1
|
Kwak JW, Houghton AM. Targeting neutrophils for cancer therapy. Nat Rev Drug Discov 2025:10.1038/s41573-025-01210-8. [PMID: 40374764 DOI: 10.1038/s41573-025-01210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 05/18/2025]
Abstract
Neutrophils are among the most abundant immune cell types in the tumour microenvironment and have been associated with poor outcomes across multiple cancer types. Yet despite mounting evidence of their role in tumour progression, therapeutic strategies targeting neutrophils have only recently gained attention and remain limited in scope. This is probably due to the increasing number of distinct neutrophil subtypes identified in cancer and the limited understanding of the mechanisms by which these subsets influence tumour progression and immune evasion. In this Review, we discuss the spectrum of neutrophil subtypes - including those with antitumour activity - and their potential to polarize towards tumour-suppressive phenotypes. We explore the molecular pathways and effector functions by which neutrophils modulate cancer progression, with an emphasis on identifying tractable therapeutic targets. Finally, we examine emerging clinical trials aimed at modulating neutrophil lineages and consider their implications for patient outcomes.
Collapse
Affiliation(s)
- Jeff W Kwak
- Translational Science and Therapeutics Division and Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - A McGarry Houghton
- Translational Science and Therapeutics Division and Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Chu X, Han Z, Li B, Yang T. Plasma proteins and different onset subtype of COPD: Proteome-wide Mendelian randomization study and co-localization analyses. Medicine (Baltimore) 2025; 104:e42409. [PMID: 40355193 PMCID: PMC12074030 DOI: 10.1097/md.0000000000042409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025] Open
Abstract
Several studies have reported a strong association between plasma proteins and chronic obstructive pulmonary disease (COPD). However, the directionality and causality of the association and whether proteins effected COPD remain unclear. Therefore, we used Proteome-wide Mendelian randomization (MR) study and co-localization analyses to estimate the casual relationship between them. Summary-level data of 2923 plasma protein levels were extracted from a large-scale protein quantitative trait loci study including 54,219 individuals by the UK Biobank Pharma Proteomics Project. The outcome data for COPD and its subtypes were sourced from the FinnGen study. MR analysis was conducted to estimate the associations between protein and COPD and its subtypes risk. Additionally, phenome-wide MR analysis, and candidate drug prediction were employed to identify potential causal circulating proteins and novel drug targets. STROBE MR guidelines are followed for the study. We assessed the effect of 1929 plasma proteins on COPD. We found that Seven proteins, 4 proteins, and 3 proteins were associated with overall COPD, early-onset COPD, and later-onset COPD risk, respectively. MHC class I polypeptide-related sequence B_A (MICB_MICA) and tyrosine-protein kinase receptor tie-1 (TIE-1) would increase 8% and 27% COPD risk (MICB_MICA: odds ratios [OR], 1.08; 95% CI, 1.05-1.10; PFDR = 2.53 × 10-5; TIE-1: OR, 1.27; 95% CI, 1.13-1.43; PFDR = .012). There was negative association of Septin-8 and Butyrophilin subfamily 1 member A1 (BTN1A1) with overall COPD risk (Septin-8: OR, 0.68; 95% CI, 0.57-0.79; PFDR = 8.00 × 10-4 BTN1A1: OR, 0.82; 95% CI, 0.75-0.90; PFDR = .010). There was a protective effect of BTN1A1 on early COPD incidence (OR, 0.72; 95% CI, 0.63-0.83; PFDR = .002). However, there was no evidence indicating a shared causal variant between the other proteins and COPD and its subtypes in these regions (all posterior probability.H4 < .8). The study revealed the causal relationship between several plasma proteins and COPD and its subtypes, providing new theoretical support for understanding COPD.
Collapse
Affiliation(s)
- Xu Chu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, P.R. China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Henan University of Science & Technology, Luoyang, P.R. China
| | - Zhifa Han
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Baicun Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Ting Yang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, P.R. China
| |
Collapse
|
3
|
Cleary SJ, Qiu L, Seo Y, Baluk P, Liu D, Serwas NK, Taylor CA, Zhang D, Cyster JG, McDonald DM, Krummel MF, Looney MR. Intravital imaging of pulmonary lymphatics in inflammation and metastatic cancer. J Exp Med 2025; 222:e20241359. [PMID: 39969509 PMCID: PMC11837973 DOI: 10.1084/jem.20241359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/11/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
Intravital microscopy has enabled the study of immune dynamics in the pulmonary microvasculature, but many key events remain unseen because they occur in deeper lung regions. We therefore developed a technique for stabilized intravital imaging of bronchovascular cuffs and collecting lymphatics surrounding pulmonary veins in mice. Intravital imaging of pulmonary lymphatics revealed ventilation dependence of steady-state lung lymph flow and ventilation-independent lymph flow during inflammation. We imaged the rapid exodus of migratory dendritic cells through lung lymphatics following inflammation and measured effects of pharmacologic and genetic interventions targeting chemokine signaling. Intravital imaging also captured lymphatic immune surveillance of lung-metastatic cancers and lymphatic metastasis of cancer cells. To our knowledge, this is the first imaging of lymph flow and leukocyte migration through intact pulmonary lymphatics. This approach will enable studies of protective and maladaptive processes unfolding within the lungs and in other previously inaccessible locations.
Collapse
Affiliation(s)
- Simon J. Cleary
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Institute of Pharmaceutical Science, King’s College London, London, UK
| | - Longhui Qiu
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Yurim Seo
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Peter Baluk
- Department of Anatomy, Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
| | - Dan Liu
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
- Westlake Laboratory of Life Sciences and Biomedicine, School of Medicine, Westlake University, Hangzhou, China
| | | | - Catherine A. Taylor
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Dongliang Zhang
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Jason G. Cyster
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
- Bakar ImmunoX Initiative, UCSF, San Francisco, CA, USA
| | - Donald M. McDonald
- Department of Anatomy, Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, USA
| | - Matthew F. Krummel
- Department of Pathology, UCSF, San Francisco, CA, USA
- Bakar ImmunoX Initiative, UCSF, San Francisco, CA, USA
| | - Mark R. Looney
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Bakar ImmunoX Initiative, UCSF, San Francisco, CA, USA
| |
Collapse
|
4
|
Celli BR, Anzueto A, Singh D, Hanania NA, Fabbri L, Martinez FJ, Soler X, Djandji M, Jacob-Nara JA, Rowe PJ, Deniz Y, Radwan A. The Emerging Role of Alarmin-Targeting Biologics in the Treatment of Patients With COPD. Chest 2025; 167:1346-1355. [PMID: 39631681 DOI: 10.1016/j.chest.2024.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024] Open
Abstract
TOPIC IMPORTANCE COPD is a complex, heterogeneous lung disease characterized by persistent airflow limitation secondary to airways and parenchymal abnormalities, and respiratory symptoms, including dyspnea, fatigue, chronic cough, and sputum production. Cigarette smoke exposure is a major contributor to COPD; however, inhalation of toxic particles and other environmental and host factors can contribute to its genesis. Over time, the clinical course is frequently punctuated by exacerbations that further accelerate lung function decline and increase exacerbation risk. Despite current optimal therapy, many patients remain symptomatic, have exacerbations, and have increased morbidity, mortality, and health care costs. This review focuses on current knowledge of COPD pathophysiology, the role of inflammatory mechanisms, and the potential use of biologics to modulate these mechanisms. REVIEW FINDINGS The inflammatory response in COPD includes both type 1 and type 2 immune cells. Type 2 inflammation is suggested by eosinophilia in a significant proportion of patients with COPD. Studies targeting IL-5 in patients with COPD have failed to demonstrate significant reductions in exacerbations, suggesting that eosinophil modulation alone may be insufficient to treat COPD. Based on a better understanding of the disease and role of alarmins, with a broader role in the inflammatory cascade, it is likely that some biologics may benefit certain COPD endotypes. Ongoing trials will provide information about which groups can benefit from the blocking of specific pathways (eg, IL-5, IL-4/IL-13, IL-33, thymic stromal lymphopoietin). SUMMARY Biologics targeting inflammatory pathways may be effective treatments for specific patients with COPD.
Collapse
Affiliation(s)
- Bartolome R Celli
- Pulmonary and Critical Care Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
| | - Antonio Anzueto
- Department of Medicine, South Texas Veterans Health Care System, San Antonio, TX; Department of Medicine, University of Texas Health San Antonio, San Antonio, TX
| | - Dave Singh
- Medicines Evaluation Unit, University of Manchester, Manchester University NHS Foundation Trust, Manchester, England
| | - Nicola A Hanania
- Department of Medicine, Section on Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX
| | - Leonardo Fabbri
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | - Yamo Deniz
- Regeneron Pharmaceuticals Inc, Tarrytown, NY
| | - Amr Radwan
- Regeneron Pharmaceuticals Inc, Tarrytown, NY
| |
Collapse
|
5
|
Lan CC, Yang MC, Su WL, Huang KL, Lin CC, Huang YC, Huang CY, Chen HY, Wu CW, Lee C, Jao LY, Wu YK. Unraveling the Immune Landscape of Chronic Obstructive Pulmonary Disease: Insights into Inflammatory Cell Subtypes, Pathogenesis, and Treatment Strategies. Int J Mol Sci 2025; 26:3365. [PMID: 40244222 PMCID: PMC11989554 DOI: 10.3390/ijms26073365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory disorder characterized by persistent airway inflammation and progressive airflow limitation, resulting in a significant global health burden and high mortality. This narrative review synthesizes the current evidence on the roles of leukocyte subtypes-including neutrophils, monocytes, lymphocytes, eosinophils, and basophils-in the pathogenesis and clinical management of COPD. Relevant original studies and reviews are included, providing data on leukocyte functions, associated biomarkers, and therapeutic implications. Neutrophils contribute to airway damage and remodeling by releasing proteases and reactive oxygen species, particularly in response to environmental exposure such as cigarette smoke or air pollution. Lymphocytes, especially CD8⁺ T cells, drive chronic inflammation and immune dysregulation. Monocytes differentiate into macrophages that promote airway fibrosis and persistent inflammation, further impairing lung function. Eosinophils, though classically linked to asthma, are now recognized for their role in eosinophilic COPD, where they are associated with an increased exacerbation risk and corticosteroid responsiveness. Basophils, though less studied, may influence airway inflammation through interactions with eosinophils and cytokine release. Understanding these immune cell dynamics provides insights into the heterogeneity of COPD and highlights potential targets for precision therapy. Tailored interventions based on inflammatory phenotypes may improve clinical outcomes and advance personalized treatment strategies.
Collapse
Affiliation(s)
- Chou-Chin Lan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan (W.-L.S.)
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| | - Mei-Chen Yang
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan (W.-L.S.)
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| | - Wen-Lin Su
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan (W.-L.S.)
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| | - Kuo-Liang Huang
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan (W.-L.S.)
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| | - Ching-Chi Lin
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan (W.-L.S.)
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| | - Yi-Chih Huang
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan (W.-L.S.)
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| | - Chun-Yao Huang
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan (W.-L.S.)
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| | - Hsin-Yi Chen
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan (W.-L.S.)
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| | - Chih-Wei Wu
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan (W.-L.S.)
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| | - Chung Lee
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan (W.-L.S.)
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| | - Lun-Yu Jao
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan (W.-L.S.)
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| | - Yao-Kuang Wu
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan (W.-L.S.)
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| |
Collapse
|
6
|
Hu P, Liu W, Huang J, Su Y, Jiang H, Wu Q, Tao J, Liang S, Lin J, Zheng J. Navarixin alleviates cardiac remodeling after myocardial infarction by decreasing neutrophil infiltration and the inflammatory response. Front Pharmacol 2025; 16:1535703. [PMID: 40183084 PMCID: PMC11966465 DOI: 10.3389/fphar.2025.1535703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/20/2025] [Indexed: 04/05/2025] Open
Abstract
Coronary atherosclerotic heart disease is an important, worldwide burden on human health. Central muscle infarction is the most dangerous condition, has the highest mortality and disability rates, and is gradually becoming more common among young people. After myocardial infarction, neutrophils recruited to the infarcted area promote the myocardial inflammatory response by releasing proinflammatory factors and chemokines and release matrix metalloproteinases and myeloperoxidases that degrade the extracellular matrix and produce reactive oxygen species, resulting in irreversible myocardial damage and thereby promoting ventricular remodeling. In this study, we constructed a mouse model of myocardial infarction and utilized the CXCR2 receptor inhibitor navarixin (Nav) to reduce neutrophil recruitment after MI. We observed that Nav improved cardiac function, reduced myocardial damage, reduced neutrophil infiltration, reduced inflammatory factor expression and improved cardiac fibrosis in mice. Through transcriptomic analysis, we found that Nav affects signaling pathways such as the innate immune response and the chemokine signaling pathway, thereby decreasing the inflammatory response by reducing neutrophil chemotaxis. This study provides new insights for the use of CXCR2 inhibitors as new therapeutic options for myocardial infarction in the future.
Collapse
Affiliation(s)
- Peikun Hu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jungang Huang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yangfan Su
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiqi Jiang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qinyu Wu
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shi Liang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Lin
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junmeng Zheng
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Chavda VP, Bezbaruah R, Ahmed N, Alom S, Bhattacharjee B, Nalla LV, Rynjah D, Gadanec LK, Apostolopoulos V. Proinflammatory Cytokines in Chronic Respiratory Diseases and Their Management. Cells 2025; 14:400. [PMID: 40136649 PMCID: PMC11941495 DOI: 10.3390/cells14060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Pulmonary homeostasis can be agitated either by external environmental insults or endogenous factors produced during respiratory/pulmonary diseases. The lungs counter these insults by initiating mechanisms of inflammation as a localized, non-specific first-line defense response. Cytokines are small signaling glycoprotein molecules that control the immune response. They are formed by numerous categories of cell types and induce the movement, growth, differentiation, and death of cells. During respiratory diseases, multiple proinflammatory cytokines play a crucial role in orchestrating chronic inflammation and structural changes in the respiratory tract by recruiting inflammatory cells and maintaining the release of growth factors to maintain inflammation. The issue aggravates when the inflammatory response is exaggerated and/or cytokine production becomes dysregulated. In such instances, unresolving and chronic inflammatory reactions and cytokine production accelerate airway remodeling and maladaptive outcomes. Pro-inflammatory cytokines generate these deleterious consequences through interactions with receptors, which in turn initiate a signal in the cell, triggering a response. The cytokine profile and inflammatory cascade seen in different pulmonary diseases vary and have become fundamental targets for advancement in new therapeutic strategies for lung diseases. There are considerable therapeutic approaches that target cytokine-mediated inflammation in pulmonary diseases; however, blocking specific cytokines may not contribute to clinical benefit. Alternatively, broad-spectrum anti-inflammatory approaches are more likely to be clinically effective. Herein, this comprehensive review of the literature identifies various cytokines (e.g., interleukins, chemokines, and growth factors) involved in pulmonary inflammation and the pathogenesis of respiratory diseases (e.g., asthma, chronic obstructive pulmonary, lung cancer, pneumonia, and pulmonary fibrosis) and investigates targeted therapeutic treatment approaches.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (R.B.); (N.A.); (S.A.)
- Institute of Pharmacy, Assam Medical College and Hospital, Dibrugarh 786002, Assam, India
| | - Nasima Ahmed
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (R.B.); (N.A.); (S.A.)
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (R.B.); (N.A.); (S.A.)
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India; (B.B.); (D.R.)
| | - Bedanta Bhattacharjee
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India; (B.B.); (D.R.)
| | - Lakshmi Vineela Nalla
- Department of Pharmacology, GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam 530045, Andhra Pradesh, India;
| | - Damanbhalang Rynjah
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India; (B.B.); (D.R.)
| | - Laura Kate Gadanec
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Werribee, VIC 3030, Australia;
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia;
| |
Collapse
|
8
|
Hussain MS, Goyal A, Goyal K, S. RJ, Nellore J, Shahwan M, Rekha A, Ali H, Dhanasekaran M, MacLoughlin R, Dua K, Gupta G. Targeting CXCR2 signaling in inflammatory lung diseases: neutrophil-driven inflammation and emerging therapies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025. [DOI: 10.1007/s00210-025-03970-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/20/2025] [Indexed: 05/04/2025]
|
9
|
Leser FS, Júnyor FDS, Pagnoncelli IB, Delgado AB, Medeiros I, Nóbrega ACC, Andrade BDS, de Lima MN, da Silva NE, Jacob L, Boyé K, Geraldo LHM, de Souza AMT, Maron-Gutierrez T, Castro-Faria-Neto H, Follmer C, Braga C, Neves GA, Eichmann A, Romão LF, Lima FRS. CCL21-CCR7 blockade prevents neuroinflammation and degeneration in Parkinson's disease models. J Neuroinflammation 2025; 22:31. [PMID: 39894839 PMCID: PMC11789347 DOI: 10.1186/s12974-024-03318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/02/2024] [Indexed: 02/04/2025] Open
Abstract
Parkinson's disease (PD) is a progressive degenerative disease of the central nervous system associated with neuroinflammation and microglial cell activation. Chemokine signaling regulates neuron-glia communication and triggers a microglial inflammatory profile. Herein, we identified the neuronal chemokine CCL21 as a major cause of microglial cell imbalance through the CCR7 receptor pathway with therapeutic implications for PD. In humans, we found that CCL21 transcript expression was increased in dopaminergic neurons (DANs) of the substantia nigra in PD patients. CCL21 and CCR7 expressions were spatially associated with brain regional vulnerability to synucleinopathies, as well as with the expression of microglial activation, neuroinflammation, and degeneration-related genes. Also, in mouse models of PD, we showed that CCL21 was overexpressed in DANs in vivo and in vitro. Mechanistically, neuronal CCL21 was shown to regulate microglial cell migration, proliferation, and activation in a CCR7-dependent manner through both canonical (PI3K/AKT) and non-canonical (ERK1/2/JNK) signaling pathways. Finally, we demonstrated that navarixin, a clinically relevant chemokine inhibitor with high affinity for the CCR7 receptor, could block CCL21 effects on microglia and prevent neurodegeneration and behavioral deficits in two mouse models of PD induced with either α-synuclein oligomers (αSynO) or 3,4-dihydroxyphenylacetaldehyde (DOPAL). Altogether, our data indicate that navarixin blocks CCL21/CCR7-mediated neuron-microglia communication and could be used as a therapeutic strategy against PD.
Collapse
Affiliation(s)
- Felipe Saceanu Leser
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center (PARCC), Paris, 75015, France
| | - Flavio de Souza Júnyor
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Iohanna Bianca Pagnoncelli
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Anna Beatriz Delgado
- Laboratory of Neurobiology Applied to Biomedicine, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Isabelle Medeiros
- Laboratory of Neurobiology Applied to Biomedicine, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Ana Clara Campanelli Nóbrega
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Brenda da Silva Andrade
- Laboratory of Molecular Pharmacology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Maiara Nascimento de Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Nícolas Emanoel da Silva
- Laboratory Molecular Modeling & QSAR, Pharmaceutical Sciences Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Laurent Jacob
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center (PARCC), Paris, 75015, France
| | - Kevin Boyé
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center (PARCC), Paris, 75015, France
| | - Luiz Henrique Medeiros Geraldo
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center (PARCC), Paris, 75015, France
- Department of Internal Medicine, Department of Cellular and Molecular Physiology, Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, 06510-3221, USA
| | - Alessandra Mendonça Teles de Souza
- Laboratory Molecular Modeling & QSAR, Pharmaceutical Sciences Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Hugo Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Cristian Follmer
- Laboratory of Physical Chemistry of Proteins and Peptides (Lafipp), Chemistry Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Carolina Braga
- Núcleo Multidisciplinar de Pesquisas em Biologia, NUMPEX-Bio, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, 25240-005, Brasil
| | - Gilda Angela Neves
- Laboratory of Molecular Pharmacology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Anne Eichmann
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center (PARCC), Paris, 75015, France.
- Department of Internal Medicine, Department of Cellular and Molecular Physiology, Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, 06510-3221, USA.
| | - Luciana Ferreira Romão
- Laboratory of Neurobiology Applied to Biomedicine, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Flavia Regina Souza Lima
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil.
| |
Collapse
|
10
|
Li R, Frisbie R, Vincent F, Thorarensen A. Understanding CXCR2 antagonism with a dynamic allosteric ternary complex model. J Pharmacol Exp Ther 2025; 392:100049. [PMID: 40023596 DOI: 10.1016/j.jpet.2024.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/04/2024] [Indexed: 03/04/2025] Open
Abstract
The CXC chemokine receptor 2 (CXCR2) antagonist SB265610 displays different patterns of antagonism using in vitro binding and cell-based assays. In addition, CXCR2 antagonists, although likely sharing a similar allosteric binding mechanism, display different patterns in the same cell-based assays. Furthermore, clinical studies with CXCR2 antagonists had mixed success in demonstrating target modulation and efficacy, despite favorable exposures based on published binding affinities. Herein, we aimed to understand the mechanism leading to these apparent inconsistencies with a dynamic allosteric ternary complex model. The model was applied in analyzing both in vitro data and clinical neutrophil counts data of CXCR2 antagonists. We extended previous hypotheses into a unified hypothesis, which postulates that, although allosteric binding of a CXCR2 antagonist is not affected by the endogenous agonist, the antagonism is surmountable as the antagonist loses its potency with increased concentrations of endogenous agonist because of the hyperbolic relationship between agonist-occupied receptor and biological response (which is possibly a result of receptor reserve). Antagonists with slow binding kinetics are apparently insurmountable, but only under unsteady-state conditions. Dynamic allosteric ternary complex model following this hypothesis can describe both in vitro and clinical data of CXCR2 antagonists. The inconsistent patterns of CXCR2 antagonism are interpreted as potential receptor reserve in cell-based assays with unsteady-state binding for some compounds. Because the binding process likely reaches quasi steady state in clinical trials, the lack of pharmacology effect for some antagonists is due to suboptimal potency rather than fast binding kinetics. This model may be applicable to other receptors to help predict clinical responses of allosteric antagonists. SIGNIFICANCE STATEMENT: Known CXC chemokine receptor 2 (CXCR2) antagonists are allosteric and do not compete with endogenous agonists. However, this antagonism is surmountable in some assays, but not others, and for some antagonists, but not others. This study proposes a unified hypothesis to explain observed inconsistent antagonism patterns and apply a mechanistic model to link in vitro findings with clinical outcomes. This study improves our understanding of the pharmacology of CXCR2 antagonists and facilitates the future discovery of antagonists with similar mechanisms for CXCR2 or other G protein-coupled receptors.
Collapse
Affiliation(s)
- Rui Li
- Pharmacokinetics, Dynamics & Metabolism, Pfizer Inc, Cambridge, Massachusetts.
| | - Richard Frisbie
- Discovery Sciences, Medicine Design, Pfizer Inc, Groton, Connecticut
| | - Fabien Vincent
- Discovery Sciences, Medicine Design, Pfizer Inc, Groton, Connecticut
| | - Atli Thorarensen
- Medicinal Chemistry, Medicine Design, Pfizer Inc, Cambridge, Massachusetts
| |
Collapse
|
11
|
Lewicki S, Bałan BJ, Stelmasiak M, Radomska-Leśniewska DM, Szymański Ł, Rios-Turek N, Bień-Kalinowska J, Szarpak Ł, Hajduk B. Immunological Insights and Therapeutic Advances in COPD: Exploring Oral Bacterial Vaccines for Immune Modulation and Clinical Improvement. Vaccines (Basel) 2025; 13:107. [PMID: 40006655 PMCID: PMC11861055 DOI: 10.3390/vaccines13020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic condition associated with substantial global morbidity and mortality. Primarily caused by prolonged exposure to harmful agents such as dust and gases, COPD is characterized by persistent airflow limitation, clinically manifesting as chronic cough, sputum production, and dyspnea. The disease course alternates between stable phases and exacerbations, with the latter often associated with pathogenic colonization of the respiratory tract. This review examines the immunological underpinnings of COPD, emphasizing the interplay between innate and adaptive immunity in disease pathogenesis. Dysregulated immune responses to environmental factors perpetuate chronic inflammation, resulting in progressive pulmonary epithelial damage and connective tissue hyperplasia, which compromise gas exchange. Exacerbations further exacerbate respiratory failure, aggravating patient symptoms and accelerating disease progression. Despite advances in COPD management, effective therapeutic options remain limited. Current treatments primarily aim to alleviate symptoms, reduce immune activation, and manage infections, yet many patients experience suboptimal outcomes. This review highlights the potential of novel therapeutic approaches targeting immune system cells and pathways. In particular, it explores the promise of oral bacterial vaccines as immunomodulatory agents to enhance immune responses and improve clinical outcomes in COPD, addressing critical gaps in current treatment paradigms.
Collapse
Affiliation(s)
- Sławomir Lewicki
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, Pl. Żelaznej Bramy 10, 00-136 Warsaw, Poland; (J.B.-K.); (B.H.)
| | - Barbara Joanna Bałan
- Department of Environmental Threat Prevention, Allergology and Immunology, Faculty of Health Sciences, Medical University of Warsaw, Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Marta Stelmasiak
- Department of Dietetics, Institute of Human Nutrition Science, Warsaw University of Life Sciences, Nowoursynowska 159c St., 02-776 Warsaw, Poland;
| | | | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland;
| | - Natalia Rios-Turek
- Hull University Teaching Hospitals NHS Trust, Hull University, Anlaby Rd., Hull HU3 2JZ, UK;
| | - Justyna Bień-Kalinowska
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, Pl. Żelaznej Bramy 10, 00-136 Warsaw, Poland; (J.B.-K.); (B.H.)
| | - Łukasz Szarpak
- Institute of Medicine Science, Collegium Medicum, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland;
- Department of Clinical Research and Development, LUXMED Group, 02-678 Warsaw, Poland
- Henry JN Taub Department of Emergency Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- TS Out-Patients Clinic for Cardiovascular and Pulmonary Diseases, 01-460 Warsaw, Poland;
| | - Bogdan Hajduk
- TS Out-Patients Clinic for Cardiovascular and Pulmonary Diseases, 01-460 Warsaw, Poland;
| |
Collapse
|
12
|
Wilson TR, Peterson KR, Morris SA, Kuhnell D, Kasper S, Burns KA. Neutrophils initiate proinflammatory immune responses in early endometriosis lesion development. JCI Insight 2025; 10:e186133. [PMID: 39836475 PMCID: PMC11949021 DOI: 10.1172/jci.insight.186133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
Endometriosis is a chronic gynecological disease that affects 1 in 10 reproductive-aged women. Most studies investigate established disease; however, the initiation and early events in endometriotic lesion development remain poorly understood. Our study used neutrophils from human menstrual effluent from patients with and without endometriosis for immunophenotyping, and it used a mouse model of endometriosis and a mouse endometriosis cell line to determine the role of neutrophils in the initiating events of endometriosis, including attachment and survival of minced endometrial pieces. In menstrual effluent from women with endometriosis, the ratios of aged and proangiogenic neutrophils increased compared with controls, indicating a potentially permissive proinflammatory microenvironment. In our endometriosis mouse model, knocking down neutrophil recruitment with α-CXCR2 into the peritoneum decreased endometrial tissue adhesion - supported by decreased levels of myeloperoxidase and neutrophil elastase in both developing lesions and peritoneal fluid. Fibrinogen was identified as the preferred substrate for endometrial cell adhesion in an in vitro adhesion assay and in developing lesions in vivo. Together, aged and proangiogenic neutrophils and their secretions likely promote attachment and formation of endometriotic lesions by releasing neutrophil extracellular traps and upregulating fibrinogen expression as a provisional matrix to establish attachment and survival in the development of endometriosis lesions.
Collapse
Affiliation(s)
- Taylor R. Wilson
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, and
| | - Kurt R. Peterson
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Stephanie A. Morris
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, and
| | - Damaris Kuhnell
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, and
| | - Susan Kasper
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, and
| | - Katherine A. Burns
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, and
| |
Collapse
|
13
|
Liao SX, Wang YW, Sun PP, Xu Y, Wang TH. Prospects of neutrophilic implications against pathobiology of chronic obstructive pulmonary disease: Pharmacological insights and technological advances. Int Immunopharmacol 2025; 144:113634. [PMID: 39577220 DOI: 10.1016/j.intimp.2024.113634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/03/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory condition that affects the lungs globally. A key feature of this inflammatory response is the migration and aggregation of polymorphonuclear neutrophils (PMNs). The presence of neutrophilic inflammation within the airways is as distinguishing characteristic of COPD. As research advances, PMNs and their products emerge as central players in the airway inflammatory cascade of COPD patients. Their involvement in phagocytosis, degranulation, and the formation of neutrophil extracellular traps (NETs) significantly contributes to the pathogenesis of COPD. Moreover, studies have shown that excessive biological activities of neutrophils in the lungs can result in airway epithelial injury, emphysema, and mucus hypersecretion. Currently, there is growing empirical support for the moderate targeting neutrophils in the clinical management of COPD. This article delves into the pivotal role of neutrophils in COPD, emphasizing the urgency for novel therapeutic approaches that specifically target neutrophils. Additionally, it explores the potential of utilizing single-cell RNA sequencing to further investigate neutrophils and relevant risk genes as potential biomarkers for COPD treatment. By elucidating these mechanisms, this review aims to pave the way for future strategies to modulate neutrophil function, thereby addressing the pressing need for more effective COPD therapies.
Collapse
Affiliation(s)
- Shi-Xia Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yan-Wen Wang
- West China Clinical Medical College, Sichuan University, Chengdu 610041, China
| | - Peng-Peng Sun
- Department of Osteopathy, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yang Xu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Ting-Hua Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Neurological Disease, West China Hospital, Sichuan University & The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| |
Collapse
|
14
|
Chalmers JD, Mall MA, Chotirmall SH, O'Donnell AE, Flume PA, Hasegawa N, Ringshausen FC, Watz H, Xu JF, Shteinberg M, McShane PJ. Targeting neutrophil serine proteases in bronchiectasis. Eur Respir J 2025; 65:2401050. [PMID: 39467608 DOI: 10.1183/13993003.01050-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
Persistent neutrophilic inflammation is a central feature in both the pathogenesis and progression of bronchiectasis. Neutrophils release neutrophil serine proteases (NSPs), such as neutrophil elastase (NE), cathepsin G and proteinase 3. When chronically high levels of free NSP activity exceed those of protective antiproteases, structural lung destruction, mucosal-related defects, further susceptibility to infection and worsening of clinical outcomes can occur. Despite the defined role of prolonged, high levels of NSPs in bronchiectasis, no drug that controls neutrophilic inflammation is licensed for the treatment of bronchiectasis. Previous methods of suppressing neutrophilic inflammation (such as direct inhibition of NE) have not been successful; however, an emerging therapy designed to address neutrophil-mediated pathology, inhibition of the cysteine protease cathepsin C (CatC, also known as dipeptidyl peptidase 1), is a promising approach to ameliorate neutrophilic inflammation, since this may reduce the activity of all NSPs implicated in bronchiectasis pathogenesis, and not just NE. Current data suggest that CatC inhibition may effectively restore the protease-antiprotease balance in bronchiectasis and improve disease outcomes as a result. Clinical trials for CatC inhibitors in bronchiectasis have reported positive phase III results. In this narrative review, we discuss the role of high NSP activity in bronchiectasis, and how this feature drives the associated morbidity and mortality seen in bronchiectasis. This review discusses therapeutic approaches aimed at treating neutrophilic inflammation in the bronchiectasis lung, summarising clinical trial outcomes and highlighting the need for more treatment strategies that effectively address chronic neutrophilic inflammation in bronchiectasis.
Collapse
Affiliation(s)
- James D Chalmers
- Division of Respiratory Medicine and Gastroenterology, University of Dundee, Dundee, UK
- J.D. Chalmers and M.A. Mall are joint first authors
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site Berlin, Berlin, Germany
- J.D. Chalmers and M.A. Mall are joint first authors
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | | | | | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Felix C Ringshausen
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| | - Henrik Watz
- Velocity Clinical Research Grosshansdorf, formerly Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research Grosshansdorf (DZL), Grosshansdorf, Germany
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Michal Shteinberg
- Carmel Medical Center, Haifa, Israel
- The B. Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
- M. Shteinberg and P.J. McShane are joint senior authors
| | - Pamela J McShane
- University of Texas Health Science Center at Tyler, Tyler, TX, USA
- M. Shteinberg and P.J. McShane are joint senior authors
| |
Collapse
|
15
|
Appleton LK, Hanania NA, Adrish M. Personalized COPD Care: The Future of Precision-Based Therapies. J Clin Med 2024; 13:6339. [PMID: 39518477 PMCID: PMC11546703 DOI: 10.3390/jcm13216339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory illness characterized by long-standing respiratory symptoms and airflow limitation. It is a major contributor to respiratory disease-related deaths and currently ranked as the sixth leading cause of mortality in the United States. Approved pharmacological therapies for the stable disease primarily consist of inhaled short and long-acting bronchodilators, inhaled corticosteroids, azithromycin, and roflumilast. In recent years, significant progress has been made in the management of COPD through the identification of different COPD phenotypes and endotypes, which allows for a more personalized treatment approach. While earlier studies investigating targeted therapies were less promising, recent data on drugs targeting type 2 inflammatory pathways have shown promising results in carefully selected patients. In this article, we will review the available data on targeted therapies as well as the ongoing clinical studies of novel targeted therapies for COPD. Understanding and implementing these advancements hold promise for improving outcomes and quality of life for individuals living with COPD.
Collapse
Affiliation(s)
| | | | - Muhammad Adrish
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, 1504 Taub Loop, Houston, TX 77030, USA (N.A.H.)
| |
Collapse
|
16
|
Yu XQ, Mao JZ, Yang SY, Wang L, Yang CZ, Huang L, Qian QH, Zhu TT. Autocrine IL-8 Contributes to Propionibacterium Acnes-induced Proliferation and Differentiation of HaCaT Cells via AKT/FOXO1/ Autophagy. Curr Med Sci 2024; 44:1058-1065. [PMID: 39196519 DOI: 10.1007/s11596-024-2894-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/08/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE Proprionibacterium acnes (P. acnes)-induced inflammatory responses, proliferation and differentiation of keratinocytes contribute to the progression of acne vulgaris (AV). P. acnes was found to enhance the production of interleukin-8 (IL-8) by keratinocytes. This study aimed to investigate the role of IL-8 in P. acnes-induced proliferation and differentiation of keratinocytes and the underlying mechanism. METHODS The P. acnes-stimulated HaCaT cell (a human keratinocyte cell line) model was established. Western blotting and immunofluorescence were performed to detect the expression of the IL-8 receptors C-X-C motif chemokine receptor 1 (CXCR1) and C-X-C motif chemokine receptor 2 (CXCR2) on HaCaT cells. Cell counting kit-8 (CCK-8) assay, 5-ethynyl-20-deoxyuridine (EdU) assay and Western blotting were performed to examine the effects of IL-8/CXCR2 axis on the proliferation and differentiation of HaCaT cells treated with P. acnes, the IL-8 neutralizing antibody, the CXCR2 antagonist (SB225002), or the CXCR1/CXCR2 antagonist (G31P). Western blotting, nuclear and cytoplasmic separation, CCK-8 assay, and EdU assay were employed to determine the downstream pathway of CXCR2 after P. acnes-stimulated HaCaT cells were treated with the CXCR2 antagonist, the protein kinase B (AKT) antagonist (AZD5363), or the constitutively active forkhead box O1 (FOXO1) mutant. Finally, autophagy markers were measured in HaCaT cells following the transfection of the FOXO1 mutant or treatment with the autophagy inhibitor 3-methyladenine (3-MA). RESULTS The expression levels of CXCR1 and CXCR2 were significantly increased on the membrane of HaCaT cells following P. acnes stimulation. The IL-8/CXCR2 axis predominantly promoted the proliferation and differentiation of P. acnes-induced HaCaT cells by activating AKT/FOXO1/autophagy signaling. In brief, IL-8 bound to its receptor CXCR2 on the membrane of keratinocytes to activate the AKT/FOXO1 axis. Subsequently, phosphorylated FOXO1 facilitated autophagy to promote the proliferation and differentiation of P. acnes-induced keratinocytes. CONCLUSION This study demonstrated the novel autocrine effect of IL-8 on the proliferation and differentiation of P. acnes-induced keratinocytes, suggesting a potential therapeutic target for AV.
Collapse
Affiliation(s)
- Xiu-Qin Yu
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jin-Zhu Mao
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Shu-Yun Yang
- Department of Dermatology, Baoshan People's Hospital of Yunnan Province, Baoshan, 678000, China
| | - Lu Wang
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Chang-Zhi Yang
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Lei Huang
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qi-Hong Qian
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Ting-Ting Zhu
- Department of Dermatology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
17
|
Rabe KF, Martinez FJ, Bhatt SP, Kawayama T, Cosio BG, Mroz RM, Boomsma MM, Goulaouic H, Nivens MC, Djandji M, Soler X, Liu Y, Kosloski MP, Xu CR, Amin N, Staudinger H, Lederer DJ, Abdulai RM. AERIFY-1/2: two phase 3, randomised, controlled trials of itepekimab in former smokers with moderate-to-severe COPD. ERJ Open Res 2024; 10:00718-2023. [PMID: 39319046 PMCID: PMC11417606 DOI: 10.1183/23120541.00718-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/08/2024] [Indexed: 09/26/2024] Open
Abstract
Background Accumulating data implicate interleukin (IL)-33, a proinflammatory cytokine released locally upon epithelial cell damage, in the pathogenesis of COPD. In a phase 2 study, itepekimab, a human monoclonal antibody against IL-33, reduced exacerbations and improved lung function in a subgroup analysis of former smokers with COPD with an acceptable safety profile. Methods The study designs of AERIFY-1 and AERIFY-2 are described in this article. Discussion The primary objective of AERIFY-1/2 (NCT04701983/NCT04751487), two phase 3 randomised, double-blind, placebo-controlled trials, is to assess the efficacy and safety of itepekimab versus placebo in a population of former smokers with moderate-to-severe COPD over up to 52 weeks. An additional secondary population of current smokers are being enrolled in AERIFY-2. These two studies will enrol patients (aged 40-85 years) with COPD and chronic bronchitis who had ≥2 moderate or ≥ 1 severe exacerbations within the previous year despite standard-of-care triple or double background therapy. All participants are required to have ≥10-pack-year smoking history, and ≥6 months since smoking cessation for former smokers. The primary end-point is the annualised rate of moderate or severe acute exacerbation of COPD. Secondary end-points include change from baseline in pre- and post-bronchodilator forced expiratory volume in 1 s, and annualised frequency of severe exacerbations. Symptomatic end-points include Evaluating Respiratory Symptoms in COPD and St. George's Respiratory Questionnaire, safety and anti-drug antibody responses.
Collapse
Affiliation(s)
- Klaus F. Rabe
- LungenClinic Grosshansdorf, Airway Research Center North, Grosshansdorf, Germany
- Christian-Albrechts University of Kiel, Airway Research Center North, Kiel, Germany
- German Center for Lung Research, Grosshansdorf, Germany
| | | | - Surya P. Bhatt
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Borja G. Cosio
- Hospital Universitario Son Espases-IdISBa-CIBERES, Palma de Mallorca, Spain
| | | | | | | | | | | | - Xavier Soler
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | | | | | - Nikhil Amin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | | | | |
Collapse
|
18
|
Wasilko DJ, Gerstenberger BS, Farley KA, Li W, Alley J, Schnute ME, Unwalla RJ, Victorino J, Crouse KK, Ding R, Sahasrabudhe PV, Vincent F, Frisbie RK, Dermenci A, Flick A, Choi C, Chinigo G, Mousseau JJ, Trujillo JI, Nuhant P, Mondal P, Lombardo V, Lamb D, Hogan BJ, Minhas GS, Segala E, Oswald C, Windsor IW, Han S, Rappas M, Cooke RM, Calabrese MF, Berstein G, Thorarensen A, Wu H. Structural basis for CCR6 modulation by allosteric antagonists. Nat Commun 2024; 15:7574. [PMID: 39217154 PMCID: PMC11365967 DOI: 10.1038/s41467-024-52045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The CC chemokine receptor 6 (CCR6) is a potential target for chronic inflammatory diseases. Previously, we reported an active CCR6 structure in complex with its cognate chemokine CCL20, revealing the molecular basis of CCR6 activation. Here, we present two inactive CCR6 structures in ternary complexes with different allosteric antagonists, CCR6/SQA1/OXM1 and CCR6/SQA1/OXM2. The oxomorpholine analogues, OXM1 and OXM2 are highly selective CCR6 antagonists which bind to an extracellular pocket and disrupt the receptor activation network. An energetically favoured U-shaped conformation in solution that resembles the bound form is observed for the active analogues. SQA1 is a squaramide derivative with close-in analogues reported as antagonists of chemokine receptors including CCR6. SQA1 binds to an intracellular pocket which overlaps with the G protein site, stabilizing a closed pocket that is a hallmark of inactive GPCRs. Minimal communication between the two allosteric pockets is observed, in contrast to the prevalent allosteric cooperativity model of GPCRs. This work highlights the versatility of GPCR antagonism by small molecules, complementing previous knowledge of CCR6 activation, and sheds light on drug discovery targeting CCR6.
Collapse
Affiliation(s)
| | | | | | - Wei Li
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | - Jennifer Alley
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | | | | | - Jorge Victorino
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Kimberly K Crouse
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | - Ru Ding
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | | | - Fabien Vincent
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | | | | | | | - Chulho Choi
- Medicine Design, Pfizer Inc., Groton, CT, USA
| | | | | | | | | | | | | | - Daniel Lamb
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
- Nxera Pharma UK Limited, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | - Barbara J Hogan
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
- Nxera Pharma UK Limited, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | | | - Elena Segala
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | - Christine Oswald
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | - Ian W Windsor
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Seungil Han
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Mathieu Rappas
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
- Nxera Pharma UK Limited, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | - Robert M Cooke
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | | | - Gabriel Berstein
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | | | - Huixian Wu
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA.
| |
Collapse
|
19
|
Kwak JW, Nguyen HQ, Camai A, Huffman GM, Mekvanich S, Kenney NN, Zhu X, Randolph TW, Houghton AM. CXCR1/2 antagonism inhibits neutrophil function and not recruitment in cancer. Oncoimmunology 2024; 13:2384674. [PMID: 39076249 PMCID: PMC11285219 DOI: 10.1080/2162402x.2024.2384674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
The level of tumor and circulating CXCR1/2-expressing neutrophils and CXCR1/2 ligands correlate with poor patient outcomes, inversely correlate with tumoral lymphocyte content, and predict immune checkpoint inhibitor (ICI) treatment failure. Accordingly, CXCR2-selective and CXCR1/2 dual inhibitors exhibit activity both as single agents and in combination with ICI treatment in mouse tumor models. Based on such reports, clinical trials combining CXCR1/2 axis antagonists with ICI treatment for cancer patients are underway. It has been assumed that CXCR1/2 blockade impacts tumors by blocking neutrophil chemotaxis and reducing neutrophil content in tumors. Here, we show that while CXCR2 antagonism does slow tumor growth, it does not preclude neutrophil recruitment into tumor. Instead, CXCR1/2 inhibition alters neutrophil function by blocking the polarization of transcriptional programs toward immune suppressive phenotypes and rendering neutrophils incapable of suppressing lymphocyte proliferation. This is associated with decreased release of reactive oxygen species and Arginase-1 into the extracellular milieu. Remarkably, these therapeutics do not impact the ability of neutrophils to phagocytose and kill ingested bacteria. Taken together, these results mechanistically explain why CXCR1/2 inhibition has been active in cancer but without infectious complications.
Collapse
Affiliation(s)
- Jeff W. Kwak
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Helena Q. Nguyen
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Alex Camai
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Grace M. Huffman
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Surapat Mekvanich
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Naia N. Kenney
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Xiaodong Zhu
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
| | | | - A. McGarry Houghton
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, USA
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
20
|
Katsoulis O, Toussaint M, Jackson MM, Mallia P, Footitt J, Mincham KT, Meyer GFM, Kebadze T, Gilmour A, Long M, Aswani AD, Snelgrove RJ, Johnston SL, Chalmers JD, Singanayagam A. Neutrophil extracellular traps promote immunopathogenesis of virus-induced COPD exacerbations. Nat Commun 2024; 15:5766. [PMID: 38982052 PMCID: PMC11233599 DOI: 10.1038/s41467-024-50197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Respiratory viruses are a major trigger of exacerbations in chronic obstructive pulmonary disease (COPD). Airway neutrophilia is a hallmark feature of stable and exacerbated COPD but roles played by neutrophil extracellular traps (NETS) in driving disease pathogenesis are unclear. Here, using human studies of experimentally-induced and naturally-occurring exacerbations we identify that rhinovirus infection induces airway NET formation which is amplified in COPD and correlates with magnitude of inflammation and clinical exacerbation severity. We show that inhibiting NETosis protects mice from immunopathology in a model of virus-exacerbated COPD. NETs drive inflammation during exacerbations through release of double stranded DNA (dsDNA) and administration of DNAse in mice has similar protective effects. Thus, NETosis, through release of dsDNA, has a functional role in the pathogenesis of COPD exacerbations. These studies open up the potential for therapeutic targeting of NETs or dsDNA as a strategy for treating virus-exacerbated COPD.
Collapse
Affiliation(s)
- Orestis Katsoulis
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Marie Toussaint
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Millie M Jackson
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Patrick Mallia
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Joseph Footitt
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kyle T Mincham
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Garance F M Meyer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Tata Kebadze
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Amy Gilmour
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Merete Long
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Andrew D Aswani
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | | | | | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Aran Singanayagam
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
21
|
Li CL, Liu SF. Exploring Molecular Mechanisms and Biomarkers in COPD: An Overview of Current Advancements and Perspectives. Int J Mol Sci 2024; 25:7347. [PMID: 39000454 PMCID: PMC11242201 DOI: 10.3390/ijms25137347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) plays a significant role in global morbidity and mortality rates, typified by progressive airflow restriction and lingering respiratory symptoms. Recent explorations in molecular biology have illuminated the complex mechanisms underpinning COPD pathogenesis, providing critical insights into disease progression, exacerbations, and potential therapeutic interventions. This review delivers a thorough examination of the latest progress in molecular research related to COPD, involving fundamental molecular pathways, biomarkers, therapeutic targets, and cutting-edge technologies. Key areas of focus include the roles of inflammation, oxidative stress, and protease-antiprotease imbalances, alongside genetic and epigenetic factors contributing to COPD susceptibility and heterogeneity. Additionally, advancements in omics technologies-such as genomics, transcriptomics, proteomics, and metabolomics-offer new avenues for comprehensive molecular profiling, aiding in the discovery of novel biomarkers and therapeutic targets. Comprehending the molecular foundation of COPD carries substantial potential for the creation of tailored treatment strategies and the enhancement of patient outcomes. By integrating molecular insights into clinical practice, there is a promising pathway towards personalized medicine approaches that can improve the diagnosis, treatment, and overall management of COPD, ultimately reducing its global burden.
Collapse
Affiliation(s)
- Chin-Ling Li
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
22
|
Huang Q, Gu Y, Wu J, Zhan Y, Deng Z, Chen S, Peng M, Yang R, Chen J, Xie J. DACH1 Attenuates Airway Inflammation in Chronic Obstructive Pulmonary Disease by Activating NRF2 Signaling. Am J Respir Cell Mol Biol 2024; 71:121-132. [PMID: 38587806 DOI: 10.1165/rcmb.2023-0337oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/05/2024] [Indexed: 04/09/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease of the airways characterized by impaired lung function induced by cigarette smoke (CS). Reduced DACH1 (dachshund homolog 1) expression has a detrimental role in numerous disorders, but its role in COPD remains understudied. This study aimed to elucidate the role and underlying mechanism of DACH1 in airway inflammation in COPD by measuring DACH1 expression in lung tissues of patients with COPD. Airway epithelium-specific DACH1-knockdown mice and adenoassociated virus-transfected DACH1-overexpressing mice were used to investigate the role of DACH1 and the potential for therapeutic targeting in experimental COPD caused by CS. Furthermore, we discovered a potential mechanism of DACH1 in inflammation induced by CS extract stimulation in vitro. Compared with nonsmokers and smokers without COPD, patients with COPD had reduced DACH1 expression, especially in the airway epithelium. Airway epithelium-specific DACH1 knockdown aggravated airway inflammation and lung function decline caused by CS in mice, whereas DACH1 overexpression protected mice from airway inflammation and lung function decline. DACH1 knockdown and overexpression promoted and inhibited IL-6 and IL-8 secretion, respectively, in 16HBE human bronchial epidermal cells after CS extract stimulation. NRF2 (nuclear factor erythroid 2-related factor 2) was discovered to be a novel downstream target of DACH1, which binds directly to its promoter. By activating NRF2 signaling, DACH1 induction reduced inflammation. DACH1 levels are lower in smokers and nonsmoking patients with COPD than in nonsmokers. DACH1 has protective effects against inflammation induced by CS by activating the NRF2 signaling pathway. Targeting DACH1 is a potentially viable therapeutic approach for COPD treatment.
Collapse
Affiliation(s)
- Qian Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Yiya Gu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Jixing Wu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Zhesong Deng
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Shanshan Chen
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Maocuo Peng
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Ruonan Yang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Jinkun Chen
- Department of Science, Western University, London, Ontario, Canada
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| |
Collapse
|
23
|
Horvath L, Puschmann C, Scheiber A, Martowicz A, Sturm G, Trajanoski Z, Wolf D, Pircher A, Salcher S. Beyond binary: bridging neutrophil diversity to new therapeutic approaches in NSCLC. Trends Cancer 2024; 10:457-474. [PMID: 38360439 DOI: 10.1016/j.trecan.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Neutrophils represent the most abundant myeloid cell subtype in the non-small-cell lung cancer (NSCLC) tumor microenvironment (TME). By anti- or protumor polarization, they impact multiple aspects of tumor biology and affect sensitivity to conventional therapies and immunotherapies. Single-cell RNA sequencing (scRNA-seq) analyses have unraveled an extensive neutrophil heterogeneity, helping our understanding of their pleiotropic role. In this review we summarize recent data and models on tumor-associated neutrophil (TAN) biology, focusing on the diversity that evolves in response to tumor-intrinsic cues. We categorize available transcriptomic profiles from different cancer entities into a defined set of neutrophil subclusters with distinct phenotypic properties, to step beyond the traditional binary N1/2 classification. Finally, we discuss potential ways to exploit these neutrophil states in the setting of anticancer therapy.
Collapse
Affiliation(s)
- Lena Horvath
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Constanze Puschmann
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Alexandra Scheiber
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Agnieszka Martowicz
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria; Boehringer Ingelheim International Pharma GmbH & Co KG, Biberach, Germany
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Andreas Pircher
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Stefan Salcher
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria.
| |
Collapse
|
24
|
Pang X, Liu X. Immune Dysregulation in Chronic Obstructive Pulmonary Disease. Immunol Invest 2024; 53:652-694. [PMID: 38573590 DOI: 10.1080/08820139.2024.2334296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease whose incidence increase with age and is characterised by chronic inflammation and significant immune dysregulation. Inhalation of toxic substances cause oxidative stress in the lung tissue as well as airway inflammation, under the recruitment of chemokines, immune cells gathered and are activated to play a defensive role. However, persistent inflammation damages the immune system and leads to immune dysregulation, which is mainly manifested in the reduction of the body's immune response to antigens, and immune cells function are impaired, further destroy the respiratory defensive system, leading to recurrent lower respiratory infections and progressive exacerbation of the disease, thus immune dysregulation play an important role in the pathogenesis of COPD. This review summarizes the changes of innate and adaptive immune-related cells during the pathogenesis of COPD, aiming to control COPD airway inflammation and improve lung tissue remodelling by regulating immune dysregulation, for further reducing the risk of COPD progression and opening new avenues of therapeutic intervention in COPD.
Collapse
Affiliation(s)
- Xichen Pang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoju Liu
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
25
|
Spatz P, Chen X, Reichau K, Huber ME, Mühlig S, Matsusaka Y, Schiedel M, Higuchi T, Decker M. Development and Initial Characterization of the First 18F-CXCR2-Targeting Radiotracer for PET Imaging of Neutrophils. J Med Chem 2024; 67:6327-6343. [PMID: 38570909 DOI: 10.1021/acs.jmedchem.3c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The interleukin-8 receptor beta (CXCR2) is a highly promising target for molecular imaging of inflammation and inflammatory diseases. This is due to its almost exclusive expression on neutrophils. Modified fluorinated ligands were designed based on a squaramide template, with different modification sites and synthetic strategies explored. Promising candidates were then tested for affinity to CXCR2 in a NanoBRET competition assay, resulting in tracer candidate 16b. As direct 18F-labeling using established tosyl chemistry did not yield the expected radiotracer, an indirect labeling approach was developed. The radiotracer [18F]16b was obtained with a radiochemical yield of 15% using tert-butyl (S)-3-(tosyloxy)pyrrolidine carboxylate and a pentafluorophenol ester. The subsequent time-dependent uptake of [18F]16b in CXCR2-negative and CXCR2-overexpressing human embryonic kidney cells confirmed the radiotracer's specificity. Further studies with human neutrophils revealed its diagnostic potential for functional imaging of neutrophils.
Collapse
Affiliation(s)
- Philipp Spatz
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Xinyu Chen
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg 86156, Germany
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg 97080, Germany
| | - Kora Reichau
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Max E Huber
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Saskia Mühlig
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg 97080, Germany
| | - Yohji Matsusaka
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg 97080, Germany
| | - Matthias Schiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91058, Germany
- Pharmaceutical and Medicinal Chemistry, Institute of Medicinal and Pharmaceutical Chemistry, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg 97080, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-0082, Japan
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
26
|
Oliveira VLS, Queiroz-Junior CM, Hoorelbeke D, Santos FRDS, Chaves IDM, Teixeira MM, Russo RDC, Proost P, Costa VV, Struyf S, Amaral FA. The glycosaminoglycan-binding chemokine fragment CXCL9(74-103) reduces inflammation and tissue damage in mouse models of coronavirus infection. Front Immunol 2024; 15:1378591. [PMID: 38686377 PMCID: PMC11056509 DOI: 10.3389/fimmu.2024.1378591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Pulmonary diseases represent a significant burden to patients and the healthcare system and are one of the leading causes of mortality worldwide. Particularly, the COVID-19 pandemic has had a profound global impact, affecting public health, economies, and daily life. While the peak of the crisis has subsided, the global number of reported COVID-19 cases remains significantly high, according to medical agencies around the world. Furthermore, despite the success of vaccines in reducing the number of deaths caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there remains a gap in the treatment of the disease, especially in addressing uncontrolled inflammation. The massive recruitment of leukocytes to lung tissue and alveoli is a hallmark factor in COVID-19, being essential for effectively responding to the pulmonary insult but also linked to inflammation and lung damage. In this context, mice models are a crucial tool, offering valuable insights into both the pathogenesis of the disease and potential therapeutic approaches. Methods Here, we investigated the anti-inflammatory effect of the glycosaminoglycan (GAG)-binding chemokine fragment CXCL9(74-103), a molecule that potentially decreases neutrophil transmigration by competing with chemokines for GAG-binding sites, in two models of pneumonia caused by coronavirus infection. Results In a murine model of betacoronavirus MHV-3 infection, the treatment with CXCL9(74-103) decreased the accumulation of total leukocytes, mainly neutrophils, to the alveolar space and improved several parameters of lung dysfunction 3 days after infection. Additionally, this treatment also reduced the lung damage. In the SARS-CoV-2 model in K18-hACE2-mice, CXCL9(74-103) significantly improved the clinical manifestations of the disease, reducing pulmonary damage and decreasing viral titers in the lungs. Discussion These findings indicate that CXCL9(74-103) resulted in highly favorable outcomes in controlling pneumonia caused by coronavirus, as it effectively diminishes the clinical consequences of the infections and reduces both local and systemic inflammation.
Collapse
Affiliation(s)
- Vivian Louise Soares Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departament of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Celso Martins Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Delphine Hoorelbeke
- Departament of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Felipe Rocha da Silva Santos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ian de Meira Chaves
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo de Castro Russo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paul Proost
- Departament of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vivian Vasconcelos Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sofie Struyf
- Departament of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Flávio Almeida Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
27
|
Holloman BL, Wilson K, Cannon A, Nagarkatti M, Nagarkatti PS. Indole-3-carbinol attenuates lipopolysaccharide-induced acute respiratory distress syndrome through activation of AhR: role of CCR2+ monocyte activation and recruitment in the regulation of CXCR2+ neutrophils in the lungs. Front Immunol 2024; 15:1330373. [PMID: 38596679 PMCID: PMC11002125 DOI: 10.3389/fimmu.2024.1330373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Indole-3-carbinol (I3C) is found in cruciferous vegetables and used as a dietary supplement. It is known to act as a ligand for aryl hydrocarbon receptor (AhR). In the current study, we investigated the role of AhR and the ability of I3C to attenuate LPS-induced Acute Respiratory Distress Syndrome (ARDS). Methods To that end, we induced ARDS in wild-type C57BL/6 mice, Ccr2gfp/gfp KI/KO mice (mice deficient in the CCR2 receptor), and LyZcreAhRfl/fl mice (mice deficient in the AhR on myeloid linage cells). Additionally, mice were treated with I3C (65 mg/kg) or vehicle to investigate its efficacy to treat ARDS. Results I3C decreased the neutrophils expressing CXCR2, a receptor associated with neutrophil recruitment in the lungs. In addition, LPS-exposed mice treated with I3C revealed downregulation of CCR2+ monocytes in the lungs and lowered CCL2 (MCP-1) protein levels in serum and bronchoalveolar lavage fluid. Loss of CCR2 on monocytes blocked the recruitment of CXCR2+ neutrophils and decreased the total number of immune cells in the lungs during ARDS. In addition, loss of the AhR on myeloid linage cells ablated I3C-mediated attenuation of CXCR2+ neutrophils and CCR2+ monocytes in the lungs from ARDS animals. Interestingly, scRNASeq showed that in macrophage/monocyte cell clusters of LPS-exposed mice, I3C reduced the expression of CXCL2 and CXCL3, which bind to CXCR2 and are involved in neutrophil recruitment to the disease site. Discussion These findings suggest that CCR2+ monocytes are involved in the migration and recruitment of CXCR2+ neutrophils during ARDS, and the AhR ligand, I3C, can suppress ARDS through the regulation of immune cell trafficking.
Collapse
Affiliation(s)
| | | | | | | | - Prakash S. Nagarkatti
- Nagarkatti Laboratory, University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC, United States
| |
Collapse
|
28
|
Armstrong AJ, Geva R, Chung HC, Lemech C, Miller WH, Hansen AR, Lee JS, Tsai F, Solomon BJ, Kim TM, Rolfo C, Giranda V, Ren Y, Liu F, Kandala B, Freshwater T, Wang JS. CXCR2 antagonist navarixin in combination with pembrolizumab in select advanced solid tumors: a phase 2 randomized trial. Invest New Drugs 2024; 42:145-159. [PMID: 38324085 PMCID: PMC11076327 DOI: 10.1007/s10637-023-01410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/08/2023] [Indexed: 02/08/2024]
Abstract
C-X-C motif chemokine receptor 2 (CXCR2) has a role in tumor progression, lineage plasticity, and reduction of immune checkpoint inhibitor efficacy. Preclinical evidence suggests potential benefit of CXCR2 inhibition in multiple solid tumors. In this phase 2 study (NCT03473925), adults with previously treated advanced or metastatic castration-resistant prostate cancer (CRPC), microsatellite-stable colorectal cancer (MSS CRC), or non-small-cell lung cancer (NSCLC) were randomized 1:1 to the CXCR2 antagonist navarixin 30 or 100 mg orally once daily plus pembrolizumab 200 mg intravenously every 3 weeks up to 35 cycles. Primary endpoints were investigator-assessed objective response rate (RECIST v1.1) and safety. Of 105 patients (CRPC, n=40; MSS CRC, n=40; NSCLC, n=25), 3 had a partial response (2 CRPC, 1 MSS CRC) for ORRs of 5%, 2.5%, and 0%, respectively. Median progression-free survival was 1.8-2.4 months without evidence of a dose-response relationship, and the study was closed at a prespecified interim analysis for lack of efficacy. Dose-limiting toxicities occurred in 2/48 patients (4%) receiving navarixin 30 mg and 3/48 (6%) receiving navarixin 100 mg; events included grade 4 neutropenia and grade 3 transaminase elevation, hepatitis, and pneumonitis. Treatment-related adverse events occurred in 70/105 patients (67%) and led to treatment discontinuation in 7/105 (7%). Maximal reductions from baseline in absolute neutrophil count were 44.5%-48.2% (cycle 1) and 37.5%-44.2% (cycle 2) and occurred within 6-12 hours postdose in both groups. Navarixin plus pembrolizumab did not demonstrate sufficient efficacy in this study. Safety and tolerability of the combination were manageable. (Trial registration: ClinicalTrials.gov , NCT03473925).
Collapse
Affiliation(s)
- Andrew J Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC, 27710, USA.
| | - Ravit Geva
- Division of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, affiliated to the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hyun Cheol Chung
- Yonsei Cancer Center, Yonsei University Health System, Seoul, South Korea
| | | | - Wilson H Miller
- Segal Cancer Center, McGill University, Jewish General Hospital, Montreal, QC, Canada
| | | | - Jong-Seok Lee
- Seoul National University Bundang Hospital, Gyeonggi-do, South Korea
| | | | | | - Tae Min Kim
- Seoul National University Hospital, Seoul, South Korea
| | - Christian Rolfo
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | | | | | - Fang Liu
- Merck & Co., Inc, Rahway, NJ, USA
| | | | | | - Judy S Wang
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, FL, USA
| |
Collapse
|
29
|
Gueçamburu M, Zysman M. [Biologic agents in COPD management]. Rev Mal Respir 2024; 41:127-138. [PMID: 38129268 DOI: 10.1016/j.rmr.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a frequently occurring disease entailing high morbidity and mortality, and relevant therapeutic resources are limited. As is the case with asthma, the current trend consists in the phenotyping of COPD patients so as to develop personalized medicine tailored to a given individual's inflammatory profile. The aim of this review is to summarize the role of biologic agents in the management of COPD, taking into consideration not only COPD pathophysiology, but also the previously published studies and the relatively encouraging prospects for the future.
Collapse
Affiliation(s)
- M Gueçamburu
- Service des maladies respiratoires, CHU de Bordeaux, Centre François-Magendie, hôpital Haut-Lévêque, hôpital Haut Lévèque, avenue de Magellan, 33604 Pessac, France.
| | - M Zysman
- Service des maladies respiratoires, CHU de Bordeaux, Centre François-Magendie, hôpital Haut-Lévêque, hôpital Haut Lévèque, avenue de Magellan, 33604 Pessac, France; U1045, CIC 1401, Univ-Bordeaux, Centre de Recherche cardio-thoracique de Bordeaux, 33604 Pessac, France
| |
Collapse
|
30
|
Lazennec G, Rajarathnam K, Richmond A. CXCR2 chemokine receptor - a master regulator in cancer and physiology. Trends Mol Med 2024; 30:37-55. [PMID: 37872025 PMCID: PMC10841707 DOI: 10.1016/j.molmed.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023]
Abstract
Recent findings have modified our understanding of the roles of chemokine receptor CXCR2 and its ligands in cancer, inflammation, and immunity. Studies in Cxcr2 tissue-specific knockout mice show that this receptor is involved in, among other things, cancer, central nervous system (CNS) function, metabolism, reproduction, COVID-19, and the response to circadian cycles. Moreover, CXCR2 involvement in neutrophil function has been revisited not only in physiology but also for its major contribution to cancers. The recent unfolding of the role of CXCR2 in numerous cancers has led to extensive evaluation of multiple CXCR2 antagonists in preclinical and clinical studies. In this review we discuss the potential of targeting CXCR2 for cancer treatment.
Collapse
Affiliation(s)
- Gwendal Lazennec
- Centre National de la Recherche Scientifique (CNRS), Sys2Diag-ALCEDIAG, Cap Delta, Montpellier, France; CNRS Groupement de Recherche (GDR) 3697 'Microenvironment of Tumor Niches', Micronit, France.
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Ann Richmond
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
31
|
Shakeel I, Ashraf A, Afzal M, Sohal SS, Islam A, Kazim SN, Hassan MI. The Molecular Blueprint for Chronic Obstructive Pulmonary Disease (COPD): A New Paradigm for Diagnosis and Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2297559. [PMID: 38155869 PMCID: PMC10754640 DOI: 10.1155/2023/2297559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
The global prevalence of chronic obstructive pulmonary disease (COPD) has increased over the last decade and has emerged as the third leading cause of death worldwide. It is characterized by emphysema with prolonged airflow limitation. COPD patients are more susceptible to COVID-19 and increase the disease severity about four times. The most used drugs to treat it show numerous side effects, including immune suppression and infection. This review discusses a narrative opinion and critical review of COPD. We present different aspects of the disease, from cellular and inflammatory responses to cigarette smoking in COPD and signaling pathways. In addition, we highlighted various risk factors for developing COPD apart from smoking, like occupational exposure, pollutants, genetic factors, gender, etc. After the recent elucidation of the underlying inflammatory signaling pathways in COPD, new molecular targeted drug candidates for COPD are signal-transmitting substances. We further summarize recent developments in biomarker discovery for COPD and its implications for disease diagnosis. In addition, we discuss novel drug targets for COPD that could be explored for drug development and subsequent clinical management of cardiovascular disease and COVID-19, commonly associated with COPD. Our extensive analysis of COPD cause, etiology, diagnosis, and therapeutic will provide a better understanding of the disease and the development of effective therapeutic options. In-depth knowledge of the underlying mechanism will offer deeper insights into identifying novel molecular targets for developing potent therapeutics and biomarkers of disease diagnosis.
Collapse
Affiliation(s)
- Ilma Shakeel
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Afzal
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
32
|
Yu KH, Tien KW, Wang WC, Chi CH, Tsai KC, Chou CH, Hwang TL, Hung HY. Design and synthesis of pyrazole derivatives against neutrophilic inflammation. Eur J Med Chem 2023; 262:115874. [PMID: 37918036 DOI: 10.1016/j.ejmech.2023.115874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
Neutrophils are the most abundant immune cells. However, neutrophil dysregulation leads to acute and chronic inflammation and is involved in various diseases. The aim of this study was to develop anti-inflammatory agents in human neutrophils. A drug screening was conducted on in-house compounds with the potential to inhibit the respiratory burst, which involves the generation of superoxide anions in human neutrophils. Bioisosteric replacement was then applied to design more active derivatives. The most potent inhibitors of superoxide anion generation activity were compounds 58 and 59, which had IC50 values of 13.30 and 9.06 nM, respectively. The inhibitory effects of 58 and 59 were reversed by H89, a PKA inhibitor. PDE selective screening indicated that the best inhibitory effects were PDE4B1 and PDE4D2, and the inhibitory activities were 83% and 85%, respectively, at a 10 μM concentration of 59. The final molecular simulation experiment highlighted the slightly different binding poses of 58 and 59 in the PDE4 active site. An in vivo pharmacokinetic study revealed that the half-life of 59 was approximately 79 min when using intravenous bolus administration. This work introduced a new class structure of PDE4 inhibitors resulting in potent neutrophil inactivation activity, with the aim of contributing to new anti-inflammatory drug discovery.
Collapse
Affiliation(s)
- Ko-Hua Yu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Kai-Wen Tien
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Wei-Chun Wang
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ching-Ho Chi
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Keng-Chang Tsai
- Ministry of Health and Welfare, National Research Institute of Chinese Medicine, Taipei, 112, Taiwan
| | - Chen-Hsi Chou
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
33
|
Kim S, Lee SK, Son A, Lee J, Kim HG. A Comparative Inflammation-on-a-Chip with a Complete 3D Interface: Pharmacological Applications in COPD-Induced Neutrophil Migration. Adv Healthc Mater 2023; 12:e2301673. [PMID: 37505448 PMCID: PMC11469264 DOI: 10.1002/adhm.202301673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a slow-progressing inflammatory lung disease that is associated with high mortality and disability. There is a lack of appropriate preclinical models of COPD, which hampers drug discovery efforts. Herein, a comparative inflammation-on-a-chip (IoC) is developed with a complete 3D interface without the formation of any micropillar and phaseguide structures that replicated chemoattractant-induced neutrophil transendothelial migration (NTEM), a key feature of COPD. The IoC model is used to evaluate the pharmacological effects of CXCR2 inhibitors (MK-7123, AZD5069, and SB225002) on the migration of neutrophil-like cells in the presence of plasma samples from patients with COPD. This is the first study to evaluate inhibitors of CXCR2-dependent NTEM in a comparative IoC model that mimics the physiological 3D microenvironment, consisting of an endothelial barrier, extracellular compartment, and inflammatory conditions. This IoC model will be useful to investigate COPD severity using patient samples, and will aid basic and translational research involving NTEM.
Collapse
Affiliation(s)
- Soohyun Kim
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Sung Kyun Lee
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Ahryeong Son
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Jong‐Hwan Lee
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Hong Gi Kim
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| |
Collapse
|
34
|
Dai CL, Yang HX, Liu QP, Rahman K, Zhang H. CXCL6: A potential therapeutic target for inflammation and cancer. Clin Exp Med 2023; 23:4413-4427. [PMID: 37612429 DOI: 10.1007/s10238-023-01152-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023]
Abstract
Chemokines were originally defined as cytokines that affect the movement of immune cells. In recent years, due to the increasing importance of immune cells in the tumor microenvironment (TME), the role of chemokines has changed from a single "chemotactic agent" to a key factor that can regulate TME and affect the tumor phenotype. CXCL6, also known as granulocyte chemoattractant protein-2 (GCP-2), can recruit neutrophils to complete non-specific immunity in the process of inflammation. Cancer-related genes and interleukin family can promote the abnormal secretion of CXCL6, which promotes tumor growth, metastasis, epithelial mesenchymal transformation (EMT) and angiogenesis in the TME. CXCL6 also has a role in promoting fibrosis and tissue damage repair. In this review, we focus on the regulatory network affecting CXCL6 expression, its role in the progress of inflammation and how it affects tumorigenesis and progression based on the TME, in an attempt to provide a potential target for the treatment of diseases such as inflammation and cancer.
Collapse
Affiliation(s)
- Chun-Lan Dai
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Xuan Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
35
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
36
|
Sitaru S, Budke A, Bertini R, Sperandio M. Therapeutic inhibition of CXCR1/2: where do we stand? Intern Emerg Med 2023; 18:1647-1664. [PMID: 37249756 PMCID: PMC10227827 DOI: 10.1007/s11739-023-03309-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Mounting experimental evidence from in vitro and in vivo animal studies points to an essential role of the CXCL8-CXCR1/2 axis in neutrophils in the pathophysiology of inflammatory and autoimmune diseases. In addition, the pathogenetic involvement of neutrophils and the CXCL8-CXCR1/2 axis in cancer progression and metastasis is increasingly recognized. Consequently, therapeutic targeting of CXCR1/2 or CXCL8 has been intensively investigated in recent years using a wide array of in vitro and animal disease models. While a significant benefit for patients with unwanted neutrophil-mediated inflammatory conditions may be expected from a potential clinical use of inhibitors, their use in severe infections or sepsis might be problematic and should be carefully and thoroughly evaluated in animal models and clinical trials. Translating the approaches using inhibitors of the CXCL8-CXCR1/2 axis to cancer therapy is definitively a new and promising research avenue, which parallels the ongoing efforts to clearly define the involvement of neutrophils and the CXCL8-CXCR1/2 axis in neoplastic diseases. Our narrative review summarizes the current literature on the activation and inhibition of these receptors in neutrophils, key inhibitor classes for CXCR2 and the therapeutic relevance of CXCR2 inhibition focusing here on gastrointestinal diseases.
Collapse
Affiliation(s)
- Sebastian Sitaru
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Agnes Budke
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany
| | | | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany.
| |
Collapse
|
37
|
Li W, Crouse KK, Alley J, Frisbie RK, Fish SC, Andreyeva TA, Reed LA, Thorn M, DiMaggio G, Donovan CB, Bennett D, Garren J, Oziolor E, Qian J, Newman L, Vargas AP, Kumpf SW, Steyn SJ, Schnute ME, Thorarensen A, Hegen M, Stevens E, Collinge M, Lanz TA, Vincent F, Vincent MS, Berstein G. A Novel C-C Chemoattractant Cytokine (Chemokine) Receptor 6 (CCR6) Antagonist (PF-07054894) Distinguishes between Homologous Chemokine Receptors, Increases Basal Circulating CCR6 + T Cells, and Ameliorates Interleukin-23-Induced Skin Inflammation. J Pharmacol Exp Ther 2023; 386:80-92. [PMID: 37142443 DOI: 10.1124/jpet.122.001452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Abstract
Blocking chemokine receptor C-C chemoattractant cytokine (chemokine) receptor (CCR) 6-dependent T cell migration has therapeutic promise in inflammatory diseases. PF-07054894 is a novel CCR6 antagonist that blocked only CCR6, CCR7, and C-X-C chemoattractant cytokine (chemokine) receptor (CXCR) 2 in a β-arrestin assay panel of 168 G protein-coupled receptors. Inhibition of CCR6-mediated human T cell chemotaxis by (R)-4-((2-(((1,4-Dimethyl-1H-pyrazol-3-yl)(1-methylcyclopentyl)methyl)amino)-3,4-dioxocyclobut-1-en-1-yl)amino)-3-hydroxy-N,N-dimethylpicolinamide (PF-07054894) was insurmountable by CCR6 ligand, C-C motif ligand (CCL) 20. In contrast, blockade of CCR7-dependent chemotaxis in human T cells and CXCR2-dependent chemotaxis in human neutrophils by PF-07054894 were surmountable by CCL19 and C-X-C motif ligand 1, respectively. [3H]-PF-07054894 showed a slower dissociation rate for CCR6 than for CCR7 and CXCR2 suggesting that differences in chemotaxis patterns of inhibition could be attributable to offset kinetics. Consistent with this notion, an analog of PF-07054894 with fast dissociation rate showed surmountable inhibition of CCL20/CCR6 chemotaxis. Furthermore, pre-equilibration of T cells with PF-07054894 increased its inhibitory potency in CCL20/CCR6 chemotaxis by 10-fold. The functional selectivity of PF-07054894 for inhibition of CCR6 relative to CCR7 and CXCR2 is estimated to be at least 50- and 150-fold, respectively. When administered orally to naïve cynomolgus monkeys, PF-07054894 increased the frequency of CCR6+ peripheral blood T cells, suggesting that blockade of CCR6 inhibited homeostatic migration of T cells from blood to tissues. PF-07054894 inhibited interleukin-23-induced mouse skin ear swelling to a similar extent as genetic ablation of CCR6. PF-07054894 caused an increase in cell surface CCR6 in mouse and monkey B cells, which was recapitulated in mouse splenocytes in vitro. In conclusion, PF-07054894 is a potent and functionally selective CCR6 antagonist that blocks CCR6-mediated chemotaxis in vitro and in vivo. SIGNIFICANCE STATEMENT: The chemokine receptor, C-C chemoattractant cytokine (chemokine) receptor 6 (CCR6) plays a key role in the migration of pathogenic lymphocytes and dendritic cells into sites of inflammation. (R)-4-((2-(((1,4-Dimethyl-1H-pyrazol-3-yl)(1-methylcyclopentyl)methyl)amino)-3,4-dioxocyclobut-1-en-1-yl)amino)-3-hydroxy-N,N-dimethylpicolinamide (PF-07054894) is a novel CCR6 small molecule antagonist that illustrates the importance of binding kinetics in achieving pharmacological potency and selectivity. Orally administered PF-07054894 blocks homeostatic and pathogenic functions of CCR6, suggesting that it is a promising therapeutic agent for the treatment of a variety of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Wei Li
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Kimberly K Crouse
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Jennifer Alley
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Richard K Frisbie
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Susan C Fish
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Tatyana A Andreyeva
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Lori A Reed
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Mitchell Thorn
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Giovanni DiMaggio
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Carol B Donovan
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Donald Bennett
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Jeonifer Garren
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Elias Oziolor
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Jesse Qian
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Leah Newman
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Amanda P Vargas
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Steven W Kumpf
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Stefan J Steyn
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Mark E Schnute
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Atli Thorarensen
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Martin Hegen
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Erin Stevens
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Mark Collinge
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Thomas A Lanz
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Fabien Vincent
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Michael S Vincent
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| | - Gabriel Berstein
- Inflammation and Immunology Research Unit (W.L., K.K.C., J.A., S.C.F., T.A.A., M.H., M.S.V., G.B.), Biostatistics (D.B., J.G.), and Medicine Design (S.J.S., M.E.S., A.T.), Pfizer, Inc., Cambridge, Massachusetts, and Primary Pharmacology Group (R.K.F., F.V.), Clinical Biomarkers (M.T., E.S.), and Drug Safety Research and Development (L.A.R., G.D., C.B.D., E.O., J.Q., L.N., A.P.V., S.W.K., M.C., T.A.L.), Pfizer, Inc., Groton, Connecticut
| |
Collapse
|
38
|
Cazzola M, Hanania NA, Page CP, Matera MG. Novel Anti-Inflammatory Approaches to COPD. Int J Chron Obstruct Pulmon Dis 2023; 18:1333-1352. [PMID: 37408603 PMCID: PMC10318108 DOI: 10.2147/copd.s419056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Airway inflammation, driven by different types of inflammatory cells and mediators, plays a fundamental role in COPD and its progression. Neutrophils, eosinophils, macrophages, and CD4+ and CD8+ T lymphocytes are key players in this process, although the extent of their participation varies according to the patient's endotype. Anti-inflammatory medications may modify the natural history and progression of COPD. However, since airway inflammation in COPD is relatively resistant to corticosteroid therapy, innovative pharmacological anti-inflammatory approaches are required. The heterogeneity of inflammatory cells and mediators in annethe different COPD endo-phenotypes requires the development of specific pharmacologic agents. Indeed, over the past two decades, several mechanisms that influence the influx and/or activity of inflammatory cells in the airways and lung parenchyma have been identified. Several of these molecules have been tested in vitro models and in vivo in laboratory animals, but only a few have been studied in humans. Although early studies have not been encouraging, useful information emerged suggesting that some of these agents may need to be further tested in specific subgroups of patients, hopefully leading to a more personalized approach to treating COPD.
Collapse
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, UK
| | - Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
39
|
Xie Y, Kuang W, Wang D, Yuan K, Yang P. Expanding role of CXCR2 and therapeutic potential of CXCR2 antagonists in inflammatory diseases and cancers. Eur J Med Chem 2023; 250:115175. [PMID: 36780833 DOI: 10.1016/j.ejmech.2023.115175] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
C-X-C motif chemokine receptor 2 (CXCR2) is G protein-coupled receptor (GPCR) and plays important roles in various inflammatory diseases and cancers, including chronic obstructive pulmonary disease (COPD), atherosclerosis, asthma, and pancreatic cancer. Upregulation of CXCR2 is closely associated with the migration of neutrophils and monocytes. To date, many small-molecule CXCR2 antagonists have entered clinical trials, showing favorable safety and therapeutic effects. Hence, we provide an overview containing the discovery history, protein structure, signaling pathways, biological functions, structure-activity relationships and clinical significance of CXCR2 antagonists in inflammatory diseases and cancers. According to the latest development and recent clinical progress of CXCR2 small molecule antagonists, we speculated that CXCR2 can be used as a biomarker and a new target for diabetes and that CXCR2 antagonists may also attenuate lung injury in coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Yishi Xie
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenbin Kuang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
| | - Dawei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
40
|
O’Boyle NM, Helesbeux JJ, Meegan MJ, Sasse A, O’Shaughnessy E, Qaisar A, Clancy A, McCarthy F, Marchand P. 30th Annual GP 2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2023; 16:432. [PMID: 36986531 PMCID: PMC10056312 DOI: 10.3390/ph16030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 03/14/2023] Open
Abstract
The Group for the Promotion of Pharmaceutical Chemistry in Academia (GP2A) held their 30th annual conference in August 2022 in Trinity College Dublin, Ireland. There were 9 keynote presentations, 10 early career researcher presentations and 41 poster presentations.
Collapse
Affiliation(s)
- Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | | | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Elizabeth O’Shaughnessy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Alina Qaisar
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Aoife Clancy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Florence McCarthy
- School of Chemistry and ABCRF, University College Cork, T12 K8AF Cork, Ireland
| | - Pascal Marchand
- Cibles et Médicaments des Infections et de l’Immunité, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
| |
Collapse
|
41
|
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in more than 6 million deaths worldwide. COVID-19 is a respiratory disease characterized by pulmonary dysfunction leading to acute respiratory distress syndrome (ARDs), as well as disseminated coagulation, and multi-organ dysfunction. Neutrophils and neutrophil extracellular traps (NETs) have been implicated in the pathogenesis of COVID-19. In this review, we highlight key gaps in knowledge, discuss the heterogeneity of neutrophils during the evolution of the disease, how they can contribute to COVID-19 pathogenesis, and potential therapeutic strategies that target neutrophil-mediated inflammatory responses.
Collapse
Affiliation(s)
- Fernanda V. S. Castanheira
- Department of Physiology and PharmacologyUniversity of CalgaryCalgaryAlbertaCanada
- Department of Microbiology, Immunology and InfectiousUniversity of CalgaryCalgaryAlbertaCanada
- Snyder Institute for Chronic DiseasesUniversity of CalgaryCalgaryAlbertaCanada
| | - Paul Kubes
- Department of Physiology and PharmacologyUniversity of CalgaryCalgaryAlbertaCanada
- Department of Microbiology, Immunology and InfectiousUniversity of CalgaryCalgaryAlbertaCanada
- Snyder Institute for Chronic DiseasesUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
42
|
Alkarni M, Lipman M, Lowe DM. The roles of neutrophils in non-tuberculous mycobacterial pulmonary disease. Ann Clin Microbiol Antimicrob 2023; 22:14. [PMID: 36800956 PMCID: PMC9938600 DOI: 10.1186/s12941-023-00562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Non-tuberculous Mycobacterial Pulmonary Disease (NTM-PD) is an increasingly recognised global health issue. Studies have suggested that neutrophils may play an important role in controlling NTM infection and contribute to protective immune responses within the early phase of infection. However, these cells are also adversely associated with disease progression and exacerbation and can contribute to pathology, for example in the development of bronchiectasis. In this review, we discuss the key findings and latest evidence regarding the diverse functions of neutrophils in NTM infection. First, we focus on studies that implicate neutrophils in the early response to NTM infection and the evidence reporting neutrophils' capability to kill NTM. Next, we present an overview of the positive and negative effects that characterise the bidirectional relationship between neutrophils and adaptive immunity. We consider the pathological role of neutrophils in driving the clinical phenotype of NTM-PD including bronchiectasis. Finally, we highlight the current promising treatments in development targeting neutrophils in airways diseases. Clearly, more insights on the roles of neutrophils in NTM-PD are needed in order to inform both preventative strategies and host-directed therapy for these important infections.
Collapse
Affiliation(s)
- Meyad Alkarni
- grid.83440.3b0000000121901201Institute of Immunity and Transplantation, University College London, Pears Building, Rowland Hill Street, London, NW3 2PP UK
| | - Marc Lipman
- grid.83440.3b0000000121901201UCL Respiratory, University College London, London, UK
| | - David M. Lowe
- grid.83440.3b0000000121901201Institute of Immunity and Transplantation, University College London, Pears Building, Rowland Hill Street, London, NW3 2PP UK
| |
Collapse
|
43
|
Wu J, Zhao X, Xiao C, Xiong G, Ye X, Li L, Fang Y, Chen H, Yang W, Du X. The role of lung macrophages in chronic obstructive pulmonary disease. Respir Med 2022; 205:107035. [PMID: 36343504 DOI: 10.1016/j.rmed.2022.107035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) as a common, preventable and treatable chronic respiratory disease in clinic, gets continuous deterioration and we can't take effective intervention at present. Lung macrophages (LMs) are closely related to the occurrence and development of COPD, but the specific mechanism is not completely clear. In this review we will focus on the role of LMs and potential avenues for therapeutic targeting for LMs in COPD.
Collapse
Affiliation(s)
- Jianli Wu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xia Zhao
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Chuang Xiao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Guosheng Xiong
- Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xiulin Ye
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Lin Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yan Fang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Hong Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Xiaohua Du
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
44
|
Rawat K, Shrivastava A. Neutrophils as emerging protagonists and targets in chronic inflammatory diseases. Inflamm Res 2022; 71:1477-1488. [PMID: 36289077 PMCID: PMC9607713 DOI: 10.1007/s00011-022-01627-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/15/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Neutrophils are the key cells of our innate immune system with a primary role in host defense. They rapidly arrive at the site of infection and display a range of effector functions including phagocytosis, degranulation, and NETosis to eliminate the invading pathogens. However, in recent years, studies focusing on neutrophil biology have revealed the highly adaptable nature and versatile functions of these cells which extend beyond host defense. Neutrophils are now referred to as powerful mediators of chronic inflammation. In several chronic inflammatory diseases, their untoward actions, such as immense infiltration, hyper-activation, dysregulation of effector functions, and extended survival, eventually contribute to disease pathogenesis. Therefore, a better understanding of neutrophils and their effector functions in prevalent chronic diseases will not only shed light on their role in disease pathogenesis but will also reveal them as novel therapeutic targets. METHODS We performed a computer-based online search using the databases, PubMed.gov and Clinical trials.gov for published research and review articles. RESULTS AND CONCLUSIONS This review provides an assessment of neutrophils and their crucial involvement in various chronic inflammatory disorders ranging from respiratory, neurodegenerative, autoimmune, and cardiovascular diseases. In addition, we also discuss the therapeutic approach for targeting neutrophils in disease settings that will pave the way forward for future research.
Collapse
Affiliation(s)
- Kavita Rawat
- Department of Zoology, University of Delhi, New Delhi, Delhi 110007 India
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, New Delhi, Delhi 110007 India
| |
Collapse
|
45
|
Cheng X, Zhang H, Hamad A, Huang H, Tsung A. Surgery-mediated tumor-promoting effects on the immune microenvironment. Semin Cancer Biol 2022; 86:408-419. [PMID: 35066156 PMCID: PMC11770836 DOI: 10.1016/j.semcancer.2022.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
Surgical resection continues to be the mainstay treatment for solid cancers even though chemotherapy and immunotherapy have significantly improved patient overall survival and progression-free survival. Numerous studies have shown that surgery induces the dissemination of circulating tumor cells (CTCs) and that the resultant inflammatory response promotes occult tumor growth and the metastatic process by forming a supportive tumor microenvironment (TME). Surgery-induced platelet activation is one of the initial responses to a wound and the formation of fibrin clots can provide the scaffold for recruited inflammatory cells. Activated platelets can also shield CTCs to protect them from blood shear forces and promote CTCs evasion of immune destruction. Similarly, neutrophils are recruited to the fibrin clot and enhance cancer metastatic dissemination and progression by forming neutrophil extracellular traps (NETs). Activated macrophages are also recruited to surgical sites to facilitate the metastatic spread. More importantly, the body's response to surgical insult results in the recruitment and expansion of immunosuppressive cell populations (i.e. myeloid-derived suppressor cells and regulatory T cells) and in the suppression of natural killer (NK) cells that contribute to postoperative cancer recurrence and metastasis. In this review, we seek to provide an overview of the pro-tumorigenic mechanisms resulting from surgery's impact on these cells in the TME. Further understanding of these events will allow for the development of perioperative therapeutic strategies to prevent surgery-associated metastasis.
Collapse
Affiliation(s)
- Xiang Cheng
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hongji Zhang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Ahmad Hamad
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hai Huang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Allan Tsung
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
46
|
Han H, Hao L. Revealing lncRNA Biomarkers Related to Chronic Obstructive Pulmonary Disease Based on Bioinformatics. Int J Chron Obstruct Pulmon Dis 2022; 17:2487-2515. [PMID: 36217332 PMCID: PMC9547624 DOI: 10.2147/copd.s354634] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a common chronic disease of the respiratory tract, with high prevalence, high disability, and poor prognosis. However, the molecular mechanism of COPD needs to be further revealed. Methods We obtained the gene expression profile and miRNA expression profile of COPD patients from Gene Expression Omnibus (GEO) database, and the differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmis) in COPD were identified. Subsequently, the COPD-related ceRNA network was constructed based on the interaction between lncRNA, miRNA, and mRNA using the lncACTdb database. Finally, the Cytoscape software was used to analyze the network topology and COPD-related lncRNAs. Results Firstly, the 519 DEGs and 17 DEmis were identified from COPD GEO datasets. GO enrichment showed that leukocyte chemotaxis, cell chemotaxis, and myeloid leukocyte migration were upregulated, and muscle and membrane repolarization-related biological progress were downregulated in COPD. KEGG pathway enrichment shows that the p53 pathway was upregulated in COPD. Hallmark enrichment showed that chronic neutrophil inflammation was a sign of the pathogenesis of COPD. Next, a ceRNA network including 93 DEGs, 2 DEmi, 463 lncRNAs, and 1157 DEG-lncRNA, DEmi-lncRNA, and DEmi-DEG interactions were obtained. The hub-lncRNA (the network is ranked in the top 10) as the core marker of COPD, including SNHG12, SLFNL1-AS1, KCNQ1OT1, XIST, EAF1-AS1, FOXD2-AS1, NORAD, PINK1-AS and RP11-69E11.4. And the cytoHubba analysis identified ATM, SMAD7 and HIF1A as hub genes of ceRNA network. Conclusion This study provides a landscape of ceRNA network of COPD, which help to reveal the underlying pathophysiological mechanisms of COPD and shed light on novel therapeutic strategies for COPD.
Collapse
Affiliation(s)
- Hui Han
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, People’s Republic of China
| | - Lu Hao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, People’s Republic of China,Correspondence: Lu Hao, Area B, Department of Respiratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Huimin District, Hohhot, 010010, Inner Mongolia Autonomous Region, People’s Republic of China, Email
| |
Collapse
|
47
|
Agarwal S. Neutrophil-Lymphocyte Ratio Predicting Case Severity in SARS-CoV-2 Infection: A Review. Cureus 2022; 14:e29760. [PMID: 36187170 PMCID: PMC9521818 DOI: 10.7759/cureus.29760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 12/15/2022] Open
|
48
|
Stolz D, Mkorombindo T, Schumann DM, Agusti A, Ash SY, Bafadhel M, Bai C, Chalmers JD, Criner GJ, Dharmage SC, Franssen FME, Frey U, Han M, Hansel NN, Hawkins NM, Kalhan R, Konigshoff M, Ko FW, Parekh TM, Powell P, Rutten-van Mölken M, Simpson J, Sin DD, Song Y, Suki B, Troosters T, Washko GR, Welte T, Dransfield MT. Towards the elimination of chronic obstructive pulmonary disease: a Lancet Commission. Lancet 2022; 400:921-972. [PMID: 36075255 PMCID: PMC11260396 DOI: 10.1016/s0140-6736(22)01273-9] [Citation(s) in RCA: 294] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/23/2022] [Accepted: 06/28/2022] [Indexed: 10/14/2022]
Abstract
Despite substantial progress in reducing the global impact of many non-communicable diseases, including heart disease and cancer, morbidity and mortality due to chronic respiratory disease continues to increase. This increase is driven primarily by the growing burden of chronic obstructive pulmonary disease (COPD), and has occurred despite the identification of cigarette smoking as the major risk factor for the disease more than 50 years ago. Many factors have contributed to what must now be considered a public health emergency: failure to limit the sale and consumption of tobacco products, unchecked exposure to environmental pollutants across the life course, and the ageing of the global population (partly as a result of improved outcomes for other conditions). Additionally, despite the heterogeneity of COPD, diagnostic approaches have not changed in decades and rely almost exclusively on post-bronchodilator spirometry, which is insensitive for early pathological changes, underused, often misinterpreted, and not predictive of symptoms. Furthermore, guidelines recommend only simplistic disease classification strategies, resulting in the same therapeutic approach for patients with widely differing conditions that are almost certainly driven by variable pathophysiological mechanisms. And, compared with other diseases with similar or less morbidity and mortality, the investment of financial and intellectual resources from both the public and private sector to advance understanding of COPD, reduce exposure to known risks, and develop new therapeutics has been woefully inadequate.
Collapse
Affiliation(s)
- Daiana Stolz
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University Hospital Basel, Basel, Switzerland; Clinic of Respiratory Medicine and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Takudzwa Mkorombindo
- Lung Health Center, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Desiree M Schumann
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
| | - Alvar Agusti
- Respiratory Institute-Hospital Clinic, University of Barcelona IDIBAPS, CIBERES, Barcelona, Spain
| | - Samuel Y Ash
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mona Bafadhel
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Department of Respiratory Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chunxue Bai
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Shyamali C Dharmage
- Centre for Epidemiology and Biostatistics, School of Population and Global health, University of Melbourne, Melbourne, VIC, Australia
| | - Frits M E Franssen
- Department of Research and Education, CIRO, Horn, Netherlands; Department of Respiratory Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Urs Frey
- University Children's Hospital Basel, Basel, Switzerland
| | - MeiLan Han
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nadia N Hansel
- Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nathaniel M Hawkins
- Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Ravi Kalhan
- Department of Preventive Medicine and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Melanie Konigshoff
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fanny W Ko
- The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Trisha M Parekh
- Lung Health Center, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Maureen Rutten-van Mölken
- Erasmus School of Health Policy & Management and Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Jodie Simpson
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Don D Sin
- Centre for Heart Lung Innovation and Division of Respiratory Medicine, Department of Medicine, University of British Columbia, St Paul's Hospital, Vancouver, BC, Canada
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Shanghai Respiratory Research Institute, Shanghai, China; Jinshan Hospital of Fudan University, Shanghai, China
| | - Bela Suki
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Thierry Troosters
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Leuven, Belgium
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover, Germany
| | - Mark T Dransfield
- Lung Health Center, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
49
|
Komolafe K, Pacurari M. CXC Chemokines in the Pathogenesis of Pulmonary Disease and Pharmacological Relevance. Int J Inflam 2022; 2022:4558159. [PMID: 36164329 PMCID: PMC9509283 DOI: 10.1155/2022/4558159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Chemokines and their receptors play important roles in the pathophysiology of many diseases by regulating the cellular migration of major inflammatory and immune players. The CXC motif chemokine subfamily is the second largest family, and it is further subdivided into ELR motif CXC (ELR+) and non-ELR motif (ELR-) CXC chemokines, which are effective chemoattractants for neutrophils and lymphocytes/monocytes, respectively. These chemokines and their receptors are expected to have a significant impact on a wide range of lung diseases, many of which have inflammatory or immunological underpinnings. As a result, manipulations of this subfamily of chemokines and their receptors using small molecular agents and other means have been explored for potential therapeutic benefit in the setting of several lung pathologies. Furthermore, encouraging preclinical data has necessitated the progression of a few of these drugs into clinical trials in order to make the most effective use of interventions in the development of viable targeted therapeutics. The current review presents the understanding of the roles of CXC ligands (CXCLs) and their cognate receptors (CXCRs) in the pathogenesis of several lung diseases such as allergic rhinitis, COPD, lung fibrosis, lung cancer, pneumonia, and tuberculosis. The potential therapeutic benefits of pharmacological or other CXCL/CXCR axis manipulations are also discussed.
Collapse
Affiliation(s)
- Kayode Komolafe
- RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA
| | - Maricica Pacurari
- RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
50
|
Milad N, Pineault M, Tremblay F, Routhier J, Lechasseur A, Beaulieu MJ, Aubin S, Morissette MC. Smoking status impacts treatment efficacy in smoke-induced lung inflammation: A pre-clinical study. Front Pharmacol 2022; 13:971238. [PMID: 36160400 PMCID: PMC9490227 DOI: 10.3389/fphar.2022.971238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
Rationale: Smoking status and smoking history remain poorly accounted for as variables that could affect the efficacy of new drugs being tested in chronic obstructive pulmonary disease (COPD) patients. As a proof of concept, we used a pre-clinical model of cigarette smoke (CS) exposure to compare the impact of treatment during active CS exposure or during the cessation period on the anti-inflammatory effects IL-1α signaling blockade. Methods: Mice were exposed to CS for 2 weeks, followed by a 1-week cessation, then acutely re-exposed for 2 days. Mice were treated with an anti-IL-1α antibody either during CS exposure or during cessation and inflammatory outcomes were assessed. Results: We found that mice re-exposed to CS displayed reduced neutrophil counts and cytokine levels in the bronchoalveolar lavage (BAL) compared to mice exposed only acutely. Moreover, we found that treatment with an anti-IL-1α antibody during the initial CS exposure delayed inflammatory processes and interfered with pulmonary adaptation, leading to rebound pulmonary neutrophilia, increased BAL cytokine secretion (CCL2) and upregulated Mmp12 expression. Conversely, administration of anti-IL-1α during cessation had the opposite effect, improving BAL neutrophilia, decreasing CCL2 levels and reducing Mmp12 expression. Discussion: These results suggest that pulmonary adaptation to CS exposure dampens inflammation and blocking IL-1α signaling during CS exposure delays the inflammatory response. More importantly, the same treatment administered during cessation hastens the return to pulmonary inflammatory homeostasis, strongly suggesting that smoking status and treatment timing should be considered when testing new biologics in COPD.
Collapse
Affiliation(s)
- Nadia Milad
- Quebec Heart and Lung Institute, Université Laval, Quebec City, QC, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Marie Pineault
- Quebec Heart and Lung Institute, Université Laval, Quebec City, QC, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Félix Tremblay
- Quebec Heart and Lung Institute, Université Laval, Quebec City, QC, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Joanie Routhier
- Quebec Heart and Lung Institute, Université Laval, Quebec City, QC, Canada
| | - Ariane Lechasseur
- Quebec Heart and Lung Institute, Université Laval, Quebec City, QC, Canada
| | | | - Sophie Aubin
- Quebec Heart and Lung Institute, Université Laval, Quebec City, QC, Canada
| | - Mathieu C. Morissette
- Quebec Heart and Lung Institute, Université Laval, Quebec City, QC, Canada
- Department of Medicine, Université Laval, Quebec City, QC, Canada
- *Correspondence: Mathieu C. Morissette,
| |
Collapse
|