1
|
Jiang X, Li M, Li W, Guo Y, Zhang J, Ye L, Guo Z, Yang Y, Liu W, Chen L, Wang Q, Wu W, Dong G, Gui Z, Li D, Chen W, Chen S. Effects of co-exposure to heat and ozone on lipid metabolism in the liver and adipose tissue of C57BL/6J male mice. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137577. [PMID: 39947076 DOI: 10.1016/j.jhazmat.2025.137577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/23/2025] [Accepted: 02/09/2025] [Indexed: 04/16/2025]
Abstract
Although the effects of ozone and heat on health have been studied independently, the impact of combined exposure remains poorly understood. In this study, C57BL/6 J male mice were individually exposed to ozone (1 ppm), heat (34°C), or both in combination for 4 weeks (5 days/week, 3 h/day). In the Co-exposure group, stress hormones were increased, intensifying the activation of both the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic-adrenal-medullary (SAM) axis. Co-exposure to ozone and heat disrupted lipid homeostasis, as evidenced by elevated low-density lipoprotein cholesterol (LDL-C) and free fatty acids (FFA). Additionally, the combined exposure promoted hepatic lipid accumulation and oxidative stress. Co-exposure also induced the whitening of brown adipose tissue, reducing its capacity for thermogenesis and potentially worsening lipid dysregulation in the liver and systemic circulation. Transcriptomic analysis of the liver identified perturbations in key pathways related to cellular stress response and lipid metabolism. Notably, key enzymes responsible for cholesterol clearance, such as cholesterol 7α-hydroxylase (Cyp7a1), and ATP-binding cassette transporters G5 (Abcg5) and G8 (Abcg8) were suppressed in the Co-exposure group. These findings underscore the additive effects of simultaneous ozone and heat exposure in lipid metabolism, highlighting the increased risk of metabolic disorders under environmental stress.
Collapse
Affiliation(s)
- Xinhang Jiang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Miao Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenxue Li
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yuzhi Guo
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiahao Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lizhu Ye
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhanyu Guo
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yahan Yang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Liu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Liping Chen
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Wang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Guanghui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhaohuan Gui
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Shen Chen
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Alewel DI, Gavett SH, Rentschler KM, Schladweiler MC, Miller CN, Evansky PA, Jackson TW, Williams WC, Kodavanti UP. Adrenergic receptor subtypes differentially influence acrolein-induced ventilatory, vascular leakage, and inflammatory responses. Toxicol Appl Pharmacol 2025; 498:117303. [PMID: 40101861 PMCID: PMC12011196 DOI: 10.1016/j.taap.2025.117303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 03/20/2025]
Abstract
Adrenergic receptors (AR) are manipulated therapeutically for the treatment of pulmonary and cardiovascular diseases; however, their role in air pollutant-induced respiratory effects is poorly understood. We examined the contribution of AR-subtypes in acrolein-induced respiratory effects through selective receptor inhibition. We pre-treated 12-week-old male Wistar-Kyoto rats intraperitoneally daily for 9-days with subtype-specific AR antagonists prazosin (PRZ, α1-AR antagonist; 2-mg/kg-day), yohimbine (YOH, α2-AR antagonist; 5-mg/kg-day), or propranolol (PROP, β-AR antagonist; 10-mg/kg-day). On day-8 and day-9 of treatment, rats were exposed nose-only to air or acrolein (1.6 or 3.2 ppm), ∼4 h/day. Head-out plethysmography during exposure on Day-9 revealed overall concentration-dependent acrolein-related reduced ventilatory capacity, which was exacerbated in PRZ- and YOH-treated animals. Nasal (NALF) and bronchoalveolar lavage fluid (BALF), and blood samples were collected on day-9. Plasma epinephrine levels did not change; however, corticosterone decreased in YOH- and PROP-treated air-exposed animals. Adrenal and spleen weights were higher in PRZ-treated animals. Acrolein, 3.2-ppm depleted circulating lymphocytes in saline-treated and increased neutrophils in PRZ- and YOH-treated animals. NALF and BALF analysis indicated 3.2-ppm acrolein-induced neutrophilic and lymphocytic inflammation (NALF>BALF), which was exacerbated in lung of PRZ- and YOH-treated rats and slightly dampened in PROP-treated rats. However, acrolein-induced vascular protein leakage and increases in inflammatory cytokines in NALF were reduced by PROP-treatment. In conclusion, this study highlights sympathetically-mediated adrenoreceptor influence on acrolein-indued respiratory health effects, and AR subtype-specific modulation of breathing, hemodynamic, and inflammatory responses. These results have broader translational implications, as those receiving adrenergic agonistic/antagonistic therapies might experience variable air pollution-related respiratory health effects.
Collapse
Affiliation(s)
- Devin I Alewel
- Existing Chemicals Risk Assessment Division, Office of Chemical Safety and Pollution Prevention, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Stephen H Gavett
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Katherine M Rentschler
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Colette N Miller
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Paul A Evansky
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Thomas W Jackson
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Wanda C Williams
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America.
| |
Collapse
|
3
|
Chen Z, Zhang K, Peng S, Tan Y, Tong J, Wang B, Cai H, Liu F, Xiang H. Climate change and air pollution can amplify vulnerability of glucose metabolism: The mediating effects of biological aging. ENVIRONMENTAL RESEARCH 2025; 272:121183. [PMID: 39983967 DOI: 10.1016/j.envres.2025.121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Climate change and air pollution pose significant global health threats, including impacts on diabetes risk; however, their long-term effects on insulin resistance (IR), a key determinant in diabetes pathophysiology, remain unclear. This study investigated whether exposure to heatwaves, temperature fluctuations, and warm-season ozone (O3) contributes to or exacerbates IR and explored the potential mediating role of biological aging. The study enrolled 6901 participants and assessed both traditional and novel IR indicators: estimated glucose disposal rate (eGDR), triglyceride-glucose (TyG) index, triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-c), metabolic score for IR (METS-IR), TyG-body mass index (TyG-BMI), TyG-waist circumference (TyG-WC), waist-to-height ratio (WHtR), TyG-WHtR, and lipid accumulation product (LAP). Ordinary least squares regression models were applied to evaluate the long-lasting effects of heatwaves, temperature fluctuation, and warm-season O3 on IR, incorporating Huber-White robust standard errors for model stability. Causal mediation analysis was utilized to investigate the mediating effects of biological aging. We found that exposure to heatwaves and higher concentrations of warm-season O3 was associated with elevated IR levels, with males, smokers, drinkers, and low-income individuals being more vulnerable. Accelerated biological aging (including body age, metabolomic aging rate, etc.) could significant mediate the long-lasting effects of heatwaves and warm-season O3. Our findings suggest that climate change and air pollution could amplify the vulnerability of glucose metabolism, particularly in males, smokers, drinkers, and individuals with low-income. More importantly, our findings reveal the importance of mitigating biological aging to prevent IR in the future, as global diabetes prevalence escalates rapidly.
Collapse
Affiliation(s)
- Zhongyang Chen
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Department of Occupational and Environmental Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Ke Zhang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China
| | - Shouxin Peng
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Department of Occupational and Environmental Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Yuxuan Tan
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Department of Occupational and Environmental Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Jiahui Tong
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Boxiang Wang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Department of Occupational and Environmental Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Hanxiang Cai
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Department of Occupational and Environmental Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Feifei Liu
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Department of Occupational and Environmental Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, 430071, China.
| | - Hao Xiang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China.
| |
Collapse
|
4
|
India Aldana S, Petrick L, Niedzwiecki MM, Valvi D, Just AC, Gutiérrez-Avila I, Kloog I, Barupal DK, Téllez-Rojo MM, Wright RO, Baccarelli AA, Wu H, Colicino E. Pregnancy as a Susceptible Period to Ambient Air Pollution Exposure on the Maternal Postpartum Metabolome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6400-6413. [PMID: 40129413 DOI: 10.1021/acs.est.4c10717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Pregnancy is a potential critical window to air pollution exposure for long-term maternal metabolic effects. However, little is known about potential early metabolic mechanisms linking air pollution to maternal metabolic health. We included 544 pregnant Mexican women with both ambient PM2.5 levels during pregnancy and untargeted serum metabolomics to examine associations between pregnancy PM2.5 exposure (overall and monthly) and postpartum metabolites, implementing FDR-adjusted robust linear regression controlling for covariates. Pathway enrichment analyses (in Reactome and MetaboAnalyst) and effect modification by fetal sex and folic acid supplementation were also evaluated. Higher PM2.5 exposure levels throughout pregnancy were associated with higher bile acids and amino acids, dysregulated glycerophospholipids, or lower fatty acyl levels (FDR < 0.05), among other metabolites. Potential critical windows of susceptibility to monthly PM2.5 on metabolites were observed in early to midpregnancy (FDR < 0.005). Main findings were consistent by strata of fetal sex and folic acid supplementation. Metabolic pathways corresponding to positive PM2.5-metabolite associations indicated enriched bile acid, dietary lipid, and transmembrane transport metabolism, whereas for negative PM2.5-metabolite associations, we identified altered pathways involving adipogenesis, incretin peptide hormone, GLP-1, PPAR-alpha, and fatty acid receptors (FDR < 0.05). PM2.5 exposures during pregnancy, especially in early gestation, altered maternal postpartum lipids as well as amino acid metabolism.
Collapse
Affiliation(s)
- Sandra India Aldana
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Lauren Petrick
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Megan M Niedzwiecki
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Damaskini Valvi
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Allan C Just
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island 02912, United States
| | - Iván Gutiérrez-Avila
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Itai Kloog
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Dinesh K Barupal
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Martha María Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos 62100, Mexico
| | - Robert O Wright
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Andrea A Baccarelli
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Elena Colicino
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
5
|
Li M, Chen S, Jiang X, Ye L, Guo Y, Li W, Zhang J, Liu W, Yang Y, Ou Z, Chen L, Dong G, Wu W, Li D, Chen W. Subchronic ozone exposure leads to multi-organ injuries with differential reversibility in male C57BL/6 J mice. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138049. [PMID: 40157190 DOI: 10.1016/j.jhazmat.2025.138049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/27/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Ozone, a prevalent environmental pollutant, poses significant risks to human health. This study systematically evaluates the impact of subchronic ozone exposure on multiple organs using three-month-old male C57BL/6 J mice exposed to 0.5 or 2.0 ppm ozone for 12 weeks, followed by 4-week recovery period. Subchronic ozone exposure caused systemic damage, including weight loss, inflammation, oxidative stress, and dyslipidemia, with varying degrees of reversibility. Comprehensive histopathological and functional analyses revealed dose-dependent injuries, organ-specific response patterns, and varying recovery capacities within a 4-week cessation of exposure. The lung demonstrated the highest susceptibility with dose-dependent damage and high reversibility. In contrast, the liver, kidneys, and brain, exhibited milder yet largely irreversible damage, particularly at 2.0 ppm. Transcriptomic analyses identified high reversibility in lung inflammation pathways, persistent metabolic dysregulation in the liver and kidneys, neurodegeneration-related perturbations in the brain with minimal recovery capacity. Furthermore, common molecular drivers, such as oxidative stress and inflammation, were identified across all organs, revealing both unique and shared mechanisms of injury and recovery. These findings underscore the systemic nature of ozone toxicity and the need for targeted interventions. Persistent dyslipidemia and metabolic dysregulation in the liver and kidneys emphasize the necessity for ongoing monitoring and potential interventions for individuals exposed to elevated ozone levels.
Collapse
Affiliation(s)
- Miao Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xinhang Jiang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lizhu Ye
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuzhi Guo
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenxue Li
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jiahao Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Liu
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yahan Yang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zehua Ou
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Liping Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Guanghui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Daochuan Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Wen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Ghosh D. Assessing air quality extremes: a comparative extreme value analysis of metropolitan cities across India and the world. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:276. [PMID: 39937354 DOI: 10.1007/s10661-025-13754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Air pollution is a significant global issue that impacts public health, particularly in urban areas where pollution levels often exceed safe limits. The Air Quality Index (AQI) serves as a key metric to assess the concentration of harmful pollutants such as particulate matter (PM), ozone, and nitrogen oxides. This study conducts an extreme value analysis (EVA) of AQI data from five major Indian cities-Delhi, Mumbai, Kolkata, Chennai, and Hyderabad-and eight other metropolitan cities worldwide, including Dhaka, Chengdu, and Bogota. The goal is to evaluate the probability of extreme pollution events and compare the seasonal patterns of air quality in these cities. Our findings indicate that cities like New Delhi and Dhaka consistently experience AQI levels that exceed hazardous thresholds, particularly during the winter months and festival seasons. This study provides critical insights into the air quality crisis in India and other regions, emphasizing the need for targeted policy interventions, including stricter emission regulations, adoption of cleaner energy sources, and enhanced public awareness campaigns to mitigate the effects of extreme pollution events.
Collapse
Affiliation(s)
- Dhrubajyoti Ghosh
- Department of Biostatistics and Bioinformatics, Duke University, Erwin Road, Durham, NC, 27707, USA.
| |
Collapse
|
7
|
Rose M, Thomson EM. An ex vivo model of systemically-mediated effects of ozone inhalation on the brain. Toxicology 2025; 511:154052. [PMID: 39793952 DOI: 10.1016/j.tox.2025.154052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025]
Abstract
Air pollution is associated with increased risk of neurodegenerative and neuropsychiatric conditions. While animal models have increased our understanding of how air pollution contributes to brain pathologies - including through oxidative stress, inflammatory, and stress hormone pathways - investigation of underlying mechanisms remains limited due to a lack of human-relevant models that incorporate systemic processes. Our objective was to establish an ex vivo approach that enables assessment of the roles of plasma mediators in pollutant-induced effects in the brain. As a proof-of-concept for application in the human context, we assessed whether such effects reproduced in vivo responses to pollutant exposure. Primary rat hippocampal neurons and microglia were each treated with plasma collected from rats immediately or 24 h after ozone inhalation (0 or 0.8 ppm) ± pre-treatment with the glucocorticoid synthesis inhibitor metyrapone. Microglia were further challenged with lipopolysaccharide to evaluate modification of inflammatory responses. Plasma from the ozone-exposed group produced transcriptional changes (inflammatory, antioxidant, glucocorticoid-responsive) in neurons, some of which were glucocorticoid-dependent. Ex vivo and hippocampal responses were strongly correlated, establishing the in vivo relevance of the model. Plasma from the ozone-exposed group modified inflammatory responses to lipopolysaccharide challenge in microglia, demonstrating the model's utility to assess functional changes resulting from pollutant exposure. This study establishes that an ex vivo approach can reproduce ozone-induced effects in the brain. The model was sensitive to specific plasma mediators and temporal effects, and enabled assessment of functional responses. This approach may serve to investigate mechanisms underlying effects of pollutants on the human brain.
Collapse
Affiliation(s)
- Mercedes Rose
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Errol M Thomson
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada.
| |
Collapse
|
8
|
Cheng H, Wang S, Shao J, Gao H, Wang Y, Deng F, Du H, Liu J, Du X, Zhang X. Associations of Ozone Exposure with Serum Biomarkers in Acute Myocardial Infarction Patients in Taiyuan, China: The Mediating Role of Metabolites. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:79-90. [PMID: 39839248 PMCID: PMC11744392 DOI: 10.1021/envhealth.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 01/03/2025]
Abstract
Abundant epidemiological studies have conclusively demonstrated the effects of short-term ozone (O3) exposure on the incidence and mortality of cardiovascular diseases. However, the mechanism of its influence remains unverified. This study aimed to assess the impact of O3 on metabolomic-based biomarkers in acute myocardial infarction (AMI) patients. Accurate biomarkers for AMI were identified by combining serum biomarkers with metabolomics. A total of 137 volunteers were recruited, including 79 AMI patients and 58 healthy participants, from March to April 2023 in Taiyuan, China. Linear regression models were applied to analyze the associations of serum biomarkers and metabolites with O3. Mediation analyses were also conducted to assess the impact of metabolites, acting as mediators, on the associations between O3 and biomarkers. We found that O3 at lag2 captured the most remarkable effects. Metabolomic analysis revealed a substantial association between O3 (lag2) and 43 metabolites. Pathway analysis revealed that these metabolites primarily participate in the tricarboxylic acid cycle, arginine biosynthesis, and histidine metabolism. These findings suggest that O3 is an important factor in examining the metabolic mechanisms of cardiovascular disease, highlighting the importance of mitigating O3 to further protect AMI patients.
Collapse
Affiliation(s)
- Hong Cheng
- Institute
of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shengchun Wang
- Institute
of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Jiyuan Shao
- Institute
of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Huiyu Gao
- Institute
of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Ying Wang
- Institute
of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Furong Deng
- Department
of Occupational and Environmental Health Sciences, School of Public
Health, Peking University, Beijing 100191, China
| | - Hui Du
- Department
of Cardiac Rehabilitation, Shanxi Cardiovascular
Hospital, The Affiliated Cardiovascular Hospital of Shanxi Medical
University, Taiyuan 030024, China
| | - Jingyi Liu
- Department
of Cardiology, Shanxi Cardiovascular Hospital,
The Affiliated Cardiovascular Hospital of Shanxi Medical University, Taiyuan 030024, China
| | - Xia Du
- Department
of Cardiology, Shanxi Cardiovascular Hospital,
The Affiliated Cardiovascular Hospital of Shanxi Medical University, Taiyuan 030024, China
| | - Xin Zhang
- Institute
of Environmental Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
9
|
Liang D, Tang Z, Diver WR, Sarnat JA, Chow SS, Cheng H, Deubler EL, Tan Y, Eick SM, Jerrett M, Turner MC, Wang Y. Metabolomics Signatures of Exposure to Ambient Air Pollution: A Large-Scale Metabolome-Wide Association Study in the Cancer Prevention Study-II Nutrition Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:212-223. [PMID: 39680091 PMCID: PMC11741098 DOI: 10.1021/acs.est.4c09592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Existing air pollution metabolomics studies showed inconsistent results, often limited by small sample size and individual air pollutants effects. We conducted a metabolome-wide association study among 1096 women (68.2 ± 5.7 years) who provided blood samples (1998-2001) within the Cancer Prevention Study-II Nutrition Cohort. Annual average individual exposures to particulate matter, nitrogen dioxide, ozone, sulfur dioxide, and carbon monoxide in the year of blood draw were used. Metabolomics profiling was conducted on serum samples by Metabolon. We evaluated the individual air pollutants effects using multiple linear regression and the mixture effect using quantile g-computation, adjusting for confounders and false discovery rate (FDR). Ninety-five metabolites were significantly associated with at least one air pollutant or mixture (FDR < 0.05). These metabolites were enriched in pathways related to oxidative stress, systemic inflammation, energy metabolism, signals transduction, nucleic acid damage and repair, and xenobiotics. Sixty metabolites were confirmed with level 1 or 2 evidence, among which 21 have been previously linked to air pollution exposure, including taurine, creatinine, and sebacate. Overall, our results replicate prior findings in a large sample and provide novel insights into biological responses to long-term air pollution exposure using mixture analysis.
Collapse
Affiliation(s)
- Donghai Liang
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, Georgia 30322, United States
| | - Ziyin Tang
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, Georgia 30322, United States
| | - W. Ryan Diver
- Department
of Population Science, American Cancer Society, 270 Peachtree Street NW, Suite 1300, Atlanta, Georgia 30303, United States
- Barcelona
Institute for Global Health (ISGlobal), Barcelona 08036, Spain
- Universitat
Pompeu Fabra (UPF), Barcelona 08018, Spain
| | - Jeremy A. Sarnat
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, Georgia 30322, United States
| | - Sabrina S. Chow
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, Georgia 30322, United States
| | - Haoran Cheng
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, Georgia 30322, United States
| | - Emily L. Deubler
- Department
of Population Science, American Cancer Society, 270 Peachtree Street NW, Suite 1300, Atlanta, Georgia 30303, United States
| | - Youran Tan
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, Georgia 30322, United States
| | - Stephanie M. Eick
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, Georgia 30322, United States
| | - Michael Jerrett
- Department
of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Michelle C. Turner
- Barcelona
Institute for Global Health (ISGlobal), Barcelona 08036, Spain
- Universitat
Pompeu Fabra (UPF), Barcelona 08018, Spain
- CIBER
Epidemiología
y Salud Pública (CIBERESP), Madrid 28029, Spain
| | - Ying Wang
- Department
of Population Science, American Cancer Society, 270 Peachtree Street NW, Suite 1300, Atlanta, Georgia 30303, United States
| |
Collapse
|
10
|
Hua Q, Meng X, Gong J, Qiu X, Shang J, Xue T, Zhu T. Ozone exposure and cardiovascular disease: A narrative review of epidemiology evidence and underlying mechanisms. FUNDAMENTAL RESEARCH 2025; 5:249-263. [PMID: 40166088 PMCID: PMC11955045 DOI: 10.1016/j.fmre.2024.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2025] Open
Abstract
Ozone (O3) poses a significant global public health concern as it exerts adverse effects on human cardiovascular health. Nevertheless, there remains a lack of comprehensive understanding regarding the relationships between O3 exposure and the risk of cardiovascular diseases (CVD), as well as the underlying biological mechanisms. To address this knowledge gap, this narrative review meticulously summarizes the existing epidemiological evidence, susceptibility, and potential underlying biological mechanisms linking O3 exposure with CVD. An increasing body of epidemiological studies has demonstrated that O3 exposure heightens the incidence and mortality of CVD, including specific subtypes such as ischemic heart disease, hypertension, and heart failure. Certain populations display heightened vulnerability to these effects, particularly children, the elderly, obese individuals, and those with pre-existing conditions. Proposed biological mechanisms suggest that O3 exposure engenders respiratory and systemic inflammation, oxidative stress, disruption of autonomic nervous and neuroendocrine systems, as well as impairment of coagulation function, glucose, and lipid metabolism. Ultimately, these processes contribute to vascular dysfunction and the development of CVD. However, some studies have reported the absence of associations between O3 and CVD, or even potentially protective effects of O3. Inconsistencies among the literature may be attributed to inaccurate assessment of personal O3 exposure levels in epidemiologic studies, as well as confounding effects stemming from co-pollutants and temperature. Consequently, our findings underscore the imperative for further research, including the development of reliable methodologies for assessing personal O3 exposure, exploration of O3 exposure's impact on cardiovascular health, and elucidation of its biological mechanisms. These endeavors will consolidate the causal relationship between O3 and cardiovascular diseases, subsequently aiding efforts to mitigate the risks associated with O3 exposure.
Collapse
Affiliation(s)
- Qiaoyi Hua
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xin Meng
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jing Shang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Tao Xue
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100871, China
| | - Tong Zhu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Ginos BNR, de Crom TOE, Ghanbari M, Voortman T. Long-term air pollution exposure and the blood metabolome: The rotterdam study. ENVIRONMENTAL RESEARCH 2024; 263:120131. [PMID: 39389196 DOI: 10.1016/j.envres.2024.120131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Air pollution is a well-established risk factor for several adverse health outcomes, but the specific molecular mechanisms, particularly those involving metabolic processes, remain incompletely understood. OBJECTIVE To evaluate associations between long-term air pollutant exposure and circulating plasma metabolites in two sub-cohorts of the population-based Rotterdam Study. METHODS We analyzed data from 1455 participants of sub-cohort I (mean age 76.9 years, 58% female, 2002-2004) and 1061 participants from sub-cohort III (mean age 62.6 years, 56% female, 2012-2014). Mean annual exposure to fine particulate matter (PM2.5), black carbon, nitrogen dioxide, and ozone (measured both annually and in warm seasons only) were estimated at residential addresses using land use regression models. Plasma metabolites were measured by Metabolon Inc., using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. Cross-sectional associations between each air pollutant and 940 metabolites were determined using linear regression models. Benjamini-Hochberg false discovery rate (FDR) was utilized to control for multiple testing. Enrichment analysis was performed on statistically significant associated metabolites to identify significant metabolic pathways (p-value <0.05). RESULTS In sub-cohort I, PM2.5, black carbon, nitrogen dioxide, annual ozone and ozone in warm season were statistically significantly associated with, respectively, 63, 30, 20, 31, and 41 metabolites (FDR <0.05) mostly belonging to lipid and amino acid sub-classes, and unannotated metabolites. Sphinganine, X - 16576 and 2-pyrrolidinone displayed statistically significant associations across all five air pollutants. In sub-cohort III, black carbon, nitrogen dioxide and ozone in warm seasons were associated with a single unannotated metabolite (X - 24970), and annual ozone with two unannotated metabolites (X - 24970 and X - 24306). Enriched pathways identified in sub-cohort I included pyrimidine metabolism and steroid hormone biosynthesis. CONCLUSIONS Our study revealed associations of long-term air pollutant exposure with several metabolites and enrichment of two pathways, which are known to be involved in the adrenal and reproductive system and cell metabolism.
Collapse
Affiliation(s)
- Bigina N R Ginos
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Tosca O E de Crom
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
12
|
Wang X, Karvonen-Gutierrez CA, Mancuso P, Gold EB, Derby CA, Kravitz HM, Greendale G, Wu X, Ebisu K, Schwartz J, Park SK. Exposure to air pollution is associated with adipokines in midlife women: The Study of Women's Health Across the Nation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177334. [PMID: 39488293 PMCID: PMC11632973 DOI: 10.1016/j.scitotenv.2024.177334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
This study examined the associations between ambient air pollution exposure, including fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3), with serum levels of high molecular weight (HMW) adiponectin, leptin, and soluble leptin receptors (sOB-R) in midlife women. The analysis included 1551 participants from the Study of Women's Health Across the Nation (median age = 52.3 years) with adipokine data from 2002 to 2003. Annual air pollution exposures were assigned by linking residential addresses with high-resolution machine learning models at a 1-km2 resolution. Multivariable linear regression and Bayesian kernel machine regression (BKMR) were used to evaluate the associations for individual pollutants and pollutant mixtures. After adjusting for confounders in linear regression models, an interquartile range increase in PM2.5 (2.5 μg/m3) was associated with a 4.6 % lower HMW adiponectin level (95 % CI: -8.8 %, -0.3 %). Exposure to air pollutant mixtures showed negative associations with HMW adiponectin and positive associations with leptin levels in BKMR models. These findings suggest that exposures to PM2.5, NO2, and O3 are associated with adverse levels of adipokines, which may contribute to obesity-related outcomes. Further research is needed to confirm these findings and explore the underlying biological mechanisms.
Collapse
Affiliation(s)
- Xin Wang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | | | - Peter Mancuso
- Department of Nutritional Sciences, Graduate Program in Immunology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ellen B Gold
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Carol A Derby
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Howard M Kravitz
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Family and Preventive Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Gail Greendale
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Xiangmei Wu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Keita Ebisu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Sui X, Zhang L, Xu W, Meng X, Zhao Y, Gui Y, Shi H, Wang P, Zhang Y. Prenatal ozone exposure is associated with children overweight and obesity: Evidence from the Shanghai Maternal-Child Pairs Cohort. ECO-ENVIRONMENT & HEALTH 2024; 3:436-444. [PMID: 39559190 PMCID: PMC11570401 DOI: 10.1016/j.eehl.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 11/20/2024]
Abstract
Prenatal ozone (O3) exposure may disrupt normal offspring growth. However, epidemiological evidence that prenatal O3 exposure affects the physical development of offspring early in life is far from adequate. A total of 4909 maternal-child pairs from the Shanghai Maternal-Child Pairs Cohort were included. A high-resolution random forest model was utilized to evaluate prenatal exposure levels of O3 based on the home addresses of pregnant women. Group-based trajectory and mixed-effects models were used to assess associations between prenatal O3 exposure and physical parameters. Each 10 μg/m³ increase in O3 concentration was associated with 0.084, 0.048, and 0.082-unit increases in body mass index (BMI) for age Z score (BAZ), weight for age Z score (WAZ), and weight for length Z score (WLZ), respectively. Specifically, a 10 μg/m³ increase in O3 concentration was linked to a 1.208-fold and 1.209-fold increase in the elevated-increasing group for the BAZ and WLZ trajectories, respectively. Moreover, each 10 μg/m³ increases in prenatal O3 was associated with a 1.396-fold and 0.786-fold increase in the risk of BAZ- and length for age Z score (LAZ)-accelerated growth, respectively. Furthermore, a 10 μg/m³ increase in prenatal O3 was linked to a 1.355-fold increase in the risk of overweight and obesity (OAO). Our study revealed that prenatal O3 exposure is associated with accelerated BMI gain or decelerated body length gain in the early life of children. Prenatal O3 may also increase the risk of OAO in children for the first two years.
Collapse
Affiliation(s)
- Xinyao Sui
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Weiqing Xu
- The Maternal and Child Healthcare Institute of Pudong District, Shanghai 201200, China
| | - Xia Meng
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Yue Zhao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Yuyan Gui
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Pengpeng Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yunhui Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| |
Collapse
|
14
|
Alewel DI, Kodavanti UP. Neuroendocrine contribution to sex-related variations in adverse air pollution health effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:287-314. [PMID: 39075643 PMCID: PMC12032588 DOI: 10.1080/10937404.2024.2383637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Air pollution exposure is ranked as a leading environmental risk factor for not only cardiopulmonary diseases but also for systemic health ailments including diabetes, reproductive abnormalities, and neuropsychiatric disorders, likely mediated by central neural stress mechanisms. Current experimental evidence links many air pollution health outcomes with activation of neuroendocrine sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal (HPA) stress axes associated with resultant increases in adrenal-derived hormone levels acting as circulating mediators of multi-organ stress reactions. Epidemiological and experimental investigations also demonstrated sex-specific responses to air pollutant inhalation, which may be attributed to hormonal interactions within the stress and reproductive axes. Sex hormones (androgens and estrogens) interact with neuroendocrine functions to influence hypothalamic responses, subsequently augmenting stress-mediated metabolic and immune changes. These neurohormonal interactions may contribute to innate sex-specific responses to inhaled irritants, inducing differing individual susceptibility. The aim of this review was to: (1) examine neuroendocrine co-regulation of the HPA axis by gonadal hormones, (2) provide experimental evidence demonstrating sex-specific respiratory and systemic effects attributed to air pollutant inhalation exposure, and (3) postulate proposed mechanisms of stress and sex hormone interactions during air pollution-related stress.
Collapse
Affiliation(s)
- Devin I. Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
15
|
Nan N, Liu Y, Yan Z, Zhang Y, Li S, Zhang J, Qin G, Sang N. Ozone induced multigenerational glucose and lipid metabolism disorders in Drosophila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175477. [PMID: 39151609 DOI: 10.1016/j.scitotenv.2024.175477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/10/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Ozone (O3), a persistent pollutant, poses a significant health threat. However, research on its multigenerational toxicity remains limited. Leveraging the Drosophila model with its short lifespan and advanced genetic tools, we explored the effects of O3 exposure across three generations of fruit flies. The findings revealed that O3 disrupted motility, body weight, stress resistance, and oxidative stress in three generations of flies, with varying effects observed among them. Transcriptome analysis highlighted the disruption of glucose metabolism-related pathways, encompassing gluconeogenesis/glycolysis, galactose metabolism, and carbon metabolism. Hub genes were identified, and RT-qPCR results indicated that O3 decreased their transcription levels. Comparative analysis of their human orthologs was conducted using Comparative Toxicogenomics Database (CTD) and DisGeNET databases. These genes are linked to various metabolic diseases, including diabetes, hypoglycemia, and obesity. The trehalose content was reduced in F0 generation flies but increased in F1-F2 generations after O3 exposure. While the trehalase and glucose levels were decreased across F0-F2 generations. TAG synthesis-related genes were significantly upregulated in F0 generation flies but downregulated in F1-F2 generations. The expression patterns of lipolysis-related genes varied among the three generations of flies. Food intake was increased in F0 generation flies but decreased in F1-F2 generations. Moreover, TAG content was significantly elevated in F0 generation flies by O3 exposure, while it was reduced in F2 generation flies. These differential effects of O3 across three generations of flies suggest a metabolic reprogramming aimed at mitigating the damage caused by O3 to flies. The study affirms the viability of employing the Drosophila model to investigate the mechanisms underlying O3-induced glucose and lipid metabolism disorders while emphasizing the importance of studying the long-term health effects of O3 exposure. Moreover, this research highlights the Drosophila model as a viable tool for investigating the multigenerational effects of pollutants, particularly atmospheric pollutants.
Collapse
Affiliation(s)
- Nan Nan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Yuntong Liu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Zhipeng Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Yaru Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Shiya Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Jianqin Zhang
- School of Life Science, Shanxi University, Shanxi 030006, PR China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| |
Collapse
|
16
|
Rentschler KM, Kodavanti UP. Mechanistic insights regarding neuropsychiatric and neuropathologic impacts of air pollution. Crit Rev Toxicol 2024; 54:953-980. [PMID: 39655487 DOI: 10.1080/10408444.2024.2420972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 12/24/2024]
Abstract
Air pollution is a significant environmental health risk for urban areas and developing countries. Air pollution may contribute to the incidence of cardiopulmonary and metabolic diseases. Evidence also points to the role of air pollution in worsening or developing neurological and neuropsychiatric conditions. Inhaled pollutants include compositionally differing mixtures of respirable gaseous and particulate components of varied sizes, solubilities, and chemistry. Inhalation of combustibles and volatile organic compounds (VOCs) or other irritant particulate matter (PM) may trigger lung sensory afferents which initiate a sympathetic stress response via activation of the hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axes. Activation of SAM and HPA axes are associated with selective inhibition of hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) axes following exposure. Regarding chronic exposure in susceptible hosts, these changes may become pathological by causing neuroinflammation, neurotransmitter, and neuroendocrine imbalances. Soluble PM, such as metals and nano-size particles may translocate across the olfactory, trigeminal, or vagal nerves through retrograde axonal transport, or through systemic circulation which may disrupt the blood-brain barrier (BBB) and deposit in neural tissue. Neuronal deposition of metallic components can have a negative impact through multiple molecular mechanisms. In addition to systemic translocation, the release of pituitary and stress hormones, altered metabolic hormonal status and resultant circulating metabolic milieu, and sympathetically and HPA-mediated changes in immune markers, may secondarily impact the brain through a variety of regulatory adrenal hormone-dependent mechanisms. Several reviews covering air pollution as a risk factor for neuropsychiatric disorders have been published, but no reviews discuss the in-depth intersection between molecular and stress-related neuroendocrine mechanisms, thereby addressing adaptation and susceptibility variations and link to peripheral tissue effects. The purpose of this review is to discuss evidence regarding neurochemical, neuroendocrine, and molecular mechanisms which may contribute to neuropathology from air pollution exposure. This review also covers bi-directional neural and systemic interactions which may raise the risk for air pollution-related systemic illness.
Collapse
Affiliation(s)
- Katherine M Rentschler
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
17
|
Zhang Z, Wang C, Lin C, Wu Y, Wei J, Lu J, Chen B, Wu C, Zhang X, Yang Y, Cui J, Xu W, Song L, Yang H, Zhang Y, He W, Tian Y, Zhou X, Li X. Association of long-term exposure to ozone with cardiovascular mortality and its metabolic mediators: evidence from a nationwide, population-based, prospective cohort study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 52:101222. [PMID: 39444716 PMCID: PMC11497431 DOI: 10.1016/j.lanwpc.2024.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Background Previous studies about chronic effects of ozone (O3) on cardiovascular mortality are scarce and inconclusive. We aimed to investigate the association between cardiovascular mortality and a broad range of long-term O3 exposure levels. Methods This analysis included 3,206,871 participants aged 35-75 years enrolled in the ChinaHEART study. Participants were recruited from the 31 provinces of the Chinese mainland between January 2015 and December 2020. The five-year average O3 concentrations before baseline visits were calculated to represent long-term exposure. Findings Over a median follow-up period of 4.7 (interquartile range: 3.7-6.2) years, 35,553 (1.1%) participants died from cardiovascular diseases (CVD). Following multivariable adjustment, nonlinear relationships were identified between O3 concentrations and CVD and ischemic heart disease (IHD) mortality, with inflection points at 85.44 and 88.15 μg/m3, respectively. Above these points, a 10.0 μg/m3 increase in the O3 level was associated with a 13.9% (hazard ratio [HR]: 1.139, 95% confidence interval [CI]: 1.096-1.184) and 25.0% (HR: 1.250, 95% CI: 1.151-1.357) greater risk of CVD and IHD mortality, respectively. Conversely, O3 exposure exhibited a linear relationship with ischemic stroke mortality. Moreover, the metabolic factors explained more than half of the association between O3 exposure and CVD mortality. Interpretation Substantial influences of long-term O3 exposure on CVD mortality were identified, with notable mediation proportions attributed to metabolic factors. These findings could facilitate the air quality standard revisions and risk reduction strategy making in the future. Funding This study was supported by the CAMS Innovation Fund for Medical Science (2021-1-I2M-011), the CAMS Innovation Fund for Medical Science (CIFMS, 2022-I2M-C&T-A-010), the National High Level Hospital Clinical Research Funding (2022-GSP-GG-4), the Ministry of Finance of China and National Health Commission of China, the 111 Project from the Ministry of Education of China (B16005).
Collapse
Affiliation(s)
- Zenglei Zhang
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chunqi Wang
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chunying Lin
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yi Wu
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Jiapeng Lu
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Bowang Chen
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chaoqun Wu
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaoyan Zhang
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yang Yang
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jianlan Cui
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Wei Xu
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Lijuan Song
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Hao Yang
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yan Zhang
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Wenyan He
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yuan Tian
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xianliang Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xi Li
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, People's Republic of China
- Central China Sub-center of the National Center for Cardiovascular Diseases, Zhengzhou, People's Republic of China
| |
Collapse
|
18
|
He G, Jiang M, Tian S, He L, Bai X, Chen S, Li G, Wang C, Zhang Z, Wu Y, Su M, Li X, Guo X, Yang Y, Zhang X, Cui J, Xu W, Song L, Yang H, He W, Zhang Y, Li X, Gao X, Chen L. Clean air policy reduces the atherogenic lipid profile levels: Results from China Health Evaluation And risk Reduction through nationwide Teamwork (ChinaHEART) Study. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135394. [PMID: 39128148 DOI: 10.1016/j.jhazmat.2024.135394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Evidence of the associations between long-term exposure to PM2.5 and O3 and human blood lipid concentrations is abundant yet inconclusive. Whether clean air policies could improve lipid profiles remains unclear. In total, 2979312 participants from a Chinese nationwide prospective study were included. For cross-sectional analyses, linear mixed-effects models were utilized to assess the associations of pollutants with lipid profiles (TC, LDL-C, TG, HDL-C). For longitudinal analyses, a quasi-experimental design and difference-in-differences models were employed to investigate the impact of China's Clean Air Act. In the cross-sectional analyses, each IQR increase in PM2.5 was associated with 2.49 % (95 % CI: 2.36 %, 2.62 %), 2.51 % (95 % CI: 2.26 %, 2.75 %), 3.94 % (95 % CI: 3.65 %, 4.23 %), and 1.54 % (95 % CI: 1.38 %, 1.70 %) increases in TC, LDL-C, TG, and HDL-C, respectively. For each IQR increase in O3, TC, LDL-C, TG, and HDL-C changed by 1.06 % (95 % CI: 0.95 %, 1.17 %), 1.21 % (95 % CI: 1.01 %, 1.42 %), 1.78 % (95 % CI: 1.54 %, 2.02 %), and -0.63 % (95 % CI: -0.76 %, -0.49 %), respectively. Longitudinal analyses showed that the intervention group experienced greater TC, LDL-C, and HDL-C reductions (1.77 %, 4.26 %, and 7.70 %, respectively). Our findings suggest that clean air policies could improve lipid metabolism and should be implemented in countries with heavy air pollution burdens.
Collapse
Affiliation(s)
- Guangda He
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meijie Jiang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Sifan Tian
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Linkang He
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueke Bai
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shi Chen
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangyu Li
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chunqi Wang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zenglei Zhang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Wu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingming Su
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangjie Li
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinxin Guo
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Yang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Zhang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianlan Cui
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Xu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijuan Song
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Yang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenyan He
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Zhang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xi Li
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China.
| | - Liang Chen
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
19
|
Zhang Y, Gong J, Hu X, He L, Lin Y, Zhang J, Meng X, Zhang Y, Mo J, Day DB, Xiang J. Glycerophospholipid metabolism changes association with ozone exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134870. [PMID: 38876019 DOI: 10.1016/j.jhazmat.2024.134870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
Exposure to ozone (O3) has been associated with cardiovascular outcomes in humans, yet the underlying mechanisms of the adverse effect remain poorly understood. We aimed to investigate the association between O3 exposure and glycerophospholipid metabolism in healthy young adults. We quantified plasma concentrations of phosphatidylcholines (PCs) and lysophosphatidylcholines (lysoPCs) using a UPLC-MS/MS system. Time-weighted personal exposures were calculated to O3 and co-pollutants over 4 time windows, and we employed orthogonal partial least squares discriminant analysis to discern differences in lipids profiles between high and low O3 exposure. Linear mixed-effects models and mediation analysis were utilized to estimate the associations between O3 exposure, lipids, and cardiovascular physiology indicators. Forty-three healthy adults were included in this study, and the mean (SD) time-weighted personal exposures to O3 was 9.08 (4.06) ppb. With shorter exposure durations, O3 increases were associated with increasing PC and lysoPC levels; whereas at longer exposure times, the opposite relationship was shown. Furthermore, two specific lipids, namely lysoPC a C26:0 and lysoPC a C17:0, showed significantly positive mediating effects on associations of long-term O3 exposure with pulse wave velocity and systolic blood pressure, respectively. Alterations in specific lipids may underlie the cardiovascular effects of O3 exposure.
Collapse
Affiliation(s)
- Yi Zhang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China.
| | - Xinyan Hu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Linchen He
- College of Health, Lehigh University, Bethlehem, PA 19019, United States; Global Health Institute, Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Yan Lin
- Global Health Institute, Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Junfeng Zhang
- Global Health Institute, Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Xin Meng
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Jinhan Mo
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Drew B Day
- Seattle Children's Research Institute, Seattle, WA 98121, United States
| | - Jianbang Xiang
- School of Public Health, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
20
|
Arregi A, Vegas O, Lertxundi A, García-Baquero G, Ibarluzea J, Andiarena A, Babarro I, Subiza-Pérez M, Lertxundi N. Hair cortisol determinants in 11-year-old children: Environmental, social and individual factors. Horm Behav 2024; 164:105575. [PMID: 38851169 DOI: 10.1016/j.yhbeh.2024.105575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
INTRODUCTION Children's exposure to chronic stress is associated with several health problems. Measuring hair cortisol concentration is particularly useful for studying chronic stress but much is unknown about hair cortisol determinants in children and adolescents, and previous research has often not considered the simultaneous exposure of multiple variables. This research is focused on investigating the relationship between environmental, social and individual factors with hair cortisol concentration in children. METHODS The data used in this study are from the INMA prospective epidemiological cohort study. The assessment of chronic stress was made on the basis of hair samples taken at the age of 11 years in the INMA-Gipuzkoa cohort (n = 346). A metamodel summarizing the hypothesized relationships among environmental, social and individual factors and hair cortisol concentration was constructed based on previous literature. Structural Equation Modelling was performed to examine the relationships among the variables. RESULTS In the general model higher behavioural problems were associated with higher cortisol levels and an inverse relationship between environmental noise and cortisol levels was observed, explaining 5 % of the variance in HCC. Once stratified by sex these associations were only hold in boys, while no significant effect of any of the study variables was related with cortisol levels in girls. Importantly, maternal stress was positively related to behavioural difficulties in children. Finally, higher traffic-related air pollution and lower exposure to neighborhood greenness were related to higher environmental noise. DISCUSSION This study highlights that simultaneous exposure to different environmental, social and individual characteristics may determine the concentration of hair cortisol. More research is needed and future studies should include this complex view to better understanding of hair cortisol determinants in children.
Collapse
Affiliation(s)
- Ane Arregi
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008 San Sebastian, Spain; Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San Sebastian, Spain.
| | - Oscar Vegas
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008 San Sebastian, Spain; Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San Sebastian, Spain
| | - Aitana Lertxundi
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Gonzalo García-Baquero
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San Sebastian, Spain; Faculty of Biology, University of Salamanca, Campus Miguel de Unamuno, Avda Licenciado Méndez Nieto s/n, 37007 Salamanca, Spain
| | - Jesus Ibarluzea
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008 San Sebastian, Spain; Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, 20013 San Sebastian, Spain
| | - Ainara Andiarena
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008 San Sebastian, Spain; Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San Sebastian, Spain
| | - Izaro Babarro
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San Sebastian, Spain; Faculty of Medicine and Nursing of the University of the Basque Country (UPV/EHU), 20014 Donostia/San Sebastian, Spain
| | - Mikel Subiza-Pérez
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008 San Sebastian, Spain; Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bradford Institute for Health Research, Bradford BD9 6RJ, UK
| | - Nerea Lertxundi
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008 San Sebastian, Spain; Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
21
|
Oh J, Choi JE, Lee R, Mun E, Kim KH, Lee JH, Lee J, Kim S, Kim HS, Ha E. Long-term exposure to air pollution and precocious puberty in South Korea. ENVIRONMENTAL RESEARCH 2024; 252:118916. [PMID: 38614201 DOI: 10.1016/j.envres.2024.118916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND AND AIM The increasing prevalence of precocious puberty (PP) has emerged as a significant medical and social problem worldwide. However, research on the relationship between long-term air pollution exposure and PP has been relatively limited. We thus investigated the association between long-term air pollution exposure and the onset of PP in South Korea. METHODS We investigated a retrospective cohort using the Korea National Health Insurance Database. Six-year-old children born from 2007 to 2009 were examined (2013-2015). We included boys ≤10 years and girls aged ≤9 years who visited hospitals for early pubertal development, were diagnosed with PP per the ICD-10 (E228, E301, and E309), and received gonadotropin-releasing hormone agonist treatment. We analyzed data for boys up until 10 years old (60-month follow-up) and for girls up to 9 years old (48-month follow-up). We assessed the association between long-term air pollution exposure and the onset of PP using a Cox proportional hazard model. We estimated hazard ratios (HRs) and 95% confidence intervals (CIs) per 1 μg/m3 increase in fine particulate matter (PM2.5) and particulate matter (PM10) and per 1 ppb increase in sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3). RESULTS This study included 1,205,784 children aged six years old between 2013 and 2015. A positive association was found between the 48-month moving average PM2.5 (HR: 1.019; 95% CI: 1.012, 1.027), PM10 (HR: 1.009; 95% CI: 1.006, 1.013), SO2 (HR: 1.037; 95% CI: 1.018, 1.055), and O3 (HR: 1.006; 95% CI: 1.001, 1.010) exposure and PP in girls but not boys. CONCLUSIONS This study provides valuable insights into the harmful effects of air pollution during childhood and adolescence, emphasizing that air pollution is a risk factor that should be managed and reduced.
Collapse
Affiliation(s)
- Jongmin Oh
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Institute of Ewha-SCL for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Department of Human Systems Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea; Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Republic of Korea
| | - Jung Eun Choi
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Rosie Lee
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Eunji Mun
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Kyung Hee Kim
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyen Lee
- Institute of Ewha-SCL for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Jungsil Lee
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Institute of Ewha-SCL for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Soontae Kim
- Department of Environmental and Safety Engineering, Ajou University, Suwon, Republic of Korea
| | - Hae Soon Kim
- Institute of Ewha-SCL for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Republic of Korea.
| | - Eunhee Ha
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Institute of Ewha-SCL for Environmental Health (IESEH), College of Medicine, Ewha Womans University, Seoul, Republic of Korea; System Health & Engineering Major in Graduate School (BK21 Plus Program), Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Shaik A, Batchu P, Naldurtiker A, Gurrapu P, Kouakou B, Terrill TH, Kannan G. Influence of epinephrine reactivity to stress on meat quality in goats. Transl Anim Sci 2024; 8:txae078. [PMID: 38827159 PMCID: PMC11143493 DOI: 10.1093/tas/txae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024] Open
Abstract
The magnitude of physiological responses to a stressor can vary among individual goats within a herd; however, whether these differences can differentially affect meat quality is not known. This study was conducted to determine the influence of the magnitude of epinephrine response (ER) to acute stress on muscle metabolome and meat quality in goats. Male Spanish goats (6 mo old) were transported for 180 min. (N = 75 goats; 25 goats/d) to impose stress. Blood samples were obtained after transport for analysis of physiological responses. Goats were slaughtered using humane procedures and samples were collected for muscle metabolomics and meat quality analyses. The data obtained from blood and muscle/meat analysis were then categorized based on epinephrine concentrations into low (LE), medium (ME), and high (HE) ER groups (n = 12/ER group). The physiological and meat quality variables were analyzed as a Completely Randomized Design in SAS, and metabolomics data were analyzed using R software. Plasma glucose concentrations were significantly high in the HE group, low in the LE group, and intermediate in the ME group (P < 0.05). However, leukocyte counts and cortisol, norepinephrine, blood urea nitrogen, and creatine concentrations were not different among the ER groups. Muscle (Longissimus dorsi) glycogen concentrations (15 min postmortem) were significantly higher (P < 0.05) in the ME and LE groups than in the HE group. However, postmortem Longissimus muscle pH and temperature (15 min and 24 h), 24 h calpastatin and desmin levels, and rib chop color (L*, a*, and b*), cooking loss, and Warner-Bratzler shear force values were unaffected by ER. Targeted metabolomics analysis of Longissimus muscle (15 min) revealed that diacyl phosphatidylcholines (C38:0; 40:6) and sphingomyelin (C20:2) were significantly different (P < 0.05) among the ER groups, with the concentrations of these metabolites being consistently high in the LE group. These differential muscle metabolite concentrations suggest that ER can influence biochemical pathways associated with cell membrane integrity and signaling. ER had a significant effect on dopamine concentrations, with the levels increasing with increasing levels of ER. The results indicate that differences in epinephrine reactivity can influence selected physiological responses and muscle metabolites; however, it does not significantly influence meat quality attributes.
Collapse
Affiliation(s)
- Arshad Shaik
- Agricultural Research Station, Fort Valley State University, Fort Valley, Georgia 31030, USA
| | - Phaneendra Batchu
- Agricultural Research Station, Fort Valley State University, Fort Valley, Georgia 31030, USA
| | - Aditya Naldurtiker
- Agricultural Research Station, Fort Valley State University, Fort Valley, Georgia 31030, USA
| | - Priyanka Gurrapu
- Agricultural Research Station, Fort Valley State University, Fort Valley, Georgia 31030, USA
| | - Brou Kouakou
- Agricultural Research Station, Fort Valley State University, Fort Valley, Georgia 31030, USA
| | - Thomas H Terrill
- Agricultural Research Station, Fort Valley State University, Fort Valley, Georgia 31030, USA
| | - Govind Kannan
- Agricultural Research Station, Fort Valley State University, Fort Valley, Georgia 31030, USA
| |
Collapse
|
23
|
Khraishah H, Chen Z, Rajagopalan S. Understanding the Cardiovascular and Metabolic Health Effects of Air Pollution in the Context of Cumulative Exposomic Impacts. Circ Res 2024; 134:1083-1097. [PMID: 38662860 PMCID: PMC11253082 DOI: 10.1161/circresaha.124.323673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poor air quality accounts for more than 9 million deaths a year globally according to recent estimates. A large portion of these deaths are attributable to cardiovascular causes, with evidence indicating that air pollution may also play an important role in the genesis of key cardiometabolic risk factors. Air pollution is not experienced in isolation but is part of a complex system, influenced by a host of other external environmental exposures, and interacting with intrinsic biologic factors and susceptibility to ultimately determine cardiovascular and metabolic outcomes. Given that the same fossil fuel emission sources that cause climate change also result in air pollution, there is a need for robust approaches that can not only limit climate change but also eliminate air pollution health effects, with an emphasis of protecting the most susceptible but also targeting interventions at the most vulnerable populations. In this review, we summarize the current state of epidemiologic and mechanistic evidence underpinning the association of air pollution with cardiometabolic disease and how complex interactions with other exposures and individual characteristics may modify these associations. We identify gaps in the current literature and suggest emerging approaches for policy makers to holistically approach cardiometabolic health risk and impact assessment.
Collapse
Affiliation(s)
- Haitham Khraishah
- Division of Cardiovascular Medicine, University of Maryland Medical Center, Baltimore (H.K.)
| | - Zhuo Chen
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH (Z.C., S.R.)
- Case Western Reserve University School of Medicine, Cleveland, OH (Z.C., S.R.)
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH (Z.C., S.R.)
- Case Western Reserve University School of Medicine, Cleveland, OH (Z.C., S.R.)
| |
Collapse
|
24
|
Zhu C, Yao M. Real-Time Monitoring of Air Pollution Health Impacts Using Breath-Borne Gaseous Biomarkers from Rats. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4522-4534. [PMID: 38411076 DOI: 10.1021/acs.est.3c08629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Offline techniques are adopted for studying air pollution health impacts, thus failing to provide in situ observations. Here, we have demonstrated their real-time monitoring by online analyzing an array of gaseous biomarkers from rats' exhaled breath using an integrated exhaled breath array sensor (IEBAS) developed. The biomarkers include total volatile organic compounds (TVOC), CO2, CO, NO, H2S, H2O2, O2, and NH3. Specific breath-borne VOCs were also analyzed by a gas chromatography-ion mobility spectrometer (GC-IMS). After real-life ambient air pollution exposures (2 h), the pollution levels of PM2.5 and O3 were both found to significantly affect the relative levels of multiple gaseous biomarkers in rats' breath. Eleven biomarkers, especially NO, H2S, and 1-propanol, were detected as significantly correlated with PM2.5 concentration, while heptanal was shown to be significantly correlated with O3. Likewise, significant changes were also detected in multiple breath-borne biomarkers from rats under lab-controlled O3 exposures with levels of 150, 300, and 1000 μg/m3 (2 h), compared to synthetic air exposure. Importantly, heptanal was experimentally confirmed as a reliable biomarker for O3 exposure, with a notable dose-response relationship. In contrast, conventional biomarkers of inflammation and oxidative stress in rat sera exhibited insignificant differences after the 2 h exposures. The results imply that breath-borne gaseous biomarkers can serve as an early and sensitive indicator for ambient pollutant exposure. This work pioneered a new research paradigm for online monitoring of air pollution health impacts while obtaining important candidate biomarker information for PM2.5 and O3 exposures.
Collapse
Affiliation(s)
- Chenyu Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
25
|
Rajagopalan S, Brook RD, Salerno PRVO, Bourges-Sevenier B, Landrigan P, Nieuwenhuijsen MJ, Munzel T, Deo SV, Al-Kindi S. Air pollution exposure and cardiometabolic risk. Lancet Diabetes Endocrinol 2024; 12:196-208. [PMID: 38310921 PMCID: PMC11264310 DOI: 10.1016/s2213-8587(23)00361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 02/06/2024]
Abstract
The Global Burden of Disease assessment estimates that 20% of global type 2 diabetes cases are related to chronic exposure to particulate matter (PM) with a diameter of 2·5 μm or less (PM2·5). With 99% of the global population residing in areas where air pollution levels are above current WHO air quality guidelines, and increasing concern in regard to the common drivers of air pollution and climate change, there is a compelling need to understand the connection between air pollution and cardiometabolic disease, and pathways to address this preventable risk factor. This Review provides an up to date summary of the epidemiological evidence and mechanistic underpinnings linking air pollution with cardiometabolic risk. We also outline approaches to improve awareness, and discuss personal-level, community, governmental, and policy interventions to help mitigate the growing global public health risk of air pollution exposure.
Collapse
Affiliation(s)
- Sanjay Rajagopalan
- University Hospitals, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Robert D Brook
- Division of Cardiovascular Diseases, Department of Internal Medicine, Wayne State University, Detroit, MI, USA
| | - Pedro R V O Salerno
- University Hospitals, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Philip Landrigan
- Program for Global Public Health and the Common Good, Boston College, Boston, MA, USA; Centre Scientifique de Monaco, Monaco
| | | | - Thomas Munzel
- Department of Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; German Center of Cardiovascular Research, Partner-Site Rhine-Main, Germany
| | - Salil V Deo
- Louis Stokes Cleveland VA Medical Center, Case Western Reserve School of Medicine, Cleveland, OH, USA
| | - Sadeer Al-Kindi
- DeBakey Heart and Vascular Center, Houston Methodist, Houston, TX, USA
| |
Collapse
|
26
|
Kim E, Huh H, Mo Y, Park JY, Jung J, Lee H, Kim S, Kim DK, Kim YS, Lim CS, Lee JP, Kim YC, Kim H. Long-term ozone exposure and mortality in patients with chronic kidney disease: a large cohort study. BMC Nephrol 2024; 25:74. [PMID: 38418953 PMCID: PMC10900590 DOI: 10.1186/s12882-024-03500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Epidemiologic studies on the effects of long-term exposure to ozone (O3) have shown inconclusive results. It is unclear whether to O3 has an effect on chronic kidney disease (CKD). We investigated the effects of O3 on mortality and renal outcome in CKD. METHODS We included 61,073 participants and applied Cox proportional hazards models to examine the effects of ozone on the risk of end-stage renal disease (ESRD) and mortality in a two-pollutants model adjusted for socioeconomic status. We calculated the concentration of ozone exposure one year before enrollment and used inverse distance weighting (IDW) for interpolation, where the exposure was evenly distributed. RESULTS In the single pollutant model, O3 was significantly associated with an increased risk of ESRD and all-cause mortality. Based on the O3 concentration from IDW interpolation, this moving O3 average was significantly associated with an increased risk of ESRD and all-cause mortality. In a two-pollutants model, even after we adjusted for other measured pollutants, nitrogen dioxide did not attenuate the result for O3. The hazard ratio (HR) value for the district-level assessment is 1.025 with a 95% confidence interval (CI) of 1.014-1.035, while for the point-level assessment, the HR value is 1.04 with a 95% CI of 1.035-1.045. The impact of ozone on ESRD, hazard ratio (HR) values are, 1.049(95%CI: 1.044-1.054) at the district unit and 1.04 (95%CI: 1.031-1.05) at the individual address of the exposure assessment. The ozone hazard ratio for all-cause mortality was 1.012 (95% confidence interval: 1.008-1.017) for administrative districts and 1.04 (95% confidence interval: 1.031-1.05) for individual addresses. CONCLUSIONS This study suggests that long-term ambient O3 increases the risk of ESRD and mortality in CKD. The strategy to decrease O3 emissions will substantially benefit health and the environment.
Collapse
Affiliation(s)
- Ejin Kim
- Institute of Health and Environment and Graduate School of Public Health, Seoul National University, Room 708, Building 220, Gwanak-Ro Gwanak-Gu, Seoul, 08826, Republic of Korea
- Department of Biostatistics and Epidemiology, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Hyuk Huh
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan, Republic of Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yongwon Mo
- Department of Landscape Architecture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jae Yoon Park
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Gyeonggi-Do, Republic of Korea
| | - Jiyun Jung
- Data Management and Statistics Institute, Dongguk University Ilsan Hospital, Ilsan, Republic of Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, Daehak-Ro, Jongno-Gu, 101, Seoul, Republic of Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Daehak-Ro, Jongno-Gu, 101, Seoul, Republic of Korea
- Kidney Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University Hospital, Daehak-Ro, Jongno-Gu, 101, Seoul, Republic of Korea
- Kidney Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Medical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chun Soo Lim
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Daehak-Ro, Jongno-Gu, 101, Seoul, Republic of Korea.
| | - Ho Kim
- Institute of Health and Environment and Graduate School of Public Health, Seoul National University, Room 708, Building 220, Gwanak-Ro Gwanak-Gu, Seoul, 08826, Republic of Korea.
- Department of Biostatistics and Epidemiology, School of Public Health, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Fang H, Jiang D, He Y, Wu S, Li Y, Zhang Z, Chen H, Zheng Z, Sun Y, Wang W. Association of ambient air pollution and pregnancy rate among women undergoing assisted reproduction technology in Fujian, China: A retrospective cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168287. [PMID: 37924883 DOI: 10.1016/j.scitotenv.2023.168287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Previous studies have reported the impact of ambient air pollutants on assisted reproduction. They concentrated on highly polluted environments and individual pollutants. It is unclear whether these effects continue at lower levels and as mixed effects. We aimed to study the influence of lower pollutant concentrations on pregnancy rates and identify vulnerable populations. METHODS We conducted a retrospective cohort study involving 9465 patients with infertility who received treatment from a local hospital between 2015 and 2021. Daily average levels of six pollutants (PM2.5, PM10, NO2, CO, SO2, and O3) were collected from air quality monitoring stations. We employed generalized linear regression models (logistic, linear, and lasso), weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) to assess the impact of pollutants on pregnancy rates. Additionally, stratified analyses were performed to identify potentially vulnerable populations. RESULTS Findings from the generalized linear models revealed a significant negative correlation between interquartile range increment exposure to PM2.5 (OR = 1.17, 95 % CI = 1.09-1.26), PM10 (OR = 1.18, 95 % CI = 1.11-1.26), NO2 (OR = 1.21, 95 % CI = 1.13-1.30), CO (OR = 1.02, 95 % CI = 1.00-1.03), SO2 (OR = 1.11, 95 % CI = 1.05-1.17) and pregnancy rate when considering the effects of individual pollutants. The WQS index exhibited a negative correlation with pregnancy rates and the number of oocytes retrieved (aOR = 1.20, 95 % CI = 1.08-1.34). BKMR analyses indicated an overall significant trend of decreasing pregnancy rates as pollutant concentrations increased across percentiles. Stratified analysis unveiled heightened sensitivity to pollutants among individuals aged ≥35 years. CONCLUSIONS By comparing results obtained from diverse models, we observed that exposure to lower levels of air pollutants led to decreased pregnancy rates. Notably, PM10, NO2, SO2, and CO emerged as the four most prominent pollutants in this context. Moreover, stratified analyses highlighted that individuals aged ≥35 years exhibited heightened susceptibility to pollutants.
Collapse
Affiliation(s)
- Hua Fang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Dongdong Jiang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Ye He
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Siyi Wu
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuehong Li
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, Fujian, China
| | - Ziqi Zhang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Haoting Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Zixin Zheng
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
28
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, Proteomic, and Metabolomic Correlates of Traffic-Related Air Pollution in the Context of Cardiorespiratory Health: A Systematic Review, Pathway Analysis, and Network Analysis. TOXICS 2023; 11:1014. [PMID: 38133415 PMCID: PMC10748071 DOI: 10.3390/toxics11121014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead to cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
29
|
Alewel DI, Rentschler KM, Jackson TW, Schladweiler MC, Astriab-Fisher A, Evansky PA, Kodavanti UP. Serum metabolome and liver transcriptome reveal acrolein inhalation-induced sex-specific homeostatic dysfunction. Sci Rep 2023; 13:21179. [PMID: 38040807 PMCID: PMC10692194 DOI: 10.1038/s41598-023-48413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023] Open
Abstract
Acrolein, a respiratory irritant, induces systemic neuroendocrine stress. However, peripheral metabolic effects have not been examined. Male and female WKY rats were exposed to air (0 ppm) or acrolein (3.16 ppm) for 4 h, followed by immediate serum and liver tissue collection. Serum metabolomics in both sexes and liver transcriptomics in males were evaluated to characterize the systemic metabolic response. Of 887 identified metabolites, > 400 differed between sexes at baseline. An acrolein biomarker, 3-hydroxypropyl mercapturic acid, increased 18-fold in males and 33-fold in females, indicating greater metabolic detoxification in females than males. Acrolein exposure changed 174 metabolites in males but only 50 in females. Metabolic process assessment identified higher circulating free-fatty acids, glycerols, and other lipids in male but not female rats exposed to acrolein. In males, acrolein also increased branched-chain amino acids, which was linked with metabolites of nitrogen imbalance within the gut microbiome. The contribution of neuroendocrine stress was evident by increased corticosterone in males but not females. Male liver transcriptomics revealed acrolein-induced over-representation of lipid and protein metabolic processes, and pathway alterations including Sirtuin, insulin-receptor, acute-phase, and glucocorticoid signaling. In sum, acute acrolein inhalation resulted in sex-specific serum metabolomic and liver transcriptomic derangement, which may have connections to chronic metabolic-related diseases.
Collapse
Affiliation(s)
- Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Katherine M Rentschler
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Thomas W Jackson
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Anna Astriab-Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Paul A Evansky
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
30
|
Mallah MA, Soomro T, Ali M, Noreen S, Khatoon N, Kafle A, Feng F, Wang W, Naveed M, Zhang Q. Cigarette smoking and air pollution exposure and their effects on cardiovascular diseases. Front Public Health 2023; 11:967047. [PMID: 38045957 PMCID: PMC10691265 DOI: 10.3389/fpubh.2023.967047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/26/2023] [Indexed: 12/05/2023] Open
Abstract
Cardiovascular disease (CVD) has no socioeconomic, topographical, or sex limitations as reported by the World Health Organization (WHO). The significant drivers of CVD are cardio-metabolic, behavioral, environmental, and social risk factors. However, some significant risk factors for CVD (e.g., a pitiable diet, tobacco smoking, and a lack of physical activities), have also been linked to an elevated risk of cardiovascular disease. Lifestyles and environmental factors are known key variables in cardiovascular disease. The familiarity with smoke goes along with the contact with the environment: air pollution is considered a source of toxins that contribute to the CVD burden. The incidence of myocardial infarction increases in males and females and may lead to fatal coronary artery disease, as confirmed by epidemiological studies. Lipid modification, inflammation, and vasomotor dysfunction are integral components of atherosclerosis development and advancement. These aspects are essential for the identification of atherosclerosis in clinical investigations. This article aims to show the findings on the influence of CVD on the health of individuals and human populations, as well as possible pathology and their involvement in smoking-related cardiovascular diseases. This review also explains lifestyle and environmental factors that are known to contribute to CVD, with indications suggesting an affiliation between cigarette smoking, air pollution, and CVD.
Collapse
Affiliation(s)
| | - Tahmina Soomro
- Department of Sociology, Shah Abdul Latif University, Khairpur, Pakistan
| | - Mukhtiar Ali
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Sindh, Pakistan
| | - Sobia Noreen
- Department of Pharmaceutics Technology, Institute of Pharmacy, University of Innsbruck, Insbruck, Austria
| | - Nafeesa Khatoon
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Akriti Kafle
- School of Nursing, Zhengzhou University, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Muhammad Naveed
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Qiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Wang S, Niu Y, Zhang H, Zhao Z, Zhang X. Metabolomic alterations in healthy adults traveling to low-pollution areas: A natural experiment with ozone exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165501. [PMID: 37442463 DOI: 10.1016/j.scitotenv.2023.165501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Numerous epidemiological studies have demonstrated links between short-term ozone exposure to various adverse health outcomes, but some ozone-induced pathological mechanisms remain unclear. To fill this knowledge gap, we enrolled 36 healthy young adults living in high-ozone areas and performed an untargeted metabolomic analysis in serum collected before, during, and after their travel to a low-ozone scenic area. Reviewing the literature, we found 16 metabolites significantly associated with ozone, pointing to neurological health, type 2 diabetes (T2D) risk, and cardiovascular health. Notably, we observed significant changes in these 16 metabolites from the ozone reduction when participants traveled from the campus to the scenic area (adjusted p-value < 0.05). However, when ozone increased after participants returned to campus from the scenic area, we observed that T2D risk and cardiovascular health-related metabolites returned to their original state (adjusted p-value < 0.05), but neurological health-related metabolites did not change significantly with ozone exposure. Our study showed that ozone exposure was linked to prompt alterations in serum metabolites related to cardiovascular health and T2D risk but less sensitive changes in neurological health-related metabolites. Among many lipids, free fatty acids and acylcarnitines were the most sensitive compounds positively associated with changes in ozone exposure.
Collapse
Affiliation(s)
- Shengchun Wang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yue Niu
- Department of Environmental Health, School of Public Health, Fudan University, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai 200032, China
| | - Huilin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, Fudan University, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai 200032, China.
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
32
|
Yin P, Luo H, Gao Y, Liu W, Shi S, Li X, Meng X, Kan H, Zhou M, Li G, Chen R. Criteria air pollutants and diabetes mortality classified by different subtypes and complications: A nationwide, case-crossover study. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132412. [PMID: 37696209 DOI: 10.1016/j.jhazmat.2023.132412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
The associations between air pollution and diabetes mortality of different subtypes and complications were largely unclear. We performed an individual-level, time-stratified case-crossover study among over 0.9 million diabetes deaths from all administrative regions of Chinese mainland during 2013-2019. Daily concentrations of fine particles (PM2.5), coarse particles (PM2.5-10), nitrogen dioxide (NO2) and ozone (O3) were obtained for each decedent using high-resolution prediction models. Conditional logistic regression models were utilized to analyze the data. Each interquartile range increment in PM2.5, PM2.5-10, NO2 and O3 concentrations on lag 0-2 d increased the risks of overall diabetes mortality by 2.81 %, 1.92 %, 3.96 % and 2.15 %, respectively. Type 2 diabetes had stronger associations with air pollution than type 1 diabetes. Air pollutants were associated with diabetic ketoacidosis and diabetic nephropathy, but not other complications. The exposure-response curves were approximately linear with a plateau at higher concentrations of PM2.5, PM2.5-10, and NO2, while the associations for O3 appear to be statistically significant beyond 60 μg/m3. This nationwide study reinforces the evidence of higher risks of acute diabetic events following short-term air pollution exposure. We identified differential effects of air pollutants on various subtypes and complications of diabetes, which require further mechanistic investigations.
Collapse
Affiliation(s)
- Peng Yin
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huihuan Luo
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Wei Liu
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Xinyue Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Maigeng Zhou
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guanglin Li
- Chinese Preventive Medicine Association, Beijing, China.
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China.
| |
Collapse
|
33
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, proteomic, and metabolomic correlates of traffic-related air pollution: A systematic review, pathway analysis, and network analysis relating traffic-related air pollution to subclinical and clinical cardiorespiratory outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.30.23296386. [PMID: 37873294 PMCID: PMC10592990 DOI: 10.1101/2023.09.30.23296386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease, and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
34
|
Jackson TW, House JS, Henriquez AR, Schladweiler MC, Jackson KM, Fisher AA, Snow SJ, Alewel DI, Motsinger-Reif AA, Kodavanti UP. Multi-tissue transcriptomic and serum metabolomic assessment reveals systemic implications of acute ozone-induced stress response in male Wistar Kyoto rats. Metabolomics 2023; 19:81. [PMID: 37690105 PMCID: PMC11955933 DOI: 10.1007/s11306-023-02043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Air pollutant exposures have been linked to systemic disease; however, the underlying mechanisms between responses of the target tissue and systemic effects are poorly understood. A prototypic inducer of stress, ozone causes respiratory and systemic multiorgan effects through activation of a neuroendocrine stress response. The goal of this study was to assess transcriptomic signatures of multiple tissues and serum metabolomics to understand how neuroendocrine and adrenal-derived stress hormones contribute to multiorgan health outcomes. Male Wistar Kyoto rats (12-13 weeks old) were exposed to filtered air or 0.8 ppm ozone for 4-hours, and blood/tissues were collected immediately post-exposure. Each tissue had distinct expression profiles at baseline. Ozone changed 1,640 genes in lung, 274 in hypothalamus, 2,516 in adrenals, 1,333 in liver, 1,242 in adipose, and 5,102 in muscle (adjusted p-value < 0.1, absolute fold-change > 50%). Serum metabolomic analysis identified 863 metabolites, of which 447 were significantly altered in ozone-exposed rats (adjusted p-value < 0.1, absolute fold change > 20%). A total of 6 genes were differentially expressed in all 6 tissues. Glucocorticoid signaling, hypoxia, and GPCR signaling were commonly changed, but ozone induced tissue-specific changes in oxidative stress, immune processes, and metabolic pathways. Genes upregulated by TNF-mediated NFkB signaling were differentially expressed in all ozone-exposed tissues, but those defining inflammatory response were tissue-specific. Upstream predictor analysis identified common mediators of effects including glucocorticoids, although the specific genes responsible for these predictors varied by tissue. Metabolomic analysis showed major changes in lipids, amino acids, and metabolites linked to the gut microbiome, concordant with transcriptional changes identified through pathway analysis within liver, muscle, and adipose tissues. The distribution of receptors and transcriptional mechanisms underlying the ozone-induced stress response are tissue-specific and involve induction of unique gene networks and metabolic phenotypes, but the shared initiating triggers converge into shared pathway-level responses. This multi-tissue transcriptomic analysis, combined with circulating metabolomic assessment, allows characterization of the systemic inhaled pollutant-induced stress response.
Collapse
Affiliation(s)
- Thomas W Jackson
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - John S House
- Division of Intramural Research, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Andres R Henriquez
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | | | - Anna A Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Sam J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
- ICF, Durham, NC, USA
| | - Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Allison A Motsinger-Reif
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
35
|
Zhang H, Hu L, Zheng P, Jia G. Application of wearable devices for monitoring cardiometabolic dysfunction under the exposome paradigm. Chronic Dis Transl Med 2023; 9:200-209. [PMID: 37711864 PMCID: PMC10497849 DOI: 10.1002/cdt3.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 09/16/2023] Open
Abstract
Environmental factors, including chemical/physical pollutants, as well as lifestyle and psychological factors, contribute greatly to the pathways leading to cardiometabolic diseases with a heavy disease burden and economic loss. The concept of exposomes provides a novel paradigm for combining all exposure characteristics to evaluate disease risk. A solution-like exposome requires technological support to provide continuous data to monitor vital signs and detect abnormal fluctuations. Wearable devices allow people to conveniently monitor signals during their daily routines. These new technologies empower users to more actively prevent and manage cardiometabolic disease by reviewing risk factors of the disease, especially lifestyle factors, such as sleeping time, screen time, and mental health condition. Devices with multiple sensors can monitor electrocardiography data, oxygen saturation, intraocular pressure, respiratory rate, and heart rate to enhance the exposome study and provide precise suggestions for disease prevention and management.
Collapse
Affiliation(s)
- Haodong Zhang
- Department of Occupational and Environmental Health Sciences, School of Public HealthPeking UniversityBeijingChina
| | - Lingming Hu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University)National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)BeijingChina
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public HealthPeking UniversityBeijingChina
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public HealthPeking UniversityBeijingChina
| |
Collapse
|
36
|
Peng J, Wang S, Wang Y, Yu W, Zha Y, Gao S. Effects of ozone exposure on lipid metabolism in Huh-7 human hepatoma cells. Front Public Health 2023; 11:1222762. [PMID: 37521985 PMCID: PMC10374329 DOI: 10.3389/fpubh.2023.1222762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Ozone pollution is a major environmental concern. According to recent epidemiological studies, ozone exposure increases the risk of metabolic liver disease. However, studies on the mechanisms underlying the effects of ozone exposure on hepatic oxidative damage, lipid synthesis, and catabolism are limited. In this study, Huh-7 human hepatocellular carcinoma cells were randomly divided into five groups and exposed to 200 ppb O3 for 0, 1, 2, 4, and 8 h. We measured the levels of oxidative stress and analyzed the changes in molecules related to lipid metabolism. The levels of oxidative stress were found to be significantly elevated in Huh-7 hepatocellular carcinoma cells after O3 exposure. Moreover, the expression levels of intracellular lipid synthases, including SREBP1, FASN, SCD1, and ACC1, were enhanced. Lipolytic enzymes, including ATGL and HSL, and the mitochondrial fatty acid oxidase, CPT1α, were inhibited after O3 exposure. In addition, short O3 exposure enhanced the expression of the intracellular peroxisomal fatty acid β-oxidase, ACOX1; however, its expression decreased adaptively with longer exposure times. Overall, O3 exposure induces an increase in intracellular oxidative stress and disrupts the normal metabolism of lipids in hepatocytes, leading to intracellular lipid accumulation.
Collapse
Affiliation(s)
- Jianhao Peng
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Siyuan Wang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Yunlong Wang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Wanchao Yu
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Yejun Zha
- Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Beijing, China
| | - Shuxin Gao
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| |
Collapse
|
37
|
Su WY, Wu DW, Tu HP, Chen SC, Hung CH, Kuo CH. Association between ambient air pollutant interaction with kidney function in a large Taiwanese population study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82341-82352. [PMID: 37328721 DOI: 10.1007/s11356-023-28042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023]
Abstract
The associations and interactions between kidney function and other air pollutants remain poorly defined. Therefore, the aim of this study was to evaluate associations among air pollutants, including particulate matter (PM) with a diameter ≤ 2.5 μm (PM2.5), PM10 (PM with a diameter ≤ 10 μm), carbon monoxide (CO), nitrogen oxide (NO), nitrogen oxides (NOx), sulfur dioxide (SO2), and ozone (O3) with kidney function, and explore interactions among these air pollutants on kidney function. We used the Taiwan Air Quality Monitoring and Taiwan Biobank databases to derive data on community-dwelling individuals in Taiwan and daily air pollution levels, respectively. We enrolled 26,032 participants. Multivariable analysis showed that high levels of PM2.5, PM10, O3 (all p < 0.001), and SO2 (p = 0.001) and low levels of CO, NO (both p < 0.001), and NOx (p = 0.047) were significantly correlated with low estimated glomerular filtration rate (eGFR). With regard to negative effects, the interactions between PM2.5 and PM10 (p < 0.001), PM2.5 and PM10 (p < 0.001), PM2.5 and SO2, PM10 and O3 (both p = 0.025), PM10 and SO2 (p = 0.001), and O3 and SO2 (p < 0.001) on eGFR were significantly negatively. High PM10, PM2.5, O3, and SO2 were associated with a low eGFR, whereas high CO, NO, and NOx were associated with a high eGFR. Furthermore, negative interactions between PM2.5 and PM10, O3 and SO2, PM10 and O3, PM2.5 and SO2, and PM10 and SO2 on eGFR were observed. The findings of this study have important implications for public health and environmental policy. Specifically, the results of this study may be useful in individuals and organizations to take action to reduce air pollution and promote public health.
Collapse
Affiliation(s)
- Wei-Yu Su
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Da-Wei Wu
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 482, Shan-Ming Rd, Hsiao-Kang Dist, 812, Kaohsiung, Taiwan, Republic of China
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 482, Shan-Ming Rd, Hsiao-Kang Dist, 812, Kaohsiung, Taiwan, Republic of China.
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Chih-Hsing Hung
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, 812, Taiwan
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 482, Shan-Ming Rd, Hsiao-Kang Dist, 812, Kaohsiung, Taiwan, Republic of China
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| |
Collapse
|
38
|
Liao J, Goodrich J, Walker DI, Lin Y, Lurmann F, Qiu C, Jones DP, Gilliland F, Chazi L, Chen Z. Metabolic pathways altered by air pollutant exposure in association with lipid profiles in young adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121522. [PMID: 37019258 PMCID: PMC10243191 DOI: 10.1016/j.envpol.2023.121522] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/14/2023] [Accepted: 03/26/2023] [Indexed: 06/08/2023]
Abstract
Mounting evidence suggests that air pollution influences lipid metabolism and dyslipidemia. However, the metabolic mechanisms linking air pollutant exposure and altered lipid metabolism is not established. In year 2014-2018, we conducted a cross-sectional study on 136 young adults in southern California, and assessed lipid profiles (triglycerides, total cholesterol, high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol, very-low-density lipoprotein (VLDL)-cholesterol), and untargeted serum metabolomics using liquid chromatography-high-resolution mass spectrometry, and one-month and one-year averaged exposures to NO2, O3, PM2.5 and PM10 air pollutants at residential addresses. A metabolome-wide association analysis was conducted to identify metabolomic features associated with each air pollutant. Mummichog pathway enrichment analysis was used to assess altered metabolic pathways. Principal component analysis (PCA) was further conducted to summarize 35 metabolites with confirmed chemical identity. Lastly, linear regression models were used to analyze the associations of metabolomic PC scores with each air pollutant exposure and lipid profile outcome. In total, 9309 metabolomic features were extracted, with 3275 features significantly associated with exposure to one-month or one-year averaged NO2, O3, PM2.5 and PM10 (p < 0.05). Metabolic pathways associated with air pollutants included fatty acid, steroid hormone biosynthesis, tryptophan, and tyrosine metabolism. PCA of 35 metabolites identified three main PCs which together explained 44.4% of the variance, representing free fatty acids and oxidative byproducts, amino acids and organic acids. Linear regression indicated that the free fatty acids and oxidative byproducts-related PC score was associated with air pollutant exposure and outcomes of total cholesterol and LDL-cholesterol (p < 0.05). This study suggests that exposure to NO2, O3, PM2.5 and PM10 contributes to increased level of circulating free fatty acids, likely through increased adipose lipolysis, stress hormone and response to oxidative stress pathways. These alterations were associated with dysregulation of lipid profiles and potentially could contribute to dyslipidemia and other cardiometabolic disorders.
Collapse
Affiliation(s)
- Jiawen Liao
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Jesse Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Yan Lin
- Duke Global Health Institute, Duke University, Durham, NC, United States
| | - Fred Lurmann
- Sonoma Technology Inc., Petaluma, CA, United States
| | - Chenyu Qiu
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Dean P Jones
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Frank Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Lida Chazi
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
39
|
Dey T, Zanobetti A, Linnman C. The risk of being bitten by a dog is higher on hot, sunny, and smoggy days. Sci Rep 2023; 13:8749. [PMID: 37322022 PMCID: PMC10272239 DOI: 10.1038/s41598-023-35115-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Humans commit more violent crimes when temperature and air pollution is higher. Here, we investigate if also the day-to-day rates of dogs biting humans is influenced by environmental factors. 69,525 reports of dogs biting humans, sourced from public records on animal control requests and from ER records, were analyzed. The impact of temperature and air pollutants were evaluated with a zero-inflated Poisson generalized additive model, while controlling for regional and calendar effects. Exposure-response curves were used to assess the association between outcome and major exposure variables. We find that the rates of dogs biting humans increases with increasing temperature and ozone, but not PM2.5 exposure. We also observed that higher UV irradiation levels were related to higher rats of dog bites. We conclude that dogs, or the interactions between humans and dogs, are more hostile on hot, sunny, and smoggy days, indicating that the societal burden of extreme heat and air pollution also includes the costs of animal aggression.
Collapse
Affiliation(s)
- Tanujit Dey
- Department of Surgery, Center for Surgery and Public Health, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Clas Linnman
- Spaulding Neuroimaging Laboratory, Department of PM&R, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Perryman AN, Kim HYH, Payton A, Rager JE, McNell EE, Rebuli ME, Wells H, Almond M, Antinori J, Alexis NE, Porter NA, Jaspers I. Plasma sterols and vitamin D are correlates and predictors of ozone-induced inflammation in the lung: A pilot study. PLoS One 2023; 18:e0285721. [PMID: 37186612 PMCID: PMC10184915 DOI: 10.1371/journal.pone.0285721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Ozone (O3) exposure causes respiratory effects including lung function decrements, increased lung permeability, and airway inflammation. Additionally, baseline metabolic state can predispose individuals to adverse health effects from O3. For this reason, we conducted an exploratory study to examine the effect of O3 exposure on derivatives of cholesterol biosynthesis: sterols, oxysterols, and secosteroid (25-hydroxyvitamin D) not only in the lung, but also in circulation. METHODS We obtained plasma and induced sputum samples from non-asthmatic (n = 12) and asthmatic (n = 12) adult volunteers 6 hours following exposure to 0.4ppm O3 for 2 hours. We quantified the concentrations of 24 cholesterol precursors and derivatives by UPLC-MS and 30 cytokines by ELISA. We use computational analyses including machine learning to determine whether baseline plasma sterols are predictive of O3 responsiveness. RESULTS We observed an overall decrease in the concentration of cholesterol precursors and derivatives (e.g. 27-hydroxycholesterol) and an increase in concentration of autooxidation products (e.g. secosterol-B) in sputum samples. In plasma, we saw a significant increase in the concentration of secosterol-B after O3 exposure. Machine learning algorithms showed that plasma cholesterol was a top predictor of O3 responder status based on decrease in FEV1 (>5%). Further, 25-hydroxyvitamin D was positively associated with lung function in non-asthmatic subjects and with sputum uteroglobin, whereas it was inversely associated with sputum myeloperoxidase and neutrophil counts. CONCLUSION This study highlights alterations in sterol metabolites in the airway and circulation as potential contributors to systemic health outcomes and predictors of pulmonary and inflammatory responsiveness following O3 exposure.
Collapse
Affiliation(s)
- Alexia N. Perryman
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Hye-Young H. Kim
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America
| | - Alexis Payton
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Julia E. Rager
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Erin E. McNell
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Meghan E. Rebuli
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Heather Wells
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Martha Almond
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Jamie Antinori
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Neil E. Alexis
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Ned A. Porter
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
41
|
Ben-Azu B, del Re EC, VanderZwaag J, Carrier M, Keshavan M, Khakpour M, Tremblay MÈ. Emerging epigenetic dynamics in gut-microglia brain axis: experimental and clinical implications for accelerated brain aging in schizophrenia. Front Cell Neurosci 2023; 17:1139357. [PMID: 37256150 PMCID: PMC10225712 DOI: 10.3389/fncel.2023.1139357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Brain aging, which involves a progressive loss of neuronal functions, has been reported to be premature in probands affected by schizophrenia (SCZ). Evidence shows that SCZ and accelerated aging are linked to changes in epigenetic clocks. Recent cross-sectional magnetic resonance imaging analyses have uncovered reduced brain reserves and connectivity in patients with SCZ compared to typically aging individuals. These data may indicate early abnormalities of neuronal function following cyto-architectural alterations in SCZ. The current mechanistic knowledge on brain aging, epigenetic changes, and their neuropsychiatric disease association remains incomplete. With this review, we explore and summarize evidence that the dynamics of gut-resident bacteria can modulate molecular brain function and contribute to age-related neurodegenerative disorders. It is known that environmental factors such as mode of birth, dietary habits, stress, pollution, and infections can modulate the microbiota system to regulate intrinsic neuronal activity and brain reserves through the vagus nerve and enteric nervous system. Microbiota-derived molecules can trigger continuous activation of the microglial sensome, groups of receptors and proteins that permit microglia to remodel the brain neurochemistry based on complex environmental activities. This remodeling causes aberrant brain plasticity as early as fetal developmental stages, and after the onset of first-episode psychosis. In the central nervous system, microglia, the resident immune surveillance cells, are involved in neurogenesis, phagocytosis of synapses and neurological dysfunction. Here, we review recent emerging experimental and clinical evidence regarding the gut-brain microglia axis involvement in SCZ pathology and etiology, the hypothesis of brain reserve and accelerated aging induced by dietary habits, stress, pollution, infections, and other factors. We also include in our review the possibilities and consequences of gut dysbiosis activities on microglial function and dysfunction, together with the effects of antipsychotics on the gut microbiome: therapeutic and adverse effects, role of fecal microbiota transplant and psychobiotics on microglial sensomes, brain reserves and SCZ-derived accelerated aging. We end the review with suggestions that may be applicable to the clinical setting. For example, we propose that psychobiotics might contribute to antipsychotic-induced therapeutic benefits or adverse effects, as well as reduce the aging process through the gut-brain microglia axis. Overall, we hope that this review will help increase the understanding of SCZ pathogenesis as related to chronobiology and the gut microbiome, as well as reveal new concepts that will serve as novel treatment targets for SCZ.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Elisabetta C. del Re
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- VA Boston Healthcare System, Brockton, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada
| |
Collapse
|
42
|
Liang D, Li Z, Vlaanderen J, Tang Z, Jones DP, Vermeulen R, Sarnat JA. A State-of-the-Science Review on High-Resolution Metabolomics Application in Air Pollution Health Research: Current Progress, Analytical Challenges, and Recommendations for Future Direction. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:56002. [PMID: 37192319 PMCID: PMC10187974 DOI: 10.1289/ehp11851] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Understanding the mechanistic basis of air pollution toxicity is dependent on accurately characterizing both exposure and biological responses. Untargeted metabolomics, an analysis of small-molecule metabolic phenotypes, may offer improved estimation of exposures and corresponding health responses to complex environmental mixtures such as air pollution. The field remains nascent, however, with questions concerning the coherence and generalizability of findings across studies, study designs and analytical platforms. OBJECTIVES We aimed to review the state of air pollution research from studies using untargeted high-resolution metabolomics (HRM), highlight the areas of concordance and dissimilarity in methodological approaches and reported findings, and discuss a path forward for future use of this analytical platform in air pollution research. METHODS We conducted a state-of-the-science review to a) summarize recent research of air pollution studies using untargeted metabolomics and b) identify gaps in the peer-reviewed literature and opportunities for addressing these gaps in future designs. We screened articles published within Pubmed and Web of Science between 1 January 2005 and 31 March 2022. Two reviewers independently screened 2,065 abstracts, with discrepancies resolved by a third reviewer. RESULTS We identified 47 articles that applied untargeted metabolomics on serum, plasma, whole blood, urine, saliva, or other biospecimens to investigate the impact of air pollution exposures on the human metabolome. Eight hundred sixteen unique features confirmed with level-1 or -2 evidence were reported to be associated with at least one or more air pollutants. Hypoxanthine, histidine, serine, aspartate, and glutamate were among the 35 metabolites consistently exhibiting associations with multiple air pollutants in at least 5 independent studies. Oxidative stress and inflammation-related pathways-including glycerophospholipid metabolism, pyrimidine metabolism, methionine and cysteine metabolism, tyrosine metabolism, and tryptophan metabolism-were the most commonly perturbed pathways reported in > 70 % of studies. More than 80% of the reported features were not chemically annotated, limiting the interpretability and generalizability of the findings. CONCLUSIONS Numerous investigations have demonstrated the feasibility of using untargeted metabolomics as a platform linking exposure to internal dose and biological response. Our review of the 47 existing untargeted HRM-air pollution studies points to an underlying coherence and consistency across a range of sample analytical quantitation methods, extraction algorithms, and statistical modeling approaches. Future directions should focus on validation of these findings via hypothesis-driven protocols and technical advances in metabolic annotation and quantification. https://doi.org/10.1289/EHP11851.
Collapse
Affiliation(s)
- Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Zhenjiang Li
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jelle Vlaanderen
- Department Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Ziyin Tang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Dean P. Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Roel Vermeulen
- Department Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jeremy A. Sarnat
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
43
|
Marmett B, Carvalho RB, Silva GND, Dorneles GP, Romão PRT, Nunes RB, Rhoden CR. The role of O 3 exposure and physical activity status on redox state, inflammation, and pulmonary toxicity of young men: A cross-sectional study. ENVIRONMENTAL RESEARCH 2023; 231:116020. [PMID: 37119842 DOI: 10.1016/j.envres.2023.116020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
The exposure to traffic-related air pollutants, such as NO2 and O3, are associated with detrimental health effects, becoming one of the greatest public health issues worldwide. Exercising in polluted environments could result in harmful outcomes for health and may blunt the physiological adaptations of exercise training. This study aimed to investigate the influence of physical activity and O3 exposure on redox status, an inflammatory marker, response to stress, and pulmonary toxicity of healthy young individuals. We performed a cross-sectional study with 100 individuals that, based on their exposure to O3 and physical fitness (PF) level, were distributed in four groups: Low PF + Low O3; Low PF + High O3; High PF + Low O3; High PF + High O3. We evaluated personal exposure to NO2 and O3, physical activity level, variables of oxidative stress (SOD, ROS, CAT, GSH, TBARS), pulmonary toxicity (CC16), and inflammatory mediators (IL-1β, IL-4, IL-6, IL-10, TNF-α, HSP70). Spearman correlation test to check the association among the variables was used and to compare groups we used one-way ANOVA followed by Bonferroni's post hoc and Kruskal Wallis test followed by Dunn's post hoc. O3 levels correlated with physical activity (r = 0.25; p = 0.01) but not with age or markers of body composition (p > 0.05). The individuals with high physical fitness that were less exposed to O3 presented higher CAT activity (p < 0.001), lower TBARS (p < 0.01) and IL-1β concentrations (p < 0.01), higher IL-6 (p < 0.05) and IL-10 concentrations (p < 0.05), lower IL-6:1L-10 ratio (p < 0.05), lower CC16 levels (p < 0.05), and higher HSP70 concentration (p < 0.05). Physical activity could result in higher exposure to O3 that could partially blunt some exercise adaptations, while high physical fitness improved the antioxidant defense system, systemic inflammatory mediators, and pulmonary toxicity.
Collapse
Affiliation(s)
- Bruna Marmett
- Laboratory of Atmospheric Pollution, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| | - Roseana Boek Carvalho
- Laboratory of Atmospheric Pollution, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Gedaias Noronha da Silva
- Laboratory of Atmospheric Pollution, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Gilson Pires Dorneles
- Laboratory of Cellular and Molecular Immunology, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Pedro Roosevelt Torres Romão
- Laboratory of Cellular and Molecular Immunology, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ramiro Barcos Nunes
- Research Department - Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense, Gravataí, Brazil
| | - Cláudia Ramos Rhoden
- Laboratory of Atmospheric Pollution, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| |
Collapse
|
44
|
Rose M, Filiatreault A, Williams A, Guénette J, Thomson EM. Modulation of insulin signaling pathway genes by ozone inhalation and the role of glucocorticoids: A multi-tissue analysis. Toxicol Appl Pharmacol 2023; 469:116526. [PMID: 37088303 DOI: 10.1016/j.taap.2023.116526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Air pollution is associated with increased risk of metabolic diseases including type 2 diabetes, of which dysregulation of the insulin-signaling pathway is a feature. While studies suggest pollutant exposure alters insulin signaling in certain tissues, there is a lack of comparison across multiple tissues needed for a holistic assessment of metabolic effects, and underlying mechanisms remain unclear. Air pollution increases plasma levels of glucocorticoids, systemic regulators of metabolic function. The objectives of this study were to 1) determine effects of ozone on insulin-signaling genes in major metabolic tissues, and 2) elucidate the role of glucocorticoids. Male Fischer-344 rats were treated with metyrapone, a glucocorticoid synthesis inhibitor, and exposed to 0.8 ppm ozone or clean air for 4 h, with tissue collected immediately or 24 h post exposure. Ozone inhalation resulted in distinct mRNA profiles in the liver, brown adipose, white adipose and skeletal muscle tissues, including effects on insulin-signaling cascade genes (Pik3r1, Irs1, Irs2) and targets involved in glucose metabolism (Hk2, Pgk1, Slc2a1), cell survival (Bcl2l1), and genes associated with diabetes and obesity (Serpine1, Retn, Lep). lucocorticoid-dependent regulation was observed in the liver and brown and white adipose tissues, while effects in skeletal muscle were largely unaffected by metyrapone treatment. Gene expression changes were accompanied by altered phosphorylation states of insulin-signaling proteins (BAD, GSK, IR-β, IRS-1) in the liver. The results show that systemic effects of ozone inhalation include tissue-specific regulation of insulin-signaling pathway genes via both glucocorticoid-dependent and independent mechanisms, providing insight into mechanisms underlying adverse effects of pollutants.
Collapse
Affiliation(s)
- Mercedes Rose
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Alain Filiatreault
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Josée Guénette
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Errol M Thomson
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada.
| |
Collapse
|
45
|
Wang J, Du W, Lei Y, Chen Y, Wang Z, Mao K, Tao S, Pan B. Quantifying the dynamic characteristics of indoor air pollution using real-time sensors: Current status and future implication. ENVIRONMENT INTERNATIONAL 2023; 175:107934. [PMID: 37086491 DOI: 10.1016/j.envint.2023.107934] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
People generally spend most of their time indoors, making indoor air quality be of great significance to human health. Large spatiotemporal heterogeneity of indoor air pollution can be hardly captured by conventional filter-based monitoring but real-time monitoring. Real-time monitoring is conducive to change air assessment mode from static and sparse analysis to dynamic and massive analysis, and has made remarkable strides in indoor air evaluation. In this review, the state of art, strengths, challenges, and further development of real-time sensors used in indoor air evaluation are focused on. Researches using real-time sensors for indoor air evaluation have increased rapidly since 2018, and are mainly conducted in China and the USA, with the most frequently investigated air pollutants of PM2.5. In addition to high spatiotemporal resolution, real-time sensors for indoor air evaluation have prominent advantages in 3-dimensional monitoring, pollution peak and source identification, and short-term health effect evaluation. Huge amounts of data from real-time sensors also facilitate the modeling and prediction of indoor air pollution. However, challenges still remain in extensive deployment of real-time sensors indoors, including the selection, performance, stability, as well as calibration of sensors. In future, sensors with high performance, long-term stability, low price, and low energy consumption are welcomed. Furthermore, more target air pollutants are also expected to be detected simultaneously by real-time sensors in indoor air monitoring.
Collapse
Affiliation(s)
- Jinze Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China.
| | - Yali Lei
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Shu Tao
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| |
Collapse
|
46
|
Yang H, Xiao X, Chen G, Chen X, Gao T, Xu L. Preliminary study on the effect of ozone exposure on blood glucose level in rats. Technol Health Care 2023; 31:303-311. [PMID: 37066931 DOI: 10.3233/thc-236026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND In recent years, people have paid more and more attention to the health hazards caused by O3 exposure, which will become a major problem after fine particulate matter (PM). OBJECTIVE To investigate the effects of ozone (O3) exposure on blood glucose levels in rats under different concentrations and times. METHODS Eighty rats were divided into control group and three ozone concentration groups. Each group was continuously exposed for 1d, 3d and, 6d, and exposed for 6 hours daily. After exposure, GTT, FBG, and random blood glucose were measured. RESULTS The FBG value increased significantly on the 6th day of 0.5 ppm and the 3rd and 6th days of 1.0 ppm exposure compared with the control group (P< 0.05). The random blood glucose value was significantly increased on the 3rd and 6th days of each exposure concentration (P< 0.05). When exposed to 1 ppm concentration, the 120 min GTT value of 1 d, 3 d and, 6 d was significantly higher than that of the control group (P< 0.05). CONCLUSION After acute O3 exposure, the blood glucose level of rats was affected by the exposure concentration and time. The concentration of 0.1 ppm had no significant impact on FBG and random blood glucose, and O3 with a concentration of 0.1 ppm and 0.5 ppm had no significant impact on values of GTT at 90 min, and 120 min.
Collapse
Affiliation(s)
- Hui Yang
- The Central Theater General Hospital of PLA, Wuhan, Hubei, China
| | - Xue Xiao
- Wuhan Qingchuan University, Wuhan, Hubei, China
| | - Gaoyun Chen
- The Institute of NBC Defense, Beijing, China
| | - Xiangfei Chen
- The Central Theater General Hospital of PLA, Wuhan, Hubei, China
| | - Tingting Gao
- The Central Theater General Hospital of PLA, Wuhan, Hubei, China
| | - Li Xu
- The Institute of NBC Defense, Beijing, China
| |
Collapse
|
47
|
Montes JOA, Villarreal AB, Piña BGB, Martínez KC, Lugo MC, Romieu I, Cadena LH. Short-Term Ambient Air Ozone Exposure and Components of Metabolic Syndrome in a Cohort of Mexican Obese Adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4495. [PMID: 36901504 PMCID: PMC10001840 DOI: 10.3390/ijerph20054495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Ambient air pollution is a major global public health concern; little evidence exists about the effects of short-term exposure to ozone on components of metabolic syndrome in young obese adolescents. The inhalation of air pollutants, such as ozone, can participate in the development of oxidative stress, systemic inflammation, insulin resistance, endothelium dysfunction, and epigenetic modification. Metabolic alterations in blood in components of metabolic syndrome (MS) and short-term ambient air ozone exposure were determined and evaluated longitudinally in a cohort of 372 adolescents aged between 9 to 19 years old. We used longitudinal mixed-effects models to evaluate the association between ozone exposure and the risk of components of metabolic syndrome and its parameters separately, adjusted using important variables. We observed statistically significant associations between exposure to ozone in tertiles in different lag days and the parameters associated with MS, especially for triglycerides (20.20 mg/dL, 95% CI: 9.5, 30.9), HDL cholesterol (-2.56 mg/dL (95% CI: -5.06, -0.05), and systolic blood pressure (1.10 mmHg, 95% CI: 0.08, 2.2). This study supports the hypothesis that short-term ambient air exposure to ozone may increase the risk of some components of MS such as triglycerides, cholesterol, and blood pressure in the obese adolescent population.
Collapse
Affiliation(s)
- Jorge Octavio Acosta Montes
- Facultad de Enfermería y Nutriología, Universidad Autónoma de Chihuahua, C. Escorza No. 900 Centro, Chihuahua 31000, Chihuahua, Mexico
| | - Albino Barraza Villarreal
- Instituto Nacional de Salud Pública, Av. Universidad No. 655, Col. Santa Maria Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico
| | - Blanca Gladiana Beltrán Piña
- Facultad de Enfermería y Nutriología, Universidad Autónoma de Chihuahua, C. Escorza No. 900 Centro, Chihuahua 31000, Chihuahua, Mexico
| | - Karla Cervantes Martínez
- Instituto Nacional de Salud Pública, Av. Universidad No. 655, Col. Santa Maria Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico
| | - Marlene Cortez Lugo
- Instituto Nacional de Salud Pública, Av. Universidad No. 655, Col. Santa Maria Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico
| | - Isabelle Romieu
- Instituto Nacional de Salud Pública, Av. Universidad No. 655, Col. Santa Maria Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico
| | - Leticia Hernández Cadena
- Instituto Nacional de Salud Pública, Av. Universidad No. 655, Col. Santa Maria Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico
| |
Collapse
|
48
|
Salaberria C, Chávez-Zichinelli CA, López-Rull I, Romano MC, Schondube JE. Physiological status of House Sparrows (Passer domesticus) along an ozone pollution gradient. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:261-272. [PMID: 36810751 PMCID: PMC10008774 DOI: 10.1007/s10646-023-02632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Mexico City is one of the most polluted cities in the world, and one in which air contamination is considered a public health threat. Numerous studies have related high concentrations of particulate matter and ozone to several respiratory and cardiovascular diseases and a higher human mortality risk. However, almost all of those studies have focused on human health outcomes, and the effects of anthropogenic air pollution on wildlife species is still poorly understood. In this study, we investigated the impacts of air pollution in the Mexico City Metropolitan Area (MCMA) on house sparrows (Passer domesticus). We assessed two physiological responses commonly used as biomarkers: stress response (the corticosterone concentration in feathers), and constitutive innate immune response (the concentration of both natural antibodies and lytic complement proteins), which are non-invasive techniques. We found a negative relationship between the ozone concentration and the natural antibodies response (p = 0.003). However, no relationship was found between the ozone concentration and the stress response or the complement system activity (p > 0.05). These results suggest that ozone concentrations in air pollution within MCMA may constrain the natural antibody response in the immune system of house sparrows. Our study shows, for the first time, the potential impact of ozone pollution on a wild species in the MCMA presenting the Nabs activity and the house sparrow as suitable indicators to assess the effect of air contamination on the songbirds.
Collapse
Affiliation(s)
- Concepción Salaberria
- Área de Biodiversidad, Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Madrid, España
| | | | - Isabel López-Rull
- Área de Biodiversidad, Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Madrid, España
| | - Marta C Romano
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, Ciudad de México, México
| | - Jorge E Schondube
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Campus Morelia, Antigua Carretera a Pátzcuaro 8701, Colonia Ex Hacienda de San José de la Huerta, 58190, Morelia, Michoacán, Mexico.
| |
Collapse
|
49
|
Zhao J, Yang Q, Liu Z, Xu P, Tian L, Yan J, Li K, Lin B, Bian L, Xi Z, Liu X. The impact of subchronic ozone exposure on serum metabolome and the mechanisms of abnormal bile acid and arachidonic acid metabolisms in the liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114573. [PMID: 36701875 DOI: 10.1016/j.ecoenv.2023.114573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 06/17/2023]
Abstract
Ambient ozone (O3) pollution can induce respiratory and cardiovascular toxicity. However, its impact on the metabolome and the underlying mechanisms remain unclear. This study first investigated the serum metabolite changes in rats exposed to 0.5 ppm O3 for 3 months using untargeted metabolomic approach. Results showed chronic ozone exposure significantly altered the serum levels of 34 metabolites with potential increased risk of digestive, respiratory and cardiovascular disease. Moreover, bile acid synthesis and secretion, and arachidonic acid (AA) metabolism became the most prominent affected metabolic pathways after O3 exposure. Further studies on the mechanisms found that the elevated serum toxic bile acid was not due to the increased biosynthesis in the liver, but the reduced reuptake from the portal vein to hepatocytes owing to repressed Ntcp and Oatp1a1, and the decreased bile acid efflux in hepatocytes as a results of inhibited Bsep, Ostalpha and Ostbeta. Meanwhile, decreased expressions of detoxification enzyme of SULT2A1 and the important regulators of FXR, PXR and HNF4α also contributed to the abnormal bile acids. In addition, O3 promoted the conversion of AA into thromboxane A2 (TXA2) and 20-hydroxyarachidonic acid (20-HETE) in the liver by up-regulation of Fads2, Cyp4a and Tbxas1 which resulting in decreased AA and linoleic acid (LA), and increased thromboxane B2 (TXB2) and 20-HETE in the serum. Furthermore, apparent hepatic chronic inflammation, fibrosis and abnormal function were found in ozone-exposed rats. These results indicated chronic ozone exposure could alter serum metabolites by interfering their metabolism in the liver, and inducing liver injury to aggravate metabolic disorders.
Collapse
Affiliation(s)
- Jiao Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Qingcheng Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Zhiyuan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Pengfei Xu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| |
Collapse
|
50
|
Wu T, Li Z, Wei Y. Advances in understanding mechanisms underlying mitochondrial structure and function damage by ozone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160589. [PMID: 36462650 DOI: 10.1016/j.scitotenv.2022.160589] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Mitochondria are double-membraned organelles found in eukaryotic cells. The integrity of mitochondrial structure and function determines cell destiny. Mitochondria are also the "energy factories of cells." The production of energy is accompanied by reactive oxygen species (ROS) generation. Generally, the production and consumption of ROS maintains a balance in cells. Ozone is a highly oxidizing, harmful substance in ground-level atmosphere. Ozone inhalation causes oxidative injury owing to the generation of ROS, resulting in mitochondrial oxidative stress overload. Oxidative damage to the mitochondria induces a vicious cycle of ROS production which might destroy mitochondrial DNA and mitochondrial structure and function in cells. ROS can alter the phosphorylation of various signaling molecules, triggering a series of downstream signaling pathway reactions. These include inflammatory responses, pyroptosis, autophagy, and apoptosis. Changes involving these molecular mechanisms may be related to the occurrence of disease. According to numerous epidemiological investigations, ozone exposure induces respiratory, cardiovascular, and nervous system diseases in humans. In addition, these systems require large quantities of energy. Hence, the mitochondrial damage caused by ozone may act as a bridge between human diseases. However, the specific molecular mechanisms involved require further investigation. This review discusses our understanding of the structure and function of mitochondria the mechanisms underlying ozone-induced mitochondrial damage.
Collapse
Affiliation(s)
- Tingting Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| |
Collapse
|