1
|
Chen X, Zhang J, Cao X, Jiang H, Wu Z, Zeng ZD, Jiang C, Chen H. SIKVAV promotion proliferation of vascular endothelial cells and related mechanisms. Biomed Mater Eng 2024; 35:499-508. [PMID: 39240620 DOI: 10.3233/bme-240018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
BACKGROUND Vascular endothelial injury, a key factor in diabetic foot ulcers (DFUs) pathogenesis, is linked to the impaired proliferation and migration of vascular endothelial cells, modulated by hypoxia-inducible factor, growth factors, and inflammatory elements. OBJECTIVE The present study assesses the role of SIKVAV (Ser-Ile-Lys-Val-Ala-Val), a peptide shown to enhance cell proliferation and migration, on mouse aortic endothelial cell (MAEC) and the corresponding molecular mechanisms. METHODS MAEC were treated with SIKVAV at 0, 100, 200, 400, and 600 μg/mL for 0, 24, 48, and 72 h. Cell viability was tested using the CCK-8 assay. Proliferating cell nuclear antigen (PCNA), extracellular signal-regulated kinase 1/2 (ERK1/2), and protein kinase B (Akt) levels were measured by qRT-PCR and western blot. RESULTS SIKVAV augmented PCNA mRNA expression and stimulated vascular endothelial cell proliferation in a concentration and time-dependent fashion. Furthermore, it amplified the expression of p-ERK1/2 and p-Akt, pivotal components of the mitogen-activated protein kinase (MAPK)/ERK1/2 and phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathways. The inhibition of these pathways suppressed PCNA mRNA expression, cell proliferation rate, and decreased p-ERK1/2 and p-Akt levels, highlighting SIKVAV's role in promoting vascular endothelial cell proliferation via these pathways. CONCLUSION The results of this study confirmed that SIKVAV grafted onto scaffolds can accelerate the proliferation of vascular endothelial cells for the therapy of skin wounds, and provide a theoretical basis for its application in ischemic disease as synthesized biomaterials scaffolds of tissue engineering.
Collapse
Affiliation(s)
- Xionglin Chen
- Department of Histology, Embryology and Medical Genetics, Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| | - Jie Zhang
- Department of Histology, Embryology and Medical Genetics, Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| | - Xiaoming Cao
- Department of Anatomy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| | - He Jiang
- Department of Histology, Embryology and Medical Genetics, Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| | - Zhiren Wu
- Department of Preventive Medicine, School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| | - Zi du Zeng
- Department of Preventive Medicine, School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| | - Chen Jiang
- Department of Oral medicine, School School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| | - Hui Chen
- Department of Anatomy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| |
Collapse
|
2
|
Tang H, Gupta A, Morrisroe SA, Bao C, Schwantes-An TH, Gupta G, Liang S, Sun Y, Chu A, Luo A, Elangovan VR, Sangam S, Shi Y, Naidu SR, Jheng JR, Ciftci-Yilmaz S, Warfel NA, Hecker L, Mitra S, Coleman AW, Lutz KA, Pauciulo MW, Lai YC, Javaheri A, Dharmakumar R, Wu WH, Flaherty DP, Karnes JH, Breuils-Bonnet S, Boucherat O, Bonnet S, Yuan JXJ, Jacobson JR, Duarte JD, Nichols WC, Garcia JGN, Desai AA. Deficiency of the Deubiquitinase UCHL1 Attenuates Pulmonary Arterial Hypertension. Circulation 2024; 150:302-316. [PMID: 38695173 PMCID: PMC11262989 DOI: 10.1161/circulationaha.123.065304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/04/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND The ubiquitin-proteasome system regulates protein degradation and the development of pulmonary arterial hypertension (PAH), but knowledge about the role of deubiquitinating enzymes in this process is limited. UCHL1 (ubiquitin carboxyl-terminal hydrolase 1), a deubiquitinase, has been shown to reduce AKT1 (AKT serine/threonine kinase 1) degradation, resulting in higher levels. Given that AKT1 is pathological in pulmonary hypertension, we hypothesized that UCHL1 deficiency attenuates PAH development by means of reductions in AKT1. METHODS Tissues from animal pulmonary hypertension models as well as human pulmonary artery endothelial cells from patients with PAH exhibited increased vascular UCHL1 staining and protein expression. Exposure to LDN57444, a UCHL1-specific inhibitor, reduced human pulmonary artery endothelial cell and smooth muscle cell proliferation. Across 3 preclinical PAH models, LDN57444-exposed animals, Uchl1 knockout rats (Uchl1-/-), and conditional Uchl1 knockout mice (Tie2Cre-Uchl1fl/fl) demonstrated reduced right ventricular hypertrophy, right ventricular systolic pressures, and obliterative vascular remodeling. Lungs and pulmonary artery endothelial cells isolated from Uchl1-/- animals exhibited reduced total and activated Akt with increased ubiquitinated Akt levels. UCHL1-silenced human pulmonary artery endothelial cells displayed reduced lysine(K)63-linked and increased K48-linked AKT1 levels. RESULTS Supporting experimental data, we found that rs9321, a variant in a GC-enriched region of the UCHL1 gene, is associated with reduced methylation (n=5133), increased UCHL1 gene expression in lungs (n=815), and reduced cardiac index in patients (n=796). In addition, Gadd45α (an established demethylating gene) knockout mice (Gadd45α-/-) exhibited reduced lung vascular UCHL1 and AKT1 expression along with attenuated hypoxic pulmonary hypertension. CONCLUSIONS Our findings suggest that UCHL1 deficiency results in PAH attenuation by means of reduced AKT1, highlighting a novel therapeutic pathway in PAH.
Collapse
Affiliation(s)
- Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Akash Gupta
- Department of Medicine and Arizona Health Sciences Center, Department of Cellular and Molecular Medicine, College of Medicine-Tucson, University of Arizona, Tucson, AZ
| | - Seth A. Morrisroe
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University, Indianapolis, IN
| | - Changlei Bao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- College of Veterinary Medicine, Northwest A & F University, Yangling, China
| | - Tae-Hwi Schwantes-An
- Department of Medical & Molecular Genetics, Indiana University, Indianapolis, IN
| | - Geetanjali Gupta
- Department of Medicine and Arizona Health Sciences Center, Department of Cellular and Molecular Medicine, College of Medicine-Tucson, University of Arizona, Tucson, AZ
| | - Shuxin Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanan Sun
- College of Veterinary Medicine, Northwest A & F University, Yangling, China
| | - Aiai Chu
- Department of Echocardiography, Gansu Provincial Hospital, Lanzhou, China
| | - Ang Luo
- College of Veterinary Medicine, Northwest A & F University, Yangling, China
- Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | | | - Shreya Sangam
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University, Indianapolis, IN
| | - Yinan Shi
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University, Indianapolis, IN
- College of Veterinary Medicine, Northwest A & F University, Yangling, China
| | - Samisubbu R. Naidu
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University, Indianapolis, IN
| | - Jia-Rong Jheng
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN
| | - Sultan Ciftci-Yilmaz
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University, Indianapolis, IN
| | - Noel A. Warfel
- Department of Medicine and Arizona Health Sciences Center, Department of Cellular and Molecular Medicine, College of Medicine-Tucson, University of Arizona, Tucson, AZ
| | - Louise Hecker
- Department of Medicine, Emory University, and Atlanta VA Healthcare System, Atlanta, GA
| | - Sumegha Mitra
- Department of Obstetrics & Gynecology, Indiana University, Indianapolis, IN
| | - Anna W. Coleman
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Katie A. Lutz
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Michael W. Pauciulo
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Yen-Chun Lai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN
| | - Ali Javaheri
- Department of Medicine, Washington University and John Cochran VA Hospital, St. Louis, MO
| | - Rohan Dharmakumar
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University, Indianapolis, IN
| | - Wen-Hui Wu
- Department of Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, CA
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmcacology, Purdue University, Lafayette, IN
| | - Jason H Karnes
- Department of Pharmacy Practice and Science, R Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ
| | - Sandra Breuils-Bonnet
- Department of Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, CA
| | - Olivier Boucherat
- Department of Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, CA
| | - Sebastien Bonnet
- Department of Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, CA
| | - Jason X-J Yuan
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | - Julio D Duarte
- Center for Pharmacogenomics and Precision Medicine, Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL
| | - William C Nichols
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Joe GN Garcia
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL
| | - Ankit A. Desai
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University, Indianapolis, IN
| |
Collapse
|
3
|
Palomer X, Salvador JM, Griñán-Ferré C, Barroso E, Pallàs M, Vázquez-Carrera M. GADD45A: With or without you. Med Res Rev 2024; 44:1375-1403. [PMID: 38264852 DOI: 10.1002/med.22015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
The growth arrest and DNA damage inducible (GADD)45 family includes three small and ubiquitously distributed proteins (GADD45A, GADD45B, and GADD45G) that regulate numerous cellular processes associated with stress signaling and injury response. Here, we provide a comprehensive review of the current literature investigating GADD45A, the first discovered member of the family. We first depict how its levels are regulated by a myriad of genotoxic and non-genotoxic stressors, and through the combined action of intricate transcriptional, posttranscriptional, and even, posttranslational mechanisms. GADD45A is a recognized tumor suppressor and, for this reason, we next summarize its role in cancer, as well as the different mechanisms by which it regulates cell cycle, DNA repair, and apoptosis. Beyond these most well-known actions, GADD45A may also influence catabolic and anabolic pathways in the liver, adipose tissue and skeletal muscle, among others. Not surprisingly, GADD45A may trigger AMP-activated protein kinase activity, a master regulator of metabolism, and is known to act as a transcriptional coregulator of numerous nuclear receptors. GADD45A has also been reported to display a cytoprotective role by regulating inflammation, fibrosis and oxidative stress in several organs and tissues, and is regarded an important contributor for the development of heart failure. Overall data point to that GADD45A may play an important role in metabolic, neurodegenerative and cardiovascular diseases, and also autoimmune-related disorders. Thus, the potential mechanisms by which dysregulation of GADD45A activity may contribute to the progression of these diseases are also reviewed below.
Collapse
Affiliation(s)
- Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Jesús M Salvador
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona (NeuroUB), Barcelona, Spain
- Spanish Biomedical Research Center in Neurodegenerative Diseases (CIBERNED)-Instituto de Salud Carlos III, Madrid, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona (NeuroUB), Barcelona, Spain
- Spanish Biomedical Research Center in Neurodegenerative Diseases (CIBERNED)-Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
4
|
Epshtein Y, Mathew B, Chen W, Jacobson JR. UCHL1 Regulates Radiation Lung Injury via Sphingosine Kinase-1. Cells 2023; 12:2405. [PMID: 37830619 PMCID: PMC10572187 DOI: 10.3390/cells12192405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
GADD45a is a gene we previously reported as a mediator of responses to acute lung injury. GADD45a-/- mice express decreased Akt and increased Akt ubiquitination due to the reduced expression of UCHL1 (ubiquitin c-terminal hydrolase L1), a deubiquitinating enzyme, while GADD45a-/- mice have increased their susceptibility to radiation-induced lung injury (RILI). Separately, we have reported a role for sphingolipids in RILI, evidenced by the increased RILI susceptibility of SphK1-/- (sphingosine kinase 1) mice. A mechanistic link between UCHL1 and sphingolipid signaling in RILI is suggested by the known polyubiquitination of SphK1. Thus, we hypothesized that the regulation of SphK1 ubiquitination by UCHL1 mediates RILI. Initially, human lung endothelial cells (EC) subjected to radiation demonstrated a significant upregulation of UCHL1 and SphK1. The ubiquitination of EC SphK1 after radiation was confirmed via the immunoprecipitation of SphK1 and Western blotting for ubiquitin. Further, EC transfected with siRNA specifically for UCHL1 or pretreated with LDN-5744, as a UCHL1 inhibitor, prior to radiation were noted to have decreased ubiquitinated SphK1 in both conditions. Further, the inhibition of UCHL1 attenuated sphingolipid-mediated EC barrier enhancement was measured by transendothelial electrical resistance. Finally, LDN pretreatment significantly augmented murine RILI severity. Our data support the fact that the regulation of SphK1 expression after radiation is mediated by UCHL1. The modulation of UCHL1 affecting sphingolipid signaling may represent a novel RILI therapeutic strategy.
Collapse
Affiliation(s)
| | | | | | - Jeffrey R. Jacobson
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.E.); (W.C.)
| |
Collapse
|
5
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
6
|
Belvitch P, Casanova N, Sun X, Camp SM, Sammani S, Brown ME, Mascarhenas J, Lynn H, Adyshev D, Siegler J, Desai A, Seyed-Saadat L, Rizzo A, Bime C, Shekhawat GS, Dravid VP, Reilly JP, Jones TK, Feng R, Letsiou E, Meyer NJ, Ellis N, Garcia JGN, Dudek SM. A cortactin CTTN coding SNP contributes to lung vascular permeability and inflammatory disease severity in African descent subjects. Transl Res 2022; 244:56-74. [PMID: 35181549 PMCID: PMC9119916 DOI: 10.1016/j.trsl.2022.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/20/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
Abstract
The cortactin gene (CTTN), encoding an actin-binding protein critically involved in cytoskeletal dynamics and endothelial cell (EC) barrier integrity, contains single nucleotide polymorphisms (SNPs) associated with severe asthma in Black patients. As loss of lung EC integrity is a major driver of mortality in the Acute Respiratory Distress Syndrome (ARDS), sepsis, and the acute chest syndrome (ACS), we speculated CTTN SNPs that alter EC barrier function will associate with clinical outcomes from these types of conditions in Black patients. In case-control studies, evaluation of a nonsynonymous CTTN coding SNP Ser484Asn (rs56162978, G/A) in a severe sepsis cohort (725 Black subjects) revealed significant association with increased risk of sepsis mortality. In a separate cohort of sickle cell disease (SCD) subjects with and without ACS (177 SCD Black subjects), significantly increased risk of ACS and increased ACS severity (need for mechanical ventilation) was observed in carriers of the A allele. Human lung EC expressing the cortactin S484N transgene exhibited: (i) delayed EC barrier recovery following thrombin-induced permeability; (ii) reduced levels of critical Tyr486 cortactin phosphorylation; (iii) inhibited binding to the cytoskeletal regulator, nmMLCK; and (iv) attenuated EC barrier-promoting lamellipodia dynamics and biophysical responses. ARDS-challenged Cttn+/- heterozygous mice exhibited increased lung vascular permeability (compared to wild-type mice) which was significantly attenuated by IV delivery of liposomes encargoed with CTTN WT transgene but not by CTTN S484N transgene. In summary, these studies suggest that the CTTN S484N coding SNP contributes to severity of inflammatory injury in Black patients, potentially via delayed vascular barrier restoration.
Collapse
Affiliation(s)
- Patrick Belvitch
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Nancy Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Xiaoguang Sun
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | | | - Joseph Mascarhenas
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Heather Lynn
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Djanybek Adyshev
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jessica Siegler
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ankit Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Laleh Seyed-Saadat
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Alicia Rizzo
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Christian Bime
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Gajendra S Shekhawat
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois
| | - John P Reilly
- Division of Pulmonary, Allergy, and Critical Care Medicine and Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Tiffanie K Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine and Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Rui Feng
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Eleftheria Letsiou
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine and Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nathan Ellis
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
7
|
Huang Y, He S, Chen Y, Sheng J, Fu Y, Du X, Yang Y, Liu H, Han Z, Huang Y, Wen Q, Zhou C, Zhou X, Hu S, Ma L. UCHL1 Promoted Polarization of M1 Macrophages by Regulating the PI3K/AKT Signaling Pathway. J Inflamm Res 2022; 15:735-746. [PMID: 35153498 PMCID: PMC8824699 DOI: 10.2147/jir.s343487] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yulan Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Shitong He
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Yitian Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Junli Sheng
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Yuling Fu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Xialin Du
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Yalong Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Zhenyu Han
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Yingqi Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Correspondence: Li Ma; Shengfeng Hu, Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, People’s Republic of China, Email ;
| |
Collapse
|
8
|
Bermudez T, Sammani S, Song JH, Hernon VR, Kempf CL, Garcia AN, Burt J, Hufford M, Camp SM, Cress AE, Desai AA, Natarajan V, Jacobson JR, Dudek SM, Cancio LC, Alvarez J, Rafikov R, Li Y, Zhang DD, Casanova NG, Bime C, Garcia JGN. eNAMPT neutralization reduces preclinical ARDS severity via rectified NFkB and Akt/mTORC2 signaling. Sci Rep 2022; 12:696. [PMID: 35027578 PMCID: PMC8758770 DOI: 10.1038/s41598-021-04444-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Despite encouraging preclinical data, therapies to reduce ARDS mortality remains a globally unmet need, including during the COVID-19 pandemic. We previously identified extracellular nicotinamide phosphoribosyltransferase (eNAMPT) as a novel damage-associated molecular pattern protein (DAMP) via TLR4 ligation which regulates inflammatory cascade activation. eNAMPT is tightly linked to human ARDS by biomarker and genotyping studies in ARDS subjects. We now hypothesize that an eNAMPT-neutralizing mAb will significantly reduce the severity of ARDS lung inflammatory lung injury in diverse preclinical rat and porcine models. Sprague Dawley rats received eNAMPT mAb intravenously following exposure to intratracheal lipopolysaccharide (LPS) or to a traumatic blast (125 kPa) but prior to initiation of ventilator-induced lung injury (VILI) (4 h). Yucatan minipigs received intravenous eNAMPT mAb 2 h after initiation of septic shock and VILI (12 h). Each rat/porcine ARDS/VILI model was strongly associated with evidence of severe inflammatory lung injury with NFkB pathway activation and marked dysregulation of the Akt/mTORC2 signaling pathway. eNAMPT neutralization dramatically reduced inflammatory indices and the severity of lung injury in each rat/porcine ARDS/VILI model (~ 50% reduction) including reduction in serum lactate, and plasma levels of eNAMPT, IL-6, TNFα and Ang-2. The eNAMPT mAb further rectified NFkB pathway activation and preserved the Akt/mTORC2 signaling pathway. These results strongly support targeting the eNAMPT/TLR4 inflammatory pathway as a potential ARDS strategy to reduce inflammatory lung injury and ARDS mortality.
Collapse
Affiliation(s)
- Tadeo Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jin H Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Vivian Reyes Hernon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Carrie L Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Alexander N Garcia
- Department of Radiation Oncology, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jessica Burt
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Matthew Hufford
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Anne E Cress
- Department of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | | | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Steven M Dudek
- Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | | | - Julie Alvarez
- Institute of Surgical Research, San Antonio, TX, USA
| | - Ruslan Rafikov
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Yansong Li
- Institute of Surgical Research, San Antonio, TX, USA
| | - Donna D Zhang
- College of Pharmacy, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nancy G Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Christian Bime
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
9
|
Jacobson JR. Sphingolipids as a Novel Therapeutic Target in Radiation-Induced Lung Injury. Cell Biochem Biophys 2021; 79:509-516. [PMID: 34370281 PMCID: PMC8551086 DOI: 10.1007/s12013-021-01022-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022]
Abstract
Radiation-induced lung injury (RILI) is a potential complication of thoracic radiotherapy that can result in pneumonitis or pulmonary fibrosis and is associated with significant morbidity and mortality. The pathobiology of RILI is complex and includes the generation of free radicals and DNA damage that precipitate oxidative stress, endothelial cell (EC), and epithelial cell injury and inflammation. While the cellular events involved continue to be elucidated and characterized, targeted and effective therapies for RILI remain elusive. Sphingolipids are known to mediate EC function including many of the cell signaling events associated with the elaboration of RILI. Sphingosine-1-phosphate (S1P) and S1P analogs enhance EC barrier function in vitro and have demonstrated significant protective effects in vivo in a variety of acute lung injury models including RILI. Similarly, statin drugs that have pleiotropic effects that include upregulation of EC S1P receptor 1 (S1PR1) have been found to be strongly protective in a small animal RILI model. Thus, targeting of EC sphingosine signaling, either directly or indirectly, to augment EC function and thereby attenuate EC permeability and inflammatory responses, represents a novel and promising therapeutic strategy for the prevention or treatment of RILI.
Collapse
Affiliation(s)
- Jeffrey R Jacobson
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
10
|
Cassatt DR, Gorovets A, Karimi-Shah B, Roberts R, Price PW, Satyamitra MM, Todd N, Wang SJ, Marzella L. A Trans-Agency Workshop on the Pathophysiology of Radiation-Induced Lung Injury. Radiat Res 2021; 197:415-433. [PMID: 34342637 DOI: 10.1667/rade-21-00127.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
Research and development of medical countermeasures (MCMs) for radiation-induced lung injury relies on the availability of animal models with well-characterized pathophysiology, allowing effective bridging to humans. To develop useful animal models, it is important to understand the clinical condition, advantages and limitations of individual models, and how to properly apply these models to demonstrate MCM efficacy. On March 20, 2019, a meeting sponsored by the Radiation and Nuclear Countermeasures Program (RNCP) within the National Institute of Allergy and Infectious Diseases (NIAID) brought together medical, scientific and regulatory communities, including academic and industry subject matter experts, and government stakeholders from the Food and Drug Administration (FDA) and the Biomedical Advanced Research and Development Authority (BARDA), to identify critical research gaps, discuss current clinical practices for various forms of pulmonary damage, and consider available animal models for radiation-induced lung injury.
Collapse
Affiliation(s)
- David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), National Institutes of Health (NIH), Rockville, Maryland
| | - Alex Gorovets
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Banu Karimi-Shah
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Rosemary Roberts
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Paul W Price
- Office of Regulatory Affairs, Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), National Institutes of Health (NIH), Rockville, Maryland
| | - Nushin Todd
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Sue-Jane Wang
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Libero Marzella
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| |
Collapse
|
11
|
Growth arrest and DNA damage-inducible proteins (GADD45) in psoriasis. Sci Rep 2021; 11:14579. [PMID: 34272424 PMCID: PMC8285512 DOI: 10.1038/s41598-021-93780-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/25/2021] [Indexed: 11/26/2022] Open
Abstract
The interplay between T cells, dendritic cells and keratinocytes is crucial for the development and maintenance of inflammation in psoriasis. GADD45 proteins mediate DNA repair in different cells including keratinocytes. In the immune system, GADD45a and GADD45b regulate the function and activation of both T lymphocytes and dendritic cells and GADD45a links DNA repair and epigenetic regulation through its demethylase activity. Here, we analyzed the expression of GADD45a and GADD45b in the skin, dendritic cells and circulating T cells in a cohort of psoriasis patients and their regulation by inflammatory signals. Thirty patients (17 male/13 female) with plaque psoriasis and 15 controls subjects (7 male/8 female), were enrolled. Psoriasis patients exhibited a lower expression of GADD45a at the epidermis but a higher expression in dermal infiltrating T cells in lesional skin. The expression of GADD45a and GADD45b was also higher in peripheral T cells from psoriasis patients, although no differences were observed in p38 activation. The expression and methylation state of the GADD45a target UCHL1 were evaluated, revealing a hypermethylation of its promoter in lesional skin compared to controls. Furthermore, reduced levels of GADD45a correlated with a lower expression UCHL1 in lesional skin. We propose that the demethylase function of GADD45a may account for its pleiotropic effects, and the complex and heterogeneous pattern of expression observed in psoriatic disease.
Collapse
|
12
|
Ehmsen JT, Kawaguchi R, Kaval D, Johnson AE, Nachun D, Coppola G, Höke A. GADD45A is a protective modifier of neurogenic skeletal muscle atrophy. JCI Insight 2021; 6:e149381. [PMID: 34128833 PMCID: PMC8410074 DOI: 10.1172/jci.insight.149381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Neurogenic muscle atrophy is the loss of skeletal muscle mass and function that occurs with nerve injury and in denervating diseases, such as amyotrophic lateral sclerosis. Aside from prompt restoration of innervation and exercise where feasible, there are currently no effective strategies for maintaining skeletal muscle mass in the setting of denervation. We conducted a longitudinal analysis of gene expression changes occurring in atrophying skeletal muscle and identified growth arrest and DNA damage-inducible A (Gadd45a) as a gene that shows one of the earliest and most sustained increases in expression in skeletal muscle after denervation. We evaluated the role of this induction using genetic mouse models and found that mice lacking GADD45A showed accelerated and exacerbated neurogenic muscle atrophy, as well as loss of fiber type identity. Our genetic analyses demonstrate that, rather than directly contributing to muscle atrophy as proposed in earlier studies, GADD45A induction likely represents a protective negative feedback response to denervation. Establishing the downstream effectors that mediate this protective effect and the pathways they participate in may yield new opportunities to modify the course of muscle atrophy.
Collapse
Affiliation(s)
- Jeffrey T Ehmsen
- Neuromuscular Division, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Riki Kawaguchi
- Department of Neurology and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Damlanur Kaval
- Neuromuscular Division, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Anna E Johnson
- Neuromuscular Division, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Daniel Nachun
- Department of Neurology and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Giovanni Coppola
- Department of Neurology and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Ahmet Höke
- Neuromuscular Division, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Mitra S, Epshtein Y, Sammani S, Quijada H, Chen W, Bandela M, Desai AA, Garcia JGN, Jacobson JR. UCHL1, a deubiquitinating enzyme, regulates lung endothelial cell permeability in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol 2021; 320:L497-L507. [PMID: 33438509 DOI: 10.1152/ajplung.00492.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence suggests an important role for deubiquitinating enzymes (DUBs) in modulating a variety of biological functions and diseases. We previously identified the upregulation of the DUB ubiquitin carboxyl terminal hydrolase 1 (UCHL1) in murine ventilator-induced lung injury (VILI). However, the role of UCHL1 in modulating vascular permeability, a cardinal feature of acute lung injury (ALI) in general, remains unclear. We investigated the role of UCHL1 in pulmonary endothelial cell (EC) barrier function in vitro and in vivo and examined the effects of UCHL1 on VE-cadherin and claudin-5 regulation, important adherens and tight junctional components, respectively. Measurements of transendothelial electrical resistance confirmed decreased barrier enhancement induced by hepatocyte growth factor (HGF) and increased thrombin-induced permeability in both UCHL1-silenced ECs and in ECs pretreated with LDN-57444 (LDN), a pharmacological UCHL1 inhibitor. In addition, UCHL1 knockdown (siRNA) was associated with decreased expression of VE-cadherin and claudin-5, whereas silencing of the transcription factor FoxO1 restored claudin-5 levels. Finally, UCHL1 inhibition in vivo via LDN was associated with increased VILI in a murine model. These findings support a prominent functional role of UCHL1 in regulating lung vascular permeability via alterations in adherens and tight junctions and implicate UCHL1 as an important mediator of ALI.
Collapse
Affiliation(s)
- Sumegha Mitra
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yulia Epshtein
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Saad Sammani
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona
| | - Hector Quijada
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona
| | - Weiguo Chen
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Mounica Bandela
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ankit A Desai
- Department of Medicine, Indiana University School of Medicine, Bloomington, Indiana
| | - Joe G N Garcia
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona
| | - Jeffrey R Jacobson
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
14
|
CYLD dysregulation in pathogenesis of sporadic inclusion body myositis. Sci Rep 2019; 9:11606. [PMID: 31406156 PMCID: PMC6690995 DOI: 10.1038/s41598-019-48115-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/30/2019] [Indexed: 11/17/2022] Open
Abstract
Sporadic inclusion body myositis (sIBM) is the most commonly acquired myopathy in middle-aged and elderly people. The muscle histology is characterized by both inflammation and degeneration, including sarcoplasmic aggregation of TDP-43. Cylindromatosis (CYLD) is a deubiquitinating enzyme that targets Lys63-linked ubiquitin chains and negatively regulates signal transduction pathways, such as NF-κB signalling pathways. We examined localization of CYLD as well as phosphorylated TDP-43, phosphorylated p62, and Lys63-linked ubiquitin in muscle tissues of sIBM patients and muscle-specific wild-type TDP-43 transgenic (TDP-43 TG) mice. We investigated whether overexpression of CYLD can affect muscle toxicity in the cell models treated by endoplasmic reticulum (ER) stress inducers tunicamycin and thapsigargin. CYLD expressed with phosphorylated TDP-43, phosphorylated p62, and Lys63-linked ubiquitin in the nuclear and perinuclear regions of muscle fibres of wild-type TDP-43 TG mice and the degenerative myofibres of sIBM patients with rimmed vacuoles and endomysial cellular infiltration. Although expression levels of CYLD decreased and cell viability was reduced in cells treated with ER stress inducers, wild-type CYLD, but not the catalytic mutant, substantially improved cell viability based on the deubiquitinase activity. Dysregulation of CYLD may reinforce myodegeneration in the pathophysiology of sIBM by attenuating autophagic clearance of protein aggregates. Regulating CYLD in muscle fibres might serve as a novel therapeutic strategy for sIBM treatment.
Collapse
|
15
|
Li N, He Y, Yang G, Yu Q, Li M. Role of TRPC1 channels in pressure-mediated activation of airway remodeling. Respir Res 2019; 20:91. [PMID: 31092255 PMCID: PMC6518742 DOI: 10.1186/s12931-019-1050-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Bronchoconstriction and cough, a characteristic of the asthmatic response, leads to development of compressive stresses in the airway wall. We hypothesized that progressively pathological high mechanical stress could act on mechanosensitive cation channels, such as transient receptor potential channel 1 (TRPC1) and then contributes to airway remodeling. METHODS We imitate the pathological airway pressure in vitro using cyclic stretch at 10 and 15% elongation. Ca2+ imaging was applied to measure the activity of TRPC1 after bronchial epithelial cells exposed to cyclic stretch for 0, 0.5, 1, 1.5, 2, 2.5 h. To further clarify the function of channnel TRPC1 in the process of mechano-transduction in airway remodeling, the experiment in vivo was implemented. The TRPC1 siRNA and budesonide were applied separately to asthmatic models. The morphological changes were measured by HE and Massion method. The expression levels of TRPC1 were evaluated by real-time PCR, western blot and immunohistochemistry. The protein expression level of IL-13, TGF-β1 and MMP-9 in BALF were measured by ELISA. RESULTS The result showed that cyclic stretch for 15% elongation at 1.5 h could maximize the activity of TRPC1 channel. This influx in Ca2+ was blocked by TRPC1 siRNA. Higher TRPC1 expression was observed in the bronchial epithelial layer of ovalbumin induced asthmatic models. The knockdown of TRPC1 with TRPC1 siRNA was associated with a hampered airway remodeling process, such as decreased bronchial wall thickness and smooth muscle hypertrophy/hyperplasia, a decreased ECM deposition area and inflammation infiltration around airway wall. Meantime, expression of IL-13, TGF-β1 and MMP-9 in OVA+TRPC1 siRNA also showed reduced level. TRPC1 intervention treatment showed similar anti-remodeling therapeutic effect with budesonide. CONCLUSIONS These results demonstrate that most TRPC1 channels expressed in bronchial epithelial cells mediate the mechanotransduction mechanism. TRPC1 inducing abnormal Ca2+ signal mediates receptor-stimulated and mechanical stimulus-induced airway remodeling. The inhibition of TRPC1 channel could produce similar therapeutic effect as glucocortisteroid to curb the development of asthmatic airway remodeling.
Collapse
Affiliation(s)
- Na Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 People’s Republic of China
| | - Ye He
- Department of Geriatrics, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Science, Chengdu, Sichuan Province 610072 People’s Republic of China
| | - Gang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 People’s Republic of China
| | - Qian Yu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 People’s Republic of China
| | - Minchao Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 People’s Republic of China
| |
Collapse
|
16
|
Fang M, Fan S, Yao X, Liu N, Gao J, Wang Z, Xu T, Xian X, Li W. Transfection of Sox11 plasmid alleviates ventilator-induced lung injury via Sox11 and FAK. Biochem Biophys Res Commun 2019; 512:182-188. [PMID: 30879763 DOI: 10.1016/j.bbrc.2019.03.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/08/2019] [Indexed: 12/15/2022]
Abstract
Background Ventilator-induced lung injury (VILI) is the most common complication in the mechanical ventilation in clinic. The pathogenesis of VILI has not been well understood. The SRY related High Mobility Group box group-F family member 11(Sox11) is a protein associated with lung development. The focal adhesion kinase(FAK) is a cytoplasmic tyrosine kinase and is regulated by Sox11. The present study, therefore, was undertaken to explore the potential role of Sox11 and FAK in VILI. Methods High volume mechanical ventilation(HMV) was used to establish mouse VILI model under anesthesia. The lung injury was evaluated by analyzing the lung weight, bronchoalveolar lavage fluid, histopathological changes and apoptosis of the lung. The Sox11 and FAK expressions in the lung were investigated by real-time qPCR, western blot and immunohistochemistry analysis. Results HMV induced VILI simultaneously companied with decreased expressions of Sox11 and FAK in alveolar epithelial and interstitial cells either in gene and protein levels. Transfection of Sox11 plasmid significantly upregulated expressions of Sox11 and FAK in gene and protein levels in the lung and particularly effectively alleviated VILI. Furthermore, FAK antagonism by PF562271(FAK antagonist) blocked the alleviating effect of Sox11 plasmid transfection on the VILI. Conclusion The dysregulation in the Sox11 and FAK after HMV play an important role in the pathogenesis of VILI, and facilitating the activity of Sox11and FAK might be an effective target and potential option in the prevention and treatment of VILI in clinic.
Collapse
Affiliation(s)
- Mingxing Fang
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Department of Intensive Care Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shujuan Fan
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Xiaoguang Yao
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Na Liu
- Department of Emergency, The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junxia Gao
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Zhiyong Wang
- Department of Intensive Care Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Tieling Xu
- Department of Emergency, Hebei General Hospital, Shijiazhuang, China
| | - Xiaohui Xian
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Wenbin Li
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
17
|
Mucke HA. Patent highlights October-November 2017. Pharm Pat Anal 2018; 7:73-81. [PMID: 29417883 DOI: 10.4155/ppa-2017-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/02/2017] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
18
|
Brazee P, Dada LA, Sznajder JI. Role of Linear Ubiquitination in Health and Disease. Am J Respir Cell Mol Biol 2017; 54:761-8. [PMID: 26848516 DOI: 10.1165/rcmb.2016-0014tr] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The covalent attachment of ubiquitin to target proteins is one of the most prevalent post-translational modifications, regulating a myriad of cellular processes including cell growth, survival, and metabolism. Recently, a novel RING E3 ligase complex was described, called linear ubiquitin assembly complex (LUBAC), which is capable of connecting ubiquitin molecules in a novel head-to-tail fashion via the N-terminal methionine residue. LUBAC is a heteromeric complex composed of heme-oxidized iron-responsive element-binding protein 2 ubiquitin ligase-1L (HOIL-1L), HOIL-1L-interacting protein, and shank-associated RH domain-interacting protein (SHARPIN). The essential role of LUBAC-generated linear chains for activation of nuclear factor-κB (NF-κB) signaling was first described in the activation of tumor necrosis factor-α receptor signaling complex. A decade of research has identified additional pathways that use LUBAC for downstream signaling, including CD40 ligand and the IL-1β receptor, as well as cytosolic pattern recognition receptors including nucleotide-binding oligomerization domain containing 2 (NOD2), retinoic acid-inducible gene 1 (RIG-1), and the NOD-like receptor family, pyrin domain containing 3 inflammasome (NLRP3). Even though the three components of the complex are required for full activation of NF-κB, the individual components of LUBAC regulate specific cell type- and stimuli-dependent effects. In humans, autosomal defects in LUBAC are associated with both autoinflammation and immunodeficiency, with additional disorders described in mice. Moreover, in the lung epithelium, HOIL-1L ubiquitinates target proteins independently of the other LUBAC components, adding another layer of complexity to the function and regulation of LUBAC. Although many advances have been made, the diverse functions of linear ubiquitin chains and the regulation of LUBAC are not yet completely understood. In this review, we discuss the various roles of linear ubiquitin chains and point to areas of study that would benefit from further investigation into LUBAC-mediated signaling pathways in lung pathophysiology.
Collapse
Affiliation(s)
- Patricia Brazee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
19
|
Wang T, Gross C, Desai AA, Zemskov E, Wu X, Garcia AN, Jacobson JR, Yuan JXJ, Garcia JGN, Black SM. Endothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets. Am J Physiol Lung Cell Mol Physiol 2016; 312:L452-L476. [PMID: 27979857 DOI: 10.1152/ajplung.00231.2016] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/08/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022] Open
Abstract
Mechanical ventilation is a life-saving intervention in critically ill patients with respiratory failure due to acute respiratory distress syndrome (ARDS). Paradoxically, mechanical ventilation also creates excessive mechanical stress that directly augments lung injury, a syndrome known as ventilator-induced lung injury (VILI). The pathobiology of VILI and ARDS shares many inflammatory features including increases in lung vascular permeability due to loss of endothelial cell barrier integrity resulting in alveolar flooding. While there have been advances in the understanding of certain elements of VILI and ARDS pathobiology, such as defining the importance of lung inflammatory leukocyte infiltration and highly induced cytokine expression, a deep understanding of the initiating and regulatory pathways involved in these inflammatory responses remains poorly understood. Prevailing evidence indicates that loss of endothelial barrier function plays a primary role in the development of VILI and ARDS. Thus this review will focus on the latest knowledge related to 1) the key role of the endothelium in the pathogenesis of VILI; 2) the transcription factors that relay the effects of excessive mechanical stress in the endothelium; 3) the mechanical stress-induced posttranslational modifications that influence key signaling pathways involved in VILI responses in the endothelium; 4) the genetic and epigenetic regulation of key target genes in the endothelium that are involved in VILI responses; and 5) the need for novel therapeutic strategies for VILI that can preserve endothelial barrier function.
Collapse
Affiliation(s)
- Ting Wang
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Christine Gross
- Vascular Biology Center, Augusta University, Augusta, Georgia
| | - Ankit A Desai
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Evgeny Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Xiaomin Wu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Alexander N Garcia
- Department of Pharmacology University of Illinois at Chicago, Chicago, Illinois; and
| | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jason X-J Yuan
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona;
| |
Collapse
|
20
|
Song MJ, Davidovich N, Lawrence GG, Margulies SS. Superoxide mediates tight junction complex dissociation in cyclically stretched lung slices. J Biomech 2016; 49:1330-1335. [PMID: 26592435 PMCID: PMC4864146 DOI: 10.1016/j.jbiomech.2015.10.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/25/2022]
Abstract
We found that stretching Type I rat alveolar epithelial cell (RAEC) monolayers at magnitudes that correspond to high tidal-volume mechanical ventilation results in the production of reactive oxygen species, including nitric oxide and superoxide. Scavenging superoxide with Tiron eliminated the stretch-induced increase in cell monolayer permeability, and similar results were reported for rats ventilated at large tidal volumes, suggesting that oxidative stress plays an important role in barrier impairment in ventilator-induced lung injury associated with large stretch and tidal volumes. In this communication we show that mechanisms that involve oxidative injury are also present in a novel precision cut lung slices (PCLS) model under identical mechanical loads. PCLSs from healthy rats were stretched cyclically to 37% change in surface area for 1 hour. Superoxide was visualized using MitoSOX. To evaluate functional relationships, in separate stretch studies superoxide was scavenged using Tiron or mito-Tempo. PCLS and RAEC permeability was assessed as tight junction (TJ) protein (occludin, claudin-4 and claudin-7) dissociation from zona occludins-1 (ZO-1) via co-immunoprecipitation and Western blot, after 1h (PCLS) or 10min (RAEC) of stretch. Superoxide was increased significantly in PCLS, and Tiron and mito-Tempo dramatically attenuated the response, preventing claudin-4 and claudin-7 dissociation from ZO-1. Using a novel PCLS model for ventilator-induced lung injury studies, we have shown that uniform, biaxial, cyclic stretch generates ROS in the slices, and that superoxide scavenging that can protect the lung tissue under stretch conditions. We conclude that PCLS offer a valuable platform for investigating antioxidant treatments to prevent ventilation-induced lung injury.
Collapse
Affiliation(s)
- Min Jae Song
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Nurit Davidovich
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Gladys G Lawrence
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan S Margulies
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Mathis BJ, Lai Y, Qu C, Janicki JS, Cui T. CYLD-mediated signaling and diseases. Curr Drug Targets 2016; 16:284-94. [PMID: 25342597 DOI: 10.2174/1389450115666141024152421] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/26/2014] [Accepted: 10/03/2014] [Indexed: 02/07/2023]
Abstract
The conserved cylindromatosis (CYLD) codes for a deubiquitinating enzyme and is a crucial regulator of diverse cellular processes such as immune responses, inflammation, death, and proliferation. It directly regulates multiple key signaling cascades, such as the Nuclear Factor kappa B [NFkB] and the Mitogen-Activated Protein Kinase (MAPK) pathways, by its catalytic activity on polyubiquitinated key intermediates. Several lines of emerging evidence have linked CYLD to the pathogenesis of various maladies, including cancer, poor infection control, lung fibrosis, neural development, and now cardiovascular dysfunction. While CYLD-mediated signaling is cell type and stimuli specific, the activity of CYLD is tightly controlled by phosphorylation and other regulators such as Snail. This review explores a broad selection of current and past literature regarding CYLD's expression, function and regulation with emerging reports on its role in cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | | | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA.
| |
Collapse
|
22
|
Mathew B, Takekoshi D, Sammani S, Epshtein Y, Sharma R, Smith BD, Mitra S, Desai AA, Weichselbaum RR, Garcia JGN, Jacobson JR. Role of GADD45a in murine models of radiation- and bleomycin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1420-9. [PMID: 26498248 DOI: 10.1152/ajplung.00146.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/25/2015] [Indexed: 11/22/2022] Open
Abstract
We previously reported protective effects of GADD45a (growth arrest and DNA damage-inducible gene 45 alpha) in murine ventilator-induced lung injury (VILI) via effects on Akt-mediated endothelial cell signaling. In the present study we investigated the role of GADD45a in separate murine models of radiation- and bleomycin-induced lung injury. Initial studies of wild-type mice subjected to single-dose thoracic radiation (10 Gy) confirmed a significant increase in lung GADD45a expression within 24 h and persistent at 6 wk. Mice deficient in GADD45a (GADD45a(-/-)) demonstrated increased susceptibility to radiation-induced lung injury (RILI, 10 Gy) evidenced by increased bronchoalveolar lavage (BAL) fluid total cell counts, protein and albumin levels, and levels of inflammatory cytokines compared with RILI-challenged wild-type animals at 2 and 4 wk. Furthermore, GADD45a(-/-) mice had decreased total and phosphorylated lung Akt levels both at baseline and 6 wk after RILI challenge relative to wild-type mice while increased RILI susceptibility was observed in both Akt(+/-) mice and mice treated with an Akt inhibitor beginning 1 wk prior to irradiation. Additionally, overexpression of a constitutively active Akt1 transgene reversed RILI-susceptibility in GADD45a(-/-) mice. In separate studies, lung fibrotic changes 2 wk after treatment with bleomycin (0.25 U/kg IT) was significantly increased in GADD45a(-/-) mice compared with wild-type mice assessed by lung collagen content and histology. These data implicate GADD45a as an important modulator of lung inflammatory responses across different injury models and highlight GADD45a-mediated signaling as a novel target in inflammatory lung injury clinically.
Collapse
Affiliation(s)
- Biji Mathew
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | - Daisuke Takekoshi
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois; Department of Respiratory Medicine, Tohoku University Hospital, Miyagi, Japan
| | - Saad Sammani
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | - Yulia Epshtein
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | - Rajesh Sharma
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | - Brett D Smith
- Department of Radiation Oncology, University of Chicago, Chicago, Illinois; and
| | - Sumegha Mitra
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | - Ankit A Desai
- Arizona Health Sciences Center, University of Arizona, Tucson, Arizona
| | | | - Joe G N Garcia
- Arizona Health Sciences Center, University of Arizona, Tucson, Arizona
| | - Jeffrey R Jacobson
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois;
| |
Collapse
|
23
|
Letsiou E, Sammani S, Zhang W, Zhou T, Quijada H, Moreno-Vinasco L, Dudek SM, Garcia JGN. Pathologic mechanical stress and endotoxin exposure increases lung endothelial microparticle shedding. Am J Respir Cell Mol Biol 2015; 52:193-204. [PMID: 25029266 DOI: 10.1165/rcmb.2013-0347oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Acute lung injury (ALI) results from infectious challenges and from pathologic lung distention produced by excessive tidal volume delivered during mechanical ventilation (ventilator-induced lung injury [VILI]) and is characterized by extensive alveolar and vascular dysfunction. Identification of novel ALI therapies is hampered by the lack of effective ALI/VILI biomarkers. We explored endothelial cell (EC)-derived microparticles (EMPs) (0.1-1 μm) as potentially important markers and potential mediators of lung vascular injury in preclinical models of ALI and VILI. We characterized EMPs (annexin V and CD31 immunoreactivity) produced from human lung ECs exposed to physiologic or pathologic mechanical stress (5 or 18% cyclic stretch [CS]) or to endotoxin (LPS). EC exposure to 18% CS or to LPS resulted in increased EMP shedding compared with static cells (∼ 4-fold and ∼ 2.5-fold increases, respectively). Proteomic analysis revealed unique 18% CS-derived (n = 10) and LPS-derived EMP proteins (n = 43). VILI-challenged mice (40 ml/kg, 4 h) exhibited increased plasma and bronchoalveolar lavage CD62E (E-selectin)-positive MPs compared with control mice. Finally, mice receiving intratracheal instillation of 18% CS-derived EMPs displayed significant lung inflammation and injury. These findings indicate that ALI/VILI-producing stimuli induce significant shedding of distinct EMP populations that may serve as potential ALI biomarkers and contribute to the severity of lung injury.
Collapse
Affiliation(s)
- Eleftheria Letsiou
- 1 Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Spassov S, Pfeifer D, Strosing K, Ryter S, Hummel M, Faller S, Hoetzel A. Genetic targets of hydrogen sulfide in ventilator-induced lung injury--a microarray study. PLoS One 2014; 9:e102401. [PMID: 25025333 PMCID: PMC4099342 DOI: 10.1371/journal.pone.0102401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/17/2014] [Indexed: 12/26/2022] Open
Abstract
Recently, we have shown that inhalation of hydrogen sulfide (H2S) protects against ventilator-induced lung injury (VILI). In the present study, we aimed to determine the underlying molecular mechanisms of H2S-dependent lung protection by analyzing gene expression profiles in mice. C57BL/6 mice were subjected to spontaneous breathing or mechanical ventilation in the absence or presence of H2S (80 parts per million). Gene expression profiles were determined by microarray, sqRT-PCR and Western Blot analyses. The association of Atf3 in protection against VILI was confirmed with a Vivo-Morpholino knockout model. Mechanical ventilation caused a significant lung inflammation and damage that was prevented in the presence of H2S. Mechanical ventilation favoured the expression of genes involved in inflammation, leukocyte activation and chemotaxis. In contrast, ventilation with H2S activated genes involved in extracellular matrix remodelling, angiogenesis, inhibition of apoptosis, and inflammation. Amongst others, H2S administration induced Atf3, an anti-inflammatory and anti-apoptotic regulator. Morpholino mediated reduction of Atf3 resulted in elevated lung injury despite the presence of H2S. In conclusion, lung protection by H2S during mechanical ventilation is associated with down-regulation of genes related to oxidative stress and inflammation and up-regulation of anti-apoptotic and anti-inflammatory genes. Here we show that Atf3 is clearly involved in H2S mediated protection.
Collapse
Affiliation(s)
- Sashko Spassov
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Genomics Core Lab, Dept. Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, Freiburg, Germany
| | - Karl Strosing
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Stefan Ryter
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, United States of America
| | - Matthias Hummel
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Simone Faller
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Alexander Hoetzel
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Mitra S, Wade MS, Sun X, Moldobaeva N, Flores C, Ma SF, Zhang W, Garcia JGN, Jacobson JR. GADD45a promoter regulation by a functional genetic variant associated with acute lung injury. PLoS One 2014; 9:e100169. [PMID: 24940746 PMCID: PMC4062486 DOI: 10.1371/journal.pone.0100169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 05/22/2014] [Indexed: 01/28/2023] Open
Abstract
Rationale Growth arrest DNA damage inducible alpha (GADD45a) is a stress-induced gene we have shown to participate in the pathophysiology of ventilator-induced lung injury (VILI) via regulation of mechanical stress-induced Akt ubiquitination and phosphorylation. The regulation of GADD45a expression by mechanical stress and its relationship with acute lung injury (ALI) susceptibility and severity, however, remains unknown. Objectives We examined mechanical stress-dependent regulatory elements (MSRE) in the GADD45a promoter and the contribution of promoter polymorphisms in GADD45a expression and ALI susceptibility. Methods and Results Initial studies in GADD45a knockout and heterozygous mice confirmed the relationship of GADD45a gene dose to VILI severity. Human lung endothelial cells (EC) transfected with a luciferase vector containing the full length GADD45a promoter sequence (−771 to +223) demonstrated a >4 fold increase in GADD45a expression in response to 18% cyclic stretch (CS, 4 h) compared to static controls while specific promoter regions harboring CS-dependent MSRE were identified using vectors containing serial deletion constructs of the GADD45a promoter. In silico analyses of GADD45a promoter region (−371 to −133) revealed a potential binding site for specificity protein 1 (SP1), a finding supported by confirmed SP1 binding with the GADD45a promoter and by the significant attenuation of CS-dependent GADD45a promoter activity in response to SP1 silencing. Separately, case-control association studies revealed a significant association of a GADD45a promoter SNP at −589 (rs581000, G>C) with reduced ALI susceptibility. Subsequently, we found allelic variation of this SNP is associated with both differential GADD45a expression in mechanically stressed EC (18% CS, 4 h) and differential binding site of interferon regulatory factor 7 (IRF7) at this site. Conclusion These results strongly support a functional role for GADD45a in ALI/VILI and identify a specific gene variant that confers risk for ALI.
Collapse
Affiliation(s)
- Sumegha Mitra
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Michael S. Wade
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Xiaoguang Sun
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Nurgul Moldobaeva
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Carlos Flores
- Centro de Investigacion Biomedica en red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Research Unit, Hospital Universitario Nuestra Senora de Candelaria, Tenerife, Spain
| | - Shwu-Fan Ma
- Division of Pulmonary, Critical Care and Sleep, University of Chicago, Chicago, Illinois, United States of America
| | - Wei Zhang
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Joe G. N. Garcia
- Arizona Health Sciences Center, University of Arizona, Tucson, Arizona, United States of America
| | - Jeffrey R. Jacobson
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
26
|
Adyshev DM, Elangovan VR, Moldobaeva N, Mapes B, Sun X, Garcia JGN. Mechanical stress induces pre-B-cell colony-enhancing factor/NAMPT expression via epigenetic regulation by miR-374a and miR-568 in human lung endothelium. Am J Respir Cell Mol Biol 2014; 50:409-18. [PMID: 24053186 DOI: 10.1165/rcmb.2013-0292oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Increased lung vascular permeability and alveolar edema are cardinal features of inflammatory conditions such as acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI). We previously demonstrated that pre-B-cell colony-enhancing factor (PBEF)/NAMPT, the proinflammatory cytokine encoded by NAMPT, participates in ARDS and VILI inflammatory syndromes. The present study evaluated posttranscriptional regulation of PBEF/NAMPT gene expression in human lung endothelium via 3'-untranslated region (UTR) microRNA (miRNA) binding. In silico analysis identified hsa-miR-374a and hsa-miR-568 as potential miRNA candidates. Increased PBEF/NAMPT transcription (by RT-PCR) and expression (by Western blotting) induced by 18% cyclic stretch (CS) (2 h: 3.4 ± 0.06 mRNA fold increase (FI); 10 h: 1.5 ± 0.06 protein FI) and by LPS (4 h: 3.8 ± 0.2 mRNA FI; 48 h: 2.6 ± 0.2 protein FI) were significantly attenuated by transfection with mimics of hsa-miR-374a or hsa-miR-568 (40-60% reductions each). LPS and 18% CS increased the activity of a PBEF/NAMPT 3'-UTR luciferase reporter (2.4-3.25 FI) with induction reduced by mimics of each miRNA (44-60% reduction). Specific miRNA inhibitors (antagomirs) for each PBEF/NAMPT miRNA significantly increased the endogenous PBEF/NAMPT mRNA (1.4-3.4 ± 0.1 FI) and protein levels (1.2-1.4 ± 0.1 FI) and 3'-UTR luciferase activity (1.4-1.7 ± 0.1 FI) compared with negative antagomir controls. Collectively, these data demonstrate that increased PBEF/NAMPT expression induced by bioactive agonists (i.e., excessive mechanical stress, LPS) involves epigenetic regulation with hsa-miR-374a and hsa-miR-568, representing novel therapeutic strategies to reduce inflammatory lung injury.
Collapse
Affiliation(s)
- Djanybek M Adyshev
- Institute for Personalized Respiratory Medicine, Department of Medicine, Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
27
|
Mathew B, Jacobson JR, Siegler JH, Moitra J, Blasco M, Xie L, Unzueta C, Zhou T, Evenoski C, Al-Sakka M, Sharma R, Huey B, Bulent A, Smith B, Jayaraman S, Reddy NM, Reddy SP, Fingerle-Rowson G, Bucala R, Dudek SM, Natarajan V, Weichselbaum RR, Garcia JGN. Role of migratory inhibition factor in age-related susceptibility to radiation lung injury via NF-E2-related factor-2 and antioxidant regulation. Am J Respir Cell Mol Biol 2013; 49:269-78. [PMID: 23526214 DOI: 10.1165/rcmb.2012-0291oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Microvascular injury and increased vascular leakage are prominent features of radiation-induced lung injury (RILI), and often follow cancer-associated thoracic irradiation. Our previous studies demonstrated that polymorphisms in the gene (MIF) encoding macrophage migratory inhibition factor (MIF), a multifunctional pleiotropic cytokine, confer susceptibility to acute inflammatory lung injury and increased vascular permeability, particularly in senescent mice. In this study, we exposed wild-type and genetically engineered mif(-/-) mice to 20 Gy single-fraction thoracic radiation to investigate the age-related role of MIF in murine RILI (mice were aged 8 wk, 8 mo, or 16 mo). Relative to 8-week-old mice, decreased MIF was observed in bronchoalveolar lavage fluid and lung tissue of 8- to 16-month-old wild-type mice. In addition, radiated 8- to 16-month-old mif(-/-) mice exhibited significantly decreased bronchoalveolar lavage fluid total antioxidant concentrations with progressive age-related decreases in the nuclear expression of NF-E2-related factor-2 (Nrf2), a transcription factor involved in antioxidant gene up-regulation in response to reactive oxygen species. This was accompanied by decreases in both protein concentrations (NQO1, GCLC, and heme oxygenase-1) and mRNA concentrations (Gpx1, Prdx1, and Txn1) of Nrf2-influenced antioxidant gene targets. In addition, MIF-silenced (short, interfering RNA) human lung endothelial cells failed to express Nrf2 after oxidative (H2O2) challenge, an effect reversed by recombinant MIF administration. However, treatment with an antioxidant (glutathione reduced ester), but not an Nrf2 substrate (N-acetyl cysteine), protected aged mif(-/-) mice from RILI. These findings implicate an important role for MIF in radiation-induced changes in lung-cell antioxidant concentrations via Nrf2, and suggest that MIF may contribute to age-related susceptibility to thoracic radiation.
Collapse
Affiliation(s)
- Biji Mathew
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, IL 60612-7227, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Grzesik BA, Vohwinkel CU, Morty RE, Mayer K, Herold S, Seeger W, Vadász I. Efficient gene delivery to primary alveolar epithelial cells by nucleofection. Am J Physiol Lung Cell Mol Physiol 2013; 305:L786-94. [PMID: 24077946 DOI: 10.1152/ajplung.00191.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Primary alveolar epithelial cells play a pivotal role in lung research, particularly when focusing on gas exchange, barrier function, and transepithelial transport processes. However, efficient transfection of primary alveolar epithelial cells continues to be a major challenge. In the present study, we applied nucleofection, a novel method of gene and oligonucleotide delivery to the nucleus of cells by electroporation, to achieve highly efficient transfection of primary alveolar epithelial type II (ATII) cells. To quantify the amount of ATII cells effectively transfected, we applied a plasmid expressing GFP and assessed the amount of GFP-expressing cells by flow cytometry. Analysis of the nucleofected ATII cells revealed a concentration-dependent transfection efficiency of up to 50% when using 3-8 μg plasmid DNA without affecting cell viability. Nucleofection of cultured A549 and H441 cells yielded similar transfection rates. Importantly, nucleofection of ATII cells did not interfere with the integrity of ATII monolayers even with use of relatively high concentrations of plasmid DNA. In subsequent studies, we also efficiently delivered small interfering RNAs to ATII cells by nucleofection, thereby silencing Akt and the multiligand receptor megalin, which has been recently shown to play a key role in removal of excess protein from the alveolar space, and effectively inhibited megalin-driven uptake and transcellular transport of albumin in ATII cells. Thus we report successful transfection of primary rat alveolar epithelial cells with both plasmids and oligonucleotides via nucleofection with high viability and consistently good transfection rates without impairing key physiological properties of the cells.
Collapse
Affiliation(s)
- Benno A Grzesik
- Dept. of Internal Medicine, Justus Liebig Univ., Universities of Giessen and Marburg Lung Center, Klinikstrasse 33, 35392 Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Huang SH, Wang L, Chi F, Wu CH, Cao H, Zhang A, Jong A. Circulating brain microvascular endothelial cells (cBMECs) as potential biomarkers of the blood-brain barrier disorders caused by microbial and non-microbial factors. PLoS One 2013; 8:e62164. [PMID: 23637989 PMCID: PMC3637435 DOI: 10.1371/journal.pone.0062164] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/18/2013] [Indexed: 11/18/2022] Open
Abstract
Despite aggressive research, central nervous system (CNS) disorders, including blood-brain barrier (BBB) injury caused by microbial infection, stroke, abused drugs [e.g., methamphetamine (METH) and nicotine], and other pathogenic insults, remain the world's leading cause of disabilities. In our previous work, we found that dysfunction of brain microvascular endothelial cells (BMECs), which are a major component of the BBB, could be caused by nicotine, meningitic pathogens and microbial factors, including HIV-1 virulence factors gp41 and gp120. One of the most challenging issues in this area is that there are no available cell-based biomarkers in peripheral blood for BBB disorders caused by microbial and non-microbial insults. To identify such cellular biomarkers for BBB injuries, our studies have shown that mice treated with nicotine, METH and gp120 resulted in increased blood levels of CD146+(endothelial marker)/S100B+ (brain marker) circulating BMECs (cBMECs) and CD133+[progenitor cell (PC) marker]/CD146+ endothelial PCs (EPCs), along with enhanced Evans blue and albumin extravasation into the brain. Nicotine and gp120 were able to significantly increase the serum levels of ubiquitin C-terminal hydrolase 1 (UCHL1) (a new BBB marker) as well as S100B in mice, which are correlated with the changes in cBMECs and EPCs. Nicotine- and meningitic E. coli K1-induced enhancement of cBMEC levels, leukocyte migration across the BBB and albumin extravasation into the brain were significantly reduced in alpha7 nAChR knockout mice, suggesting that this inflammatory regulator plays an important role in CNS inflammation and BBB disorders caused by microbial and non-microbial factors. These results demonstrated that cBMECs as well as EPCs may be used as potential cell-based biomarkers for indexing of BBB injury.
Collapse
Affiliation(s)
- Sheng-He Huang
- Department of Pediatrics, Saban Research Institute of Childrens Hospital Los Angeles, University of Southern California, Los Angeles, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
30
|
Vadász I, Brochard L. Update in acute lung injury and mechanical ventilation 2011. Am J Respir Crit Care Med 2012; 186:17-23. [PMID: 22753685 DOI: 10.1164/rccm.201203-0582up] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Klinikstrasse 33, Giessen, Germany.
| | | |
Collapse
|