1
|
Wu Y, Shi L, Jin Z, Chen W, Wang F, Wu H, Li H, Zhang C, Zhu R. A nomogram prediction model for embryo implantation outcomes based on the cervical microbiota of the infertile patients during IVF-FET. Microbiol Spectr 2025; 13:e0146224. [PMID: 40052785 PMCID: PMC11960138 DOI: 10.1128/spectrum.01462-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/07/2025] [Indexed: 04/03/2025] Open
Abstract
The microbiota of the female genital tract is crucial for reproductive health. This study aims to investigate the impact of the lower genital tract microbiota on in vitro fertilization and frozen embryo transfer (IVF-FET) outcomes. This study included 131 women aged 20-35 years who underwent their first or second IVF-FET cycle with no obvious unfavorable factors for implantation. Cervical microbiota samples were collected on the embryo transfer day and analyzed using 16S rDNA full-length sequencing. Clinical outcomes were followed up for analysis. Clinical pregnancy (CP) was achieved in 84 patients, and 47 patients experienced non-pregnancy (NP). The cervical microbiota diversity between NP and CP groups showed no significant differences, but some genera such as Halomonas (P = 0.018), Klebsiella (P = 0.039), Atopobium (P = 0.016), and Ligilactobacillus (P = 0.021) were obviously different between the two groups. Notably, there was no significant difference in the abundance of Lactobacillus between the two groups. A nomogram prediction model was developed using the random forest algorithm and logistic regression, including the classification of Halomonas, Atopobium, and Veillonella, as well as the relative abundance of Lactobacillus, to identify high-risk patients with embryo implantation failure. Both internal (area under the curve [AUC] = 0.718, 95% confidence interval [CI]: 0.628-0.807, P < 0.001) and external validation (AUC = 0.654, 95% CI: 0.553-0.755, P = 0.037) of the model performed well. In conclusion, this study established a correlation between cervical microbiota and embryo implantation failure in infertile women undergoing IVF-FET and developed a prediction model that could help in early identification of patients at high risk of implantation failure.IMPORTANCEThis study investigated the potential role of abnormal cervical microbiota in the pathology of implantation failure after in vitro fertilization and frozen embryo transfer (IVF-FET) treatment. Despite nearly half a century of advancements in assisted reproductive technology (ART), the implantation rate of high-quality embryos still hovered around 50%. Moreover, unexplained recurrent implantation failure (RIF) remains a significant challenge in ART. To our knowledge, we first discovered a prediction model for embryo implantation failure, identifying Halomonas and Veillonella as significantly adverse factors for embryo implantation. Despite some limitations, the internal and external validation of the model could bode well for its clinical application prospect. The insights gained from this study pave the way for intervention in the genital tract microbiota prior to IVF-FET, particularly in patients with RIF and RSA.
Collapse
Affiliation(s)
- Yanan Wu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Lingyun Shi
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Zili Jin
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Wenjun Chen
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Fuxin Wang
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Huihua Wu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hong Li
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Ce Zhang
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Wu A, Xu L, Zhang Y, Zhu Y, Wu Y, Wu J, Wen L, Yuan Z, Wang J. Tannic acid mitigates salmonella-induced lung injury via gut-lung axis in broilers. Poult Sci 2025; 104:104973. [PMID: 40058006 PMCID: PMC11930585 DOI: 10.1016/j.psj.2025.104973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Tannic acid (TA), a polyphenolic compound derived from plants, exhibits anti-inflammatory, antibacterial, antiviral, and antioxidant biological activities. Salmonella, a prevalent foodborne pathogen, poses a significant threat to poultry, resulting in considerable economic losses for the animal husbandry industry. In this study, we investigated the protective effects of TA against lung and intestinal injuries induced by a transient Salmonella infection in broilers. After a ten-day infection period, although Salmonella was not detected in the intestinal content of broilers, the infected broilers exhibited reduced body weight and compromised intestinal barrier function. Salmonella infection facilitated the growth of detrimental bacteria in the lungs and ileums, triggering an inflammatory response. TA inhibited the pathogen's colonization in the lungs and reduced serum levels of lipopolysaccharide (LPS) as well as lung levels of myeloperoxidase (MPO). Moreover, TA down-regulated the expression of pro-inflammatory cytokines and hindered the polarization of M1 macrophages in the lungs. In summary, TA mitigates Salmonella-induced lung inflammation and immune imbalance by its anti-inflammatory, antioxidant and antibacterial properties in broilers.
Collapse
Affiliation(s)
- Aoao Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Liu Xu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yinzhu Zhang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yuanyuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China; Changsha Luye Biotechnology Co., Ltd, Changsha 410100, PR China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China.
| | - Ji Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China; Changsha Luye Biotechnology Co., Ltd, Changsha 410100, PR China.
| |
Collapse
|
3
|
Huang YJ. The Microbiome in Asthma Heterogeneity: The Role of Multi-Omic Investigations. Immunol Rev 2025; 330:e70015. [PMID: 40072031 PMCID: PMC11899502 DOI: 10.1111/imr.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/13/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Asthma is one of the most prevalent and extensively studied chronic respiratory conditions, yet the heterogeneity of asthma remains biologically puzzling. Established factors like exogenous exposures and treatment adherence contribute to variability in asthma risk and clinical outcomes. It is also clear that the endogenous factors of genetics and immune system response patterns play key roles in asthma. Despite significant existing knowledge in the above, divergent clinical trajectories and outcomes are still observed, even among individuals with similar risk profiles, biomarkers, and optimal medical management. This suggests uncaptured biological interactions that contribute to asthma's heterogeneity, for which the role of host microbiota has lately attracted much research attention. This review will highlight recent evidence in this area, focusing on bedside-to-bench investigations that have leveraged omic technologies to uncover microbiome links to asthma outcomes and immunobiology. Studies centered on the respiratory system and the use of multi-omics are noted in particular. These represent a new generation of reverse-translational investigations revealing potential functional crosstalk in host microbiomes that may drive phenotypic heterogeneity in chronic diseases like asthma. Multi-omic data offer a wide lens into ecosystem interactions within a host. This informs new hypotheses and experimental work to elucidate mechanistic pathways for unresolved asthma endotypes. Further incorporation of multi-omics into patient-centered investigations can yield new insights that hopefully lead to even more precise, microbiome-informed strategies to reduce asthma burden.
Collapse
Affiliation(s)
- Yvonne J. Huang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
4
|
Ma Q, Huang CX, He JW, Zeng X, Qu YL, Xiang HX, Zhong Y, Lei M, Zheng RY, Xiao JJ, Jiang YL, Tan SY, Xiao P, Zhuang X, You LT, Fu X, Ren YF, Zheng C, You FM. Oral microbiota as a biomarker for predicting the risk of malignancy in indeterminate pulmonary nodules: a prospective multicenter study. Int J Surg 2025; 111:2055-2071. [PMID: 39728732 DOI: 10.1097/js9.0000000000002152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/07/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Determining the benign or malignant status of indeterminate pulmonary nodules (IPN) with intermediate malignancy risk is a significant clinical challenge. Oral microbiota-lung cancer (LC) interactions have qualified oral microbiota as a promising non-invasive predictive biomarker in IPN. MATERIALS AND METHODS Prospectively collected saliva, throat swabs, and tongue coating samples from 1040 IPN patients and 70 healthy controls across three hospitals. Following up, the IPNs were diagnosed as benign (BPN) or malignant pulmonary nodules (MPN). Through 16S rRNA sequencing, bioinformatics analysis, fluorescence in situ hybridization (FISH), and seven machine learning algorithms (support vector machine, logistic regression, naïve Bayes, multi-layer perceptron, random forest, gradient-boosting decision tree, and LightGBM), we revealed the oral microbiota characteristics at different stages of HC-BPN-MPN, identified the sample types with the highest predictive potential, constructed and evaluated the optimal MPN prediction model for predictive efficacy, and determined microbial biomarkers. Additionally, based on the SHAP algorithm interpretation of the ML model's output, we have developed a visualized IPN risk prediction system on the web. RESULTS Saliva, tongue coating, and throat swab microbiotas exhibit site-specific characteristics, with saliva microbiota being the optimal sample type for disease prediction. The saliva-LightGBM model demonstrated the best predictive performance (AUC = 0.887, 95%CI: 0.865-0.918), and identified Actinomyces, Rothia, Streptococcus, Prevotella, Porphyromonas , and Veillonella as biomarkers for predicting MPN. FISH was used to confirm the presence of a microbiota within tumors, and external data from a LC cohort, along with three non-IPN disease cohorts, were employed to validate the specificity of the microbial biomarkers. Notably, coabundance analysis of the ecological network revealed that microbial biomarkers exhibit richer interspecies connections within the MPN, which may contribute to the pathogenesis of MPN. CONCLUSION This study presents a new predictive strategy for the clinic to determine MPNs from BPNs, which aids in the surgical decision-making for IPN.
Collapse
Affiliation(s)
- Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Chun-Xia Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Jia-Wei He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Xiao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yu-Li Qu
- College of Artificial Intelligence, Xi'an Jiaotong University, Xian, Shanxi Province, China
| | - Hong-Xia Xiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yang Zhong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Mao Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Ru-Yi Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Jun-Jie Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yu-Ling Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Shi-Yan Tan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Ping Xiao
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Xiang Zhuang
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Li-Ting You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yi-Feng Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Feng-Ming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Chunyang L, Yijia S. Analysis of the effects of group progressive resistance training on inflammatory markers, cardiovascular fitness parameters, and respiratory function in elderly patients with chronic obstructive pulmonary disease. J Med Biochem 2025; 44:112-118. [PMID: 39991166 PMCID: PMC11846646 DOI: 10.5937/jomb0-52323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/26/2024] [Indexed: 02/25/2025] Open
Abstract
Background To investigate the effects of implementing group progressive resistance training on Maximal Oxygen consumption (VO2max), Maximum Ventilation per minute (VEmax), Maximal Oxygen pulse (O2pulsemax), Maximum Heart Rate (HRmax), and Modified Medical Research Council dyspnea scale (mMRC) in elderly patients with chronic obstructive pulmonary disease. Methods A total number of 114 elderly patients with chronic obstructive pulmonary disease treated in the hospital from May 2022 to May 2024 were collected and divided into two groups based on different training methods. The conventional group (n=57) received routine rehabilitation training, while the organization group (n=57) received group progressive resistance training. Cardio - pulmonary Exercise Testing (CPET) parameters, serum inflammatory factors, lung function indicators, and mMRC score were compared between two groups before training, 2 weeks of training, and 4 weeks of training. Results Before training, there was no significant difference between the two groups regarding training compliance, CPET parameters, inflammatory factors, and mMRC score. After 2-4 weeks of training, both groups showed improvements in training frequency, intensity, autonomous training, and increases in VO2MAX, VEmax, O2pulsemax, and HRmax. However, the organization group had higher scores in these areas and lower levels of inflammatory factors (IL-8, IL-18, IL-6, IL-12) and mMRC scores compared to the conventional group, with statistically significant differences (P<0.05). Conclusions Group progressive resistance training can help improve the compliance of elderly patients with chronic obstructive pulmonary disease with training, reduce the body's inflammatory response, improve VO2MAX, VEmax, O2pulsemax, and HRmax levels, and alleviate breathing difficulties.
Collapse
Affiliation(s)
- Li Chunyang
- Zhejiang Hospital, Intensive Care Unit, Hangzhou, China
| | - Sun Yijia
- Zhejiang Hospital, Respiratory Department, Hangzhou, China
| |
Collapse
|
6
|
Jia M, Liu Y, Liu J, Meng J, Cao J, Miao L, Zhang H, Zhu Y, Sun M, Yang J. Xuanfei Baidu decoction ameliorates bleomycin-elicited idiopathic pulmonary fibrosis in mice by regulating the lung-gut crosstalk via IFNγ/STAT1/STAT3 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:155997. [PMID: 39312850 DOI: 10.1016/j.phymed.2024.155997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial pneumonia, the available treatment option is limited because the etiology and pathological process are not well understood. Although gut-lung axis reported with an emerging area of host-associated microbiota exist in many chronic lung diseases, the connection between gut-lung microbiota composition with in-site inflammation in IPF development is not yet established. PURPOSE We aimed to address the microbiota and immunity connection, and make it clear how a listed drug, Xuanfei Baidu Decoction (XFBD) affect the lung-gut crosstalk for IPF amelioration, which was previously reported for restoring disrupted lung in IPF and protecting intestinal injury. METHODS Firstly, Micro-CT (μCT) and histopathology were used to check for pathological changes in the lungs and intestines of bleomycin (BLM)-induced IPF mice. Then, Reverse Transcription and Quantitative Real-time PCR (RT-qPCR) and Western blot (WB) assays were employed to detect the integrity of the barrier of lungs and intestines in IPF mice. Subsequently, flow cytometry and 16S rRNA sequencing were used to evaluate the immune and microbial microenvironment of the lungs and intestines. We analyzed the lung-gut microbiota crosstalk for further mechanism exploration. RESULTS Firstly, we revealed that XFBD protected the integrity of the lung and intestinal barriers in the IPF mice, as evidenced by the up-regulation of ZO-1, Claudin-1, Occludin, and VE Cadherin protein expression. Then, we analyzed the changing microbiota and T cell in the gut-lung axis in IPF, and with XFBD, six highly relevant microenvironments were demonstrated that crossing damaged lung-gut barriers and XFBD could reverse these chaotic bacterial and immunity micro-environment, among them Akkermansia was an essential bacteria affecting the expression of systemic IFN-γ downstream STAT1/STAT3 axis was also studied. XFBD prominently up-regulated the production of IFN-γ and p-STAT1 and down-regulated p-STAT3, consequently exerting effects on the lung barrier and gut barrier. Taken together, XFBD ameliorated BLM-induced IPF mice by regulating IFNγ/STAT1/STAT3 axis. CONCLUSION Altogether, our results revealed that XFBD improved the BLM-elicited IPF mice by regulating gut-lung crosstalk via IFN-γ/STAT1/STAT3 axis and provided a new insight of gut-lung crosstalk in IPF, especially the dynamic changes of microorganisms in the damaged lungs needed to pay more attention during IPF therapy.
Collapse
Affiliation(s)
- Mengjie Jia
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yiman Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Junyu Meng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiazhen Cao
- Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, Changchun 130117, China
| | - Lin Miao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Mengmeng Sun
- Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, Changchun 130117, China.
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
7
|
Du C, Zhang Y, Zhang H, Zhang H, Liu J, Shen N. Bibliometric Analysis of Research Trends and Prospective Directions of Lung Microbiome. Pathogens 2024; 13:996. [PMID: 39599549 PMCID: PMC11597221 DOI: 10.3390/pathogens13110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
The lung microbiome has emerged as a pivotal area of research in human health. Despite the increasing number of publications, there is a lack of research that comprehensively and objectively presents the current status of lung microbiome-related studies. Thus, this study aims to address this gap by examining over two decades of publications through bibliometric analysis. The original bibliographic data of this study were obtained from the Web of Science Core Collection, focusing on publications from 2003 to 2023. The analysis included the data extraction and examination of authors, affiliations, countries, institutions, abstracts, keywords, references, publication dates, journals, citations, H-indexes, and journal impact factors. A total of 845 publications were identified, showing an increasing trend in both publications and citations over the years, particularly in the last decade. The analysis highlighted the most productive authors, institutions, and countries/regions, and identified potential partners for interested researchers. Co-citation analysis revealed that lung microbiome- and infectious/pulmonary disease-related studies are at the forefront of the field. The hotspots and frontiers of the lung microbiome field have progressed from basic composition to exploring specific mechanisms and the clinical value of diseases. In conclusion, this study provides a comprehensive overview of the current research status and trends in the field of the lung microbiome over the past two decades and highlights the areas that need more attention and research efforts. It offers valuable insights for researchers and institutions and identifies key hotspots and frontiers, which can serve as references for related researchers and future research.
Collapse
Affiliation(s)
- Chunjing Du
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing 100191, China
| | - Yi Zhang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Hanwen Zhang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Hua Zhang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Jingyuan Liu
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
8
|
Hu Y, Feng Z, An G, Lv Z, Wang J, Cui Y, Corrigan CJ, Wang W, Li Q, Ying S. Edwardsiella tarda induces airways inflammation and production of autoantibodies against lung tissues through regulation of the IL-33-ST2 axis. Immunology 2024; 173:575-589. [PMID: 39126327 DOI: 10.1111/imm.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a highly prevalent chronic respiratory disease characterised by irreversible airways obstruction associated with chronic airways inflammation and remodelling, while the pathogenesis and the mechanistic differences between patients remain to be fully elucidated. We previously reported that alarmin cytokine IL-33 may contribute to the production of autoantibodies against respiratory epithelial cells. Here we expand the hypothesis that pulmonary autoimmune responses induced by airway microbiota also contribute to the progression of COPD. We focused on Edwardsiella tarda which we detected uniquely in the induced sputum of patients with acute exacerbations of COPD. Pernasal challenge of the airways of WT mice with supernatants of cultured E. tarda induced marked, elevated expression of IL-33 in the lung tissues. Immunisation of animals with supernatants of cultured E. tarda resulted in significantly elevated airways inflammation, the formation of tertiary lymphatic structures and significantly elevated proportions of T follicular helper T cells in the lung tissue and mediastinal lymph nodes. Interestingly, such challenge also induced production of IgG autoantibodies directed against lung tissue lysate, alveolar epithelial cell proteins and elastin fragment, while putrescine, one of metabolites generated by the bacterium, might play an important role in the autoantibody production. Furthermore, all of these effects were partly but significantly abrogated in mice with deletion of the IL-33 receptor ST2. Collectively, these data support the hypothesis that COPD is progressed at least partly by airways microbiota such as E. tarda initiating autoimmune attack of the airways epithelium mediated at least partly through the IL-33-ST2 axis.
Collapse
Affiliation(s)
- Yue Hu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhihong Feng
- Department of Respiratory Medicine, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gao An
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Wang
- Department of Laboratory Animal Sciences, Capital Medical University, Beijing, China
| | - Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chris J Corrigan
- Faculty of Life Sciences & Medicine, School of Immunology & Microbial Sciences, Department of Inflammation Biology, King's College London, London, UK
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qin Li
- Department of Laboratory, Yanjing Medical College, Capital Medical University, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Qiu H, Checketts R, Jackson MK, Riethoven JJM, Hansel NN, Bailey KL, Hanson C, Samuelson DR. Diet-Microbiome Interactions Influence Lung Function in Chronic Obstructive Pulmonary Disease. FRONTIERS IN MICROBIOMES 2024; 3:1426150. [PMID: 40401157 PMCID: PMC12094515 DOI: 10.3389/frmbi.2024.1426150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) affects 30 million Americans. Previous epidemiologic work has shown that diet can impact pulmonary function in those with and without COPD. Diet is also a major driver of gut microbiome composition and function. Importantly, the gut microbiome has also been associated with lung health (i.e., the gut-lung axis) in both preclinical and clinical studies. Despite this growing body of evidence, many questions remain regarding the gut-lung axis. Specifically, how the microbiome impacts the relationship between diet factors and spirometry or stage of disease in people with COPD is little understood. We hypothesize that there are taxonomic differences in the gut microbiome among the different stages of COPD and that diet microbiome interactions influence pulmonary function. This study aimed to identify how the GI microbiota correlated with the severity of respiratory disease in COPD patients and how the microbiome may mediate the relationship between diet, including fiber and omega-3 fatty acids, and lung function outcomes.
Collapse
Affiliation(s)
- Haowen Qiu
- Bioinformatics Core Research Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rees Checketts
- Department of Internal Medicine, Internal Medicine Residency Program, Creighton University Medicine Center, Omaha, NE, USA
| | - Mariah Kay Jackson
- Department of Medical Sciences, Medical Nutrition Education Program, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jean-Jack M. Riethoven
- Bioinformatics Core Research Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Nadia N Hansel
- Department of Medicine, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland., USA
| | - Kristina L Bailey
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa. Omaha, NE, USA
| | - Corrine Hanson
- Department of Medical Sciences, Medical Nutrition Education Program, University of Nebraska Medical Center, Omaha, NE, USA
| | - Derrick R. Samuelson
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep, University of Nebraska Medical Center, Omaha, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
10
|
Yang L, Guo Y, Yao Y, Xie Y, Yang S, Shang B, You X, Liu H, Ma J. Circulating metabolomics revealed novel associations between multiple ambient air pollutants exposure and chronic obstructive pulmonary disease incidence: Evidence from a prospective cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124727. [PMID: 39147227 DOI: 10.1016/j.envpol.2024.124727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
The mechanisms underlying relationships between ambient air pollution and chronic obstructive pulmonary disease (COPD) risk remained largely uncertain. In this study, we aim to evaluate whether metabolic signature comprising multiple circulating metabolites can characterize metabolic response to the multiple air pollution; and to assess whether the identified metabolic signature contribute to COPD risk. A total of 227,962 participants with complete data were included from the UK biobank study. Concentrations of nitrogen dioxide (NO2), nitrogen oxides (NOx), and particulate matter (PM2.5 and PM10) were evaluated by land-use regression models. We newly computed an air pollution score to reflect joint exposure to multiple air pollutants. Circulating metabolome was quantified by nuclear magnetic resonance (NMR) spectroscopy. During a median of 12.78 years of follow-up, a total of 8685 incident COPD cases were documented. After multiple correction, the Cox regression models showed that 102 of 143 metabolites were significantly associated with COPD risk. Utilizing elastic net regularized regressions, we identified a metabolic signature comprising 106 metabolites (including lipid, fatty acids, glycolysis and amino acids et al.) were robustly related to air pollution score. In the multivariate-adjusted Cox regression models, the derived metabolic signature showed a positive correlation with incident COPD [HR per SD = 1.20 (95% CI: 1.17-1.22)]. Casual mediation analysis further noted that the constructed metabolic signature mediated 10.5 % (8.3%-13.1%) of the air pollution-COPD associations. Taken together, our findings identified a metabolic signature that captured metabolic response to various air pollutants exposure jointly, and predicted future COPD risk independent of known risk factors.
Collapse
Affiliation(s)
- Liangle Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yanjun Guo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuxin Yao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yujia Xie
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shiyu Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bingxin Shang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiaojie You
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Haoxiang Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jixuan Ma
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
11
|
Goeteyn E, Taylor SL, Dicker A, Bollé L, Wauters M, Joossens M, Van Braeckel E, Simpson JL, Burr L, Chalmers JD, Rogers GB, Crabbé A. Aggregatibacter is inversely associated with inflammatory mediators in sputa of patients with chronic airway diseases and reduces inflammation in vitro. Respir Res 2024; 25:368. [PMID: 39395980 PMCID: PMC11471032 DOI: 10.1186/s12931-024-02983-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/18/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Chronic airway disease (CAD) is characterized by chronic airway inflammation and colonization of the lungs by pro-inflammatory pathogens. However, while various other bacterial species are present in the lower airways, it is not fully understood how they influence inflammation. We aimed to identify novel anti-inflammatory species present in lower airway samples of patients with CAD. METHODS Paired sputum microbiome and inflammatory marker data of adults with CAD across three separate cohorts (Australian asthma and bronchiectasis, Scottish bronchiectasis) was analyzed using Linear discriminant analysis Effect Size (LEfSE) and Spearman correlation analysis to identify species associated with a low inflammatory profile in patients. RESULTS We identified the genus Aggregatibacter as more abundant in patients with lower levels of airway inflammatory markers in two CAD cohorts (Australian asthma and bronchiectasis). In addition, the relative abundance of Aggregatibacter was inversely correlated with sputum IL-8 (Australian bronchiectasis) and IL-1β levels (Australian asthma and bronchiectasis). Subsequent in vitro testing, using a physiologically relevant three-dimensional lung epithelial cell model, revealed that Aggregatibacter spp. (i.e. A. actinomycetemcomitans, A. aphrophilus) and their cell-free supernatant exerted anti-inflammatory activity without influencing host cell viability. CONCLUSIONS These findings suggest that Aggregatibacter spp. might act to reduce airway inflammation in CAD patients.
Collapse
Affiliation(s)
- Ellen Goeteyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Steven L Taylor
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Alison Dicker
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | - Laura Bollé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Merel Wauters
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Marie Joossens
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - Eva Van Braeckel
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jodie L Simpson
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, NSW, Australia
| | - Lucy Burr
- Department of Respiratory Medicine, Mater Health Sciences, South Brisbane, QLD, Australia
- Mater Research - University of Queensland, Aubigny Place, South Brisbane, QLD, Australia
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | - Geraint B Rogers
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
12
|
Erratum: Lung Microbiota and Metabolites Collectively Associate with Clinical Outcomes in Milder Stage Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2024; 210:852. [PMID: 39269171 PMCID: PMC11418892 DOI: 10.1164/rccm.v210erratum4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
|
13
|
Park YC, Choi SY, Cha Y, Yoon HW, Son YM. Microbiome-Mucosal Immunity Nexus: Driving Forces in Respiratory Disease Progression. J Microbiol 2024; 62:709-725. [PMID: 39240507 DOI: 10.1007/s12275-024-00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
The importance of the complex interplay between the microbiome and mucosal immunity, particularly within the respiratory tract, has gained significant attention due to its potential implications for the severity and progression of lung diseases. Therefore, this review summarizes the specific interactions through which the respiratory tract-specific microbiome influences mucosal immunity and ultimately impacts respiratory health. Furthermore, we discuss how the microbiome affects mucosal immunity, considering tissue-specific variations, and its capacity in respiratory diseases containing asthma, chronic obstructive pulmonary disease, and lung cancer. Additionally, we investigate the external factors which affect the relationship between respiratory microbiome and mucosal immune responses. By exploring these intricate interactions, this review provides valuable insights into the potential for microbiome-based interventions to modulate mucosal immunity and alleviate the severity of respiratory diseases.
Collapse
Affiliation(s)
- Young Chae Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Soo Yeon Choi
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yunah Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hyeong Won Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
14
|
Mac Aogáin M. Unsung Heroes? Decoding the Protective Effects of Airway Microbiota in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2024; 210:136-138. [PMID: 38358821 PMCID: PMC11273313 DOI: 10.1164/rccm.202401-0189ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/15/2024] [Indexed: 02/17/2024] Open
Affiliation(s)
- Micheál Mac Aogáin
- Department of Biochemistry St. James's Hospital Dublin, Ireland
- School of Medicine Trinity College Dublin, Ireland
| |
Collapse
|
15
|
Opron K, Begley LA, Erb-Downward JR, Li G, Alexis NE, Barjaktarevic I, Barr RG, Bleecker ER, Boucher R, Bowler RP, Christenson SA, Comellas AP, Criner G, Cooper CB, Couper D, Galban CJ, Han MK, Hastie A, Hatt C, Hoffman EA, Kaner RJ, Kesimer M, Krishnan JA, LaFon DC, Martinez FJ, Ortega VE, Peters SP, Paine R, Putcha N, Woodruff PG, Huffnagle GB, Kozik AJ, Curtis JL, Huang YJ. Loss of Airway Phylogenetic Diversity Is Associated with Clinical and Pathobiological Markers of Disease Development in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2024; 210:186-200. [PMID: 38261629 PMCID: PMC11273318 DOI: 10.1164/rccm.202303-0489oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024] Open
Abstract
Rationale: The airway microbiome has the potential to shape chronic obstructive pulmonary disease (COPD) pathogenesis, but its relationship to outcomes in milder disease is unestablished. Objectives: To identify sputum microbiome characteristics associated with markers of COPD in participants of the Subpopulations and Intermediate Outcome Measures of COPD Study (SPIROMICS). Methods: Sputum DNA from 877 participants was analyzed using 16S ribosomal RNA gene sequencing. Relationships between baseline airway microbiota composition and clinical, radiographic, and mucoinflammatory markers, including longitudinal lung function trajectory, were examined. Measurements and Main Results: Participant data represented predominantly milder disease (Global Initiative for Chronic Obstructive Lung Disease stage 0-2 obstruction in 732 of 877 participants). Phylogenetic diversity (i.e., range of different species within a sample) correlated positively with baseline lung function, decreased with higher Global Initiative for Chronic Obstructive Lung Disease stage, and correlated negatively with symptom burden, radiographic markers of airway disease, and total mucin concentrations (P < 0.001). In covariate-adjusted regression models, organisms robustly associated with better lung function included Alloprevotella, Oribacterium, and Veillonella species. Conversely, lower lung function, greater symptoms, and radiographic measures of small airway disease were associated with enrichment in members of Streptococcus, Actinobacillus, Actinomyces, and other genera. Baseline sputum microbiota features were also associated with lung function trajectory during SPIROMICS follow-up (stable/improved, decline, or rapid decline groups). The stable/improved group (slope of FEV1 regression ⩾66th percentile) had greater bacterial diversity at baseline associated with enrichment in Prevotella, Leptotrichia, and Neisseria species. In contrast, the rapid decline group (FEV1 slope ⩽33rd percentile) had significantly lower baseline diversity associated with enrichment in Streptococcus species. Conclusions: In SPIROMICS, baseline airway microbiota features demonstrate divergent associations with better or worse COPD-related outcomes.
Collapse
Affiliation(s)
- Kristopher Opron
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Lesa A. Begley
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | | | - Gen Li
- Department of Biostatistics, School of Public Health
| | - Neil E. Alexis
- Center for Environmental Medicine, Asthma, and Lung Biology, Division of Allergy and Immunology
| | | | - R. Graham Barr
- Department of Medicine, Division of General Medicine and
- Department of Epidemiology, Columbia University Medical Center, New York, New York
| | | | - Richard Boucher
- Marsico Lung Institute/Cystic Fibrosis and Pulmonary Research Center, and
| | | | | | - Alejandro P. Comellas
- Department of Radiology
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, and
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | | | | | - David Couper
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - MeiLan K. Han
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Annette Hastie
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | - Eric A. Hoffman
- Department of Radiology
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, and
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Robert J. Kaner
- Weill Cornell, Division of Pulmonary and Critical Care Medicine, New York, New York
| | - Mehmet Kesimer
- Marsico Lung Institute/Cystic Fibrosis and Pulmonary Research Center, and
| | - Jerry A. Krishnan
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Breathe Chicago Center, University of Illinois Chicago, Chicago, Illinois
| | - David C. LaFon
- Division of Pulmonary, Allergy and Critical Care, University of Alabama at Birmingham, Alabama
| | - Fernando J. Martinez
- Weill Cornell, Division of Pulmonary and Critical Care Medicine, New York, New York
| | | | | | - Robert Paine
- Division of Respiratory, Critical Care, Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland; and
| | - Prescott G. Woodruff
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Gary B. Huffnagle
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
- Department of Molecular, Cellular and Developmental Biology and
| | - Ariangela J. Kozik
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
- Department of Molecular, Cellular and Developmental Biology and
| | - Jeffrey L. Curtis
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
- Medical Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Yvonne J. Huang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
16
|
Pulvirenti F, Giufrè M, Pentimalli TM, Camilli R, Milito C, Villa A, Sculco E, Cerquetti M, Pantosti A, Quinti I. Oropharyngeal microbial ecosystem perturbations influence the risk for acute respiratory infections in common variable immunodeficiency. Front Immunol 2024; 15:1371118. [PMID: 38873612 PMCID: PMC11169596 DOI: 10.3389/fimmu.2024.1371118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Background The respiratory tract microbiome is essential for human health and well-being and is determined by genetic, lifestyle, and environmental factors. Patients with Common Variable Immunodeficiency (CVID) suffer from respiratory and intestinal tract infections, leading to chronic diseases and increased mortality rates. While CVID patients' gut microbiota have been analyzed, data on the respiratory microbiome ecosystem are limited. Objective This study aims to analyze the bacterial composition of the oropharynx of adults with CVID and its link with clinical and immunological features and risk for respiratory acute infections. Methods Oropharyngeal samples from 72 CVID adults and 26 controls were collected in a 12-month prospective study. The samples were analyzed by metagenomic bacterial 16S ribosomal RNA sequencing and processed using the Quantitative Insights Into Microbial Ecology (QIME) pipeline. Differentially abundant species were identified and used to build a dysbiosis index. A machine learning model trained on microbial abundance data was used to test the power of microbiome alterations to distinguish between healthy individuals and CVID patients. Results Compared to controls, the oropharyngeal microbiome of CVID patients showed lower alpha- and beta-diversity, with a relatively increased abundance of the order Lactobacillales, including the family Streptococcaceae. Intra-CVID analysis identified age >45 years, COPD, lack of IgA, and low residual IgM as associated with a reduced alpha diversity. Expansion of Haemophilus and Streptococcus genera was observed in patients with undetectable IgA and COPD, independent from recent antibiotic use. Patients receiving azithromycin as antibiotic prophylaxis had a higher dysbiosis score. Expansion of Haemophilus and Anoxybacillus was associated with acute respiratory infections within six months. Conclusions CVID patients showed a perturbed oropharynx microbiota enriched with potentially pathogenic bacteria and decreased protective species. Low residual levels of IgA/IgM, chronic lung damage, anti antibiotic prophylaxis contributed to respiratory dysbiosis.
Collapse
Affiliation(s)
- Federica Pulvirenti
- Reference Center for Primary Immune Deficiencies, Azienda Ospedaliero Universitaria (AOU) Policlinico Umberto I, Rome, Italy
| | - Maria Giufrè
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Tancredi M. Pentimalli
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin School of Integrative Oncology (BSIO), Berlin, Germany
| | - Romina Camilli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Annalisa Villa
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleonora Sculco
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marina Cerquetti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Annalisa Pantosti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
Cao Z, Wu T, Fang Y, Sun F, Ding H, Zhao L, Shi L. Dissecting causal relationships between immune cells, plasma metabolites, and COPD: a mediating Mendelian randomization study. Front Immunol 2024; 15:1406234. [PMID: 38868780 PMCID: PMC11168115 DOI: 10.3389/fimmu.2024.1406234] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Objective This study employed Mendelian Randomization (MR) to investigate the causal relationships among immune cells, COPD, and potential metabolic mediators. Methods Utilizing summary data from genome-wide association studies, we analyzed 731 immune cell phenotypes, 1,400 plasma metabolites, and COPD. Bidirectional MR analysis was conducted to explore the causal links between immune cells and COPD, complemented by two-step mediation analysis and multivariable MR to identify potential mediating metabolites. Results Causal relationships were identified between 41 immune cell phenotypes and COPD, with 6 exhibiting reverse causality. Additionally, 21 metabolites were causally related to COPD. Through two-step MR and multivariable MR analyses, 8 cell phenotypes were found to have causal relationships with COPD mediated by 8 plasma metabolites (including one unidentified), with 1-methylnicotinamide levels showing the highest mediation proportion at 26.4%. Conclusion We have identified causal relationships between 8 immune cell phenotypes and COPD, mediated by 8 metabolites. These findings contribute to the screening of individuals at high risk for COPD and offer insights into early prevention and the precocious diagnosis of Pre-COPD.
Collapse
Affiliation(s)
- Zhenghua Cao
- Graduate School, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Tong Wu
- Graduate School, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Yakun Fang
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Feng Sun
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Huan Ding
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Lingling Zhao
- Graduate School, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Li Shi
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
18
|
Xia H, Lin J, Wang Y, Yu J, Wang H, Cheng C, Yang Y, Bian T, Wu Y, Liu Q. Stenotrophomonas maltophilia contributes to smoking-related emphysema through IRF1-triggered PANoptosis of alveolar epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123913. [PMID: 38582189 DOI: 10.1016/j.envpol.2024.123913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Cigarette smoke (CS), the main source of indoor air pollution and the primary risk factor for respiratory diseases, contains chemicals that can perturb microbiota through antibiotic effects. Although smoking induces a disturbance of microbiota in the lower respiratory tract, whether and how it contributes to initiation or promotion of emphysema are not well clarified. Here, we demonstrated an aberrant microbiome in lung tissue of patients with smoking-related COPD. We found that Stenotrophomonas maltophilia (S. maltophilia) was expanded in lung tissue of patients with smoking-related COPD. We revealed that S. maltophilia drives PANoptosis in alveolar epithelial cells and represses formation of alveolar organoids through IRF1 (interferon regulatory factor 1). Mechanistically, IRF1 accelerated transcription of ZBP1 (Z-DNA Binding Protein 1) in S. maltophilia-infected alveolar epithelial cells. Elevated ZBP1 served as a component of the PANoptosome, which triggered PANoptosis in these cells. By using of alveolar organoids infected by S. maltophilia, we found that targeting of IRF1 mitigated S. maltophilia-induced injury of these organoids. Moreover, the expansion of S. maltophilia and the expression of IRF1 negatively correlated with the progression of emphysema. Thus, the present study provides insights into the mechanism of lung dysbiosis in smoking-related COPD, and presents a potential target for mitigation of COPD progression.
Collapse
Affiliation(s)
- Haibo Xia
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China; Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jiaheng Lin
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yue Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jinyan Yu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China
| | - Hailan Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yi Yang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Tao Bian
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China
| | - Yan Wu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China
| | - Qizhan Liu
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China; Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
19
|
Roth‐Walter F, Adcock IM, Benito‐Villalvilla C, Bianchini R, Bjermer L, Caramori G, Cari L, Chung KF, Diamant Z, Eguiluz‐Gracia I, Knol EF, Jesenak M, Levi‐Schaffer F, Nocentini G, O'Mahony L, Palomares O, Redegeld F, Sokolowska M, Van Esch BCAM, Stellato C. Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology. Allergy 2024; 79:1089-1122. [PMID: 38108546 PMCID: PMC11497319 DOI: 10.1111/all.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging.
Collapse
Affiliation(s)
- F. Roth‐Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - I. M. Adcock
- Molecular Cell Biology Group, National Heart & Lung InstituteImperial College LondonLondonUK
| | - C. Benito‐Villalvilla
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - R. Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
| | - L. Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy research, Allergy, Asthma and COPD Competence CenterLund UniversityLundSweden
| | - G. Caramori
- Department of Medicine and SurgeryUniversity of ParmaPneumologiaItaly
| | - L. Cari
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - K. F. Chung
- Experimental Studies Medicine at National Heart & Lung InstituteImperial College London & Royal Brompton & Harefield HospitalLondonUK
| | - Z. Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical ScienceSkane University HospitalLundSweden
- Department of Respiratory Medicine, First Faculty of MedicineCharles University and Thomayer HospitalPragueCzech Republic
- Department of Clinical Pharmacy & PharmacologyUniversity Groningen, University Medical Center Groningen and QPS‐NLGroningenThe Netherlands
| | - I. Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de Málaga‐Instituto de Investigación Biomédica de Málaga (IBIMA)‐ARADyALMálagaSpain
| | - E. F. Knol
- Departments of Center of Translational Immunology and Dermatology/AllergologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - M. Jesenak
- Department of Paediatrics, Department of Pulmonology and Phthisiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in MartinUniversity Teaching HospitalMartinSlovakia
| | - F. Levi‐Schaffer
- Institute for Drug Research, Pharmacology Unit, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - G. Nocentini
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - L. O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - O. Palomares
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - F. Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - M. Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZürichDavosSwitzerland
- Christine Kühne – Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - B. C. A. M. Van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - C. Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”University of SalernoSalernoItaly
| |
Collapse
|
20
|
Gao J, Yang Y, Xiang X, Zheng H, Yi X, Wang F, Liang Z, Chen D, Shi W, Wang L, Wu D, Feng S, Huang Q, Li X, Shu W, Chen R, Zhong N, Wang Z. Human genetic associations of the airway microbiome in chronic obstructive pulmonary disease. Respir Res 2024; 25:165. [PMID: 38622589 PMCID: PMC11367891 DOI: 10.1186/s12931-024-02805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Little is known about the relationships between human genetics and the airway microbiome. Deeply sequenced airway metagenomics, by simultaneously characterizing the microbiome and host genetics, provide a unique opportunity to assess the microbiome-host genetic associations. Here we performed a co-profiling of microbiome and host genetics with the identification of over 5 million single nucleotide polymorphisms (SNPs) through deep metagenomic sequencing in sputum of 99 chronic obstructive pulmonary disease (COPD) and 36 healthy individuals. Host genetic variation was the most significant factor associated with the microbiome except for geography and disease status, with its top 5 principal components accounting for 12.11% of the microbiome variability. Within COPD individuals, 113 SNPs mapped to candidate genes reported as genetically associated with COPD exhibited associations with 29 microbial species and 48 functional modules (P < 1 × 10-5), where Streptococcus salivarius exhibits the strongest association to SNP rs6917641 in TBC1D32 (P = 9.54 × 10-8). Integration of concurrent host transcriptomic data identified correlations between the expression of host genes and their genetically-linked microbiome features, including NUDT1, MAD1L1 and Veillonella parvula, TTLL9 and Stenotrophomonas maltophilia, and LTA4H and Haemophilus influenzae. Mendelian randomization analyses revealed a potential causal link between PARK7 expression and microbial type III secretion system, and a genetically-mediated association between COPD and increased relative abundance of airway Streptococcus intermedius. These results suggest a previously underappreciated role of host genetics in shaping the airway microbiome and provide fresh hypotheses for genetic-based host-microbiome interactions in COPD.
Collapse
Affiliation(s)
- Jingyuan Gao
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Yuqiong Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaopeng Xiang
- The Hong Kong Polytechnic University, Hong Kong, Hung Hom Kowloon, China
| | - Huimin Zheng
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Fengyan Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhenyu Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Dandan Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Weijuan Shi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Lingwei Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Di Wu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Shengchuan Feng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qiaoyun Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xueping Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wensheng Shu
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China.
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Zhang Wang
- Institute of Ecological Sciences, Biomedical Research Center, School of Life Sciences, State Key Laboratory of Respiratory Disease, South China Normal University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
21
|
Lipinksi JH, Ranjan P, Dickson RP, O’Dwyer DN. The Lung Microbiome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1269-1275. [PMID: 38560811 PMCID: PMC11073614 DOI: 10.4049/jimmunol.2300716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/01/2024] [Indexed: 04/04/2024]
Abstract
Although the lungs were once considered a sterile environment, advances in sequencing technology have revealed dynamic, low-biomass communities in the respiratory tract, even in health. Key features of these communities-composition, diversity, and burden-are consistently altered in lung disease, associate with host physiology and immunity, and can predict clinical outcomes. Although initial studies of the lung microbiome were descriptive, recent studies have leveraged advances in technology to identify metabolically active microbes and potential associations with their immunomodulatory by-products and lung disease. In this brief review, we discuss novel insights in airway disease and parenchymal lung disease, exploring host-microbiome interactions in disease pathogenesis. We also discuss complex interactions between gut and oropharyngeal microbiota and lung immunobiology. Our advancing knowledge of the lung microbiome will provide disease targets in acute and chronic lung disease and may facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Jay H. Lipinksi
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Piyush Ranjan
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Robert P. Dickson
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, MI, USA
| | - David N. O’Dwyer
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Walsh D, Bevan J, Harrison F. How Does Airway Surface Liquid Composition Vary in Different Pulmonary Diseases, and How Can We Use This Knowledge to Model Microbial Infections? Microorganisms 2024; 12:732. [PMID: 38674677 PMCID: PMC11052052 DOI: 10.3390/microorganisms12040732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Growth environment greatly alters many facets of pathogen physiology, including pathogenesis and antimicrobial tolerance. The importance of host-mimicking environments for attaining an accurate picture of pathogen behaviour is widely recognised. Whilst this recognition has translated into the extensive development of artificial cystic fibrosis (CF) sputum medium, attempts to mimic the growth environment in other respiratory disease states have been completely neglected. The composition of the airway surface liquid (ASL) in different pulmonary diseases is far less well characterised than CF sputum, making it very difficult for researchers to model these infection environments. In this review, we discuss the components of human ASL, how different lung pathologies affect ASL composition, and how different pathogens interact with these components. This will provide researchers interested in mimicking different respiratory environments with the information necessary to design a host-mimicking medium, allowing for better understanding of how to treat pathogens causing infection in these environments.
Collapse
Affiliation(s)
- Dean Walsh
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK (F.H.)
| | | | | |
Collapse
|
23
|
Feng N, Han X, Peng D, Geng F, Li Q, Pan C, Wang H, Pan Y, Tan L. P. gingivalis alters lung microbiota and aggravates disease severity of COPD rats by up-regulating Hsp90α/MLKL. J Oral Microbiol 2024; 16:2334588. [PMID: 38550659 PMCID: PMC10977012 DOI: 10.1080/20002297.2024.2334588] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 03/19/2024] [Indexed: 11/12/2024] Open
Abstract
Background Epidemiological evidence has confirmed that periodontitis is an essential and independent risk factor of chronic obstructive pulmonary disease (COPD). Porphyromonas gingivalis, a major pathogen implicated in periodontitis, may make a vital contribution to COPD progression. However, the specific effects and molecular mechanism of the link between P. gingivalis and COPD are not clear. Methods and Results A COPD rat model was constructed by smoke exposure combined intratracheal instillation of E. coli-LPS, then P. gingivalis was introduced into the oral cavity of COPD rats. This research observed that lower lung function, more severe alveolar damage and inflammation occurred in COPD rats with P. gingivalis group. Meanwhile, P. gingivalis/gingipains could colonize the lung tissues and be enriched in bronchoalveolar lavage fluid (BALF) of COPD rats with P. gingivalis group, along with alterations in lung microbiota. Proteomic analysis suggested that Hsp90α/MLKL-meditated necroptosis pathway was up-regulated in P. gingivalis-induced COPD aggravation, the detection of Hsp90α and MLKL in serum and lung tissue verified that Hsp90α/MLKL was up-regulated. Conclusion These results indicate that P. gingivalis could emigrate into the lungs, alter lung microbiota and lead to aggravation of COPD, which Hsp90α/MLKL might participate in.
Collapse
Affiliation(s)
- Nan Feng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xuan Han
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Da Peng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qian Li
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chunlin Pan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hongyan Wang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Lisi Tan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
24
|
Zheng L, Liu C, Wang H, Zhang J, Mao L, Dong X, Hu S, Li N, Pi D, Qiu J, Xu F, Chen C, Zou Z. Intact lung tissue and bronchoalveolar lavage fluid are both suitable for the evaluation of murine lung microbiome in acute lung injury. MICROBIOME 2024; 12:56. [PMID: 38494479 PMCID: PMC10946114 DOI: 10.1186/s40168-024-01772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/30/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Accumulating clinical evidence suggests that lung microbiome is closely linked to the progression of pulmonary diseases; however, it is still controversial which specimen type is preferred for the evaluation of lung microbiome. METHODS AND RESULTS To address this issue, we established a classical acute lung injury (ALI) mice model by intratracheal instillation of lipopolysaccharides (LPS). We found that the bacterial DNA obtained from the bronchoalveolar lavage fluid (BALF), intact lung tissue [Lung(i)], lung tissue after perfused [Lung(p)], and feces of one mouse were enough for 16S rRNA sequencing, except the BALF of mice treated with phosphate buffer saline (PBS), which might be due to the biomass of lung microbiome in the BALF were upregulated in the mice treated with LPS. Although the alpha diversity among the three specimens from lungs had minimal differences, Lung(p) had higher sample-to-sample variation compared with BALF and Lung(i). Consistently, PCoA analysis at phylum level indicated that BALF was similar to Lung(i), but not Lung(p), in the lungs of mice treated with LPS, suggesting that BALF and Lung(i) were suitable for the evaluation of lung microbiome in ALI. Importantly, Actinobacteria and Firmicutes were identified as the mostly changed phyla in the lungs and might be important factors involved in the gut-lung axis in ALI mice. Moreover, Actinobacteria and Proteobacteria might play indicative roles in the severity of lung injury. CONCLUSION This study shows both Lung(i) and BALF are suitable for the evaluation of murine lung microbiome in ALI, and several bacterial phyla, such as Actinobacteria, may serve as potential biomarkers for the severity of ALI. Video Abstract.
Collapse
Affiliation(s)
- Lijun Zheng
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chengjun Liu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Hongjing Wang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing, 400016, People's Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaomei Dong
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Siyao Hu
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Na Li
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dandan Pi
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Research Center for Environment and Human Health, School of Public Health, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
25
|
Mac Aogáin M, Tiew PY, Jaggi TK, Narayana JK, Singh S, Hansbro PM, Segal LN, Chotirmall SH. Targeting respiratory microbiomes in COPD and bronchiectasis. Expert Rev Respir Med 2024; 18:111-125. [PMID: 38743428 DOI: 10.1080/17476348.2024.2355155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION This review summarizes our current understanding of the respiratory microbiome in COPD and Bronchiectasis. We explore the interplay between microbial communities, host immune responses, disease pathology, and treatment outcomes. AREAS COVERED We detail the dynamics of the airway microbiome, its influence on chronic respiratory diseases, and analytical challenges. Relevant articles from PubMed and Medline (January 2010-March 2024) were retrieved and summarized. We examine clinical correlations of the microbiome in COPD and bronchiectasis, assessing how current therapies impact upon it. The potential of emerging immunotherapies, antiinflammatories and antimicrobial strategies is discussed, with focus on the pivotal role of commensal taxa in maintaining respiratory health and the promising avenue of microbiome remodeling for disease management. EXPERT OPINION Given the heterogeneity in microbiome composition and its pivotal role in disease development and progression, a shift toward microbiome-directed therapeutics is appealing. This transition, from traditional 'pathogencentric' diagnostic and treatment modalities to those acknowledging the microbiome, can be enabled by evolving crossdisciplinary platforms which have the potential to accelerate microbiome-based interventions into routine clinical practice. Bridging the gap between comprehensive microbiome analysis and clinical application, however, remains challenging, necessitating continued innovation in research, diagnostics, trials, and therapeutic development pipelines.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Department of Biochemistry, St. James's Hospital, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Shivani Singh
- Division of Pulmonary Critical Care & Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Leopoldo N Segal
- Division of Pulmonary Critical Care & Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
26
|
Taherkhani H, KavianFar A, Aminnezhad S, Lanjanian H, Ahmadi A, Azimzadeh S, Masoudi-Nejad A. Deciphering the impact of microbial interactions on COPD exacerbation: An in-depth analysis of the lung microbiome. Heliyon 2024; 10:e24775. [PMID: 38370212 PMCID: PMC10869780 DOI: 10.1016/j.heliyon.2024.e24775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 02/20/2024] Open
Abstract
In microbiome studies, the diversity and types of microbes have been extensively explored; however, the significance of microbial ecology is equally paramount. The comprehension of metabolic interactions among the wide array of microorganisms in the lung microbiota is indispensable for understanding chronic pulmonary disease and for the development of potent treatments. In this investigation, metabolic networks were simulated, and ecological theory was employed to assess the diagnosis of COPD, subsequently suggesting innovative treatment strategies for COPD exacerbation. Lung sputum 16S rRNA paired-end data from 112 COPD patients were utilized, and a supervised machine-learning algorithm was applied to identify taxa associated with sex and mortality. Subsequently, an OTU table with Greengenes 99 % dataset was generated. Finally, the interactions between bacterial species were analyzed using a simulated metabolic network. A total of 1781 OTUs and 1740 bacteria at the genus level were identified. We employed an additional dataset to validate our analyses. Notably, among the more abundant genera, Pseudomonas was detected in females, while Lactobacillus was detected in males. Additionally, a decrease in bacterial diversity was observed during COPD exacerbation, and mortality was associated with the high abundance of the Staphylococcus and Pseudomonas genera. Moreover, an increase in Proteobacteria abundance was observed during COPD exacerbations. In contrast, COPD patients exhibited decreased levels of Firmicutes and Bacteroidetes. Significant connections between microbial ecology and bacterial diversity in COPD patients were discovered, highlighting the critical role of microbial ecology in the understanding of COPD. Through the simulation of metabolic interactions among bacteria, the observed dysbiosis in COPD was elucidated. Furthermore, the prominence of anaerobic bacteria in COPD patients was revealed to be influenced by parasitic relationships. These findings have the potential to contribute to improved clinical management strategies for COPD patients.
Collapse
Affiliation(s)
- Hamidreza Taherkhani
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Azadeh KavianFar
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Sargol Aminnezhad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hossein Lanjanian
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Tehran, Iran
| | - Sadegh Azimzadeh
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
27
|
Tangedal S, Nielsen R, Aanerud M, Drengenes C, Husebø GR, Lehmann S, Knudsen KS, Hiemstra PS, Eagan TM. Lower airway microbiota in COPD and healthy controls. Thorax 2024:thorax-2023-220455. [PMID: 38331579 DOI: 10.1136/thorax-2023-220455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND The lower airway microbiota in patients with chronic obstructive pulmonary disease (COPD) are likely altered compared with the microbiota in healthy individuals. Information on how the microbiota is affected by smoking, use of inhaled corticosteroids (ICS) and COPD severity is still scarce. METHODS In the MicroCOPD Study, participant characteristics were obtained through standardised questionnaires and clinical measurements at a single centre from 2012 to 2015. Protected bronchoalveolar lavage samples from 97 patients with COPD and 97 controls were paired-end sequenced with the Illumina MiSeq System. Data were analysed in QIIME 2 and R. RESULTS Alpha-diversity was lower in patients with COPD than controls (Pielou evenness: COPD=0.76, control=0.80, p=0.004; Shannon entropy: COPD=3.98, control=4.34, p=0.01). Beta-diversity differed with smoking only in the COPD cohort (weighted UniFrac: permutational analysis of variance R2=0.04, p=0.03). Nine genera were differentially abundant between COPD and controls. Genera enriched in COPD belonged to the Firmicutes phylum. Pack years were linked to differential abundance of taxa in controls only (ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) log-fold difference/q-values: Haemophilus -0.05/0.048; Lachnoanaerobaculum -0.04/0.03). Oribacterium was absent in smoking patients with COPD compared with non-smoking patients (ANCOM-BC log-fold difference/q-values: -1.46/0.03). We found no associations between the microbiota and COPD severity or ICS. CONCLUSION The lower airway microbiota is equal in richness in patients with COPD to controls, but less even. Genera from the Firmicutes phylum thrive particularly in COPD airways. Smoking has different effects on diversity and taxonomic abundance in patients with COPD compared with controls. COPD severity and ICS use were not linked to the lower airway microbiota.
Collapse
Affiliation(s)
- Solveig Tangedal
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Rune Nielsen
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Marianne Aanerud
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Christine Drengenes
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Gunnar R Husebø
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sverre Lehmann
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kristel S Knudsen
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tomas Ml Eagan
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
28
|
Melani AS, Croce S, Fabbri G, Messina M, Bargagli E. Inhaled Corticosteroids in Subjects with Chronic Obstructive Pulmonary Disease: An Old, Unfinished History. Biomolecules 2024; 14:195. [PMID: 38397432 PMCID: PMC10887366 DOI: 10.3390/biom14020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the major causes of disability and death. Maintenance use of inhaled bronchodilator(s) is the cornerstone of COPD pharmacological therapy, but inhaled corticosteroids (ICSs) are also commonly used. This narrative paper reviews the role of ICSs as maintenance treatment in combination with bronchodilators, usually in a single inhaler, in stable COPD subjects. The guidelines strongly recommend the addition of an ICS in COPD subjects with a history of concomitant asthma or as a step-up on the top of dual bronchodilators in the presence of hospitalization for exacerbation or at least two moderate exacerbations per year plus high blood eosinophil counts (≥300/mcl). This indication would only involve some COPD subjects. In contrast, in real life, triple inhaled therapy is largely used in COPD, independently of symptoms and in the presence of exacerbations. We will discuss the results of recent randomized controlled trials that found reduced all-cause mortality with triple inhaled therapy compared with dual inhaled long-acting bronchodilator therapy. ICS use is frequently associated with common local adverse events, such as dysphonia, oral candidiasis, and increased risk of pneumonia. Other side effects, such as systemic toxicity and unfavorable changes in the lung microbiome, are suspected mainly at higher doses of ICS in elderly COPD subjects with comorbidities, even if not fully demonstrated. We conclude that, contrary to real life, the use of ICS should be carefully evaluated in stable COPD patients.
Collapse
Affiliation(s)
- Andrea S. Melani
- Respiratory Diseases Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (S.C.); (G.F.); (M.M.); (E.B.)
| | | | | | | | | |
Collapse
|
29
|
Cheng J, Zhou L, Wang H. Symbiotic microbial communities in various locations of the lung cancer respiratory tract along with potential host immunological processes affected. Front Cell Infect Microbiol 2024; 14:1296295. [PMID: 38371298 PMCID: PMC10873922 DOI: 10.3389/fcimb.2024.1296295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Lung cancer has the highest mortality rate among all cancers worldwide. The 5-year overall survival rate for non-small cell lung cancer (NSCLC) is estimated at around 26%, whereas for small cell lung cancer (SCLC), the survival rate is only approximately 7%. This disease places a significant financial and psychological burden on individuals worldwide. The symbiotic microbiota in the human body has been significantly associated with the occurrence, progression, and prognosis of various diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Studies have demonstrated that respiratory symbiotic microorganisms and their metabolites play a crucial role in modulating immune function and contributing to the pathophysiology of lung cancer through their interactions with the host. In this review, we provide a comprehensive overview of the microbial characteristics associated with lung cancer, with a focus on the respiratory tract microbiota from different locations, including saliva, sputum, bronchoalveolar lavage fluid (BALF), bronchial brush samples, and tissue. We describe the respiratory tract microbiota's biodiversity characteristics by anatomical region, elucidating distinct pathological features, staging, metastasis, host chromosomal mutations, immune therapies, and the differentiated symbiotic microbiota under the influence of environmental factors. Our exploration investigates the intrinsic mechanisms linking the microbiota and its host. Furthermore, we have also provided a comprehensive review of the immune mechanisms by which microbiota are implicated in the development of lung cancer. Dysbiosis of the respiratory microbiota can promote or inhibit tumor progression through various mechanisms, including DNA damage and genomic instability, activation and regulation of the innate and adaptive immune systems, and stimulation of epithelial cells leading to the upregulation of carcinogenesis-related pathways.
Collapse
Affiliation(s)
- Jiuling Cheng
- Respiratory Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lujia Zhou
- Henan Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Precision Diagnosis of Respiratory Infectious Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huaqi Wang
- Respiratory Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
30
|
Taylor SL, Crabbé A, Hoffman LR, Chalmers JD, Rogers GB. Understanding the clinical implications of the "non-classical" microbiome in chronic lung disease: a viewpoint. Eur Respir J 2024; 63:2302281. [PMID: 38387999 DOI: 10.1183/13993003.02281-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Affiliation(s)
- Steven L Taylor
- Microbiome and Host Health, South Australia Health and Medical Research Institute, Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Luke R Hoffman
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Geraint B Rogers
- Microbiome and Host Health, South Australia Health and Medical Research Institute, Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| |
Collapse
|
31
|
Liu K, Guo Q, Ding Y, Luo L, Huang J, Zhang Q. Alterations in nasal microbiota of patients with amyotrophic lateral sclerosis. Chin Med J (Engl) 2024; 137:162-171. [PMID: 37482646 PMCID: PMC10798702 DOI: 10.1097/cm9.0000000000002701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Links between alterations in gut microbiota composition and amyotrophic lateral sclerosis (ALS) have previously been reported. This study aimed to examine the microbiota in the nasal cavity of ALS. METHODS Sixty-six ALS patients and 40 healthy caregivers who live in close proximity with patients were enrolled. High throughput metagenomic sequencing of the 16S ribosomal deoxyribonucleic acid (rDNA) gene V3-V4 region of nasal microbiota was used to characterize the alpha and beta diversity and relative abundance of bacterial taxa, predict function, and conduct correlation analysis between specific taxa and clinical features. RESULTS The nasal microbiome of ALS patients showed lower alpha diversity than that of corresponding healthy family members. Genera Gaiella , Sphingomonas , Polaribacter _1, Lachnospiraceae _NK4A136_group, Klebsiella , and Alistipes were differentially enriched in ALS patients compared to controls. Nasal microbiota composition in ALS patients significantly differed from that in healthy subjects (unweighted UniFrac P = 0.001), while Linear discriminant analysis Effect Size (LEfSe) analysis indicated that Bacteroidetes and Firmicutes dominated healthy nasal communities at the phylum level, whereas Actinobacteria was the predominant phylum and Thermoleophilia was the predominant class in ALS patients. Genus Faecalibacterium and Alistipes were positively correlated with ALS functional rating scale revised (ALSFRS-R; rs = 0.349, P = 0.020 and rs = 0.393, P = 0.008), while Prevotella -9 and Bacteroides operational taxonomic units (OTUs) were positively associated with lung function (FVC) in ALS patients ( rs = 0.304, P = 0.045, and rs = 0.300, P = 0.048, respectively). Prevotella -1 was positively correlated with white blood cell counts (WBC, rs = 0.347, P = 0.021), neutrophil percentage (Neu%, rs = 0.428, P = 0.004), and neutrophil-to-lymphocyte ratio (NLR, rs = 0.411, P = 0.006), but negatively correlated with lymphocyte percentage (Lym%, rs = -0.408, P = 0.006). In contrast, Streptococcus was negatively associated with Neu% ( rs = -0.445, P = 0.003) and NLR ( rs = -0.436, P = 0.003), while positively associated with Lym% ( rs = 0.437, P = 0.003). No significant differences in nasal microbiota richness and evenness were detected among the severe and mild ALS patients. CONCLUSIONS ALS is accompanied by altered nasal microbial community composition and diversity. The findings presented here highlight the need to understand how dysbiosis of nasal microbiota may contribute to the development of ALS.
Collapse
Affiliation(s)
- Kaixiong Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Qifu Guo
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Ying Ding
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Li Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Jianchai Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Qijie Zhang
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| |
Collapse
|
32
|
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther 2024; 9:19. [PMID: 38228603 PMCID: PMC10791971 DOI: 10.1038/s41392-023-01722-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
The lungs were long thought to be sterile until technical advances uncovered the presence of the lung microbial community. The microbiome of healthy lungs is mainly derived from the upper respiratory tract (URT) microbiome but also has its own characteristic flora. The selection mechanisms in the lung, including clearance by coughing, pulmonary macrophages, the oscillation of respiratory cilia, and bacterial inhibition by alveolar surfactant, keep the microbiome transient and mobile, which is different from the microbiome in other organs. The pulmonary bacteriome has been intensively studied recently, but relatively little research has focused on the mycobiome and virome. This up-to-date review retrospectively summarizes the lung microbiome's history, composition, and function. We focus on the interaction of the lung microbiome with the oropharynx and gut microbiome and emphasize the role it plays in the innate and adaptive immune responses. More importantly, we focus on multiple respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), fibrosis, bronchiectasis, and pneumonia. The impact of the lung microbiome on coronavirus disease 2019 (COVID-19) and lung cancer has also been comprehensively studied. Furthermore, by summarizing the therapeutic potential of the lung microbiome in lung diseases and examining the shortcomings of the field, we propose an outlook of the direction of lung microbiome research.
Collapse
Affiliation(s)
- Ruomeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
33
|
Wu W, Li Z, Wang Y, Huang C, Zhang T, Zhao H. Advances in metabolomics of chronic obstructive pulmonary disease. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:223-230. [PMID: 39171278 PMCID: PMC11332835 DOI: 10.1016/j.pccm.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Indexed: 08/23/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic lung disease with limited airflow. COPD is characterized by chronic bronchitis and emphysema, and is often accompanied by malnutrition with fatigue, muscle weakness, and an increased risk of infection. Although the pulmonary function test is used as the gold criterion for diagnosing COPD, it is unable to identify early COPD or classify the subtypes, thereby impeding early intervention and the precise diagnosis of COPD. Recent evidence suggests that metabolic dysfunction, such as changes in lipids, amino acids, glucose, nucleotides, and microbial metabolites in the lungs and intestine, have a great potential for diagnosing COPD in the early stage. However, a comprehensive summary of these metabolites and their effects on COPD is still lacking. This review summarizes the metabolites that are changed in COPD and highlights some promising early diagnostic markers and therapeutic targets. We emphasize that intensified dietary management may be among the most feasible methods to improve metabolism in the body.
Collapse
Affiliation(s)
- Wenqian Wu
- The State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Zhiwei Li
- The State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yongqiang Wang
- Department of Respiratory and Critical Care Medicine, 302 Hospital of China Guizhou Aviation Industry Group, An Shun, Guizhou 561000, China
| | - Chuan Huang
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Tiantian Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Hongmei Zhao
- The State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
34
|
Pragman AA. Investigating a Causal Role for Lung Microbiome Dysbiosis in Early Chronic Obstructive Pulmonary Disease Pathogenesis. Am J Respir Crit Care Med 2023; 208:1019-1021. [PMID: 37703423 PMCID: PMC10867932 DOI: 10.1164/rccm.202309-1599ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023] Open
Affiliation(s)
- Alexa A Pragman
- Department of Medicine Minneapolis Veterans Affairs Medical Center Minneapolis, Minnesota and Department of Medicine University of Minnesota Minneapolis, Minnesota
| |
Collapse
|
35
|
Sulaiman I, Wu BG, Chung M, Isaacs B, Tsay JCJ, Holub M, Barnett CR, Kwok B, Kugler MC, Natalini JG, Singh S, Li Y, Schluger R, Carpenito J, Collazo D, Perez L, Kyeremateng Y, Chang M, Campbell CD, Hansbro PM, Oppenheimer BW, Berger KI, Goldring RM, Koralov SB, Weiden MD, Xiao R, D’Armiento J, Clemente JC, Ghedin E, Segal LN. Lower Airway Dysbiosis Augments Lung Inflammatory Injury in Mild-to-Moderate Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2023; 208:1101-1114. [PMID: 37677136 PMCID: PMC10867925 DOI: 10.1164/rccm.202210-1865oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 09/07/2023] [Indexed: 09/09/2023] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) is associated with high morbidity, mortality, and healthcare costs. Cigarette smoke is a causative factor; however, not all heavy smokers develop COPD. Microbial colonization and infections are contributing factors to disease progression in advanced stages. Objectives: We investigated whether lower airway dysbiosis occurs in mild-to-moderate COPD and analyzed possible mechanistic contributions to COPD pathogenesis. Methods: We recruited 57 patients with a >10 pack-year smoking history: 26 had physiological evidence of COPD, and 31 had normal lung function (smoker control subjects). Bronchoscopy sampled the upper airways, lower airways, and environmental background. Samples were analyzed by 16S rRNA gene sequencing, whole genome, RNA metatranscriptome, and host RNA transcriptome. A preclinical mouse model was used to evaluate the contributions of cigarette smoke and dysbiosis on lower airway inflammatory injury. Measurements and Main Results: Compared with smoker control subjects, microbiome analyses showed that the lower airways of subjects with COPD were enriched with common oral commensals. The lower airway host transcriptomics demonstrated differences in markers of inflammation and tumorigenesis, such as upregulation of IL-17, IL-6, ERK/MAPK, PI3K, MUC1, and MUC4 in mild-to-moderate COPD. Finally, in a preclinical murine model exposed to cigarette smoke, lower airway dysbiosis with common oral commensals augments the inflammatory injury, revealing transcriptomic signatures similar to those observed in human subjects with COPD. Conclusions: Lower airway dysbiosis in the setting of smoke exposure contributes to inflammatory injury early in COPD. Targeting the lower airway microbiome in combination with smoking cessation may be of potential therapeutic relevance.
Collapse
Affiliation(s)
- Imran Sulaiman
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
- Department of Respiratory Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Respiratory Medicine, Beaumont Hospital, Dublin, Ireland
| | - Benjamin G. Wu
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs (VA) New York Harbor Healthcare System, New York, New York
| | - Matthew Chung
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Bradley Isaacs
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Jun-Chieh J. Tsay
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs (VA) New York Harbor Healthcare System, New York, New York
| | - Meredith Holub
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Hartford Health Care, Hartford, Connecticut
| | - Clea R. Barnett
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Benjamin Kwok
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | | | - Jake G. Natalini
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Shivani Singh
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Yonghua Li
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Rosemary Schluger
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Joseph Carpenito
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Destiny Collazo
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Luisanny Perez
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Yaa Kyeremateng
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Miao Chang
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Christina D. Campbell
- Department of Respiratory Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Respiratory Medicine, Beaumont Hospital, Dublin, Ireland
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Sydney, New South Wales, Australia
| | | | - Kenneth I. Berger
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | | | | | - Michael D. Weiden
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
| | - Rui Xiao
- Department of Physiology and Cellular Biophysics, Columbia University School of Medicine, New York, New York; and
| | - Jeanine D’Armiento
- Department of Physiology and Cellular Biophysics, Columbia University School of Medicine, New York, New York; and
| | - Jose C. Clemente
- Department of Genetics and Genomic Sciences and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Leopoldo N. Segal
- Division of Pulmonary and Critical Care Medicine
- Department of Medicine
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York University (NYU) Langone Health, New York, New York
| |
Collapse
|
36
|
Kim BG, Yu JY, Kim SY, Kim DH, Jhun BW. Changes in sputum microbiota during treatment for nontuberculous mycobacterial pulmonary disease. Sci Rep 2023; 13:19764. [PMID: 37957253 PMCID: PMC10643529 DOI: 10.1038/s41598-023-47230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023] Open
Abstract
Limited data exist on longitudinal changes in the sputum bacterial microbiome during treatment in nontuberculous mycobacterial pulmonary disease (NTM-PD) patients. We prospectively collected serial sputum samples from 14 NTM-PD patients during treatment, at the start (n = 14) and at 1 (n = 10), 3 (n = 10), 6 (n = 12), and 12 (n = 7) months. The bacterial microbiome changes were analyzed using 16S rRNA sequences (V3-V4 regions). Subgroup analysis included culture conversion (n = 9) and treatment refractory (n = 5) groups. In all patients, sputum alpha-diversity (ACE, Chao1, and Jackknife) significantly decreased during antibiotic treatment at 1, 3, 6, and 12 months compared to treatment initiation levels. Within the culture conversion group, genus/species-level beta-diversity showed differences at 1, 3, 6, and 12 months compared to treatment initiation (all p < 0.05). However, in the refractory group, there were no differences in beta-diversity at the genus/species levels in the sputum at any time point. In the linear discriminant analysis (LDA) effect sizes (LEfSe) analysis, the culture conversion group exhibited decreasing taxa at various levels (phylum/genus/species), but no significant increase in taxa was observed. LEfSe analysis of the refractory patient group revealed multiple taxa decreased during treatment. However, proportions of Veillonella dispar (LDA = 4.78), Fusobacterium periodonticum (LDA = 4.35), and Pseudomonas aeruginosa (LDA = 2.92) increased as the treatment period progressed in the refractory group. Sputum microbiota diversity decreases during NTM-PD treatment. In the culture conversion group, most taxa decrease, while some increase in the refractory group. These findings suggest that a distinct respiratory microbial community may exist in refractory NTM-PD patients compared to responsive antibiotic-treated patients.
Collapse
Affiliation(s)
- Bo-Guen Kim
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Jin Young Yu
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea
| | - Dae Hun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea.
| |
Collapse
|
37
|
Zhao Y, Sun H, Chen Y, Niu Q, Dong Y, Li M, Yuan Y, Yang X, Sun Q. Butyrate protects against MRSA pneumonia via regulating gut-lung microbiota and alveolar macrophage M2 polarization. mBio 2023; 14:e0198723. [PMID: 37754570 PMCID: PMC10653920 DOI: 10.1128/mbio.01987-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Pneumonia caused by methicillin-resistant Staphylococcus aureus (MRSA) continues to carry a high burden in terms of mortality. With the roles of gut microbiota in mediating lung diseases being gradually uncovered, the details of the molecular mechanism of the "gut-lung axis" mediated by beneficial microorganisms and small-molecule metabolites have gradually attracted the attention of researchers. However, further studies are still necessary to determine the efficacy of microbial-based interventions. Our findings indicate that sodium butyrate (NaB) alleviates MRSA-induced pulmonary inflammation by improving gut-lung microbiota and promoting M2 polarization of alveolar macrophages. Therefore, the preventive administration of NaB might be explored as an effective strategy to control MRSA pneumonia.
Collapse
Affiliation(s)
- Yan Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Haoming Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiwei Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiang Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiting Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Mei Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ye Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
38
|
Gao J, Yi X, Wang Z. The application of multi-omics in the respiratory microbiome: Progresses, challenges and promises. Comput Struct Biotechnol J 2023; 21:4933-4943. [PMID: 37867968 PMCID: PMC10585227 DOI: 10.1016/j.csbj.2023.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
The study of the respiratory microbiome has entered a multi-omic era. Through integrating different omic data types such as metagenome, metatranscriptome, metaproteome, metabolome, culturome and radiome surveyed from respiratory specimens, holistic insights can be gained on the lung microbiome and its interaction with host immunity and inflammation in respiratory diseases. The power of multi-omics have moved the field forward from associative assessment of microbiome alterations to causative understanding of the lung microbiome in the pathogenesis of chronic, acute and other types of respiratory diseases. However, the application of multi-omics in respiratory microbiome remains with unique challenges from sample processing, data integration, and downstream validation. In this review, we first introduce the respiratory sample types and omic data types applicable to studying the respiratory microbiome. We next describe approaches for multi-omic integration, focusing on dimensionality reduction, multi-omic association and prediction. We then summarize progresses in the application of multi-omics to studying the microbiome in respiratory diseases. We finally discuss current challenges and share our thoughts on future promises in the field.
Collapse
Affiliation(s)
- Jingyuan Gao
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| |
Collapse
|
39
|
Gea J, Enríquez-Rodríguez CJ, Agranovich B, Pascual-Guardia S. Update on metabolomic findings in COPD patients. ERJ Open Res 2023; 9:00180-2023. [PMID: 37908399 PMCID: PMC10613990 DOI: 10.1183/23120541.00180-2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/15/2023] [Indexed: 11/02/2023] Open
Abstract
COPD is a heterogeneous disorder that shows diverse clinical presentations (phenotypes and "treatable traits") and biological mechanisms (endotypes). This heterogeneity implies that to carry out a more personalised clinical management, it is necessary to classify each patient accurately. With this objective, and in addition to clinical features, it would be very useful to have well-defined biological markers. The search for these markers may either be done through more conventional laboratory and hypothesis-driven techniques or relatively blind high-throughput methods, with the omics approaches being suitable for the latter. Metabolomics is the science that studies biological processes through their metabolites, using various techniques such as gas and liquid chromatography, mass spectrometry and nuclear magnetic resonance. The most relevant metabolomics studies carried out in COPD highlight the importance of metabolites involved in pathways directly related to proteins (peptides and amino acids), nucleic acids (nitrogenous bases and nucleosides), and lipids and their derivatives (especially fatty acids, phospholipids, ceramides and eicosanoids). These findings indicate the relevance of inflammatory-immune processes, oxidative stress, increased catabolism and alterations in the energy production. However, some specific findings have also been reported for different COPD phenotypes, demographic characteristics of the patients, disease progression profiles, exacerbations, systemic manifestations and even diverse treatments. Unfortunately, the studies carried out to date have some limitations and shortcomings and there is still a need to define clear metabolomic profiles with clinical utility for the management of COPD and its implicit heterogeneity.
Collapse
Affiliation(s)
- Joaquim Gea
- Respiratory Medicine Department, Hospital del Mar – IMIM, Barcelona, Spain
- MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
- CIBERES, ISCIII, Barcelona, Spain
| | - César J. Enríquez-Rodríguez
- Respiratory Medicine Department, Hospital del Mar – IMIM, Barcelona, Spain
- MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Bella Agranovich
- Rappaport Institute for Research in the Medical Sciences, Technion University, Haifa, Israel
| | - Sergi Pascual-Guardia
- Respiratory Medicine Department, Hospital del Mar – IMIM, Barcelona, Spain
- MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
- CIBERES, ISCIII, Barcelona, Spain
| |
Collapse
|
40
|
Fan LC, McConn K, Plataki M, Kenny S, Williams NC, Kim K, Quirke JA, Chen Y, Sauler M, Möbius ME, Chung KP, Area Gomez E, Choi AM, Xu JF, Cloonan SM. Alveolar type II epithelial cell FASN maintains lipid homeostasis in experimental COPD. JCI Insight 2023; 8:e163403. [PMID: 37606038 PMCID: PMC10543729 DOI: 10.1172/jci.insight.163403] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/10/2023] [Indexed: 08/23/2023] Open
Abstract
Alveolar epithelial type II (AEC2) cells strictly regulate lipid metabolism to maintain surfactant synthesis. Loss of AEC2 cell function and surfactant production are implicated in the pathogenesis of the smoking-related lung disease chronic obstructive pulmonary disease (COPD). Whether smoking alters lipid synthesis in AEC2 cells and whether altering lipid metabolism in AEC2 cells contributes to COPD development are unclear. In this study, high-throughput lipidomic analysis revealed increased lipid biosynthesis in AEC2 cells isolated from mice chronically exposed to cigarette smoke (CS). Mice with a targeted deletion of the de novo lipogenesis enzyme, fatty acid synthase (FASN), in AEC2 cells (FasniΔAEC2) exposed to CS exhibited higher bronchoalveolar lavage fluid (BALF) neutrophils, higher BALF protein, and more severe airspace enlargement. FasniΔAEC2 mice exposed to CS had lower levels of key surfactant phospholipids but higher levels of BALF ether phospholipids, sphingomyelins, and polyunsaturated fatty acid-containing phospholipids, as well as increased BALF surface tension. FasniΔAEC2 mice exposed to CS also had higher levels of protective ferroptosis markers in the lung. These data suggest that AEC2 cell FASN modulates the response of the lung to smoke by regulating the composition of the surfactant phospholipidome.
Collapse
Affiliation(s)
- Li-Chao Fan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Keith McConn
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Sarah Kenny
- School of Medicine, Trinity Biomedical Sciences Institute, and
| | | | - Kihwan Kim
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | - Yan Chen
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Kuei-Pin Chung
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Laboratory Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Estela Area Gomez
- Division of Neuromuscular Medicine, Department of Neurology, Columbia University Irving Medical Center, Neurological Institute, New York, New York, USA
- Center for Biological Research “Margarita Salas”, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Augustine M.K. Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Suzanne M. Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- School of Medicine, Trinity Biomedical Sciences Institute, and
| |
Collapse
|
41
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023; 8:132. [PMID: 36941259 PMCID: PMC10026263 DOI: 10.1038/s41392-023-01399-3] [Citation(s) in RCA: 292] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
Collapse
Affiliation(s)
- Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
42
|
Calverley PMA, Walker PP. Contemporary Concise Review 2022: Chronic obstructive pulmonary disease. Respirology 2023; 28:428-436. [PMID: 36922031 DOI: 10.1111/resp.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023]
Abstract
International respiratory organizations now recommend using lower limit of normal and standardized residuals to diagnose airflow obstruction and COPD though using a fixed ratio <0.7 is simpler and robustly predicts important clinical outcomes. The most common COPD comorbidities are coronary artery calcification, emphysema and bronchiectasis. COPD patients with psychological (high anxiety and depression) and cachectic (underweight and osteoporotic) comorbidity have higher mortality and exacerbate more. Serum eosinophil count remains an important COPD biomarker and we have greater clarity about normal eosinophil levels in COPD and the wider population. Criteria for entry into COPD clinical trials continue to exclude many patients, in particular those at greater risk of exacerbation and death. The effect of hyperinflation on cardiac function impacts COPD mortality and is an important target for successful lung volume reduction procedures.
Collapse
Affiliation(s)
- Peter M A Calverley
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Paul P Walker
- School of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
43
|
Tiew PY, Meldrum OW, Chotirmall SH. Applying Next-Generation Sequencing and Multi-Omics in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2023; 24:ijms24032955. [PMID: 36769278 PMCID: PMC9918109 DOI: 10.3390/ijms24032955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Microbiomics have significantly advanced over the last decade, driven by the widespread availability of next-generation sequencing (NGS) and multi-omic technologies. Integration of NGS and multi-omic datasets allow for a holistic assessment of endophenotypes across a range of chronic respiratory disease states, including chronic obstructive pulmonary disease (COPD). Valuable insight has been attained into the nature, function, and significance of microbial communities in disease onset, progression, prognosis, and response to treatment in COPD. Moving beyond single-biome assessment, there now exists a growing literature on functional assessment and host-microbe interaction and, in particular, their contribution to disease progression, severity, and outcome. Identifying specific microbes and/or metabolic signatures associated with COPD can open novel avenues for therapeutic intervention and prognosis-related biomarkers. Despite the promise and potential of these approaches, the large amount of data generated by such technologies can be challenging to analyze and interpret, and currently, there remains a lack of standardized methods to address this. This review outlines the current use and proposes future avenues for the application of NGS and multi-omic technologies in the endophenotyping, prognostication, and treatment of COPD.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore 169608, Singapore
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Oliver W. Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore 308433, Singapore
- Correspondence:
| |
Collapse
|
44
|
Gea J, Enríquez-Rodríguez CJ, Pascual-Guardia S. Metabolomics in COPD. Arch Bronconeumol 2023; 59:311-321. [PMID: 36717301 DOI: 10.1016/j.arbres.2022.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 01/20/2023]
Abstract
The clinical presentation of chronic obstructive pulmonary disease (COPD) is highly heterogeneous. Attempts have been made to define subpopulations of patients who share clinical characteristics (phenotypes and treatable traits) and/or biological characteristics (endotypes), in order to offer more personalized care. Assigning a patient to any of these groups requires the identification of both clinical and biological markers. Ideally, biological markers should be easily obtained from blood or urine, but these may lack specificity. Biomarkers can be identified initially using conventional or more sophisticated techniques. However, the more sophisticated techniques should be simplified in the future if they are to have clinical utility. The -omics approach offers a methodology that can assist in the investigation and identification of useful markers in both targeted and blind searches. Specifically, metabolomics is the science that studies biological processes involving metabolites, which can be intermediate or final products. The metabolites associated with COPD and their specific phenotypic and endotypic features have been studied using various techniques. Several compounds of particular interest have emerged, namely, several types of lipids and derivatives (mainly phospholipids, but also ceramides, fatty acids and eicosanoids), amino acids, coagulation factors, and nucleic acid components, likely to be involved in their function, protein catabolism, energy production, oxidative stress, immune-inflammatory response and coagulation disorders. However, clear metabolomic profiles of the disease and its various manifestations that may already be applicable in clinical practice still need to be defined.
Collapse
Affiliation(s)
- Joaquim Gea
- Servicio de Neumología, Hospital del Mar - IMIM, Barcelona, Spain; Dpt. MELIS, Universitat Pompeu Fabra, Barcelona, Spain; CIBERES, ISCIII, Barcelona, Spain.
| | - César J Enríquez-Rodríguez
- Servicio de Neumología, Hospital del Mar - IMIM, Barcelona, Spain; Dpt. MELIS, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sergi Pascual-Guardia
- Servicio de Neumología, Hospital del Mar - IMIM, Barcelona, Spain; Dpt. MELIS, Universitat Pompeu Fabra, Barcelona, Spain; CIBERES, ISCIII, Barcelona, Spain
| |
Collapse
|
45
|
Kayongo A, Robertson NM, Siddharthan T, Ntayi ML, Ndawula JC, Sande OJ, Bagaya BS, Kirenga B, Mayanja-Kizza H, Joloba ML, Forslund SK. Airway microbiome-immune crosstalk in chronic obstructive pulmonary disease. Front Immunol 2023; 13:1085551. [PMID: 36741369 PMCID: PMC9890194 DOI: 10.3389/fimmu.2022.1085551] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) has significantly contributed to global mortality, with three million deaths reported annually. This impact is expected to increase over the next 40 years, with approximately 5 million people predicted to succumb to COPD-related deaths annually. Immune mechanisms driving disease progression have not been fully elucidated. Airway microbiota have been implicated. However, it is still unclear how changes in the airway microbiome drive persistent immune activation and consequent lung damage. Mechanisms mediating microbiome-immune crosstalk in the airways remain unclear. In this review, we examine how dysbiosis mediates airway inflammation in COPD. We give a detailed account of how airway commensal bacteria interact with the mucosal innate and adaptive immune system to regulate immune responses in healthy or diseased airways. Immune-phenotyping airway microbiota could advance COPD immunotherapeutics and identify key open questions that future research must address to further such translation.
Collapse
Affiliation(s)
- Alex Kayongo
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Medicine, Center for Emerging Pathogens, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, United States
| | | | - Trishul Siddharthan
- Division of Pulmonary Medicine, School of Medicine, University of Miami, Miami, FL, United States
| | - Moses Levi Ntayi
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Josephine Caren Ndawula
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Obondo J. Sande
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bernard S. Bagaya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bruce Kirenga
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Harriet Mayanja-Kizza
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sofia K. Forslund
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany,Experimental and Clinical Research Center, a cooperation of Charité - Universitatsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany,Charité-Universitatsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany,*Correspondence: Sofia K. Forslund,
| |
Collapse
|
46
|
Goeteyn E, Grassi L, Van den Bossche S, Rigauts C, Vande Weygaerde Y, Van Braeckel E, Maes T, Bracke KR, Crabbé A. Commensal bacteria of the lung microbiota synergistically inhibit inflammation in a three-dimensional epithelial cell model. Front Immunol 2023; 14:1176044. [PMID: 37168857 PMCID: PMC10164748 DOI: 10.3389/fimmu.2023.1176044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023] Open
Abstract
Patients with chronic lung disease suffer from persistent inflammation and are typically colonized by pro-inflammatory pathogenic bacteria. Besides these pathogens, a wide variety of commensal species is present in the lower airways but their role in inflammation is unclear. Here, we show that the lung microbiota contains several species able to inhibit activation of the pro-inflammatory NF-κB pathway and production of interleukin 8 (IL-8), triggered by lipopolysaccharide (LPS) or H2O2, in a physiologically relevant three-dimensional (3D) lung epithelial cell model. We demonstrate that the minimal dose needed for anti-inflammatory activity differs between species (with the lowest dose needed for Rothia mucilaginosa), and depends on the type of pro-inflammatory stimulus and read out. Furthermore, we evaluated synergistic activity between pairs of anti-inflammatory bacteria on the inhibition of the NF-κB pathway and IL-8 secretion. Synergistic anti-inflammatory activity was observed for 4/10 tested consortia. These findings indicate that various microbiota members can influence lung inflammation either alone or as a consortium. This information can contribute to a better understanding of the lung microbiota in chronic lung disease development and process, and could open up new avenues for treatment.
Collapse
Affiliation(s)
- Ellen Goeteyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Lucia Grassi
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | | | - Charlotte Rigauts
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Yannick Vande Weygaerde
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Eva Van Braeckel
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Lung Research Lab, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Tania Maes
- Lung Research Lab, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ken R. Bracke
- Lung Research Lab, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- *Correspondence: Aurélie Crabbé,
| |
Collapse
|
47
|
Hamidou Soumana I, Ryu MH, Leitao Filho FS, Yang J, Orach J, Nislow C, Leung JM, Rider CF, Carlsten C. Exposure to diesel exhaust alters the functional metagenomic composition of the airway microbiome in former smokers. ENVIRONMENTAL RESEARCH 2023; 216:114826. [PMID: 36403657 DOI: 10.1016/j.envres.2022.114826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The lung microbiome plays a crucial role in airway homeostasis, yet we know little about the effects of exposures such as air pollution therein. We conducted a controlled human exposure study to assess the impact of diesel exhaust (DE) on the human airway microbiome. Twenty-four participants (former smokers with mild to moderate COPD (N = 9), healthy former smokers (N = 7), and control healthy never smokers (N = 8)) were exposed to DE (300 μg/m3 PM2.5) and filtered air (FA) for 2 h in a randomized order, separated by a 4-week washout. Endobronchial brushing samples were collected 24 h post-exposure and sequenced for the 16S microbiome, which was analyzed using QIIME2 and PICRUSt2 to examine diversity and metabolic functions, respectively. DE exposure altered airway microbiome metabolic functions in spite of statistically stable microbiome diversity. Affected functions included increases in: superpathway of purine deoxyribonucleosides degradation (pathway differential abundance 743.9, CI 95% 201.2 to 1286.6), thiazole biosynthesis I (668.5, CI 95% 139.9 to 1197.06), and L-lysine biosynthesis II (666.5, CI 95% 73.3 to 1257.7). There was an exposure-by-age effect, such that menaquinone biosynthesis superpathways were the most enriched function in the microbiome of participants aged >60, irrespective of smoking or health status. Moreover, exposure-by-phenotype analysis showed metabolic alterations in former smokers after DE exposure. These observations suggest that DE exposure induced substantial changes in the metabolic functions of the airway microbiome despite the absence of diversity changes.
Collapse
Affiliation(s)
- Illiassou Hamidou Soumana
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Min Hyung Ryu
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Julia Yang
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Juma Orach
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Corey Nislow
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Janice M Leung
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Christopher Francis Rider
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christopher Carlsten
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
48
|
Narayana JK, Tsaneva-Atanasova K, Chotirmall SH. Microbiomics Focused Data Integration: A Fresh Solve for the Rubik's Cube of Endophenotyping? Am J Respir Crit Care Med 2022; 206:365-368. [PMID: 35584334 DOI: 10.1164/rccm.202205-0860ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jayanth Kumar Narayana
- Lee Kong Chian School of Medicine, Translational Respiratory Research Laboratory, Singapore, Singapore
| | - Krasimira Tsaneva-Atanasova
- University of Exeter, 3286, Living Systems Institute and Department of Mathematics, Exeter, United Kingdom of Great Britain and Northern Ireland
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Translational Respiratory Research Laboratory, Singapore, Singapore;
| |
Collapse
|
49
|
Singh S, Natalini JG, Segal LN. Lung microbial-host interface through the lens of multi-omics. Mucosal Immunol 2022; 15:837-845. [PMID: 35794200 PMCID: PMC9391302 DOI: 10.1038/s41385-022-00541-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023]
Abstract
In recent years, our understanding of the microbial world within us has been revolutionized by the use of culture-independent techniques. The use of multi-omic approaches can now not only comprehensively characterize the microbial environment but also evaluate its functional aspects and its relationship with the host immune response. Advances in bioinformatics have enabled high throughput and in-depth analyses of transcripts, proteins and metabolites and enormously expanded our understanding of the role of the human microbiome in different conditions. Such investigations of the lower airways have specific challenges but as the field develops, new approaches will be facilitated. In this review, we focus on how integrative multi-omics can advance our understanding of the microbial environment and its effects on the host immune tone in the lungs.
Collapse
Affiliation(s)
- Shivani Singh
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Jake G. Natalini
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY,NYU Langone Lung Transplant Institute, New York University Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Leopoldo N. Segal
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY
| |
Collapse
|