1
|
Pavia AT. Clinical Manifestations and Outcomes of SARS-CoV-2 Infection in Children and Adolescents. Infect Dis Clin North Am 2025; 39:293-308. [PMID: 40187944 DOI: 10.1016/j.idc.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Compared to adults, children are more likely to experience asymptomatic infections or mild-to-moderate symptoms of SARS-CoV-2 infection that resemble other viral infections. However, a substantial proportion of children experience severe disease; more than 2000 US children have died of COVID-19, significantly exceeding the death toll from influenza. Risk factors for severe disease include age less than 6 months and 12 to 17 years, as well as the presence of underlying conditions, especially 2 or more conditions. Multisystem inflammatory syndrome in children is a life-threatening post-infectious complication seen in children. Children experience post-acute sequelae of SARS-CoV-2 but at lower rates than adults.
Collapse
Affiliation(s)
- Andrew T Pavia
- Division of Pediatric Infectious Diseases, Departments of Pediatrics and Internal Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Akhtar E, Kuddusi RU, Talukder MT, Jakarea M, Haq MA, Hossain MS, Vandenent M, Islam MZ, Zaman RU, Razzaque A, Sarker P, Raqib R. Functional T cell response to COVID-19 vaccination with or without natural infection with SARS-CoV-2 in adults and children. Sci Rep 2025; 15:13341. [PMID: 40247005 PMCID: PMC12006499 DOI: 10.1038/s41598-025-95870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 03/24/2025] [Indexed: 04/19/2025] Open
Abstract
Severe COVID-19 is rare in children suggesting differences in immune response between children and adults. Limited information is available on how cellular immunity is modulated by COVID-19 vaccination and prior infection, and whether it is differentially modulated in children compared to adults. Here, we aimed to compare COVID-19 vaccine-induced functional T cell response between adults and children with and without previous SARS-CoV-2 infection. Adults (18-45 years; n = 45) and children (5-10 years; n = 51;), who received Pfizer-BioNTech COVID-19 vaccine or remained unvaccinated, and previously infected or not with SARS-CoV-2 were selected from two cross-sectional SARS-CoV-2 serosurveillance studies conducted in Bangladesh. Plasma nucleocapsid (N)-specific antibodies were measured by electrochemiluminescence immunoassay; IFN-γ, perforin and granzyme B secreting T cells were assessed using ELISpot assay. Vaccination in adults without previous infection, induced higher frequencies of IFN-γ and granzyme B secreting T lymphocytes compared to unvaccinated adults, while it increased only IFN-γ expression in vaccinated children. Previous infection increased IFN-γ response in unvaccinated adults only. Unvaccinated children showed higher granzyme B expression compared to adults irrespective of infection status. In vaccinated individuals, prior infection induced perforin expression in both adults and children. Children showed slightly different functional T cell response than adults in response to COVID-19 vaccination and infection. mRNA vaccination provided higher IFN-γ response in both adults and children, but induced cytotoxic T lymphocyte (CTL) response in adults only. Future studies may evaluate the impact of other types of COVID-19 vaccines on functional T cell immunity in children to confirm the findings.
Collapse
Affiliation(s)
- Evana Akhtar
- icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Rakib Ullah Kuddusi
- icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Md Tanvir Talukder
- icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Md Jakarea
- icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Md Ahsanul Haq
- icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Md Shamim Hossain
- icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | | | | | - Rashid U Zaman
- Foreign, Commonwealth and Development Office, British High Commission, Dhaka, 1212, Bangladesh
| | - Abdur Razzaque
- icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Protim Sarker
- icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Rubhana Raqib
- icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|
3
|
Hurst JH, Mohan AA, Dalapati T, George IA, Aquino JN, Lugo DJ, Pfeiffer TS, Rodriguez J, Rotta AT, Turner NA, Burke TW, McClain MT, Henao R, DeMarco CT, Louzao R, Denny TN, Walsh KM, Xu Z, Mejias A, Ramilo O, Woods CW, Kelly MS. Age-associated differences in mucosal and systemic host responses to SARS-CoV-2 infection. Nat Commun 2025; 16:2383. [PMID: 40064870 PMCID: PMC11894178 DOI: 10.1038/s41467-025-57655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Age is among the strongest risk factors for severe outcomes from SARS-CoV-2 infection. Here we describe upper respiratory tract (URT) and peripheral blood transcriptomes of 202 participants (age range of 1 week to 83 years), including 137 non-hospitalized individuals with mild SARS-CoV-2 infection and 65 healthy individuals. Among healthy children and adolescents, younger age is associated with higher URT expression of innate and adaptive immune pathways. SARS-CoV-2 infection induces broad upregulation of URT innate and adaptive immune responses among children and adolescents. Peripheral blood responses among SARS-CoV-2-infected children and adolescents are dominated by interferon pathways, while upregulation of myeloid activation, inflammatory, and coagulation pathways is observed only in adults. Among SARS-CoV-2-infected individuals, fever is associated with blunted URT immune responses and more pronounced systemic immune activation. These findings demonstrate that immune responses to SARS-CoV-2 differ across the lifespan, from distinct signatures in childhood and adolescence to age-associated alterations in adults.
Collapse
Affiliation(s)
- Jillian H Hurst
- Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
- Children's Health and Discovery Institute, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Aditya A Mohan
- Department of Biomedical Engineering, Duke University School of Medicine, Durham, NC, USA
| | - Trisha Dalapati
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Ian A George
- Duke University School of Medicine, Durham, NC, USA
| | - Jhoanna N Aquino
- Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Debra J Lugo
- Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Trevor S Pfeiffer
- Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Javier Rodriguez
- Children's Clinical Research Unit, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Alexandre T Rotta
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas A Turner
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Thomas W Burke
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
- Center for Infectious Disease Diagnostics and Innovation, Duke University School of Medicine, Durham, NC, USA
| | - Micah T McClain
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
- Center for Infectious Disease Diagnostics and Innovation, Duke University School of Medicine, Durham, NC, USA
- Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Ricardo Henao
- Department of Biostatistics and Informatics, Duke University, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - C Todd DeMarco
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Raul Louzao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kyle M Walsh
- Children's Health and Discovery Institute, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Zhaohui Xu
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Asuncion Mejias
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Octavio Ramilo
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher W Woods
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
- Center for Infectious Disease Diagnostics and Innovation, Duke University School of Medicine, Durham, NC, USA
- Durham Veterans Affairs Medical Center, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Matthew S Kelly
- Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
4
|
Wisgrill L, Martens A, Kasbauer R, Eigenschink M, Pummer L, Redlberger-Fritz M, Végvári Á, Warth B, Berger A, Fyhrquist N, Alenius H. Network analysis reveals age- and virus-specific circuits in nasal epithelial cells of extremely premature infants. Allergy 2024; 79:3062-3081. [PMID: 38898695 DOI: 10.1111/all.16196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND AND OBJECTIVES Viral respiratory infections significantly affect young children, particularly extremely premature infants, resulting in high hospitalization rates and increased health-care burdens. Nasal epithelial cells, the primary defense against respiratory infections, are vital for understanding nasal immune responses and serve as a promising target for uncovering underlying molecular and cellular mechanisms. METHODS Using a trans-well pseudostratified nasal epithelial cell system, we examined age-dependent developmental differences and antiviral responses to influenza A and respiratory syncytial virus through systems biology approaches. RESULTS Our studies revealed differences in innate-receptor repertoires, distinct developmental pathways, and differentially connected antiviral network circuits between neonatal and adult nasal epithelial cells. Consensus network analysis identified unique and shared cellular-viral networks, emphasizing highly relevant virus-specific pathways, independent of viral replication kinetics. CONCLUSION This research highlights the importance of nasal epithelial cells in innate antiviral immune responses and offers crucial insights that allow for a deeper understanding of age-related differences in nasal epithelial cell immunity following respiratory virus infections.
Collapse
Affiliation(s)
- Lukas Wisgrill
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria
| | - Anke Martens
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Rajmund Kasbauer
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Michael Eigenschink
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Linda Pummer
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | - Ákos Végvári
- Proteomics Biomedicum, Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Benedikt Warth
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Vienna, Austria
| | - Angelika Berger
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Nanna Fyhrquist
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Human microbiome research program (HUMI), Medicum, University of Helsinki, Helsinki, Finland
| | - Harri Alenius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Human microbiome research program (HUMI), Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Nasab SDS, Eniya ML, Judith A, Clasen F, Faith B, Poongulali S, Gita JB, Ashok C, Raghavi V, Vedavalli S, Lavanya C, Ranganathan K, Rajan G, Kumarasamy N, Moyes D, Ide M, Shoaie S, Kurushima Y, Jagdev D, Pun M, Johnson N, Kannian P, Challacombe S. Detection and consistency of mucosal fluid T lymphocyte phenotypes and their relationship with blood, age and gender. J Immunol Methods 2024; 532:113731. [PMID: 39059745 DOI: 10.1016/j.jim.2024.113731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Innate and adaptive immune responses at mucosal surfaces play a role in protection against most infectious diseases. However, the relative importance either of mucosal versus systemic, or of cellular versus humoral immunity in protection against such infections remains unclear. We aimed to determine the relative percentages and reproducibility of detection of five major T lymphocyte phenotypes in stimulated whole mouth fluid (SWMF); to compare matched mucosal and blood phenotypes; to evaluate the consistency of phenotypes in SWMF over time; and to determine any associations with age or gender. Peripheral blood and SWMF samples were collected from 194 participants and sequential concomitant samples were collected from 27 of those and from 12 subjects living with HIV. CD3, CD4, CD8, Th1 and Th2 T lymphocyte phenotypes were determined by FACS. All the five T lymphocyte phenotypes were detected consistently by FACS in PBMC and SWMF with experimental replicates (N = 10; PBMC CV: 3-30%; SWMF CV: 12-36%). In longitudinal samples detection rates were reproducible in both fluids but variations were higher in SWMF (CV: 23-79.6%) than PBMC (CV: 9.7-75%). Statistically significant correlations of the percentages of all the T lymphocyte phenotypes except CD8 was seen between the two fluids. In PBMCs a negative correlation with age was found with CD3, CD4 and CD8 phenotypes, whilst a positive correlation was found in both SWMF and PBMC with the Th2 phenotype. CD3, CD4 and CD8 phenotypes in SWMF and PBMCs from an HIV-positive cohort were not significantly correlated in contrast with the HIV-negative controls. Our study provides a robust FACS protocol for the detection of the five major T lymphocyte phenotypes in SWMF which should prove useful for research with other mucosal fluids.
Collapse
Affiliation(s)
| | | | | | - Frederick Clasen
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, UK
| | | | | | | | | | | | | | | | | | | | | | - David Moyes
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, UK
| | - Mark Ide
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, UK
| | - Saeed Shoaie
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, UK
| | - Yuko Kurushima
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, UK
| | - Daljit Jagdev
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, UK
| | - Mina Pun
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, UK
| | - Newell Johnson
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, UK; Griffith University Dental School, Queensland, Australia
| | | | - Stephen Challacombe
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, UK.
| |
Collapse
|
6
|
Farazuddin M, Acker G, Zourob J, O’Konek JJ, Wong PT, Morris S, Rasky AJ, Kim CH, Lukacs NW, Baker JR. Inhibiting retinoic acid signaling in dendritic cells suppresses respiratory syncytial virus infection through enhanced antiviral immunity. iScience 2024; 27:110103. [PMID: 39045100 PMCID: PMC11263793 DOI: 10.1016/j.isci.2024.110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/21/2023] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
Retinoic acid (RA), controls the immunoregulatory functions of many immune cells, including dendritic cells (DCs), and is important for mucosal immunity. In DCs, RA regulates the expression of pattern recognition receptors and stimulates interferon production. Here, we investigated the role of RA in DCs in mounting immunity to respiratory syncytial virus (RSV). To abolish RA signaling in DCs, we used mice expressing a dominant negative form of retinoic acid receptor-α (RARα) under the CD11c promoter (CD11c-dnRARα). Paradoxically, upon RSV challenge, these animals had lower viral burden, reduced pathology, and greater Th1 polarized immunity than wild-type (WT) mice. Moreover, CD11c-dnRARα DCs infected with RSV showed enhancement in innate and adaptive immunity genes, while genes associated with viral replication were downregulated. These findings suggest that the absence of RA signaling in DCs enhances innate immunity against RSV infection leading to decreased viral load and reduced pathogenicity.
Collapse
Affiliation(s)
- Mohammad Farazuddin
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Grant Acker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joseph Zourob
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jessica J. O’Konek
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pamela T. Wong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Susan Morris
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew J. Rasky
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chang H. Kim
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nicholas W. Lukacs
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James R. Baker
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Woodall MNJ, Cujba AM, Worlock KB, Case KM, Masonou T, Yoshida M, Polanski K, Huang N, Lindeboom RGH, Mamanova L, Bolt L, Richardson L, Cakir B, Ellis S, Palor M, Burgoyne T, Pinto A, Moulding D, McHugh TD, Saleh A, Kilich E, Mehta P, O'Callaghan C, Zhou J, Barclay W, De Coppi P, Butler CR, Cortina-Borja M, Vinette H, Roy S, Breuer J, Chambers RC, Heywood WE, Mills K, Hynds RE, Teichmann SA, Meyer KB, Nikolić MZ, Smith CM. Age-specific nasal epithelial responses to SARS-CoV-2 infection. Nat Microbiol 2024; 9:1293-1311. [PMID: 38622380 PMCID: PMC11087271 DOI: 10.1038/s41564-024-01658-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 03/04/2024] [Indexed: 04/17/2024]
Abstract
Children infected with SARS-CoV-2 rarely progress to respiratory failure. However, the risk of mortality in infected people over 85 years of age remains high. Here we investigate differences in the cellular landscape and function of paediatric (<12 years), adult (30-50 years) and older adult (>70 years) ex vivo cultured nasal epithelial cells in response to infection with SARS-CoV-2. We show that cell tropism of SARS-CoV-2, and expression of ACE2 and TMPRSS2 in nasal epithelial cell subtypes, differ between age groups. While ciliated cells are viral replication centres across all age groups, a distinct goblet inflammatory subtype emerges in infected paediatric cultures and shows high expression of interferon-stimulated genes and incomplete viral replication. In contrast, older adult cultures infected with SARS-CoV-2 show a proportional increase in basaloid-like cells, which facilitate viral spread and are associated with altered epithelial repair pathways. We confirm age-specific induction of these cell types by integrating data from in vivo COVID-19 studies and validate that our in vitro model recapitulates early epithelial responses to SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | - Kaylee B Worlock
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | | | - Tereza Masonou
- Great Ormond Street UCL Institute of Child Health, London, UK
| | - Masahiro Yoshida
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | | | - Ni Huang
- Wellcome Sanger Institute, Cambridge, UK
| | | | | | - Liam Bolt
- Wellcome Sanger Institute, Cambridge, UK
| | | | | | - Samuel Ellis
- Great Ormond Street UCL Institute of Child Health, London, UK
| | - Machaela Palor
- Great Ormond Street UCL Institute of Child Health, London, UK
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, University College London, London, UK
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Andreia Pinto
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Dale Moulding
- Great Ormond Street UCL Institute of Child Health, London, UK
| | - Timothy D McHugh
- UCL Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK
| | - Aarash Saleh
- Royal Free Hospital NHS Foundation Trust, London, UK
| | - Eliz Kilich
- UCL Respiratory, Division of Medicine, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Puja Mehta
- UCL Respiratory, Division of Medicine, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Jie Zhou
- Department of Infectious Disease, Imperial College London, London, UK
| | - Wendy Barclay
- Department of Infectious Disease, Imperial College London, London, UK
| | - Paolo De Coppi
- Great Ormond Street UCL Institute of Child Health, London, UK
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Colin R Butler
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, Great Ormond Street UCL Institute of Child Health, University College London, London, UK
| | | | - Heloise Vinette
- Great Ormond Street UCL Institute of Child Health, London, UK
| | - Sunando Roy
- Great Ormond Street UCL Institute of Child Health, London, UK
| | - Judith Breuer
- Great Ormond Street UCL Institute of Child Health, London, UK
| | - Rachel C Chambers
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Wendy E Heywood
- Great Ormond Street UCL Institute of Child Health, London, UK
| | - Kevin Mills
- Great Ormond Street UCL Institute of Child Health, London, UK
| | - Robert E Hynds
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, Great Ormond Street UCL Institute of Child Health, University College London, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cambridge, UK.
- Theory of Condensed Matter, Cavendish Laboratory/Dept Physics, University of Cambridge, Cambridge, UK.
| | | | - Marko Z Nikolić
- UCL Respiratory, Division of Medicine, University College London, London, UK.
- University College London Hospitals NHS Foundation Trust, London, UK.
| | - Claire M Smith
- Great Ormond Street UCL Institute of Child Health, London, UK.
| |
Collapse
|
8
|
Benede N, Tincho MB, Walters A, Subbiah V, Ngomti A, Baguma R, Butters C, Hahnle L, Mennen M, Skelem S, Adriaanse M, Facey-Thomas H, Scott C, Day J, Spracklen TF, van Graan S, Balla SR, Moyo-Gwete T, Moore PL, MacGinty R, Botha M, Workman L, Johnson M, Goldblatt D, Zar HJ, Ntusi NA, Zühlke L, Webb K, Riou C, Burgers WA, Keeton RS. Distinct T cell polyfunctional profile in SARS-CoV-2 seronegative children associated with endemic human coronavirus cross-reactivity. iScience 2024; 27:108728. [PMID: 38235336 PMCID: PMC10792240 DOI: 10.1016/j.isci.2023.108728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/19/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
SARS-CoV-2 infection in children typically results in asymptomatic or mild disease. There is a paucity of studies on SARS-CoV-2 antiviral immunity in African children. We investigated SARS-CoV-2-specific T cell responses in 71 unvaccinated asymptomatic South African children who were seropositive or seronegative for SARS-CoV-2. SARS-CoV-2-specific CD4+ T cell responses were detectable in 83% of seropositive and 60% of seronegative children. Although the magnitude of the CD4+ T cell response did not differ significantly between the two groups, their functional profiles were distinct, with SARS-CoV-2 seropositive children exhibiting a higher proportion of polyfunctional T cells compared to their seronegative counterparts. The frequency of SARS-CoV-2-specific CD4+ T cells in seronegative children was associated with the endemic human coronavirus (HCoV) HKU1 IgG response. Overall, the presence of SARS-CoV-2-responding T cells in seronegative children may result from cross-reactivity to endemic coronaviruses and could contribute to the relative protection from disease observed in SARS-CoV-2-infected children.
Collapse
Affiliation(s)
- Ntombi Benede
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Marius B. Tincho
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Avril Walters
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Vennesa Subbiah
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Amkele Ngomti
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Claire Butters
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Observatory, South Africa
| | - Lina Hahnle
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Mathilda Mennen
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Sango Skelem
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Marguerite Adriaanse
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Heidi Facey-Thomas
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Christiaan Scott
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Observatory, South Africa
| | - Jonathan Day
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Observatory, South Africa
| | - Timothy F. Spracklen
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- South African Medical Research Council, Francie Van Zijl Drive, Parow Cape Town, South Africa
| | - Strauss van Graan
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Sashkia R. Balla
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Thandeka Moyo-Gwete
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L. Moore
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Rae MacGinty
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Maresa Botha
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Lesley Workman
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Marina Johnson
- Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - David Goldblatt
- Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - Heather J. Zar
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Ntobeko A.B. Ntusi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Liesl Zühlke
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- South African Medical Research Council, Francie Van Zijl Drive, Parow Cape Town, South Africa
| | - Kate Webb
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Observatory, South Africa
- Crick African Network, The Francis Crick Institute, London, UK
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Roanne S. Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| |
Collapse
|
9
|
Yeung J, Wang T, Shi PY. Improvement of mucosal immunity by a live-attenuated SARS-CoV-2 nasal vaccine. Curr Opin Virol 2023; 62:101347. [PMID: 37604085 DOI: 10.1016/j.coviro.2023.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023]
Abstract
The effectiveness of early COVID-19 vaccines in reducing the severity of the disease has led to a focus on developing next-generation vaccines that can prevent infection and transmission of the virus. One promising approach involves the induction of mucosal immunity through nasal administration and a variety of mucosal vaccine candidates using different platforms are currently in development. Live-attenuated viruses, less pathogenic versions of SARS-CoV-2, have promising features as a mucosal vaccine platform and have the potential to induce hybrid immunity in individuals who have already received mRNA vaccines. This review discusses the potential benefits and considerations for the use of live-attenuated SARS-CoV-2 intranasal vaccines and highlights the authors' work in developing such a vaccine platform.
Collapse
Affiliation(s)
- Jason Yeung
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
10
|
da Silva RP, Thomé BL, da Souza APD. Exploring the Immune Response against RSV and SARS-CoV-2 Infection in Children. BIOLOGY 2023; 12:1223. [PMID: 37759622 PMCID: PMC10525162 DOI: 10.3390/biology12091223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Viral respiratory tract infections are a significant public health concern, particularly in children. RSV is a prominent cause of lower respiratory tract infections among infants, whereas SARS-CoV-2 has caused a global pandemic with lower overall severity in children than in adults. In this review, we aimed to compare the innate and adaptive immune responses induced by RSV and SARS-CoV-2 to better understand differences in the pathogenesis of infection. Some studies have demonstrated that children present a more robust immune response against SARS-CoV-2 than adults; however, this response is dissimilar to that of RSV. Each virus has a distinctive mechanism to escape the immune response. Understanding the mechanisms underlying these differences is crucial for developing effective treatments and improving the management of pediatric respiratory infections.
Collapse
Affiliation(s)
| | | | - Ana Paula Duarte da Souza
- Laboratory of Clinical and Experimental Immunology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; (R.P.d.S.); (B.L.T.)
| |
Collapse
|
11
|
Brodin P. Immune responses to SARS-CoV-2 infection and vaccination in children. Semin Immunol 2023; 69:101794. [PMID: 37536147 PMCID: PMC10281229 DOI: 10.1016/j.smim.2023.101794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 08/05/2023]
Abstract
During the three years since SARS-CoV-2 infections were first described a wealth of information has been gathered about viral variants and their changing properties, the disease presentations they elicit and how the many vaccines developed in record time protect from COVID-19 severe disease in different populations. A general theme throughout the pandemic has been the observation that children and young people in general fare well, with mild symptoms during acute infection and full recovery thereafter. It has also become clear that this is not universally true, as some children develop severe COVID-19 hypoxic pneumonia and even succumb to the infection, while another group of children develop a rare but serious multisystem inflammatory syndrome (MIS-C) and some other children experience prolonged illness following acute infection, post-COVID. Here I will discuss some of the findings made to explain these diverse disease manifestations in children and young people infected by SARS-CoV-2. I will also discuss the vaccines developed at record speed and their efficacy in protecting children from disease.
Collapse
Affiliation(s)
- Petter Brodin
- Unit for Clinical Pediatrics, Dept. of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden; Department of Immunology and Inflammation, Imperial College London, W12 0NN London, UK.
| |
Collapse
|
12
|
Hurst JH, Mohan AA, Dalapati T, George IA, Aquino JN, Lugo DJ, Pfeiffer TS, Rodriguez J, Rotta AT, Turner NA, Burke TW, McClain MT, Henao R, DeMarco CT, Louzao R, Denny TN, Walsh KM, Xu Z, Mejias A, Ramilo O, Woods CW, Kelly MS. Differential host responses within the upper respiratory tract and peripheral blood of children and adults with SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.31.23293337. [PMID: 37577568 PMCID: PMC10418569 DOI: 10.1101/2023.07.31.23293337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Age is among the strongest risk factors for severe outcomes from SARS-CoV-2 infection. We sought to evaluate associations between age and both mucosal and systemic host responses to SARS-CoV-2 infection. We profiled the upper respiratory tract (URT) and peripheral blood transcriptomes of 201 participants (age range of 1 week to 83 years), including 137 non-hospitalized individuals with mild SARS-CoV-2 infection and 64 uninfected individuals. Among uninfected children and adolescents, young age was associated with upregulation of innate and adaptive immune pathways within the URT, suggesting that young children are primed to mount robust mucosal immune responses to exogeneous respiratory pathogens. SARS-CoV-2 infection was associated with broad induction of innate and adaptive immune responses within the URT of children and adolescents. Peripheral blood responses among SARS-CoV-2-infected children and adolescents were dominated by interferon pathways, while upregulation of myeloid activation, inflammatory, and coagulation pathways was observed only in adults. Systemic symptoms among SARS-CoV-2-infected subjects were associated with blunted innate and adaptive immune responses in the URT and upregulation of many of these same pathways within peripheral blood. Finally, within individuals, robust URT immune responses were correlated with decreased peripheral immune activation, suggesting that effective immune responses in the URT may promote local viral control and limit systemic immune activation and symptoms. These findings demonstrate that there are differences in immune responses to SARS-CoV-2 across the lifespan, including between young children and adolescents, and suggest that these varied host responses contribute to observed differences in the clinical presentation of SARS-CoV-2 infection by age. One Sentence Summary Age is associated with distinct upper respiratory and peripheral blood transcriptional responses among children and adults with SARS-CoV-2 infection.
Collapse
|
13
|
Chen S, Wang S. The immune mechanism of the nasal epithelium in COVID-19-related olfactory dysfunction. Front Immunol 2023; 14:1045009. [PMID: 37529051 PMCID: PMC10387544 DOI: 10.3389/fimmu.2023.1045009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
During the first waves of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, olfactory dysfunction (OD) was reported as a frequent clinical sign. The nasal epithelium is one of the front-line protections against viral infections, and the immune responses of the nasal mucosa may be associated with OD. Two mechanisms underlying OD occurrence in COVID-19 have been proposed: the infection of sustentacular cells and the inflammatory reaction of the nasal epithelium. The former triggers OD and the latter likely prolongs OD. These two alternative mechanisms may act in parallel; the infection of sustentacular cells is more important for OD occurrence because sustentacular cells are more likely to be the entry point of SARS-CoV-2 than olfactory neurons and more susceptible to early injury. Furthermore, sustentacular cells abundantly express transmembrane protease, serine 2 (TMPRSS2) and play a major role in the olfactory epithelium. OD occurrence in COVID-19 has revealed crucial roles of sustentacular cells. This review aims to elucidate how immune responses of the nasal epithelium contribute to COVID-19-related OD. Understanding the underlying immune mechanisms of the nasal epithelium in OD may aid in the development of improved medical treatments for COVID-19-related OD.
Collapse
Affiliation(s)
| | - Shufen Wang
- Biomedical Engineering Research Institute, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
14
|
Ailioaie LM, Ailioaie C, Litscher G. Infection, Dysbiosis and Inflammation Interplay in the COVID Era in Children. Int J Mol Sci 2023; 24:10874. [PMID: 37446047 PMCID: PMC10342011 DOI: 10.3390/ijms241310874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
For over three years, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in children and adolescents has generated repercussions, especially a few weeks after infection, for symptomatic patients who tested positive, for asymptomatic ones, or even just the contacts of an infected person, and evolved from severe forms such as multisystem inflammatory syndrome in children (MIS-C) to multifarious clinical manifestations in long COVID (LC). Referred to under the umbrella term LC, the onset of persistent and highly heterogeneous symptoms such as fatigue, post-exertion malaise, cognitive dysfunction, and others have a major impact on the child's daily quality of life for months. The first aim of this review was to highlight the circumstances of the pathophysiological changes produced by COVID-19 in children and to better understand the hyperinflammation in COVID-19 and how MIS-C, as a life-threatening condition, could have been avoided in some patients. Another goal was to better identify the interplay between infection, dysbiosis, and inflammation at a molecular and cellular level, to better guide scientists, physicians, and pediatricians to advance new lines of medical action to avoid the post-acute sequelae of SARS-CoV-2 infection. The third objective was to identify symptoms and their connection to molecular pathways to recognize LC more easily. The fourth purpose was to connect the triggering factors of LC with related sequelae following acute SARS-CoV-2 injuries to systems and organs, the persistence of the virus, and some of its components in hidden reservoirs, including the gut and the central nervous system. The reactivation of other latent infectious agents in the host's immune environments, the interaction of this virus with the microbiome, immune hyperactivation, and autoimmunity generated by molecular mimicry between viral agents and host proteins, could initiate a targeted and individualized management. New high-tech solutions, molecules, probiotics, and others should be discovered to innovatively solve the interplay between RNA persistent viruses, microbiota, and our immune system.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Gerhard Litscher
- President of the International Society for Medical Laser Applications (ISLA Transcontinental), German Vice President of the German–Chinese Research Foundation (DCFG) for TCM, Honorary President of the European Federation of Acupuncture and Moxibustion Societies, 8053 Graz, Austria
| |
Collapse
|
15
|
Ho RM, Bowen AC, Blyth CC, Imrie A, Kollmann TR, Stick SM, Kicic A. Defining the pediatric response to SARS-CoV-2 variants. Front Immunol 2023; 14:1200456. [PMID: 37304275 PMCID: PMC10248061 DOI: 10.3389/fimmu.2023.1200456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
The global population has been severely affected by the coronavirus disease 2019 (COVID-19) pandemic, however, with older age identified as a risk factor, children have been underprioritized. This article discusses the factors contributing to the less severe response observed in children following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including, differing viral entry receptor expression and immune responses. It also discusses how emerging and future variants could present a higher risk to children, including those with underlying comorbidities, in developing severe disease. Furthermore, this perspective discusses the differential inflammatory markers between critical and non-critical cases, as well as discussing the types of variants that may be more pathogenic to children. Importantly, this article highlights where more research is urgently required, in order to protect the most vulnerable of our children.
Collapse
Affiliation(s)
- Reanne M. Ho
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- Medical School, University of Western Australia, Nedlands, WA, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, WA, Australia
| | - Asha C. Bowen
- Medical School, University of Western Australia, Nedlands, WA, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, WA, Australia
- Department of Infectious Diseases, Perth Children’s Hospital, Nedlands, WA, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Christopher C. Blyth
- Medical School, University of Western Australia, Nedlands, WA, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, WA, Australia
- Department of Infectious Diseases, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Allison Imrie
- Medical School, University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Tobias R. Kollmann
- Department of Infectious Diseases, Perth Children’s Hospital, Nedlands, WA, Australia
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- School of Population Health, Curtin University, Perth, WA, Australia
| |
Collapse
|
16
|
Benede NSB, Tincho MB, Walters A, Subbiah V, Ngomti A, Baguma R, Butters C, Mennen M, Skelem S, Adriaanse M, van Graan S, Balla SR, Moyo-Gwete T, Moore PL, Botha M, Workman L, Zar HJ, Ntusi NAB, Zühlke L, Webb K, Riou C, Burgers WA, Keeton RS. Distinct T cell functional profiles in SARS-CoV-2 seropositive and seronegative children associated with endemic human coronavirus cross-reactivity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.16.23290059. [PMID: 37292954 PMCID: PMC10246143 DOI: 10.1101/2023.05.16.23290059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SARS-CoV-2 infection in children typically results in asymptomatic or mild disease. There is a paucity of studies on antiviral immunity in African children. We investigated SARS-CoV-2-specific T cell responses in 71 unvaccinated asymptomatic South African children who were seropositive or seronegative for SARS-CoV-2. SARS-CoV-2-specific CD4+ T cell responses were detectable in 83% of seropositive and 60% of seronegative children. Although the magnitude of the CD4+ T cell response did not differ significantly between the two groups, their functional profiles were distinct, with SARS-CoV-2 seropositive children exhibiting a higher proportion of polyfunctional T cells compared to their seronegative counterparts. The frequency of SARS-CoV-2-specific CD4+ T cells in seronegative children was associated with the endemic human coronavirus (HCoV) HKU1 IgG response. Overall, the presence of SARS-CoV-2-responding T cells in seronegative children may result from cross-reactivity to endemic coronaviruses and could contribute to the relative protection from disease observed in SARS-CoV-2-infected children.
Collapse
Affiliation(s)
- Ntombi S. B. Benede
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Marius B. Tincho
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Avril Walters
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Vennesa Subbiah
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Amkele Ngomti
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Claire Butters
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Mathilda Mennen
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Sango Skelem
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Marguerite Adriaanse
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Strauss van Graan
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Sashkia R. Balla
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Thandeka Moyo-Gwete
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L. Moore
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Maresa Botha
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Lesley Workman
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Heather J. Zar
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Ntobeko A. B. Ntusi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Liesl Zühlke
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- South African Medical Research Council, Francie Van Zijl Drive, Parow Cape Town, South Africa
| | - Kate Webb
- South African Medical Research Council, Francie Van Zijl Drive, Parow Cape Town, South Africa
- Crick African Network, The Francis Crick Institute, London, United Kingdom
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Roanne S. Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| |
Collapse
|
17
|
Gao CA, Pickens CI, Morales-Nebreda L, Wunderink RG. Clinical Features of COVID-19 and Differentiation from Other Causes of CAP. Semin Respir Crit Care Med 2023; 44:8-20. [PMID: 36646082 DOI: 10.1055/s-0042-1759889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Community-acquired pneumonia (CAP) is a significant cause of morbidity and mortality, one of the most common reasons for infection-related death worldwide. Causes of CAP include numerous viral, bacterial, and fungal pathogens, though frequently no specific organism is found. Beginning in 2019, the COVID-19 pandemic has caused incredible morbidity and mortality. COVID-19 has many features typical of CAP such as fever, respiratory distress, and cough, and can be difficult to distinguish from other types of CAP. Here, we highlight unique clinical features of COVID-19 pneumonia such as olfactory and gustatory dysfunction, lymphopenia, and distinct imaging appearance.
Collapse
Affiliation(s)
- Catherine A Gao
- Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Chiagozie I Pickens
- Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
18
|
Ramadori GP. SARS-CoV-2-Infection (COVID-19): Clinical Course, Viral Acute Respiratory Distress Syndrome (ARDS) and Cause(s) of Death. Med Sci (Basel) 2022; 10:58. [PMID: 36278528 PMCID: PMC9590085 DOI: 10.3390/medsci10040058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/26/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2-infected symptomatic patients often suffer from high fever and loss of appetite which are responsible for the deficit of fluids and of protein intake. Many patients admitted to the emergency room are, therefore, hypovolemic and hypoproteinemic and often suffer from respiratory distress accompanied by ground glass opacities in the CT scan of the lungs. Ischemic damage in the lung capillaries is responsible for the microscopic hallmark, diffuse alveolar damage (DAD) characterized by hyaline membrane formation, fluid invasion of the alveoli, and progressive arrest of blood flow in the pulmonary vessels. The consequences are progressive congestion, increase in lung weight, and progressive hypoxia (progressive severity of ARDS). Sequestration of blood in the lungs worsens hypovolemia and ischemia in different organs. This is most probably responsible for the recruitment of inflammatory cells into the ischemic peripheral tissues, the release of acute-phase mediators, and for the persistence of elevated serum levels of positive acute-phase markers and of hypoalbuminemia. Autopsy studies have been performed mostly in patients who died in the ICU after SARS-CoV-2 infection because of progressive acute respiratory distress syndrome (ARDS). In the death certification charts, after respiratory insufficiency, hypovolemic heart failure should be mentioned as the main cause of death.
Collapse
|
19
|
Koch CM, Prigge AD, Setar L, Anekalla KR, Do-Umehara HC, Abdala-Valencia H, Politanska Y, Shukla A, Chavez J, Hahn GR, Coates BM. Cilia-related gene signature in the nasal mucosa correlates with disease severity and outcomes in critical respiratory syncytial virus bronchiolitis. Front Immunol 2022; 13:924792. [PMID: 36211387 PMCID: PMC9540395 DOI: 10.3389/fimmu.2022.924792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) can cause life-threatening respiratory failure in infants. We sought to characterize the local host response to RSV infection in the nasal mucosa of infants with critical bronchiolitis and to identify early admission gene signatures associated with clinical outcomes. Methods Nasal scrape biopsies were obtained from 33 infants admitted to the pediatric intensive care unit (PICU) with critical RSV bronchiolitis requiring non-invasive respiratory support (NIS) or invasive mechanical ventilation (IMV), and RNA sequencing (RNA-seq) was performed. Gene expression in participants who required shortened NIS (</= 3 days), prolonged NIS (> 3 days), and IMV was compared. Findings Increased expression of ciliated cell genes and estimated ciliated cell abundance, but not immune cell abundance, positively correlated with duration of hospitalization in infants with critical bronchiolitis. A ciliated cell signature characterized infants who required NIS for > 3 days while a basal cell signature was present in infants who required NIS for </= 3 days, despite both groups requiring an equal degree of respiratory support at the time of sampling. Infants who required invasive mechanical ventilation had increased expression of genes involved in neutrophil activation and cell death. Interpretation Increased expression of cilia-related genes in clinically indistinguishable infants with critical RSV may differentiate between infants who will require prolonged hospitalization and infants who will recover quickly. Validation of these findings in a larger cohort is needed to determine whether a cilia-related gene signature can predict duration of illness in infants with critical bronchiolitis. The ability to identify which infants with critical RSV bronchiolitis may require prolonged hospitalization using non-invasive nasal samples would provide invaluable prognostic information to parents and medical providers.
Collapse
Affiliation(s)
- Clarissa M. Koch
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Andrew D. Prigge
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Leah Setar
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | | | | | | | - Yuliya Politanska
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Avani Shukla
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Jairo Chavez
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Grant R. Hahn
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Bria M. Coates
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
- *Correspondence: Bria M. Coates,
| |
Collapse
|
20
|
Pierangeli A, Gentile M, Oliveto G, Frasca F, Sorrentino L, Matera L, Nenna R, Viscido A, Fracella M, Petrarca L, D’Ettorre G, Ceccarelli G, Midulla F, Antonelli G, Scagnolari C. Comparison by Age of the Local Interferon Response to SARS-CoV-2 Suggests a Role for IFN-ε and -ω. Front Immunol 2022; 13:873232. [PMID: 35903094 PMCID: PMC9315386 DOI: 10.3389/fimmu.2022.873232] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/15/2022] [Indexed: 12/14/2022] Open
Abstract
Children generally develop a mild disease after SARS-CoV-2 infection whereas older adults are at risk of developing severe COVID-19. Recent transcriptomic analysis showed pre-activated innate immunity in children, resulting in a more effective anti-SARS-CoV-2 response upon infection. To further characterize age-related differences, we studied type I and III interferon (IFN) response in SARS-CoV-2 infected and non-infected individuals of different ages. Specifically, levels of expression of type I (IFN-α, -β, -ε and -ω), type III (IFN-λ1, -λ2 and -λ3) IFNs and of the IFN-stimulated genes, ISG15 and ISG56 were quantified in nasopharyngeal cells from diagnostic swabs. Basal transcription of type I/III IFN genes was highest among children and decreased with age. Among SARS-CoV-2-infected individuals, only IFN-ε and -ω levels were significantly higher in children and young adults whereas ISGs were overexpressed in infected adults. The occurrence of symptoms in children and the need for hospitalization in adults were associated to higher transcription of several IFN genes. Starting from a pre-activated transcription level, the expression of type I and III IFNs was not highly up-regulated in children upon SARS-CoV-2 infection; young adults activated IFNs’ transcription at intermediate levels whereas older adults were characterized by higher ISGs and lower IFN-ε and -ω relative expression levels. Overall, our findings contribute to recognize components of a protective IFN response as a function of age, in the context of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Alessandra Pierangeli
- Virology Laboratory, Department of Molecular Medicine, “Sapienza” University, Rome, Italy
- *Correspondence: Alessandra Pierangeli, ; orcid.org/0000-0003-0633-360X
| | - Massimo Gentile
- Virology Laboratory, Department of Molecular Medicine, “Sapienza” University, Rome, Italy
| | - Giuseppe Oliveto
- Virology Laboratory, Department of Molecular Medicine, “Sapienza” University, Rome, Italy
| | - Federica Frasca
- Virology Laboratory, Department of Molecular Medicine, “Sapienza” University, Rome, Italy
| | - Leonardo Sorrentino
- Virology Laboratory, Department of Molecular Medicine, “Sapienza” University, Rome, Italy
| | - Luigi Matera
- Department of Maternal, Infantile and Urological Sciences, “Sapienza” University, Rome, Italy
| | - Raffaella Nenna
- Department of Maternal, Infantile and Urological Sciences, “Sapienza” University, Rome, Italy
| | - Agnese Viscido
- Virology Laboratory, Department of Molecular Medicine, “Sapienza” University, Rome, Italy
| | - Matteo Fracella
- Virology Laboratory, Department of Molecular Medicine, “Sapienza” University, Rome, Italy
| | - Laura Petrarca
- Department of Maternal, Infantile and Urological Sciences, “Sapienza” University, Rome, Italy
| | - Gabriella D’Ettorre
- Department of Public Health and Infectious Diseases, “Sapienza” University, Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, “Sapienza” University, Rome, Italy
| | - Fabio Midulla
- Department of Maternal, Infantile and Urological Sciences, “Sapienza” University, Rome, Italy
| | - Guido Antonelli
- Virology Laboratory, Department of Molecular Medicine, “Sapienza” University, Rome, Italy
| | - Carolina Scagnolari
- Virology Laboratory, Department of Molecular Medicine, “Sapienza” University, Rome, Italy
| |
Collapse
|
21
|
Mick E, Tsitsiklis A, Spottiswoode N, Caldera S, Serpa PH, Detweiler AM, Neff N, Pisco AO, Li LM, Retallack H, Ratnasiri K, Williamson KM, Soesanto V, Simões EAF, Smith C, Abuogi L, Kistler A, Wagner BD, DeRisi JL, Ambroggio L, Mourani PM, Langelier CR. Upper airway gene expression shows a more robust adaptive immune response to SARS-CoV-2 in children. Nat Commun 2022; 13:3937. [PMID: 35803954 PMCID: PMC9263813 DOI: 10.1038/s41467-022-31600-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/31/2022] [Indexed: 12/24/2022] Open
Abstract
Unlike other respiratory viruses, SARS-CoV-2 disproportionately causes severe disease in older adults whereas disease burden in children is lower. To investigate whether differences in the upper airway immune response may contribute to this disparity, we compare nasopharyngeal gene expression in 83 children (<19-years-old; 38 with SARS-CoV-2, 11 with other respiratory viruses, 34 with no virus) and 154 older adults (>40-years-old; 45 with SARS-CoV-2, 28 with other respiratory viruses, 81 with no virus). Expression of interferon-stimulated genes is robustly activated in both children and adults with SARS-CoV-2 infection compared to the respective non-viral groups, with only subtle distinctions. Children, however, demonstrate markedly greater upregulation of pathways related to B cell and T cell activation and proinflammatory cytokine signaling, including response to TNF and production of IFNγ, IL-2 and IL-4. Cell type deconvolution confirms greater recruitment of B cells, and to a lesser degree macrophages, to the upper airway of children. Only children exhibit a decrease in proportions of ciliated cells, among the primary targets of SARS-CoV-2, upon infection. These findings demonstrate that children elicit a more robust innate and especially adaptive immune response to SARS-CoV-2 in the upper airway that likely contributes to their protection from severe disease in the lower airway.
Collapse
Affiliation(s)
- Eran Mick
- Division of Infectious Diseases, University of California, San Francisco, CA, USA.,Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Alexandra Tsitsiklis
- Division of Infectious Diseases, University of California, San Francisco, CA, USA
| | - Natasha Spottiswoode
- Division of Infectious Diseases, University of California, San Francisco, CA, USA
| | - Saharai Caldera
- Division of Infectious Diseases, University of California, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Paula Hayakawa Serpa
- Division of Infectious Diseases, University of California, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Lucy M Li
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Hanna Retallack
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | | | - Kayla M Williamson
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
| | - Victoria Soesanto
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
| | - Eric A F Simões
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO, USA
| | - Christiana Smith
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO, USA
| | - Lisa Abuogi
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO, USA
| | - Amy Kistler
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Brandie D Wagner
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, CO, USA.,Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO, USA
| | - Joseph L DeRisi
- Chan Zuckerberg Biohub, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Lilliam Ambroggio
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO, USA
| | - Peter M Mourani
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO, USA.,Arkansas Children's Research Institute, Arkansas Children's Hospital, Little Rock, AR, USA
| | - Charles R Langelier
- Division of Infectious Diseases, University of California, San Francisco, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
22
|
Abstract
The SARS-CoV-2 pandemic has resulted in unprecedented health and economic losses. Children generally present with less severe disease from this virus compared with adults, yet neonates and children with COVID-19 can require hospitalization, and older children can develop severe complications, such as the multisystem inflammatory syndrome, resulting in >1500 deaths in children from COVID-19 since the onset of the pandemic. The introduction of effective SARS-CoV-2 vaccines in school-age children and adult populations combined with the emergence of new, more highly transmissible SARS-CoV-2 variants has resulted in a proportional increase of infections in young children. Here, we discuss (1) the current knowledge on pediatric SARS-CoV-2 infection and pathogenesis in comparison with adults, (2) the data on vaccine immunogenicity and efficacy in children, and (3) the benefits of early life SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Kristina De Paris
- Department of Microbiology and Immunology, Center for AIDS Research, and Children's Research Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine/ New York Presbyterian, New York, New York, USA
| |
Collapse
|
23
|
Rahimi RA, Cho JL, Jakubzick CV, Khader SA, Lambrecht BN, Lloyd CM, Molofsky AB, Talbot S, Bonham CA, Drake WP, Sperling AI, Singer BD. Advancing Lung Immunology Research: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2022; 67:e1-18. [PMID: 35776495 PMCID: PMC9273224 DOI: 10.1165/rcmb.2022-0167st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The mammalian airways and lungs are exposed to a myriad of inhaled particulate matter, allergens, and pathogens. The immune system plays an essential role in protecting the host from respiratory pathogens, but a dysregulated immune response during respiratory infection can impair pathogen clearance and lead to immunopathology. Furthermore, inappropriate immunity to inhaled antigens can lead to pulmonary diseases. A complex network of epithelial, neural, stromal, and immune cells has evolved to sense and respond to inhaled antigens, including the decision to promote tolerance versus a rapid, robust, and targeted immune response. Although there has been great progress in understanding the mechanisms governing immunity to respiratory pathogens and aeroantigens, we are only beginning to develop an integrated understanding of the cellular networks governing tissue immunity within the lungs and how it changes after inflammation and over the human life course. An integrated model of airway and lung immunity will be necessary to improve mucosal vaccine design as well as prevent and treat acute and chronic inflammatory pulmonary diseases. Given the importance of immunology in pulmonary research, the American Thoracic Society convened a working group to highlight central areas of investigation to advance the science of lung immunology and improve human health.
Collapse
|
24
|
Tamminen P, Kerimov D, Viskari H, Aittoniemi J, Syrjänen J, Lehtimäki L. Nasal nitric oxide is decreased in acute mild COVID-19 and related to viral load. J Breath Res 2022; 16. [PMID: 35772381 DOI: 10.1088/1752-7163/ac7d6a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/30/2022] [Indexed: 11/12/2022]
Abstract
Gaseous nitric oxide levels from the lungs (FeNO) and from the nose (nNO) have been demonstrated to react to acute infection or influenza vaccination. There are no published data on nNO levels during acute COVID-19, but normal levels of FeNO have been reported in one study. Our aim was to assess if acute mild COVID-19 alters nasal or bronchial NO output at the time of acute infection and at a 2-month follow up, and if this is related to symptoms or viral load. This study included 82 subjects with mild acute airway infection who did not need hospitalisation: 43 cases (RT-PCR-positive for SARS-CoV-2 in routine testing from nasopharynx) and 39 age- (+/- 5 years) and gender-matched controls (RT-PCR-negative for SARS-CoV-2). During acute infection, the cases had lower nNO compared to controls (526 [345-688] vs. 773 [677-929] ppb; p<0.001), but after two months, there was no significant difference between the groups (766 [597-965] vs. 893 [739-1066] ppb; p=0.162). There was no difference in FeNO between the groups at either of the visits. Nasal NO correlated with the cycle threshold (Ct) value of the nasopharyngeal RT-PCR test for SARS-CoV-2 (Spearman's rs=0.550; p<0.001), that is, nNO was lower with a higher viral load. Nasal NO output was decreased in acute COVID-19 in relation to higher viral load, suggesting that the type and intensity of inflammatory response affects the release of NO from airway mucosa. In these subjects without significant lower airway involvement, there were no clinically relevant findings regarding FeNO.
Collapse
Affiliation(s)
- Pekka Tamminen
- Tampere University Hospital, Elämänaukio 2, Tampere, 33521, FINLAND
| | - Dominik Kerimov
- Department of Clinical Microbiology, Fimlab Laboratories, Arvo Ylpön Katu 4, Tampere, 33520, FINLAND
| | - Hanna Viskari
- Tampere University Hospital, Elämänaukio 2, Tampere, Pirkanmaa, 33521, FINLAND
| | - Janne Aittoniemi
- Department of Clinical Microbiology, Fimlab Laboratories, Arvo Ylpön Katu 4, Tampere, 33520, FINLAND
| | - Jaana Syrjänen
- Department of Internal Medicine, Tampere University Hospital, Elämänaukio 2, Tampere, Pirkanmaa, 33521, FINLAND
| | - Lauri Lehtimäki
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, Tampere, 33520, FINLAND
| |
Collapse
|
25
|
Becerra-Artiles A, Calvo-Calle JM, Co MD, Nanaware PP, Cruz J, Weaver GC, Lu L, Forconi C, Finberg RW, Moormann AM, Stern LJ. Broadly recognized, cross-reactive SARS-CoV-2 CD4 T cell epitopes are highly conserved across human coronaviruses and presented by common HLA alleles. Cell Rep 2022; 39:110952. [PMID: 35675811 PMCID: PMC9135679 DOI: 10.1016/j.celrep.2022.110952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/03/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
Sequence homology between SARS-CoV-2 and common-cold human coronaviruses (HCoVs) raises the possibility that memory responses to prior HCoV infection can affect T cell response in COVID-19. We studied T cell responses to SARS-CoV-2 and HCoVs in convalescent COVID-19 donors and identified a highly conserved SARS-CoV-2 sequence, S811-831, with overlapping epitopes presented by common MHC class II proteins HLA-DQ5 and HLA-DP4. These epitopes are recognized by low-abundance CD4 T cells from convalescent COVID-19 donors, mRNA vaccine recipients, and uninfected donors. TCR sequencing revealed a diverse repertoire with public TCRs. T cell cross-reactivity is driven by the high conservation across human and animal coronaviruses of T cell contact residues in both HLA-DQ5 and HLA-DP4 binding frames, with distinct patterns of HCoV cross-reactivity explained by MHC class II binding preferences and substitutions at secondary TCR contact sites. These data highlight S811-831 as a highly conserved CD4 T cell epitope broadly recognized across human populations.
Collapse
Affiliation(s)
| | | | - Mary Dawn Co
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Padma P Nanaware
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - John Cruz
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Grant C Weaver
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Liying Lu
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Catherine Forconi
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Robert W Finberg
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Ann M Moormann
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Lawrence J Stern
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01655, USA; Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
26
|
Bamford CGG, Broadbent L, Aranday-Cortes E, McCabe M, McKenna J, Courtney DG, Touzelet O, Ali A, Roberts G, Lopez Campos G, Simpson D, McCaughey C, Fairley D, Mills K, Power UF, on behalf of the Breathing Together Investigators. Comparison of SARS-CoV-2 Evolution in Paediatric Primary Airway Epithelial Cell Cultures Compared with Vero-Derived Cell Lines. Viruses 2022; 14:325. [PMID: 35215919 PMCID: PMC8877208 DOI: 10.3390/v14020325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 can efficiently infect both children and adults, albeit with morbidity and mortality positively associated with increasing host age and presence of co-morbidities. SARS-CoV-2 continues to adapt to the human population, resulting in several variants of concern (VOC) with novel properties, such as Alpha and Delta. However, factors driving SARS-CoV-2 fitness and evolution in paediatric cohorts remain poorly explored. Here, we provide evidence that both viral and host factors co-operate to shape SARS-CoV-2 genotypic and phenotypic change in primary airway cell cultures derived from children. Through viral whole-genome sequencing, we explored changes in genetic diversity over time of two pre-VOC clinical isolates of SARS-CoV-2 during passage in paediatric well-differentiated primary nasal epithelial cell (WD-PNEC) cultures and in parallel, in unmodified Vero-derived cell lines. We identified a consistent, rich genetic diversity arising in vitro, variants of which could rapidly rise to near fixation within two passages. Within isolates, SARS-CoV-2 evolution was dependent on host cells, with paediatric WD-PNECs showing a reduced diversity compared to Vero (E6) cells. However, mutations were not shared between strains. Furthermore, comparison of both Vero-grown isolates on WD-PNECs disclosed marked growth attenuation mapping to the loss of the polybasic cleavage site (PBCS) in Spike, while the strain with mutations in Nsp12 (T293I), Spike (P812R) and a truncation of Orf7a remained viable in WD-PNECs. Altogether, our work demonstrates that pre-VOC SARS-CoV-2 efficiently infects paediatric respiratory epithelial cells, and its evolution is restrained compared to Vero (E6) cells, similar to the case of adult cells. We highlight the significant genetic plasticity of SARS-CoV-2 while uncovering an influential role for collaboration between viral and host cell factors in shaping viral evolution and ultimately fitness in human respiratory epithelium.
Collapse
Affiliation(s)
- Connor G. G. Bamford
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (L.B.); (M.M.); (D.G.C.); (O.T.); (A.A.); (G.R.); (G.L.C.); (D.S.)
| | - Lindsay Broadbent
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (L.B.); (M.M.); (D.G.C.); (O.T.); (A.A.); (G.R.); (G.L.C.); (D.S.)
| | - Elihu Aranday-Cortes
- Medical Research Council-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK;
| | - Mary McCabe
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (L.B.); (M.M.); (D.G.C.); (O.T.); (A.A.); (G.R.); (G.L.C.); (D.S.)
| | - James McKenna
- Regional Virus Laboratory, Belfast Health and Social Care Trust, Belfast BT12 6BA, UK; (J.M.); (C.M.); (D.F.)
| | - David G. Courtney
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (L.B.); (M.M.); (D.G.C.); (O.T.); (A.A.); (G.R.); (G.L.C.); (D.S.)
| | - Olivier Touzelet
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (L.B.); (M.M.); (D.G.C.); (O.T.); (A.A.); (G.R.); (G.L.C.); (D.S.)
| | - Ahlam Ali
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (L.B.); (M.M.); (D.G.C.); (O.T.); (A.A.); (G.R.); (G.L.C.); (D.S.)
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK;
| | - Grace Roberts
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (L.B.); (M.M.); (D.G.C.); (O.T.); (A.A.); (G.R.); (G.L.C.); (D.S.)
| | - Guillermo Lopez Campos
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (L.B.); (M.M.); (D.G.C.); (O.T.); (A.A.); (G.R.); (G.L.C.); (D.S.)
| | - David Simpson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (L.B.); (M.M.); (D.G.C.); (O.T.); (A.A.); (G.R.); (G.L.C.); (D.S.)
| | - Conall McCaughey
- Regional Virus Laboratory, Belfast Health and Social Care Trust, Belfast BT12 6BA, UK; (J.M.); (C.M.); (D.F.)
| | - Derek Fairley
- Regional Virus Laboratory, Belfast Health and Social Care Trust, Belfast BT12 6BA, UK; (J.M.); (C.M.); (D.F.)
| | - Ken Mills
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK;
| | - Ultan F. Power
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (L.B.); (M.M.); (D.G.C.); (O.T.); (A.A.); (G.R.); (G.L.C.); (D.S.)
| | | |
Collapse
|
27
|
Yoshida M, Worlock KB, Huang N, Lindeboom RGH, Butler CR, Kumasaka N, Dominguez Conde C, Mamanova L, Bolt L, Richardson L, Polanski K, Madissoon E, Barnes JL, Allen-Hyttinen J, Kilich E, Jones BC, de Wilton A, Wilbrey-Clark A, Sungnak W, Pett JP, Weller J, Prigmore E, Yung H, Mehta P, Saleh A, Saigal A, Chu V, Cohen JM, Cane C, Iordanidou A, Shibuya S, Reuschl AK, Herczeg IT, Argento AC, Wunderink RG, Smith SB, Poor TA, Gao CA, Dematte JE, Reynolds G, Haniffa M, Bowyer GS, Coates M, Clatworthy MR, Calero-Nieto FJ, Göttgens B, O'Callaghan C, Sebire NJ, Jolly C, De Coppi P, Smith CM, Misharin AV, Janes SM, Teichmann SA, Nikolić MZ, Meyer KB. Local and systemic responses to SARS-CoV-2 infection in children and adults. Nature 2022; 602:321-327. [PMID: 34937051 PMCID: PMC8828466 DOI: 10.1038/s41586-021-04345-x] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023]
Abstract
It is not fully understood why COVID-19 is typically milder in children1-3. Here, to examine the differences between children and adults in their response to SARS-CoV-2 infection, we analysed paediatric and adult patients with COVID-19 as well as healthy control individuals (total n = 93) using single-cell multi-omic profiling of matched nasal, tracheal, bronchial and blood samples. In the airways of healthy paediatric individuals, we observed cells that were already in an interferon-activated state, which after SARS-CoV-2 infection was further induced especially in airway immune cells. We postulate that higher paediatric innate interferon responses restrict viral replication and disease progression. The systemic response in children was characterized by increases in naive lymphocytes and a depletion of natural killer cells, whereas, in adults, cytotoxic T cells and interferon-stimulated subpopulations were significantly increased. We provide evidence that dendritic cells initiate interferon signalling in early infection, and identify epithelial cell states associated with COVID-19 and age. Our matching nasal and blood data show a strong interferon response in the airways with the induction of systemic interferon-stimulated populations, which were substantially reduced in paediatric patients. Together, we provide several mechanisms that explain the milder clinical syndrome observed in children.
Collapse
Affiliation(s)
- Masahiro Yoshida
- UCL Respiratory, Division of Medicine, University College London, London, UK
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Kaylee B Worlock
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Ni Huang
- Wellcome Sanger Institute, Cambridge, UK
| | | | - Colin R Butler
- NIHR Great Ormond Street BRC and UCL Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | | | | | - Liam Bolt
- Wellcome Sanger Institute, Cambridge, UK
| | | | | | - Elo Madissoon
- Wellcome Sanger Institute, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Josephine L Barnes
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | | | - Eliz Kilich
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Brendan C Jones
- NIHR Great Ormond Street BRC and UCL Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Angus de Wilton
- University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | | | | | | | - Henry Yung
- UCL Respiratory, Division of Medicine, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Puja Mehta
- UCL Respiratory, Division of Medicine, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Aarash Saleh
- Royal Free Hospital NHS Foundation Trust, London, UK
| | - Anita Saigal
- Royal Free Hospital NHS Foundation Trust, London, UK
| | - Vivian Chu
- Royal Free Hospital NHS Foundation Trust, London, UK
| | - Jonathan M Cohen
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Clare Cane
- Royal Free Hospital NHS Foundation Trust, London, UK
| | | | - Soichi Shibuya
- NIHR Great Ormond Street BRC and UCL Institute of Child Health, London, UK
| | - Ann-Kathrin Reuschl
- UCL Division of Infection and Immunity, University College London, London, UK
| | - Iván T Herczeg
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - A Christine Argento
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sean B Smith
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Taylor A Poor
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Catherine A Gao
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jane E Dematte
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gary Reynolds
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Cambridge, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Matthew Coates
- Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Berthold Göttgens
- Wellcome, MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Christopher O'Callaghan
- NIHR Great Ormond Street BRC and UCL Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Neil J Sebire
- NIHR Great Ormond Street BRC and UCL Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Clare Jolly
- UCL Division of Infection and Immunity, University College London, London, UK
| | - Paolo De Coppi
- NIHR Great Ormond Street BRC and UCL Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Claire M Smith
- NIHR Great Ormond Street BRC and UCL Institute of Child Health, London, UK
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sam M Janes
- UCL Respiratory, Division of Medicine, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cambridge, UK
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Marko Z Nikolić
- UCL Respiratory, Division of Medicine, University College London, London, UK.
- University College London Hospitals NHS Foundation Trust, London, UK.
| | | |
Collapse
|
28
|
Morrell ED, Mikacenic C. Differences Between Children and Adults with COVID-19: It's Right Under our Nose. Am J Respir Cell Mol Biol 2021; 66:122-123. [PMID: 34758269 PMCID: PMC8845138 DOI: 10.1165/rcmb.2021-0455ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Eric D Morrell
- University of Washington, 7284, Pulmonary and Critical Care Medicine, Seattle, Washington, United States;
| | - Carmen Mikacenic
- Benaroya Research Institute at Virginia Mason, 128776, Medicine, Pulmonary and Critical Care , Seattle, Washington, United States
| |
Collapse
|