1
|
Gilfillan MA, Kiladejo A, Bhandari V. Current and Emerging Therapies for Prevention and Treatment of Bronchopulmonary Dysplasia in Preterm Infants. Paediatr Drugs 2025:10.1007/s40272-025-00697-3. [PMID: 40374983 DOI: 10.1007/s40272-025-00697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2025] [Indexed: 05/18/2025]
Abstract
Although advances in the care of extremely preterm born infants have yielded improvements in survival and reductions in important morbidities, rates of bronchopulmonary dysplasia (BPD) have remained relatively unchanged. As BPD can have a long-lasting impact on the quality of life for survivors of prematurity and their families, this remains a continuing challenge. Treatments that have consistently shown efficacy in preventing either BPD or the composite outcome of BPD and death prior to 36 weeks post menstrual age (PMA) in large-scale randomized clinical trials (RCTs) include caffeine [adjusted odds ratio aOR for BPD, 0.63; 95% confidence interval (95% CI) 0.52-0.76; p < 0.001)], vitamin A [relative risk (RR) for death or BPD 0.89; 95% CI 0.80-0.99], low-dose hydrocortisone in the first week of life [OR for survival without BPD, 1.45; 95% CI 1.11-1.90; p = 0.007], and post-natal dexamethasone [RR for BPD or mortality; 0.76; 95% CI 0.66-0.87]. Although early caffeine therapy is now a widely used strategy to prevent BPD, the potentially severe side effects of post-natal glucocorticoids and the concerns regarding the cost-benefit of vitamin A have led to inconsistent use of these drugs in clinical practice. Inhaled bronchodilators and diuretics provide differing degrees of symptomatic relief for patients according to their phenotypic pattern of lung injury; however, these medications do not prevent BPD. Currently available pharmaceuticals do not sufficiently address the degree of structural immaturity and immune dysregulation that is present in the growing population of survivors born prior to 25 weeks gestational age. In this article, we provide both an evidence-based summary of pharmacological treatments currently available to prevent and manage BPD and a discussion of emerging therapies that could help preserve normal lung development in infants born preterm.
Collapse
Affiliation(s)
- Margaret A Gilfillan
- Department of Pediatrics, St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, PA, USA
| | - Adedapo Kiladejo
- Department of Pediatrics, St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, PA, USA
| | - Vineet Bhandari
- Division of Neonatology, Department of Pediatrics, The Children's Regional Hospital at Cooper/Cooper Medical School of Rowan University, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
2
|
Huang D, Xie L, Luo T, Lin L, Ren Q, Zeng Z, Huang H, Liao H, Chang X, Chen Y, Zhao H, Cai S, Dong H. Effects of azithromycin on alleviating airway inflammation in asthmatic mice by regulating airway microbiota and metabolites. Microbiol Spectr 2025; 13:e0221724. [PMID: 39932326 PMCID: PMC11878009 DOI: 10.1128/spectrum.02217-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Abstract
Asthma is a chronic respiratory disease with increasing global prevalence, often linked to disrupted airway microbiota. Azithromycin has shown promise in asthma treatment, but whether its effect is owing to its antimicrobial capacity remains largely unknown. A house dust mite (HDM)-induced asthmatic mouse model was used to evaluate the effects of azithromycin on airway inflammation and microbiota. Mice were divided into control, HDM-induced asthma, HDM + azithromycin, and azithromycin-alone groups. Airway microbiota was analyzed using 16S rRNA sequencing, and metabolomic profiles were assessed via liquid chromatography-tandem mass spectrometry. Azithromycin alleviated type 2 airway inflammation in HDM-induced asthma, restoring microbiota diversity by modulating specific genera, including Streptococcus, Staphylococcus, Ruminococcus, Coprococcus, Bifidobacterium, etc. Combination analysis with metabolomics revealed that azithromycin significantly regulated airway microbiota-associated sphingomyelin metabolism. Azithromycin's therapeutic effects in asthma are associated with its ability to regulate airway microbiota and its associated sphingomyelin metabolism, highlighting the potential for microbiota-targeted therapies in asthma.IMPORTANCEAsthma, a prevalent chronic respiratory condition, poses a significant global health challenge due to its increasing prevalence and associated morbidity. The role of airway microbiota in asthma pathogenesis is gaining attention, with evidence suggesting that disruptions in this microbial community contribute to disease severity. Our study investigates the impact of azithromycin, a macrolide antibiotic, on airway inflammation and microbiota in a mouse model of asthma. The findings reveal that azithromycin not only alleviates airway inflammation but also restores microbiota diversity and modulates microbiota-associated sphingomyelin metabolism. This research underscores the potential of microbiota-targeted therapies in asthma management, offering a novel therapeutic strategy that could improve patient outcomes and reduce the healthcare burden associated with asthma.
Collapse
Affiliation(s)
- DanHui Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lingyan Xie
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingyue Luo
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lishan Lin
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - QianNan Ren
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaojin Zeng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haohua Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Liao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - XiaoDan Chang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuehua Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Zheng J, Huang Y, Zhang L, Liu T, Zou Y, He L, Guo S. Role of the Gut-Lung Microbiome Axis in Airway Inflammation in OVA-Challenged Mice and the Effect of Azithromycin. J Inflamm Res 2025; 18:2661-2676. [PMID: 40008084 PMCID: PMC11853874 DOI: 10.2147/jir.s506688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Objective This study aimed to investigate the role of the gut-lung microbiome axis in airway inflammation in asthma and to evaluate the effect of azithromycin on this axis, with a focus on the potential mechanism by which azithromycin reduces allergic airway inflammation. Methods Haematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) staining were used to assess pathological changes in the lung tissues of asthmatic mice. Leukocyte cell types in bronchoalveolar lavage fluid (BALF) samples were quantified following Wright-Giemsa staining. Total IgE, OVA-specific IgE, IL-4, IL-6, and IL-17A levels in BALF and total IgE in serum were measured by ELISA. The respiratory and gut microbiota were analysed using 16S rRNA gene sequencing and subsequent taxonomic analysis. Results OVA-challenged asthmatic mice with gut microbiota dysbiosis exhibited alterations in the respiratory microbiota, resulting in further aggravation of airway inflammation. Following faecal microbiota transplantation (FMT) to restore gut microbiota, respiratory microbiota dysbiosis was partially improved, and airway inflammation was significantly alleviated. Furthermore, azithromycin reduced airway inflammation in asthmatic mice, particularly non-eosinophilic inflammation, for which low-dose azithromycin combined with budesonide proved more effective. Azithromycin significantly enhanced the diversity and microbial composition of the gut microbiota and also affected the respiratory microbiota. At the phylum level, azithromycin decreased the abundance of Proteobacteria in the gut microbiota. At the genus level, azithromycin reduced the abundance of Pseudomonas in the respiratory microbiota. Conclusion The gut-lung microbiome axis plays a crucial role in airway inflammation in asthma. Azithromycin may reduce airway inflammation in asthma through modulation of the gut-lung microbiome axis.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yuying Huang
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Liang Zhang
- Department of Endocrine, Genetics and Metabolism, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Tiantian Liu
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ya Zou
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Li He
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Sheng Guo
- Department of Endocrine, Genetics and Metabolism, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
4
|
Perez-Garcia J, Cardenas A, Lorenzo-Diaz F, Pino-Yanes M. Precision medicine for asthma treatment: Unlocking the potential of the epigenome and microbiome. J Allergy Clin Immunol 2025; 155:298-315. [PMID: 38906272 PMCID: PMC12002393 DOI: 10.1016/j.jaci.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Asthma is a leading worldwide biomedical concern. Patients can experience life-threatening worsening episodes (exacerbations) usually controlled by anti-inflammatory and bronchodilator drugs. However, substantial heterogeneity in treatment response exists, and a subset of patients with unresolved asthma carry the major burden of this disease. The study of the epigenome and microbiome might bridge the gap between human genetics and environmental exposure to partially explain the heterogeneity in drug response. This review aims to provide a critical examination of the existing literature on the microbiome and epigenetic studies examining associations with asthma treatments and drug response, highlight convergent pathways, address current challenges, and offer future perspectives. Current epigenetic and microbiome studies have shown the bilateral relationship between asthma pharmacologic interventions and the human epigenome and microbiome. These studies, focusing on corticosteroids and to a lesser extent on bronchodilators, azithromycin, immunotherapy, and mepolizumab, have improved the understanding of the molecular basis of treatment response and identified promising biomarkers for drug response prediction. Immune and inflammatory pathways (eg, IL-2, TNF-α, NF-κB, and C/EBPs) underlie microbiome-epigenetic associations with asthma treatment, representing potential therapeutic pathways to be targeted. A comprehensive evaluation of these omics biomarkers could significantly contribute to precision medicine and new therapeutic target discovery.
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain.
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, Calif
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Melgaard ME, Jensen SK, Eliasen A, Pedersen CET, Thorsen J, Mikkelsen M, Vahman N, Schoos AMM, Gern J, Brix S, Stokholm J, Chawes BL, Bønnelykke K. Asthma development is associated with low mucosal IL-10 during viral infections in early life. Allergy 2024; 79:2981-2992. [PMID: 39221476 DOI: 10.1111/all.16276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Viral infection is a common trigger of severe respiratory illnesses in early life and a risk factor for later asthma development. The mechanism leading to asthma could involve an aberrant airway immune response to viral infections, but this has rarely been studied in a human setting. OBJECTIVES To investigate in situ virus-specific differences in upper airway immune mediator levels during viral episodes of respiratory illnesses and the association with later asthma. METHODS We included 493 episodes of acute respiratory illnesses in 277 children aged 0-3 years from the COPSAC2010 mother-child cohort. Levels of 18 different immune mediators were assessed in nasal epithelial lining fluid using high-sensitivity MesoScale Discovery kits and compared between children with and without viral PCR-identification in nasopharyngeal samples. Finally, we investigated whether the virus-specific immune response was associated with asthma by age 6 years. RESULTS Viral detection were associated with upregulation of several Type 1 and regulatory immune mediators, including IFN-ɣ, TNF-α, CCL4, CXCL10 and IL-10 and downregulation of Type 2 and Type 17 immune mediators, including CCL13, and CXCL8 (FDR <0.05). Children developing asthma had decreased levels of IL-10 (FDR <0.05) during viral episodes compared to children not developing asthma. CONCLUSION We described the airway immune mediator profile during viral respiratory illnesses in early life and showed that children developing asthma by age 6 years have a reduced regulatory (IL-10) immune mediator level. This provides insight into the interplay between early-life viral infections, airway immunity and asthma development.
Collapse
Affiliation(s)
- Mathias Elsner Melgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Signe Kjeldgaard Jensen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anders Eliasen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Casper-Emil Tingskov Pedersen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Thorsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Mikkelsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Nilofar Vahman
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Marie Malby Schoos
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Sygehus, Slagelse, Denmark
| | - James Gern
- Department of Pediatrics and Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Sygehus, Slagelse, Denmark
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Bo Lund Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Pouwels SD, Ter Haar EAMD, Heijink IH, Hylkema MN, Koster TD, Kuks PJM, Maassen S, Slebos DJ, Vasse GF, de Vries M, Woldhuis RR, Brandsma CA. Highlights from the 11th Bronchitis International Symposium: "Heterogeneity of Lung Disease in a Changing Environment," Groningen, The Netherlands, 2024. Respiration 2024; 103:765-776. [PMID: 39348815 DOI: 10.1159/000541655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024] Open
Abstract
This meeting report provides an overview of the highlights of the Bronchitis XI international symposium, held in June 2024 in Groningen, The Netherlands. The theme of this year's symposium was "heterogeneity of lung disease in a changing environment," and the symposium contained five different sessions focused on (i) heterogeneity of chronic lung disease, (ii) environmental changes with impact on lung disease, (iii) the aging lung, (iv) bronchitis, and (v) innovative therapy. The highlights from each of these sessions will be discussed separately, providing an overview of latest studies, new data, and enthralling discussions.
Collapse
Affiliation(s)
- Simon D Pouwels
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pulmonary Diseases, University of Groningen, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | - Else A M D Ter Haar
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pulmonary Diseases, University of Groningen, Groningen, The Netherlands
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pulmonary Diseases, University of Groningen, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | - Machteld N Hylkema
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | - T David Koster
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pulmonary Diseases, University of Groningen, Groningen, The Netherlands
| | - Pauline J M Kuks
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pulmonary Diseases, University of Groningen, Groningen, The Netherlands
| | - Sjors Maassen
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | - Dirk-Jan Slebos
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pulmonary Diseases, University of Groningen, Groningen, The Netherlands
| | - Gwenda F Vasse
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Maaike de Vries
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Epidemiology, University of Groningen, Groningen, The Netherlands
| | - Roy R Woldhuis
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Casali L, Stella GM. The Microbiota in Children and Adolescents with Asthma. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1175. [PMID: 39457140 PMCID: PMC11505771 DOI: 10.3390/children11101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/20/2024] [Accepted: 09/09/2024] [Indexed: 10/28/2024]
Abstract
The role of the respiratory microbiome has been deeply explored for at least two decades. Its characterization using modern methods is now well-defined, and the impacts of many microorganisms on health and diseases have been elucidated. Moreover, the acquired knowledge in related fields enables patient stratification based on their risk for disease onset, and the microbiome can play a role in defining possible phenotypes. The interplay between the lung and gut microbiomes is crucial in determining the microbial composition and immuno-inflammatory reaction. Asthma is still not a well-defined condition, where hyperreactivity and the immune system play important roles. In this disease, the microbiome is mostly represented by Proteobacteria, Streptococcus, and Veillonella, while Cytomegalovirus and Epstein-Barr viruses are the most prevalent viruses. A mycobiome may also be present. The passage from infancy to adolescence is examined by evaluating both the clinical picture and its relationship with possible variations of the microbiome and its effects on asthma. Otherwise, asthma is considered a heterogeneous disease that often starts in childhood and follows a particular personalized track, where adolescence plays a pivotal role in future prognosis. Under this point of view, the microbiota, with its possible variations due to many factors, both internal and external, can modify its composition; consequently, its inflammatory action and role in the immunological response has obvious consequences on the clinical conditions.
Collapse
Affiliation(s)
- Lucio Casali
- Unit of Respiratory Diseases, University of Perugia, 06121 Perugia, Italy;
| | - Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
8
|
Makrinioti H, Fainardi V, Bonnelykke K, Custovic A, Cicutto L, Coleman C, Eiwegger T, Kuehni C, Moeller A, Pedersen E, Pijnenburg M, Pinnock H, Ranganathan S, Tonia T, Subbarao P, Saglani S. European Respiratory Society statement on preschool wheezing disorders: updated definitions, knowledge gaps and proposed future research directions. Eur Respir J 2024; 64:2400624. [PMID: 38843917 DOI: 10.1183/13993003.00624-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/05/2024] [Indexed: 07/28/2024]
Abstract
Since the publication of the European Respiratory Society (ERS) task force reports on the management of preschool wheezing in 2008 and 2014, a large body of evidence has accumulated suggesting that the clinical phenotypes that were proposed (episodic (viral) wheezing and multiple-trigger wheezing) do not relate to underlying airway pathology and may not help determine response to treatment. Specifically, using clinical phenotypes alone may no longer be appropriate, and new approaches that can be used to inform clinical care are needed for future research. This ERS task force reviewed the literature published after 2008 related to preschool wheezing and has suggested that the criteria used to define wheezing disorders in preschool children should include age of diagnosis (0 to <6 years), confirmation of wheezing on at least one occasion, and more than one episode of wheezing ever. Furthermore, diagnosis and management may be improved by identifying treatable traits, including inflammatory biomarkers (blood eosinophils, aeroallergen sensitisation) associated with type-2 immunity and differential response to inhaled corticosteroids, lung function parameters and airway infection. However, more comprehensive use of biomarkers/treatable traits in predicting the response to treatment requires prospective validation. There is evidence that specific genetic traits may help guide management, but these must be adequately tested. In addition, the task force identified an absence of caregiver-reported outcomes, caregiver/self-management options and features that should prompt specialist referral for this age group. Priorities for future research include a focus on identifying 1) mechanisms driving preschool wheezing; 2) biomarkers of treatable traits and efficacy of interventions in those without allergic sensitisation/eosinophilia; 3) the need to include both objective outcomes and caregiver-reported outcomes in clinical trials; 4) the need for a suitable action plan for children with preschool wheezing; and 5) a definition of severe/difficult-to-treat preschool wheezing.
Collapse
Affiliation(s)
- Heidi Makrinioti
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- H. Makrinioti and V. Fainardi contributed equally to the manuscript
| | - Valentina Fainardi
- Department of Medicine and Surgery, Paediatric Clinic, University of Parma, Parma, Italy
- H. Makrinioti and V. Fainardi contributed equally to the manuscript
| | - Klaus Bonnelykke
- Department of Pediatrics, University of Copenhagen, Copenhagen, Denmark
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, Imperial NIHR Biomedical Research Centre, and Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Lisa Cicutto
- Community Research Department, National Jewish Health, University of Colorado, Denver, CO, USA
| | - Courtney Coleman
- Patient Involvement and Engagement, European Lung Foundation, Sheffield, UK
| | - Thomas Eiwegger
- Department of Pediatric and Adolescent Medicine, University Hospital St Pölten, St Pölten, Austria
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Claudia Kuehni
- Institute of Social and Preventive Medicine, Bern, Switzerland
| | - Alexander Moeller
- Department of Respiratory Medicine, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Eva Pedersen
- Institute of Social and Preventive Medicine, Bern, Switzerland
| | - Marielle Pijnenburg
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | - Thomy Tonia
- Institute of Social and Preventive Medicine, Bern, Switzerland
| | - Padmaja Subbarao
- SickKids Research Institute, Toronto, ON, Canada
- S. Saglani and P. Subbarao contributed equally to the manuscript
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, Imperial NIHR Biomedical Research Centre, and Centre for Paediatrics and Child Health, Imperial College London, London, UK
- S. Saglani and P. Subbarao contributed equally to the manuscript
| |
Collapse
|
9
|
van Beveren GJ, de Steenhuijsen Piters WAA, Boeschoten SA, Louman S, Chu ML, Arp K, Fraaij PL, de Hoog M, Buysse C, van Houten MA, Sanders EAM, Merkus PJFM, Boehmer AL, Bogaert D. Nasopharyngeal microbiota in children is associated with severe asthma exacerbations. J Allergy Clin Immunol 2024; 153:1574-1585.e14. [PMID: 38467291 DOI: 10.1016/j.jaci.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND The respiratory microbiome has been associated with the etiology and disease course of asthma. OBJECTIVE We sought to assess the nasopharyngeal microbiota in children with a severe asthma exacerbation and their associations with medication, air quality, and viral infection. METHODS A cross-sectional study was performed among children aged 2 to 18 years admitted to the medium care unit (MCU; n = 84) or intensive care unit (ICU; n = 78) with an asthma exacerbation. For case-control analyses, we matched all cases aged 2 to 6 years (n = 87) to controls in a 1:2 ratio. Controls were participants of either a prospective case-control study or a longitudinal birth cohort (n = 182). The nasopharyngeal microbiota was characterized by 16S-rRNA-gene sequencing. RESULTS Cases showed higher Shannon diversity index (ICU and MCU combined; P = .002) and a distinct microbial community composition when compared with controls (permutational multivariate ANOVA R2 = 1.9%; P < .001). We observed significantly higher abundance of Staphylococcus and "oral" taxa, including Neisseria, Veillonella, and Streptococcus spp. and a lower abundance of Dolosigranulum pigrum, Corynebacterium, and Moraxella spp. (MaAsLin2; q < 0.25) in cases versus controls. Furthermore, Neisseria abundance was associated with more severe disease (ICU vs MCU MaAslin2, P = .03; q = 0.30). Neisseria spp. abundance was also related with fine particulate matter exposure, whereas Haemophilus and Streptococcus abundances were related with recent inhaled corticosteroid use. We observed no correlations with viral infection. CONCLUSIONS Our results demonstrate that children admitted with asthma exacerbations harbor a microbiome characterized by overgrowth of Staphylococcus and "oral" microbes and an underrepresentation of beneficial niche-appropriate commensals. Several of these associations may be explained by (environmental or medical) exposures, although cause-consequence relationships remain unclear and require further investigations.
Collapse
Affiliation(s)
- Gina J van Beveren
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands; Department of Paediatrics, Spaarne Hospital, Haarlem, The Netherlands
| | - Wouter A A de Steenhuijsen Piters
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Shelley A Boeschoten
- Department of Neonatal and Paediatric Intensive Care, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Sam Louman
- Department of Paediatrics, Spaarne Hospital, Haarlem, The Netherlands
| | - Mei Ling Chu
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Kayleigh Arp
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Pieter L Fraaij
- Pediatric Infectious Diseases & Immunology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands; Department of Viroscience, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Matthijs de Hoog
- Department of Neonatal and Paediatric Intensive Care, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Corinne Buysse
- Department of Neonatal and Paediatric Intensive Care, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - Elisabeth A M Sanders
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Peter J F M Merkus
- Division of Respiratory Medicine, Department of Paediatrics, Radboudumc Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Annemie L Boehmer
- Department of Paediatrics, Spaarne Hospital, Haarlem, The Netherlands; Department of Paediatrics, Maasstad Hospital, Rotterdam, The Netherlands
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
10
|
Weary TE, Pappas T, Tusiime P, Tuhaise S, Ross E, Gern JE, Goldberg TL. High frequencies of nonviral colds and respiratory bacteria colonization among children in rural Western Uganda. Front Pediatr 2024; 12:1379131. [PMID: 38756971 PMCID: PMC11096560 DOI: 10.3389/fped.2024.1379131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Respiratory illness is the most common childhood disease globally, especially in developing countries. Previous studies have detected viruses in approximately 70-80% of respiratory illnesses. Methods In a prospective cohort study of 234 young children (ages 3-11 years) and 30 adults (ages 22-51 years) in rural Western Uganda sampled monthly from May 2019 to August 2021, only 24.2% of nasopharyngeal swabs collected during symptomatic disease had viruses detectable by multiplex PCR diagnostics and metagenomic sequencing. In the remaining 75.8% of swabs from symptomatic participants, we measured detection rates of respiratory bacteria Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae by quantitative PCR. Results 100% of children tested positive for at least one bacterial species. Detection rates were 87.2%, 96.8%, and 77.6% in children and 10.0%, 36.7%, and 13.3% for adults for H. influenzae, M. catarrhalis, and S. pneumoniae, respectively. In children, 20.8% and 70.4% were coinfected with two and three pathogens, respectively, and in adults 6.7% were coinfected with three pathogens but none were coinfected with two. Detection of any of the three pathogens was not associated with season or respiratory symptoms severity, although parsing detection status by symptoms was challenged by children experiencing symptoms in 80.3% of monthly samplings, whereas adults only reported symptoms 26.6% of the time. Pathobiont colonization in children in Western Uganda was significantly more frequent than in children living in high-income countries, including in a study of age-matched US children that utilized identical diagnostic methods. Detection rates were, however, comparable to rates in children living in other Sub-Saharan African countries. Discussion Overall, our results demonstrate that nonviral colds contribute significantly to respiratory disease burden among children in rural Uganda and that high rates of respiratory pathobiont colonization may play a role. These conclusions have implications for respiratory health interventions in the area, such as increasing childhood immunization rates and decreasing air pollutant exposure.
Collapse
Affiliation(s)
- Taylor E. Weary
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States
| | - Tressa Pappas
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | | | | | | | - James E. Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States
| |
Collapse
|
11
|
Georas SN, Khurana S. Update on asthma biology. J Allergy Clin Immunol 2024; 153:1215-1228. [PMID: 38341182 DOI: 10.1016/j.jaci.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
This is an exciting time to be conducting asthma research. The recent development of targeted asthma biologics has validated the power of basic research to discover new molecules amenable to therapeutic intervention. Advances in high-throughput sequencing are providing a wealth of "omics" data about genetic and epigenetic underpinnings of asthma, as well as about new cellular interacting networks and potential endotypes in asthma. Airway epithelial cells have emerged not only as key sensors of the outside environment but also as central drivers of dysregulated mucosal immune responses in asthma. Emerging data suggest that the airway epithelium in asthma remembers prior encounters with environmental exposures, resulting in potentially long-lasting changes in structure and metabolism that render asthmatic individuals susceptible to subsequent exposures. Here we summarize recent insights into asthma biology, focusing on studies using human cells or tissue that were published in the past 2 years. The studies are organized thematically into 6 content areas to draw connections and spur future research (on genetics and epigenetics, prenatal and early-life origins, microbiome, immune and inflammatory pathways, asthma endotypes and biomarkers, and lung structural alterations). We highlight recent studies of airway epithelial dysfunction and response to viral infections and conclude with a framework for considering how bidirectional interactions between alterations in airway structure and mucosal immunity can lead to sustained lung dysfunction in asthma.
Collapse
Affiliation(s)
- Steve N Georas
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY.
| | - Sandhya Khurana
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
12
|
Pei G, Guo L, Liang S, Chen F, Ma N, Bai J, Deng J, Li M, Qin C, Feng T, He Z. Long-Term Erythromycin Treatment Alters the Airway and Gut Microbiota: Data from Chronic Obstructive Pulmonary Disease Patients and Mice with Emphysema. Respiration 2024; 103:461-479. [PMID: 38663359 DOI: 10.1159/000538911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/10/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Although long-term macrolide antibiotics could reduce the recurrent exacerbation of chronic obstructive pulmonary disease (COPD), the side effect of bacterial resistance and the impact on the microbiota remain concerning. We investigated the influence of long-term erythromycin treatment on the airway and gut microbiota in mice with emphysema and patients with COPD. METHODS We conducted 16S rRNA gene sequencing to explore the effect of erythromycin treatment on the lung and gut microbiota in mice with emphysema. Liquid chromatography-mass spectrometry was used for lung metabolomics. A randomized controlled trial was performed to investigate the effect of 48-week erythromycin treatment on the airway and gut microbiota in COPD patients. RESULTS The mouse lung and gut microbiota were disrupted after cigarette smoke exposure. Erythromycin treatment depleted harmful bacteria and altered lung metabolism. Erythromycin treatment did not alter airway or gut microbial diversity in COPD patients. It reduced the abundance of pathogens, such as Burkholderia, in the airway of COPD patients and increased levels of symbiotic bacteria, such as Prevotella and Veillonella. The proportions of Blautia, Ruminococcus, and Lachnospiraceae in the gut were increased in COPD patients after erythromycin treatment. The time to the first exacerbation following treatment was significantly longer in the erythromycin treatment group than in the COPD group. CONCLUSION Long-term erythromycin treatment reduces airway and gut microbe abundance in COPD patients but does not affect microbial diversity and restores microbiota balance in COPD patients by reducing the abundance of pathogenic bacteria.
Collapse
Affiliation(s)
- Guangsheng Pei
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Liyan Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Siqiao Liang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fugang Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Nan Ma
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Bai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingmin Deng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meihua Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunhai Qin
- Department of Pulmonary and Critical Care Medicine, Guiping People's Hospital, Guiping, China
| | - Tao Feng
- Department of Pulmonary and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Zhiyi He
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
13
|
Kau AL, Rosen AL, Rosas-Salazar C. Can Therapeutic Targeting of the Human Microbiome Influence Asthma Management? A Pro/Con Debate. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:863-869. [PMID: 38224872 DOI: 10.1016/j.jaip.2023.12.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
Asthma is a clinically heterogeneous disease, and despite substantial improvements in therapies, there remains an unmet need for well-tolerated, effective treatments. Observational studies have demonstrated that alterations in the respiratory and gut microbiome are associated with the development of asthma and its severity. These findings are supported by preclinical models demonstrating that respiratory and gut microbes can alter airway inflammation. Therapeutic approaches to target the human microbiome have been increasingly applied to a wide range of acute and chronic diseases, but there are currently no microbiome-based therapeutics approved for the treatment of asthma. This clinical commentary addresses the future role of microbiome-based therapeutics in asthma management from both a pro and con perspective. We examine (1) the prospects for clinical studies demonstrating a causal relationship between the human microbiome and the severity of asthma; (2) the challenges and potential solutions for designing, testing, and implementing a microbiome-based therapeutic; and (3) the possibility of microbiome-based therapeutics for conditions comorbid to asthma. We conclude by identifying research priorities that will help determine the future of microbiome-based therapeutics for the management of asthma.
Collapse
Affiliation(s)
- Andrew L Kau
- Division of Allergy and Immunology, Department of Medicine, and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Mo.
| | - Anne L Rosen
- Division of Allergy and Immunology, Department of Medicine, and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Mo
| | - Christian Rosas-Salazar
- Division of Allergy, Immunology, and Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, Tenn.
| |
Collapse
|
14
|
Chan M, Ghadieh C, Irfan I, Khair E, Padilla N, Rebeiro S, Sidgreaves A, Patravale V, Disouza J, Catanzariti R, Pont L, Williams K, De Rubis G, Mehndiratta S, Dhanasekaran M, Dua K. Exploring the influence of the microbiome on the pharmacology of anti-asthmatic drugs. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:751-762. [PMID: 37650889 PMCID: PMC10791706 DOI: 10.1007/s00210-023-02681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
The microbiome is increasingly implicated in playing a role in physiology and pharmacology; in this review, we investigate the literature on the possibility of bacterial influence on the pharmacology of anti-asthmatic drugs, and the potential impact this has on asthmatic patients. Current knowledge in this area of research reveals an interaction between the gut and lung microbiome and the development of asthma. The influence of microbiome on the pharmacokinetics and pharmacodynamics of anti-asthmatic drugs is limited; however, understanding this interaction will assist in creating a more efficient treatment approach. This literature review highlighted that bioaccumulation and biotransformation in the presence of certain gut bacterial strains could affect drug metabolism in anti-asthmatic drugs. Furthermore, the bacterial richness in the lungs and the gut can influence drug efficacy and could also play a role in drug response. The implications of the above findings suggest that the microbiome is a contributing factor to an individuals' pharmacological response to anti-asthmatic drugs. Hence, future directions for research should follow investigating how these processes affect asthmatic patients and consider the role of the microbiome on drug efficacy and modify treatment guidelines accordingly.
Collapse
Affiliation(s)
- Michael Chan
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Chloe Ghadieh
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Isphahan Irfan
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Eamen Khair
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Natasha Padilla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sanshya Rebeiro
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Annabel Sidgreaves
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Maharashtra, 416113, India
| | - Rachelle Catanzariti
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Lisa Pont
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kylie Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Sydney, Australia
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Sydney, Australia
| | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|
15
|
Pabary R, Jaffe A, Bush A. Macrolides and Cystic Fibrosis. PROGRESS IN INFLAMMATION RESEARCH 2024:59-92. [DOI: 10.1007/978-3-031-42859-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Galeana-Cadena D, Gómez-García IA, Lopez-Salinas KG, Irineo-Moreno V, Jiménez-Juárez F, Tapia-García AR, Boyzo-Cortes CA, Matías-Martínez MB, Jiménez-Alvarez L, Zúñiga J, Camarena A. Winds of change a tale of: asthma and microbiome. Front Microbiol 2023; 14:1295215. [PMID: 38146448 PMCID: PMC10749662 DOI: 10.3389/fmicb.2023.1295215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/15/2023] [Indexed: 12/27/2023] Open
Abstract
The role of the microbiome in asthma is highlighted, considering its influence on immune responses and its connection to alterations in asthmatic patients. In this context, we review the variables influencing asthma phenotypes from a microbiome perspective and provide insights into the microbiome's role in asthma pathogenesis. Previous cohort studies in patients with asthma have shown that the presence of genera such as Bifidobacterium, Lactobacillus, Faecalibacterium, and Bacteroides in the gut microbiome has been associated with protection against the disease. While, the presence of other genera such as Haemophilus, Streptococcus, Staphylococcus, and Moraxella in the respiratory microbiome has been implicated in asthma pathogenesis, indicating a potential link between microbial dysbiosis and the development of asthma. Furthermore, respiratory infections have been demonstrated to impact the composition of the upper respiratory tract microbiota, increasing susceptibility to bacterial diseases and potentially triggering asthma exacerbations. By understanding the interplay between the microbiome and asthma, valuable insights into disease mechanisms can be gained, potentially leading to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- David Galeana-Cadena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Karen Gabriel Lopez-Salinas
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Valeria Irineo-Moreno
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Fabiola Jiménez-Juárez
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Alan Rodrigo Tapia-García
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Red de Medicina para la Educación, el Desarrollo y la Investigación Científica de Iztacala, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Alberto Boyzo-Cortes
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Melvin Barish Matías-Martínez
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Luis Jiménez-Alvarez
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Angel Camarena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| |
Collapse
|
17
|
van Beveren GJ, Said H, van Houten MA, Bogaert D. The respiratory microbiome in childhood asthma. J Allergy Clin Immunol 2023; 152:1352-1367. [PMID: 37838221 DOI: 10.1016/j.jaci.2023.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Asthma is the most prevalent noncommunicable disease in childhood, characterized by reversible airway constriction and inflammation of the lower airways. The respiratory tract consists of the upper and lower airways, which are lined with a diverse community of microbes. The composition and density of the respiratory microbiome differs across the respiratory tract, with microbes adapting to the gradually changing physiology of the environment. Over the past decade, both the upper and lower respiratory microbiomes have been implicated in the etiology and disease course of asthma, as well as in its severity and phenotype. We have reviewed the literature on the role of the respiratory microbiome in asthma, making a careful distinction between the relationship of the microbiome with development of childhood asthma and its relationship with the disease course, while accounting for age and the microbial niches studied. Furthermore, we have assessed the literature regarding the underlying asthma endotypes and the impact of the microbiome on the host immune response. We have identified distinct microbial signatures across the respiratory tract associated with asthma development, stability, and severity. These data suggest that the respiratory microbiome may be important for asthma development and severity and may therefore be a potential target for future microbiome-based preventive and treatment strategies.
Collapse
Affiliation(s)
- Gina J van Beveren
- Spaarne Gasthuis Academy, Hoofddorp and Haarlem, Hoofddorp, The Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hager Said
- Department of Pediatrics, Spaarne Gasthuis Haarlem
| | - Marlies A van Houten
- Spaarne Gasthuis Academy, Hoofddorp and Haarlem, Hoofddorp, The Netherlands; Department of Pediatrics, Spaarne Gasthuis Haarlem
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands; Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
18
|
Wagner BD, Zemanick ET, Sagel SD, Robertson CE, Stevens MJ, Mayer-Hamblett N, Retsch-Bogart G, Ramsey BW, Harris JK. Limited effects of azithromycin on the oropharyngeal microbiome in children with CF and early pseudomonas infection. BMC Microbiol 2023; 23:312. [PMID: 37891457 PMCID: PMC10612347 DOI: 10.1186/s12866-023-03073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Tobramycin inhalation solution (TIS) and chronic azithromycin (AZ) have known clinical benefits for children with CF, likely due to antimicrobial and anti-inflammatory activity. The effects of chronic AZ in combination with TIS on the airway microbiome have not been extensively investigated. Oropharyngeal swab samples were collected in the OPTIMIZE multicenter, randomized, placebo-controlled trial examining the addition of AZ to TIS in 198 children with CF and early P. aeruginosa infection. Bacterial small subunit rRNA gene community profiles were determined. The effects of TIS and AZ were assessed on oropharyngeal microbial diversity and composition to uncover whether effects on the bacterial community may be a mechanism of action related to the observed changes in clinical outcomes. RESULTS Substantial changes in bacterial communities (total bacterial load, diversity and relative abundance of specific taxa) were observed by week 3 of TIS treatment for both the AZ and placebo groups. On average, these shifts were due to changes in non-traditional CF taxa that were not sustained at the later study visits (weeks 13 and 26). Bacterial community measures did not differ between the AZ and placebo groups. CONCLUSIONS This study provides further evidence that the mechanism for AZ's effect on clinical outcomes is not due solely to action on airway microbial composition.
Collapse
Affiliation(s)
- Brandie D Wagner
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, CO, USA.
- Children's Hospital Colorado, Aurora, CO, USA.
| | - Edith T Zemanick
- Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Scott D Sagel
- Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | | | - Mark J Stevens
- Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Nicole Mayer-Hamblett
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Seattle Children's Hospital, Seattle, WA, USA
| | | | - Bonnie W Ramsey
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Seattle Children's Hospital, Seattle, WA, USA
| | - J Kirk Harris
- Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado, Aurora, CO, USA
| |
Collapse
|
19
|
Abdel-Aziz MI, Thorsen J, Hashimoto S, Vijverberg SJH, Neerincx AH, Brinkman P, van Aalderen W, Stokholm J, Rasmussen MA, Roggenbuck-Wedemeyer M, Vissing NH, Mortensen MS, Brejnrod AD, Fleming LJ, Murray CS, Fowler SJ, Frey U, Bush A, Singer F, Hedlin G, Nordlund B, Shaw DE, Chung KF, Adcock IM, Djukanovic R, Auffray C, Bansal AT, Sousa AR, Wagers SS, Chawes BL, Bønnelykke K, Sørensen SJ, Kraneveld AD, Sterk PJ, Roberts G, Bisgaard H, Maitland-van der Zee AH. Oropharyngeal Microbiota Clusters in Children with Asthma or Wheeze Associate with Allergy, Blood Transcriptomic Immune Pathways, and Exacerbation Risk. Am J Respir Crit Care Med 2023; 208:142-154. [PMID: 37163754 DOI: 10.1164/rccm.202211-2107oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Rationale: Children with preschool wheezing or school-age asthma are reported to have airway microbial imbalances. Objectives: To identify clusters in children with asthma or wheezing using oropharyngeal microbiota profiles. Methods: Oropharyngeal swabs from the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) pediatric asthma or wheezing cohort were characterized using 16S ribosomal RNA gene sequencing, and unsupervised hierarchical clustering was performed on the Bray-Curtis β-diversity. Enrichment scores of the Molecular Signatures Database hallmark gene sets were computed from the blood transcriptome using gene set variation analysis. Children with severe asthma or severe wheezing were followed up for 12-18 months, with assessment of the frequency of exacerbations. Measurements and Main Results: Oropharyngeal samples from 241 children (age range, 1-17 years; 40% female) revealed four taxa-driven clusters dominated by Streptococcus, Veillonella, Rothia, and Haemophilus. The clusters showed significant differences in atopic dermatitis, grass pollen sensitization, FEV1% predicted after salbutamol, and annual asthma exacerbation frequency during follow-up. The Veillonella cluster was the most allergic and included the highest percentage of children with two or more exacerbations per year during follow-up. The oropharyngeal clusters were different in the enrichment scores of TGF-β (transforming growth factor-β) (highest in the Veillonella cluster) and Wnt/β-catenin signaling (highest in the Haemophilus cluster) transcriptomic pathways in blood (all q values <0.05). Conclusions: Analysis of the oropharyngeal microbiota of children with asthma or wheezing identified four clusters with distinct clinical characteristics (phenotypes) that associate with risk for exacerbation and transcriptomic pathways involved in airway remodeling. This suggests that further exploration of the oropharyngeal microbiota may lead to novel pathophysiologic insights and potentially new treatment approaches.
Collapse
Affiliation(s)
- Mahmoud I Abdel-Aziz
- Department of Pulmonary Medicine and
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
- Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, and
| | - Simone Hashimoto
- Department of Pulmonary Medicine and
- Department of Paediatric Pulmonary Medicine, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Susanne J H Vijverberg
- Department of Pulmonary Medicine and
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Anne H Neerincx
- Department of Pulmonary Medicine and
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Paul Brinkman
- Department of Pulmonary Medicine and
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Wim van Aalderen
- Department of Paediatric Pulmonary Medicine, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Morten Arendt Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Michael Roggenbuck-Wedemeyer
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Novozymes, Bagsvaerd, Denmark
| | - Nadja H Vissing
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital
| | - Martin Steen Mortensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Asker Daniel Brejnrod
- Section of Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Louise J Fleming
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Clare S Murray
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre and National Institute for Health and Care Research Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre and National Institute for Health and Care Research Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Urs Frey
- University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Florian Singer
- Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gunilla Hedlin
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Björn Nordlund
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Dominick E Shaw
- National Institute for Health and Care Research Respiratory Biomedical Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Ratko Djukanovic
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences and Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Aruna T Bansal
- Acclarogen Ltd., St. John's Innovation Centre, Cambridge, United Kingdom
| | - Ana R Sousa
- Respiratory Therapeutic Unit, GlaxoSmithKline, Stockley Park, United Kingdom
| | | | - Bo Lund Chawes
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, and
| | - Klaus Bønnelykke
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, and
| | - Søren Johannes Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Peter J Sterk
- Department of Pulmonary Medicine and
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Graham Roberts
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences and Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital
| | - Anke H Maitland-van der Zee
- Department of Pulmonary Medicine and
- Department of Paediatric Pulmonary Medicine, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| |
Collapse
|
20
|
Bisgaard H, Chawes B, Stokholm J, Mikkelsen M, Schoos AMM, Bønnelykke K. 25 Years of translational research in the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC). J Allergy Clin Immunol 2023; 151:619-633. [PMID: 36642652 DOI: 10.1016/j.jaci.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 01/15/2023]
Abstract
The Copenhagen Prospective Studies on Asthma in Childhood (COPSAC) mother-child cohorts have provided a foundation of 25 years of research on the origins, prevention, and natural history of childhood asthma and related disorders. COPSAC's approach is characterized by clinical translational research with longitudinal deep phenotyping and exposure assessments from pregnancy, in combination with multi-omic data layers and embedded randomized controlled trials. One trial showed that fish oil supplementation during pregnancy prevented childhood asthma and identified pregnant women with the highest benefits from supplementation, thereby creating the potential for personalized prevention. COPSAC revealed that airway colonization with pathogenic bacteria in early life is associated with an increased risk of asthma. Further, airway bacteria were shown to be a trigger of acute asthma-like symptoms, with benefit from antibiotic treatment. COPSAC identified an immature gut microbiome in early life as a risk factor for asthma and allergy and further demonstrated that asthma can be predicted by infant lung function. At a molecular level, COPSAC has identified novel susceptibility genes, early immune deviations, and metabolomic alterations associated with childhood asthma. Thus, the COPSAC research program has enhanced our understanding of the processes causing childhood asthma and has suggested means of personalized prevention and treatment.
Collapse
Affiliation(s)
- Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Marianne Mikkelsen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Marie Malby Schoos
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
21
|
Bosco A. Emerging role for interferons in respiratory viral infections and childhood asthma. Front Immunol 2023; 14:1109001. [PMID: 36895568 PMCID: PMC9989033 DOI: 10.3389/fimmu.2023.1109001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) and Rhinovirus (RV) infections are major triggers of severe lower respiratory illnesses (sLRI) in infants and children and are strongly associated with the subsequent development of asthma. Decades of research has focused on the role of type I interferons in antiviral immunity and ensuing airway diseases, however, recent findings have highlighted several novel aspects of the interferon response that merit further investigation. In this perspective, we discuss emerging roles of type I interferons in the pathogenesis of sLRI in children. We propose that variations in interferon response patterns exist as discrete endotypes, which operate locally in the airways and systemically through a lung-blood-bone marrow axis. We discuss new insights into the role of interferons in immune training, bacterial lysate immunotherapy, and allergen-specific immunotherapy. Interferons play complex and diverse roles in the pathogenesis of sLRI and later asthma, providing new directions for mechanistic studies and drug development.
Collapse
Affiliation(s)
- Anthony Bosco
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
22
|
Alsayed AR, Abed A, Khader HA, Al-Shdifat LMH, Hasoun L, Al-Rshaidat MMD, Alkhatib M, Zihlif M. Molecular Accounting and Profiling of Human Respiratory Microbial Communities: Toward Precision Medicine by Targeting the Respiratory Microbiome for Disease Diagnosis and Treatment. Int J Mol Sci 2023; 24:4086. [PMID: 36835503 PMCID: PMC9966333 DOI: 10.3390/ijms24044086] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The wide diversity of microbiota at the genera and species levels across sites and individuals is related to various causes and the observed differences between individuals. Efforts are underway to further understand and characterize the human-associated microbiota and its microbiome. Using 16S rDNA as a genetic marker for bacterial identification improved the detection and profiling of qualitative and quantitative changes within a bacterial population. In this light, this review provides a comprehensive overview of the basic concepts and clinical applications of the respiratory microbiome, alongside an in-depth explanation of the molecular targets and the potential relationship between the respiratory microbiome and respiratory disease pathogenesis. The paucity of robust evidence supporting the correlation between the respiratory microbiome and disease pathogenesis is currently the main challenge for not considering the microbiome as a novel druggable target for therapeutic intervention. Therefore, further studies are needed, especially prospective studies, to identify other drivers of microbiome diversity and to better understand the changes in the lung microbiome along with the potential association with disease and medications. Thus, finding a therapeutic target and unfolding its clinical significance would be crucial.
Collapse
Affiliation(s)
- Ahmad R. Alsayed
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Anas Abed
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 11931, Jordan
| | - Heba A. Khader
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Laith M. H. Al-Shdifat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Luai Hasoun
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Mamoon M. D. Al-Rshaidat
- Laboratory for Molecular and Microbial Ecology (LaMME), Department of Biological Sciences, School of Sciences, The University of Jordan, Amman 11942, Jordan
| | - Mohammad Alkhatib
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Roma, Italy
| | - Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
23
|
Blankestijn JM, Lopez-Rincon A, Neerincx AH, Vijverberg SJH, Hashimoto S, Gorenjak M, Sardón Prado O, Corcuera-Elosegui P, Korta-Murua J, Pino-Yanes M, Potočnik U, Bang C, Franke A, Wolff C, Brandstetter S, Toncheva AA, Kheiroddin P, Harner S, Kabesch M, Kraneveld AD, Abdel-Aziz MI, Maitland-van der Zee AH. Classifying asthma control using salivary and fecal bacterial microbiome in children with moderate-to-severe asthma. Pediatr Allergy Immunol 2023; 34:e13919. [PMID: 36825736 DOI: 10.1111/pai.13919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Uncontrolled asthma can lead to severe exacerbations and reduced quality of life. Research has shown that the microbiome may be linked with asthma characteristics; however, its association with asthma control has not been explored. We aimed to investigate whether the gastrointestinal microbiome can be used to discriminate between uncontrolled and controlled asthma in children. METHODS 143 and 103 feces samples were obtained from 143 children with moderate-to-severe asthma aged 6 to 17 years from the SysPharmPediA study. Patients were classified as controlled or uncontrolled asthmatics, and their microbiome at species level was compared using global (alpha/beta) diversity, conventional differential abundance analysis (DAA, analysis of compositions of microbiomes with bias correction), and machine learning [Recursive Ensemble Feature Selection (REFS)]. RESULTS Global diversity and DAA did not find significant differences between controlled and uncontrolled pediatric asthmatics. REFS detected a set of taxa, including Haemophilus and Veillonella, differentiating uncontrolled and controlled asthma with an average classification accuracy of 81% (saliva) and 86% (feces). These taxa showed enrichment in taxa previously associated with inflammatory diseases for both sampling compartments, and with COPD for the saliva samples. CONCLUSION Controlled and uncontrolled children with asthma can be differentiated based on their gastrointestinal microbiome using machine learning, specifically REFS. Our results show an association between asthma control and the gastrointestinal microbiome. This suggests that the gastrointestinal microbiome may be a potential biomarker for treatment responsiveness and thereby help to improve asthma control in children.
Collapse
Affiliation(s)
- Jelle M Blankestijn
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Amsterdam Public Health, Amsterdam, The Netherlands
| | - Alejandro Lopez-Rincon
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Department of Data Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anne H Neerincx
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne J H Vijverberg
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Simone Hashimoto
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatric Respiratory Medicine, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
| | - Mario Gorenjak
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Olaia Sardón Prado
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
- Department of Pediatrics, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Paula Corcuera-Elosegui
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | - Javier Korta-Murua
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, La Laguna, Spain
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christine Wolff
- Science and Development Campus Regensburg (WECARE), University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Susanne Brandstetter
- Science and Development Campus Regensburg (WECARE), University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Antoaneta A Toncheva
- Science and Development Campus Regensburg (WECARE), University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Parastoo Kheiroddin
- Science and Development Campus Regensburg (WECARE), University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Susanne Harner
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Michael Kabesch
- Science and Development Campus Regensburg (WECARE), University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mahmoud I Abdel-Aziz
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Amsterdam Public Health, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Anke H Maitland-van der Zee
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Amsterdam Public Health, Amsterdam, The Netherlands
- Department of Pediatric Respiratory Medicine, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Valverde-Molina J, García-Marcos L. Microbiome and Asthma: Microbial Dysbiosis and the Origins, Phenotypes, Persistence, and Severity of Asthma. Nutrients 2023; 15:nu15030486. [PMID: 36771193 PMCID: PMC9921812 DOI: 10.3390/nu15030486] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The importance of the microbiome, and of the gut-lung axis in the origin and persistence of asthma, is an ongoing field of investigation. The process of microbial colonisation in the first three years of life is fundamental for health, with the first hundred days of life being critical. Different factors are associated with early microbial dysbiosis, such as caesarean delivery, artificial lactation and antibiotic therapy, among others. Longitudinal cohort studies on gut and airway microbiome in children have found an association between microbial dysbiosis and asthma at later ages of life. A low α-diversity and relative abundance of certain commensal gut bacterial genera in the first year of life are associated with the development of asthma. Gut microbial dysbiosis, with a lower abundance of Phylum Firmicutes, could be related with increased risk of asthma. Upper airway microbial dysbiosis, especially early colonisation by Moraxella spp., is associated with recurrent viral infections and the development of asthma. Moreover, the bacteria in the respiratory system produce metabolites that may modify the inception of asthma and is progression. The role of the lung microbiome in asthma development has yet to be fully elucidated. Nevertheless, the most consistent finding in studies on lung microbiome is the increased bacterial load and the predominance of proteobacteria, especially Haemophilus spp. and Moraxella catarrhalis. In this review we shall update the knowledge on the association between microbial dysbiosis and the origins of asthma, as well as its persistence, phenotypes, and severity.
Collapse
Affiliation(s)
- José Valverde-Molina
- Department of Paediatrics, Santa Lucía General University Hospital, 30202 Cartagena, Spain
| | - Luis García-Marcos
- Paediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children’s Hospital, University of Murcia and IMIB Biomedical Research Institute, 20120 Murcia, Spain
- Correspondence:
| |
Collapse
|
25
|
Principe S, Vijverberg SJH, Abdel-Aziz MI, Scichilone N, Maitland-van der Zee AH. Precision Medicine in Asthma Therapy. Handb Exp Pharmacol 2023; 280:85-106. [PMID: 35852633 DOI: 10.1007/164_2022_598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Asthma is a complex, heterogeneous disease that necessitates a proper patient evaluation to decide the correct treatment and optimize disease control. The recent introduction of new target therapies for the most severe form of the disease has heralded a new era of treatment options, intending to treat and control specific molecular pathways in asthma pathophysiology. Precision medicine, using omics sciences, investigates biological and molecular mechanisms to find novel biomarkers that can be used to guide treatment selection and predict response. The identification of reliable biomarkers indicative of the pathological mechanisms in asthma is essential to unravel new potential treatment targets. In this chapter, we provide a general description of the currently available -omics techniques, focusing on their implications in asthma therapy.
Collapse
Affiliation(s)
- Stefania Principe
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE) c/o Pneumologia, AOUP "Policlinico Paolo Giaccone", University of Palermo, Palermo, Italy.
| | - Susanne J H Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mahmoud I Abdel-Aziz
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Nicola Scichilone
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE) c/o Pneumologia, AOUP "Policlinico Paolo Giaccone", University of Palermo, Palermo, Italy
| | | |
Collapse
|
26
|
Asthma and Wheeze Severity and the Oropharyngeal Microbiota in Children and Adolescents. Ann Am Thorac Soc 2022; 19:2031-2043. [PMID: 35904980 DOI: 10.1513/annalsats.202110-1152oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rationale: There is a major unmet need for improving the care of children and adolescents with severe asthma and wheeze. Identifying factors contributing to disease severity may lead to improved diagnostics, biomarkers, or therapies. The airway microbiota may be such a key factor. Objectives: To compare the oropharyngeal airway microbiota of children and adolescents with severe and mild/moderate asthma/wheeze. Methods: Oropharyngeal swab samples from school-age and preschool children in the European U-BIOPRED (Unbiased BIOmarkers in the PREDiction of respiratory disease outcomes) multicenter study of severe asthma, all receiving severity-appropriate treatment, were examined using 16S ribosomal RNA gene sequencing. Bacterial taxa were defined as amplicon sequence variants. Results: We analyzed 241 samples from four cohorts: A) 86 school-age children with severe asthma; B) 39 school-age children with mild/moderate asthma; C) 65 preschool children with severe wheeze; and D) 51 preschool children with mild/moderate wheeze. The most common bacteria were Streptococcus (mean relative abundance, 33.5%), Veillonella (10.3%), Haemophilus (7.0%), Prevotella (5.9%), and Rothia (5.5%). Age group (school-age vs. preschool) was associated with the microbiota in β-diversity analysis (F = 3.32, P = 0.011) and in a differential abundance analysis (28 significant amplicon sequence variants). Among all children, we found no significant difference in the microbiota between children with severe and mild/moderate asthma/wheeze in univariable β-diversity analysis (F = 1.99, P = 0.08, N = 241), but a significant difference in a multivariable model (F = 2.66, P = 0.035), including the number of exacerbations in the previous year. Age was also significant when expressed as a microbial maturity score (Spearman Rho, 0.39; P = 4.6 × 10-10); however, this score was not associated with asthma/wheeze severity. Conclusions: There was a modest difference in the oropharyngeal airway microbiota between children with severe and mild/moderate asthma/wheeze across all children but not in individual age groups, and a strong association between the microbiota and age. This suggests the oropharyngeal airway microbiota as an interesting entity in studying asthma severity, but probably without the strength to serve as a biomarker for targeted intervention.
Collapse
|
27
|
Chotirmall SH, Bogaert D, Chalmers JD, Cox MJ, Hansbro PM, Huang YJ, Molyneaux PL, O’Dwyer DN, Pragman AA, Rogers GB, Segal LN, Dickson RP. Therapeutic Targeting of the Respiratory Microbiome. Am J Respir Crit Care Med 2022; 206:535-544. [PMID: 35549655 PMCID: PMC9716896 DOI: 10.1164/rccm.202112-2704pp] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - Debby Bogaert
- Center for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, the Netherlands
| | - James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom
| | - Michael J. Cox
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Yvonne J. Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Philip L. Molyneaux
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - David N. O’Dwyer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Alexa A. Pragman
- Department of Medicine, Minneapolis Veterans Affairs Medical Center, Minneapolis, Minnesota
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Geraint B. Rogers
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Leopoldo N. Segal
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, New York; and
| | - Robert P. Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, Michigan
| |
Collapse
|
28
|
Management of Preschool Wheezing: Guideline from the Emilia-Romagna Asthma (ERA) Study Group. J Clin Med 2022; 11:jcm11164763. [PMID: 36013002 PMCID: PMC9409690 DOI: 10.3390/jcm11164763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022] Open
Abstract
Preschool wheezing should be considered an umbrella term for distinctive diseases with different observable and measurable phenotypes. Despite many efforts, there is a large gap in knowledge regarding management of preschool wheezing. In order to fill this lack of knowledge, the aim of these guidelines was to define management of wheezing disorders in preschool children (aged up to 5 years). A multidisciplinary panel of experts of the Emilia-Romagna Region, Italy, addressed twelve different key questions regarding the management of preschool wheezing. Clinical questions have been formulated by the expert panel using the PICO format (Patients, Intervention, Comparison, Outcomes) and systematic reviews have been conducted on PubMed to answer these specific questions, with the aim of formulating recommendations. The GRADE approach has been used for each selected paper, to assess the quality of the evidence and the degree of recommendations. These guidelines represent, in our opinion, the most complete and up-to-date collection of recommendations on preschool wheezing to guide pediatricians in the management of their patients, standardizing approaches. Undoubtedly, more research is needed to find objective biomarkers and understand underlying mechanisms to assess phenotype and endotype and to personalize targeted treatment.
Collapse
|
29
|
Wark PAB. We need to understand why viral infections lead to acute asthma. Eur Respir J 2022; 60:60/1/2200194. [PMID: 35902102 DOI: 10.1183/13993003.00194-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Peter A B Wark
- Immune Health Program, Hunter Medical Research institute, University of Newcastle, New Lambton, Australia
| |
Collapse
|
30
|
Kyvsgaard JN, Ralfkiaer U, Følsgaard N, Jensen TM, Hesselberg LM, Schoos AMM, Bønnelykke K, Bisgaard H, Stokholm J, Chawes B. Azithromycin and high-dose vitamin D for treatment and prevention of asthma-like episodes in hospitalised preschool children: study protocol for a combined double-blind randomised controlled trial. BMJ Open 2022; 12:e054762. [PMID: 35418427 PMCID: PMC9014042 DOI: 10.1136/bmjopen-2021-054762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Previous randomised controlled trials (RCTs) suggest antibiotics for treating episodes of asthma-like symptoms in preschool children. Further, high-dose vitamin D supplementation has been shown to reduce the rate of asthma exacerbations among adults with asthma, while RCTs in preschool children are lacking. The aims of this combined RCT are to evaluate treatment effect of azithromycin on episode duration and the preventive effect of high-dose vitamin D supplementation on subsequent episodes of asthma-like symptoms among hospitalised preschoolers. METHODS AND ANALYSIS Eligible participants, 1-5 years old children with a history of recurrent asthma-like symptoms hospitalised due to an acute episode, will be randomly allocated 1:1 to azithromycin (10 mg/kg/day) or placebo for 3 days (n=250). Further, independent of the azithromycin intervention participants will be randomly allocated 1:1 to high-dose vitamin D (2000 IU/day+ standard dose 400 IU/day) or standard dose (400 IU/day) for 1 year (n=320). Participants are monitored with electronic diaries for asthma-like symptoms, asthma medication, adverse events and sick-leave. The primary outcome for the azithromycin intervention is duration of asthma-like symptoms after treatment. Secondary outcomes include duration of hospitalisation and antiasthmatic treatment. The primary outcome for the vitamin D intervention is the number of exacerbations during the treatment period. Secondary outcomes include time to first exacerbation, symptom burden, asthma medication and safety. ETHICS AND DISSEMINATION The RCTs are approved by the Danish local ethical committee and conducted in accordance with the guiding principles of the Declaration of Helsinki. The Danish Medicines Agency has approved the azithromycin RCT, which is monitored by the local Unit for Good Clinical Practice. The vitamin D RCT has been reviewed and is not considered a medical intervention. Results will be published in peer-reviewed journals and presented at international conferences. TRIAL REGISTRATION NUMBERS NCT05028153, NCT05043116.
Collapse
Affiliation(s)
- Julie Nyholm Kyvsgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Department of Peadiatrics, Slagelse Hospital, Slagelse, Denmark
| | - Ulrik Ralfkiaer
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Nilofar Følsgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Trine Mølbæk Jensen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Department of Peadiatrics, Slagelse Hospital, Slagelse, Denmark
| | - Laura Marie Hesselberg
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Ann-Marie M Schoos
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Department of Peadiatrics, Slagelse Hospital, Slagelse, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Department of Peadiatrics, Slagelse Hospital, Slagelse, Denmark
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| |
Collapse
|
31
|
Logotheti M, Agioutantis P, Katsaounou P, Loutrari H. Microbiome Research and Multi-Omics Integration for Personalized Medicine in Asthma. J Pers Med 2021; 11:jpm11121299. [PMID: 34945771 PMCID: PMC8707330 DOI: 10.3390/jpm11121299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Asthma is a multifactorial inflammatory disorder of the respiratory system characterized by high diversity in clinical manifestations, underlying pathological mechanisms and response to treatment. It is generally established that human microbiota plays an essential role in shaping a healthy immune response, while its perturbation can cause chronic inflammation related to a wide range of diseases, including asthma. Systems biology approaches encompassing microbiome analysis can offer valuable platforms towards a global understanding of asthma complexity and improving patients' classification, status monitoring and therapeutic choices. In the present review, we summarize recent studies exploring the contribution of microbiota dysbiosis to asthma pathogenesis and heterogeneity in the context of asthma phenotypes-endotypes and administered medication. We subsequently focus on emerging efforts to gain deeper insights into microbiota-host interactions driving asthma complexity by integrating microbiome and host multi-omics data. One of the most prominent achievements of these research efforts is the association of refractory neutrophilic asthma with certain microbial signatures, including predominant pathogenic bacterial taxa (such as Proteobacteria phyla, Gammaproteobacteria class, especially species from Haemophilus and Moraxella genera). Overall, despite existing challenges, large-scale multi-omics endeavors may provide promising biomarkers and therapeutic targets for future development of novel microbe-based personalized strategies for diagnosis, prevention and/or treatment of uncontrollable asthma.
Collapse
Affiliation(s)
- Marianthi Logotheti
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., 10675 Athens, Greece; (M.L.); (P.A.)
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Panagiotis Agioutantis
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., 10675 Athens, Greece; (M.L.); (P.A.)
| | - Paraskevi Katsaounou
- Pulmonary Dept First ICU, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, Ipsilantou 45-7, 10675 Athens, Greece;
| | - Heleni Loutrari
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., 10675 Athens, Greece; (M.L.); (P.A.)
- Correspondence:
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Asthma is the most common chronic disease of childhood. Investigations of the lower and upper airway microbiomes have significantly progressed over recent years, and their roles in pediatric asthma are becoming increasingly clear. RECENT FINDINGS Early studies identified the existence of upper and lower airway microbiomes, including imbalances in both associated with pediatric asthma. The infant airway microbiome may offer predictive value for the development of asthma in later childhood, and it may also be influenced by external factors such as respiratory viral illness. The airway microbiome has also been associated with the clinical course of asthma, including rates of exacerbation and level of control. Advances in -omics sciences have enabled improved identification of the airway microbiome's relationships with host response and function in children with asthma. Investigations are now moving toward the application of the above findings to explore risk modification and treatment options. SUMMARY The airway microbiome provides an intriguing window into pediatric asthma, offering insights into asthma diagnosis, clinical course, and perhaps treatment. Further investigation is needed to solidify these associations and translate research findings into clinical practice.
Collapse
Affiliation(s)
- Rhia Shah
- Division of Pulmonary Medicine, Department of Pediatrics,
Icahn School of Medicine at Mount Sinai, New York, NY
| | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of
Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School
of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
33
|
Nino G, Rodriguez-Martinez CE, Gutierrez MJ. Early Microbial-Immune Interactions and Innate Immune Training of the Respiratory System during Health and Disease. CHILDREN-BASEL 2021; 8:children8050413. [PMID: 34069319 PMCID: PMC8158711 DOI: 10.3390/children8050413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 12/24/2022]
Abstract
Over the past two decades, several studies have positioned early-life microbial exposure as a key factor for protection or susceptibility to respiratory diseases. Birth cohorts have identified a strong link between neonatal bacterial colonization of the nasal airway and gut with the risk for respiratory infections and childhood asthma. Translational studies have provided companion mechanistic insights on how viral and bacterial exposures in early life affect immune development at the respiratory mucosal barrier. In this review, we summarize and discuss our current understanding of how early microbial–immune interactions occur during infancy, with a particular focus on the emergent paradigm of “innate immune training”. Future human-based studies including newborns and infants are needed to inform the timing and key pathways implicated in the development, maturation, and innate training of the airway immune response, and how early microbiota and virus exposures modulate these processes in the respiratory system during health and disease.
Collapse
Affiliation(s)
- Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Children’s National Hospital, George Washington University, Washington, DC 20052, USA
- Correspondence:
| | - Carlos E. Rodriguez-Martinez
- Department of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogota 111321, Colombia;
- Department of Pediatric Pulmonology, School of Medicine, Universidad El Bosque, Bogota 110121, Colombia
| | - Maria J. Gutierrez
- Division of Pediatric Allergy and Immunology, Johns Hopkins University, Baltimore, MD 21218, USA;
| |
Collapse
|
34
|
Bacharier LB. Azithromycin during Wheezing Illnesses among Preschool Children: Does the Airway Microbiota Provide Insights into Mechanism? Am J Respir Crit Care Med 2021; 204:115-116. [PMID: 33891824 PMCID: PMC8650781 DOI: 10.1164/rccm.202104-0842ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Leonard B Bacharier
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee
| |
Collapse
|