1
|
Mamidi RR, McEvoy CT. Extending CPAP in stable preterm infants to increase lung growth and development as measured by pulmonary function testing. Semin Perinatol 2025:152059. [PMID: 40023691 DOI: 10.1016/j.semperi.2025.152059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Nasal continuous positive airway pressure (CPAP) is the standard of care for the acute management of preterm infants with respiratory distress, however, the optimal duration of CPAP in stable preterm infants is unknown. In utero, preclinical, and clinical data support the premise that mechanical stretch from CPAP can increase lung growth and development. This paper will review data to support this premise, studies examining weaning infants off CPAP, the current practices in the United States regarding CPAP application and duration, and clinical studies of the association of CPAP duration and subsequent lung growth and development. Pulmonary function testing will be presented as an important outcome throughout these trials.
Collapse
Affiliation(s)
- Rachna R Mamidi
- Department of Pediatrics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Cindy T McEvoy
- Department of Pediatrics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Papé Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
2
|
Xia T, Pan Z, Wan H, Li Y, Mao G, Zhao J, Zhang F, Pan S. Mechanisms of mechanical stimulation in the development of respiratory system diseases. Am J Physiol Lung Cell Mol Physiol 2024; 327:L724-L739. [PMID: 39316681 DOI: 10.1152/ajplung.00122.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
During respiration, mechanical stress can initiate biological responses that impact the respiratory system. Mechanical stress plays a crucial role in the development of the respiratory system. However, pathological mechanical stress can impact the onset and progression of respiratory diseases by influencing the extracellular matrix and cell transduction processes. In this article, we explore the mechanisms by which mechanical forces communicate with and influence cells. We outline the basic knowledge of respiratory mechanics, elucidating the important role of mechanical stimulation in influencing respiratory system development and differentiation from a microscopic perspective. We also explore the potential mechanisms of mechanical transduction in the pathogenesis and development of respiratory diseases such as asthma, lung injury, pulmonary fibrosis, and lung cancer. Finally, we look forward to new research directions in cellular mechanotransduction, aiming to provide fresh insights for future therapeutic research on respiratory diseases.
Collapse
Affiliation(s)
- Tian Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Haoxin Wan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yongsen Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guocai Mao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fangbiao Zhang
- Department of Cardiothoracic Surgery, Lishui Municipal Central Hospital, Lishui, People's Republic of China
| | - Shu Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
3
|
Goltsis O, Bilodeau C, Wang J, Luo D, Asgari M, Bozec L, Pettersson A, Leibel SL, Post M. Influence of mesenchymal and biophysical components on distal lung organoid differentiation. Stem Cell Res Ther 2024; 15:273. [PMID: 39218985 PMCID: PMC11367854 DOI: 10.1186/s13287-024-03890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Chronic lung disease of prematurity, called bronchopulmonary dysplasia (BPD), lacks effective therapies, stressing the need for preclinical testing systems that reflect human pathology for identifying causal pathways and testing novel compounds. Alveolar organoids derived from human pluripotent stem cells (hPSC) are promising test platforms for studying distal airway diseases like BPD, but current protocols do not accurately replicate the distal niche environment of the native lung. Herein, we investigated the contributions of cellular constituents of the alveolus and fetal respiratory movements on hPSC-derived alveolar organoid formation. METHODS Human PSCs were differentiated in 2D culture into lung progenitor cells (LPC) which were then further differentiated into alveolar organoids before and after removal of co-developing mesodermal cells. LPCs were also differentiated in Transwell® co-cultures with and without human fetal lung fibroblast. Forming organoids were subjected to phasic mechanical strain using a Flexcell® system. Differentiation within organoids and Transwell® cultures was assessed by flow cytometry, immunofluorescence, and qPCR for lung epithelial and alveolar markers of differentiation including GATA binding protein 6 (GATA 6), E-cadherin (CDH1), NK2 Homeobox 1 (NKX2-1), HT2-280, surfactant proteins B (SFTPB) and C (SFTPC). RESULTS We observed that co-developing mesenchymal progenitors promote alveolar epithelial type 2 cell (AEC2) differentiation within hPSC-derived lung organoids. This mesenchymal effect on AEC2 differentiation was corroborated by co-culturing hPSC-NKX2-1+ lung progenitors with human embryonic lung fibroblasts. The stimulatory effect did not require direct contact between fibroblasts and NKX2-1+ lung progenitors. Additionally, we demonstrate that episodic mechanical deformation of hPSC-derived lung organoids, mimicking in situ fetal respiratory movements, increased AEC2 differentiation without affecting proximal epithelial differentiation. CONCLUSION Our data suggest that biophysical and mesenchymal components promote AEC2 differentiation within hPSC-derived distal organoids in vitro.
Collapse
Affiliation(s)
- Olivia Goltsis
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Claudia Bilodeau
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jinxia Wang
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Daochun Luo
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Meisam Asgari
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Laurent Bozec
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Ante Pettersson
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Sandra L Leibel
- Department of Pediatrics, Rady Children's Hospital, San Diego, University of California, San Diego, La Jolla, CA, USA
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Baguma-Nibasheka M, Kablar B. Mechanics of Lung Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:131-150. [PMID: 37955774 DOI: 10.1007/978-3-031-38215-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
We summarize how skeletal muscle and lung developmental biology fields have been bridged to benefit from mouse genetic engineering technologies and to explore the role of fetal breathing-like movements (FBMs) in lung development, by using skeletal muscle-specific mutant mice. It has been known for a long time that FBMs are essential for the lung to develop properly. However, the cellular and molecular mechanisms transducing the mechanical forces of muscular activity into specific genetic programs that propel lung morphogenesis (development of the shape, form and size of the lung, its airways, and gas exchange surface) as well as its differentiation (acquisition of specialized cell structural and functional features from their progenitor cells) are only starting to be revealed. This chapter is a brief synopsis of the cumulative findings from that ongoing quest. An update on and the rationale for our recent International Mouse Phenotyping Consortium (IMPC) search is also provided.
Collapse
Affiliation(s)
- Mark Baguma-Nibasheka
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| | - Boris Kablar
- Department of Medical Neuroscience, Anatomy and Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
5
|
Kulkarni T, Mukhopadhyay D, Bhattacharya S. Dynamic alteration of poroelastic attributes as determinant membrane nanorheology for endocytosis of organ specific targeted gold nanoparticles. J Nanobiotechnology 2022; 20:74. [PMID: 35135558 PMCID: PMC8822666 DOI: 10.1186/s12951-022-01276-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/20/2022] [Indexed: 01/21/2023] Open
Abstract
Background Efficacy of targeted drug delivery using nanoparticles relies on several factors including the uptake mechanisms such as phagocytosis, macropinocytosis, micropinocytosis and receptor mediated endocytosis. These mechanisms have been studied with respect to the alteration in signaling mechanisms, cellular morphology, and linear nanomechanical properties (NMPs). Commonly employed classical contact mechanics models to address cellular NMPs fail to address mesh like structure consisting of bilayer lipids and proteins of cell membrane. To overcome this technical challenge, we employed poroelastic model which accounts for the biphasic nature of cells including their porous behavior exhibiting both solid like (fluid storage) and liquid like (fluid dissipate) behavior. Results In this study, we employed atomic force microscopy to monitor the influence of surface engineering of gold nanoparticles (GNPs) to the alteration of nonlinear NMPs such as drained Poisson’s ratio, effective shear stress, diffusion constant and pore dimensions of cell membranes during their uptake. Herein, we used pancreatic cancer (PDAC) cell lines including Panc1, AsPC-1 and endothelial cell (HUVECs) to understand the receptor-dependent and -independent endocytosis of two different GNPs derived using plectin-1 targeting peptide (PTP-GNP) and corresponding scrambled peptide (sPEP-GNP). Compared to untreated cells, in case of receptor dependent endocytosis of PTP-GNPs diffusion coefficient altered ~ 1264-fold and ~ 1530-fold and pore size altered ~ 320-fold and ~ 260-fold in Panc1 and AsPC-1 cells, respectively. Whereas for receptor independent mechanisms, we observed modest alteration in diffusion coefficient and pore size, in these cells compared to untreated cells. Effective shear stress corresponding to 7.38 ± 0.15 kPa and 20.49 ± 0.39 kPa in PTP-GNP treatment in Panc1 and AsPC-1, respectively was significantly more than that for sPEP-GNP. These results demonstrate that with temporal recruitment of plectin-1 during receptor mediated endocytosis affects the poroelastic attributes of the membrane. Conclusion This study confirms that nonlinear NMPs of cell membrane are directly associated with the uptake mechanism of nanoparticles and can provide promising insights of the nature of endocytosis mechanism involved for organ specific drug delivery using nanoparticles. Hence, nanomechanical analysis of cell membrane using this noninvasive, label-free and live-cell analytical tool can therefore be instrumental to evaluate therapeutic benefit of nanoformulations. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01276-1.
Collapse
Affiliation(s)
- Tanmay Kulkarni
- Department of Biochemistry and Molecular Biology, Mayo College of Medicine and Science, Griffin 413, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo College of Medicine and Science, Griffin 413, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA.,Department of Physiology and Biomedical Engineering, Mayo College of Medicine and Science, Jacksonville, FL, USA
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo College of Medicine and Science, Griffin 413, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA. .,Department of Physiology and Biomedical Engineering, Mayo College of Medicine and Science, Jacksonville, FL, USA.
| |
Collapse
|
6
|
Nguyen TM, van der Merwe J, Elowsson Rendin L, Larsson-Callerfelt AK, Deprest J, Westergren-Thorsson G, Toelen J. Stretch increases alveolar type 1 cell number in fetal lungs through ROCK-Yap/Taz pathway. Am J Physiol Lung Cell Mol Physiol 2021; 321:L814-L826. [PMID: 34431413 DOI: 10.1152/ajplung.00484.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Accurate fluid pressure in the fetal lung is critical for its development, especially at the beginning of the saccular stage when alveolar epithelial type 1 (AT1) and type 2 (AT2) cells differentiate from the epithelial progenitors. Despite our growing understanding of the role of physical forces in lung development, the molecular mechanisms that regulate the transduction of mechanical stretch to alveolar differentiation remain elusive. To simulate lung distension, we optimized both an ex vivo model with precision cut lung slices and an in vivo model of fetal tracheal occlusion. Increased mechanical tension showed to improve alveolar maturation and differentiation toward AT1. By manipulating ROCK pathway, we demonstrate that stretch-induced Yap/Taz activation promotes alveolar differentiation toward AT1 phenotype via ROCK activity. Our findings show that balanced ROCK-Yap/Taz signaling is essential to regulate AT1 differentiation in response to mechanical stretching of the fetal lung, which might be helpful in improving lung development and regeneration.
Collapse
Affiliation(s)
- Tram Mai Nguyen
- Division Organ Systems, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Johannes van der Merwe
- Division Organ Systems, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Linda Elowsson Rendin
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Jan Deprest
- Division Organ Systems, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Division Woman and Child, Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium.,Institute for Women's Health, University College London, London, United Kingdom
| | | | - Jaan Toelen
- Division Organ Systems, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Division Woman and Child, Department of Paediatrics, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Varma R, Soleas JP, Waddell TK, Karoubi G, McGuigan AP. Current strategies and opportunities to manufacture cells for modeling human lungs. Adv Drug Deliv Rev 2020; 161-162:90-109. [PMID: 32835746 PMCID: PMC7442933 DOI: 10.1016/j.addr.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Chronic lung diseases remain major healthcare burdens, for which the only curative treatment is lung transplantation. In vitro human models are promising platforms for identifying and testing novel compounds to potentially decrease this burden. Directed differentiation of pluripotent stem cells is an important strategy to generate lung cells to create such models. Current lung directed differentiation protocols are limited as they do not 1) recapitulate the diversity of respiratory epithelium, 2) generate consistent or sufficient cell numbers for drug discovery platforms, and 3) establish the histologic tissue-level organization critical for modeling lung function. In this review, we describe how lung development has formed the basis for directed differentiation protocols, and discuss the utility of available protocols for lung epithelial cell generation and drug development. We further highlight tissue engineering strategies for manipulating biophysical signals during directed differentiation such that future protocols can recapitulate both chemical and physical cues present during lung development.
Collapse
Affiliation(s)
- Ratna Varma
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - John P Soleas
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Thomas K Waddell
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Alison P McGuigan
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada.
| |
Collapse
|
8
|
Kothe TB, Royse E, Kemp MW, Usuda H, Saito M, Musk GC, Jobe AH, Hillman NH. Epidermal growth factor receptor inhibition with Gefitinib does not alter lung responses to mechanical ventilation in fetal, preterm lambs. PLoS One 2018; 13:e0200713. [PMID: 30005089 PMCID: PMC6044532 DOI: 10.1371/journal.pone.0200713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/02/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) is important for airway branching and lung maturation. Mechanical ventilation of preterm lambs causes increases in EGFR and EGFR ligand mRNA in the lung. Abnormal EGFR signaling may contribute to the development of bronchopulmonary dysplasia. HYPOTHESIS Inhibition of EGFR signaling will decrease airway epithelial cell proliferation and lung inflammation caused by mechanical ventilation in preterm, fetal sheep. METHODS Following exposure of the fetal head and chest at 123±1 day gestational age and with placental circulation intact, fetal lambs (n = 4-6/group) were randomized to either: 1) Gefitinib 15 mg IV and 1 mg intra-tracheal or 2) saline IV and IT. Lambs were further assigned to 15 minutes of either: a) Injurious mechanical ventilation (MV) or b) Continuous positive airway pressure (CPAP) 5 cmH2O. After the 15 minute intervention, the animals were returned to the uterus and delivered after i) 6 or ii) 24 hours in utero. RESULTS MV caused lung injury and inflammation, increased lung mRNA for cytokines and EGFR ligands, caused airway epithelial cell proliferation, and decreased airway epithelial phosphorylated ERK1/2. Responses to MV were unchanged by Gefitinib. Gefitinib altered expression of EGFR mRNA in the lung and liver of both CPAP and MV animals. Gefitinib decreased the liver SAA3 mRNA response to MV at 6 hours. There were no differences in markers of lung injury or inflammation between CPAP animals receiving Gefitinib or saline. CONCLUSION Inhibition of the EGFR pathway did not alter acute lung inflammation or injury from mechanical ventilation in preterm sheep.
Collapse
Affiliation(s)
- T. Brett Kothe
- Division of Neonatology, Cardinal Glennon Children’s Hospital, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Emily Royse
- Division of Neonatology, Cardinal Glennon Children’s Hospital, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Matthew W. Kemp
- School of Women’s and Infants’ Health, University of Western Australia, Perth, Western Australia, Australia
| | - Haruo Usuda
- School of Women’s and Infants’ Health, University of Western Australia, Perth, Western Australia, Australia
| | - Masatoshi Saito
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Gabrielle C. Musk
- Animal Care Services, University of Western Australia, Perth, Western Australia, Australia
| | - Alan H. Jobe
- School of Women’s and Infants’ Health, University of Western Australia, Perth, Western Australia, Australia
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Noah H. Hillman
- Division of Neonatology, Cardinal Glennon Children’s Hospital, Saint Louis University, Saint Louis, Missouri, United States of America
| |
Collapse
|
9
|
Zhang FY, Yang N, Rao YF, Du WH, Hao HS, Zhao XM, Zhu HB, Liu Y. Profiling of miRNAs in neonatal cloned bovines with collapsed lungs and respiratory distress. Reprod Domest Anim 2018; 53:550-555. [DOI: 10.1111/rda.13144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/28/2017] [Indexed: 01/05/2023]
Affiliation(s)
- FY Zhang
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
- College of Biological Sciences; China Agricultural University; Beijing China
| | - N Yang
- Laboratory of Zoonosis of Liaoning Province; College of Animal Science & Veterinary Medicine; Shenyang Agricultural University; Shenyang Liaoning China
| | - YF Rao
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - WH Du
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - HS Hao
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - XM Zhao
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - HB Zhu
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - Y Liu
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| |
Collapse
|
10
|
Wierzchon CGRS, Padilha G, Rocha NN, Huhle R, Coelho MS, Santos CL, Santos RS, Samary CS, Silvino FRG, Pelosi P, Gama de Abreu M, Rocco PRM, Silva PL. Variability in Tidal Volume Affects Lung and Cardiovascular Function Differentially in a Rat Model of Experimental Emphysema. Front Physiol 2017; 8:1071. [PMID: 29326605 PMCID: PMC5741669 DOI: 10.3389/fphys.2017.01071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
In experimental elastase-induced emphysema, mechanical ventilation with variable tidal volumes (VT) set to 30% coefficient of variation (CV) may result in more homogenous ventilation distribution, but might also impair right heart function. We hypothesized that a different CV setting could improve both lung and cardiovascular function. Therefore, we investigated the effects of different levels of VT variability on cardiorespiratory function, lung histology, and gene expression of biomarkers associated with inflammation, fibrogenesis, epithelial cell damage, and mechanical cell stress in this emphysema model. Wistar rats (n = 35) received repeated intratracheal instillation of porcine pancreatic elastase to induce emphysema. Seven animals were not ventilated and served as controls (NV). Twenty-eight animals were anesthetized and assigned to mechanical ventilation with a VT CV of 0% (BASELINE). After data collection, animals (n = 7/group) were randomly allocated to VT CVs of 0% (VV0); 15% (VV15); 22.5% (VV22.5); or 30% (VV30). In all groups, mean VT was 6 mL/kg and positive end-expiratory pressure was 3 cmH2O. Respiratory system mechanics and cardiac function (by echocardiography) were assessed continuously for 2 h (END). Lung histology and molecular biology were measured post-mortem. VV22.5 and VV30 decreased respiratory system elastance, while VV15 had no effect. VV0, VV15, and VV22.5, but not VV30, increased pulmonary acceleration time to pulmonary ejection time ratio. VV22.5 decreased the central moment of the mean linear intercept (D2 of Lm) while increasing the homogeneity index (1/β) compared to NV (77 ± 8 μm vs. 152 ± 45 μm; 0.85 ± 0.06 vs. 0.66 ± 0.13, p < 0.05 for both). Compared to NV, VV30 was associated with higher interleukin-6 expression. Cytokine-induced neutrophil chemoattractant-1 expression was higher in all groups, except VV22.5, compared to NV. IL-1β expression was lower in VV22.5 and VV30 compared to VV0. IL-10 expression was higher in VV22.5 than NV. Club cell protein 16 expression was higher in VV22.5 than VV0. SP-D expression was higher in VV30 than NV, while SP-C was higher in VV30 and VV22.5 than VV0. In conclusion, VV22.5 improved respiratory system elastance and homogeneity of airspace enlargement, mitigated inflammation and epithelial cell damage, while avoiding impairment of right cardiac function in experimental elastase-induced emphysema.
Collapse
Affiliation(s)
- Caio G R S Wierzchon
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Padilha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nazareth N Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robert Huhle
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Mariana S Coelho
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cintia L Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel S Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cynthia S Samary
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda R G Silvino
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, Ospedale Policlinico San Martino, IRCCS for Oncology, University of Genoa, Genoa, Italy
| | - Marcelo Gama de Abreu
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Liu Y, Rao Y, Jiang X, Zhang F, Huang L, Du W, Hao H, Zhao X, Wang D, Jiang Q, Zhu H, Sun X. Transcriptomic profiling reveals disordered regulation of surfactant homeostasis in neonatal cloned bovines with collapsed lungs and respiratory distress. Mol Reprod Dev 2017; 84:668-674. [DOI: 10.1002/mrd.22836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/08/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Yan Liu
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - Yifan Rao
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - Xiaojing Jiang
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
- College of Animal Science and Technology; Northwest A&F University; Yangling China
| | - Fanyi Zhang
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - Linhua Huang
- College of Animal Science and Technology; Northwest A&F University; Yangling China
| | - Weihua Du
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - Haisheng Hao
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - Xueming Zhao
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - Dong Wang
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - Qiuling Jiang
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - Huabin Zhu
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - Xiuzhu Sun
- College of Animal Science and Technology; Northwest A&F University; Yangling China
| |
Collapse
|
12
|
Benjamin JT, van der Meer R, Im AM, Plosa EJ, Zaynagetdinov R, Burman A, Havrilla ME, Gleaves LA, Polosukhin VV, Deutsch GH, Yanagisawa H, Davidson JM, Prince LS, Young LR, Blackwell TS. Epithelial-Derived Inflammation Disrupts Elastin Assembly and Alters Saccular Stage Lung Development. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1786-1800. [PMID: 27181406 DOI: 10.1016/j.ajpath.2016.02.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/22/2022]
Abstract
The highly orchestrated interactions between the epithelium and mesenchyme required for normal lung development can be disrupted by perinatal inflammation in preterm infants, although the mechanisms are incompletely understood. We used transgenic (inhibitory κB kinase β transactivated) mice that conditionally express an activator of the NF-κB pathway in airway epithelium to investigate the impact of epithelial-derived inflammation during lung development. Epithelial NF-κB activation selectively impaired saccular stage lung development, with a phenotype comprising rapidly progressive distal airspace dilation, impaired gas exchange, and perinatal lethality. Epithelial-derived inflammation resulted in disrupted elastic fiber organization and down-regulation of elastin assembly components, including fibulins 4 and 5, lysyl oxidase like-1, and fibrillin-1. Fibulin-5 expression by saccular stage lung fibroblasts was consistently inhibited by treatment with bronchoalveolar lavage fluid from inhibitory κB kinase β transactivated mice, Escherichia coli lipopolysaccharide, or tracheal aspirates from preterm infants exposed to chorioamnionitis. Expression of a dominant NF-κB inhibitor in fibroblasts restored fibulin-5 expression after lipopolysaccharide treatment, whereas reconstitution of fibulin-5 rescued extracellular elastin assembly by saccular stage lung fibroblasts. Elastin organization was disrupted in saccular stage lungs of preterm infants exposed to systemic inflammation. Our study reveals a critical window for elastin assembly during the saccular stage that is disrupted by inflammatory signaling and could be amenable to interventions that restore elastic fiber assembly in the developing lung.
Collapse
Affiliation(s)
- John T Benjamin
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Riet van der Meer
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Amanda M Im
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Erin J Plosa
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rinat Zaynagetdinov
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ankita Burman
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Madeline E Havrilla
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Linda A Gleaves
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vasiliy V Polosukhin
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gail H Deutsch
- Department of Pathology, Seattle Children's Hospital, Seattle, Washington
| | - Hiromi Yanagisawa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jeffrey M Davidson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lawrence S Prince
- Department of Pediatrics, Division of Neonatology, University of California-San Diego, San Diego, California
| | - Lisa R Young
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pediatrics, Division of Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Timothy S Blackwell
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee; Nashville Veterans Affairs Medical Center, Nashville, Tennessee
| |
Collapse
|
13
|
Sequestration of Vascular Endothelial Growth Factor (VEGF) Induces Late Restrictive Lung Disease. PLoS One 2016; 11:e0148323. [PMID: 26863115 PMCID: PMC4749176 DOI: 10.1371/journal.pone.0148323] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/15/2016] [Indexed: 11/19/2022] Open
Abstract
Rationale Neonatal respiratory distress syndrome is a restrictive lung disease characterized by surfactant deficiency. Decreased vascular endothelial growth factor (VEGF), which demonstrates important roles in angiogenesis and vasculogenesis, has been implicated in the pathogenesis of restrictive lung diseases. Current animal models investigating VEGF in the etiology and outcomes of RDS require premature delivery, hypoxia, anatomically or temporally limited inhibition, or other supplemental interventions. Consequently, little is known about the isolated effects of chronic VEGF inhibition, started at birth, on subsequent developing lung structure and function. Objectives To determine whether inducible, mesenchyme-specific VEGF inhibition in the neonatal mouse lung results in long-term modulation of AECII and whole lung function. Methods Triple transgenic mice expressing the soluble VEGF receptor sFlt-1 specifically in the mesenchyme (Dermo-1/rtTA/sFlt-1) were generated and compared to littermate controls at 3 months to determine the impact of neonatal downregulation of mesenchymal VEGF expression on lung structure, cell composition and function. Reduced tissue VEGF bioavailability has previously been demonstrated with this model. Measurements and Main Results Triple transgenic mice demonstrated restrictive lung pathology. No differences in gross vascular development or protein levels of vascular endothelial markers was noted, but there was a significant decrease in perivascular smooth muscle and type I collagen. Mutants had decreased expression levels of surfactant protein C and hypoxia inducible factor 1-alpha without a difference in number of type II pneumocytes. Conclusions These data show that mesenchyme-specific inhibition of VEGF in neonatal mice results in late restrictive disease, making this transgenic mouse a novel model for future investigations on the consequences of neonatal RDS and potential interventions.
Collapse
|
14
|
Orgeig S, Morrison JL, Daniels CB. Evolution, Development, and Function of the Pulmonary Surfactant System in Normal and Perturbed Environments. Compr Physiol 2015; 6:363-422. [PMID: 26756637 DOI: 10.1002/cphy.c150003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Surfactant lipids and proteins form a surface active film at the air-liquid interface of internal gas exchange organs, including swim bladders and lungs. The system is uniquely positioned to meet both the physical challenges associated with a dynamically changing internal air-liquid interface, and the environmental challenges associated with the foreign pathogens and particles to which the internal surface is exposed. Lungs range from simple, transparent, bag-like units to complex, multilobed, compartmentalized structures. Despite this anatomical variability, the surfactant system is remarkably conserved. Here, we discuss the evolutionary origin of the surfactant system, which likely predates lungs. We describe the evolution of surfactant structure and function in invertebrates and vertebrates. We focus on changes in lipid and protein composition and surfactant function from its antiadhesive and innate immune to its alveolar stability and structural integrity functions. We discuss the biochemical, hormonal, autonomic, and mechanical factors that regulate normal surfactant secretion in mature animals. We present an analysis of the ontogeny of surfactant development among the vertebrates and the contribution of different regulatory mechanisms that control this development. We also discuss environmental (oxygen), hormonal and biochemical (glucocorticoids and glucose) and pollutant (maternal smoking, alcohol, and common "recreational" drugs) effects that impact surfactant development. On the adult surfactant system, we focus on environmental variables including temperature, pressure, and hypoxia that have shaped its evolution and we discuss the resultant biochemical, biophysical, and cellular adaptations. Finally, we discuss the effect of major modern gaseous and particulate pollutants on the lung and surfactant system.
Collapse
Affiliation(s)
- Sandra Orgeig
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Christopher B Daniels
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
15
|
Mechanoreception at the cell membrane: More than the integrins. Arch Biochem Biophys 2015; 586:20-6. [DOI: 10.1016/j.abb.2015.07.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 07/24/2015] [Accepted: 07/26/2015] [Indexed: 01/14/2023]
|
16
|
Lee HS, Lee DG. rIL-10 enhances IL-10 signalling proteins in foetal alveolar type II cells exposed to hyperoxia. J Cell Mol Med 2015; 19:1538-47. [PMID: 26059905 PMCID: PMC4511352 DOI: 10.1111/jcmm.12596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/17/2015] [Indexed: 12/27/2022] Open
Abstract
Although the mechanisms by which hyperoxia promotes bronchopulmonary dysplasia are not fully defined, the inability to maintain optimal interleukin (IL)-10 levels in response to injury secondary to hyperoxia seems to play an important role. We previously defined that hyperoxia decreased IL-10 production and pre-treatment with recombinant IL-10 (rIL-10) protected these cells from injury. The objectives of these studies were to investigate the responses of IL-10 receptors (IL-10Rs) and IL-10 signalling proteins (IL-10SPs) in hyperoxic foetal alveolar type II cells (FATIICs) with and without rIL-10. FATIICs were isolated on embryonic day 19 and exposed to 65%-oxygen for 24 hrs. Cells in room air were used as controls. IL-10Rs protein and mRNA were analysed by ELISA and qRT-PCR, respectively. IL-10SPs were assessed by Western blot using phospho-specific antibodies. IL-10Rs protein and mRNA increased significantly in FATIICs during hyperoxia, but JAK1 and TYK2 phosphorylation showed the opposite pattern. To evaluate the impact of IL-8 (shown previously to be increased) and the role of IL-10Rs, IL-10SPs were reanalysed in IL-8-added normoxic cells and in the IL-10Rs' siRNA-treated hyperoxic cells. The IL-10Rs' siRNA-treated hyperoxic cells and IL-8-added normoxic cells showed the same pattern in IL10SPs with the hyproxic cells. And pre-treatment with rIL-10 prior to hyperoxia exposure increased phosphorylated IL-10SPs, compared to the rIL-10-untreated hyperoxic cells. These studies suggest that JAK1 and TYK2 were significantly suppressed during hyperoxia, where IL-8 may play a role, and rIL-10 may have an effect on reverting the suppressed JAK1 and TYK2 in FATIICs exposed to hyperoxia.
Collapse
Affiliation(s)
- Hyeon-Soo Lee
- Department of Pediatrics, Dongtan Jeil Women and Infants’ HospitalWhasung, South Korea
- Institute of Medical Sciences, Kangwon National University School of MedicineChuncheon, Kangwon, South Korea
| | - Dong Gun Lee
- Medical and Bio-Materials Research Center, Kangwon National University School of MedicineChuncheon, Kangwon, South Korea
| |
Collapse
|
17
|
Morrissey JB, Cheng RY, Davoudi S, Gilbert PM. Biomechanical Origins of Muscle Stem Cell Signal Transduction. J Mol Biol 2015; 428:1441-54. [PMID: 26004541 DOI: 10.1016/j.jmb.2015.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/03/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
Skeletal muscle, the most abundant and widespread tissue in the human body, contracts upon receiving electrochemical signals from the nervous system to support essential functions such as thermoregulation, limb movement, blinking, swallowing and breathing. Reconstruction of adult muscle tissue relies on a pool of mononucleate, resident muscle stem cells, known as "satellite cells", expressing the paired-box transcription factor Pax7 necessary for their specification during embryonic development and long-term maintenance during adult life. Satellite cells are located around the myofibres in a niche at the interface of the basal lamina and the host fibre plasma membrane (i.e., sarcolemma), at a very low frequency. Upon damage to the myofibres, quiescent satellite cells are activated and give rise to a population of transient amplifying myogenic progenitor cells, which eventually exit the cell cycle permanently and fuse to form new myofibres and regenerate the tissue. A subpopulation of satellite cells self-renew and repopulate the niche, poised to respond to future demands. Harnessing the potential of satellite cells relies on a complete understanding of the molecular mechanisms guiding their regulation in vivo. Over the past several decades, studies revealed many signal transduction pathways responsible for satellite cell fate decisions, but the niche cues driving the activation and silencing of these pathways are less clear. Here we explore the scintillating possibility that considering the dynamic changes in the biophysical properties of the skeletal muscle, namely stiffness, and the stretch and shear forces to which a myofibre can be subjected to may provide missing information necessary to gain a full understanding of satellite cell niche regulation.
Collapse
Affiliation(s)
- James B Morrissey
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1
| | - Richard Y Cheng
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1
| | - Sadegh Davoudi
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1
| | - Penney M Gilbert
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada M5S3G9; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada M5S3E1.
| |
Collapse
|
18
|
Plosa EJ, Young LR, Gulleman PM, Polosukhin VV, Zaynagetdinov R, Benjamin JT, Im AM, van der Meer R, Gleaves LA, Bulus N, Han W, Prince LS, Blackwell TS, Zent R. Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Development 2014; 141:4751-62. [PMID: 25395457 PMCID: PMC4299273 DOI: 10.1242/dev.117200] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 10/09/2014] [Indexed: 11/20/2022]
Abstract
Integrin-dependent interactions between cells and extracellular matrix regulate lung development; however, specific roles for β1-containing integrins in individual cell types, including epithelial cells, remain incompletely understood. In this study, the functional importance of β1 integrin in lung epithelium during mouse lung development was investigated by deleting the integrin from E10.5 onwards using surfactant protein C promoter-driven Cre. These mutant mice appeared normal at birth but failed to gain weight appropriately and died by 4 months of age with severe hypoxemia. Defects in airway branching morphogenesis in association with impaired epithelial cell adhesion and migration, as well as alveolarization defects and persistent macrophage-mediated inflammation were identified. Using an inducible system to delete β1 integrin after completion of airway branching, we showed that alveolarization defects, characterized by disrupted secondary septation, abnormal alveolar epithelial cell differentiation, excessive collagen I and elastin deposition, and hypercellularity of the mesenchyme occurred independently of airway branching defects. By depleting macrophages using liposomal clodronate, we found that alveolarization defects were secondary to persistent alveolar inflammation. β1 integrin-deficient alveolar epithelial cells produced excessive monocyte chemoattractant protein 1 and reactive oxygen species, suggesting a direct role for β1 integrin in regulating alveolar homeostasis. Taken together, these studies define distinct functions of epithelial β1 integrin during both early and late lung development that affect airway branching morphogenesis, epithelial cell differentiation, alveolar septation and regulation of alveolar homeostasis.
Collapse
Affiliation(s)
- Erin J Plosa
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lisa R Young
- Department of Pediatrics, Division of Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Peter M Gulleman
- Department of Pediatrics, Division of Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vasiliy V Polosukhin
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rinat Zaynagetdinov
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John T Benjamin
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amanda M Im
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Riet van der Meer
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Linda A Gleaves
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nada Bulus
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wei Han
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lawrence S Prince
- Department of Pediatrics, Division of Neonatology, University of California San Diego, San Diego, CA 92103, USA
| | - Timothy S Blackwell
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA Nashville Veterans Affairs Medical Center, Nashville, TN 37232, USA
| | - Roy Zent
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA Nashville Veterans Affairs Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
19
|
Lee MK, Smith SM, Murray S, Pham LD, Minoo P, Nielsen HC. Dihydrotestosterone potentiates EGF-induced ERK activation by inducing SRC in fetal lung fibroblasts. Am J Respir Cell Mol Biol 2014; 51:114-24. [PMID: 24484548 DOI: 10.1165/rcmb.2012-0179oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lung maturation is regulated by interactions between mesenchymal and epithelial cells, and is delayed by androgens. Fibroblast-Type II cell communications are dependent on extracellular signal-regulated kinases (ERK) 1/2 activation by the ErbB receptor ligands epidermal growth factor (EGF), transforming growth factor (TGF)-α, and neuregulin (Nrg). In other tissues, dihydrotestosterone (DHT) has been shown to activate SRC by a novel nontranscriptional mechanism, which phosphorylates EGF receptors to potentiate EGF-induced ERK1/2 activation. This study sought to determine if DHT potentiates EGFR signaling by a nontranscriptional mechanism. Embryonic day (E)17 fetal lung cells were isolated from dams treated with or without DHT since E12. Cells were exposed to 30 ng/ml DHT for periods of 30 minutes to 3 days before being stimulated with 100 ng/ml EGF, TGF-α, or Nrg for up to 30 minutes. Lysates were immunoblotted for ErbB and SRC pathway signaling intermediates. DHT increased ERK1/2 activation by EGF, TGF-α, and Nrg in fibroblasts and Type II cells. Characterization in fibroblasts showed that potentiation of the EGF pathway was significant after 60 minutes of DHT exposure and persisted in the presence of the translational inhibitor cycloheximide. SRC and EGF receptor phosphorylation was increased by DHT, as was EGF-induced SHC1 phosphorylation and subsequent association with GRB2. Finally, SRC silencing, SRC inhibition with PP2, and overexpression of a dominant-negative SRC each prevented DHT from increasing EGF-induced ERK1/2 phosphorylation. These results suggest that DHT activates SRC to potentiate the signaling pathway leading from the EGF receptor to ERK activation in primary fetal lung fibroblasts.
Collapse
Affiliation(s)
- Matt K Lee
- 1 Division of Neonatal Medicine, Department of Pediatrics, University of Southern California, Los Angeles, California; and
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Mechanical ventilation (MV) is, by definition, the application of external forces to the lungs. Depending on their magnitude, these forces can cause a continuum of pathophysiological alterations ranging from the stimulation of inflammation to the disruption of cell-cell contacts and cell membranes. These side effects of MV are particularly relevant for patients with inhomogeneously injured lungs such as in acute lung injury (ALI). These patients require supraphysiological ventilation pressures to guarantee even the most modest gas exchange. In this situation, ventilation causes additional strain by overdistension of the yet non-injured region, and additional stress that forms because of the interdependence between intact and atelectatic areas. Cells are equipped with elaborate mechanotransduction machineries that respond to strain and stress by the activation of inflammation and repair mechanisms. Inflammation is the fundamental response of the host to external assaults, be they of mechanical or of microbial origin and can, if excessive, injure the parenchymal tissue leading to ALI. Here, we will discuss the forces generated by MV and how they may injure the lungs mechanically and through inflammation. We will give an overview of the mechanotransduction and how it leads to inflammation and review studies demonstrating that ventilator-induced lung injury can be prevented by blocking pathways of mechanotransduction or inflammation.
Collapse
Affiliation(s)
- Ulrike Uhlig
- Department of Pharmacology & Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
21
|
Wang Y, Huang Z, Nayak PS, Matthews BD, Warburton D, Shi W, Sanchez-Esteban J. Strain-induced differentiation of fetal type II epithelial cells is mediated via the integrin α6β1-ADAM17/tumor necrosis factor-α-converting enzyme (TACE) signaling pathway. J Biol Chem 2013; 288:25646-25657. [PMID: 23888051 DOI: 10.1074/jbc.m113.473777] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mechanical forces are critical for normal fetal lung development. However, the mechanisms regulating this process are not well-characterized. We hypothesized that strain-induced release of HB-EGF and TGF-α is mediated via integrin-ADAM17/TACE interactions. Employing an in vitro system to simulate mechanical forces in fetal lung development, we showed that mechanical strain of fetal epithelial cells actives TACE, releases HB-EGF and TGF-α, and promotes differentiation. In contrast, in samples incubated with the TACE inhibitor IC-3 or in cells isolated from TACE knock-out mice, mechanical strain did not release ligands or promote cell differentiation, which were both rescued after transfection of ADAM17. Cell adhesion assay and co-immunoprecipitation experiments in wild-type and TACE knock-out cells using several TACE constructs demonstrated not only that integrins α6 and β1 bind to TACE via the disintegrin domain but also that mechanical strain enhances these interactions. Furthermore, force applied to these integrin receptors by magnetic beads activated TACE and shed HB-EGF and TGF-α. The contribution of integrins α6 and β1 to differentiation of fetal epithelial cells by strain was demonstrated by blocking their binding site with specific antibodies and by culturing the cells on membranes coated with anti-integrin α6 and β1 antibodies. In conclusion, mechanical strain releases HB-EGF and TGF-α and promotes fetal type II cell differentiation via α6β1 integrin-ADAM17/TACE signaling pathway. These investigations provide novel mechanistic information on how mechanical forces promote fetal lung development and specifically differentiation of epithelial cells. This information could be also relevant to other tissues exposed to mechanical forces.
Collapse
Affiliation(s)
- Yulian Wang
- From the Department of Pediatrics, Women & Infants Hospital of Rhode Island and the Warren Alpert Medical School, Brown University, Providence, Rhode Island 02905
| | - Zheping Huang
- From the Department of Pediatrics, Women & Infants Hospital of Rhode Island and the Warren Alpert Medical School, Brown University, Providence, Rhode Island 02905
| | - Pritha S Nayak
- From the Department of Pediatrics, Women & Infants Hospital of Rhode Island and the Warren Alpert Medical School, Brown University, Providence, Rhode Island 02905
| | - Benjamin D Matthews
- the Vascular Biology Program, Departments of Medicine, Pathology, and Surgery, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts 02115, and
| | - David Warburton
- the Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027
| | - Wei Shi
- the Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027
| | - Juan Sanchez-Esteban
- From the Department of Pediatrics, Women & Infants Hospital of Rhode Island and the Warren Alpert Medical School, Brown University, Providence, Rhode Island 02905,.
| |
Collapse
|
22
|
Ohba T, Wada H, Yoshino I, Yoshida S, Tagawa T, Shoji F, Yamazaki K, Maehara Y. Increase of bone morphogenetic protein-7 expressing pulmonary resident cells in pneumonectomized rats. Surg Today 2013; 44:324-31. [PMID: 23640479 DOI: 10.1007/s00595-013-0604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 12/09/2012] [Indexed: 11/28/2022]
Abstract
PURPOSE Compensatory lung growth (CLG) is recognized in rodents subjected to major pulmonary resection; however, the source of cells constituting regenerated tissues during the CLG is still unknown. We investigated the differentiation of lung resident cells and the participation of bone marrow (BM)-derived cells in the remnant lung of pneumonectomized rats. METHODS After left pneumonectomy, the right remnant lung of Wistar rats was subjected to morphologic and molecular experiments at several time points. We studied the expression of bone morphogenic protein 7 (BMP-7), an accelerator of epithelial differentiation, based on the gene expression profile data of the remnant lung. Next, we evaluated the presence of GFP-positive cells in the remnant lung of Wistar rats that had received BM transplantation from green fluorescent protein (GFP) gene-transgenic Wistar rats prior to left pneumonectomy. RESULTS We observed progression of emphysematous change, modulation of gene expression profile, and proliferating cellular nuclear antigen-positive cells in the alveoli of the remnant lungs. BMP-7 protein positive cells were detected in the alveolar septa, which increased significantly over time with the progression of emphysematous change. No bone marrow-derived cells were detected in the right remnant lung of the GFP-BM transferred rats by fluorescence microscopy, immunohistochemistry, or polymerase chain reaction at any time. CONCLUSION Lung resident cells appear to contribute to CLG, possibly via a trans-differentiation pathway.
Collapse
Affiliation(s)
- Taro Ohba
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
PURPOSE Hyperoxia has the chief biological effect of cell death. We have previously reported that cathepsin B (CB) is related to fetal alveolar type II cell (FATIIC) death and pretreatment of recombinant IL-10 (rIL-10) attenuates type II cell death during 65%-hyperoixa. In this study, we investigated what kinds of changes of CB expression are induced in FATIICs at different concentrations of hyperoxia (65%- and 85%-hyperoxia) and whether pretreatment with rIL-10 reduces the expression of CB in FATIICs during hyperoxia. MATERIALS AND METHODS Isolated embryonic day 19 fetal rat alveolar type II cells were cultured and exposed to 65%- and 85%-hyperoxia for 12 h and 24 h. Cells in room air were used as controls. Cytotoxicity was assessed by lactate dehydrogenase (LDH) released into the supernatant. Expression of CB was analyzed by fluorescence-based assay upon cell lysis and western blotting, and LDH-release was re-analyzed after preincubation of cathepsin B-inhibitor (CBI). IL-10 production was analyzed by ELISA, and LDH-release was re-assessed after preincubation with rIL-10 and CB expression was re-analyzed by western blotting and real-time PCR. RESULTS LDH-release and CB expression in FATIICs were enhanced significantly in an oxygen-concentration-dependent manner during hyperoxia, whereas caspase-3 was not activated. Preincubation of FATIICs with CBI significantly reduced LDH-release during hyperoxia. IL-10-release decreased in an oxygen-concentration-dependent fashion, and preincubation of the cells with rIL-10 significantly reduced cellular necrosis and expression of CB in FATIICs which were exposed to 65%- and 85%-hyperoxia. CONCLUSION Our study suggests that CB is enhanced in an oxygen- concentration-dependent manner, and IL-10 has an inhibitory effect on CB expression in FATIICs during hyperoxia.
Collapse
Affiliation(s)
- Hyeon-Soo Lee
- Department of Pediatrics, Kangwon National University Hospital, Kangwon National University School of Medicine, 156 Baengnyeong-ro, Chuncheon 200-722, Korea.
| | | |
Collapse
|
24
|
Lee HS. Effect of Short-term Exposure of Different Concentrations of Hyperoxia on Fetal Alveolar Type II Cell Death. NEONATAL MEDICINE 2013. [DOI: 10.5385/nm.2013.20.2.199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Hyeon-Soo Lee
- Department of Pediatrics, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
- Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon, Korea
| |
Collapse
|
25
|
Huang Z, Wang Y, Nayak PS, Dammann CE, Sanchez-Esteban J. Stretch-induced fetal type II cell differentiation is mediated via ErbB1-ErbB4 interactions. J Biol Chem 2012; 287:18091-102. [PMID: 22493501 DOI: 10.1074/jbc.m111.313163] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stretch-induced differentiation of lung fetal type II epithelial cells is mediated through EGFR (ErbB1) via release of HB-EGF and TGF-α ligands. Employing an EGFR knock-out mice model, we further investigated the role of the ErbB family of receptors in mechanotranduction during lung development. Deletion of EGFR prevented endogenous and mechanical stretch-induced type II cell differentiation via the ERK pathway, which was rescued by overexpression of a constitutively active MEK. Interestingly, the expression of ErbB4, the only ErbB receptor that EGFR co-precipitates in wild-type cells, was decreased in EGFR-deficient type II cells. Similar to EGFR, ErbB4 was activated by stretch and participated in ERK phosphorylation and type II cell differentiation. However, neuregulin (NRG) or stretch-induced ErbB4 activation were blunted in EGFR-deficient cells and not rescued after ErbB4 overexpression, suggesting that induction of ErbB4 phosphorylation is EGFR-dependent. Finally, we addressed how shedding of ligands is regulated by EGFR. In knock-out cells, TGF-α, a ligand for EGFR, was not released by stretch, while HB-EGF, a ligand for EGFR and ErbB4, was shed by stretch although to a lower magnitude than in normal cells. Release of these ligands was inhibited by blocking EGFR and ERK pathway. In conclusion, our studies show that EGFR and ErbB4 regulate stretch-induced type II cell differentiation via ERK pathway. Interactions between these two receptors are important for mechanical signals in lung fetal type II cells. These studies provide novel insights into the cell signaling mechanisms regulating ErbB family receptors in lung cell differentiation.
Collapse
Affiliation(s)
- Zheping Huang
- Department of Pediatrics, Women & Infants Hospital of Rhode Island and the Warren Alpert Medical School of Brown University, Providence, Rhode Island 02905, USA
| | | | | | | | | |
Collapse
|
26
|
[Relationship of epidermal growth factor receptor in lung development]. YI CHUAN = HEREDITAS 2012; 34:27-32. [PMID: 22306870 DOI: 10.3724/sp.j.1005.2012.00027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The epidermal growth factor receptor (EGFR), a transmembrane protein receptor, is a member of ErbB family with signal-transducing tyrosine kinase activity. After combined with the ligand, EGFR homologous or heterologous dimers are formed to induce intracellular signal transduction, activate downstream signal transduction pathways, and then produce a series of biological effects. RAF/MEK/RAS/ERK pathway is relevant to cell proliferation, differentiation and apoptosis; while PDK1/AKT /PI3K pathway is involved in cell migration and adhesion. EGFR can promote the maturity of pulmonary type II epithelial cells and the synthesis and secretion of pulmonary surfactant. EGFR shows the effect on mammal lungs in a time-space and dose-dependent manner. The down-regulated expression of it will lead to immature lung development, while the over-expression can promote the cell proliferation, invasion and metastasis of the lung cancer cells. This paper reviewed advances in the study for EGFR and its signal pathway, as well as the relationship among EGFR, atelectasis and lung cancer.
Collapse
|
27
|
Schmitt S, Hendricks P, Weir J, Somasundaram R, Sittampalam GS, Nirmalanandhan VS. Stretching mechanotransduction from the lung to the lab: approaches and physiological relevance in drug discovery. Assay Drug Dev Technol 2012; 10:137-47. [PMID: 22352900 DOI: 10.1089/adt.2011.418] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent years have shown a great deal of interest and research into the understanding of the biological and physiological roles of mechanical forces on cellular behavior. Despite these reports, in vitro screening of new molecular entities for lung ailments is still performed in static cell culture models. Failure to incorporate the effects of mechanical forces during early stages of screening could significantly reduce the success rate of drug candidates in the highly expensive clinical phases of the drug discovery pipeline. The objective of this review is to expand our current understanding of lung mechanotransduction and extend its applicability to cellular physiology and new drug screening paradigms. This review covers early in vivo studies and the importance of mechanical forces in normal lung development, use of different types of bioreactors that simulate in vivo movements in a controlled in vitro cell culture environment, and recent research using dynamic cell culture models. The cells in lungs are subjected to constant stretching (mechanical forces) in regular cycles due to involuntary expansion and contraction during respiration. The effects of stretch on normal and abnormal (disease) lung cells under pathological conditions are discussed. The potential benefits of extending dynamic cell culture models (screening in the presence of forces) and the associated challenges are also discussed in this review. Based on this review, the authors advocate the development of dynamic high throughput screening models that could facilitate the rapid translation of in vitro biology to animal models and clinical efficacy. These concepts are translatable to cardiovascular, digestive, and musculoskeletal tissues and in vitro cell systems employed routinely in drug-screening applications.
Collapse
Affiliation(s)
- Sarah Schmitt
- School of Engineering, The University of Kansas, Lawrence, Kansas 66160, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Wang Y, Huang Z, Nayak PS, Sanchez-Esteban J. An experimental system to study mechanotransduction in fetal lung cells. J Vis Exp 2012:3543. [PMID: 22371001 DOI: 10.3791/3543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mechanical forces generated in utero by repetitive breathing-like movements and by fluid distension are critical for normal lung development. A key component of lung development is the differentiation of alveolar type II epithelial cells, the major source of pulmonary surfactant. These cells also participate in fluid homeostasis in the alveolar lumen, host defense, and injury repair. In addition, distal lung parenchyma cells can be directly exposed to exaggerated stretch during mechanical ventilation after birth. However, the precise molecular and cellular mechanisms by which lung cells sense mechanical stimuli to influence lung development and to promote lung injury are not completely understood. Here, we provide a simple and high purity method to isolate type II cells and fibroblasts from rodent fetal lungs. Then, we describe an in vitro system, The Flexcell Strain Unit, to provide mechanical stimulation to fetal cells, simulating mechanical forces in fetal lung development or lung injury. This experimental system provides an excellent tool to investigate molecular and cellular mechanisms in fetal lung cells exposed to stretch. Using this approach, our laboratory has identified several receptors and signaling proteins that participate in mechanotransduction in fetal lung development and lung injury.
Collapse
Affiliation(s)
- Yulian Wang
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University
| | | | | | | |
Collapse
|
29
|
Lee HS, Kim CK. Cathepsin B is activated as an executive protease in fetal rat alveolar type II cells exposed to hyperoxia. Exp Mol Med 2011; 43:223-9. [PMID: 21415591 DOI: 10.3858/emm.2011.43.4.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alveolar type II cells are main target of hyperoxia-induced lung injury. The authors investigated whether lysosomal protease, cathepsin B (CB), is activated in fetal alveolar type II cells in the transitional period from the canalicular to saccular stages during 65%-hyperoxia and whether CB is related to fetal alveolar type II cell (FATIIC) death secondary to hyperoxia. FATIICs were isolated from embryonic day 19 rats and exposed to 65%-oxygen for 24 h and 36 h. The cells exposed to room air were used as controls. Cell cytotoxicity was assessed by lactate dehydrogenase-release and flow cytometry, and apoptosis was analyzed by TUNEL assay and flow cytometry. CB activity was assessed by colorimetric assay, qRT-PCR and western blots. 65%-hyperoxia induced FATIIC death via necrosis and apoptosis. Interestingly, caspase-3 activities were not enhanced in FATIICs during 65%-hyperoxia, whereas CB activities were greatly increased during 65%-hyperoxia in a time-dependent manner, and similar findings were observed with qRT-PCR and western blots. In addition, the preincubation of CB inhibitor prior to 65%-hyperoxia reduced FATIIC death significantly. Our studies suggest that CB activation secondary to hyperoxia might have a relevant role in executing the cell death program in FATIICs during the acute stage of 65%-hyperoxia.
Collapse
Affiliation(s)
- Hyeon-Soo Lee
- Department of Pediatrics, Kangwon National University Hospital, Kangwon Naitonal University School of Medicine, Chuncheon, Korea.
| | | |
Collapse
|
30
|
Hawwa RL, Hokenson MA, Wang Y, Huang Z, Sharma S, Sanchez-Esteban J. Differential expression of MMP-2 and -9 and their inhibitors in fetal lung cells exposed to mechanical stretch: regulation by IL-10. Lung 2011; 189:341-9. [PMID: 21701831 PMCID: PMC3194765 DOI: 10.1007/s00408-011-9310-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/06/2011] [Indexed: 01/08/2023]
Abstract
STUDY OBJECTIVES Abnormal remodeling of the extracellular matrix (ECM) has been implicated in the pathogenesis of bronchopulmonary dysplasia. However, the contribution of lung parenchymal cells to ECM remodeling after mechanical injury is not well defined. The objective of these studies was to investigate in vitro the release of MMP-2 and -9 and their respective inhibitors TIMP-2 and -1, and to explore potential regulation by IL-10. DESIGN Mouse fetal epithelial cells and fibroblasts isolated on E18-19 of gestation were exposed to 20% cyclic stretch to simulate lung injury. MMP-2 and MMP-9 activity were investigated by zymography and ELISA. TIMP-1 and TIMP-2 abundance were analyzed by Western blot. RESULTS We found that mechanical stretch increased MMP-2 and decreased TIMP-2 in fibroblasts, indicating that excessive stretch promotes MMP-2 activation, expressed as the MMP-2/TIMP-2 ratio. Incubation with IL-10 did not change MMP-2 activity. In contrast, mechanical stretch of epithelial cells decreased MMP-9 activity and the MMP-9/TIMP-1 ratio by 60-70%. When IL-10 was added, mechanical stretch increased the MMP-9/TIMP-1 ratio by 50%. CONCLUSIONS We conclude that mechanical stretch differentially affects MMP-2/9 and their inhibitors in fetal lung cells. IL-10 modulates MMP-9 activity through a combination of effects on MMP-9 and TIMP-1 levels.
Collapse
Affiliation(s)
- Renda L. Hawwa
- Department of Pediatrics, Women & Infants Hospital of Rhode Island and the Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905, USA
| | - Michael A. Hokenson
- Department of Pediatrics, Women & Infants Hospital of Rhode Island and the Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905, USA
| | - Yulian Wang
- Department of Pediatrics, Women & Infants Hospital of Rhode Island and the Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905, USA
| | - Zheping Huang
- Department of Pediatrics, Women & Infants Hospital of Rhode Island and the Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905, USA
| | - Surendra Sharma
- Department of Pediatrics, Women & Infants Hospital of Rhode Island and the Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905, USA
| | - Juan Sanchez-Esteban
- Department of Pediatrics, Women & Infants Hospital of Rhode Island and the Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905, USA
| |
Collapse
|
31
|
Hendricks P, Diaz FJ, Schmitt S, Sitta Sittampalam G, Nirmalanandhan VS. Effects of respiratory mechanical forces on the pharmacological response of lung cancer cells to chemotherapeutic agents. Fundam Clin Pharmacol 2011; 26:632-43. [PMID: 21718364 DOI: 10.1111/j.1472-8206.2011.00964.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In vitro screening of chemotherapeutic agents is routinely carried out in static monolayer cell cultures. However, drugs administered to patients act in the presence of various microenvironments in vivo. For example, in lung tumors, mechanical forces are constantly present and do affect the physiological response of the lung tissue to a variety of therapeutic agents. We hypothesized that mechanical forces may affect the response of lung tumors to chemotherapeutic agents and studied the effects under simulated conditions. First, we examined the effects of simulated forces that approximate normal respiration on the proliferation and morphology of NCI-H358 and A549 cell lines. Then, we studied the effects of the simulated forces on the ability of Paclitaxel, Doxorubicin, Cisplatin, Zactima and an experimental drug to induce cytotoxicity in both cell lines. Cells were treated with the drugs in the presence or absence of simulated forces (20% maximum strain and 15 cycles/minute) that approximate human lung expansion and contraction. Cell proliferation and the effectiveness of the drugs were assessed. Using a standard exponential cell growth model, it was determined that mechanical forces significantly reduced the proliferation of both cell lines. Interestingly, forces also significantly lowered the effectiveness of all drugs except Zactima in A549 cells, while in NCI-H358 cells, Zactima was the only drug that demonstrated an increase in effectiveness owing to applied forces. Our results demonstrate that mechanical forces have significant impact on cell survival and chemotherapeutic efficacy and may be of significance in engineering improved screening assays for antitumor drug discovery.
Collapse
Affiliation(s)
- Peter Hendricks
- The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
32
|
Wright CJ, Kirpalani H. Targeting inflammation to prevent bronchopulmonary dysplasia: can new insights be translated into therapies? Pediatrics 2011; 128:111-26. [PMID: 21646264 PMCID: PMC3124103 DOI: 10.1542/peds.2010-3875] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) frequently complicates preterm birth and leads to significant long-term morbidity. Unfortunately, few therapies are known to effectively prevent or treat BPD. Ongoing research has been focusing on potential therapies to limit inflammation in the preterm lung. In this review we highlight recent bench and clinical research aimed at understanding the role of inflammation in the pathogenesis of BPD. We also critically assess currently used therapies and promising developments in the field.
Collapse
Affiliation(s)
- Clyde J. Wright
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; ,Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; and
| | - Haresh Kirpalani
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; ,Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; and ,Department of Clinical Epidemiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
33
|
Lee HS, Kim CK. Effect of recombinant IL-10 on cultured fetal rat alveolar type II cells exposed to 65%-hyperoxia. Respir Res 2011; 12:68. [PMID: 21609457 PMCID: PMC3114733 DOI: 10.1186/1465-9921-12-68] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/24/2011] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Hyperoxia plays an important role in the genesis of lung injury in preterm infants. Although alveolar type II cells are the main target of hyperoxic lung injury, the exact mechanisms whereby hyperoxia on fetal alveolar type II cells contributes to the genesis of lung injury are not fully defined, and there have been no specific measures for protection of fetal alveolar type II cells. OBJECTIVE The aim of this study was to investigate (a) cell death response and inflammatory response in fetal alveolar type II cells in the transitional period from canalicular to saccular stages during 65%-hyperoxia and (b) whether the injurious stimulus is promoted by creating an imbalance between pro- and anti-inflammatory cytokines and (c) whether treatment with an anti-inflammatory cytokine may be effective for protection of fetal alveolar type II cells from injury secondary to 65%-hyperoxia. METHODS Fetal alveolar type II cells were isolated on embryonic day 19 and exposed to 65%-oxygen for 24 h and 36 h. Cells in room air were used as controls. Cellular necrosis was assessed by lactate dehydrogenase-release and flow cytometry, and apoptosis was analyzed by TUNEL assay and flow cytometry, and cell proliferation was studied by BrdU incorporation. Release of cytokines including VEGF was analyzed by ELISA, and their gene expressions were investigated by qRT-PCR. RESULTS 65%-hyperoxia increased cellular necrosis, whereas it decreased cell proliferation in a time-dependent manner compared to controls. 65%-hyperoxia stimulated IL-8-release in a time-dependent fashion, whereas the anti-inflammatory cytokine, IL-10, showed an opposite response. 65%-hyperoxia induced a significant decrease of VEGF-release compared to controls, and similar findings were observed on IL-8/IL-10/VEGF genes expression. Preincubation of recombinant IL-10 prior to 65%-hyperoxia decreased cellular necrosis and IL-8-release, and increased VEGF-release and cell proliferation significantly compared to hyperoxic cells without IL-10. CONCLUSIONS The present study provides an experimental evidence that IL-10 may play a potential role in protection of fetal alveolar type II cells from injury induced by 65%-hyperoxia.
Collapse
Affiliation(s)
- Hyeon-Soo Lee
- Department of Pediatrics, Kangwon National University Hospital, Kangwon National University School of Medicine, 17-1 Hyoja3-dong, Chuncheon, Kangwon 200-947, South Korea
- Institute of Medical Sciences, Kangwon National University School of Medicine, 17-1 Hyoja3-dong, Chuncheon, Kangwon 200-947, South Korea
| | - Chun-Ki Kim
- Medical and Bio-Materials Research Center, Kangwon National University School of Medicine, 192-1 Hyoja2-dong, Chuncheon, Kangwon 200-701, South Korea
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, 192-1 Hyoja2-dong, Chuncheon, Kangwon 200-701, South Korea
| |
Collapse
|
34
|
Makanya AN, Hlushchuk R, Djonov V. The pulmonary blood-gas barrier in the avian embryo: inauguration, development and refinement. Respir Physiol Neurobiol 2011; 178:30-8. [PMID: 21477666 DOI: 10.1016/j.resp.2011.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
In vertebrates, efficient gas exchange depends primarily on establishment of a thin blood-gas barrier (BGB). The primordial air conduits of the developing avian lung are lined with a cuboidal epithelium that is ultimately converted to a squamous one that participates in the formation of the BGB. In the early stages, cells form intraluminal protrusions (aposomes) then transcellular double membranes separating the aposome from the basal part of the cell establish, unzip and sever the aposome from the cell. Additionally, better endowed cells squeeze out adjacent cells or such cells constrict spontaneously thus extruding the squeezed out aposome. Formation of vesicles or vacuoles below the aposome and fusion of such cavities with their neighboring cognates results in severing of the aposome. Augmentation of cavities and their subsequent fusion with the apical plasma membranes results in formation of numerous microfolds separating concavities on the apical part of the cell. Abscission of such microfolds results in a smooth squamous epithelium just before hatching.
Collapse
Affiliation(s)
- A N Makanya
- Department of Veterinary Anatomy & Physiology, University of Nairobi, Nairobi, Kenya.
| | | | | |
Collapse
|
35
|
Hillman NH, Polglase GR, Jane Pillow J, Saito M, Kallapur SG, Jobe AH. Inflammation and lung maturation from stretch injury in preterm fetal sheep. Am J Physiol Lung Cell Mol Physiol 2011; 300:L232-41. [PMID: 21131401 PMCID: PMC3043810 DOI: 10.1152/ajplung.00294.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical ventilation is a risk factor for the development of bronchopulmonary dysplasia in premature infants. Fifteen minutes of high tidal volume (V(T)) ventilation induces inflammatory cytokine expression in small airways and lung parenchyma within 3 h. Our objective was to describe the temporal progression of cytokine and maturation responses to lung injury in fetal sheep exposed to a defined 15-min stretch injury. After maternal anesthesia and hysterotomy, 129-day gestation fetal lambs (n = 7-8/group) had the head and chest exteriorized. Each fetus was intubated, and airway fluid was gently removed. While placental support was maintained, the fetus received ventilation with an escalating V(T) to 15 ml/kg without positive end-expiratory pressure (PEEP) for 15 min using heated, humidified 100% nitrogen. The fetus was then returned to the uterus for 1, 6, or 24 h. Control lambs received a PEEP of 2 cmH(2)O for 15 min. Tissue samples from the lung and systemic organs were evaluated. Stretch injury increased the early response gene Egr-1 and increased expression of pro- and anti-inflammatory cytokines within 1 h. The injury induced granulocyte/macrophage colony-stimulating factor mRNA and matured monocytes to alveolar macrophages by 24 h. The mRNA for the surfactant proteins A, B, and C increased in the lungs by 24 h. The airway epithelium demonstrated dynamic changes in heat shock protein 70 (HSP70) over time. Serum cortisol levels did not increase, and induction of systemic inflammation was minimal. We conclude that a brief period of high V(T) ventilation causes a proinflammatory cascade, a maturation of lung monocytic cells, and an induction of surfactant protein mRNA.
Collapse
Affiliation(s)
- Noah H. Hillman
- 1Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio; and
| | - Graeme R. Polglase
- 2School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - J. Jane Pillow
- 2School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - Masatoshi Saito
- 2School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - Suhas G. Kallapur
- 1Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio; and ,2School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| | - Alan H. Jobe
- 1Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio; and ,2School of Women's and Infants' Health, The University of Western Australia, Perth, Australia
| |
Collapse
|
36
|
Nikolova S, Guenther A, Savai R, Weissmann N, Ghofrani HA, Konigshoff M, Eickelberg O, Klepetko W, Voswinckel R, Seeger W, Grimminger F, Schermuly RT, Pullamsetti SS. Phosphodiesterase 6 subunits are expressed and altered in idiopathic pulmonary fibrosis. Respir Res 2010; 11:146. [PMID: 20979602 PMCID: PMC2988012 DOI: 10.1186/1465-9921-11-146] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 10/27/2010] [Indexed: 12/29/2022] Open
Abstract
Background Idiopathic Pulmonary Fibrosis (IPF) is an unresolved clinical issue. Phosphodiesterases (PDEs) are known therapeutic targets for various proliferative lung diseases. Lung PDE6 expression and function has received little or no attention. The present study aimed to characterize (i) PDE6 subunits expression in human lung, (ii) PDE6 subunits expression and alteration in IPF and (iii) functionality of the specific PDE6D subunit in alveolar epithelial cells (AECs). Methodology/Principal Findings PDE6 subunits expression in transplant donor (n = 6) and IPF (n = 6) lungs was demonstrated by real-time quantitative (q)RT-PCR and immunoblotting analysis. PDE6D mRNA and protein levels and PDE6G/H protein levels were significantly down-regulated in the IPF lungs. Immunohistochemical analysis showed alveolar epithelial localization of the PDE6 subunits. This was confirmed by qRT-PCR from human primary alveolar type (AT)II cells, demonstrating the down-regulation pattern of PDE6D in IPF-derived ATII cells. In vitro, PDE6D protein depletion was provoked by transforming growth factor (TGF)-β1 in A549 AECs. PDE6D siRNA-mediated knockdown and an ectopic expression of PDE6D modified the proliferation rate of A549 AECs. These effects were mediated by increased intracellular cGMP levels and decreased ERK phosphorylation. Conclusions/Significance Collectively, we report previously unrecognized PDE6 expression in human lungs, significant alterations of the PDE6D and PDE6G/H subunits in IPF lungs and characterize the functional role of PDE6D in AEC proliferation.
Collapse
|
37
|
Foster CD, Varghese LS, Gonzales LW, Margulies SS, Guttentag SH. The Rho pathway mediates transition to an alveolar type I cell phenotype during static stretch of alveolar type II cells. Pediatr Res 2010; 67:585-90. [PMID: 20220547 PMCID: PMC3063400 DOI: 10.1203/pdr.0b013e3181dbc708] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Stretch is an essential mechanism for lung growth and development. Animal models in which fetal lungs have been chronically over or underdistended demonstrate a disrupted mix of type II and type I cells, with static overdistention typically promoting a type I cell phenotype. The Rho GTPase family, key regulators of cytoskeletal signaling, are known to mediate cellular differentiation in response to stretch in other organs. Using a well-described model of alveolar epithelial cell differentiation and a validated stretch device, we investigated the effects of supraphysiologic stretch on human fetal lung alveolar epithelial cell phenotype. Static stretch applied to epithelial cells suppressed type II cell markers (SP-B and Pepsinogen C, PGC), and induced type I cell markers (Caveolin-1, Claudin 7 and Plasminogen Activator Inhibitor-1, PAI-1) as predicted. Static stretch was also associated with Rho A activation. Furthermore, the Rho kinase inhibitor Y27632 decreased Rho A activation and blunted the stretch-induced changes in alveolar epithelial cell marker expression. Together these data provide further evidence that mechanical stimulation of the cytoskeleton and Rho activation are key upstream events in mechanotransduction-associated alveolar epithelial cell differentiation.
Collapse
Affiliation(s)
- Cherie D Foster
- Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
38
|
Wang Y, Maciejewski BS, Drouillard D, Santos M, Hokenson MA, Hawwa RL, Huang Z, Sanchez-Esteban J. A role for caveolin-1 in mechanotransduction of fetal type II epithelial cells. Am J Physiol Lung Cell Mol Physiol 2010; 298:L775-83. [PMID: 20172952 DOI: 10.1152/ajplung.00327.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mechanical forces are critical for fetal lung development. Using surfactant protein C (SP-C) as a marker, we previously showed that stretch-induced fetal type II cell differentiation is mediated via the ERK pathway. Caveolin-1, a major component of the plasma membrane microdomains, is important as a signaling protein in blood vessels exposed to shear stress. Its potential role in mechanotransduction during fetal lung development is unknown. Caveolin-1 is a marker of type I epithelial cell phenotype. In this study, using immunocytochemistry, Western blotting, and immunogold electron microscopy, we first demonstrated the presence of caveolin-1 in embryonic day 19 (E19) rat fetal type II epithelial cells. By detergent-free purification of lipid raft-rich membrane fractions and fluorescence immunocytochemistry, we found that mechanical stretch translocates caveolin-1 from the plasma membrane to the cytoplasm. Disruption of the lipid rafts with cholesterol-chelating agents further increased stretch-induced ERK activation and SP-C gene expression compared with stretch samples without disruptors. Similar results were obtained when caveolin-1 gene was knocked down by small interference RNA. In contrast, adenovirus overexpression of the wild-type caveolin-1 or delivery of caveolin-1 scaffolding domain peptide inside the cells decreased stretch-induced ERK phosphorylation and SP-C mRNA expression. In conclusion, our data suggest that caveolin-1 is present in E19 fetal type II epithelial cells. Caveolin-1 is translocated from the plasma membrane to the cytoplasm by mechanical stretch and functions as an inhibitory protein in stretch-induced type II cell differentiation via the ERK pathway.
Collapse
Affiliation(s)
- Yulian Wang
- Department of Pediatrics, Women & Infants Hospital of Rhode Island and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02905, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Warburton D, El-Hashash A, Carraro G, Tiozzo C, Sala F, Rogers O, De Langhe S, Kemp PJ, Riccardi D, Torday J, Bellusci S, Shi W, Lubkin SR, Jesudason E. Lung organogenesis. Curr Top Dev Biol 2010; 90:73-158. [PMID: 20691848 PMCID: PMC3340128 DOI: 10.1016/s0070-2153(10)90003-3] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Developmental lung biology is a field that has the potential for significant human impact: lung disease at the extremes of age continues to cause major morbidity and mortality worldwide. Understanding how the lung develops holds the promise that investigators can use this knowledge to aid lung repair and regeneration. In the decade since the "molecular embryology" of the lung was first comprehensively reviewed, new challenges have emerged-and it is on these that we focus the current review. Firstly, there is a critical need to understand the progenitor cell biology of the lung in order to exploit the potential of stem cells for the treatment of lung disease. Secondly, the current familiar descriptions of lung morphogenesis governed by growth and transcription factors need to be elaborated upon with the reinclusion and reconsideration of other factors, such as mechanics, in lung growth. Thirdly, efforts to parse the finer detail of lung bud signaling may need to be combined with broader consideration of overarching mechanisms that may be therapeutically easier to target: in this arena, we advance the proposal that looking at the lung in general (and branching in particular) in terms of clocks may yield unexpected benefits.
Collapse
Affiliation(s)
- David Warburton
- The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Lung function is inextricably linked to mechanics. On short timescales every breath generates dynamic cycles of cell and matrix stretch, along with convection of fluids in the airways and vasculature. Perturbations such airway smooth muscle shortening or surfactant dysfunction rapidly alter respiratory mechanics, with profound influence on lung function. On longer timescales, lung development, maturation, and remodeling all strongly depend on cues from the mechanical environment. Thus mechanics has long played a central role in our developing understanding of lung biology and respiratory physiology. This concise review focuses on progress over the past 5 years in elucidating the molecular origins of lung mechanical behavior, and the cellular signaling events triggered by mechanical perturbations that contribute to lung development, homeostasis, and injury. Special emphasis is placed on the tools and approaches opening new avenues for investigation of lung behavior at integrative cellular and molecular scales. We conclude with a brief summary of selected opportunities and challenges that lie ahead for the lung mechanobiology research community.
Collapse
|
41
|
Mechanical stretch-induced RhoA activation is mediated by the RhoGEF Vav2 in mesangial cells. Cell Signal 2009; 22:34-40. [PMID: 19755152 DOI: 10.1016/j.cellsig.2009.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 09/03/2009] [Accepted: 09/04/2009] [Indexed: 11/20/2022]
Abstract
Increased intraglomerular pressure is an important hemodynamic determinant of glomerulosclerosis, and can be modelled in vitro by exposing mesangial cells (MC) to cyclic mechanical stretch. We have previously shown that the GTPase RhoA mediates stretch-induced fibronectin production. Here we investigate the role of the RhoGEF Vav2 in the activation of RhoA by stretch. Primary rat MC were exposed to 1 Hz cyclic stretch, previously shown to induce maximal RhoA activation at 1 min. Total Vav2 tyrosine phosphorylation and specific phosphorylation on Y172, required for activation, were increased by 1 min of stretch. Overexpression of dominant-negative Vav2 Y172/159F in COS-1 cells or downregulation of Vav2 by siRNA in MC prevented stretch-induced RhoA activation. Vav2 is known to be activated in response to growth factors, and we have previously shown the epidermal growth factor receptor (EGFR) to be transactivated by stretch in MC. Both Vav2 Y172 phosphorylation and RhoA activation were blocked by the EGFR inhibitor AG1478 and prevented in MC overexpressing kinase inactive EGFR. Stretch led to physical association between the EGFR and Vav2, and this was dependent on EGFR activation. EGFR Y992 phosphorylation, required for growth factor-induced Vav2 phosphorylation, was also induced by stretch. Activation of both Src and PI3K were necessary upstream mediators of stretch-induced Vav2 Y172 phosphorylation and RhoA activation. In summary, stretch-induced RhoA activation is dependent on transactivation of the EGFR and activation of the RhoGEF Vav2. Src and PI3K are both required upstream of Vav2 and RhoA activation.
Collapse
|
42
|
Boudreault F, Tschumperlin DJ. Stretch-induced mitogen-activated protein kinase activation in lung fibroblasts is independent of receptor tyrosine kinases. Am J Respir Cell Mol Biol 2009; 43:64-73. [PMID: 19684308 DOI: 10.1165/rcmb.2009-0092oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lung growth and remodeling are modulated by mechanical stress, with fibroblasts thought to play a leading role. Little mechanistic information is available about how lung fibroblasts respond to mechanical stress. We exposed cultured lung fibroblasts to tonic stretch and measured changes in phosphorylation status of mitogen-activated protein kinases (MAPKs), selected receptor tyrosine kinases (RTKs), and phospholipase Cgamma1 (PLCgamma1) and activation of the small G-protein Ras. Human lung fibroblasts (LFs) were seeded on matrix-coated silicone membranes and exposed to equibiaxial 10 to 40% static stretch or 20% contraction. LFs were stimulated with EGF, FGF2, or PDGF-BB or exposed to stretch in the presence of inhibitors of EGFR (AG1478), FGFR (PD173074), and PDGFR (AG1296). Phospho-MAPK, phospho-RTK, and phospho-PLCgamma1 levels were measured by Western blotting. Active GTP-Ras was quantified by immunoblotting after pull-down with a glutathione S-transferase-Raf-RBD construct. Normalized p-ERK1/2, p-JNK, and p-p38 levels increased after stretch but not contraction. Ligands to RTKs broadly stimulated MAPKs, with the responses to EGF and PDGF most similar to stretch in terms of magnitude and rank order of MAPK responses. Stretching cells failed to elicit measurable activation of EGFR, FGFR (FRS2alpha phosphorylation), or PDGFR. Potent inhibitors of the kinase activity of each receptor failed to attenuate stretch-induced MAPK activation. PLCgamma1 and Ras, prominent effectors downstream of RTKs, were not activated by stretch. Our findings demonstrate that MAPKs are potently activated by stretch in lung fibroblasts, but, in contrast to stress responses observed in other cell types, RTKs are not necessary for stretch-induced MAPK activation in LFs.
Collapse
Affiliation(s)
- Francis Boudreault
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
| | | |
Collapse
|
43
|
Silbert O, Wang Y, Maciejewski BS, Lee H, Shaw SK, Sanchez–Esteban J. ROLES OF RhoA AND Rac1 ON ACTIN REMODELING AND CELL ALIGNMENT AND DIFFERENTIATION IN FETAL TYPE II EPITHELIAL CELLS EXPOSED TO CYCLIC MECHANICAL STRETCH. Exp Lung Res 2009; 34:663-80. [DOI: 10.1080/01902140802339615] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
44
|
Wang Y, Maciejewski BS, Soto-Reyes D, Lee HS, Warburton D, Sanchez-Esteban J. Mechanical stretch promotes fetal type II epithelial cell differentiation via shedding of HB-EGF and TGF-alpha. J Physiol 2009; 587:1739-53. [PMID: 19237431 PMCID: PMC2683961 DOI: 10.1113/jphysiol.2008.163899] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 02/18/2009] [Indexed: 01/12/2023] Open
Abstract
The mechanisms by which mechanical forces promote fetal lung development are not fully understood. Here, we investigated differentiation of fetal type II epithelial cells via the epidermal growth factor receptor (EGFR) in response to mechanical strain. First, we showed that incubation of embryonic day (E) 19 fetal type II cells with recombinant heparin-binding EGF-like growth factor (HB-EGF) or transforming growth factor (TGF)-alpha, but not with amphiregulin (AR), betacellulin (BTC) or epiregulin (EPR), increased fetal type II cell differentiation, as measured by surfactant protein B/C mRNA and protein levels. Next, we demonstrated that 5% cyclic stretch of E19 monolayers transfected with plasmid encoding alkaline phosphatase (AP)-tagged ligands shed mature HB-EGF and TGF-alpha into the supernatant and promoted type II cell differentiation. Release of these ligands was also observed in E19 cells subjected to higher degrees of cyclic strain, but not in cells exposed to continuous stretch. Interestingly, the addition of fibroblasts to type II cell cultures did not enhance release of HB-EGF. Whereas HB-EGF shedding was also detected in E18 cells exposed to 5% cyclic stretch, release of this ligand after 2.5% sustained stretch was restricted to cells isolated on E18 of gestation. In addition, mechanical stretch released EGF, AR and BTC. We conclude that mechanical stretch promotes fetal type II cell differentiation via ectodomain shedding of HB-EGF and TGF-alpha. The magnitude of shedding varied depending on gestational age, ligand, and strain protocol. These studies provide novel mechanistic information potentially relevant to fetal lung development and to mechanical ventilation-induced lung injury.
Collapse
Affiliation(s)
- Yulian Wang
- Department of Pediatrics, Women & Infants Hospital of Rhode Island and the Warren Alpert Medical School of Brown University, Providence, RI 02905, USA
| | | | | | | | | | | |
Collapse
|
45
|
Quinlan MR, Docherty NG, Watson RWG, Fitzpatrick JM. Exploring mechanisms involved in renal tubular sensing of mechanical stretch following ureteric obstruction. Am J Physiol Renal Physiol 2008; 295:F1-F11. [PMID: 18400870 DOI: 10.1152/ajprenal.00576.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Tubular mechanical stretch is the key primary insult in obstructive nephropathy. This review addresses how the renal tubular epithelium senses and responds to mechanical stretch. Using data from renal and nonrenal systems, we describe how sensing of stretch initially occurs via the activation of ion channels and subsequent increases in intracellular calcium levels. Calcium influxes activate a number of adaptive and proinjury responses. Key among these are 1) the activation of Rho, consequent cytoskeletal rearrangements, and downstream increases in focal adhesion assembly; and 2) phospholipase activation and resultant mitogen-activated protein kinase activation. These early signaling events culminate in adaptive cellular coupling to the extracellular matrix, a process termed the cell strengthening response. Direct links can be made between increased expression of genes involved in the development of obstructive nephropathy and initial sensing of mechanical stretch. The review illustrates the repercussions of mechanical stretch as a renal stress stimulus, specific to ureteric obstruction, and provides an insight into how tubular responses to mechanical stretch are ultimately implicated in the development of obstructive nephropathy.
Collapse
Affiliation(s)
- Mark R Quinlan
- The Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | | | | | | |
Collapse
|
46
|
Lee HS, Wang Y, Maciejewski BS, Esho K, Fulton C, Sharma S, Sanchez-Esteban J. Interleukin-10 protects cultured fetal rat type II epithelial cells from injury induced by mechanical stretch. Am J Physiol Lung Cell Mol Physiol 2008; 294:L225-32. [DOI: 10.1152/ajplung.00370.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical ventilation plays a central role in the pathogenesis of bronchopulmonary dysplasia. However, the mechanisms by which excessive stretch of fetal or neonatal type II epithelial cells contributes to lung injury are not well defined. In these investigations, isolated embryonic day 19 fetal rat type II epithelial cells were cultured on substrates coated with fibronectin and exposed to 5% or 20% cyclic stretch to simulate mechanical forces during lung development or lung injury, respectively. Twenty percent stretch of fetal type II epithelial cells increased necrosis, apoptosis, and proliferation compared with control, unstretched samples. By ELISA and real-time PCR (qRT-PCR), 20% stretch increased secretion of IL-8 into the media and IL-8 gene expression and inhibited IL-10 release. Interestingly, administration of recombinant IL-10 before 20% stretch did not affect cell lysis but significantly reduced apoptosis and IL-8 release compared with stretched samples without IL-10. Collectively, our studies suggest that IL-10 may play an important role in protection of fetal type II epithelial cells from injury secondary to stretch.
Collapse
|
47
|
Kook SH, Son YO, Choi KC, Lee HJ, Chung WT, Hwang IH, Lee JC. Cyclic mechanical stress suppresses myogenic differentiation of adult bovine satellite cells through activation of extracellular signal-regulated kinase. Mol Cell Biochem 2007; 309:133-41. [DOI: 10.1007/s11010-007-9651-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 10/31/2007] [Indexed: 11/29/2022]
|
48
|
Abstract
Chronic obstructive pulmonary disease (COPD) is a condition which is characterized by irreversible airway obstruction due to narrowing of small airways, bronchiolitis, and destruction of the lung parenchyma, emphysema. It is the fourth most common cause of mortality in the world and is expected to be the third most common cause of death by 2020. The main cause of COPD is smoking but other exposures may be of importance. Exposure leads to airway inflammation in which a variety of cells are involved. Besides neutrophil granulocytes, macrophages and lymphocytes, airway epithelial cells are also of particular importance in the inflammatory process and in the development of emphysema. Cell trafficking orchestrated by chemokines and other chamoattractants, the proteinase-antiproteinase system, oxidative stress and airway remodelling are central processes associated with the development of COPD. Recently systemic effects of COPD have attracted attention and the importance of systemic inflammation has been recognized. This seems to have direct therapeutic implications as treatment with inhaled glucocorticosteroids has been shown to influence mortality. The increasing body of knowledge regarding the inflammatory mechanism in COPD will most likely have implications for future therapy and new drugs, specifically aimed at interaction with the inflammatory processes, are currently being developed.
Collapse
Affiliation(s)
- Kjell Larsson
- Unit of Lung and Allergy Research, National Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
49
|
Taruno A, Niisato N, Marunaka Y. Hypotonicity stimulates renal epithelial sodium transport by activating JNK via receptor tyrosine kinases. Am J Physiol Renal Physiol 2007; 293:F128-38. [PMID: 17344192 DOI: 10.1152/ajprenal.00011.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We previously reported that hypotonic stress stimulated transepithelial Na(+) transport via a pathway dependent on protein tyrosine kinase (PTK; Niisato N, Van Driessche W, Liu M, Marunaka Y. J Membr Biol 175: 63-77, 2000). However, it is still unknown what type of PTK mediates this stimulation. In the present study, we investigated the role of receptor tyrosine kinase (RTK) in the hypotonic stimulation of Na(+) transport. In renal epithelial A6 cells, we observed inhibitory effects of AG1478 [an inhibitor of the EGF receptor (EGFR)] and AG1296 [an inhibitor of the PDGF receptor (PDGFR)] on both the hypotonic stress-induced stimulation of Na(+) transport and the hypotonic stress-induced ligand-independent activation of EGFR. We further studied whether hypotonic stress activates members of the MAP kinase family, ERK1/2, p38 MAPK, and JNK/SAPK, via an RTK-dependent pathway. The present study indicates that hypotonic stress induced phosphorylation of ERK1/2 and JNK/SAPK, but not p38 MAPK, that the hypotonic stress-induced phosphorylation of ERK1/2 and JNK/SAPK was diminished by coapplication of AG1478 and AG1296, and that only JNK/SAPK was involved in the hypotonic stimulation of Na(+) transport. A further study using cyclohexamide (a protein synthesis inhibitor) suggests that both RTK and JNK/SAPK contributed to the protein synthesis-independent early phase in hypotonic stress-induced Na(+) transport, but not to the protein synthesis-dependent late phase. The present study also suggests involvement of phosphatidylinositol 3-kinase (PI3-kinase) in RTK-JNK/SAPK cascade-mediated Na(+) transport. These observations indicate that 1) hypotonic stress activates JNK/SAPK via RTKs in a ligand-independent pathway, 2) the RTK-JNK/SAPK cascade acts as a mediator of hypotonic stress for stimulation of Na(+) transport, and 3) PI3-kinase is involved in the RTK-JNK/SAPK cascade for the hypotonic stress-induced stimulation of Na(+) transport.
Collapse
Affiliation(s)
- Akiyuki Taruno
- Dept. of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | |
Collapse
|
50
|
Balestreire EM, Apodaca G. Apical epidermal growth factor receptor signaling: regulation of stretch-dependent exocytosis in bladder umbrella cells. Mol Biol Cell 2007; 18:1312-23. [PMID: 17287395 PMCID: PMC1838979 DOI: 10.1091/mbc.e06-09-0842] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The apical surface of polarized epithelial cells receives input from mediators, growth factors, and mechanical stimuli. How these stimuli are coordinated to regulate complex cellular functions such as polarized membrane traffic is not understood. We analyzed the requirement for growth factor signaling and mechanical stimuli in umbrella cells, which line the mucosal surface of the bladder and dynamically insert and remove apical membrane in response to stretch. We observed that stretch-stimulated exocytosis required apical epidermal growth factor (EGF) receptor activation and that activation occurred in an autocrine manner downstream of heparin-binding EGF-like growth factor precursor cleavage. Long-term changes in apical exocytosis depended on protein synthesis, which occurred upon EGF receptor-dependent activation of mitogen-activated protein kinase signaling. Our results indicate a novel physiological role for the EGF receptor that couples upstream mechanical stimuli to downstream apical EGF receptor activation that may regulate apical surface area changes during bladder filling.
Collapse
Affiliation(s)
- Elena M. Balestreire
- Laboratory of Epithelial Cell Biology, Departments of Medicine and Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Gerard Apodaca
- Laboratory of Epithelial Cell Biology, Departments of Medicine and Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|