1
|
Singh A, Chaudhary R. Potentials of peroxisome proliferator-activated receptor (PPAR) α, β/δ, and γ: An in-depth and comprehensive review of their molecular mechanisms, cellular Signalling, immune responses and therapeutic implications in multiple diseases. Int Immunopharmacol 2025; 155:114616. [PMID: 40222274 DOI: 10.1016/j.intimp.2025.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Peroxisome proliferator-activated receptors (PPARs), ligand-activated transcription factors, have emerged as a key regulator of various biological processes, underscoring their relevance in the pathophysiology and treatment of numerous diseases. PPARs are primarily recognized for their critical role in lipid and glucose metabolism, which underpins their therapeutic applications in managing type 2 diabetes mellitus. Beyond metabolic disorders, they have gained attention for their involvement in immune modulation, making them potential targets for autoimmune-related inflammatory diseases. Furthermore, PPAR's ability to regulate proliferation, differentiation, and apoptosis has positioned them as promising candidates in oncology. Their anti-inflammatory and anti-fibrotic properties further highlight their potential in dermatological and cardiovascular conditions, where dysregulated inflammatory responses contribute to disease progression. Recent advancements have elucidated the molecular mechanisms of different PPAR isoforms, including their regulation of key signalling pathways such as NF-κB and MAPK, which are crucial in inflammation and cellular stress responses. Additionally, their interactions with co-factors and post-translational modifications further diversify their functional roles. The therapeutic potential of various PPAR agonists has been extensively explored, although challenges related to side effects and target specificity remain. This growing body of evidence underscores the significance of PPARs in understanding the molecular basis of diseases and advancing therapeutic interventions, paving way for targeted treatment approach across a wide spectrum of medical conditions. Here, we provide a comprehensive and detailed perspective of PPARs and their potential across different health conditions to advance our understanding, elucidate underlying mechanisms, and facilitate the development of potential treatment strategies.
Collapse
Affiliation(s)
- Alpana Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
2
|
Victoria VM, Constanza PM, Victoria GM, Virginia SP, Jose L, Gustavo B, Cecilia SM. Nitro-Oleic acid protects from neovascularization, oxidative stress, gliosis and neurodegeneration in oxygen-induced retinopathy. Redox Biol 2025; 83:103634. [PMID: 40273475 PMCID: PMC12051658 DOI: 10.1016/j.redox.2025.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/25/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Inflammation and oxidative stress are involved in Proliferative Retinopathies (PR). Müller glial cells (MGCs) and microglia play pivotal roles in pathological neovascularization (NV) and neurodegeneration in PR. Nitro-fatty acids are important electrophilic signaling mediators with anti-inflammatory and antioxidant properties. Herein, our goal was to evaluate the cytoprotective effect of nitro-oleic acid (NO2-OA) on neurons, MGCs and microglia in a mouse model of oxygen-induced retinopathy (OIR). NO2-OA induced vascular regrowth and reduced NV at P17 OIR, although no difference in the proangiogenic/antiangiogenic (VEGF-A/PEDF) balance was found between NO2-OA treatment and vehicle. In addition, Western blot and immunofluorescence assays showed that NO2-OA prevented gliosis at P17 OIR and decreased the number and activation of IBA1+ retinal myeloid cells. However, NO2-OA did not restore the decrease in expression of glutamine synthase (GS). Loss of retinal function in OIR mouse model measured by electroretinography was ameliorated, mainly at P26 OIR, after NO2-OA treatment. Western blot analysis of retinas from OIR mice revealed decreased levels of caspase-3 protein and increased number of TUNEL-positive cells at P26 compared to RA. Notably, these alterations were partially prevented after NO2-OA treatment. Besides, NO2-OA attenuates oxidative stress induced in MGCs exposed to aqueous humor from patients with different stages of PR. These findings highlight NO2-OA as a promising therapeutic strategy targeting both vascular and neuroglial components in PR, suggesting its potential clinical relevance.
Collapse
Affiliation(s)
- Vaglienti María Victoria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, 5000, Argentina
| | - Paz María Constanza
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, 5000, Argentina
| | - Gutierrez Maria Victoria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, 5000, Argentina
| | - Subirada Paula Virginia
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, 5000, Argentina
| | - Luna Jose
- Centro Privado de Ojos Romagosa S.A, Argentina
| | - Bonacci Gustavo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, 5000, Argentina.
| | - Sánchez María Cecilia
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, 5000, Argentina.
| |
Collapse
|
3
|
Marinho LL, Ribeiro ML, Lawler PR, Iatan I, Godoy LC, Rached FH, Maranhão RC. Impact of Selective Peroxisome Proliferator-Activated Receptor (PPAR)-α Modulators and Fibrates on Microvascular Disease: Is There Still Room? Curr Atheroscler Rep 2025; 27:39. [PMID: 40111592 DOI: 10.1007/s11883-025-01292-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE OF REVIEW This review examines the role of fibrates and the selective PPAR-alpha modulators (SPPARM-α), pemafibrate, in diabetic microvascular disease. It reviews their potential to mitigate residual risk in retinopathy, nephropathy, neuropathy and peripheral vascular disease. RECENT FINDINGS These pharmacotherapies, beyond their lipid-lowering effects, may exert anti-inflammatory, antioxidant, and endothelial-protective actions. Secondary analyses of large clinical trials supports their efficacy in slowing retinopathy progression, reducing albuminuria, and preventing minor amputations. Recent analyses suggest that pemafibrate offers an enhanced efficacy and safety profile compared to conventional fibrate and may lower the incidence of diabetic foot ulcers and gangrene. Fibrates and SPPARM-α agonists represent promising therapies to prevent diabetic microvascular complications. Their benefits in reducing microvascular damage support their broader adoption in clinical practice. However, additional dedicated randomized trials are essential to validate the efficacy of those agents in contemporary diabetes care era and to address the growing burden of diabetes-related microvascular complications.
Collapse
Affiliation(s)
- Lucas Lage Marinho
- McGill University Health Centre, McGill University, 1001 boulevard Décarie, Montreal, H4A3J1, Canada.
- Heart Institute (InCor), University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil.
| | | | - Patrick R Lawler
- McGill University Health Centre, McGill University, 1001 boulevard Décarie, Montreal, H4A3J1, Canada
- University of Toronto, Toronto, ON, Canada
| | - Iulia Iatan
- McGill University Health Centre, McGill University, 1001 boulevard Décarie, Montreal, H4A3J1, Canada
| | | | - Fabiana Hanna Rached
- Heart Institute (InCor), University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | | |
Collapse
|
4
|
Chen CW, Yeh WL, Charoensaensuk V, Lin C, Yang LY, Chen MK, Yeh T, Tsai CF, Lu DY. Oral administration of osthole mitigates maladaptive behaviors through PPARα activation in mice subjected to repeated social defeat stress. Neurochem Int 2024; 179:105811. [PMID: 39053771 DOI: 10.1016/j.neuint.2024.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Psychological stress induces neuroinflammatory responses, which are associated with the pathogenesis of various psychiatric disorders, such as posttraumatic stress disorder and anxiety. Osthole-a natural coumarin isolated from the seeds of the Chinese herb Cnidium monnieri-exerts anti-inflammatory and antioxidative effects on the central nervous system. However, the therapeutic benefits of osthole against psychiatric disorders remain largely unknown. We previously demonstrated that mice subjected to repeated social defeat stress (RSDS) in the presence of aggressor mice exhibited symptoms of posttraumatic stress disorder, such as social avoidance and anxiety-like behaviors. In this study, we investigated the therapeutic effects of osthole and the underlying molecular mechanisms. Osthole exerted therapeutic effects on cognitive behaviors, mitigating anxiety-like behaviors and social avoidance in a mouse model of RSDS. The anti-inflammatory response induced by the oral administration of osthole was strengthened through the upregulation of heme oxygenase-1 expression. The expression of PPARα was inhibited in mice subjected to RSDS. Nonetheless, osthole treatment reversed the inhibition of PPARα expression. We identified a positive correlation between heme oxygenase-1 expression and PPARα expression in osthole-treated mice. In conclusion, osthole has potential as a Chinese herbal medicine for anxiety disorders. When designing novel drugs for psychiatric disorders, researchers should consider targeting the activation of PPARα.
Collapse
Affiliation(s)
- Chao-Wei Chen
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan
| | - Wei-Lan Yeh
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan; Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Mao-Kai Chen
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Tong Yeh
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
5
|
Li K, Liu J, Li X, Liu X, Hu P, He M. Association of EPA and DHA with age-related macular degeneration: a cross-sectional study from NHANES. Front Med (Lausanne) 2024; 11:1440479. [PMID: 39296908 PMCID: PMC11408175 DOI: 10.3389/fmed.2024.1440479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
Purpose This cross-sectional study conducted in the general US population investigated the association between dietary intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and the prevalence of AMD. Methods Data from the National Health and Nutrition Examination Survey (NHANES) were utilized, including 4,842 participants aged 40 years and older. Dietary EPA and DHA intake data were collected through two 24-h dietary recall interviews and adjusted for weight. AMD was determined by a standardized grading system based on the presence of key features of AMD in color photographs of the macula. Multivariate logistic regression and restricted cubic spline models evaluated the associations between dietary EPA and DHA intake and AMD. Subgroup analysis and interaction analysis explored the influence of covariates. Results A total of 4,842 participants were included. In the multivariate-adjusted model 2, the odds ratios (ORs) with 95% confidence intervals (CIs) for AMD were 0.86 (0.75, 0.99) and 0.88 (0.80, 0.97) per unit increase in dietary EPA and DHA intake, respectively. Interaction testing revealed significant effect modification by age, education, and BMI on the EPA-AMD association, indicating these factors significantly impacted this inverse relationship (p-interaction < 0.05). Similarly, age, education, BMI, and cataract surgery history modified the inverse DHA-AMD association (p-interaction < 0.05). Dose-response analyses demonstrated a negative correlation between dietary EPA and DHA intake with AMD prevalence (p-nonlinearity = 0.184 and 0.548, respectively). Conclusion Our findings suggested that higher dietary EPA and DHA intake could be associated with lower AMD risk in older US adults. Age, education level, BMI, and history of cataract surgery may influence this inverse association.
Collapse
Affiliation(s)
- Kewei Li
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jialing Liu
- Department of Phase I Clinical Trial Center, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuhui Li
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaozhu Liu
- Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Pengcheng Hu
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming He
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Ren Y, Liang H, Xie M, Zhang M. Natural plant medications for the treatment of retinal diseases: The blood-retinal barrier as a clue. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155568. [PMID: 38795692 DOI: 10.1016/j.phymed.2024.155568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Retinal diseases significantly contribute to the global burden of visual impairment and blindness. The occurrence of retinal diseases is often accompanied by destruction of the blood‒retinal barrier, a vital physiological structure responsible for maintaining the stability of the retinal microenvironment. However, detailed summaries of the factors damage the blood‒retinal barrier and treatment methods involving natural plant medications are lacking. PURPOSE To comprehensively summarize and analyze the protective effects of active substances in natural plant medications on damage to the blood-retina barrier that occurs when retinal illnesses, particularly diabetic retinopathy, and examine their medicinal value and future development prospects. METHODS In this study, we searched for studies published in the ScienceDirect, PubMed, and Web of Science databases. The keywords used included natural plant medications, plants, natural herbs, blood retinal barrier, retinal diseases, diabetic retinopathy, age-related macular degeneration, and uveitis. Chinese herbal compound articles, non-English articles, warning journals, and duplicates were excluded from the analysis. RESULTS The blood‒retinal barrier is susceptible to high glucose, aging, immune responses, and other factors that destroy retinal homeostasis, resulting in pathological changes such as apoptosis and increased vascular permeability. Existing studies have shown that the active compounds or extracts of many natural plants have the effect of repairing blood-retinal barrier dysfunction. Notably, berberine, puerarin, and Lycium barbarum polysaccharides exhibited remarkable therapeutic effects. Additionally, curcumin, astragaloside IV, hesperidin, resveratrol, ginsenoside Rb1, luteolin, and Panax notoginseng saponins can effectively protect the blood‒retinal barrier by interfering with distinct pathways. The active ingredients found in natural plant medications primarily repair the blood‒retinal barrier by modulating pathological factors such as oxidative stress, inflammation, pyroptosis, and autophagy, thereby alleviating retinal diseases. CONCLUSION This review summarizes a series of plant extracts and plant active compounds that can treat retinal diseases by preventing and treating blood‒retinal barrier damage and provides reference for the research of new drugs for treating retinal diseases.
Collapse
Affiliation(s)
- Yuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Huan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Mengjun Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
7
|
Chow BJ, Lee IXY, Liu C, Liu YC. Potential therapeutic effects of peroxisome proliferator-activated receptors on corneal diseases. Exp Biol Med (Maywood) 2024; 249:10142. [PMID: 38993197 PMCID: PMC11238193 DOI: 10.3389/ebm.2024.10142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
The cornea is an avascular tissue in the eye that has multiple functions in the eye to maintain clear vision which can significantly impair one's vision when subjected to damage. Peroxisome proliferator-activated receptors (PPARs), a family of nuclear receptor proteins comprising three different peroxisome proliferator-activated receptor (PPAR) isoforms, namely, PPAR alpha (α), PPAR gamma (γ), and PPAR delta (δ), have emerged as potential therapeutic targets for treating corneal diseases. In this review, we summarised the current literature on the therapeutic effects of PPAR agents on corneal diseases. We discussed the role of PPARs in the modulation of corneal wound healing, suppression of corneal inflammation, neovascularisation, fibrosis, stimulation of corneal nerve regeneration, and amelioration of dry eye by inhibiting oxidative stress within the cornea. We also discussed the underlying mechanisms of these therapeutic effects. Future clinical trials are warranted to further attest to the clinical therapeutic efficacy.
Collapse
Affiliation(s)
- Bing Jie Chow
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Isabelle Xin Yu Lee
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Chang Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| |
Collapse
|
8
|
Al-Rashed F, Arefanian H, Madhoun AA, Bahman F, Sindhu S, AlSaeed H, Jacob T, Thomas R, Al-Roub A, Alzaid F, Malik MDZ, Nizam R, Thanaraj TA, Al-Mulla F, Hannun YA, Ahmad R. Neutral Sphingomyelinase 2 Inhibition Limits Hepatic Steatosis and Inflammation. Cells 2024; 13:463. [PMID: 38474427 PMCID: PMC10931069 DOI: 10.3390/cells13050463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is manifested by hepatic steatosis, insulin resistance, hepatocyte death, and systemic inflammation. Obesity induces steatosis and chronic inflammation in the liver. However, the precise mechanism underlying hepatic steatosis in the setting of obesity remains unclear. Here, we report studies that address this question. After 14 weeks on a high-fat diet (HFD) with high sucrose, C57BL/6 mice revealed a phenotype of liver steatosis. Transcriptional profiling analysis of the liver tissues was performed using RNA sequencing (RNA-seq). Our RNA-seq data revealed 692 differentially expressed genes involved in processes of lipid metabolism, oxidative stress, immune responses, and cell proliferation. Notably, the gene encoding neutral sphingomyelinase, SMPD3, was predominantly upregulated in the liver tissues of the mice displaying a phenotype of steatosis. Moreover, nSMase2 activity was elevated in these tissues of the liver. Pharmacological and genetic inhibition of nSMase2 prevented intracellular lipid accumulation and TNFα-induced inflammation in in-vitro HepG2-steatosis cellular model. Furthermore, nSMase2 inhibition ameliorates oxidative damage by rescuing PPARα and preventing cell death associated with high glucose/oleic acid-induced fat accumulation in HepG2 cells. Collectively, our findings highlight the prominent role of nSMase2 in hepatic steatosis, which could serve as a potential therapeutic target for NAFLD and other hepatic steatosis-linked disorders.
Collapse
Affiliation(s)
- Fatema Al-Rashed
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Hossein Arefanian
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (S.S.)
| | - Fatemah Bahman
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Sardar Sindhu
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (S.S.)
| | - Halemah AlSaeed
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Texy Jacob
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Reeby Thomas
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Areej Al-Roub
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Fawaz Alzaid
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France;
| | - MD Zubbair Malik
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.Z.M.); (R.N.); (T.A.T.); (F.A.-M.)
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.Z.M.); (R.N.); (T.A.T.); (F.A.-M.)
| | - Thangavel Alphonse Thanaraj
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.Z.M.); (R.N.); (T.A.T.); (F.A.-M.)
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.Z.M.); (R.N.); (T.A.T.); (F.A.-M.)
| | - Yusuf A. Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| |
Collapse
|
9
|
Tanaka Y, Takagi R, Mitou S, Shimmura M, Hasegawa T, Amarume J, Shinohara M, Kageyama Y, Sasase T, Ohta T, Muramatsu SI, Kakehashi A, Kaburaki T. Protective Effect of Pemafibrate Treatment against Diabetic Retinopathy in Spontaneously Diabetic Torii Fatty Rats. Biol Pharm Bull 2024:b23-00872. [PMID: 38432946 DOI: 10.1248/bpb.b23-00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Diabetic retinopathy (DR) can cause visual impairment and blindness, and the increasing global prevalence of diabetes underscores the need for effective therapies to prevent and treat DR. Therefore, this study aimed to evaluate the protective effect of pemafibrate treatment against DR, using a Spontaneously Diabetic Torii (SDT) fatty rat model of obese type 2 diabetes. SDT fatty rats were fed either a diet supplemented with pemafibrate (0.3 mg/kg/day) for 16 weeks, starting at 8 weeks of age (Pf SDT fatty: study group), or normal chow (SDT fatty: controls). Normal chow was provided to Sprague-Dawley (SD) rats (SD: normal controls). Electroretinography (ERG) was performed at 8 and 24 weeks of age to evaluate the retinal neural function. After sacrifice, retinal thickness, number of retinal folds, and choroidal thickness were evaluated, and immunostaining was performed for aquaporin-4 (AQP4). No significant differences were noted in food consumption, body weight, or blood glucose level after pemafibrate administration. Triglyceride levels were reduced, and high-density lipoprotein cholesterol levels were increased. Extension of oscillatory potential (OP)1 and OP3 waves on ERG was suppressed in the Pf SDT fatty group. Retinal thickness at 1,500 microns from the optic disc improved in the Pf SDT fatty group. No significant improvements were noted in choroidal thickness or number of retinal folds. Quantitative analyses showed that AQP4-positive regions in the retinas were significantly larger in the Pf SDT fatty group than in the SDT fatty group. The findings suggest that pemafibrate treatment can exert protective effects against DR.
Collapse
Affiliation(s)
| | - Rina Takagi
- Department of Ophthalmology, Jichi Medical University
| | - Shingen Mitou
- Department of Ophthalmology, Jichi Medical University
| | | | | | | | | | | | - Tomohiko Sasase
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Takeshi Ohta
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Center for Open Innovation, Jichi Medical University
| | | | | |
Collapse
|
10
|
Wang X, Liu X, Tzekov R, Yu C, Yang J, Feng Y, Wu Y, Xu Y, Li S, Li W. Fenofibrate Ameliorates Retinal Pigment Epithelium Injury Induced by Excessive Fat Through Upregulation of PI3K/AKT Signaling. Drug Des Devel Ther 2023; 17:3439-3452. [PMID: 38024539 PMCID: PMC10676092 DOI: 10.2147/dddt.s420178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose This study aimed to determine the effect and its mechanism of fenofibrate on retinal pigment epithelium (RPE) injury induced by excessive fat in vitro and in vivo. Methods ARPE-19 cells were co-incubated with palmitic acid (PA) and fenofibric acid (the active form of fenofibrate after metabolism in vivo) and mice fed with high-fat diet (HFD) were supplemented with fenofibrate. The following methods were used: Western blot and immunofluorescent staining to determine expressions of reactive oxygen species (ROS)-associated factors and proinflammatory cytokines; electroretinogram (ERG) c-wave to evaluate RPE function; TUNEL staining to detect the apoptotic cell in RPE tissue. Additionally, ARPE19 cells were treated with PI3K/AKT inhibitor or agonist to investigate the mechanism of fenofibric acid inhibiting PA-induced RPE damage. Results We found that the application of PA inhibited RPE cell viability in a dose-dependent manner, and increased the levels of NAPDH oxidase 4 (NOX4), 3-nitrotyrosin (3-NT), intracellular adhesion molecule-1(ICAM1), tumor necrosis factor alpha (TNFα) and vascular endothelial growth factor (VEGF) at 400μM. The application of fenofibric acid resulted in the inhibition of NOX4, 3-NT, TNFα, ICAM1 and VEGF expression in ARPE-19 cells treated with PA. Moreover, wortmannin, as a selective inhibitor of PI3K/AKT pathway, abolished the effects of fenofibrate on the oxidative stress and inflammation in ARPE-19 cells. In addition, 740Y-P, a selective agonist of PI3K/AKT pathway, enhanced the protective action of fenofibrate. Meanwhile, in vivo dosing of fenofibrate ameliorated the downregulated amplitudes of ERG c-wave in HFD-fed mice and suppressed the HFD-induced oxidative injury and inflammatory response in RPE tissues. Conclusion Our results suggested that fenofibrate ameliorated RPE cell damage induced by excessive fat in vitro and in vivo, in part, through activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xue Wang
- Aier School of Ophthalmology, Central South University, Changsha, People’s Republic of China
- Suzhou Institute of Biomedical Engineering and Technology, University of Science and Technology of China, Suzhou, People’s Republic of China
- Department of Ophthalmology, Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaomei Liu
- Suzhou Institute of Biomedical Engineering and Technology, University of Science and Technology of China, Suzhou, People’s Republic of China
| | - Radouil Tzekov
- Department of Ophthalmology, University of South Florida, Tampa, FL, USA
| | - Chaofeng Yu
- Aier School of Ophthalmology, Central South University, Changsha, People’s Republic of China
| | - Jiasong Yang
- Aier School of Ophthalmology, Central South University, Changsha, People’s Republic of China
- Shanghai Aier Eye Hospital, Shanghai, People’s Republic of China
| | - Yuliang Feng
- Aier School of Ophthalmology, Central South University, Changsha, People’s Republic of China
| | - Yajun Wu
- Aier School of Ophthalmology, Central South University, Changsha, People’s Republic of China
| | - Yali Xu
- Aier School of Ophthalmology, Central South University, Changsha, People’s Republic of China
| | - Shiying Li
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, People’s Republic of China
| | - Wensheng Li
- Aier School of Ophthalmology, Central South University, Changsha, People’s Republic of China
- Shanghai Aier Eye Hospital, Shanghai, People’s Republic of China
- Shanghai Aier Eye Insititute, Shanghai, People’s Republic of China
| |
Collapse
|
11
|
Sun T, Huang K, Niu K, Lin C, Liu W, Yeh C, Kuo S, Chang C. Hyperbaric oxygen therapy suppresses hypoxia and reoxygenation injury to retinal pigment epithelial cells through activating peroxisome proliferator activator receptor-alpha signalling. J Cell Mol Med 2023; 27:3189-3201. [PMID: 37731202 PMCID: PMC10568664 DOI: 10.1111/jcmm.17963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Retinal ischemia followed by reperfusion (IR) is a common cause of many ocular disorders, such as age-related macular degeneration (AMD), which leads to blindness in the elderly population, and proper therapies remain unavailable. Retinal pigment epithelial (RPE) cell death is a hallmark of AMD. Hyperbaric oxygen (HBO) therapy can improve IR tissue survival by inducing ischemic preconditioning responses. We conducted an in vitro study to examine the effects of HBO preconditioning on oxygen-glucose deprivation (OGD)-induced IR-injured RPE cells. RPE cells were treated with HBO (100% O2 at 3 atmospheres absolute for 90 min) once a day for three consecutive days before retinal IR onset. Compared with normal cells, the IR-injured RPE cells had lower cell viability, lower peroxisome proliferator activator receptor-alpha (PPAR-α) expression, more severe oxidation status, higher blood-retinal barrier disruption and more elevated apoptosis and autophagy rates. HBO preconditioning increased PPAR-α expression, improved cell viability, decreased oxidative stress, blood-retinal barrier disruption and cellular apoptosis and autophagy. A specific PPAR-α antagonist, GW6471, antagonized all the protective effects of HBO preconditioning in IR-injured RPE cells. Combining these observations, HBO therapy can reverse OGD-induced RPE cell injury by activating PPAR-α signalling.
Collapse
Affiliation(s)
- Tzong‐Bor Sun
- Department of Hyperbaric Oxygen MedicineChi Mei Medical CenterTainanTaiwan
- Division of Plastic Surgery, Department of SurgeryChi Mei Medical CenterTainanTaiwan
- Department of Biotechnology and Food TechnologySouthern Taiwan University of Science and TechnologyTainanTaiwan
| | - Kuo‐Feng Huang
- Division of Plastic Surgery, Department of SurgeryChi Mei Medical CenterTainanTaiwan
| | - Ko‐Chi Niu
- Department of Hyperbaric Oxygen MedicineChi Mei Medical CenterTainanTaiwan
| | - Cheng‐Hsien Lin
- Department of MedicineMackay Medical CollegeNew Taipei CityTaiwan
- Department of Medical ResearchChi Mei Medical CenterTainanTaiwan
| | - Wen‐Pin Liu
- Department of Medical ResearchChi Mei Medical CenterTainanTaiwan
| | - Chao‐Hung Yeh
- Division of Neurosurgery, Department of SurgeryChi Mei Medical CenterTainanTaiwan
- Department of OptometryChung Hwa University of Medical TechnologyTainanTaiwan
| | - Shu‐Chun Kuo
- Department of OptometryChung Hwa University of Medical TechnologyTainanTaiwan
- Department of OphthalmologyChi Mei Medical CenterTainanTaiwan
| | - Ching‐Ping Chang
- Department of Medical ResearchChi Mei Medical CenterTainanTaiwan
| |
Collapse
|
12
|
Fan R, Su L, Zhang H, Jiang Y, Yu Z, Zhang X, Li X. Enhanced therapeutic effect of PEDF-loaded mesenchymal stem cell-derived small extracellular vesicles against oxygen-induced retinopathy through increased stability and penetrability of PEDF. J Nanobiotechnology 2023; 21:327. [PMID: 37684667 PMCID: PMC10492320 DOI: 10.1186/s12951-023-02066-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Several common retinal diseases that cause blindness are characterised by pathological neovascularisation accompanied by inflammation and neurodegeneration, including retinopathy of prematurity (ROP), diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinal vein occlusion (RVO). The current treatment strategies for these diseases have limited benefits. Thus, safer and more effective alternative approaches are required. In this study, we loaded small extracellular vesicles (sEVs) derived from mesenchymal stem cell (MSC) with pigment epithelium-derived factor (PEDF), and tested the therapeutic effect of PEDF-loaded sEVs (PEDF-sEVs) using an oxygen induced retinopathy (OIR) mouse model, aiming to establish a new therapy strategy for the treatment of retinal pathological angiogenesis. RESULTS We formulated PEDF-loaded sEVs (PEDF-sEVs) containing high concentrations of PEDF and evaluated their effects through in vivo and in vitro experiments. In OIR mice, PEDF-sEVs showed significantly better effects on retinal avascular areas, inflammation, and neuronal degeneration compared with the anti-vascular endothelial growth factor (VEGF) drug, which may indicate a possible advantage of PEDF-sEVs over anti-VEGF drugs in the treatment of pathological neovascularisation. In vitro, PEDF-sEVs greatly inhibited endothelial cell (EC) proliferation, migration, and tube formation by suppressing the VEGF-induced phosphorylation of extracellular signal-regulated kinase (ERK) and AKT (also known as Protein Kinase B). All experiments and analyses were performed in triplicate. PEDF-sEVs were more effective than PEDF or sEVs alone, both in vitro and in vivo. Furthermore, to determine the distribution of PEDF-sEVs, we used DiD-labelled sEVs and FITC-labelled PEDF to track the sEVs and PEDF, respectively. We found that PEDF-sEVs effectively reduced the degradation of PEDF. CONCLUSIONS Loading PEDF on sEVs effectively enhanced the anti-angiogenic, anti-inflammatory, and neuroprotective effects of PEDF by increasing the stability and penetrability. These results suggest a potential role for PEDF-sEVs in retinal pathological neovascularisation.
Collapse
Affiliation(s)
- Ruiyan Fan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Lin Su
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Hui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Yilin Jiang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Zihao Yu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
13
|
Rezazadeh-Gavgani E, Oladghaffari M, Bahramian S, Majidazar R, Dolati S. MicroRNA-21: A critical underestimated molecule in diabetic retinopathy. Gene 2023; 859:147212. [PMID: 36690226 DOI: 10.1016/j.gene.2023.147212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/11/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Diabetes mellitus (DM) has grown in attention in recent years as a result of its debilitating complications and chronic disabilities. Diabetic retinopathy (DR) is a chronic microvascular complication of DM and is considered as the primary reason for blindness in adults. Early diagnosis of diabetes complications along with targeted therapy options are critical in avoiding morbidity and mortality associated with complications of diabetes. miR-21 is an important and widely studied non-coding-RNA (ncRNA) with considerable roles in various pathologic conditions including diabetic complications. miR-21 is one of the most elevated miRNAs in response to hyperglycemia and its role in angiogenesis is a major culprit of a wide range of disorders including DR. The main role of miR-21 in DR pathophysiology is believed to be through regulating angiogenesis in retina. This article aims to outline miR-21 biogenesis and distribution in human body along with discussions about its role in DR pathogenesis and its biomarker value in order to facilitate understanding of the new characteristics of miR-21 in DR management.
Collapse
Affiliation(s)
| | - Mobina Oladghaffari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Shirin Bahramian
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Majidazar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Zhou T, Yan K, Zhang Y, Zhu L, Liao Y, Zheng X, Chen Y, Li X, Liu Z, Zhang Z. Fenofibrate suppresses corneal neovascularization by regulating lipid metabolism through PPARα signaling pathway. Front Pharmacol 2022; 13:1000254. [PMID: 36588740 PMCID: PMC9800935 DOI: 10.3389/fphar.2022.1000254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose: The purpose of this study was to explore the potential underlying mechanism of anti-vascular effects of peroxisome proliferator-activated receptor α (PPARα) agonist fenofibrate against corneal neovascularization (CNV) through the changes of lipid metabolism during CNV. Methods: A suture-induced CNV model was established and the clinical indications were evaluated from day 1 to day 7. Treatments of vehicle and fenofibrate were performed for 5 days after suture and the CNV areas were compared among the groups. The eyeballs were collected for histological analysis, malondialdehyde (MDA) measurement, terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end labeling (TUNEL) staining, western blot, quantitative real-time PCR (qRT-PCR) assays and immunohistochemical (IHC) staining to elucidate pathological changes and the underlying mechanism. Results: Lipi-Green staining and MDA measurement showed that lipid deposition and peroxidation were increased in the CNV cornea while the expression of long-chain acyl-coenzyme A synthetase 1 (ACSL1), carnitine palmitoyltransterase 1A(CPT1A) and medium-chain acyl-coenzyme A dehydrogenase (ACADM), which are key enzymes of fatty acid β-oxidation (FAO) and targeted genes of peroxisome proliferator-activated receptor alpha (PPARα) pathway, were decreased in CNV cornea. Fenofibrate suppressed lipid accumulation and peroxidation damage in the CNV cornea. Fenofibrate upregulated the expression levels of PPARα, ACSL1, CPT1A, and ACADM compared with vehicle group. IHC staining indicated that fenofibrate also decreased the expression of VEGFa, VEGFc, TNFα, IL1β and CD68. Conclusion: Disorder of lipid metabolism may be involved in the formation of suture-induced CNV and fenofibrate played anti-neovascularization and anti-inflammatory roles on cornea by regulating the key enzymes of lipid metabolism and ameliorating lipid peroxidation damage of cornea through PPARα signaling pathway.
Collapse
Affiliation(s)
- Tong Zhou
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,Department of Pharmacy, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, China
| | - Ke Yan
- The First Affiliated Hospital, Department of Ophthalmology, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuhan Zhang
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, China
| | - Linfangzi Zhu
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, China
| | - Yi Liao
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, China
| | - Xiaoxiang Zheng
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, China
| | - Yongxiong Chen
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, China
| | - Xiaoxin Li
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, China,Department of Ophthalmology and Clinical Centre of Optometry, Peking University People’s Hospital, Beijing, China,*Correspondence: Zhaoqiang Zhang, ; Zuguo Liu, ; Xiaoxin Li,
| | - Zuguo Liu
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, China,The First Affiliated Hospital, Department of Ophthalmology, Hengyang Medical School, University of South China, Hengyang, China,*Correspondence: Zhaoqiang Zhang, ; Zuguo Liu, ; Xiaoxin Li,
| | - Zhaoqiang Zhang
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, China,*Correspondence: Zhaoqiang Zhang, ; Zuguo Liu, ; Xiaoxin Li,
| |
Collapse
|
15
|
Rizk FH, Soliman NA, Heabah NA, Abdel Ghafar MT, El-Attar SH, Elsaadany A. Fenofibrate Improves Cognitive Impairment Induced by High-Fat High-Fructose Diet: A Possible Role of Irisin and Heat Shock Proteins. ACS Chem Neurosci 2022; 13:1782-1789. [PMID: 35652596 DOI: 10.1021/acschemneuro.2c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A high-fat, high-fructose diet (HFFD) impairs cognitive functions and increases susceptibility to neurodegenerative disorders. Irisin and heat shock protein 70 (HSP70) are well known for their role in neuroprotection. The possible neuroprotective effects of fenofibrate on HFFD-induced cognitive dysfunction and the involvement of irisin and HSP70 in these effects were investigated in this study. Rats were divided into normal control, HFFD, dimethylsulfoxide+HFFD, and fenofibrate+HFFD groups. At the end of the experiment, fenofibrate treatment restored hippocampus histological characteristics to almost normal and improved HFFD-induced cognitive deficit. It reduced body weight gain and had hypolipidemic effects by significantly lowering total cholesterol, triglycerides, and low-density lipoprotein cholesterol levels while increasing high-density lipoprotein cholesterol levels. It has antioxidant and anti-inflammatory effects as it significantly reduced the hippocampal malondialdehyde, interleukin-6, and tumor necrosis factor-alpha levels, while significantly increasing the reduced glutathione level. It prevented HFFD-induced hypoxia by significantly lowering hippocampal vascular endothelial growth factor and hypoxia-inducible factor-1 alpha levels. It significantly activated the hippocampal peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α)/irisin/brain-derived neurotrophic factor pathway. It significantly increased hippocampal HSP70 while decreasing the HSP90 levels. It enhanced synaptic plasticity by significantly upregulating the hippocampal relative GluR1 gene expression. Furthermore, hippocampal irisin levels in the HFFD group were found to be positively correlated with cognitive function, hippocampal HSP70, and relative GluR1 gene expression levels, while negatively correlated with hippocampal HSP90 and HIF1α levels. Therefore, fenofibrate may be used as a potential medication to treat HFFD-induced neurodegenerative disorders.
Collapse
Affiliation(s)
- Fatma H. Rizk
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Nema A. Soliman
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Nehal A. Heabah
- Pathology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | | | - Shimaa H. El-Attar
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Amira Elsaadany
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| |
Collapse
|
16
|
Ren J, Ren A, Deng X, Huang Z, Jiang Z, Li Z, Gong Y. Long-Chain Polyunsaturated Fatty Acids and Their Metabolites Regulate Inflammation in Age-Related Macular Degeneration. J Inflamm Res 2022; 15:865-880. [PMID: 35173457 PMCID: PMC8842733 DOI: 10.2147/jir.s347231] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a blinding eye disease, whose incidence strongly increases with ages. The etiology of AMD is complex, including aging, abnormal lipid metabolism, chronic inflammation and oxidative stress. Long-chain polyunsaturated fatty acids (LCPUFA) are essential for ocular structures and functions. This review summarizes the regulatory effects of LCPUFA on inflammation in AMD. LCPUFA are related to aging, autophagy and chronic inflammation. They are metabolized to pro- and anti-inflammatory metabolites by various enzymes. These metabolites stimulate inflammation in response to oxidative stress, causing innate and acquired immune responses. This review also discusses the possible clinical applications, which provided novel targets for the prevention and treatment of AMD and other age-related diseases.
Collapse
Affiliation(s)
- Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Anli Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Ziyu Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, Hubei, People’s Republic of China
- Correspondence: Yan Gong; Zhi Li, Tel +86 27 6781 1461; +86 27 6781 2622, Fax +86 27 6781 1471; +86 27 6781 3133, Email ;
| |
Collapse
|
17
|
Hypobaric hypoxia triggers pyroptosis in the retina via NLRP3 inflammasome activation. Apoptosis 2022; 27:222-232. [PMID: 35088163 DOI: 10.1007/s10495-022-01710-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2022] [Indexed: 11/02/2022]
Abstract
Hypobaric hypoxia initiates multiple impairment to the retina and is the major cause contributing to retinal function deficits such as high altitude retinopathy. However, the underlying molecular mechanism has not been clearly defined so far and remains to be clarified. In the present study, we have undertaken an approach to mimic 5000 m altitude with a low-pressure oxygen cabin and evaluated if pyroptosis is involved in the mechanisms by which hypobaric hypoxia triggers retinal impairment. We also used Radix Astragali seu Hedysari Compound (RAHC) to determine whether RAHC is capable of exerting protective effects on the hypobaric hypoxia-induced retinal dysfunction. We found that hypobaric hypoxia stress activated inflammasome complex through increasing NOD-like receptor family pyrin domain-containing 3 (NLRP3), caspase-1, and apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) protein levels. The protein expression of gasdermin-D, a master executor of pyroptosis, and NADPH oxidase 4, which is regarded as a main generator of reactive oxygen species (ROS), also elevated upon hypobaric hypoxia exposure. In addition, hypobaric hypoxia induced a significant increase in pro-inflammatory cytokines expression including interleukin-1β and interleukin-18 in the rat retina. Our results indicate that hypobaric hypoxia initiates pyroptosis in the rat retina. RAHC attenuates hypobaric hypoxia-triggered retinal pyroptosis via inhibiting NLRP3 inflammasome activation and release of pro-inflammatory cytokines. The involvement of pyroptosis pathway in the retina in response to hypobaric hypoxia supports a novel insight to clarify the pathogenesis of hypobaric hypoxia-induced retinal impairment and provides a feasibility of inflammasome modulation for preserving retinal function.
Collapse
|
18
|
Yao F, Zhang X, Yao X, Ren X, Xia X, Jiang J, Ding L. Peroxisome Proliferator-Activated Receptor α Activation Protects Retinal Ganglion Cells in Ischemia-Reperfusion Retinas. Front Med (Lausanne) 2022; 8:788663. [PMID: 35004756 PMCID: PMC8732875 DOI: 10.3389/fmed.2021.788663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/24/2021] [Indexed: 01/04/2023] Open
Abstract
Background and Objective: Retinal ischemia-reperfusion (IR) leads to massive loss of retinal ganglion cells (RGC) and characterizes several blind-causing ophthalmic diseases. However, the mechanism related to retinal IR is controversial, and a drug that could prevent the RGC loss caused by IR is still lacking. This study aimed to investigate the role of endogenous retinal peroxisome proliferator-activated receptor (PPAR)α and the therapeutic effect of its agonist, fenofibric acid (FA), in IR-related retinopathy. Materials and Methods: Fenofibric acid treatment was applied to the Sprague-Dawley rats with IR and retinal cell line 28 cells with oxygen-glucose deprivation (OGD) (an in vitro model of IR). Western blotting, real-time PCR, and immunofluorescence were used to examine the expression levels of PPARα, glial fibrillary acidic protein (GFAP), and cyclooxygenase-2 (COX2). Hematoxylin and eosin (HE) staining, propidium iodide (PI) staining, retrograde tracing, and flash visual-evoked potential (FVEP) were applied to assess RGC injury and visual function. Results: Retinal IR down-regulated PPARα expression in vitro and in vivo. Peroxisome proliferator-activated receptor α activation by FA promoted survival of RGCs, mitigated thinning of the ganglion cell complex, and decreased the latency of positive waves of FVEPs after IR injury. Further, FA treatment enhanced the expression of endogenous PPARα and suppressed the expression of GFAP and COX2 significantly. Conclusion: Peroxisome proliferator-activated receptor α activation by FA is protective against RGC loss in retinal IR condition, which may occur by restoring PPARα expression, inhibiting activation of glial cells, and suppressing retinal inflammation. All these findings indicate the translational potential of FA in treating IR-related retinopathy.
Collapse
Affiliation(s)
- Fei Yao
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Xuan Zhang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Xueyan Yao
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Xiaohua Ren
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Department of Human Resource, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Department of Human Resource, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Jiang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Lexi Ding
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| |
Collapse
|
19
|
Escandon P, Vasini B, Whelchel AE, Nicholas SE, Matlock HG, Ma JX, Karamichos D. The role of peroxisome proliferator-activated receptors in healthy and diseased eyes. Exp Eye Res 2021; 208:108617. [PMID: 34010603 PMCID: PMC8594540 DOI: 10.1016/j.exer.2021.108617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022]
Abstract
Peroxisome Proliferator-Activated Receptors (PPARs) are a family of nuclear receptors that play essential roles in modulating cell differentiation, inflammation, and metabolism. Three subtypes of PPARs are known: PPAR-alpha (PPARα), PPAR-gamma (PPARγ), and PPAR-beta/delta (PPARβ/δ). PPARα activation reduces lipid levels and regulates energy homeostasis, activation of PPARγ results in regulation of adipogenesis, and PPARβ/δ activation increases fatty acid metabolism and lipolysis. PPARs are linked to various diseases, including but not limited to diabetes, non-alcoholic fatty liver disease, glaucoma and atherosclerosis. In the past decade, numerous studies have assessed the functional properties of PPARs in the eye and key PPAR mechanisms have been discovered, particularly regarding the retina and cornea. PPARγ and PPARα are well established in their functions in ocular homeostasis regarding neuroprotection, neovascularization, and inflammation, whereas PPARβ/δ isoform function remains understudied. Naturally, studies on PPAR agonists and antagonists, associated with ocular pathology, have also gained traction with the development of PPAR synthetic ligands. Studies on PPARs has significantly influenced novel therapeutics for diabetic eye disease, ocular neuropathy, dry eye, and age-related macular degeneration (AMD). In this review, therapeutic potentials and implications will be highlighted, as well as reported adverse effects. Further investigations are necessary before any of the PPARs ligands can be utilized, in the clinics, to treat eye diseases. Future research on the prominent role of PPARs will help unravel the complex mechanisms involved in order to prevent and treat ocular diseases.
Collapse
Affiliation(s)
- Paulina Escandon
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Brenda Vasini
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Amy E Whelchel
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young, Oklahoma City, OK, USA
| | - Sarah E Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - H Greg Matlock
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young, Oklahoma City, OK, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young, Oklahoma City, OK, USA; Harold Hamm Oklahoma Diabetes Center, 1000 N Lincoln Blvd, Oklahoma City, OK, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
20
|
Feng X, Gao X, Wang S, Huang M, Sun Z, Dong H, Yu H, Wang G. PPAR-α Agonist Fenofibrate Prevented Diabetic Nephropathy by Inhibiting M1 Macrophages via Improving Endothelial Cell Function in db/db Mice. Front Med (Lausanne) 2021; 8:652558. [PMID: 34268320 PMCID: PMC8275839 DOI: 10.3389/fmed.2021.652558] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Diabetic nephropathy (DN) is one of the major diabetic microvascular complications, and macrophage polarization plays a key role in the development of DN. Endothelial cells regulate macrophage polarization. Peroxisome proliferator-activated receptor (PPAR)-α agonists were demonstrated to prevent DN and improve endothelial function. In this study, we aimed to investigate whether PPAR-α agonists prevented DN through regulating macrophage phenotype via improving endothelial cell function. Methods: Eight-week-old male C57BLKS/J db/m and db/db mice were given fenofibrate or 1% sodium carboxyl methylcellulose by gavage for 12 weeks. Results: Db/db mice presented higher urinary albumin-to-creatinine ratio (UACR) than db/m mice, and fenofibrate decreased UACR in db/db mice. Fibrosis and collagen I were elevated in db/db mouse kidneys compared with db/m mouse kidneys; however, they were decreased after fenofibrate treatment in db/db mouse kidneys. Apoptosis and cleaved caspase-3 were enhanced in db/db mouse kidneys compared to db/m mouse kidneys, while fenofibrate decreased them in db/db mouse kidneys. Db/db mice had a suppression of p-endothelial nitric oxide synthase (eNOS)/t-eNOS and nitric oxide (NO), and an increase of angiopoietin-2 and reactive oxygen species (ROS) in kidneys compared with db/m mice, and fenofibrate increased p-eNOS/t-eNOS and NO, and decreased angiopoietin-2 and ROS in db/db mouse kidneys. Hypoxia-inducible factor (HIF)-1α and Notch1 were promoted in db/db mouse kidneys compared with db/m mouse kidneys, and were reduced after fenofibrate treatment in db/db mouse kidneys. Furthermore, the immunofluorescence staining indicated that M1 macrophage recruitment was enhanced in db/db mouse kidneys compared to db/m mouse kidneys, and this was accompanied by a significant increase of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in kidneys and in serum of db/db mice compared with db/m mice. However, fenofibrate inhibited the renal M1 macrophage recruitment and cytokines associated with M1 macrophages in db/db mice. Conclusions: Our study indicated that M1 macrophage recruitment due to the upregulated HIF-1α/Notch1 pathway induced by endothelial cell dysfunction involved in type 2 diabetic mouse renal injury, and PPAR-α agonist fenofibrate prevented DN by reducing M1 macrophage recruitment via inhibiting HIF-1α/Notch1 pathway regulated by endothelial cell function in type 2 diabetic mouse kidneys.
Collapse
Affiliation(s)
- Xiaomeng Feng
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xia Gao
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuo Wang
- Department of Infectious Diseases, Beijing Traditional Chinese Medical Hospital, Capital Medical University, Beijing, China
| | - Mengxiu Huang
- Department of Hepatobiliary, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhencheng Sun
- Department of Osteology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hengbei Dong
- Department of Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Haitian Yu
- Education Division, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Lee D, Tomita Y, Miwa Y, Jeong H, Mori K, Tsubota K, Kurihara T. Fenofibrate Protects against Retinal Dysfunction in a Murine Model of Common Carotid Artery Occlusion-Induced Ocular Ischemia. Pharmaceuticals (Basel) 2021; 14:ph14030223. [PMID: 33799938 PMCID: PMC7999063 DOI: 10.3390/ph14030223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/01/2023] Open
Abstract
Ocular ischemia is a common cause of blindness and plays a detrimental role in various diseases such as diabetic retinopathy, occlusion of central retinal arteries, and ocular ischemic syndrome. Abnormalities of neuronal activities in the eye occur under ocular ischemic conditions. Therefore, protecting their activities may prevent vision loss. Previously, peroxisome proliferator-activated receptor alpha (PPARα) agonists were suggested as promising drugs in ocular ischemia. However, the potential therapeutic roles of PPARα agonists in ocular ischemia are still unknown. Thus, we attempted to unravel systemic and ocular changes by treatment of fenofibrate, a well-known PPARα agonist, in a new murine model of ocular ischemia. Adult mice were orally administered fenofibrate (60 mg/kg) for 4 days once a day, followed by induction of ocular ischemia by unilateral common carotid artery occlusion (UCCAO). After UCCAO, fenofibrate was continuously supplied to mice once every 2 days during the experiment period. Electroretinography was performed to measure retinal functional changes. Furthermore, samples from the retina, liver, and blood were subjected to qPCR, Western blot, or ELISA analysis. We found that fenofibrate boosted liver function, increased serum levels of fibroblast growth factor 21 (FGF21), one of the neuroprotective molecules in the central nervous system, and protected against UCCAO-induced retinal dysfunction. Our current data suggest a promising fenofibrate therapy in ischemic retinopathies.
Collapse
Affiliation(s)
- Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yohei Tomita
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Animal Eye Care, Tokyo Animal Eye Clinic, Tokyo 158-0093, Japan
| | - Heonuk Jeong
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kiwako Mori
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Tsubota Laboratory, Inc., Tokyo 160-0016, Japan
- Correspondence: (K.T.); (T.K.); Tel.: +81-3-5636-3269 (K.T.); +81-3-5636-3204 (T.K.)
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Correspondence: (K.T.); (T.K.); Tel.: +81-3-5636-3269 (K.T.); +81-3-5636-3204 (T.K.)
| |
Collapse
|
22
|
Sarahian N, Mohammadi MT, Darabi S, Faghihi N. Fenofibrate protects the neurovascular unit and ameliorates plasma corticosterone levels in pentylenetetrazole-induced kindling seizure in mice. Brain Res 2021; 1758:147343. [PMID: 33556377 DOI: 10.1016/j.brainres.2021.147343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/03/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023]
Abstract
Epileptic seizures are the most common neurological diseases that change the function of neurovascular unit at molecular levels accompanied by activation of a wide variety of neurodegenerative cascades. Based on the pleiotropic functions of peroxisome proliferator-activated receptor-alpha (PPARα), the current study evaluated the neuroprotective effects of fenofibrate (an effective PPARα agonist) on the brain injuries induced by pentylenetetrazole (PTZ)-induced kindling seizure. Adult male NMRI mice were randomly assigned into four groups (n = 14) as follows; control, untreated kindled mice (PTZ) and two fenofibrate-treated kindled groups. Repeated intraperitoneal injections of PTZ (45 mg/kg) were used to develop kindling seizure every 48 h for 21 days. Treated mice were administered orally fenofibrate at doses of 30 and 50 mg/kg/day during the study. Plasma corticosterone and brain levels of brain-derived neurotrophic factor (BDNF), malondialdehyde (MDA) and mRNA transcription of p53, as well as blood-brain barrier (BBB) permeability, were determined at termination of the study. Fenofibrate considerably improved seizure latency and anxiety-like behaviors in treated kindled mice. Fenofibrate at doses of 30 and 50 mg/kg significantly (P < 0.001) decreased plasma corticosterone (56.88 ± 0.80 and 54.81 ± 0.29 ng/mL, respectively) compared to PTZ group (74.96 ± 1.60 ng/mL). It also significantly (P < 0.05) decreased BDNF levels in both treatment groups (8.13 ± 0.14 and 8.74 ± 0.09 ng/mL, respectively) compared to PTZ group (9.68 ± 0.20 ng/mL). Fenofibrate particularly at higher dose significantly (P < 0.01) decreased MDA content and mRNA expression levels of p53 in treated kindled mice by 67% and 28%, respectively, compared to PTZ group. Similarly, 50 mg/kg fenofibrate significantly (P < 0.05) decreased Evans blue extravasation into brain in treated kindled mice (8.72 ± 0.96 µg/g) compared to PTZ group (15.31 ± 2.18 µg/g). Our results revealed the anticonvulsive and neuroprotective effects of fenofibrate in PTZ-induced kindling seizure in mice. Fenofibrate also improved the neurovascular functions at molecular levels in kindling seizure that might be associated with ameliorating the seizure behaviors.
Collapse
Affiliation(s)
- Nahid Sarahian
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Mohammadi
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Shamsi Darabi
- Department of Physiology, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Nastaran Faghihi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
23
|
Enright JM, Zhang S, Thebeau C, Siebert E, Jin A, Gadiraju V, Zhang X, Chen S, Semenkovich CF, Rajagopal R. Fenofibrate Reduces the Severity of Neuroretinopathy in a Type 2 Model of Diabetes without Inducing Peroxisome Proliferator-Activated Receptor Alpha-Dependent Retinal Gene Expression. J Clin Med 2020; 10:jcm10010126. [PMID: 33396512 PMCID: PMC7794763 DOI: 10.3390/jcm10010126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Fenofibrate slows the progression of clinical diabetic retinopathy (DR), but its mechanism of action in the retina remains unclear. Fenofibrate is a known agonist of peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor critical for regulating metabolism, inflammation and oxidative stress. Using a DR mouse model, db/db, we tested the hypothesis that fenofibrate slows early DR progression by activating PPARα in the retina. Relative to healthy littermates, six-month-old db/db mice exhibited elevated serum triglycerides and cholesterol, retinal gliosis, and electroretinography (ERG) changes including reduced b-wave amplitudes and delayed oscillatory potentials. These pathologic changes in the retina were improved by oral fenofibrate. However, fenofibrate did not induce PPARα target gene expression in whole retina or isolated Müller glia. The capacity of the retina to respond to PPARα was further tested by delivering the PPARα agonist GW590735 to the intraperitoneal or intravitreous space in mice carrying the peroxisome proliferator response element (PPRE)-luciferase reporter. We observed strong induction of the reporter in the liver, but no induction in the retina. In summary, fenofibrate treatment of db/db mice prevents the development of early DR but is not associated with induction of PPARα in the retina.
Collapse
Affiliation(s)
- Jennifer M. Enright
- John F. Hardesty Department of Ophthalmology, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.M.E.); (S.Z.); (C.T.); (X.Z.); (S.C.)
| | - Sheng Zhang
- John F. Hardesty Department of Ophthalmology, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.M.E.); (S.Z.); (C.T.); (X.Z.); (S.C.)
| | - Christina Thebeau
- John F. Hardesty Department of Ophthalmology, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.M.E.); (S.Z.); (C.T.); (X.Z.); (S.C.)
| | - Emily Siebert
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Alexander Jin
- St. Louis University School of Medicine, St. Louis, MO 63104, USA;
| | - Veda Gadiraju
- University of Washington Medical School, Seattle, WA 98195, USA;
| | - Xiaodong Zhang
- John F. Hardesty Department of Ophthalmology, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.M.E.); (S.Z.); (C.T.); (X.Z.); (S.C.)
| | - Shiming Chen
- John F. Hardesty Department of Ophthalmology, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.M.E.); (S.Z.); (C.T.); (X.Z.); (S.C.)
| | - Clay F. Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Washington University in St. Louis, St. Louis, MO 63110, USA;
| | - Rithwick Rajagopal
- John F. Hardesty Department of Ophthalmology, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.M.E.); (S.Z.); (C.T.); (X.Z.); (S.C.)
- Correspondence:
| |
Collapse
|
24
|
Fujita N, Sase K, Tsukahara C, Arizono I, Takagi H, Kitaoka Y. Pemafibrate prevents retinal neuronal cell death in NMDA-induced excitotoxicity via inhibition of p-c-Jun expression. Mol Biol Rep 2020; 48:195-202. [PMID: 33278012 PMCID: PMC7884588 DOI: 10.1007/s11033-020-06032-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Excitotoxicity is involved in the retinal neuronal cell death in diabetic retinopathy. Although fenofibrate has been shown to ameliorate the progression of diabetic retinopathy, the effect of pemafibrate, which is highly selective for peroxisome proliferator-activated receptor α on retinal neuronal cell death has not been documented. Here, we investigated whether pemafibrate exerts a beneficial effect against retinal ganglion cell (RGC) death induced by N-methyl-D-aspartate (NMDA) in rats. Experiments were performed on adult male Wistar rats that received an intravitreal injection of 20 nmol NMDA. Fluoro-Gold labeled RGC morphometry showed that oral intake of pemafibrate once a day for 7 days resulted in significant protection on RGC death induced by NMDA. Phosphorylated c-Jun protein, which is involved in apoptosis, was upregulated after NMDA exposure, and this increase was significantly lessened by the systemic pemafibrate treatment. Phosphorylated c-Jun immunopositive cells were colocalized with Thy-1 immunopositive cells, and the increased these cells were ameliorated by the pemafibrate treatment. An increase in TUNEL-positive cells was significantly suppressed by the pemafibrate treatment. Phosphorylated c-Jun immunopositive cells were colocalized with TUNEL-positive cells, and they were decreased by pemafibrate treatment. These results suggest that the RGC protection achieved with pemafibrate appears to be associated with inhibition of phosphorylated c-Jun and its anti-apoptotic effect.
Collapse
Affiliation(s)
- Naoki Fujita
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kaswasaki, Kanagawa, 216-8511, Japan.,Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kaswasaki, Kanagawa, 216-8511, Japan
| | - Kana Sase
- Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kaswasaki, Kanagawa, 216-8511, Japan
| | - Chihiro Tsukahara
- Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kaswasaki, Kanagawa, 216-8511, Japan
| | - Ibuki Arizono
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kaswasaki, Kanagawa, 216-8511, Japan.,Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kaswasaki, Kanagawa, 216-8511, Japan
| | - Hitoshi Takagi
- Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kaswasaki, Kanagawa, 216-8511, Japan
| | - Yasushi Kitaoka
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kaswasaki, Kanagawa, 216-8511, Japan.
| |
Collapse
|
25
|
Small-Molecule Modulation of PPARs for the Treatment of Prevalent Vascular Retinal Diseases. Int J Mol Sci 2020; 21:ijms21239251. [PMID: 33291567 PMCID: PMC7730325 DOI: 10.3390/ijms21239251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023] Open
Abstract
Vascular-related retinal diseases dramatically impact quality of life and create a substantial burden on the healthcare system. Age-related macular degeneration, diabetic retinopathy, and retinopathy of prematurity are leading causes of irreversible blindness. In recent years, the scientific community has made great progress in understanding the pathology of these diseases and recent discoveries have identified promising new treatment strategies. Specifically, compelling biochemical and clinical evidence is arising that small-molecule modulation of peroxisome proliferator-activated receptors (PPARs) represents a promising approach to simultaneously address many of the pathological drivers of these vascular-related retinal diseases. This has excited academic and pharmaceutical researchers towards developing new and potent PPAR ligands. This review highlights recent developments in PPAR ligand discovery and discusses the downstream effects of targeting PPARs as a therapeutic approach to treating retinal vascular diseases.
Collapse
|
26
|
Chen Q, Jiang N, Zhang Y, Ye S, Liang X, Wang X, Lin X, Zong R, Chen H, Liu Z. Fenofibrate Inhibits Subretinal Fibrosis Through Suppressing TGF-β-Smad2/3 signaling and Wnt signaling in Neovascular Age-Related Macular Degeneration. Front Pharmacol 2020; 11:580884. [PMID: 33442383 PMCID: PMC7797782 DOI: 10.3389/fphar.2020.580884] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022] Open
Abstract
Subretinal fibrosis is a common pathological change that causes vision loss in neovascular age-related macular degeneration (nAMD). Treatment modalities for subretinal fibrosis are limited. In the present study, the effects of fenofibrate, a specific peroxisome proliferator-activated receptor alpha agonist, on subretinal fibrosis of nAMD were tested, and its molecular mechanisms of action were delineated. Collagen deposition and protein expression of fibrotic markers, such as vimentin, collagen-1, alpha-smooth muscle actin, and fibronectin, were increased in very low-density lipoprotein receptor (VLDLR) knockout mouse, indicating Vldlr -/- mice can be used as a model for subretinal fibrosis. Fenofibrate suppressed subretinal fibrosis of Vldlr -/- mice by reducing collagen deposition and protein expression of fibrotic markers. Two fibrotic pathways, TGF-β-Smad2/3 signaling and Wnt signaling, were significantly up-regulated, while inhibited by fenofibrate in Vldlr -/- retinas. Moreover, fenofibrate significantly reduced the downstream connective tissue growth factor (CTGF) expression of these two pathways. Müller cells were a major source of CTGF in Vldlr -/- retinas. Fenofibrate was capable of suppressing Müller cell activation and thus reducing the release of CTGF in Vldlr -/- retinas. In cultured Müller cells, fenofibrate reversed TGF-β2-induced up-regulation of Wnt signaling and CTGF expression. These findings suggested that fenofibrate inhibits subretinal fibrosis by suppressing TGF-β-Smad2/3 signaling and Wnt signaling and reducing CTGF expression, and thus, fenofibrate could be a potential treatment for nAMD with subretinal fibrosis.
Collapse
Affiliation(s)
- Qian Chen
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Xiamen University affiliated Xiamen Eye Center, Xiamen, China
| | - Nan Jiang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhan Zhang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Sihao Ye
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xu Liang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Wang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiang Lin
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Rongrong Zong
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Haoyu Chen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Zuguo Liu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Xiamen University affiliated Xiamen Eye Center, Xiamen, China
| |
Collapse
|
27
|
PPARα Agonist Oral Therapy in Diabetic Retinopathy. Biomedicines 2020; 8:biomedicines8100433. [PMID: 33086679 PMCID: PMC7589723 DOI: 10.3390/biomedicines8100433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) is an eye condition that develops after chronically poorly-managed diabetes, and is presently the main cause for blindness on a global scale. Current treatments for DR such as laser photocoagulation, topical injection of corticosteroids, intravitreal injection of anti-vascular endothelial growth factor (VEGF) agents and vitreoretinal surgery are only applicable at the late stages of DR and there are possibilities of significant adverse effects. Moreover, the forms of treatment available for DR are highly invasive to the eyes. Safer and more effective pharmacological treatments are required for DR treatment, in particular at an early stage. In this review, we cover recently investigated promising oral pharmacotherapies, the methods of which are safer, easier to use, patient-friendly and pain-free, in clinical studies. We especially focus on peroxisome proliferator-activator receptor alpha (PPARα) agonists in which experimental evidence suggests PPARα activation may be closely related to the attenuation of vascular damages, including lipid-induced toxicity, inflammation, an excess of free radical generation, endothelial dysfunction and angiogenesis. Furthermore, oral administration of selective peroxisome proliferator-activated receptor alpha modulator (SPPARMα) agonists may induce hepatic fibroblast growth factor 21 expression, indirectly resulting in retinal protection in animal studies. Our review will enable more comprehensive approaches for understanding protective roles of PPARα for the prevention of DR development.
Collapse
|
28
|
Xu L, Brown EE, Santiago CP, Keuthan CJ, Lobanova E, Ash JD. Retinal homeostasis and metformin-induced protection are not affected by retina-specific Pparδ knockout. Redox Biol 2020; 37:101700. [PMID: 32863184 PMCID: PMC7767733 DOI: 10.1016/j.redox.2020.101700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/08/2020] [Accepted: 08/19/2020] [Indexed: 11/25/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of three nuclear hormone receptors (PPARα, PPARδ, and PPARγ) that are known to regulate expression of lipid metabolism and oxidative stress genes. Given their role in reducing oxidative stress in a variety of tissues, these genes are likely important for retinal homeostasis. This hypothesis has been further supported by recent studies suggesting that PPAR-activating drugs are protective against retinal degenerations. The objective of the present study was to determine the role of PPARδ in the neuroretina. RNA-seq data show that Pparα and Pparδ are both expressed in the retina, but that Pparδ is expressed at 4-fold higher levels. Single-cell RNAseq data show that Pparδ is broadly expressed in all retinal cell types. To determine the importance of Pparδ to the retina, we generated retina-specific Pparδ knockout mice. We found that deletion of Pparδ had a minimal effect on retinal function or morphology out to 12 months of age and did not increase retinal sensitivity to oxidative stress induced by exposure to bright light. While data show that PPARδ levels were increased by the drug metformin, PPARδ was not necessary for metformin-induced protection from light damage. These data suggest that Pparδ either has a redundant function with Pparα or is not essential for normal neuroretina function or resistance to oxidative stress.
Collapse
Affiliation(s)
- Lei Xu
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Emily E Brown
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Clayton P Santiago
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Casey J Keuthan
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ekaterina Lobanova
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, 32610, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - John D Ash
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
29
|
Ibarra-Lara L, Sánchez-Aguilar M, Del Valle-Mondragón L, Soria-Castro E, Cervantes-Pérez LG, Pastelín-Hernández G, Sánchez-Mendoza A. Clofibrate improves myocardial ischemia-induced damage through regulation of renin-angiotensin system and favours a pro-vasodilator profile in left ventricle. J Pharmacol Sci 2020; 144:218-228. [PMID: 33070841 DOI: 10.1016/j.jphs.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022] Open
Abstract
Myocardial ischemia initiates a chain of pathological conditions leading to cardiomyocyte death. Therefore, pharmacological treatment to stop ischemia-induced damage is necessary. Fibrates, have been reported to decrease inflammatory markers and to modulate the renin-angiotensin system (RAS). Our aim was to explore if clofibrate treatment, administered one week after myocardial event, decreases MI-induced cardiac damage. Wistar rats were assigned to: 1. Sham or 2. Coronary artery ligation (MI). Seven days after, rats were subdivided to receive vehicle (V) or clofibrate [100 mg/kg (C)] daily for 7 days. Blood samples and left ventricle were analyzed. RAS components [angiotensin II, angiotensin converting enzyme (ACE), and AT1-receptor] decreased in MI-C compared to MI-V, while [Ang-(1-7), bradykinin, ACE-2, and AT2-receptor] raised in response to clofibrate treatment. Oxidative stress markers increased in MI-V rats, a profile reverted in MI-C rats. Nitric oxide (NO) pathway (Akt, eNOS, and NO) exhibits a lower participation in MI-V, but clofibrate raised NO-pathway components and its production. MI-induced fibrosis and structural damage was also improved by clofibrate-treatment. In conclusion, clofibrate administration to 7 days MI-rats exerts an antioxidant, pro-vasodilator expression profile, and anti-fibrotic effect suggesting that PPARα activation can be considered a therapeutic target to improve cardiac condition posterior to ischemia.
Collapse
Affiliation(s)
- L Ibarra-Lara
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - M Sánchez-Aguilar
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - L Del Valle-Mondragón
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - E Soria-Castro
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - L G Cervantes-Pérez
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - G Pastelín-Hernández
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - A Sánchez-Mendoza
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico.
| |
Collapse
|
30
|
Oxidative Stress and Vascular Dysfunction in the Retina: Therapeutic Strategies. Antioxidants (Basel) 2020; 9:antiox9080761. [PMID: 32824523 PMCID: PMC7465265 DOI: 10.3390/antiox9080761] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Many retinal diseases, such as diabetic retinopathy, glaucoma, and age-related macular (AMD) degeneration, are associated with elevated reactive oxygen species (ROS) levels. ROS are important intracellular signaling molecules that regulate numerous physiological actions, including vascular reactivity and neuron function. However, excessive ROS formation has been linked to vascular endothelial dysfunction, neuron degeneration, and inflammation in the retina. ROS can directly modify cellular molecules and impair their function. Moreover, ROS can stimulate the production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) causing inflammation and cell death. However, there are various compounds with direct or indirect antioxidant activity that have been used to reduce ROS accumulation in animal models and humans. In this review, we report on the physiological and pathophysiological role of ROS in the retina with a special focus on the vascular system. Moreover, we present therapeutic approaches for individual retinal diseases targeting retinal signaling pathways involving ROS.
Collapse
|
31
|
Nabil M, El Demellawy MA, Mahmoud MF, Mahmoud AAA. Prolonged overnutrition with fructose or fat induces metabolic derangements in rats by disrupting the crosstalk between the hypothalamus and periphery: Possible amelioration with fenofibrate. Eur J Pharmacol 2020; 879:173136. [PMID: 32360834 DOI: 10.1016/j.ejphar.2020.173136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 11/15/2022]
Abstract
Metabolic Syndrome (MetS) increases the risk of developing type 2 diabetes mellitus and cardiovascular complications. The crosstalk between the hypothalamus and periphery is vital for regulating food intake and energy homeostasis. However, it is impaired during MetS. The present study aimed to compare the distinct central and peripheral metabolic derangements induced by a high-fructose drink or high-fat diet, as well as the possible intervention by fenofibrate. Rats were divided into five groups: standard chow diet (SCD) group, high-fructose group (FR), high-fat group (HF), FR plus fenofibrate group (FR-F), and HF plus fenofibrate group (HF-F). FR and HF groups showed hyperglycemia, hyperinsulinemia, hypertriglyceridemia, hyperleptinemia, steatosis, and adipocyte hypertrophy. This was associated with elevated circulating levels of proinflammatory cytokines and free fatty acids (FFAs). The latter mediators are involved in the hypothalamic inflammation and dysregulation of signaling cascades that control food intake and glucose homeostasis. The effects were more pronounced in the HF group than FR group, which were matched with the observed higher levels of plasma FFAs and cytokines. Fenofibrate administration improved not only the peripheral metabolic disturbances, but also the central disturbances associated with insulin resistance induced by FR or HF diet. This study sheds light on the pivotal role of the hypothalamus in diet-induced MetS. Furthermore, the study suggests the utmost importance of developing a standardized model of metabolic syndrome in place of the great diversity between available models, which can induce different effects and negatively impact the validity of prospective studies.
Collapse
Affiliation(s)
- Mohamed Nabil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt; Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934, Egypt
| | - Maha A El Demellawy
- Department of Medical Biotechnology, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934, Egypt
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Amr A A Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
32
|
Shehata AHF, Ahmed ASF, Abdelrehim AB, Heeba GH. The impact of single and combined PPAR-α and PPAR-γ activation on the neurological outcomes following cerebral ischemia reperfusion. Life Sci 2020; 252:117679. [PMID: 32325134 DOI: 10.1016/j.lfs.2020.117679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
Abstract
AIM The neuronal damage and accompanied functional deficits induced by cerebral ischemia are among the most common causes of disabilities in adults. Activation of subtypes of peroxisome proliferator-activated receptors (PPARs); PPAR-α and PPAR-γ have shown neuroprotective effects in different neurodegenerative diseases including stroke. Thus, this study aimed to compare the effects of two different agonists: PPAR-α (fenofibrate) and PPAR-γ (pioglitazone) as well as the effect of their combination in ameliorating post-ischemia behavioral deficits. METHODS Male Wistar rats were either pretreated with vehicle, fenofibrate (100 mg/kg/day p.o), pioglitazone (10 mg/kg/day p.o) or their combination for 14 days prior to bilateral common carotid artery occlusion followed by reperfusion for 24 hoursh. The sensory motor functions of rats were assessed, then rats were sacrificed to determine infarct volume and histopathological changes as well as oxidative stress, inflammatory and apoptotic markers in the brain tissue. KEY FINDINGS Pre-treatment with fenofibrate and pioglitazone in addition to their combination improved neurobehavioral dysfunction, reduced cerebral infarct volume, attenuated inflammatory and apoptotic markers and ameliorated histopathological changes in I/R injured rats. The effect of pioglitazone in cerebral cortex was higher than its corresponding effect in fenofibrate while the combined administration of both drugs had additive neuroprotective effect and normalized inflammatory and apoptotic mediators in ischemic rats. SIGNIFICANCE The study compared the neuroprotective effects of PPAR-α and PPAR-γ agonists, and tested the impact of their combination. We concluded that no additional benefits on the functional outcomes might be gained upon their combination.
Collapse
Affiliation(s)
- Alaa H F Shehata
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt.
| | - Amany B Abdelrehim
- Department of Biochemistry and Toxicology, Faculty of Pharmacy, Minia University, Egypt
| | - Gehan H Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt
| |
Collapse
|
33
|
Assaf N, El-Shamarka ME, Salem NA, Khadrawy YA, El Sayed NS. Neuroprotective effect of PPAR alpha and gamma agonists in a mouse model of amyloidogenesis through modulation of the Wnt/beta catenin pathway via targeting alpha- and beta-secretases. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109793. [PMID: 31669201 DOI: 10.1016/j.pnpbp.2019.109793] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022]
Abstract
The present study was conducted to evaluate the efficacy of fenofibrate and pioglitazone in a mouse model of amyloidogenesis induced by amyloidβ (βA) peptide. Mice were injected intracerebroventricularly with βA1-40 (400 pmol/mouse) once, followed by treatment with fenofibrate (300 mg/kg), pioglitazone (30 mg/kg),or both. After 21 days of daily treatment, memory impairment and cognitive function were evaluated by Morris water maze (MWM), Y-maze and object recognition tests. On the 22nd day, mice were sacrificed, and their hippocampi were dissected to determine the levels of α- and β-secretase, peroxisome proliferator-activated receptor (PPARα and β), Wnt and β-catenin. Significant memory impairment and cognitive dysfunction were observed in the mouse model group. This finding was associated with a significant increase in α- and β-secretase levels and a significant decrease in Wnt, β-catenin, and PPARα and β levels. Neuronal damage was also evident after histopathological examination. Treatment with fenofibrate, pioglitazone and their combination resulted in a significant improvement in the behavioural and neurochemical changes induced by βA injection. The present findings indicate that the combined administration of fenofibrate and pioglitazone was more effective than monotherapy in ameliorating the behavioural, neurochemical and histopathological changes in amyloidogenesis model mice and provide a promising therapeutic approach in the management of Alzheimer's disease complicated by diabetes and hypercholesterolemia.
Collapse
Affiliation(s)
- Naglaa Assaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, Cairo, Egypt
| | - Marwa E El-Shamarka
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research Division, National Research Centre, Giza, Egypt
| | - Neveen A Salem
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research Division, National Research Centre, Giza, Egypt; Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Yasser A Khadrawy
- Department of Medical Physiology, Medical Research Division, National Research Centre, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
34
|
Qi L, Zhou Y, Li W, Zheng M, Zhong R, Jin X, Lin Y. Effect of Moringa oleifera stem extract on hydrogen peroxide-induced opacity of cultured mouse lens. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:144. [PMID: 31226981 PMCID: PMC6588927 DOI: 10.1186/s12906-019-2555-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 06/10/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Moringa oleifera, also known as horseradish tree or drumstick tree, has strong antioxidant properties. In the present study, we investigated the potential effect of Moringa oleifera stem extract (MOSE) on cataract formation induced by oxidative stress in cultured mouse lenses. METHODS Mouse lenses cultured in vitro were pretreated with MOSE (0.5 and 1 mg/mL) for 24 h. Then, 1 mM hydrogen peroxide was added, and mouse lenses were cultured for a further 24 h. The medium was then changed to normal culture medium. After 48 h, lens opacification, reactive oxygen species (ROS) generation, reduced glutathione (GSH) content, and activities of superoxide dismutase (SOD) and catalase (CAT) were measured in lens tissues. In addition, the protein expression of peroxisome proliferator-activated receptor alpha (PPARα), a nuclear receptor with potential benefits to improve vision-threatening eye diseases, was assayed. RESULTS MOSE (1 mg/mL) alleviated lens opacification, reduced ROS generation, increased GSH content, and elevated SOD and CAT activities in cultured lenses. Moreover, MOSE upregulated the expressions of SOD, CAT, and PPARα. CONCLUSIONS This study showed that MOSE alleviates oxidative stress-induced cataract formation, and the mechanism of the effect is mainly related to its improvement of the endogenous antioxidant system in the lens.
Collapse
Affiliation(s)
- Lei Qi
- Department of Ophthalmology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361005 People’s Republic of China
| | - Yu Zhou
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Weijie Li
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Mali Zheng
- Department of Ophthalmology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361005 People’s Republic of China
| | - Ruisheng Zhong
- Department of Ophthalmology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361005 People’s Republic of China
| | - Xin Jin
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Yuan Lin
- Department of Ophthalmology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361005 People’s Republic of China
| |
Collapse
|
35
|
Hydrogen Sulfide Attenuates High Glucose-Induced Human Retinal Pigment Epithelial Cell Inflammation by Inhibiting ROS Formation and NLRP3 Inflammasome Activation. Mediators Inflamm 2019; 2019:8908960. [PMID: 31178664 PMCID: PMC6507269 DOI: 10.1155/2019/8908960] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/24/2019] [Accepted: 03/31/2019] [Indexed: 12/11/2022] Open
Abstract
Hydrogen sulfide (H2S) has been shown to protect against oxidative stress injury and inflammation in various high glucose-induced insult models. However, it remains unknown whether H2S protects human retinal pigment epithelial cells (RPE cells) from high glucose-induced damage. In the current study, cell viability, proinflammatory cytokines, ROS, and inflammasome markers were compared in a low glucose- and high glucose-induced cell culture system. The antioxidant N-acetylcysteine (NAC), NLRP3 siRNA, and NaHS were used to test RPE cell responses. The results demonstrate that compared with the low-glucose culture, high glucose triggered higher cell death and increased IL-18 and IL-1β mRNA expression and protein production. Furthermore, high glucose increased the mRNA expression levels of NLRP3, ACS, and caspase-1. Notably, NAC, a ROS scavenger, could attenuate high glucose-induced ROS formation and IL-18 and IL-1β mRNA and protein expression and block inflammasome activation. Silencing the NLRP3 gene expression also abolished IL-18 and IL-1β mRNA and protein expression. Intrudingly, H2S could ameliorate high glucose-induced ROS formation, IL-18 and IL-1β expression, and inflammasome activation. Taken together, the findings of the present study have demonstrated that H2S protects cultured RPE cells from high glucose-induced damage through inhibiting ROS formation and NLRP3 inflammasome activation. It might suggest that H2S represents a potential therapeutic target for the treatment of diabetic retinopathy.
Collapse
|
36
|
Liu Q, Zhang X, Cheng R, Ma JX, Yi J, Li J. Salutary effect of fenofibrate on type 1 diabetic retinopathy via inhibiting oxidative stress-mediated Wnt/β-catenin pathway activation. Cell Tissue Res 2019; 376:165-177. [PMID: 30610453 DOI: 10.1007/s00441-018-2974-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Fenofibrate has been shown to have therapeutic effects on diabetic retinopathy (DR). Our previous studies demonstrated that the oxidative stress-activated Wnt/β-catenin pathway plays a pathogenic role in diabetic complications. In the present study, we evaluate the effect and mechanism of fenofibrate on regulating the oxidative stress-activated Wnt/β-catenin pathway by using the genetic type 1 diabetes model of C57BL/6J-Ins2Akita mice and high glucose (HG)-treated ARPE-19. Our results demonstrated that retinal phosphorylation of LRP6 and nuclear β-catenin were increased in C57BL/6J-Ins2Akita mice suggesting activation of Wnt/β-catenin signaling. Meanwhile, C57BL/6J-Ins2Akita showed upregulation of oxidant enzyme Nox4 and Nox2 and downregulation of antioxidant enzyme SOD1 and SOD2. All these alterations were reversed in C57BL/6J-Ins2Akita mice with fenofibrate treatment. Moreover, fenofibrate significantly ameliorated diabetes-induced retinal vascular leakage in C57BL/6J-Ins2Akita mice. In cultured ARPE-19, fenofibrate decreased HG-induced Nox2 and Nox4 upregulation, attenuated SOD1 and SOD2 downregulation and inhibited LRP6 phosphorylation. Moreover, activation of Wnt/β-catenin by Wnt3a conditional medium (WCM) reduced SOD1 and SOD2 and did not affect Nox2 and Nox4. Fenofibrate suppressed WCM-induced LRP6 phosphorylation and reversed SOD downregulation. Importantly, Nox4 overexpression directly phosphorylated LPR6 in ARPE19; conversely, Nox4 knockdown suppressed HG-induced LPR6 phosphorylation. Taken together, Nox-mediated oxidative stress contributes to Wnt/β-catenin activation in DR. Fenofibrate ameliorated DR through coordinate attenuation of oxidative stress and blockade of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Qiuping Liu
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, 463 Bayi Road, Nanchang, 330006, Jiangxi, China
| | - Xian Zhang
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, 463 Bayi Road, Nanchang, 330006, Jiangxi, China
| | - Rui Cheng
- Department of Physiology, Health Sciences Center, University of Oklahoma, 941 Stanton L. Young Blvd, Oklahoma City, OK, 73104, USA
| | - Jian-Xing Ma
- Department of Physiology, Health Sciences Center, University of Oklahoma, 941 Stanton L. Young Blvd, Oklahoma City, OK, 73104, USA
| | - Jinglin Yi
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, 463 Bayi Road, Nanchang, 330006, Jiangxi, China.
| | - Jingming Li
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, 463 Bayi Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
37
|
Santos-Bezerra DP, Santos AS, Guimarães GC, Admoni SN, Perez RV, Machado CG, Pelaes TS, Passarelli M, Machado UF, Queiroz MS, da Silva MER, Correa-Giannella ML. Micro-RNAs 518d-3p and 618 Are Upregulated in Individuals With Type 1 Diabetes With Multiple Microvascular Complications. Front Endocrinol (Lausanne) 2019; 10:385. [PMID: 31249556 PMCID: PMC6582662 DOI: 10.3389/fendo.2019.00385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/29/2019] [Indexed: 01/21/2023] Open
Abstract
Objective: To compare the serum micro-RNAs (miRNAs) profile of individuals with type 1 diabetes without microvascular complications vs. those with multiple severe microvascular complications, in order to identify epigenetically modulated pathways in these two groups of individuals. Research Design and Methods: A total of 10 subjects were selected among individuals followed in the Diabetes Outpatient Clinic and sorted according to the absence or presence of all microvascular complications. Samples from these participants were used for evaluation of serum miRNA expression profile employing a qRT-PCR assay with hydrolysis probes based on the Taqman Low Density Arrays (TLDA) system. The top six most differentially expressed miRNAs between the aforementioned groups were validated by qRT-PCR in additional 47 type 1 diabetes individuals sorted according to the absence or presence of all microvascular complications and matched for age, sex, degree of metabolic control, diabetes duration, and age at diagnosis. Results: Twenty one out of three hundred and seventy seven miRNAs were upregulated in the group of individuals with all microvascular complications vs. the group without complications. The following miRs were validated: 518-3p, 34a-5p, 126-5p, 425-5p, 618, and 139-5p and logistic regression analyses showed that miRNA-518-3p and miRNA-618 were positively associated with multiple microvascular complications after adjustment for age, sex, diabetes duration, HbA1c and use of statin, angiotensin-converting enzyme inhibitors and amlodipine. Conclusions: In this cohort of type 1 diabetes individuals, serum miR-518d-3p and miR-618 were upregulated in those with diabetes kidney disease, diabetes retinopathy, peripheral neuropathy, and cardiovascular autonomic neuropathy in comparison to individuals with no microvascular complications.
Collapse
Affiliation(s)
- Daniele P. Santos-Bezerra
- Laboratório de Carboidratos e Radioimunoensaio, LIM-18, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Aritania S. Santos
- Laboratório de Carboidratos e Radioimunoensaio, LIM-18, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Gabriel C. Guimarães
- Laboratório de Carboidratos e Radioimunoensaio, LIM-18, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sharon N. Admoni
- Laboratório de Carboidratos e Radioimunoensaio, LIM-18, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo V. Perez
- Laboratório de Carboidratos e Radioimunoensaio, LIM-18, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Cleide G. Machado
- Divisão de Oftalmologia do Hospital das Clinicas, HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Tatiana S. Pelaes
- Laboratório de Carboidratos e Radioimunoensaio, LIM-18, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marisa Passarelli
- Laboratório de Lipides, LIM-10, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Ubiratan F. Machado
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marcia S. Queiroz
- Divisão de Endocrinologia do Hospital das Clinicas, HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maria Elizabeth R. da Silva
- Laboratório de Carboidratos e Radioimunoensaio, LIM-18, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maria Lucia Correa-Giannella
- Laboratório de Carboidratos e Radioimunoensaio, LIM-18, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
- *Correspondence: Maria Lucia Correa-Giannella
| |
Collapse
|
38
|
Wang Z, Liu CH, Huang S, Chen J. Wnt Signaling in vascular eye diseases. Prog Retin Eye Res 2018; 70:110-133. [PMID: 30513356 DOI: 10.1016/j.preteyeres.2018.11.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
The Wnt signaling pathway plays a pivotal role in vascular morphogenesis in various organs including the eye. Wnt ligands and receptors are key regulators of ocular angiogenesis both during the eye development and in vascular eye diseases. Wnt signaling participates in regulating multiple vascular beds in the eye including regression of the hyaloid vessels, and development of structured layers of vasculature in the retina. Loss-of-function mutations in Wnt signaling components cause rare genetic eye diseases in humans such as Norrie disease, and familial exudative vitreoretinopathy (FEVR) with defective ocular vasculature. On the other hand, experimental studies in more prevalent vascular eye diseases, such as wet age-related macular degeneration (AMD), diabetic retinopathy (DR), retinopathy of prematurity (ROP), and corneal neovascularization, suggest that aberrantly increased Wnt signaling is one of the causations for pathological ocular neovascularization, indicating the potential of modulating Wnt signaling to ameliorate pathological angiogenesis in eye diseases. This review recapitulates the key roles of the Wnt signaling pathway during ocular vascular development and in vascular eye diseases, and pharmaceutical approaches targeting the Wnt signaling as potential treatment options.
Collapse
Affiliation(s)
- Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Shuo Huang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States.
| |
Collapse
|
39
|
Holubiec MI, Romero JI, Suárez J, Portavella M, Fernández-Espejo E, Blanco E, Galeano P, de Fonseca FR. Palmitoylethanolamide prevents neuroinflammation, reduces astrogliosis and preserves recognition and spatial memory following induction of neonatal anoxia-ischemia. Psychopharmacology (Berl) 2018; 235:2929-2945. [PMID: 30058012 DOI: 10.1007/s00213-018-4982-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/23/2018] [Indexed: 11/27/2022]
Abstract
RATIONAL Neonatal anoxia-ischemia (AI) particularly affects the central nervous system. Despite the many treatments that have been tested, none of them has proven to be completely successful. Palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) are acylethanolamides that do not bind to CB1 or CB2 receptors and thus they do not present cannabinoid activity. These molecules are agonist compounds of peroxisome proliferator-activator receptor alpha (PPARα), which modulates the expression of different genes that are related to glucose and lipid metabolism, inflammation, differentiation and proliferation. OBJECTIVE In the present study, we analyzed the effects that the administration of PEA or OEA, after a neonatal AI event, has over different areas of the hippocampus. METHODS To this end, 7-day-old rats were subjected to AI and then treated with vehicle, OEA (2 or 10 mg/kg) or PEA (2 or 10 mg/kg). At 30 days of age, animals were subjected to behavioral tests followed by immunohistochemical studies. RESULTS Results showed that neonatal AI was associated with decreased locomotion, as well as recognition and spatial memory impairments. Furthermore, these deficits were accompanied with enhanced neuroinflammation and astrogliosis, as well as a decreased PPARα expression. PEA treatment was able to prevent neuroinflammation, reduce astrogliosis and preserve cognitive functions. CONCLUSIONS These results indicate that the acylethanolamide PEA may play an important role in the mechanisms underlying neonatal AI, and it could be a good candidate for further studies regarding neonatal AI treatments.
Collapse
Affiliation(s)
- Mariana I Holubiec
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avenida Carlos Haya 82, 29010, Málaga, Spain
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Patricias Argentinas 435, C1405BWE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan I Romero
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avenida Carlos Haya 82, 29010, Málaga, Spain
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Patricias Argentinas 435, C1405BWE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avenida Carlos Haya 82, 29010, Málaga, Spain
| | - Manuel Portavella
- Laboratorio de Conducta Animal y Neurociencia, Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, C/Camilo José Cela s/n, 41018, Sevilla, Spain
| | - Emilio Fernández-Espejo
- Laboratorio de Neurofisiología y Neurología Molecular, Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Av. Sánchez Pizjuán 4, 41009, Sevilla, Spain
| | - Eduardo Blanco
- Lleida Institute for Biomedical Research, Dr. Pifarré Foundation (IRBLleida), University of Lleida, Av. Alcalde Rovira Roure 80, 25198, Lleida, Spain
| | - Pablo Galeano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avenida Carlos Haya 82, 29010, Málaga, Spain.
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Patricias Argentinas 435, C1405BWE, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Avenida Carlos Haya 82, 29010, Málaga, Spain.
| |
Collapse
|
40
|
Dou XZ, Nath D, Shin Y, Ma JX, Duerfeldt AS. Structure-guided evolution of a 2-phenyl-4-carboxyquinoline chemotype into PPARα selective agonists: New leads for oculovascular conditions. Bioorg Med Chem Lett 2018; 28:2717-2722. [PMID: 29628329 PMCID: PMC6119630 DOI: 10.1016/j.bmcl.2018.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023]
Abstract
Small molecule agonism of PPARα represents a promising new avenue for the development of non-invasive treatments for oculovascular diseases like diabetic retinopathy and age-related macular degeneration. Herein we report initial structure-activity relationships for the newly identified quinoline-based PPARα agonist, Y-0452. Preliminary computational studies led to the hypothesis that carboxylic acid transposition and deconstruction of the Y-0452 quinoline system would enhance ligand-protein interactions and better complement the nature of the binding pocket. A focused subset of analogs was designed, synthesized, and assessed for PPARα agonism. Two key observations arose from this work 1) contrary to other PPARα agonists, incorporation of the fibrate "head-group" decreases PPARα selectivity and instead provides pan-PPAR agonists and 2) computational models reveal a relatively unexploited amphiphilic pocket in PPARα that provides new opportunities for the development of novel agonists. As an example, compound 10 exhibits more potent PPARα agonism (EC50 = ∼6 µM) than Y-0452 (EC50 = ∼50 µM) and manifests >20-fold selectivity for PPARα over the PPARγ and PPARδ isoforms. More detailed biochemical analysis of 10 confirms typical downstream responses of PPARα agonism including PPARα upregulation, induction of target genes, and inhibition of cell migration.
Collapse
Affiliation(s)
- Xiao-Zheng Dou
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States
| | - Dinesh Nath
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States
| | - Younghwa Shin
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Adam S Duerfeldt
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States.
| |
Collapse
|
41
|
Harmer JA, Keech AC, Veillard AS, Skilton MR, Watts GF, Celermajer DS. Fenofibrate effects on carotid artery intima-media thickness in adults with type 2 diabetes mellitus: A FIELD substudy. Diabetes Res Clin Pract 2018; 141:156-167. [PMID: 29763709 DOI: 10.1016/j.diabres.2018.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/16/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022]
Abstract
AIM Dyslipidemia in type 2 diabetes contributes to an increased risk of cardiovascular disease. Fenofibrate, a lipid-regulating peroxisome proliferator-activated receptor-α (PPARα) agonist, has been shown to reduce vascular complications in adults with type 2 diabetes. The mechanisms for such benefit, however, are not yet well understood. We examined the effects of fenofibrate on carotid intima-media thickness (IMT), a marker of subclinical atherosclerosis, in adults with type 2 diabetes. METHODS In a prospectively designed substudy of the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study, we assessed carotid IMT in a subset of 422 representative adults. Traditional risk factors and IMT were assessed at 2 and 4 years after randomisation to fenofibrate (200 mg daily) or placebo. The prespecified primary study endpoint was the difference in IMT between treatment groups at 4 years. Post-hoc analyses were performed according to dyslipidemia and metabolic syndrome status. RESULTS There was no difference in carotid IMT comparing those assigned to fenofibrate or placebo at 2 or 4 years, despite statistically significant improvement in lipid and lipoprotein parameters at 2 and 4 years, including TC, LDL-C and TG, and HDL-C at 4 months and 2 years. Similarly, there was no difference in carotid IMT on fenofibrate compared with placebo in those with dyslipidemia or metabolic syndrome. CONCLUSIONS Fenofibrate was not associated with improved carotid IMT in adults with type 2 diabetes when compared with placebo, despite a statistically significant improvement in TC, LDL-C and TG at 2 and 4 years, and HDL-C at 4 months and 2 years.
Collapse
Affiliation(s)
- Jason A Harmer
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Royal North Shore Hospital, Sydney, NSW, Australia; Faculty of Medicine, Western Sydney University, Sydney, NSW, Australia.
| | - Anthony C Keech
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; NHMRC Clinical Trials Center, University of Sydney, Sydney, NSW, Australia
| | | | - Michael R Skilton
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Gerald F Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, WA, Australia; School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| | - David S Celermajer
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
42
|
Beneficial effects of fenofibrate in pulmonary hypertension in rats. Mol Cell Biochem 2018; 449:185-194. [DOI: 10.1007/s11010-018-3355-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/16/2018] [Indexed: 02/07/2023]
|
43
|
Peroxisome proliferator-activated receptor alpha agonist suppresses neovascularization by reducing both vascular endothelial growth factor and angiopoietin-2 in corneal alkali burn. Sci Rep 2017; 7:17763. [PMID: 29259285 PMCID: PMC5736552 DOI: 10.1038/s41598-017-18113-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/05/2017] [Indexed: 02/08/2023] Open
Abstract
We investigated the effect of a peroxisome proliferator-activated receptor alpha (PPARα) agonist ophthalmic solution in wound healing using a rat corneal alkali burn model. After instillation of a selective agonist of PPARα, fenofibrate, onto the burned cornea, PPARα-positive cells were observed in vascular endothelial cells, and there was upregulation of mRNA of PPARα in corneal stroma. Fenofibrate suppressed expression of neutrophils and macrophages during the early phase, and development of neovascularization and myofibroblast generation during the late phase. Fenofibrate reduced not only mRNA expression of vascular endothelial growth factor-A but also angiopoietin-1 and angiopoietin-2. Furthermore, fenofibrate suppressed scar formation by reducing type III collagen expression. These data suggest that a PPARα agonist ophthalmic solution might be a new strategy for treating corneal wounds through not only anti-inflammatory effects but also by preventing neovascularization.
Collapse
|
44
|
Pearsall EA, Cheng R, Zhou K, Takahashi Y, Matlock HG, Vadvalkar SS, Shin Y, Fredrick TW, Gantner ML, Meng S, Fu Z, Gong Y, Kinter M, Humphries KM, Szweda LI, Smith LEH, Ma JX. PPARα is essential for retinal lipid metabolism and neuronal survival. BMC Biol 2017; 15:113. [PMID: 29183319 PMCID: PMC5706156 DOI: 10.1186/s12915-017-0451-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/06/2017] [Indexed: 11/29/2022] Open
Abstract
Background Peroxisome proliferator activated receptor-alpha (PPARα) is a ubiquitously expressed nuclear receptor. The role of endogenous PPARα in retinal neuronal homeostasis is unknown. Retinal photoreceptors are the highest energy-consuming cells in the body, requiring abundant energy substrates. PPARα is a known regulator of lipid metabolism, and we hypothesized that it may regulate lipid use for oxidative phosphorylation in energetically demanding retinal neurons. Results We found that endogenous PPARα is essential for the maintenance and survival of retinal neurons, with Pparα-/- mice developing retinal degeneration first detected at 8 weeks of age. Using extracellular flux analysis, we identified that PPARα mediates retinal utilization of lipids as an energy substrate, and that ablation of PPARα ultimately results in retinal bioenergetic deficiency and neurodegeneration. This may be due to PPARα regulation of lipid transporters, which facilitate the internalization of fatty acids into cell membranes and mitochondria for oxidation and ATP production. Conclusion We identify an endogenous role for PPARα in retinal neuronal survival and lipid metabolism, and furthermore underscore the importance of fatty acid oxidation in photoreceptor survival. We also suggest PPARα as a putative therapeutic target for age-related macular degeneration, which may be due in part to decreased mitochondrial efficiency and subsequent energetic deficits. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0451-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth A Pearsall
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA
| | - Kelu Zhou
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA
| | - Yusuke Takahashi
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA.,Section of Diabetes and Endocrinology, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - H Greg Matlock
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA
| | - Shraddha S Vadvalkar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Younghwa Shin
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA
| | - Thomas W Fredrick
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Marin L Gantner
- The Lowy Medical Research Institute, La Jolla, CA, 92037, USA
| | - Steven Meng
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yan Gong
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Kenneth M Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Luke I Szweda
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA. .,Section of Diabetes and Endocrinology, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
45
|
Deng G, Moran EP, Cheng R, Matlock G, Zhou K, Moran D, Chen D, Yu Q, Ma JX. Therapeutic Effects of a Novel Agonist of Peroxisome Proliferator-Activated Receptor Alpha for the Treatment of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2017; 58:5030-5042. [PMID: 28979999 PMCID: PMC5633008 DOI: 10.1167/iovs.16-21402] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Purpose Clinical studies have shown that peroxisome proliferator-activated receptor alpha (PPARα) agonist fenofibrate has therapeutic effects on diabetic retinopathy (DR). The purpose of this study was to identify a novel PPARα agonist and to evaluate its beneficial effects on DR. Methods The transcriptional activity of PPARα was measured by a luciferase-based promoter assay. TUNEL was used to evaluate apoptosis in retinal precursor cells (R28). Diabetes was induced in rats by injection of streptozotocin. Retinal inflammation was examined using leukostasis assay, and retinal vascular leakage was measured using permeability assay. Retinal function was measured using electroretinogram (ERG) recording, and retinal apoptosis was quantified using the cell death ELISA. The anti-angiogenic effect was evaluated in the oxygen-induced retinopathy (OIR) model. Results A compound, 7-chloro-8-methyl-2-phenylquinoline-4-carboxylic acid (Y-0452), with a chemical structure distinct from existing PPARα agonists, activated PPARα transcriptional activity and upregulated PPARα expression. Y-0452 significantly inhibited human retinal capillary endothelial cell migration and tube formation. The compound also protected R28 cells against apoptosis and inhibited NF-κB signaling in R28 cells exposed to palmitate. In diabetic rats, Y-0452 ameliorated leukostasis and vascular leakage in the retina. In addition, Y-0452 preserved the retinal function and reduced retinal cell death in diabetic rats. Y-0452 also alleviated retinal neovascularization in the OIR model. Conclusions Y-0452 is a novel PPARα agonist and has therapeutic potential for DR.
Collapse
Affiliation(s)
- Guotao Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Elizabeth P Moran
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Greg Matlock
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Kelu Zhou
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - David Moran
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Danyang Chen
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Qiang Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
46
|
Usui-Ouchi A, Ouchi Y, Ebihara N. The peroxisome proliferator-activated receptor pan-agonist bezafibrate suppresses microvascular inflammatory responses of retinal endothelial cells and vascular endothelial growth factor production in retinal pigmented epithelial cells. Int Immunopharmacol 2017; 52:70-76. [PMID: 28866026 DOI: 10.1016/j.intimp.2017.08.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/08/2017] [Accepted: 08/27/2017] [Indexed: 01/01/2023]
Abstract
A randomized clinical trial showed the beneficial effects of the selective peroxisome proliferator-activated receptor (PPAR)-α agonist, fenofibrate, in reducing the progression of diabetic retinopathy independent of serum lipid levels. All subtypes of PPAR (PPAR-α, PPAR-γ, and PPAR-β/δ) have been reported to play a key role in microvascular inflammation and angiogenesis. Therefore, the agonistic function of fenofibrate against the PPAR-α has been suggested to contribute to its medicinal effect. Furthermore, bezafibrate is a fibrate drug commonly used as a lipid-lowering agent to treat hyperlipidemia and acts as a pan-agonist of all PPARs subtypes. However, the effects of bezafibrate in diabetic retinopathy remain unclear. Therefore, the purpose of this study was to investigate the effects of bezafibrate on retinal microvascular inflammation. Bezafibrate was not cytotoxic against human retinal microvascular endothelial cells (HRMECs) and human retinal pigment epithelial cells (ARPE-19 cells) treated with <100 and 200μM bezafibrate, respectively. In HRMECs, the expression levels of tumor necrosis factor (TNF)-α-induced monocyte chemoattractant protein (MCP)-1, intercellular adhesion molecule (ICAM)-1, and vascular cell adhesion molecule (VCAM)-1 were significantly suppressed by bezafibrate in a dose-dependent manner. TNF-α-induced nuclear translocation of nuclear factor (NF)-κB p65 and cell migration were also significantly inhibited in bezafibrate-treated HRMECs. Furthermore, bezafibrate treatment significantly suppressed interleukin (IL)-1β-induced vascular endothelial growth factor (VEGF) production in ARPE-19 cells. These results suggest that bezafibrate has beneficial effects on retinal microvascular inflammation. Our study demonstrates the therapeutic potential of bezafibrate for managing diabetic retinopathy.
Collapse
Affiliation(s)
- Ayumi Usui-Ouchi
- Department of Ophthalmology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan.
| | - Yasuo Ouchi
- Department of Mucosal Immunology, School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Nobuyuki Ebihara
- Department of Ophthalmology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan.
| |
Collapse
|
47
|
Li M, Wang S, Wang S, Zhang L, Wu D, Yang R, Ji A, Li Y, Wang J. Occludin downregulation in high glucose is regulated by SSTR 2 via the VEGF/NRP1/Akt signaling pathway in RF/6A cells. Exp Ther Med 2017; 14:1732-1738. [PMID: 28810643 DOI: 10.3892/etm.2017.4651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 03/23/2017] [Indexed: 01/20/2023] Open
Abstract
Occludin is a tight junction protein that forms the permeability barrier, which is typically disturbed in ischemic associated diseases. The aim of the present study was to determine whether somatostatin receptor 2 (SSTR2) in RF/6A cells is involved in the modulation of the downregulation of occludin induced by high glucose, and to evaluate the implicated molecules. RF/6A cells were maintained in Dulbecco's modified Eagle medium and treated with 0 or 30 mM D-glucose. SSTR2 agonist octreotide (OCT), OCT with SSTR2 antagonist cycle-somatostatin (c-SOM) and neuropilin 1 (NRP1) inhibitor ATWLPPR, respectively, were administered to RF/6A cells under high glucose conditions. Cell apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling. Western blot analysis was used to detect the protein expression level of SSTR2, occludin, vascular endothelial growth factor (VEGF), protein kinase B (Akt), phosphorylated Akt (p-Akt), extracellular signal-related kinases (ERK) and p-ERK proteins. The amount of VEGF released was determined by ELISA. Notably, the level of occludin reduced significantly under high glucose conditions. The results indicated that the administration of OCT prevented the reduction of occludin induced by high glucose, and co-administration with c-SOM reversed the effect of OCT. Increased VEGF secretion and expression of VEGF, p-Akt and p-ERK in RF/6A cells induced by high glucose were inhibited by OCT. ATWLPPR also prevented the downregulation of occludin, but did not inhibit p-Akt and p-ERK levels under high glucose conditions. The current study concluded that the activation of SSTR2 prevents high glucose-induced occludin downregulation in RF/6A cells, and VEGF, NRP1, p-Akt and p-ERK were implicated in this process. The pharmacological effects of SSTR2 targeting to endothelium may be used to assess the role of resistance of permeability and anti-inflammation.
Collapse
Affiliation(s)
- Mengling Li
- Department of Physiology, Henan University School of Medicine, Kaifeng, Henan 475004, P.R. China
| | - Shuaiwei Wang
- Department of Physiology, Henan University School of Medicine, Kaifeng, Henan 475004, P.R. China
| | - Songjiang Wang
- Department of Physiology, Henan University School of Medicine, Kaifeng, Henan 475004, P.R. China
| | - Lei Zhang
- Department of Physiology, Henan University School of Medicine, Kaifeng, Henan 475004, P.R. China
| | - Dongdong Wu
- Department of Physiology, Henan University School of Medicine, Kaifeng, Henan 475004, P.R. China
| | - Ruisheng Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Kaifeng, Henan 475001, P.R. China
| | - Ailing Ji
- Department of Physiology, Henan University School of Medicine, Kaifeng, Henan 475004, P.R. China
| | - Yanzhang Li
- Department of Physiology, Henan University School of Medicine, Kaifeng, Henan 475004, P.R. China
| | - Jun Wang
- Department of Physiology, Henan University School of Medicine, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
48
|
Wang H, Hartnett ME. Roles of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase in Angiogenesis: Isoform-Specific Effects. Antioxidants (Basel) 2017; 6:antiox6020040. [PMID: 28587189 PMCID: PMC5488020 DOI: 10.3390/antiox6020040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is the formation of new blood vessels from preexisting ones and is implicated in physiologic vascular development, pathologic blood vessel growth, and vascular restoration. This is in contrast to vasculogenesis, which is de novo growth of vessels from vascular precursors, or from vascular repair that occurs when circulating endothelial progenitor cells home into an area and develop into blood vessels. The objective of this review is to discuss the isoform-specific role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) in physiologic and pathologic angiogenesis and vascular repair, but will not specifically address vasculogenesis. As the major source of reactive oxygen species (ROS) in vascular endothelial cells (ECs), NOX has gained increasing attention in angiogenesis. Activation of NOX leads to events necessary for physiologic and pathologic angiogenesis, including EC migration, proliferation and tube formation. However, activation of different NOX isoforms has different effects in angiogenesis. Activation of NOX2 promotes pathologic angiogenesis and vascular inflammation, but may be beneficial in revascularization in the hindlimb ischemic model. In contrast, activation of NOX4 appears to promote physiologic angiogenesis mainly by protecting the vasculature during ischemia, hypoxia and inflammation and by restoring vascularization, except in models of oxygen-induced retinopathy and diabetes where NOX4 activation leads to pathologic angiogenesis.
Collapse
Affiliation(s)
- Haibo Wang
- The John A. Moran Eye Center, University of Utah, 65 N. Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - M Elizabeth Hartnett
- The John A. Moran Eye Center, University of Utah, 65 N. Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
49
|
Chen Q, Qiu F, Zhou K, Matlock HG, Takahashi Y, Rajala RVS, Yang Y, Moran E, Ma JX. Pathogenic Role of microRNA-21 in Diabetic Retinopathy Through Downregulation of PPARα. Diabetes 2017; 66:1671-1682. [PMID: 28270521 PMCID: PMC5440012 DOI: 10.2337/db16-1246] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/01/2017] [Indexed: 02/06/2023]
Abstract
Fenofibrate, a specific agonist of peroxisome proliferator-activated receptor-α (PPARα), displays robust therapeutic effects on diabetic retinopathy (DR) in patients with type 2 diabetes. Our recent studies have shown that PPARα is downregulated in the diabetic retina, which contributes to the pathogenesis of DR. However, the mechanism for diabetes-induced downregulation of PPARα remains unknown. We investigated the role of microRNA-21 (miR-21) in regulating PPARα in DR. miR-21 was overexpressed, while PPARα levels were decreased in the retina of db/db mice, a model of type 2 diabetes. Such alterations were also observed in palmitate-treated retinal endothelial cells. miR-21 targeted PPARα by inhibiting its mRNA translation. Knockout of miR-21 prevented the decrease of PPARα, alleviated microvascular damage, ameliorated inflammation, and reduced cell apoptosis in the retina of db/db mice. Intravitreal injection of miR-21 inhibitor attenuated PPARα downregulation and ameliorated retinal inflammation in db/db mice. Further, retinal miR-21 levels were increased, while PPARα levels were decreased in oxygen-induced retinopathy (OIR). Knockout of miR-21 prevented PPARα downregulation and ameliorated retinal neovascularization and inflammation in OIR retinas. In conclusion, diabetes-induced overexpression of miR-21 in the retina is at least partly responsible for PPARα downregulation in DR. Targeting miR-21 may represent a novel therapeutic strategy for DR.
Collapse
Affiliation(s)
- Qian Chen
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Fangfang Qiu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Kelu Zhou
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - H Greg Matlock
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Yusuke Takahashi
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Raju V S Rajala
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Yanhui Yang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Elizabeth Moran
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
50
|
PPARα activation by MHY908 attenuates age-related renal inflammation through modulation of the ROS/Akt/FoxO1 pathway. Exp Gerontol 2017; 92:87-95. [PMID: 28323024 DOI: 10.1016/j.exger.2017.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/28/2017] [Accepted: 03/14/2017] [Indexed: 01/21/2023]
Abstract
2-[4-(5-Chlorobenzothiazothiazol-2-yl)phenoxy]-2-methyl-propionic acid (MHY908) has been shown to prevent insulin resistance-induced hyperinsulinemia in aged rats. However, the mechanism underlying MHY908-mediated amelioration of renal inflammation with insulin resistance during aging remains unknown. This study investigated the effects of MHY908 on age-related changes in the IRS/Akt/forkhead box (FoxO) 1 signaling pathway in the kidneys of aged rats and HEK293T cells. Experiments were performed in young, old, and MHY908-fed old rats (1mg or 3mg/kg/day MHY908 for 4 weeks). We found that MHY908-fed old rats suppressed phosphorylation of IRS/Akt and induced FoxO1 activation, leading to increased expression of MnSOD and catalase. In addition, in insulin-treated cells, MHY908 prevented the FoxO1 inactivation and increased the expression of MnSOD and catalase by inactivating IRS and Akt. In contrast, NF-κB signaling pathway decreased with MHY908 treatment in insulin-treated cells. Furthermore, MHY908 exclusively activated peroxisome proliferator-activated receptor (PPAR) α in the kidneys, leading to the inhibition of insulin-induced NADPH oxidase subunit 4 (NOX4)-derived reactive oxygen species (ROS) generation and FoxO1 inactivation. In conclusion, MHY908 improved the hyperinsulinemia-induced pro-inflammatory response through NF-κB inactivation and FoxO1 activation in aged rat kidneys. These phenomena suggest that PPARα activation by MHY908 attenuates NOX4-derived ROS generation in response to insulin.
Collapse
|