1
|
Song X, Wu D, Jin LN, Xu Y, Chen X, Li Q. Aerosol Toxicokinetics: A Framework for Unraveling Toxicological Dynamics from Air to the Body. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6379-6386. [PMID: 40132103 DOI: 10.1021/acs.est.5c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Exposure to atmospheric aerosols threatens human health and is yet to be effectively addressed globally. Aerosol toxicity strongly depends upon components whose chemical profiles and concentrations can constantly evolve throughout atmospheric transformation, inhalation, distribution, metabolism, and excretion. Despite the abundant studies on aerosol components and their toxic effects, the dynamics in component concentrations and related biological effects from air to the body remain unclear. Here, we propose a conceptual toxicokinetic framework to mathematically deduce the bioavailable concentration from the changing bulk concentration of aerosol constituents in the atmosphere. The biological effects of single or multiple components are further predicted via toxicodynamic modeling according to their bioavailable concentrations. Atmospheric concentrations of toxic composition can in turn be regulated by risk-based guidelines, aiming to alleviate in vivo toxic effects. This perspective demonstrates how serial toxicokinetic-toxicodynamic equations bridge the knowledge gap between ambient aerosols and associated toxic effects in human bodies. The prediction from an inhalation perspective also allows connecting with the exposomes from aggregate exposure pathways. We call for the development of the model validity and integrate quantitative adverse outcome pathways to apply for exposure-disease modeling, providing novel insights into air quality policymaking and public health management.
Collapse
Affiliation(s)
- Xiwen Song
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
| | - Di Wu
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Ling N Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xiu Chen
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
| | - Qing Li
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Mak KM, Shekhar AC. Lipopolysaccharide, arbiter of the gut-liver axis, modulates hepatic cell pathophysiology in alcoholism. Anat Rec (Hoboken) 2025; 308:975-1004. [PMID: 39166429 DOI: 10.1002/ar.25562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024]
Abstract
Over the last four decades, clinical research and experimental studies have established that lipopolysaccharide (LPS)-a component of the outer membrane of gram-negative bacteria-is a potent hepatotoxic molecule in humans and animals. Alcohol abuse is commonly associated with LPS endotoxemia. This review highlights LPS molecular structures and modes of release from bacteria, plasma LPS concentrations, induction of microbiota dysbiosis, disruption of gut epithelial barrier, and translocation of LPS into the portal circulation impacting the pathophysiology of hepatic cells via the gut-liver axis. We describe and illustrate the portal vein circulation and its distributaries draining the gastrointestinal tract. We also elaborate on the gut-liver axis coupled with enterohepatic circulation that represents a bidirectional communication between the gut and liver. The review also updates the data on how circulating LPS is cleared in a coordinated effort between Kupffer cells, hepatocytes, and liver sinusoidal endothelial cells. Significantly, the article reviews and updates the modes/mechanisms of action by which LPS mediates the diverse pathophysiology of Kupffer cells, hepatocytes, sinusoidal endothelial cells, and hepatic stellate cells primarily in association with alcohol consumption. Specifically, we review the intricate linkages between ethanol, microbiota dysbiosis, LPS production, gut-liver axis, and pathophysiology of various hepatic cells. The maintenance of the gut barrier structural and functional integrity and microbiome homeostasis is essential in mitigating alcoholic liver disease and improving liver health.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aditya C Shekhar
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
3
|
Benn M, Emanuelsson F, Tybjærg-Hansen A, Nordestgaard BG. Low LDL cholesterol and risk of bacterial and viral infections: observational and Mendelian randomization studies. EUROPEAN HEART JOURNAL OPEN 2025; 5:oeaf009. [PMID: 39991120 PMCID: PMC11843444 DOI: 10.1093/ehjopen/oeaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/13/2025] [Accepted: 01/31/2025] [Indexed: 02/25/2025]
Abstract
Aims Low levels of LDL cholesterol may be associated with risk of infectious disease. We tested the hypothesis that low LDL cholesterol due to genetic variation in the LDLR, PCSK9, and HMGCR genes and a polygenic LDL cholesterol score is associated with risk of infectious diseases in the general population. Methods and results Using observational and Mendelian randomization designs, we examined associations of low plasma LDL cholesterol with risk of bacterial and viral infections in 119 805 individuals from the Copenhagen General Population Study/Copenhagen City Heart Study, 468 701 from the UK Biobank, and up to 376 773 from the FinnGen Research Project. Observationally, low LDL cholesterol concentrations were associated with risk of hospitalization for both bacterial and viral infections. In genetic analyses, a 1 mmol/L lower LDL cholesterol was associated with lower plasma PCSK9 {-0.55 nmol/L [95% confidence interval (CI): -1.06 to -0.05]; P = 0.03}, leucocyte count [-0.42 × 109/L (-0.61 to -0.24); P < 0.001], and high-sensitivity C-reactive protein [-0.44 mg/L (-0.79 to -0.09); P = 0.014]. Using an LDLR, HMGCR, and PCSK9 score, a 1 mmol/L lower LDL cholesterol was associated with risk ratios of 0.91 (95% CI: 0.86-0.97; P = 0.002) for unspecified bacterial infection, of 0.92 (0.87-0.97; P = 0.004) for diarrhoeal disease, and of 1.15 (1.03-1.29; P = 0.012) for unspecified viral infections and 1.64 (1.13-2.39; P = 0.009) for HIV/AIDS. Using a polygenic LDL cholesterol score largely showed similar results and in addition a lower risk of 0.85 (0.76-0.96; P = 0.006) for bacterial pneumonia and 0.91 (0.82-0.99; P = 0.035) for sepsis. Conclusion Genetically low LDL cholesterol concentrations were associated with lower concentration of markers of inflammation; lower risk of hospitalization for unspecified bacterial infections, infectious diarrhoeal diseases, bacterial pneumonia, and sepsis; and higher risk of viral infections and HIV/AIDS.
Collapse
Affiliation(s)
- Marianne Benn
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls vej 1, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Frida Emanuelsson
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls vej 1, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
- The Copenhagen City Heart Study, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, DK-2400 Copenhagen, Denmark
| | - Børge G Nordestgaard
- The Copenhagen General Population Study, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls vej 1, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
- The Copenhagen City Heart Study, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, DK-2400 Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls vej 1, DK-2730 Herlev, Denmark
| |
Collapse
|
4
|
Heinzl MW, Freudenthaler M, Fellinger P, Kolenchery L, Resl M, Klammer C, Obendorf F, Schinagl L, Berger T, Egger M, Dieplinger B, Clodi M. High-Density Lipoprotein Predicts Intrahospital Mortality in Influenza. J Clin Med 2024; 13:7242. [PMID: 39685701 DOI: 10.3390/jcm13237242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Although it is known that high-density lipoprotein (HDL) exerts important anti-inflammatory effects and that low HDL plasma concentrations represent a negative prognostic marker in bacterial infections and sepsis, not much is known about possible implications of HDL in acute viral infections such as influenza. Methods: We performed a retrospective, single-centre analysis of influenza patients hospitalised during the 2018/19 and 2019/20 influenza seasons and analysed the impact of HDL concentrations on inflammation and mortality. Results: 199 influenza patients (173 male patients) were admitted during the 2018/19 and 2019/20 influenza seasons with a mortality rate of 4.5%. HDL was significantly lower in deceased patients (median HDL 21 (IQR 19-25) vs. 35 (IQR 28-44) mg/dL; p = 0.005). Low HDL correlated with increased inflammation and HDL was an independent negative predictor regarding mortality after correction for age and the number of comorbidities both overall (OR = 0.890; p = 0.008) and in male patients only (OR = 0.891; p = 0.009). Conclusions: Low HDL upon hospital admission is associated with increased inflammation and is an independent predictor for increased mortality in male patients with influenza A.
Collapse
Affiliation(s)
- Matthias Wolfgang Heinzl
- Department of Internal Medicine, Konventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz), 4020 Linz, Austria
- CICMR-Clinical Institute for Cardiovascular and Metabolic Research, Johannes Kepler Universität Linz (JKU Linz), 4040 Linz, Austria
| | - Markus Freudenthaler
- Department of Internal Medicine, Konventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz), 4020 Linz, Austria
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder Linz and Ordensklinikum Linz, 4020 Linz, Austria
| | - Paul Fellinger
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, 1090 Wien, Austria
| | - Lisa Kolenchery
- Department of Internal Medicine, Konventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz), 4020 Linz, Austria
- CICMR-Clinical Institute for Cardiovascular and Metabolic Research, Johannes Kepler Universität Linz (JKU Linz), 4040 Linz, Austria
| | - Michael Resl
- Department of Internal Medicine, Konventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz), 4020 Linz, Austria
- CICMR-Clinical Institute for Cardiovascular and Metabolic Research, Johannes Kepler Universität Linz (JKU Linz), 4040 Linz, Austria
| | - Carmen Klammer
- Department of Internal Medicine, Konventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz), 4020 Linz, Austria
- CICMR-Clinical Institute for Cardiovascular and Metabolic Research, Johannes Kepler Universität Linz (JKU Linz), 4040 Linz, Austria
| | - Florian Obendorf
- Department of Internal Medicine, Konventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz), 4020 Linz, Austria
| | - Lukas Schinagl
- Department of Internal Medicine, Konventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz), 4020 Linz, Austria
| | - Thomas Berger
- Department of Internal Medicine, Konventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz), 4020 Linz, Austria
| | - Margot Egger
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder Linz and Ordensklinikum Linz, 4020 Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Benjamin Dieplinger
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder Linz and Ordensklinikum Linz, 4020 Linz, Austria
| | - Martin Clodi
- Department of Internal Medicine, Konventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz), 4020 Linz, Austria
- CICMR-Clinical Institute for Cardiovascular and Metabolic Research, Johannes Kepler Universität Linz (JKU Linz), 4040 Linz, Austria
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder Linz and Ordensklinikum Linz, 4020 Linz, Austria
| |
Collapse
|
5
|
Rosman Z, Maor Y, Zohar I, Balmor GR, Pravda MS, Goldstein AL, Tocut M, Soroksky A. Proprotein Convertase Subtilisin Kexin 9 Inhibitor in Severe Sepsis and Septic Shock Patients in a Phase II Prospective Cohort Study-Preliminary Results. Infect Dis Rep 2024; 16:1036-1044. [PMID: 39584843 PMCID: PMC11586949 DOI: 10.3390/idr16060083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction syndrome caused by a dysregulated host response to infection that has a high mortality rate. Proprotein convertase subtilisin kexin 9 (PCSK9) is a serine protease secreted by the liver. Its binding to the low-density lipoprotein (LDL) receptor enhances its degradation, causing an increase in LDL levels in the blood. Objectives: Administering a PCSK9 inhibitor leading to an increase in lipid uptake by the liver may positively affect septic patients due to the increased removal of endotoxins. Methods: This preliminary study aimed to examine the safety of PCSK9 inhibitor use in septic and septic shock patients. We treated five septic patients in the intensive care unit with 300 mg of alirocumab following serious adverse events for 28 days. Results: Four of our patients did not experience any adverse events, and all of them survived. One patient died after discharge from the intensive care unit, and this death was presumably not related to the study drug. The patients rapidly recovered from the inflammatory stage of sepsis. Conclusions: Alirocumab appears safe in severe sepsis and septic shock patients. The outcome data are promising. Only a basic safety profile can be assessed based on this pilot study. Further study with a PCSK-9 inhibitor in septic or septic shock patients is required to further determine its benefit in ICU patients.
Collapse
Affiliation(s)
- Ziv Rosman
- Intensive Care Department, E. Wolfson Medical Center, Holon 5822012, Israel; (G.R.B.); (M.S.P.); (A.S.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (Y.M.); (I.Z.); (M.T.)
| | - Yasmin Maor
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (Y.M.); (I.Z.); (M.T.)
- Infectious Disease Unit, E. Wolfson Medical Center, Holon 5822012, Israel
| | - Iris Zohar
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (Y.M.); (I.Z.); (M.T.)
- Infectious Disease Unit, E. Wolfson Medical Center, Holon 5822012, Israel
| | - Gingy Ronen Balmor
- Intensive Care Department, E. Wolfson Medical Center, Holon 5822012, Israel; (G.R.B.); (M.S.P.); (A.S.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (Y.M.); (I.Z.); (M.T.)
| | - Miri Schamroth Pravda
- Intensive Care Department, E. Wolfson Medical Center, Holon 5822012, Israel; (G.R.B.); (M.S.P.); (A.S.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (Y.M.); (I.Z.); (M.T.)
| | - Adam Lee Goldstein
- Surgical Department A Trauma Division, E. Wolfson Medical Center, Holon 5822012, Israel;
| | - Milena Tocut
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (Y.M.); (I.Z.); (M.T.)
- Internal Medicine C Department, E. Wolfson Medical Center, Holon 5822012, Israel
| | - Arie Soroksky
- Intensive Care Department, E. Wolfson Medical Center, Holon 5822012, Israel; (G.R.B.); (M.S.P.); (A.S.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (Y.M.); (I.Z.); (M.T.)
| |
Collapse
|
6
|
Walley KR. Lessons From the LIPid Intensive Drug therapy for Sepsis Pilot (LIPIDS-P) Trial. Crit Care Med 2024; 52:1303-1306. [PMID: 39007572 DOI: 10.1097/ccm.0000000000006309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Affiliation(s)
- Keith R Walley
- Centre for Heart Lung Innovation, St. Paul's Hospital, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Santacroce E, D’Angerio M, Ciobanu AL, Masini L, Lo Tartaro D, Coloretti I, Busani S, Rubio I, Meschiari M, Franceschini E, Mussini C, Girardis M, Gibellini L, Cossarizza A, De Biasi S. Advances and Challenges in Sepsis Management: Modern Tools and Future Directions. Cells 2024; 13:439. [PMID: 38474403 PMCID: PMC10931424 DOI: 10.3390/cells13050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Sepsis, a critical condition marked by systemic inflammation, profoundly impacts both innate and adaptive immunity, often resulting in lymphopenia. This immune alteration can spare regulatory T cells (Tregs) but significantly affects other lymphocyte subsets, leading to diminished effector functions, altered cytokine profiles, and metabolic changes. The complexity of sepsis stems not only from its pathophysiology but also from the heterogeneity of patient responses, posing significant challenges in developing universally effective therapies. This review emphasizes the importance of phenotyping in sepsis to enhance patient-specific diagnostic and therapeutic strategies. Phenotyping immune cells, which categorizes patients based on clinical and immunological characteristics, is pivotal for tailoring treatment approaches. Flow cytometry emerges as a crucial tool in this endeavor, offering rapid, low cost and detailed analysis of immune cell populations and their functional states. Indeed, this technology facilitates the understanding of immune dysfunctions in sepsis and contributes to the identification of novel biomarkers. Our review underscores the potential of integrating flow cytometry with omics data, machine learning and clinical observations to refine sepsis management, highlighting the shift towards personalized medicine in critical care. This approach could lead to more precise interventions, improving outcomes in this heterogeneously affected patient population.
Collapse
Affiliation(s)
- Elena Santacroce
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Miriam D’Angerio
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Alin Liviu Ciobanu
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Linda Masini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Irene Coloretti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Stefano Busani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany;
| | - Marianna Meschiari
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Erica Franceschini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Cristina Mussini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Massimo Girardis
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| |
Collapse
|
8
|
Mohammed Y, Tran K, Carlsten C, Ryerson C, Wong A, Lee T, Cheng MP, Vinh DC, Lee TC, Winston BW, Sweet D, Boyd JH, Walley KR, Haljan G, McGeer A, Lamontagne F, Fowler R, Maslove D, Singer J, Patrick DM, Marshall JC, Murthy S, Jain F, Borchers CH, Goodlett DR, Levin A, Russell JA. Proteomic Evolution from Acute to Post-COVID-19 Conditions. J Proteome Res 2024; 23:52-70. [PMID: 38048423 PMCID: PMC10775146 DOI: 10.1021/acs.jproteome.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023]
Abstract
Many COVID-19 survivors have post-COVID-19 conditions, and females are at a higher risk. We sought to determine (1) how protein levels change from acute to post-COVID-19 conditions, (2) whether females have a plasma protein signature different from that of males, and (3) which biological pathways are associated with COVID-19 when compared to restrictive lung disease. We measured protein levels in 74 patients on the day of admission and at 3 and 6 months after diagnosis. We determined protein concentrations by multiple reaction monitoring (MRM) using a panel of 269 heavy-labeled peptides. The predicted forced vital capacity (FVC) and diffusing capacity of the lungs for carbon monoxide (DLCO) were measured by routine pulmonary function testing. Proteins associated with six key lipid-related pathways increased from admission to 3 and 6 months; conversely, proteins related to innate immune responses and vasoconstriction-related proteins decreased. Multiple biological functions were regulated differentially between females and males. Concentrations of eight proteins were associated with FVC, %, and they together had c-statistics of 0.751 (CI:0.732-0.779); similarly, concentrations of five proteins had c-statistics of 0.707 (CI:0.676-0.737) for DLCO, %. Lipid biology may drive evolution from acute to post-COVID-19 conditions, while activation of innate immunity and vascular regulation pathways decreased over that period. (ProteomeXchange identifiers: PXD041762, PXD029437).
Collapse
Affiliation(s)
- Yassene Mohammed
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Leiden 2333 ZA, The Netherlands
- UVic-Genome
BC Proteomics Centre, University of Victoria, Victoria V8Z 5N3, BC Canada
- Gerald
Bronfman Department of Oncology, McGill
University, Montreal, QC H3A 0G4, Canada
| | - Karen Tran
- Division
of General Internal Medicine, Vancouver
General Hospital and University of British Columbia, 2775 Laurel St, Vancouver, BC V5Z 1M9, Canada
| | - Chris Carlsten
- Division
of Respiratory Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Christopher Ryerson
- Division
of Respiratory Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Alyson Wong
- Division
of Respiratory Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Terry Lee
- Centre for
Health Evaluation and Outcome Science (CHEOS), St. Paul’s Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Matthew P. Cheng
- Division
of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, PQ H4A 3J1, Canada
| | - Donald C. Vinh
- Division
of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, PQ H4A 3J1, Canada
| | - Todd C. Lee
- Division
of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, PQ H4A 3J1, Canada
| | - Brent W. Winston
- Departments
of Critical Care Medicine, Medicine and Biochemistry and Molecular
Biology, Foothills Medical Centre and University
of Calgary, 1403 29 Street
NW, Calgary, Alberta T2N 4N1, Canada
| | - David Sweet
- Division
of Critical Care Medicine, Vancouver General
Hospital, 2775 Laurel St, Vancouver, BC V5Z 1M9, Canada
| | - John H. Boyd
- Centre
for Heart Lung Innovation, St. Paul’s Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
- Division of Critical Care Medicine, St.
Paul’s Hospital, University of British
Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Keith R. Walley
- Centre
for Heart Lung Innovation, St. Paul’s Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
- Division of Critical Care Medicine, St.
Paul’s Hospital, University of British
Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Greg Haljan
- Department of Medicine, Surrey Memorial
Hospital, 13750 96th
Avenue, Surrey, BC V3V 1Z2, Canada
| | - Allison McGeer
- Mt. Sinai Hospital and University of Toronto, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | | | - Robert Fowler
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - David Maslove
- Department
of Critical Care, Kingston General Hospital
and Queen’s University, 76 Stuart Street, Kingston, ON K7L 2V7, Canada
| | - Joel Singer
- Centre for
Health Evaluation and Outcome Science (CHEOS), St. Paul’s Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - David M. Patrick
- British Columbia Centre for Disease Control
(BCCDC) and University
of British Columbia, 655 West 12th Avenue, Vancouver, BC V5Z 4R4, Canada
| | - John C. Marshall
- Department of Surgery, St. Michael’s
Hospital, 30 Bond Street, Toronto, ON M5B
1W8, Canada
| | - Srinivas Murthy
- BC Children’s Hospital and University of British Columbia, 4500 Oak Street, Vancouver, BC V6H 3N1, Canada
| | - Fagun Jain
- Black Tusk Research Group, Vancouver, BC V6Z 2C7, Canada
| | - Christoph H. Borchers
- Segal Cancer Proteomics, Centre, Lady Davis
Institute
for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Division of Experimental Medicine, McGill
University, Montreal, QC H3T 1E2, Canada
- Department of Pathology, McGill
University, Montreal, QC H3T 1E2, Canada
| | - David R. Goodlett
- UVic-Genome
BC Proteomics Centre, University of Victoria, Victoria V8Z 5N3, BC Canada
| | - Adeera Levin
- Division of Nephrology, St.
Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - James A. Russell
- Centre
for Heart Lung Innovation, St. Paul’s Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
- Division of Critical Care Medicine, St.
Paul’s Hospital, University of British
Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - ARBs CORONA I Consortium
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Leiden 2333 ZA, The Netherlands
- UVic-Genome
BC Proteomics Centre, University of Victoria, Victoria V8Z 5N3, BC Canada
- Gerald
Bronfman Department of Oncology, McGill
University, Montreal, QC H3A 0G4, Canada
- Division
of General Internal Medicine, Vancouver
General Hospital and University of British Columbia, 2775 Laurel St, Vancouver, BC V5Z 1M9, Canada
- Division
of Respiratory Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Centre for
Health Evaluation and Outcome Science (CHEOS), St. Paul’s Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
- Division
of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, PQ H4A 3J1, Canada
- Departments
of Critical Care Medicine, Medicine and Biochemistry and Molecular
Biology, Foothills Medical Centre and University
of Calgary, 1403 29 Street
NW, Calgary, Alberta T2N 4N1, Canada
- Division
of Critical Care Medicine, Vancouver General
Hospital, 2775 Laurel St, Vancouver, BC V5Z 1M9, Canada
- Centre
for Heart Lung Innovation, St. Paul’s Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
- Division of Critical Care Medicine, St.
Paul’s Hospital, University of British
Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, Surrey Memorial
Hospital, 13750 96th
Avenue, Surrey, BC V3V 1Z2, Canada
- Mt. Sinai Hospital and University of Toronto, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- University of Sherbrooke, Sherbrooke, PQ J1K 2R1, Canada
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
- Department
of Critical Care, Kingston General Hospital
and Queen’s University, 76 Stuart Street, Kingston, ON K7L 2V7, Canada
- British Columbia Centre for Disease Control
(BCCDC) and University
of British Columbia, 655 West 12th Avenue, Vancouver, BC V5Z 4R4, Canada
- Department of Surgery, St. Michael’s
Hospital, 30 Bond Street, Toronto, ON M5B
1W8, Canada
- BC Children’s Hospital and University of British Columbia, 4500 Oak Street, Vancouver, BC V6H 3N1, Canada
- Black Tusk Research Group, Vancouver, BC V6Z 2C7, Canada
- Segal Cancer Proteomics, Centre, Lady Davis
Institute
for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Division of Experimental Medicine, McGill
University, Montreal, QC H3T 1E2, Canada
- Department of Pathology, McGill
University, Montreal, QC H3T 1E2, Canada
- Division of Nephrology, St.
Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
9
|
Lawler PR, Manvelian G, Coppi A, Damask A, Cantor MN, Ferreira MAR, Paulding C, Banerjee N, Li D, Jorgensen S, Attre R, Carey DJ, Krebs K, Milani L, Hveem K, Damås JK, Solligård E, Stender S, Tybjærg-Hansen A, Nordestgaard BG, Hernandez-Beeftink T, Rogne T, Flores C, Villar J, Walley KR, Liu VX, Fohner AE, Lotta LA, Kyratsous CA, Sleeman MW, Scemama M, DelGizzi R, Pordy R, Horowitz JE, Baras A, Martin GS, Steg PG, Schwartz GG, Szarek M, Goodman SG. Pharmacologic and Genetic Downregulation of Proprotein Convertase Subtilisin/Kexin Type 9 and Survival From Sepsis. Crit Care Explor 2023; 5:e0997. [PMID: 37954898 PMCID: PMC10635596 DOI: 10.1097/cce.0000000000000997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023] Open
Abstract
OBJECTIVES Treatments that prevent sepsis complications are needed. Circulating lipid and protein assemblies-lipoproteins play critical roles in clearing pathogens from the bloodstream. We investigated whether early inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) may accelerate bloodstream clearance of immunogenic bacterial lipids and improve sepsis outcomes. DESIGN Genetic and clinical epidemiology, and experimental models. SETTING Human genetics cohorts, secondary analysis of a phase 3 randomized clinical trial enrolling patients with cardiovascular disease (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab [ODYSSEY OUTCOMES]; NCT01663402), and experimental murine models of sepsis. PATIENTS OR SUBJECTS Nine human cohorts with sepsis (total n = 12,514) were assessed for an association between sepsis mortality and PCSK9 loss-of-function (LOF) variants. Incident or fatal sepsis rates were evaluated among 18,884 participants in a post hoc analysis of ODYSSEY OUTCOMES. C57BI/6J mice were used in Pseudomonas aeruginosa and Staphylococcus aureus bacteremia sepsis models, and in lipopolysaccharide-induced animal models. INTERVENTIONS Observational human cohort studies used genetic PCSK9 LOF variants as instrumental variables. ODYSSEY OUTCOMES participants were randomized to alirocumab or placebo. Mice were administered alirocumab, a PCSK9 inhibitor, at 5 mg/kg or 25 mg/kg subcutaneously, or isotype-matched control, 48 hours prior to the induction of bacterial sepsis. Mice did not receive other treatments for sepsis. MEASUREMENTS AND MAIN RESULTS Across human cohort studies, the effect estimate for 28-day mortality after sepsis diagnosis associated with genetic PCSK9 LOF was odds ratio = 0.86 (95% CI, 0.67-1.10; p = 0.24). A significant association was present in antibiotic-treated patients. In ODYSSEY OUTCOMES, sepsis frequency and mortality were infrequent and did not significantly differ by group, although both were numerically lower with alirocumab vs. placebo (relative risk of death from sepsis for alirocumab vs. placebo, 0.62; 95% CI, 0.32-1.20; p = 0.15). Mice treated with alirocumab had lower endotoxin levels and improved survival. CONCLUSIONS PCSK9 inhibition may improve clinical outcomes in sepsis in preventive, pretreatment settings.
Collapse
Affiliation(s)
- Patrick R Lawler
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Medicine, Peter Munk Cardiac Centre at University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Alida Coppi
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY
| | - Amy Damask
- Regeneron Genetics Center, Tarrytown, NY
| | | | | | | | | | - Dadong Li
- Regeneron Genetics Center, Tarrytown, NY
| | | | - Richa Attre
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY
| | - David J Carey
- Department of Molecular and Functional Genomics, Geisinger Medical Center, Danville, PA
| | - Kristi Krebs
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
| | - Jan K Damås
- Gemini Center for Sepsis Research, Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Infectious Diseases, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Erik Solligård
- Gemini Center for Sepsis Research, Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Medical Quality, Møre and Romsdal Hospital Trust, Ålesund, Norway
| | - Stefan Stender
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte, University of Copenhagen, Copenhagen, Denmark
| | - Tamara Hernandez-Beeftink
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrin, Las Palmas de Gran Canaria, Spain
| | - Tormod Rogne
- Gemini Center for Sepsis Research, Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Chronic Disease Epidemiology and Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Faculty of Health Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Jesús Villar
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrin, Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Keith R Walley
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Vincent X Liu
- Kaiser Permanente Northern California, Division of Research, Oakland, CA
| | - Alison E Fohner
- Kaiser Permanente Northern California, Division of Research, Oakland, CA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| | | | | | | | | | | | | | | | - Aris Baras
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY
- Regeneron Genetics Center, Tarrytown, NY
| | - Greg S Martin
- Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA
- Grady Memorial Hospital, Atlanta, GA
| | - Philippe Gabriel Steg
- Université de Paris, INSERM U-1148 F75018 Paris, France and Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gregory G Schwartz
- Division of Cardiology, University of Colorado School of Medicine, Aurora, CA
| | - Michael Szarek
- Division of Cardiology, University of Colorado School of Medicine, Aurora, CA
- CPC Clinical Research, Aurora, CA
- School of Public Health, Downstate Health Sciences University, Brooklyn, NY
| | - Shaun G Goodman
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Division of Cardiology, Department of Medicine, St Michael's Hospital, Toronto, ON, Canada
- Canadian VIGOUR Centre, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Mohanty T, Karlsson CAQ, Chao Y, Malmström E, Bratanis E, Grentzmann A, Mørch M, Nizet V, Malmström L, Linder A, Shannon O, Malmström J. A pharmacoproteomic landscape of organotypic intervention responses in Gram-negative sepsis. Nat Commun 2023; 14:3603. [PMID: 37330510 PMCID: PMC10276868 DOI: 10.1038/s41467-023-39269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/02/2023] [Indexed: 06/19/2023] Open
Abstract
Sepsis is the major cause of mortality across intensive care units globally, yet details of accompanying pathological molecular events remain unclear. This knowledge gap has resulted in ineffective biomarker development and suboptimal treatment regimens to prevent and manage organ dysfunction/damage. Here, we used pharmacoproteomics to score time-dependent treatment impact in a murine Escherichia coli sepsis model after administering beta-lactam antibiotic meropenem (Mem) and/or the immunomodulatory glucocorticoid methylprednisolone (Gcc). Three distinct proteome response patterns were identified, which depended on the underlying proteotype for each organ. Gcc enhanced some positive proteome responses of Mem, including superior reduction of the inflammatory response in kidneys and partial restoration of sepsis-induced metabolic dysfunction. Mem introduced sepsis-independent perturbations in the mitochondrial proteome that Gcc counteracted. We provide a strategy for the quantitative and organotypic assessment of treatment effects of candidate therapies in relationship to dosing, timing, and potential synergistic intervention combinations during sepsis.
Collapse
Affiliation(s)
- Tirthankar Mohanty
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Christofer A Q Karlsson
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Yashuan Chao
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Erik Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
- Emergency Medicine, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Eleni Bratanis
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Andrietta Grentzmann
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Martina Mørch
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Victor Nizet
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Lars Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Adam Linder
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden.
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden.
| |
Collapse
|
11
|
Guirgis FW, Jacob V, Wu D, Henson M, Daly-Crews K, Hopson C, Black LP, DeVos EL, Sulaiman D, Labilloy G, Brusko TM, Shavit JA, Bertrand A, Feldhammer M, Baskovich B, Graim K, Datta S, Reddy ST. DHCR7 Expression Predicts Poor Outcomes and Mortality From Sepsis. Crit Care Explor 2023; 5:e0929. [PMID: 37332366 PMCID: PMC10270496 DOI: 10.1097/cce.0000000000000929] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
This is a study of lipid metabolic gene expression patterns to discover precision medicine for sepsis. OBJECTIVES Sepsis patients experience poor outcomes including chronic critical illness (CCI) or early death (within 14 d). We investigated lipid metabolic gene expression differences by outcome to discover therapeutic targets. DESIGN SETTING AND PARTICITPANTS Secondary analysis of samples from prospectively enrolled sepsis patients (first 24 hr) and a zebrafish endotoxemia model for drug discovery. Patients were enrolled from the emergency department or ICU at an urban teaching hospital. Enrollment samples from sepsis patients were analyzed. Clinical data and cholesterol levels were recorded. Leukocytes were processed for RNA sequencing and reverse transcriptase polymerase chain reaction. A lipopolysaccharide zebrafish endotoxemia model was used for confirmation of human transcriptomic findings and drug discovery. MAIN OUTCOMES AND MEASURES The derivation cohort included 96 patients and controls (12 early death, 13 CCI, 51 rapid recovery, and 20 controls) and the validation cohort had 52 patients (6 early death, 8 CCI, and 38 rapid recovery). RESULTS The cholesterol metabolism gene 7-dehydrocholesterol reductase (DHCR7) was significantly up-regulated in both derivation and validation cohorts in poor outcome sepsis compared with rapid recovery patients and in 90-day nonsurvivors (validation only) and validated using RT-qPCR analysis. Our zebrafish sepsis model showed up-regulation of dhcr7 and several of the same lipid genes up-regulated in poor outcome human sepsis (dhcr24, sqlea, cyp51, msmo1, and ldlra) compared with controls. We then tested six lipid-based drugs in the zebrafish endotoxemia model. Of these, only the Dhcr7 inhibitor AY9944 completely rescued zebrafish from lipopolysaccharide death in a model with 100% lethality. CONCLUSIONS DHCR7, an important cholesterol metabolism gene, was up-regulated in poor outcome sepsis patients warranting external validation. This pathway may serve as a potential therapeutic target to improve sepsis outcomes.
Collapse
Affiliation(s)
- Faheem W Guirgis
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, FL
| | - Vinitha Jacob
- Department of Emergency Medicine, University of Michigan College of Medicine, Ann Arbor, MI
| | - Dongyuan Wu
- Department of Biostatistics, University of Florida, Gainesville, FL
| | - Morgan Henson
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, FL
| | - Kimberly Daly-Crews
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, FL
| | - Charlotte Hopson
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, FL
| | - Lauren Page Black
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, FL
| | - Elizabeth L DeVos
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, FL
| | - Dawoud Sulaiman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | | | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL
- Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL
| | - Jordan A Shavit
- Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI
| | - Andrew Bertrand
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, FL
| | - Matthew Feldhammer
- Department of Pathology, University of Florida College of Medicine, Jacksonville, FL
| | - Brett Baskovich
- Department of Pathology, Mt. Sinai School of Medicine, New York, NY
| | - Kiley Graim
- Computer and Information Science Engineering, University of Florida, Gainesville, FL
| | - Susmita Datta
- Department of Biostatistics, University of Florida, Gainesville, FL
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA
| |
Collapse
|
12
|
Guirgis FW, Jacob V, Wu D, Henson M, Daly-Crews K, Hopson C, Black LP, DeVos EL, Sulaiman D, Labilloy G, Brusko TM, Shavit JA, Bertrand A, Feldhammer M, Baskovich B, Graim K, Datta S, Reddy ST. DHCR7 Expression Predicts Poor Outcomes and Mortality from Sepsis. RESEARCH SQUARE 2023:rs.3.rs-2500497. [PMID: 36778468 PMCID: PMC9915766 DOI: 10.21203/rs.3.rs-2500497/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Objective: Sepsis patients experience poor outcomes including chronic critical illness (CCI) or early death (within 14 days). We investigated lipid metabolic gene expression differences by outcome to discover therapeutic targets. Design: Secondary analysis of samples from prospectively enrolled sepsis patients and a zebrafish sepsis model for drug discovery. Setting: Emergency department or ICU at an urban teaching hospital. Patients: Sepsis patients presenting within 24 hours. Methods: Enrollment samples from sepsis patients were analyzed. Clinical data and cholesterol levels were recorded. Leukocytes were processed for RNA sequencing (RNA-seq) and reverse transcriptase polymerase chain reaction (RT-qPCR). A lipopolysaccharide (LPS) zebrafish sepsis model was used for confirmation of human transcriptomic findings and drug discovery. Measurements and Main Results: There were 96 samples in the derivation (76 sepsis, 20 controls) and 52 in the validation cohort (sepsis only). The cholesterol metabolism gene 7-Dehydrocholesterol Reductase ( DHCR7) was significantly upregulated in both derivation and validation cohorts in poor outcome sepsis compared to rapid recovery patients and in 90-day non-survivors (validation only) and validated using RT-qPCR analysis. Our zebrafish sepsis model showed upregulation of dhcr7 and several of the same lipid genes upregulated in poor outcome human sepsis (dhcr24, sqlea, cyp51, msmo1 , ldlra) compared to controls. We then tested six lipid-based drugs in the zebrafish sepsis model. Of these, only the Dhcr7 inhibitor AY9944 completely rescued zebrafish from LPS death in a model with 100% lethality. Conclusions: DHCR7, an important cholesterol metabolism gene, was upregulated in poor outcome sepsis patients warranting external validation. This pathway may serve as a potential therapeutic target to improve sepsis outcomes.
Collapse
Affiliation(s)
| | | | | | - Morgan Henson
- University of Florida College of Medicine - Jacksonville
| | | | | | | | | | | | | | | | - Jordan A Shavit
- University of Michigan School of Medicine Ann Arbor Michigan
| | | | | | | | | | | | | |
Collapse
|
13
|
Leung AKK, Xue YC, de Guzman A, Grzelkovski G, Kong HJ, Genga KR, Russell JA, Boyd JH, Francis GA, Walley KR. Modulation of vascular endothelial inflammatory response by proprotein convertase subtilisin-kexin type 9. Atherosclerosis 2022; 362:29-37. [PMID: 36207148 DOI: 10.1016/j.atherosclerosis.2022.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/15/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Endotoxins carried within LDL are cleared from the circulation via hepatic LDL receptor (LDLR)-mediated endocytosis. Proprotein convertase subtilisin-kexin type 9 (PCSK9) reduces this clearance by down-regulating LDLR density on hepatocytes. In addition to hepatocytes, vascular endothelial cells also express receptor targets of PCSK9, including LDLR. Therefore, we hypothesized that PCSK9 may regulate vascular endothelial cell uptake of lipopolysaccharide (LPS) and alter the vascular endothelial cell inflammatory response. METHODS AND RESULTS We found that LPS is internalized by human umbilical vein vascular endothelial cells (HUVECs) and LPS uptake dose-dependently increased with increasing LDL concentration. Intracellular LPS co-localized with LDL. PCSK9 and, separately, blocking antibodies against LDLR, dose-dependently decreased the vascular endothelial cell uptake of LPS and, furthermore, inhibition of endocytosis using Dynasore blocked LPS uptake. In contrast, blocking antibodies against TLR4 did not alter LPS uptake. PCSK9 decreased the LPS-induced proinflammatory response (IL-6 and IL-8 gene expression and protein secretion, and VCAM-1/ICAM-1 expression) in vascular endothelial cells. In addition, a decrease in PCSK9 and increase in LDLR, mediated by triciribine or siPCSK9, increased LPS uptake and the LPS-induced proinflammatory response. Similar results were also found in aortic vascular tissue from Pcsk9-/- mice after LPS injection. CONCLUSIONS Our data suggest that, similar to PCSK9 treatment in hepatocytes, PCSK9 reduces vascular endothelial cell uptake of LPS via LDLR-mediated endocytosis. Consequently, PCSK9 decreases the LPS-induced proinflammatory response in vascular endothelial cells. These results raise the possibility that PCSK9 inhibition may have additional effects on vascular endothelial inflammation via this alternative pathway, beyond the known effects of PCSK9 inhibition on LDL lowering and hepatic endotoxin clearance.
Collapse
Affiliation(s)
- Alex K K Leung
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Yuan Chao Xue
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Antyrah de Guzman
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Guilherme Grzelkovski
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - HyeJin Julia Kong
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Kelly R Genga
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - James A Russell
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - John H Boyd
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Gordon A Francis
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Keith R Walley
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
14
|
Tchéoubi SER, Akpovi CD, Coppée F, Declèves AE, Laurent S, Agbangla C, Burtea C. Molecular and cellular biology of PCSK9: impact on glucose homeostasis. J Drug Target 2022; 30:948-960. [PMID: 35723066 DOI: 10.1080/1061186x.2022.2092622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Proprotein convertase substilisin/kexin 9 (PCSK9) inhibitors (PCSK9i) revolutionised the lipid-lowering therapy. However, a risk of type 2 diabetes mellitus (T2DM) is evoked under PCSK9i therapy. In this review, we summarise the current knowledge on the link of PCSK9 with T2DM. A significant correlation was found between PCSK9 and insulin, homeostasis model assessment (HOMA) of insulin resistance and glycated haemoglobin. PCSK9 is also involved in inflammation. PCSK9 loss-of-function variants increased T2DM risk by altering insulin secretion. Local pancreatic low PCSK9 regulates β-cell LDLR expression which in turn promotes intracellular cholesterol accumulation and hampers insulin secretion. Nevertheless, the association of PCSK9 loss-of-function variants and T2DM is inconsistent. InsLeu and R46L polymorphisms were associated with T2DM, low HOMA for β-cell function and impaired fasting glucose, while the C679X polymorphism was associated with low fasting glucose in Black South African people. Hence, we assume that the impact of these variants on glucose homeostasis may vary depending on the genetic background of the studied populations and the type of effect caused by those genetic variants on the PCSK9 protein. Accordingly, these factors should be considered when choosing a genetic variant of PCSK9 to assess the impact of long-term use of PCSK9i on glucose homeostasis.
Collapse
Affiliation(s)
- Sègbédé E R Tchéoubi
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium.,Non-Communicable Diseases and Cancer Research Unit, Laboratory of Applied Biology Research, University of Abomey-Calavi - UAC, Abomey-Calavi, Benin
| | - Casimir D Akpovi
- Non-Communicable Diseases and Cancer Research Unit, Laboratory of Applied Biology Research, University of Abomey-Calavi - UAC, Abomey-Calavi, Benin
| | - Frédérique Coppée
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - Anne-Emilie Declèves
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - Clément Agbangla
- Laboratory of Molecular Genetics and Genome Analyzes, Faculty of Sciences and Technics, University of Abomey-Calavi - UAC, Abomey-Calavi, Benin
| | - Carmen Burtea
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| |
Collapse
|
15
|
Urban C, Hayes HV, Piraino G, Wolfe V, Lahni P, O'Connor M, Phares C, Zingarelli B. Colivelin, a synthetic derivative of humanin, ameliorates endothelial injury and glycocalyx shedding after sepsis in mice. Front Immunol 2022; 13:984298. [PMID: 36119052 PMCID: PMC9478210 DOI: 10.3389/fimmu.2022.984298] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Endothelial dysfunction plays a central role in the pathogenesis of sepsis-mediated multiple organ failure. Several clinical and experimental studies have suggested that the glycocalyx is an early target of endothelial injury during an infection. Colivelin, a synthetic derivative of the mitochondrial peptide humanin, has displayed cytoprotective effects in oxidative conditions. In the current study, we aimed to determine the potential therapeutic effects of colivelin in endothelial dysfunction and outcomes of sepsis in vivo. Male C57BL/6 mice were subjected to a clinically relevant model of polymicrobial sepsis by cecal ligation and puncture (CLP) and were treated with vehicle or colivelin (100-200 µg/kg) intraperitoneally at 1 h after CLP. We observed that vehicle-treated mice had early elevation of plasma levels of the adhesion molecules ICAM-1 and P-selectin, the angiogenetic factor endoglin and the glycocalyx syndecan-1 at 6 h after CLP when compared to control mice, while levels of angiopoietin-2, a mediator of microvascular disintegration, and the proprotein convertase subtilisin/kexin type 9, an enzyme implicated in clearance of endotoxins, raised at 18 h after CLP. The early elevation of these endothelial and glycocalyx damage biomarkers coincided with lung histological injury and neutrophil inflammation in lung, liver, and kidneys. At transmission electron microscopy analysis, thoracic aortas of septic mice showed increased glycocalyx breakdown and shedding, and damaged mitochondria in endothelial and smooth muscle cells. Treatment with colivelin ameliorated lung architecture, reduced organ neutrophil infiltration, and attenuated plasma levels of syndecan-1, tumor necrosis factor-α, macrophage inflammatory protein-1α and interleukin-10. These therapeutic effects of colivelin were associated with amelioration of glycocalyx density and mitochondrial structure in the aorta. At molecular analysis, colivelin treatment was associated with inhibition of the signal transducer and activator of transcription 3 and activation of the AMP-activated protein kinase in the aorta and lung. In long-term outcomes studies up to 7 days, co-treatment of colivelin with antimicrobial agents significantly reduced the disease severity score when compared to treatment with antibiotics alone. In conclusion, our data support that damage of the glycocalyx is an early pathogenetic event during sepsis and that colivelin may have therapeutic potential for the treatment of sepsis-associated endothelial dysfunction.
Collapse
Affiliation(s)
- Catherine Urban
- Division of Pediatric Critical Care, Stony Brook Children's, Stony Brook University, Stony Brook, NY, United States
| | - Hannah V Hayes
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Giovanna Piraino
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Vivian Wolfe
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Patrick Lahni
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael O'Connor
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Ciara Phares
- Department of Systems Biology and Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
16
|
Vecchié A, Bonaventura A, Meessen J, Novelli D, Minetti S, Elia E, Ferrara D, Ansaldo AM, Scaravilli V, Villa S, Ferla L, Caironi P, Latini R, Carbone F, Montecucco F. PCSK9 is associated with mortality in patients with septic shock: data from the ALBIOS study. J Intern Med 2021; 289:179-192. [PMID: 32686253 DOI: 10.1111/joim.13150] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pro-protein convertase subtilisin/kexin 9 (PCSK9) is a proenzyme primarily known to regulate low-density lipoprotein receptor re-uptake on hepatocytes. Whether PCSK9 can concurrently trigger inflammation or not remains unclear. Here, we investigated the potential association between circulating levels of PCSK9 and mortality in patients with severe sepsis or septic shock. METHODS Plasma PCSK9 levels at days 1, 2 and 7 were measured in 958 patients with severe sepsis or septic shock previously enrolled in the Albumin Italian Outcome Sepsis (ALBIOS) trial. Correlations between levels of PCSK9 and pentraxin 3 (PTX3), a biomarker of disease severity, were evaluated with ranked Spearman's coefficients. Cox proportional hazards models were used to assess the association of PCSK9 levels at day 1 with 28- and 90-day mortality. RESULTS Median plasma PCSK9 levels were 278 [182-452] ng mL-1 on day 1. PCSK9 correlated positively with PTX3 at the three time-points, and patients with septic shock within the first quartile of PCSK9 showed higher levels of PTX3. Similar mortality rates were observed in patients with severe sepsis across PCSK9 quartiles. Patients with septic shock with lower PCSK9 levels on day 1 (within the first quartile) showed the highest 28- and 90-day mortality rate as compared to other quartiles. CONCLUSION In our sub-analysis of the ALBIOS trial, we found that patients with septic shock presenting with lower plasma PCSK9 levels experienced higher mortality rate. Further studies are warranted to better evaluate the pathophysiological role of PCSK9 in sepsis.
Collapse
Affiliation(s)
- A Vecchié
- From the, First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - A Bonaventura
- From the, First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - J Meessen
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - D Novelli
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - S Minetti
- From the, First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genova - Italian Cardiovascular Network, Genoa, Italy
| | - E Elia
- From the, First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - D Ferrara
- From the, First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - A M Ansaldo
- From the, First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - V Scaravilli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milano, Italy
| | - S Villa
- Dipartimento di Anestesia e Rianimazione, Università degli Studi Milano Bicocca, ASST Monza, Monza, Italy
| | - L Ferla
- Dipartimento Emergenza Urgenza - Rianimazione, Azienda Socio Sanitaria Territoriale - Ovest Milanese, Ospedale di Legnano, Legnano, Italy
| | - P Caironi
- Department of Anesthesia and Critical Care, AOU San Luigi Gonzaga, Department of Oncology, University of Turin, Orbassano, Turin, Italy
| | - R Latini
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - F Carbone
- From the, First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genova - Italian Cardiovascular Network, Genoa, Italy
| | - F Montecucco
- IRCCS Ospedale Policlinico San Martino Genova - Italian Cardiovascular Network, Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| |
Collapse
|
17
|
Russell JA, Marshall JC, Slutsky A, Murthy S, Sweet D, Lee T, Singer J, Patrick DM, Du B, Peng Z, Cheng M, Burns KD, Harhay MO. Study protocol for a multicentre, prospective cohort study of the association of angiotensin II type 1 receptor blockers on outcomes of coronavirus infection. BMJ Open 2020; 10:e040768. [PMID: 33293316 PMCID: PMC7722825 DOI: 10.1136/bmjopen-2020-040768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION The COVID-19 epidemic grows and there are clinical trials of antivirals. There is an opportunity to complement these trials with investigation of angiotensin II type 1 receptor blockers (ARBs) because an ARB (losartan) was effective in murine influenza pneumonia. METHODS AND ANALYSIS Our innovative design includes: ARBs; alignment with the WHO Ordinal Scale (primary endpoint) to align with other COVID-19 trials; joint longitudinal analysis; and predictive biomarkers (angiotensins I, 1-7, II and ACE1 and ACE2). Our hypothesis is: ARBs decrease the need for hospitalisation, severity (need for ventilation, vasopressors, extracorporeal membrane oxygenation or renal replacement therapy) or mortality of hospitalised COVID-19 infected adults. Our two-pronged multicentre pragmatic observational cohort study examines safety and effectiveness of ARBs in (1) hospitalised adult patients with COVID-19 and (2) out-patients already on or not on ARBs. The primary outcome will be evaluated by ordinal logistic regression and main secondary outcomes by both joint longitudinal modelling analyses. We will compare rates of hospitalisation of ARB-exposed versus not ARB-exposed patients. We will also determine whether continuing ARBs or not decreases the primary outcome. Based on published COVID-19 cohorts, assuming 15% of patients are ARB-exposed, a total sample size of 497 patients can detect a proportional OR of 0.5 (alpha=0.05, 80% power) comparing WHO scale of ARB-exposed versus non-ARB-exposed patients. ETHICS AND DISSEMINATION This study has core institution approval (UBC Providence Healthcare Research Ethics Board) and site institution approvals (Health Research Ethics Board, University of Alberta; Comite d'etique de la recerche, CHU Sainte Justine (for McGill University and University of Sherbrook); Conjoint Health Research Ethics Board, University of Calgary; Queen's University Health Sciences & Affiliated Hospitals Research Ethics Board; Research Ethics Board, Sunnybrook Health Sciences Centre; Veritas Independent Research Board (for Humber River Hospital); Mount Sinai Hospital Research Ethics Board; Unity Health Toronto Research Ethics Board, St. Michael's Hospital). Results will be disseminated by peer-review publication and social media releases. TRIAL REGISTRATION NUMBER NCT04510623.
Collapse
Affiliation(s)
- James A Russell
- Medicine, The University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| | | | - Arthur Slutsky
- Medicine, University of Toronto Faculty of Medicine, Toronto, Ontario, Canada
| | - Srinivas Murthy
- Paediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dave Sweet
- Emergency Medicine, The University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Terry Lee
- Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joel Singer
- Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - David M Patrick
- Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bin Du
- Medical ICU, Peking University, Beijing, China
| | - Zhiyong Peng
- Medicine, Wuhan University Zhongnan Hospital, Wuhan, China
| | - Matthew Cheng
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Kevin D Burns
- Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael O Harhay
- Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
|
19
|
Jang E, Robert J, Rohrer L, von Eckardstein A, Lee WL. Transendothelial transport of lipoproteins. Atherosclerosis 2020; 315:111-125. [PMID: 33032832 DOI: 10.1016/j.atherosclerosis.2020.09.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
The accumulation of low-density lipoproteins (LDL) in the arterial wall plays a pivotal role in the initiation and pathogenesis of atherosclerosis. Conversely, the removal of cholesterol from the intima by cholesterol efflux to high density lipoproteins (HDL) and subsequent reverse cholesterol transport shall confer protection against atherosclerosis. To reach the subendothelial space, both LDL and HDL must cross the intact endothelium. Traditionally, this transit is explained by passive filtration. This dogma has been challenged by the identification of several rate-limiting factors namely scavenger receptor SR-BI, activin like kinase 1, and caveolin-1 for LDL as well as SR-BI, ATP binding cassette transporter G1, and endothelial lipase for HDL. In addition, estradiol, vascular endothelial growth factor, interleukins 6 and 17, purinergic signals, and sphingosine-1-phosphate were found to regulate transendothelial transport of either LDL or HDL. Thorough understanding of transendothelial lipoprotein transport is expected to elucidate new therapeutic targets for the treatment or prevention of atherosclerotic cardiovascular disease and the development of strategies for the local delivery of drugs or diagnostic tracers into diseased tissues including atherosclerotic lesions.
Collapse
Affiliation(s)
- Erika Jang
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Jerome Robert
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland
| | - Lucia Rohrer
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland.
| | - Warren L Lee
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Interdepartmental Division of Critical Care, Department of Medicine, University of Toronto, Canada; Department of Biochemistry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada.
| |
Collapse
|
20
|
Black LP, Puskarich MA, Henson M, Miller T, Reddy ST, Fernandez R, Guirgis FW. Quantitative and Qualitative Assessments of Cholesterol Association With Bacterial Infection Type in Sepsis and Septic Shock. J Intensive Care Med 2020; 36:808-817. [PMID: 32578468 DOI: 10.1177/0885066620931473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Reduced cholesterol levels are associated with increased organ failure and mortality in sepsis. Cholesterol levels may vary by infection type (gram negative vs positive), possibly reflecting differences in cholesterol-mediated bacterial clearance. METHODS This was a secondary analysis of a combined data set of 2 prospective cohort studies of adult patients meeting Sepsis-3 criteria. Infection types were classified as gram negative, gram positive, or culture negative. We investigated quantitative (levels) and qualitative (dysfunctional high-density lipoprotein [HDL]) cholesterol differences. We used multivariable logistic regression to control for disease severity. RESULTS Among 171 patients with sepsis, infections were gram negative in 67, gram positive in 46, and culture negative in 47. Both gram-negative and gram-positive infections occurred in 11 patients. Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and HDL cholesterol (HDL-C) levels were lower for culture-positive sepsis at enrollment (TC, P < .001; LDL-C, P < .001; HDL-C, P = .011) and persisted after controlling for disease severity. Similarly, cholesterol levels were lower among culture-positive patients at 48 hours (TC, P = .012; LDL-C, P = .029; HDL-C, P = .002). Triglyceride (TG) levels were lower at enrollment (P =.033) but not at 48 hours (P = .212). There were no differences in dysfunctional HDL. Among bacteremic patients, cholesterol levels were lower at enrollment (TC, P = .010; LDL-C, P = .010; HDL-C, P ≤ .001; TG, P = .005) and at 48 hours (LDL-C, P = .027; HDL-C, P < .001; TG, P = .020), except for 48 hour TC (P = .051). In the bacteremia subgroup, enrollment TC and LDL-C were lower for gram-negative versus gram-positive infections (TC, P = .039; LDL-C, P = .023). CONCLUSION Cholesterol levels are significantly lower among patients with culture-positive sepsis and bacteremia.
Collapse
Affiliation(s)
- Lauren Page Black
- Department of Emergency Medicine, 137869University of Florida College of Medicine - Jacksonville, Jacksonville, FL, USA
| | - Michael A Puskarich
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, MN, USA.,Department of Emergency Medicine, 5635University of Minnesota, Minneapolis, MN, USA
| | - Morgan Henson
- Department of Emergency Medicine, 137869University of Florida College of Medicine - Jacksonville, Jacksonville, FL, USA
| | - Taylor Miller
- Department of Emergency Medicine, 137869University of Florida College of Medicine - Jacksonville, Jacksonville, FL, USA
| | - Srinivasa T Reddy
- Department of Medicine, Molecular & Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Rosemarie Fernandez
- Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Experiential Learning and Simulation, University of Florida College of Medicine, Gainesville, FL, USA
| | - Faheem W Guirgis
- Department of Emergency Medicine, 137869University of Florida College of Medicine - Jacksonville, Jacksonville, FL, USA
| |
Collapse
|
21
|
Seidah NG, Prat A, Pirillo A, Catapano AL, Norata GD. Novel strategies to target proprotein convertase subtilisin kexin 9: beyond monoclonal antibodies. Cardiovasc Res 2020; 115:510-518. [PMID: 30629143 DOI: 10.1093/cvr/cvz003] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/06/2018] [Accepted: 01/05/2019] [Indexed: 12/15/2022] Open
Abstract
Since the discovery of the role of proprotein convertase subtilisin kexin 9 (PCSK9) in the regulation of low-density lipoprotein cholesterol (LDL-C) in 2003, a paradigm shift in the treatment of hypercholesterolaemia has occurred. The PCSK9 secreted into the circulation is a major downregulator of the low-density lipoprotein receptor (LDLR) protein, as it chaperones it to endosomes/lysosomes for degradation. Humans with loss-of-function of PCSK9 exhibit exceedingly low levels of LDL-C and are protected from atherosclerosis. As a consequence, innovative strategies to modulate the levels of PCSK9 have been developed. Since 2015 inhibitory monoclonal antibodies (evolocumab and alirocumab) are commercially available. When subcutaneously injected every 2-4 weeks, they trigger a ∼60% LDL-C lowering and a 15% reduction in the risk of cardiovascular events. Another promising approach consists of a liver-targetable specific PCSK9 siRNA which results in ∼50-60% LDL-C lowering that lasts up to 6 months (Phases II-III clinical trials). Other strategies under consideration include: (i) antibodies targeting the C-terminal domain of PCSK9, thereby inhibiting the trafficking of PCSK9-LDLR to lysosomes; (ii) small molecules that either prevent PCSK9 binding to the LDLR, its trafficking to lysosomes or its secretion from cells; (iii) complete silencing of PCSK9 by CRISPR-Cas9 strategies; (iv) PCSK9 vaccines that inhibit the activity of circulating PCSK9. Time will tell whether other strategies can be as potent and safe as monoclonal antibodies to lower LDL-C levels.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM; Affiliated to the University of Montreal), Montreal, QC H2W1R7, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM; Affiliated to the University of Montreal), Montreal, QC H2W1R7, Canada
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy.,IRCCS MultiMedica, Milan, Italy
| | - Alberico Luigi Catapano
- IRCCS MultiMedica, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Danilo Norata
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
22
|
Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Is Not Induced in Artificial Human Inflammation and Is Not Correlated with Inflammatory Response. Infect Immun 2020; 88:IAI.00842-19. [PMID: 31843964 PMCID: PMC7035937 DOI: 10.1128/iai.00842-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/23/2019] [Indexed: 01/13/2023] Open
Abstract
Lipoproteins, as well as proprotein convertase subtilisin/kexin type 9 (PCSK9), have been shown to play a key role in the innate immune response. However, knowledge about the role and kinetics of PCSK9 in human inflammation is currently insufficient. This study aimed to investigate the interaction between inflammation and lipid metabolism, including the possible role of PCSK9. A single-blinded, placebo-controlled cross-over study using the human endotoxin model was performed. Lipoproteins, as well as proprotein convertase subtilisin/kexin type 9 (PCSK9), have been shown to play a key role in the innate immune response. However, knowledge about the role and kinetics of PCSK9 in human inflammation is currently insufficient. This study aimed to investigate the interaction between inflammation and lipid metabolism, including the possible role of PCSK9. A single-blinded, placebo-controlled cross-over study using the human endotoxin model was performed. Ten healthy men received lipopolysaccharide (LPS) or placebo on two different study days after overnight fasting. Lipoproteins as well as PCSK9 were measured repetitively over 48 h. PCSK9 plasma concentrations were not induced by LPS infusion, and no correlation between PCSK9 plasma concentrations and the degree of inflammation could be identified. The observed low-density lipoprotein (LDL) response to inflammation was more complex than anticipated, especially in the very early phase after the inflammatory stimulus. Baseline concentrations of LDL, as well as high-density lipoprotein (HDL), correlated negatively with inflammatory response. Our data suggest that the lipoprotein response to inflammation is independent of PCSK9. The proposed elevations of PCSK9 and suspected correlations between PCSK9 levels and inflammatory response are not supported by our data. (This study has been registered at ClinicalTrials.gov under registration no. NCT03392701.)
Collapse
|
23
|
Trinder M, Genga KR, Kong HJ, Blauw LL, Lo C, Li X, Cirstea M, Wang Y, Rensen PCN, Russell JA, Walley KR, Boyd JH, Brunham LR. Cholesteryl Ester Transfer Protein Influences High-Density Lipoprotein Levels and Survival in Sepsis. Am J Respir Crit Care Med 2020; 199:854-862. [PMID: 30321485 DOI: 10.1164/rccm.201806-1157oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RATIONALE High-density lipoprotein (HDL) cholesterol (HDL-C) levels decline during sepsis, and lower levels are associated with worse survival. However, the genetic mechanisms underlying changes in HDL-C during sepsis, and whether the relationship with survival is causative, are largely unknown. OBJECTIVES We hypothesized that variation in genes involved in HDL metabolism would contribute to changes in HDL-C levels and clinical outcomes during sepsis. METHODS We performed targeted resequencing of HDL-related genes in 200 patients admitted to an emergency department with sepsis (Early Infection cohort). We examined the association of genetic variants with HDL-C levels, 28-day survival, 90-day survival, organ dysfunction, and need for vasopressor or ventilatory support. Candidate variants were further assessed in the VASST (Vasopressin versus Norepinephrine Infusion in Patients with Septic Shock Trial) cohort (n = 632) and St. Paul's Hospital Intensive Care Unit 2 (SPHICU2) cohort (n = 203). MEASUREMENTS AND MAIN RESULTS We identified a rare missense variant in CETP (cholesteryl ester transfer protein gene; rs1800777-A) that was associated with significant reductions in HDL-C levels during sepsis. Carriers of the A allele (n = 10) had decreased survival, more organ failure, and greater need for organ support compared with noncarriers. We replicated this finding in the VASST and SPHICU2 cohorts, in which carriers of rs1800777-A (n = 35 and n = 12, respectively) had significantly reduced 28-day survival. Mendelian randomization was consistent with genetically reduced HDL levels being a causal factor for decreased sepsis survival. CONCLUSIONS Our results identify CETP as a critical regulator of HDL levels and clinical outcomes during sepsis. These data point toward a critical role for HDL in sepsis.
Collapse
Affiliation(s)
- Mark Trinder
- 1 Centre for Heart Lung Innovation and.,2 Experimental Medicine Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly R Genga
- 1 Centre for Heart Lung Innovation and.,2 Experimental Medicine Program, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Lisanne L Blauw
- 3 Department of Medicine, Division of Endocrinology and.,4 Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Cody Lo
- 1 Centre for Heart Lung Innovation and
| | - Xuan Li
- 1 Centre for Heart Lung Innovation and
| | | | - Yanan Wang
- 3 Department of Medicine, Division of Endocrinology and.,4 Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Patrick C N Rensen
- 3 Department of Medicine, Division of Endocrinology and.,4 Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands; and
| | - James A Russell
- 1 Centre for Heart Lung Innovation and.,5 Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Keith R Walley
- 1 Centre for Heart Lung Innovation and.,5 Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - John H Boyd
- 1 Centre for Heart Lung Innovation and.,2 Experimental Medicine Program, University of British Columbia, Vancouver, British Columbia, Canada.,5 Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam R Brunham
- 1 Centre for Heart Lung Innovation and.,2 Experimental Medicine Program, University of British Columbia, Vancouver, British Columbia, Canada.,5 Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Very Low Density Lipoprotein Receptor Sequesters Lipopolysaccharide Into Adipose Tissue During Sepsis. Crit Care Med 2020; 48:41-48. [DOI: 10.1097/ccm.0000000000004064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Proprotein Convertase Subtilisin/Kexin Type 9 Inhibition and Survival in Sepsis: Causal Inference Through Human Genetics. Crit Care Med 2019; 47:489-491. [PMID: 30768512 DOI: 10.1097/ccm.0000000000003609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Abstract
The role of biomarkers for detection of sepsis has come a long way. Molecular biomarkers are taking front stage at present, but machine learning and other computational measures using bigdata sets are promising. Clinical research in sepsis is hampered by lack of specificity of the diagnosis; sepsis is a syndrome with no uniformly agreed definition. This lack of diagnostic precision means there is no gold standard for this diagnosis. The final conclusion is expert opinion, which is not bad but not perfect. Perhaps machine learning will displace expert opinion as the final and most accurate definition for sepsis.
Collapse
Affiliation(s)
- Steven M Opal
- Infectious Disease Division, Alpert Medical School of Brown University, Ocean State Clinical Coordinating Center at Rhode Island Hospital, 1 Virginia Avenue Suite 105, Providence, RI 02905, USA.
| | - Xavier Wittebole
- Critical Care Department, (Pr Laterre), Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| |
Collapse
|
27
|
Jamialahmadi T, Panahi Y, Safarpour MA, Ganjali S, Chahabi M, Reiner Z, Solgi S, Vahedian-Azimi A, Kianpour P, Banach M, Sahebkar A. Association of Serum PCSK9 Levels with Antibiotic Resistance and Severity of Disease in Patients with Bacterial Infections Admitted to Intensive Care Units. J Clin Med 2019; 8:1742. [PMID: 31635200 PMCID: PMC6833014 DOI: 10.3390/jcm8101742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The results of several studies have suggested that infections and sepsis, either bacterial or viral, might be associated with elevated plasma proprotein convertase subtilisin/kexin type 9 (PCSK9) levels. Since there are no data on PCSK9 levels and antibiotic resistance or the severity of disease in patients with bacterial infections in intensive care units, the aim of this study was to investigate whether any such associations exist. METHODS 100 patients (46 males, mean age 67.12 ± 1.34 years) with bacterial infections who were staying in an intensive care unit (ICU) longer than 48 h but less than 7 days and who were not receiving corticosteroids were analyzed. Their serum levels of albumin, C-reactive protein, glucose, lactate, blood urea nitrogen, prothrombin (international normalized ratio), total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, PCSK9, and procalcitonin were measured. The severity of the patients' condition was assessed by using the Glasgow Coma Scale (GCS), the Sequential Organ Failure Assessment (SOFA), and the Acute Physiology and Chronic Health Evaluation II (APACHE II) scales. RESULTS Using a hierarchical regression modeling approach, no significant association was found between PCSK9 levels and either the severity of disease (APACHE II, SOFA, and GCS) indices or resistance to antibiotics. CONCLUSION The results suggest that there is no association between PCSK9 levels and resistance to antibiotics or the condition of patients hospitalized in intensive care units.
Collapse
Affiliation(s)
- Tannaz Jamialahmadi
- Halal Research Center of IRI, FDA, Tehran, Iran.
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
| | - Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran 143591647, Iran.
| | | | - Shiva Ganjali
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
| | - Mahdi Chahabi
- Department of Biochemistry, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37515374, Iran.
| | - Zeljko Reiner
- University Hospital Center Zagreb, Department of Internal medicine, Kišpatićeva 12, 10000 Zagreb, Croatia.
| | - Saeed Solgi
- Department of Biochemistry, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37515374, Iran.
| | - Amir Vahedian-Azimi
- Trauma Research Center, Nursing Faculty, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Parisa Kianpour
- Clinical Pharmacy Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, 90549 Lodz, Poland.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), 93338 Lodz, Poland.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948567, Iran.
| |
Collapse
|
28
|
Mikaeeli S, Susan‐Resiga D, Girard E, Ben Djoudi Ouadda A, Day R, Prost S, Seidah NG. Functional analysis of natural
PCSK
9 mutants in modern and archaic humans. FEBS J 2019; 287:515-528. [DOI: 10.1111/febs.15036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/03/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Sepideh Mikaeeli
- Laboratory of Biochemical Neuroendocrinology Clinical Research Institute of Montreal Canada
| | - Delia Susan‐Resiga
- Laboratory of Biochemical Neuroendocrinology Clinical Research Institute of Montreal Canada
| | - Emmanuelle Girard
- Laboratory of Biochemical Neuroendocrinology Clinical Research Institute of Montreal Canada
| | - Ali Ben Djoudi Ouadda
- Laboratory of Biochemical Neuroendocrinology Clinical Research Institute of Montreal Canada
| | - Robert Day
- Department of Surgery/Urology Division Faculté de Médecine et des Sciences de la Santé Institut de Pharmacologie de Sherbrooke Université de Sherbrooke Canada
| | - Stefan Prost
- LOEWE‐Center for Translational Biodiversity Genomics Senckenberg Nature Research Society Frankfurt Germany
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology Clinical Research Institute of Montreal Canada
| |
Collapse
|
29
|
Trinder M, Boyd JH, Brunham LR. Molecular regulation of plasma lipid levels during systemic inflammation and sepsis. Curr Opin Lipidol 2019; 30:108-116. [PMID: 30649022 DOI: 10.1097/mol.0000000000000577] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Sepsis is a common syndrome of multiorgan system dysfunction caused by a dysregulated inflammatory response to an infection and is associated with high rates of mortality. Plasma lipid and lipoprotein levels and composition change profoundly during sepsis and have emerged as both biomarkers and potential therapeutic targets for this condition. The purpose of this article is to review recent progress in the understanding of the molecular regulation of lipid metabolism during sepsis. RECENT FINDINGS Patients who experience greater declines in high-density lipoprotein during sepsis are at much greater risk of succumbing to organ failure and death. Although the causality of these findings remains unclear, all lipoprotein classes can sequester and prevent the excessive inflammation caused by pathogen-associated lipids during severe infections such as sepsis. This primordial innate immune function has been best characterized for high-density lipoproteins. Most importantly, results from human genetics and preclinical animal studies have suggested that several lipid treatment strategies, initially designed for atherosclerosis, may hold promise as therapies for sepsis. SUMMARY Lipid and lipoprotein metabolism undergoes significant changes during sepsis. An improved understanding of the molecular regulation of these changes may lead to new opportunities for the treatment of sepsis.
Collapse
Affiliation(s)
- Mark Trinder
- Centre for Heart Lung Innovation
- Department of Experimental Medicine Program
| | - John H Boyd
- Centre for Heart Lung Innovation
- Department of Experimental Medicine Program
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam R Brunham
- Centre for Heart Lung Innovation
- Department of Experimental Medicine Program
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Brown M, Ahmed S. Emerging role of proprotein convertase subtilisin/kexin type-9 (PCSK-9) in inflammation and diseases. Toxicol Appl Pharmacol 2019; 370:170-177. [PMID: 30914377 DOI: 10.1016/j.taap.2019.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9) is most recognized serine protease for its role in cardiovascular diseases (CVD). PCSK9 regulates plasma low-density lipoprotein cholesterol (LDL-C) levels by selectively targeting hepatic LDL receptors (LDLR) for degradation, thereby serving as a potential therapeutic target for CVD. New pharmacological agents under development aim to lower the risk of CVD by inhibiting PCSK9 extracellularly, although secondary effects of this approach are not yet studied. Here we review the history of PCSK9 and rationale behind developing inhibitors for CVD. Importantly, we summarized the studies investigating the role and impact of modulated PCSK9 levels in inflammation, specifically in sepsis, rheumatoid arthritis and other chronic inflammatory conditions. Furthermore, we summarized studies that investigated the interactions of PCSK9 with pro-inflammatory pathways, such as scavenger receptor CD36 and thrombospondin 1 (TSP-1) in inflammatory diseases. This review highlights the conflicting role that PCSK9 plays in different inflammatory disease states and postulates that any unwanted effects of PCSK9 inhibition in early clinical testing should critically be examined.
Collapse
Affiliation(s)
- Madalyn Brown
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA; Division of Rheumatology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
31
|
Walley KR, Boyd JH, Kong HJ, Russell JA. Low Low-Density Lipoprotein Levels Are Associated With, But Do Not Causally Contribute to, Increased Mortality in Sepsis*. Crit Care Med 2019; 47:463-466. [DOI: 10.1097/ccm.0000000000003551] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Genga KR, Lo C, Cirstea MS, Leitao Filho FS, Walley KR, Russell JA, Linder A, Francis GA, Boyd JH. Impact of PCSK9 loss-of-function genotype on 1-year mortality and recurrent infection in sepsis survivors. EBioMedicine 2018; 38:257-264. [PMID: 30473376 PMCID: PMC6306489 DOI: 10.1016/j.ebiom.2018.11.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022] Open
Abstract
Background Reduced activity of proprotein convertase subtilisin/kexin type 9 (PCSK9) has been associated with decreased short-term death in patients with septic shock. Whether PCSK9 genotype influences long-term outcomes in sepsis survivors is unknown. Methods We evaluated the impact of PCSK9 loss-of-function (LOF) genotype on both 1-year mortality and infection-related readmission (IRR) after an index sepsis admission. The Derivation cohort included 342 patients who survived 28 days after a sepsis admission in a tertiary hospital (Vancouver/Canada, 2004–2014), while an independent Validation cohort included 1079 septic shock patients admitted at the same hospital (2000–2006). All patients were genotyped for three common missense PCSK9 LOF variants rs11591147, rs11583680, rs562556 and were classified in 3 groups: Wildtype, single PCSK9 LOF, and multiple PCSK9 LOF, according to the number of LOF alleles per patient. We also performed a meta-analysis using both cohorts to investigate the effects of PCSK9 genotype on 90-day survival. Findings In the Derivation cohort, patients carrying multiple PCSK9 LOF alleles showed lower risk for the composite outcome 1-year death or IRR (HR: 0.40, P = 0.006), accelerated reduction on neutrophil counts (P = 0.010), and decreased levels of PCSK9 (P = 0.037) compared with WT/single LOF groups. Our meta-analysis revealed that the presence of multiple LOF alleles was associated with lower 90-day mortality risk (OR = 0.69, P = 0.020). Interpretation The presence of multiple PCSK9 LOF alleles decreased the risk of 1-year death or IRR in sepsis survivors. Biological measures suggest this may be related to an enhanced resolution of the initial infection. Funding Canadian Institutes of Health Research (PJT-156056).
Collapse
Affiliation(s)
- Kelly Roveran Genga
- Corresponding author at: Centre for Heart Lung Innovation, St. Paul's Hospital, Room 166 - 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada.
| | - Cody Lo
- Corresponding author at: Centre for Heart Lung Innovation, St. Paul's Hospital, Room 166 - 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Mihai S Cirstea
- Corresponding author at: Centre for Heart Lung Innovation, St. Paul's Hospital, Room 166 - 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Fernando Sergio Leitao Filho
- Corresponding author at: Centre for Heart Lung Innovation, St. Paul's Hospital, Room 166 - 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Keith R Walley
- Corresponding author at: Centre for Heart Lung Innovation, St. Paul's Hospital, Room 166 - 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - James A Russell
- Corresponding author at: Centre for Heart Lung Innovation, St. Paul's Hospital, Room 166 - 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Adam Linder
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Gordon A Francis
- Corresponding author at: Centre for Heart Lung Innovation, St. Paul's Hospital, Room 166 - 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - John H Boyd
- Corresponding author at: Centre for Heart Lung Innovation, St. Paul's Hospital, Room 166 - 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
33
|
Tang ZH, Li TH, Peng J, Zheng J, Li TT, Liu LS, Jiang ZS, Zheng XL. PCSK9: A novel inflammation modulator in atherosclerosis? J Cell Physiol 2018; 234:2345-2355. [PMID: 30246446 DOI: 10.1002/jcp.27254] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Proprotein convertase subtilisin/kexin 9 (PCSK9) is the ninth member of the secretory serine protease family. It binds to low-density lipoprotein receptor (LDLR) for endocytosis and lysosome degradation in the liver, resulting in an increasing in circulating LDL-cholesterol (LDL-c) level. Since a PCSK9 induced increase in plasma LDL-c contributes to atherosclerosis, PCSK9 inhibition has become a new strategy in preventing and treating atherosclerosis. However, in addition to the effect of PCSK9 on elevating blood LDL-c levels, accumulating evidence shows that PCSK9 plays an important role in inflammation, likely representing another major mechanism for PCSK9 to promote atherosclerosis. In this review, we discuss the association of PCSK9 and inflammation, and highlight the specific effects of PCSK9 on different vascular cellular components involved in the atherosclerotic inflammation. We also discuss the clinical evidence for the association between PCSK9 and inflammation in atherosclerotic cardiovascular disease. A better understanding of the direct association of PCSK9 with atherosclerotic inflammation might help establish a new role for PCSK9 in vascular biology and identify a novel molecular mechanism for PCSK9 therapy.
Collapse
Affiliation(s)
- Zhi-Han Tang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China.,Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, Calgary, Alberta, Canada
| | - Tao-Hua Li
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Juan Peng
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China.,Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, Calgary, Alberta, Canada
| | - Jie Zheng
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Ting-Ting Li
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Lu-Shan Liu
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Zhi-Sheng Jiang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, Calgary, Alberta, Canada
| |
Collapse
|
34
|
The cardiovascular system in critical illness. Curr Opin Crit Care 2018; 22:413-5. [PMID: 27537111 DOI: 10.1097/mcc.0000000000000348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Genga KR, Shimada T, Boyd JH, Walley KR, Russell JA. The Understanding and Management of Organism Toxicity in Septic Shock. J Innate Immun 2018; 10:502-514. [PMID: 29763894 DOI: 10.1159/000487818] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/17/2018] [Indexed: 12/13/2022] Open
Abstract
The toxicity caused by different organisms in septic shock is substantially complex and characterized by an intricate pathogenicity that involves several systems and pathways. Immune cells' pattern recognition receptors initiate the host response to pathogens after the recognition of pathogen-associated molecular patterns. In essence, the subsequent activation of downstream pathways may progress to infection resolution or to a dysregulated host response that represents the hallmark of organ injury in septic shock. Likewise, the management of organism toxicity in septic shock is complicated and comprises a multiplicity of suitable targets. In this review, the classic immune responses to pathogens are discussed as well as other factors that are relevant in the pathogenicity of septic shock, including sepsis-induced immune suppression, inflammasome activation, intestinal permeability, and the role of lipids and proprotein convertase subtilisin/kexin type 9. Current therapies aiming to eliminate the organisms causing septic shock, recent and ongoing trials in septic shock treatment, and potential new therapeutic strategies are also explored.
Collapse
Affiliation(s)
| | - Tadanaga Shimada
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada
| | - John H Boyd
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada.,Division of Critical Care Medicine, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Keith R Walley
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada.,Division of Critical Care Medicine, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - James A Russell
- Centre for Heart Lung Innovation, Vancouver, British Columbia, .,Division of Critical Care Medicine, St. Paul's Hospital, Vancouver, British Columbia,
| |
Collapse
|
36
|
Role of lipoproteins and proprotein convertase subtilisin/kexin type 9 in endotoxin clearance in sepsis. Curr Opin Crit Care 2018; 22:464-9. [PMID: 27552305 DOI: 10.1097/mcc.0000000000000351] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is a recent high-impact cardiovascular intervention aimed at reducing low-density lipoprotein (LDL) cholesterol levels. Notably, pathogen lipids are also carried in lipoprotein particles and are cleared by hepatocyte LDL receptors. Therefore, the role of PCSK9 in sepsis is reviewed. RECENT FINDINGS Endogenous PCSK9 decreases clearance of LDL cholesterol by decreasing the number of LDL receptors on hepatocytes. Similarly, PCSK9 decreases clearance of pathogen lipids, such as endotoxin, carried in LDL. Pathogen lipids, such as lipopolysaccharide (LPS) from gram-negative organisms or lipoteichoic acid from gram-positive organisms, are carried in high-density lipoprotein, LDL, and very low-density lipoprotein particles. Transfer proteins that handle pathogen lipids (e.g., LPS binding protein) are homologous to transfer proteins that handle cholesterol (e.g., phospholipid transfer protein, cholesterol ester transfer protein). Reduction in PCSK9 function results in increased LPS clearance, a decreased inflammatory response, and improved clinical outcomes in mice. PCSK9 inhibition improves survival in septic mice. Similarly, humans who carry loss-of-function variants of the PCSK9 gene have increased survival in sepsis. SUMMARY PCSK9 inhibition may be a useful strategy to increase pathogen lipid clearance in the treatment of patients with sepsis.
Collapse
|
37
|
Dwivedi DJ, Grin PM, Khan M, Prat A, Zhou J, Fox-Robichaud AE, Seidah NG, Liaw PC. Differential Expression of PCSK9 Modulates Infection, Inflammation, and Coagulation in a Murine Model of Sepsis. Shock 2018; 46:672-680. [PMID: 27405064 DOI: 10.1097/shk.0000000000000682] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Proprotein convertase subtilisin/kexin type 9 (PCSK9) targets lipoprotein receptors for degradation, thereby reducing hepatic lipid clearance. PCSK9 inhibition reduces mortality in septic mice, presumably through increased hepatic clearance of pathogen lipids due to increased lipoprotein receptor concentrations. However, PCSK9 overexpression in vivo has not been studied in sepsis. Therefore, this study aimed to evaluate the effects of differential PCSK9 expression on systemic infection, inflammation, and coagulation in sepsis. METHODS Wild-type, PCSK9 knockout (KO), and transgenic (Tg) mice that overexpress PCSK9 were subjected to sham surgery or cecal ligation and puncture (CLP). Bacterial loads were measured in lungs, peritoneal cavity fluid, and blood. Organ pathology was assessed in lungs, liver, and kidneys. Lung myeloperoxidase activity, and plasma concentrations of alanine aminotransferase (ALT), creatinine, cell-free DNA (cfDNA), protein C, thrombin-antithrombin (TAT) complexes, interleukin (IL)-6, and IL-10 were also measured 6 h postoperatively. Morbidity was assessed for 16 h following CLP. RESULTS Overexpression of PCSK9 in mice increased liver and kidney pathology, plasma IL-6, ALT, and TAT concentrations during sepsis, whereas PCSK9 KO mice exhibited reduced bacterial loads, lung and liver pathology, myeloperoxidase activity, plasma IL-10, and cfDNA during CLP-induced sepsis. All septic mice had reduced plasma levels of protein C, but the protein C ratio relative to normal was significantly decreased in PCSK9 Tg mice. Dyspnea, cyanosis, and overall grimace scores were greatest in septic mice overexpressing PCSK9, whereas PCSK9 KO mice retained core body temperature during sepsis. CONCLUSION These findings demonstrate that PCSK9 deficiency confers protection against systemic bacterial dissemination, organ pathology, and tissue inflammation, particularly in the lungs and liver, while PCSK9 overexpression exacerbates multi-organ pathology as well as the hypercoagulable and pro-inflammatory states in early sepsis.
Collapse
Affiliation(s)
- Dhruva J Dwivedi
- *Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada †Department of Medicine, McMaster University, Hamilton, Ontario, Canada ‡Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada §Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), University of Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kaysen GA, Grimes B, Dalrymple LS, Chertow GM, Ishida JH, Delgado C, Segal M, Chiang J, Dwyer T, Johansen KL. Associations of lipoproteins with cardiovascular and infection-related outcomes in patients receiving hemodialysis. J Clin Lipidol 2017; 12:481-487.e14. [PMID: 29361496 DOI: 10.1016/j.jacl.2017.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND In hemodialysis (HD) patients, higher lipid levels are associated with lower mortality. Lipid-lowering therapy does not reduce all-cause mortality or cardiovascular (CV) mortality. Lipoproteins play a role in the innate immune system. Our objective was to determine whether protection from infection might counterbalance adverse CV outcomes associated with lipoproteins. METHODS We examined associations between serum apolipoprotein (Apo) A1, B, C2, C3, high-density lipoprotein and low-density lipoprotein (LDL) cholesterol and triglyceride levels and infectious mortality or hospitalization, CV mortality or hospitalization, and all-cause mortality in 433 prevalent HD patients. Cox models with time-varying apolipoprotein concentrations collected every 6 months for up to 2 years were used for analyses. RESULTS Median follow-up time for all-cause mortality was 2.7 years (25th-75th percentile range: 2.2-3.4 years). One hundred seventy-nine (41%) patients had an infection-related event. In multivariable models, higher Apo B and LDL were associated with lower risks of infection-related outcomes (hazard ratio Apo B 0.92 [95% confidence interval 0.86-0.99 per 10 mg/dL, P = .03]; hazard ratio LDL 0.93 [95% confidence interval 0.87-1.00 per 10 mg/dL, P = .05]). Sixty-three (15%) participants had a CV-related event. No significant associations were observed between lipoproteins and CV outcomes. Eighty-seven (20%) participants died. Higher Apo A1, Apo B, and Apo C3 were associated with lower risks of all-cause mortality. There was no interaction between the use of lipid-lowering medication and any of the outcomes. CONCLUSION Associations of lipoproteins with lower risk of serious infection accompanied by no significant association with CV events may help to explain the paradoxical association between lipids and survival and lack of benefit of lipid-lowering therapies in HD.
Collapse
Affiliation(s)
- George A Kaysen
- Division of Nephrology, Department of Medicine, University of California Davis School of Medicine, Davis, CA, USA; Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, CA, USA.
| | - Barbara Grimes
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | | | - Glenn M Chertow
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Julie H Ishida
- Division of Nephrology, Department of Medicine, University of California, San Francisco, CA, USA; Nephrology Section, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Cynthia Delgado
- Division of Nephrology, Department of Medicine, University of California, San Francisco, CA, USA; Nephrology Section, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Mark Segal
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Janet Chiang
- Endocrinology Section, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Division of Endocrinology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Tjien Dwyer
- Division of Nephrology, Department of Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | - Kirsten L Johansen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA; Division of Nephrology, Department of Medicine, University of California, San Francisco, CA, USA; Nephrology Section, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| |
Collapse
|
39
|
Sun HL, Wu YR, Song FF, Gan J, Huang LY, Zhang L, Huang C. Role of PCSK9 in the Development of Mouse Periodontitis Before and After Treatment: A Double-Edged Sword. J Infect Dis 2017; 217:667-680. [DOI: 10.1093/infdis/jix574] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/01/2017] [Indexed: 01/30/2023] Open
Affiliation(s)
- Hua Ling Sun
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Hubei, People’s Republic of China
| | - Yan Ru Wu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Hubei, People’s Republic of China
| | - Fang Fang Song
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Hubei, People’s Republic of China
| | - Jing Gan
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Hubei, People’s Republic of China
| | - Li Yuan Huang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Hubei, People’s Republic of China
| | - Lu Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Hubei, People’s Republic of China
| | - Cui Huang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Hubei, People’s Republic of China
| |
Collapse
|
40
|
Genga KR, Russell JA. Update of Sepsis in the Intensive Care Unit. J Innate Immun 2017; 9:441-455. [PMID: 28697503 DOI: 10.1159/000477419] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/08/2017] [Indexed: 01/28/2023] Open
Abstract
Sepsis, the most common cause of admission to an intensive care unit (ICU), has had an increased incidence and prevalence over the last years with a simultaneous decrease in its short-term mortality. Sepsis survivors are more frequently discharged from hospital and often experience long-term outcomes such as late mortality, immune dysfunction, secondary infections, impaired quality of life, and unplanned readmissions. Early recognition and management of sepsis have challenged emergency care and critical care physicians and nurses. New sepsis definitions were produced and the Surviving Sepsis Campaign (SSC) 2016 was updated recently. Although hospital readmissions after sepsis are common, associated risk factors and how to manage patients who survive an episode of sepsis still need clarification. The immune dysfunction caused by sepsis/septic shock is complex, persistent, affects inflammatory and anti-inflammatory systems, and might be associated with long-term outcomes of sepsis. Several randomized controlled trials (RCT) that analyzed new (and old) interventions in sepsis/septic shock are discussed in this review in parallel with the SSC 2016 recommendations and other guidelines when relevant. RCTs addressing incidence, treatment, and prevention of important sepsis-associated organ dysfunction such as the acute respiratory distress syndrome, acute kidney injury, and brain dysfunction are highlighted. Finally, we briefly discuss the need for novel targets, predictive biomarkers, and new designs of RCTs in sepsis.
Collapse
Affiliation(s)
- Kelly Roveran Genga
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
41
|
Hypercholesterolemia: The role of PCSK9. Arch Biochem Biophys 2017; 625-626:39-53. [DOI: 10.1016/j.abb.2017.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/29/2017] [Accepted: 06/02/2017] [Indexed: 01/06/2023]
|
42
|
Jaworski K, Jankowski P, Kosior DA. PCSK9 inhibitors - from discovery of a single mutation to a groundbreaking therapy of lipid disorders in one decade. Arch Med Sci 2017; 13:914-929. [PMID: 28721159 PMCID: PMC5510512 DOI: 10.5114/aoms.2017.65239] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
Hypercholesterolemia is one of the main risk factors for coronary heart disease and significantly contributes to the high mortality associated with cardiovascular diseases. Statin therapy represents the gold standard in the reduction of low-density lipoprotein cholesterol concentration. Nevertheless, many patients still cannot achieve the recommended target levels, due to either inadequate effectiveness or intolerance of these drugs. Monoclonal antibodies that inhibit proprotein convertase subtilisin/kexin type 9 (PCSK9) have emerged as a promising option in lipid-lowering treatment. After confirmation of their efficacy and safety in clinical trials, evolocumab and alirocumab received approval from the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) for introduction into clinical practice. In this review, we present a history of the development and mechanisms of action, as well as the results of the most important studies concerning PCSK9 inhibitors.
Collapse
Affiliation(s)
- Krzysztof Jaworski
- 2 Department of Coronary Artery Disease, Institute of Cardiology, Warsaw, Poland
| | - Piotr Jankowski
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Dariusz A. Kosior
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
43
|
Cai Y, Lu D, Zou Y, Zhou C, Liu H, Tu C, Li F, Liu L, Zhang S. Curcumin Protects Against Intestinal Origin Endotoxemia in Rat Liver Cirrhosis by Targeting PCSK9. J Food Sci 2017; 82:772-780. [PMID: 28196290 DOI: 10.1111/1750-3841.13647] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/16/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022]
Abstract
Intestinal origin endotoxemia always occurs in severe liver injury. The aim of the current study was to test antiendotoxemia effect of curcumin on tetrachloride (CCl4 )-induced liver cirrhosis rats, and to elucidate the underlying molecular mechanism. Rat cirrhosis models were constructed with CCl4 subcutaneous injections with curcumin (200 mg/kg/d) administered via gavages for 12 wk until the rats were sacrificed. We found that the administration of curcumin improved the physiological condition pertaining to activity index and temperature, and ameliorated the liver injury in CCl4 -induced cirrhosis rats. Enzyme-linked immunosorbent assay (ELISA) and real-time quantitative polymerase chain reaction (qRT-PCR) showed that curcumin could reduce c-reaction protein levels and inflammatory cytokine (TNF-α, IL-1β, IL-6, and CINC-1/IL-8) concentrations in peripheral serum and liver tissue. Furthermore, curcumin treatment decreased lipopolysaccharide (LPS) levels in peripheral vein, but not in portal vein. As low-density lipoprotein receptor (LDLR) is the important receptor on the surface of hepatocyte during LPS detoxification process, we used qRT-PCR, western blot, and immunohistochemistry (IHC), finding that curcumin significantly increased LDLR protein levels, but not gene levels in the liver tissues. We also tested proprotein convertase subtilisin/kexin type 9 (PCSK9), one negative regulator of LDLR, by qRT-PCR, western blot, and IHC. The results showed that PCSK9 significantly decreased both gene and protein levels in the rat liver tissues of curcumin treatment. Thus, we concluded that curcumin could function to protect against intestinal origin endotoxemia by inhibiting PCSK9 to promote LDLR expression, thereby enhancing LPS detoxification as one pathogen lipid through LDLR in the liver.
Collapse
Affiliation(s)
- Yu Cai
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Di Lu
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Yanting Zou
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Chaohui Zhou
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Hongchun Liu
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Chuantao Tu
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Feng Li
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Lili Liu
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| | - Shuncai Zhang
- Dept. of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan Univ., 180 Fenglin Rd., Xuhui District, Shanghai, P.R. China
| |
Collapse
|
44
|
Momtazi AA, Banach M, Sahebkar A. PCSK9 inhibitors in sepsis: a new potential indication? Expert Opin Investig Drugs 2016; 26:137-139. [PMID: 27967260 DOI: 10.1080/13543784.2017.1272570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Amir Abbas Momtazi
- a Student Research Committee, Nanotechnology Research Center, Department of Medical Biotechnology, School of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Maciej Banach
- b Department of Hypertension , WAM University Hospital in Lodz, Medical University of Lodz , Lodz , Poland
| | - Amirhossein Sahebkar
- c Biotechnology Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
45
|
Sirois F, Chrétien M, Mbikay M. Comparing expression and activity of PCSK9 in SPRET/EiJ and C57BL/6J mouse strains shows lack of correlation with plasma cholesterol. Mol Genet Metab Rep 2016; 10:11-17. [PMID: 27995077 PMCID: PMC5155046 DOI: 10.1016/j.ymgmr.2016.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/26/2016] [Indexed: 01/03/2023] Open
Abstract
Objective Low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) are opposing regulators of plasma LDL-cholesterol levels. The PCSK9 gene exhibits many single or compound polymorphisms within or among mammalian species. This is case between the SPRET/EiJ (SPRET) and C57BL/6J (B6) mouse strains. We examined whether these polymorphisms could be associated with differential expression and activity of their respective PCSK9 molecules. Methods Liver expression of LDLR and PCSK9 transcripts were assessed by RT-PCR, and that of their corresponding proteins by immunoblotting. Purified recombinant PCSK9 proteins were assayed for their ability to degrade LDLR. Pcsk9 gene proximal promoters were tested for activation of a luciferase reporter gene. Results SPRET and B6 mice carried comparable levels of plasma cholesterol in spite of the fact that SPRET mice expressed less PCSK9 and more LDLR in liver. There were indels and single-base differences between their Pcsk9 cDNA and promoter sequences. Ex vivo, SPRET PCSK9 protein was less secreted but was more active at degrading LDLR. Its gene promoter was more active at driving expression of the luciferase reporter. Conclusions Collectively, these results suggest that, compared to the B6 mouse, the SPRET mouse may represent an example of absence of direct correlation between PCSK9 and cholesterol levels in plasma, due to genetic variations leading to reduced secretion of PCSK9 associated with greater LDLR-degrading activity.
Collapse
Affiliation(s)
- Francine Sirois
- Functional Endoproteolysis Laboratory, Clinical Research Institute of Montreal, 110 avenue des Pins Ouest, Montreal, Quebec H2W 1R7, Canada
| | - Michel Chrétien
- Functional Endoproteolysis Laboratory, Clinical Research Institute of Montreal, 110 avenue des Pins Ouest, Montreal, Quebec H2W 1R7, Canada; Chronic Disease Program, Ottawa Hospital Research Institute, 725 Parkdale Avenue, Ottawa, Ontario K1Y 4E9, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Majambu Mbikay
- Functional Endoproteolysis Laboratory, Clinical Research Institute of Montreal, 110 avenue des Pins Ouest, Montreal, Quebec H2W 1R7, Canada; Chronic Disease Program, Ottawa Hospital Research Institute, 725 Parkdale Avenue, Ottawa, Ontario K1Y 4E9, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
46
|
Giamarellos-Bourboulis EJ, Opal SM. The role of genetics and antibodies in sepsis. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:328. [PMID: 27713886 DOI: 10.21037/atm.2016.08.63] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During the course of sepsis when immunosuppression predominates, the concentrations of circulating immunoglobulins (IGs) are decreased and this is associated with adverse outcomes. The production of IGs as response to invasive bacterial pathogens takes place through a complex pathway starting from the recognition of the antigen (Ag) by innate immune cells that process and present Ags to T cells. The orchestration of T-helper (Th) lymphocyte responses directs specific B cells and ends with the production of IGs by plasma cells. All molecules implicated in this process are encoded by genes bearing single nucleotide polymorphisms (SNPs). Meta-analysis of case-control studies have shown that the carriage of minor frequency SNPs of CD14, TLR2 and TNF is associated with increased sepsis risk. The ambiguity of results of clinical trials studying the clinical efficacy of exogenous IG administration in sepsis suggests that efficacy of treatment should be considered after adjustment for SNPs of all implicated genes in the pathway of IG production.
Collapse
Affiliation(s)
| | - Steven M Opal
- Infectious Disease Division, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW High levels of LDL-cholesterol (LDL-C) are directly associated with devastating cardiovascular complications. Statins downregulate cholesterol synthesis and upregulate hepatic mRNA levels of LDL receptor (LDLR) and proprotein convertase subtilisin-kexin 9 (PCSK9), a validated enhancer of LDLR protein degradation. Herein, we summarize recent discoveries of the biological properties of PCSK9 in both health and disease states. RECENT FINDINGS PCSK9 downregulation of the LDLR protein likely explains the observed protective effect of the loss of PCSK9 in reducing lipoprotein(a) and incidence of septic shock. Injectable inhibitory PCSK9 monoclonal antibodies are now prescribed to hypercholesterolemic patients that do not reach target levels of LDL-C with available drugs. PCSK9 also reduces the levels of other receptors, for example, VLDL receptor (VLDLR), ApoER2, CD36, and CD81. The efficacy of the upregulation of LDLR and VLDLR cell surface levels in the absence of PCSK9 is both tissue and sex dependent. As LDLR, CD81, and VLDLR are hepatitis C receptors, PCSK9 may protect against certain viral infections. SUMMARY New functions of PCSK9 and other receptor targets are beginning to emerge to explain the observed changes in LDL-C and triglycerides. The effect of PCSK9 loss-of-function on glucose metabolism, factors that regulate the expression of PCSK9, and the roles of PCSK9 in other tissues, for example, intestine, kidney, and brain require further investigations.
Collapse
Affiliation(s)
- Nabil G Seidah
- Institut de Recherches Cliniques de Montréal (IRCM), Affiliated with the Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
48
|
Topchiy E, Cirstea M, Kong HJ, Boyd JH, Wang Y, Russell JA, Walley KR. Lipopolysaccharide Is Cleared from the Circulation by Hepatocytes via the Low Density Lipoprotein Receptor. PLoS One 2016; 11:e0155030. [PMID: 27171436 PMCID: PMC4865154 DOI: 10.1371/journal.pone.0155030] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/02/2016] [Indexed: 01/12/2023] Open
Abstract
Sepsis is the leading cause of death in critically ill patients. While decreased Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) function improves clinical outcomes in murine and human sepsis, the mechanisms involved have not been fully elucidated. We tested the hypothesis that lipopolysaccharide (LPS), the major Gram-negative bacteria endotoxin, is cleared from the circulation by hepatocyte Low Density Lipoprotein Receptors (LDLR)—receptors downregulated by PCSK9. We directly visualized LPS uptake and found that LPS is rapidly taken up by hepatocytes into the cell periphery. Over the course of 4 hours LPS is transported towards the cell center. We next found that clearance of injected LPS from the blood was reduced substantially in Ldlr knockout (Ldlr-/-) mice compared to wild type controls and, simultaneously, hepatic uptake of LPS was also reduced in Ldlr-/- mice. Specifically examining the role of hepatocytes, we further found that primary hepatocytes isolated from Ldlr-/- mice had greatly decreased LPS uptake. In the HepG2 immortalized human hepatocyte cell line, LDLR silencing similarly resulted in decreased LPS uptake. PCSK9 treatment reduces LDLR density on hepatocytes and, therefore, was another independent strategy to test our hypothesis. Incubation with PCSK9 reduced LPS uptake by hepatocytes. Taken together, these findings demonstrate that hepatocytes clear LPS from the circulation via the LDLR and PCSK9 regulates LPS clearance from the circulation during sepsis by downregulation of hepatic LDLR.
Collapse
Affiliation(s)
- Elena Topchiy
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Mihai Cirstea
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - HyeJin Julia Kong
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - John H Boyd
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Yingjin Wang
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - James A Russell
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Keith R Walley
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| |
Collapse
|
49
|
PCSK9 inhibition as an emerging lipid lowering therapy: Unanswered questions. Hellenic J Cardiol 2016; 57:86-91. [PMID: 27445021 DOI: 10.1016/j.hjc.2016.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/04/2016] [Indexed: 11/23/2022] Open
Abstract
Although statins have been used for the treatment of hypercholesterolemia for more than two decades, cardiovascular disease (CVD), which is related at least in part to high levels of low-density lipoprotein cholesterol (LDL-C), is the number one cause of death in Europe and the USA. Several studies have shown that the reduction in cardiovascular (CV) events is proportional to the absolute LDL-C lowering achieved with statins. In the quest for further reduction in LDL-C and CV events, new drugs that mainly support statin action have emerged. Since 2003, with the discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9), which is a key factor in the LDL clearance pathway, new modalities, mainly in the form of monoclonal antibodies that block this protein (PCSK9 inhibitors), have reached phase III of clinical development with very promising efficacy and safety data. With a mean further reduction of LDL-C levels of ∼60% beyond that achieved with statins, the PCSK9 inhibitors set the bar even lower in terms of LDL-C levels. This review manuscript addresses important questions about the efficacy, safety and clinical use of PCSK9 inhibitors to evaluate the role of these agents in reducing CV risk.
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The first monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) have been approved for clinical use. This timely review highlights recent developments. RECENT FINDINGS Low-density lipoprotein cholesterol (LDL-C) is the primary driver of atherosclerosis and the key target for intervention. Yet despite best treatment including statins, attaining sufficient LDL-C lowering can be problematic for high cardiovascular risk patients. The development of PCSK9 inhibitors, driven by novel genetic and mechanistic insights, offers an answer. Removal of circulating PCSK9 increases LDL receptor availability, and thus markedly decreases plasma LDL-C levels (by ∼50-60%), and is additive to the lipid lowering effects of statins and ezetimibe. PCSK9 inhibition also reduces (by 25-30%) plasma levels of lipoprotein(a), a causal factor in atherosclerotic vascular disease, suggestive of partial catabolism of lipoprotein(a) by LDL receptors. The ODYSSEY and PROFICIO (Programme to Reduce LDL-C and Cardiovascular Outcomes Following Inhibition of PCSK9 In Different Populations) clinical trial programmes involving a wide range of high-risk patients, including statin intolerant patients, have confirmed the consistency of the LDL response, even with concomitant high-intensity statin or nonstatin therapy. Extensive evidence to date attests to a favourable safety and tolerability profile for these innovative agents. SUMMARY The new pharmacotherapeutic era of PCSK9 inhibition is upon us, promising major reduction in cardiovascular events across a wide spectrum of high-risk patients.
Collapse
Affiliation(s)
- M. John Chapman
- National Institute for Health and Medical Research (INSERM), Pitié-Salpêtrière University Hospital, Paris , France
| | - Jane K. Stock
- PCSK9 Forum Secretariat, Minerva Mill Innovation Centre, Alcester, UK
| | - Henry N. Ginsberg
- Irving Institute, Columbia University College of Physicians and Surgeons, Department of Medicine, New York, USA
| |
Collapse
|