2 Oregon Health and Science University, Portland, Oregon
| | | | | | | | - Eliot R Spindel
- 1 Oregon National Primate Research Center, Beaverton, Oregon; and
| |
Collapse
|
33
|
Yang IV, Lozupone CA, Schwartz DA. The environment, epigenome, and asthma. J Allergy Clin Immunol 2017; 140:14-23. [PMID: 28673400 DOI: 10.1016/j.jaci.2017.05.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/21/2022]
Abstract
Asthma prevalence has been on the increase, especially in North America compared with other continents. However, the prevalence of asthma differs worldwide, and in many countries the prevalence is stable or decreasing. This highlights the influence of environmental exposures, such as allergens, air pollution, and the environmental microbiome, on disease etiology and pathogenesis. The epigenome might provide the unifying mechanism that translates the influence of environmental exposures to changes in gene expression, respiratory epithelial function, and immune cell skewing that are hallmarks of asthma. In this review we will introduce the concept of the environmental epigenome in asthmatic patients, summarize previous publications of relevance to this field, and discuss future directions.
Collapse
Affiliation(s)
- Ivana V Yang
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo; National Jewish Health, Denver, Colo; Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo.
| | - Catherine A Lozupone
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo
| | - David A Schwartz
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo; National Jewish Health, Denver, Colo; Department of Immunology, University of Colorado, Denver, Colo
| |
Collapse
|
34
|
Miller RL, Zhang H, Jezioro J, De Planell Saguer M, Lovinsky-Desir S, Liu X, Perzanowski M, Divjan A, Phipatanakul W, Matsui EC. Reduced mouse allergen is associated with epigenetic changes in regulatory genes, but not mouse sensitization, in asthmatic children. ENVIRONMENTAL RESEARCH 2017; 156:619-624. [PMID: 28454014 PMCID: PMC5503684 DOI: 10.1016/j.envres.2017.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 03/06/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
Chronic exposure to mouse allergen may contribute greatly to the inner-city asthma burden. We hypothesized that reducing mouse allergen exposure may modulate the immunopathology underlying symptomatic pediatric allergic asthma, and that this occurs through epigenetic regulation. To test this hypothesis, we studied a cohort of mouse sensitized, persistent asthmatic inner-city children undergoing mouse allergen-targeted integrated pest management (IPM) vs education in a randomized controlled intervention trial. We found that decreasing mouse allergen exposure, but not cockroach, was associated with reduced FOXP3 buccal DNA promoter methylation, but this was unrelated to mouse specific IgE production. This finding suggests that the environmental epigenetic regulation of an immunomodulatory gene may occur following changing allergen exposures in some highly exposed cohorts. Given the clinical and public health importance of inner-city pediatric asthma and the potential impact of environmental interventions, further studies will be needed to corroborate changes in epigenetic regulation following changing exposures over time, and determine their impact on asthma morbidity in susceptible children.
Collapse
Affiliation(s)
- Rachel L Miller
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University Medical Center, PH8E-101B, 630 W. 168th St., New York City, NY 10032, USA; Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Columbia University Medical Center, PH8E-101B, 630 W. 168th St., New York City, NY 10032, USA; Department of Environmental Health Sciences, Columbia University, 722 W 168th St, 11th Floor, New York City, NY, 10032, USA.
| | - Hanjie Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University Medical Center, PH8E-101B, 630 W. 168th St., New York City, NY 10032, USA
| | - Jacqueline Jezioro
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University Medical Center, PH8E-101B, 630 W. 168th St., New York City, NY 10032, USA
| | - Mariangels De Planell Saguer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University Medical Center, PH8E-101B, 630 W. 168th St., New York City, NY 10032, USA
| | - Stephanie Lovinsky-Desir
- Division of Pulmonary, Department of Pediatrics, Columbia University Medical Center, 3959 Broadway, CHC 7-701, New York City, NY 10032, USA
| | - Xinhua Liu
- Department of Biostatistics, Columbia University Medical Center, 722 W 168 St, 6 Floor, New York City, NY, 10032, USA
| | - Matthew Perzanowski
- Department of Environmental Health Sciences, Columbia University, 722 W 168th St, 11th Floor, New York City, NY, 10032, USA
| | - Adnan Divjan
- Department of Environmental Health Sciences, Columbia University, 722 W 168th St, 11th Floor, New York City, NY, 10032, USA
| | - Wanda Phipatanakul
- Division of Pediatric Allergy/Immunology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Elizabeth C Matsui
- Division of Pediatric Allergy/Immunology, Johns Hopkins School of Medicine, CMSC 1102, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| |
Collapse
|
35
|
Lovinsky-Desir S, Jung KH, Jezioro JR, Torrone DZ, de Planell-Saguer M, Yan B, Perera FP, Rundle AG, Perzanowski MS, Chillrud SN, Miller RL. Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter. Clin Epigenetics 2017. [PMID: 28630656 PMCID: PMC5470266 DOI: 10.1186/s13148-017-0364-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Physical activity is associated with improvement in lung function; however, pollution exposure during physical activity can lead to a transient reduction in lung function. This paradoxical relationship may be linked to altered T regulatory (Treg) cell activity, which increases with exercise and suppresses airway inflammation, but decreases in association with exposure to air pollution. To clarify these relationships, we investigated buccal cell DNA methylation of the forkhead box p3 (FOXP3) gene promoter, a proposed biomarker of Treg activity. We hypothesized that active urban children would have lower FOXP3 promoter methylation, associated with better lung function compared to non-active children. We also hypothesized that this relationship would be attenuated by high exposure to the air pollutant black carbon (BC). Methods We performed a cross-sectional study of 135 children ages 9–14 who live in New York City. Activity was measured across 6 days. BC exposure was assessed by personal monitors worn for two 24-h periods, followed by lung function assessment. Buccal swabs were collected for DNA methylation analysis of three regions (six CpG sites) in the FOXP3 promoter. Results In multivariable regression models, overall, there was no significant relationship between physical activity and FOXP3 promoter methylation (p > 0.05). However, in stratified analyses, among children with higher BC exposure (≥1200 ng/m3), physical activity was associated with 2.37% lower methylation in promoter 2 (CpGs −77, −65, and −58) (βestimate = −2.37%, p < 0.01) but not among those with lower BC exposure (βestimate = 0.54%, p > 0.05). Differences across strata were statistically significant (pinteraction = 0.04). Among all children, after controlling for BC concentration, promoter 2 methylation was associated with reduced FEV1/FVC (βestimate = −0.40%, p < 0.01) and reduced FEF25–75% (βestimate = −1.46%, p < 0.01). Conclusions Physical activity in urban children appeared associated with lower FOXP3 promoter methylation, a possible indicator of greater Treg function, under conditions of high BC exposure. Reduced FOXP3 promoter methylation was associated with higher lung function. These findings suggest that physical activity may induce immunologic benefits, particularly for urban children with greater risk of impaired lung function due to exposure to higher air pollution. FOXP3 promoter buccal cell methylation may function as a useful biomarker of that benefit. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0364-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, 3959 Broadway CHC-745, New York, NY 10032 USA
| | - Kyung Hwa Jung
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St, New York, NY 10032 USA
| | - Jacqueline R Jezioro
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St, New York, NY 10032 USA
| | - David Z Torrone
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St, New York, NY 10032 USA
| | | | - Beizhan Yan
- Lamont-Doherty Earth Observatory, Columbia University, 61 Rt, 9 W Palisades, New York, 10964 NY USA
| | - Frederica P Perera
- Department of Environmental Health Sciences and Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 W. 168 St, New York, NY 10032 USA
| | - Andrew G Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W. 168 St, New York, NY 10032 USA
| | - Matthew S Perzanowski
- Department of Environmental Health Sciences and Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 W. 168 St, New York, NY 10032 USA
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory, Columbia University, 61 Rt, 9 W Palisades, New York, 10964 NY USA
| | - Rachel L Miller
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St, New York, NY 10032 USA.,Department of Environmental Health Sciences and Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 W. 168 St, New York, NY 10032 USA.,Division of Pediatric Allergy, Immunology, and Rheumatology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St, New York, NY 10032 USA
| |
Collapse
|
36
|
Jung KH, Lovinsky-Desir S, Yan B, Torrone D, Lawrence J, Jezioro JR, Perzanowski M, Perera FP, Chillrud SN, Miller RL. Effect of personal exposure to black carbon on changes in allergic asthma gene methylation measured 5 days later in urban children: importance of allergic sensitization. Clin Epigenetics 2017; 9:61. [PMID: 28588744 PMCID: PMC5457544 DOI: 10.1186/s13148-017-0361-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/25/2017] [Indexed: 01/02/2023] Open
Abstract
Background Asthma gene DNA methylation may underlie the effects of air pollution on airway inflammation. However, the temporality and individual susceptibility to environmental epigenetic regulation of asthma has not been fully elucidated. Our objective was to determine the timeline of black carbon (BC) exposure, measured by personal sampling, on DNA methylation of allergic asthma genes 5 days later to capture usual weather variations and differences related to changes in behavior and activities. We also sought to determine how methylation may vary by seroatopy and cockroach sensitization and by elevated fractional exhaled nitric oxide (FeNO). Methods Personal BC levels were measured during two 24-h periods over a 6-day sampling period in 163 New York City children (age 9–14 years), repeated 6 months later. During home visits, buccal cells were collected as noninvasive surrogates for lower airway epithelial cells and FeNO measured as an indicator of airway inflammation. CpG promoter loci of allergic asthma genes (e.g., interleukin 4 (IL4), interferon gamma (IFNγ), inducible nitric oxide synthase (NOS2A)), arginase 2 (ARG2)) were pyrosequenced at the start and end of each sampling period. Results Higher levels of BC were associated with lower methylation of IL4 promoter CpG−48 5 days later. The magnitude of association between BC exposure and demethylation of IL4 CpG−48 and NOS2A CpG+5099 measured 5 days later appeared to be greater among seroatopic children, especially those sensitized to cockroach allergens (RR [95% CI] 0.55 [0.37–0.82] and 0.67 [0.45–0.98] for IL4 CpG−48 and NOS2A CpG+5099, respectively), compared to non-sensitized children (RR [95% CI] 0.87 [0.65–1.17] and 0.95 [0.69–1.33] for IL4 CpG−48 and NOS2A CpG+5099, respectively); however, the difference was not statistically different. In multivariable linear regression models, lower DNA methylation of IL4 CpG−48 and NOS2A CpG+5099 were associated with increased FeNO. Conclusions Our results suggest that exposure to BC may exert asthma proinflammatory gene demethylation 5 days later that in turn may link to airway inflammation. Our results further suggest that seroatopic children, especially those sensitized to cockroach allergens, may be more susceptible to the effect of acute BC exposure on epigenetic changes. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0361-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyung Hwa Jung
- Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, PH8E-101, 630 W. 168 St., New York, NY 10032 USA
| | - Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonary, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, 630 W. 168 St., New York, NY 10032 USA
| | - Beizhan Yan
- Lamont-Doherty Earth Observatory, Columbia University, 61 Rt, 9 W Palisades, New York, 10964 USA
| | - David Torrone
- Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, PH8E-101, 630 W. 168 St., New York, NY 10032 USA
| | - Jennifer Lawrence
- Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, PH8E-101, 630 W. 168 St., New York, NY 10032 USA
| | - Jacqueline R Jezioro
- Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, PH8E-101, 630 W. 168 St., New York, NY 10032 USA
| | - Matthew Perzanowski
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, 722 W. 168 St., New York, NY 10032 USA
| | - Frederica P Perera
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, 722 W. 168 St., New York, NY 10032 USA
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory, Columbia University, 61 Rt, 9 W Palisades, New York, 10964 USA
| | - Rachel L Miller
- Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, PH8E-101, 630 W. 168 St., New York, NY 10032 USA.,Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, 722 W. 168 St., New York, NY 10032 USA.,Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St., New York, NY 10032 USA
| |
Collapse
|
37
|
Jung KH, Torrone D, Lovinsky-Desir S, Perzanowski M, Bautista J, Jezioro JR, Hoepner L, Ross J, Perera FP, Chillrud SN, Miller RL. Short-term exposure to PM 2.5 and vanadium and changes in asthma gene DNA methylation and lung function decrements among urban children. Respir Res 2017; 18:63. [PMID: 28424066 PMCID: PMC5397738 DOI: 10.1186/s12931-017-0550-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/11/2017] [Indexed: 12/24/2022] Open
Abstract
Background Both short and long-term exposure to traffic-related air pollutants have been associated with asthma and reduced lung function. We hypothesized that short-term indoor exposure to fine particulate matter <2.5 μm (PM2.5) and vanadium (V) would be associated with altered buccal cell DNA methylation of targeted asthma genes and decreased lung function among urban children in a nested subcohort of African American and Dominican children. Methods Six day integrated levels of air pollutants were measured from children’s homes (age 9–14; n = 163), repeated 6 months later (n = 98). Buccal samples were collected repeatedly during visits. CpG promoter loci of asthma genes (i.e., interleukin 4 (IL4), interferon gamma (IFNγ), inducible nitric oxide synthase (NOS2A), arginase 2 (ARG2)) were pyrosequenced and lung function was assessed. Results Exposure to V, but not PM2.5, was associated with lower DNA methylation of IL4 and IFNγ. In exploratory analyses, V levels were associated with lower methylation of the proinflammatory NOS2A-CpG+5099 among asthmatic overweight or obese children but not nonasthmatics. Short-term exposure to PM2.5, but not V, appeared associated with lower lung function (i.e., reduced z-scores for forced expiratory volume in one second (FEV1, FEV1/ forced vital capacity [FEV1/FVC] and forced expiratory flow at 25–75% of FVC [FEF25–75]). Conclusions Exposure to V was associated with altered DNA methylation of allergic and proinflammatory asthma genes implicated in air pollution related asthma. However, short-term exposure to PM2.5, but not V, appeared associated with decrements in lung function among urban children. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0550-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyung Hwa Jung
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St., New York, NY, 10032, USA.
| | - David Torrone
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St., New York, NY, 10032, USA
| | - Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonary, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, 630 W. 168 St., New York, NY, 10032, USA
| | - Matthew Perzanowski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168 St., New York, NY, 10032, USA
| | - Joshua Bautista
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St., New York, NY, 10032, USA
| | - Jacqueline R Jezioro
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St., New York, NY, 10032, USA
| | - Lori Hoepner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168 St., New York, NY, 10032, USA
| | - Jamie Ross
- Lamont-Doherty Earth Observatory, Columbia University, 61 Rt, 9 W Palisades, New York, 10964, USA
| | - Frederica P Perera
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168 St., New York, NY, 10032, USA
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory, Columbia University, 61 Rt, 9 W Palisades, New York, 10964, USA
| | - Rachel L Miller
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St., New York, NY, 10032, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168 St., New York, NY, 10032, USA.,Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, PH8E-101, 630 W. 168 St., New York, NY, 10032, USA
| |
Collapse
|
38
|
Environmental Impact on Reproductive Health: Can Biomarkers Offer Any Help? J Reprod Infertil 2017; 18:336-340. [PMID: 29062799 PMCID: PMC5641444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
39
|
Ji H, Biagini Myers JM, Brandt EB, Brokamp C, Ryan PH, Khurana Hershey GK. Air pollution, epigenetics, and asthma. Allergy Asthma Clin Immunol 2016; 12:51. [PMID: 27777592 PMCID: PMC5069789 DOI: 10.1186/s13223-016-0159-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/04/2016] [Indexed: 12/13/2022] Open
Abstract
Exposure to traffic-related air pollution (TRAP) has been implicated in asthma development, persistence, and exacerbation. This exposure is highly significant as large segments of the global population resides in zones that are most impacted by TRAP and schools are often located in high TRAP exposure areas. Recent findings shed new light on the epigenetic mechanisms by which exposure to traffic pollution may contribute to the development and persistence of asthma. In order to delineate TRAP induced effects on the epigenome, utilization of newly available innovative methods to assess and quantify traffic pollution will be needed to accurately quantify exposure. This review will summarize the most recent findings in each of these areas. Although there is considerable evidence that TRAP plays a role in asthma, heterogeneity in both the definitions of TRAP exposure and asthma outcomes has led to confusion in the field. Novel information regarding molecular characterization of asthma phenotypes, TRAP exposure assessment methods, and epigenetics are revolutionizing the field. Application of these new findings will accelerate the field and the development of new strategies for interventions to combat TRAP-induced asthma.
Collapse
Affiliation(s)
- Hong Ji
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. MLC 7037, Cincinnati, OH 45229 USA ; Pyrosequencing lab for Genomic and Epigenomic research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Jocelyn M Biagini Myers
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. MLC 7037, Cincinnati, OH 45229 USA
| | - Eric B Brandt
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. MLC 7037, Cincinnati, OH 45229 USA
| | - Cole Brokamp
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Patrick H Ryan
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. MLC 7037, Cincinnati, OH 45229 USA
| |
Collapse
|
40
|
Moheimani F, Hsu ACY, Reid AT, Williams T, Kicic A, Stick SM, Hansbro PM, Wark PAB, Knight DA. The genetic and epigenetic landscapes of the epithelium in asthma. Respir Res 2016; 17:119. [PMID: 27658857 PMCID: PMC5034566 DOI: 10.1186/s12931-016-0434-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/17/2016] [Indexed: 12/24/2022] Open
Abstract
Asthma is a global health problem with increasing prevalence. The airway epithelium is the initial barrier against inhaled noxious agents or aeroallergens. In asthma, the airway epithelium suffers from structural and functional abnormalities and as such, is more susceptible to normally innocuous environmental stimuli. The epithelial structural and functional impairments are now recognised as a significant contributing factor to asthma pathogenesis. Both genetic and environmental risk factors play important roles in the development of asthma with an increasing number of genes associated with asthma susceptibility being expressed in airway epithelium. Epigenetic factors that regulate airway epithelial structure and function are also an attractive area for assessment of susceptibility to asthma. In this review we provide a comprehensive discussion on genetic factors; from using linkage designs and candidate gene association studies to genome-wide association studies and whole genome sequencing, and epigenetic factors; DNA methylation, histone modifications, and non-coding RNAs (especially microRNAs), in airway epithelial cells that are functionally associated with asthma pathogenesis. Our aims were to introduce potential predictors or therapeutic targets for asthma in airway epithelium. Overall, we found very small overlap in asthma susceptibility genes identified with different technologies. Some potential biomarkers are IRAKM, PCDH1, ORMDL3/GSDMB, IL-33, CDHR3 and CST1 in airway epithelial cells. Recent studies on epigenetic regulatory factors have further provided novel insights to the field, particularly their effect on regulation of some of the asthma susceptibility genes (e.g. methylation of ADAM33). Among the epigenetic regulatory mechanisms, microRNA networks have been shown to regulate a major portion of post-transcriptional gene regulation. Particularly, miR-19a may have some therapeutic potential.
Collapse
Affiliation(s)
- Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia. .,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.
| | - Alan C-Y Hsu
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Andrew T Reid
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Teresa Williams
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Anthony Kicic
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, 6001, Western Australia, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | - Stephen M Stick
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, 6001, Western Australia, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
41
|
Abstract
Allergic reactions to pets have been recognized for at least a hundred years. Yet our understanding of the effects of all of the interactions between pet exposures and human immune responses continues to grow. Allergists, epidemiologists, and immunologists have spent years trying to better understand how exposures to pet allergens lead to allergic sensitization (the production of allergen-specific immunoglobulin class E [IgE] antibodies) and subsequent allergic disease. A major new development in this understanding is the recognition that pet exposures consist of not only allergen exposures but also changes in microbial exposures. Exposures to certain pet-associated microbes, especially in the neonatal period, appear to be able to dramatically alter how a child’s immune system develops and this in turn reduces the risk of allergic sensitization and disease. An exciting challenge in the next few years will be to see whether these changes can be developed into a realistic preventative strategy with the expectation of significantly reducing allergic disease, especially asthma.
Collapse
|
42
|
Establishing a birth cohort to investigate the course and aetiology of asthma and allergies across three generations - rationale, design, and methods of the ACROSSOLAR study. BMC Public Health 2015; 15:1210. [PMID: 26637409 PMCID: PMC4670515 DOI: 10.1186/s12889-015-2555-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 12/01/2015] [Indexed: 01/12/2023] Open
Abstract
Background Atopic diseases are a major burden of disease on a global scale. Regarding their aetiology, the early years of life are assumed to play a crucial role. In addition, there is growing evidence that elucidating the impact of cross-generational effects and epigenetic mechanisms such as DNA methylation can substantially widen the scientific knowledge of the occurrence and progression of these diseases. We are thus aiming at following the course of asthma, allergies, and potential risk factors for their occurrence across three generations by establishing a birth cohort in the offspring of an existing population-based cohort. Methods/Design 2051 young adults who have been recruited in 1995 for Phase II of the International Study of Asthma and Allergies in Childhood (ISAAC) and who have subsequently been followed-up by the Study on Occupational Allergy Risks (SOLAR) are asked bi-annually since 2009 if they conceived a child in the meantime. If parenthood is reported, parents are invited to enrol along with their children in the ACROSSOLAR cohort. Participation involves completing a questionnaire assessing general and health-related information about the course of the pregnancy and the first year of life of their children. Subsequently, the children are followed up until primary school age when asthma and allergies can be diagnosed reliably. In addition, DNA for epigenetic analysis will be collected and analysed. Longitudinal data analysis techniques will then be used to assess potential associations between early-life exposures and onset of childhood asthma and allergies taking into account epigenetics. Discussion Birth cohorts are especially suited to elucidate the impact of genetic predisposition, epigenetics, exposures during the first years of life, and gene-environment interactions on the occurrence and progression of asthma and allergies. By building upon an existing cohort, ACROSSOLAR offers a unique and cost-effective opportunity to investigate the aetiology of atopic disease in a prospective and cross-generational way.
Collapse
|
43
|
Yang IV, Pedersen BS, Liu A, O'Connor GT, Teach SJ, Kattan M, Misiak RT, Gruchalla R, Steinbach SF, Szefler SJ, Gill MA, Calatroni A, David G, Hennessy CE, Davidson EJ, Zhang W, Gergen P, Togias A, Busse WW, Schwartz DA. DNA methylation and childhood asthma in the inner city. J Allergy Clin Immunol 2015; 136:69-80. [PMID: 25769910 PMCID: PMC4494877 DOI: 10.1016/j.jaci.2015.01.025] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Epigenetic marks are heritable, influenced by the environment, direct the maturation of T lymphocytes, and in mice enhance the development of allergic airway disease. Thus it is important to define epigenetic alterations in asthmatic populations. OBJECTIVE We hypothesize that epigenetic alterations in circulating PBMCs are associated with allergic asthma. METHODS We compared DNA methylation patterns and gene expression in inner-city children with persistent atopic asthma versus healthy control subjects by using DNA and RNA from PBMCs. Results were validated in an independent population of asthmatic patients. RESULTS Comparing asthmatic patients (n = 97) with control subjects (n = 97), we identified 81 regions that were differentially methylated. Several immune genes were hypomethylated in asthma, including IL13, RUNX3, and specific genes relevant to T lymphocytes (TIGIT). Among asthmatic patients, 11 differentially methylated regions were associated with higher serum IgE concentrations, and 16 were associated with percent predicted FEV1. Hypomethylated and hypermethylated regions were associated with increased and decreased gene expression, respectively (P < 6 × 10(-12) for asthma and P < .01 for IgE). We further explored the relationship between DNA methylation and gene expression using an integrative analysis and identified additional candidates relevant to asthma (IL4 and ST2). Methylation marks involved in T-cell maturation (RUNX3), TH2 immunity (IL4), and oxidative stress (catalase) were validated in an independent asthmatic cohort of children living in the inner city. CONCLUSIONS Our results demonstrate that DNA methylation marks in specific gene loci are associated with asthma and suggest that epigenetic changes might play a role in establishing the immune phenotype associated with asthma.
Collapse
Affiliation(s)
- Ivana V Yang
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo; Departments of Pediatrics and Medicine, National Jewish Health, Denver, Colo
| | - Brent S Pedersen
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo
| | - Andrew Liu
- Departments of Pediatrics and Medicine, National Jewish Health, Denver, Colo
| | - George T O'Connor
- Department of Medicine, Boston University School of Medicine, Boston, Mass
| | | | - Meyer Kattan
- Columbia University Medical Center, New York, NY
| | | | | | | | - Stanley J Szefler
- Department of Pediatrics, Children's Hospital Colorado and University of Colorado, School of Medicine, Aurora, Colo
| | - Michelle A Gill
- University of Texas, Southwestern Medical Center, Dallas, Tex
| | | | | | - Corinne E Hennessy
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo
| | - Elizabeth J Davidson
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo
| | - Weiming Zhang
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, Colo
| | - Peter Gergen
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - William W Busse
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - David A Schwartz
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo; Departments of Pediatrics and Medicine, National Jewish Health, Denver, Colo; Department of Immunology, University of Colorado, Aurora, Colo.
| |
Collapse
|
44
|
Chen Z, Salam MT, Eckel SP, Breton CV, Gilliland FD. Chronic effects of air pollution on respiratory health in Southern California children: findings from the Southern California Children's Health Study. J Thorac Dis 2015; 7:46-58. [PMID: 25694817 DOI: 10.3978/j.issn.2072-1439.2014.12.20] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/20/2014] [Indexed: 01/05/2023]
Abstract
Outdoor air pollution is one of the leading contributors to adverse respiratory health outcomes in urban areas around the world. Children are highly sensitive to the adverse effects of air pollution due to their rapidly growing lungs, incomplete immune and metabolic functions, patterns of ventilation and high levels of outdoor activity. The Children's Health Study (CHS) is a continuing series of longitudinal studies that first began in 1993 and has focused on demonstrating the chronic impacts of air pollution on respiratory illnesses from early childhood through adolescence. A large body of evidence from the CHS has documented that exposures to both regional ambient air and traffic-related pollutants are associated with increased asthma prevalence, new-onset asthma, risk of bronchitis and wheezing, deficits of lung function growth, and airway inflammation. These associations may be modulated by key genes involved in oxidative-nitrosative stress pathways via gene-environment interactions. Despite successful efforts to reduce pollution over the past 40 years, air pollution at the current levels still brings many challenges to public health. To further ameliorate adverse health effects attributable to air pollution, many more toxic pollutants may require regulation and control of motor vehicle emissions and other combustion sources may need to be strengthened. Individual interventions based on personal susceptibility may be needed to protect children's health while control measures are being implemented.
Collapse
Affiliation(s)
- Zhanghua Chen
- 1 Department of Preventive Medicine, Division of Environmental Health, 2 Department of Preventive Medicine, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Muhammad T Salam
- 1 Department of Preventive Medicine, Division of Environmental Health, 2 Department of Preventive Medicine, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Sandrah P Eckel
- 1 Department of Preventive Medicine, Division of Environmental Health, 2 Department of Preventive Medicine, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Carrie V Breton
- 1 Department of Preventive Medicine, Division of Environmental Health, 2 Department of Preventive Medicine, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Frank D Gilliland
- 1 Department of Preventive Medicine, Division of Environmental Health, 2 Department of Preventive Medicine, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| |
Collapse
|
45
|
Abstract
It is generally agreed that environmental factors trigger the onset and cause flares of inflammatory bowel disease. Although we have learned much about genetic susceptibility factors of inflammatory bowel disease in recent years, our knowledge on these environmental factors is limited. The sum of all environmental factors a human is exposed to during lifetime has been termed the exposome. The challenge of investigating the exposome is discussed in this overview. The environmental exposure of a subject causes changes in the intestinal microbiota and subsequently changes the epigenetic imprinting of the mucosa and the associated immune system. Some relevant environmental factors have been investigated in recent years in inflammatory bowel disease and other (auto)inflammatory disease. These factors can be categorized in air pollution, diet, drugs, stress, infections, water pollution, food additives, and lifestyle. Examples from those categories and their potential pathophysiological mechanism are discussed.
Collapse
|
46
|
Early origins of chronic obstructive lung diseases across the life course. Eur J Epidemiol 2014; 29:871-85. [PMID: 25537319 DOI: 10.1007/s10654-014-9981-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/06/2014] [Indexed: 12/12/2022]
Abstract
Chronic obstructive lung diseases, like asthma and chronic obstructive pulmonary disease, have high prevalences and are a major public health concern. Chronic obstructive lung diseases have at least part of their origins in early life. Exposure to an adverse environment during critical periods in early life might lead to permanent developmental adaptations which results in impaired lung growth with smaller airways and lower lung volume, altered immunological responses and related inflammation, and subsequently to increased risks of chronic obstructive lung diseases throughout the life course. Various pathways leading from early life factors to respiratory health outcomes in later life have been studied, including fetal and early infant growth patterns, preterm birth, maternal obesity, diet and smoking, children's diet, allergen exposure and respiratory tract infections, and genetic susceptibility. Data on potential adverse factors in the embryonic and preconception period and respiratory health outcomes are scarce. Also, the underlying mechanisms how specific adverse exposures in the fetal and early postnatal period lead to chronic obstructive lung diseases in later life are not yet fully understood. Current studies suggest that interactions between early environmental exposures and genetic factors such as changes in DNA-methylation and RNA expression patterns may explain the early development of chronic obstructive lung diseases. New well-designed epidemiological studies are needed to identify specific critical periods and to elucidate the mechanisms underlying the development of chronic obstructive lung disease throughout the life course.
Collapse
|
47
|
van der Valk RJ, Duijts L, Timpson NJ, Salam MT, Standl M, Curtin JA, Genuneit J, Kerhof M, Kreiner-Møller E, Cáceres A, Gref A, Liang LL, Taal HR, Bouzigon E, Demenais F, Nadif R, Ober C, Thompson EE, Estrada K, Hofman A, Uitterlinden AG, van Duijn C, Rivadeneira F, Li X, Eckel SP, Berhane K, Gauderman WJ, Granell R, Evans DM, St Pourcain B, McArdle W, Kemp JP, Smith GD, Tiesler CM, Flexeder C, Simpson A, Murray CS, Fuchs O, Postma DS, Bønnelykke K, Torrent M, Andersson M, Sleiman P, Hakonarson H, Cookson WO, Moffatt MF, Paternoster L, Melén E, Sunyer J, Bisgaard H, Koppelman GH, Ege M, Custovic A, Heinrich J, Gilliland FD, Henderson AJ, Jaddoe VW, de Jongste JC. Fraction of exhaled nitric oxide values in childhood are associated with 17q11.2-q12 and 17q12-q21 variants. J Allergy Clin Immunol 2014; 134:46-55. [PMID: 24315451 PMCID: PMC4334587 DOI: 10.1016/j.jaci.2013.08.053] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/21/2013] [Accepted: 08/28/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND The fraction of exhaled nitric oxide (Feno) value is a biomarker of eosinophilic airway inflammation and is associated with childhood asthma. Identification of common genetic variants associated with childhood Feno values might help to define biological mechanisms related to specific asthma phenotypes. OBJECTIVE We sought to identify the genetic variants associated with childhood Feno values and their relation with asthma. METHODS Feno values were measured in children age 5 to 15 years. In 14 genome-wide association studies (N = 8,858), we examined the associations of approximately 2.5 million single nucleotide polymorphisms (SNPs) with Feno values. Subsequently, we assessed whether significant SNPs were expression quantitative trait loci in genome-wide expression data sets of lymphoblastoid cell lines (n = 1,830) and were related to asthma in a previously published genome-wide association data set (cases, n = 10,365; control subjects: n = 16,110). RESULTS We identified 3 SNPs associated with Feno values: rs3751972 in LYR motif containing 9 (LYRM9; P = 1.97 × 10(-10)) and rs944722 in inducible nitric oxide synthase 2 (NOS2; P = 1.28 × 10(-9)), both of which are located at 17q11.2-q12, and rs8069176 near gasdermin B (GSDMB; P = 1.88 × 10(-8)) at 17q12-q21. We found a cis expression quantitative trait locus for the transcript soluble galactoside-binding lectin 9 (LGALS9) that is in linkage disequilibrium with rs944722. rs8069176 was associated with GSDMB and ORM1-like 3 (ORMDL3) expression. rs8069176 at 17q12-q21, but not rs3751972 and rs944722 at 17q11.2-q12, were associated with physician-diagnosed asthma. CONCLUSION This study identified 3 variants associated with Feno values, explaining 0.95% of the variance. Identification of functional SNPs and haplotypes in these regions might provide novel insight into the regulation of Feno values. This study highlights that both shared and distinct genetic factors affect Feno values and childhood asthma.
Collapse
Affiliation(s)
- Ralf Jp van der Valk
- The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- School of Social and Community Medicine, University of Bristol, Uk
| | - Nicolas J Timpson
- School of Social and Community Medicine, University of Bristol, Uk
- MRC Centre for Causal Analyses in Translational Epidemiology, University of Bristol, UK
| | - Muhammad T Salam
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, USA
| | - Marie Standl
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - John A Curtin
- University of Manchester, Manchester Academic Health Science Centre, University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Jon Genuneit
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Marjan Kerhof
- University Medical Center Groningen, University of Groningen, Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital
| | - Eskil Kreiner-Møller
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Danish Pediatric Asthma Center, Copenhagen University Hospital, Gentofte, Copenhagen, Denmark
| | - Alejandro Cáceres
- Center for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Catalonia, Spain
- Spanish consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Anna Gref
- Institute of Environmental Medicine and Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Liming L Liang
- Department of Epidemiology, Harvard School of Public Health, Boston, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, USA
| | - H Rob Taal
- The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Emmanuelle Bouzigon
- Inserm, UMR 946, Genetic Variation and Human Diseases Unit, F-75010, Paris, France
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, F- 75007, Paris, France
| | - Florence Demenais
- Inserm, UMR 946, Genetic Variation and Human Diseases Unit, F-75010, Paris, France
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, F- 75007, Paris, France
| | - Rachel Nadif
- Inserm, Centre for research in Epidemiology and Population Health (CEPH), U1018, Respiratory and Environmental Epidemiology Team, F-94807, Villejuif, France
- Univ Paris-Sud, UMRS 1018, F-94807, Villejuif, France
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Emma E Thompson
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Karol Estrada
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - André G Uitterlinden
- The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Cornélia van Duijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Xia Li
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, USA
| | - Sandrah P Eckel
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, USA
| | - Kiros Berhane
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, USA
| | - W James Gauderman
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, USA
| | - Raquel Granell
- School of Social and Community Medicine, University of Bristol, Uk
| | - David M Evans
- School of Social and Community Medicine, University of Bristol, Uk
- MRC Centre for Causal Analyses in Translational Epidemiology, University of Bristol, UK
| | | | - Wendy McArdle
- School of Social and Community Medicine, University of Bristol, Uk
| | - John P Kemp
- School of Social and Community Medicine, University of Bristol, Uk
- MRC Centre for Causal Analyses in Translational Epidemiology, University of Bristol, UK
| | - George Davey Smith
- School of Social and Community Medicine, University of Bristol, Uk
- MRC Centre for Causal Analyses in Translational Epidemiology, University of Bristol, UK
| | - Carla Mt Tiesler
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Flexeder
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Angela Simpson
- University of Manchester, Manchester Academic Health Science Centre, University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Clare S Murray
- University of Manchester, Manchester Academic Health Science Centre, University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Oliver Fuchs
- Inselspital, Universitätsspital, Bern, Universitätklinik für Kinderheilkunde, Bern, Switzerland
- Dr. von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| | - Dirkje S Postma
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Danish Pediatric Asthma Center, Copenhagen University Hospital, Gentofte, Copenhagen, Denmark
| | - Maties Torrent
- Spanish consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
- ib-salut, Area de Salut de Menorca, Balearic Islands, Spain
| | - Martin Andersson
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
- Department of Physiology, South Central Hospital, Stockholm, Sweden
| | - Patrick Sleiman
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - William O Cookson
- National Heart and Lung Institute, Imperial College London, London SW3 6LY
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London SW3 6LY
| | - Lavinia Paternoster
- School of Social and Community Medicine, University of Bristol, Uk
- MRC Centre for Causal Analyses in Translational Epidemiology, University of Bristol, UK
| | - Erik Melén
- Institute of Environmental Medicine and Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
- Sach's Children's Hospital, Stockholm, Sweden
| | - Jordi Sunyer
- Center for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Catalonia, Spain
- Spanish consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
- Pompeu Fabra University (UPF), Barcelona, Catalonia, Spain
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Danish Pediatric Asthma Center, Copenhagen University Hospital, Gentofte, Copenhagen, Denmark
| | - Gerard H Koppelman
- University Medical Center Groningen, University of Groningen, Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Markus Ege
- Dr. von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| | - Adnan Custovic
- University of Manchester, Manchester Academic Health Science Centre, University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Joachim Heinrich
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Frank D Gilliland
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, USA
| | | | - Vincent Wv Jaddoe
- The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Johan C de Jongste
- Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
48
|
Bégin P, Nadeau KC. Epigenetic regulation of asthma and allergic disease. Allergy Asthma Clin Immunol 2014; 10:27. [PMID: 24932182 PMCID: PMC4057652 DOI: 10.1186/1710-1492-10-27] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/18/2014] [Indexed: 01/18/2023] Open
Abstract
Epigenetics of asthma and allergic disease is a field that has expanded greatly in the last decade. Previously thought only in terms of cell differentiation, it is now evident the epigenetics regulate many processes. With T cell activation, commitment toward an allergic phenotype is tightly regulated by DNA methylation and histone modifications at the Th2 locus control region. When normal epigenetic control is disturbed, either experimentally or by environmental exposures, Th1/Th2 balance can be affected. Epigenetic marks are not only transferred to daughter cells with cell replication but they can also be inherited through generations. In animal models, with constant environmental pressure, epigenetically determined phenotypes are amplified through generations and can last up to 2 generations after the environment is back to normal. In this review on the epigenetic regulation of asthma and allergic diseases we review basic epigenetic mechanisms and discuss the epigenetic control of Th2 cells. We then cover the transgenerational inheritance model of epigenetic traits and discuss how this could relate the amplification of asthma and allergic disease prevalence and severity through the last decades. Finally, we discuss recent epigenetic association studies for allergic phenotypes and related environmental risk factors as well as potential underlying mechanisms for these associations.
Collapse
Affiliation(s)
- Philippe Bégin
- Allergy, Immunology, and Rheumatology Division, Stanford University, 269 Campus Drive, Stanford, California, USA
| | - Kari C Nadeau
- Allergy, Immunology, and Rheumatology Division, Stanford University, 269 Campus Drive, Stanford, California, USA
| |
Collapse
|
49
|
DNA methylation of the allergy regulatory gene interferon gamma varies by age, sex, and tissue type in asthmatics. Clin Epigenetics 2014; 6:9. [PMID: 24891923 PMCID: PMC4041041 DOI: 10.1186/1868-7083-6-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/08/2014] [Indexed: 12/30/2022] Open
Abstract
Background Asthma is associated with allergic sensitization in about half of all cases, and asthma phenotypes can vary by age and sex. DNA methylation in the promoter of the allergy regulatory gene interferon gamma (IFNγ) has been linked to the maintenance of allergic immune function in human cell and mouse models. We hypothesized that IFNγ promoter methylation at two well-studied, key cytosine phosphate guanine (CpG) sites (-186 and -54), may differ by age, sex, and airway versus systemic tissue in a cohort of 74 allergic asthmatics. Results After sampling buccal cells, a surrogate for airway epithelial cells, and CD4+ lymphocytes, we found that CD4+ lymphocyte methylation was significantly higher in children compared to adults at both CpG sites (P <0.01). Buccal cell methylation was significantly higher in children at CpG -186 (P = 0.03) but not CpG -54 (P = 0.66). Methylation was higher in males compared to females at both CpG sites in CD4+ lymphocytes (-186: P <0.01, -54: P = 0.02) but not buccal cells (-186: P = 0.14, -54: P = 0.60). In addition, methylation was lower in CD4+ lymphocytes compared to buccal cells (P <0.01) and neighboring CpG sites were strongly correlated in CD4+ lymphocytes (r = 0.84, P <0.01) and weakly correlated in buccal cells (r = 0.24, P = 0.04). At CpG -186, there was significant correlation between CD4+ lymphocytes and buccal cells (r = 0.24, P = 0.04) but not at CpG -54 (r = -0.03, P = 0.78). Conclusions These findings highlight significant age, sex, and tissue-related differences in IFNγ promoter methylation that further our understanding of methylation in the allergic asthma pathway and in the application of biomarkers in clinical research.
Collapse
|
50
|
de Planell-Saguer M, Lovinsky-Desir S, Miller RL. Epigenetic regulation: the interface between prenatal and early-life exposure and asthma susceptibility. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:231-43. [PMID: 24323745 PMCID: PMC4148423 DOI: 10.1002/em.21836] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 05/10/2023]
Abstract
Asthma is a complex disease with genetic and environmental influences and emerging evidence suggests that epigenetic regulation is also a major contributor. Here, we focus on the developing paradigm that epigenetic dysregulation in asthma and allergy may start as early as in utero following several environmental exposures. We summarize the pathways important to the allergic immune response that are epigenetically regulated, the key environmental exposures associated with epigenetic changes in asthma genes, and newly identified epigenetic biomarkers that have been linked to clinical asthma. We conclude with a brief discussion about the potential to apply newly developing technologies in epigenetics to the diagnosis and treatment of asthma and allergy. The inherent plasticity of epigenetic regulation following environmental exposures offers opportunities for prevention using environmental remediation, measuring novel biomarkers for early identification of those at risk, and applying advances in pharmaco-epigenetics to tailor medical therapies that maximize efficacy of treatment. 'Precision Medicine' in asthma and allergy is arriving. As the field advances this may involve an individually tailored approach to the prevention, early detection, and treatment of disease based on the knowledge of an individual's epigenetic profile.
Collapse
Affiliation(s)
- Mariangels de Planell-Saguer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonary, Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Rachel L. Miller
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Columbia University, College of Physicians and Surgeons, New York, New York
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, College of Physicians and Surgeons, New York, New York
- Correspondence to: Rachel L. Miller, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, PH8E-101B; 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|