1
|
Nüsken E, Voggel J, Saschin L, Weber LT, Dötsch J, Alcazar MAA, Nüsken KD. Kidney lipid metabolism: impact on pediatric kidney diseases and modulation by early-life nutrition. Pediatr Nephrol 2025; 40:1839-1852. [PMID: 39601825 PMCID: PMC12031794 DOI: 10.1007/s00467-024-06595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Our review summarizes and evaluates the current state of knowledge on lipid metabolism in relation to the pathomechanisms of kidney disease with a focus on common pediatric kidney diseases. In addition, we discuss how nutrition in early childhood can alter kidney development and permanently shape kidney lipid and protein metabolism, which in turn affects kidney health and disease throughout life. Comprehensive integrated lipidomics and proteomics network analyses are becoming increasingly available and offer exciting new insights into metabolic signatures. Lipid accumulation, lipid peroxidation, oxidative stress, and dysregulated pro-inflammatory lipid mediator signaling have been identified as important mechanisms influencing the progression of minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, diabetic kidney disease, and acute kidney injury. We outline key features of metabolic homeostasis and lipid metabolic physiology in renal cells and discuss pathophysiological aspects in the pediatric context. On the one hand, special vulnerabilities such as reduced antioxidant capacity in neonates must be considered. On the other hand, there is a unique window of opportunity during kidney development, as nutrition in early life influences the composition of cellular phospholipid membranes in the growing kidney and thus affects local signaling pathways far beyond the growth phase.
Collapse
Affiliation(s)
- Eva Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jenny Voggel
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Leon Saschin
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Lutz T Weber
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jörg Dötsch
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Miguel A Alejandre Alcazar
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute for Lung Health, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Kai-Dietrich Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
2
|
Yu W, Haoyu Y, Ling Z, Xing H, Pengfei X, Anzhu W, Lili Z, Linhua Z. Targeting lipid metabolic reprogramming to alleviate diabetic kidney disease: molecular insights and therapeutic strategies. Front Immunol 2025; 16:1549484. [PMID: 40352935 PMCID: PMC12061959 DOI: 10.3389/fimmu.2025.1549484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/14/2025] [Indexed: 05/14/2025] Open
Abstract
Diabetic kidney disease (DKD) is one of the major complications of diabetes, and its pathological progression is closely associated with lipid metabolic reprogramming. Under diabetic conditions, renal cells undergo significant lipid metabolic abnormalities, including increased lipid uptake, impaired fatty acid oxidation, disrupted cholesterol efflux, and enhanced lipid catabolism, as adaptive responses to metabolic stress. These changes result in the accumulation of lipids such as free fatty acids, diacylglycerol, and ceramides, leading to lipotoxicity that triggers inflammation and fibrosis. Hypoxia in the DKD microenvironment suppresses fatty acid oxidation and promotes lipid synthesis through the HIF-1α pathway, while chronic inflammation exacerbates lipid metabolic disturbances via inflammatory cytokines, inflammasomes, and macrophage polarization. Targeting lipid metabolism represents a promising therapeutic strategy for alleviating DKD; however, further clinical translational studies are warranted to validate the efficacy and safety of these approaches.
Collapse
Affiliation(s)
- Wei Yu
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Haoyu
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhou Ling
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Hang Xing
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Xie Pengfei
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Wang Anzhu
- Chinese-Japanese Friendship Hospital, Beijing, China
| | - Zhang Lili
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhao Linhua
- Department of Endocrinology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
3
|
Park J, Jang JY, Kim JH, Yi SE, Lee YJ, Yu MS, Chung YS, Jang YJ, Kim JH, Kang K. SLC27A2 marks lipid peroxidation in nasal epithelial cells driven by type 2 inflammation in chronic rhinosinusitis with nasal polyps. Exp Mol Med 2025; 57:856-871. [PMID: 40195539 PMCID: PMC12045986 DOI: 10.1038/s12276-025-01440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/16/2025] [Accepted: 02/05/2025] [Indexed: 04/09/2025] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by persistent inflammation and epithelial cell dysfunction, but the underlying molecular mechanisms remain poorly understood. Here we show that dysregulated lipid metabolism and increased lipid peroxidation in nasal polyp epithelial cells contribute to the pathogenesis of CRSwNP. Integrated analysis of bulk and single-cell RNA sequencing data reveals upregulation of SLC27A2/FATP2 in nasal polyp epithelium, which correlates with increased lipid peroxidation. SLC27A2-positive epithelial cells exhibit enriched expression of lipid peroxidation pathway genes and enhanced responsiveness to IL-4/IL-13 signaling from Th2 and ILC2 cells. Inhibition of IL-4/IL-13 signaling by dupilumab reduces expression of lipid peroxidation-associated genes, including SLC27A2. In eosinophilic CRSwNP, SLC27A2 expression correlates with disease severity. Pharmacological inhibition of FATP2 in air-liquid interface cultures of nasal epithelial cells decreases expression of IL13RA1 and lipid peroxidation-related genes. Our findings identify FATP2-mediated lipid peroxidation as a key driver of epithelial dysfunction and inflammation in CRSwNP, providing new insights into disease mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Jaewoo Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Jung Yeon Jang
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong Heon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Se Eun Yi
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yeong Ju Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Myeong Sang Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yoo-Sam Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong Ju Jang
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Heui Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Kyuho Kang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea.
| |
Collapse
|
4
|
Zheng X, Guo X, Chen Y, Zhuang K, Gong N, Fu Y, Liang Y, Xu Y, Wang S, Wang W, Chen X, Cai G. Integration of DNA Methylome and Transcriptome Analysis to Identify Novel Epigenetic Targets in the Acute Kidney Injury-Chronic Kidney Disease Transition. Biomolecules 2025; 15:498. [PMID: 40305204 PMCID: PMC12024732 DOI: 10.3390/biom15040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
(1) Background: the epigenetic mechanisms underlying the progression from acute kidney injury (AKI) to chronic kidney disease (CKD) remain poorly understood; (2) Methods: to investigate this process, we conducted genome-wide DNA methylation sequencing to map the epigenetic changes during the AKI-CKD transition in a mouse model. By integrating DNA methylome and transcriptome analyses, we identified genes and signaling pathways regulated by DNA methylation throughout this progression; (3) Results: our analysis identified four candidate genes-Atp1a3, Ncf1, Lpl, and Slc27a2-that were regulated by DNA methylation and strongly correlated with kidney disease prognosis. Additionally, we found that the PPAR signaling pathways, among others, were implicated in this process. Treatment with DNA methyltransferase inhibitors mitigated fibrosis and improved lipid metabolism in the kidneys during AKI-CKD progression; (4) Conclusions: this study provides the first comprehensive epigenetic map of the AKI-CKD transition. Our findings offer new insights into the epigenetic regulation of kidney disease progression and highlight potential therapeutic targets to prevent the transition from AKI to CKD.
Collapse
Affiliation(s)
- Xumin Zheng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; (X.Z.)
| | - Xinru Guo
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuhao Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; (X.Z.)
| | - Kaiting Zhuang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; (X.Z.)
| | - Na Gong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; (X.Z.)
| | - Yifei Fu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; (X.Z.)
| | - Yanjun Liang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; (X.Z.)
| | - Yue Xu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; (X.Z.)
| | - Siyang Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; (X.Z.)
| | - Wenjuan Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; (X.Z.)
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; (X.Z.)
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China; (X.Z.)
| |
Collapse
|
5
|
Peng Y, Zhang Y, Wang R, Wang X, Liu X, Liao H, Li R. Inonotus obliquus (chaga) ameliorates folic acid-induced renal fibrosis in mice: the crosstalk analysis among PT cells, macrophages and T cells based on single-cell sequencing. Front Pharmacol 2025; 16:1556739. [PMID: 40160460 PMCID: PMC11949929 DOI: 10.3389/fphar.2025.1556739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Background Renal fibrosis, characterized by the abnormal accumulation of extracellular matrix in renal tissue and progressive loss of kidney function, is posing a significant challenge in clinical treatment. While several therapeutic options exist, effective treatments remain limited. Inonotus obliquus (Chaga), a traditional medicinal mushroom, has shown promising effects in chronic kidney disease (CKD), yet its cellular and molecular mechanisms remain largely unexplored. Methods We analysed the chemical composition of Chaga using UPLC-MS and predicted its biological targets using PubChem and Swiss Target Prediction. We used single-cell RNA sequencing to study cellular responses in a mouse model of folic acid-induced renal fibrosis, complemented by spatial transcriptomics to map cellular location patterns. Histological assessment was performed using H&E and Masson trichrome staining. Results For the first time, we employed single-cell RNA sequencing technology to investigate Chaga treatment in renal fibrosis. Histological analysis revealed that Chaga treatment significantly reduced renal tubular damage scores [from 5.00 (5.00, 5.00) to 2.00 (2.00, 2.00), p < 0.05] and decreased collagen deposition area (from 11.40% ± 3.01% to 4.06% ± 0.45%, p < 0.05) at day 14. Through analysis of 82,496 kidney cells, we identified 30 distinct cell clusters classified into eight cell types. Key findings include the downregulation of pro-inflammatory M1 macrophages and upregulation of anti-inflammatory M2 macrophages, alongside decreased T cell responses. Single-cell sequencing revealed differential gene expression in proximal tubular subpopulations associated with reduced fibrosis. Pathway and network pharmacology analyses of 60 identified compounds in Chaga and their 675 predicted targets suggested potential effects on immune and fibrotic pathways, particularly affecting Tregs and NKT cells. Cell-to-cell communication analyses revealed potential interactions between proximal tubular cells, macrophages, and T Cells, providing insights into possible mechanisms by which Chaga may ameliorate renal fibrosis. Conclusion Our study provided new insights into the potential therapeutic effects of Chaga in renal fibrosis through single-cell sequencing analysis. Our findings suggest that Chaga may represent a promising candidate for renal fibrosis treatment, though further experimental validation is needed to establish its clinical application.
Collapse
Affiliation(s)
- Yueling Peng
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Yaling Zhang
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
- Department of Nephrology, Taiyuan Central Hospital, Taiyuan, China
| | - Rui Wang
- Drug Clinical Trial Institution, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Xinyu Wang
- Drug Clinical Trial Institution, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Xingwei Liu
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Hui Liao
- Drug Clinical Trial Institution, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| |
Collapse
|
6
|
Folestad E, Mehlem A, Ning FC, Oosterveld T, Palombo I, Singh J, Olauson H, Witasp A, Thorell A, Stenvinkel P, Ebefors K, Nyström J, Eriksson U, Falkevall A. Vascular endothelial growth factor B-mediated fatty acid flux in the adipose-kidney axis contributes to lipotoxicity in diabetic kidney disease. Kidney Int 2025; 107:492-507. [PMID: 39689809 DOI: 10.1016/j.kint.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
A common observation in diabetic kidney disease is lipid accumulation, but the mechanism(s) underlying this pathology is unknown. Inhibition of Vascular endothelial growth factor B (VEGF-B) signaling was shown to prevent glomerular lipid accumulation and ameliorated diabetic kidney disease in experimental models. Here, we examined kidney biopsies from patients with Type 2 (84%) and Type 1 diabetes (16%), combined with data mining of RNA-seq dataset analyses in patients with diabetic kidney disease. In glomeruli, mesangial cell-derived VEGF-B expression was increased, and glomerular lipid accumulation positively correlated with impaired kidney function. Tubular lipid accumulation also associated with kidney dysfunction but was independent of tubular-derived VEGF-B expression. In vitro, the uptake of the fatty acid analogue, BODIPY-FA, was quantified. VEGF-B treatment increased BODIPY-FA uptake in endothelial cells, whilst pre-incubation with neutralizing antibodies against VEGF-B and its receptor VEGFR1 abolished this uptake. Transcriptome analyses of kidney and white adipose tissue from diabetic macaques showed that VEGF-B expression was higher in white adipose tissue than in kidney, and expression of VEGF-B was increased in white adipose tissue from patients with diabetic kidney disease. Analyses in diabetic transgenic mice demonstrated that expression of VEGF-B in adipocytes determined the lipolytic activity, dyslipidemia, kidney lipid accumulation and the development of diabetic kidney disease. Overall, VEGF-B is a regulator of kidney lipotoxicity in diabetic kidney disease, by controlling white adipose tissue lipolysis as well as endothelial fatty acid transport in glomeruli. Our data propose that assessment of kidney lipid accumulation, and VEGF-B expression can serve as biomarkers for early diabetic kidney disease.
Collapse
Affiliation(s)
- Erika Folestad
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Annika Mehlem
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Frank Chenfei Ning
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Timo Oosterveld
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Isolde Palombo
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jaskaran Singh
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Olauson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Witasp
- Division of Renal Medicine, Department of Clinical Sciences, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Thorell
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden; Department of Surgery and Anaesthesiology, Ersta Hospital, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Sciences, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Ebefors
- Lundberg Laboratory for Kidney Research, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Nyström
- Lundberg Laboratory for Kidney Research, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Eriksson
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Falkevall
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Fogo AB, Harris RC. Crosstalk between glomeruli and tubules. Nat Rev Nephrol 2025; 21:189-199. [PMID: 39643696 DOI: 10.1038/s41581-024-00907-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
Models of kidney injury have classically concentrated on glomeruli as the primary site of injury leading to glomerulosclerosis or on tubules as the primary site of injury leading to tubulointerstitial fibrosis. However, current evidence on the mechanisms of progression of chronic kidney disease indicates that a complex interplay between glomeruli and tubules underlies progressive kidney injury. Primary glomerular injury can clearly lead to subsequent tubule injury. For example, damage to the glomerular filtration barrier can expose tubular cells to serum proteins, including complement and cytokines, that would not be present in physiological conditions and can promote the development of tubulointerstitial fibrosis and progressive decline in kidney function. In addition, although less well-studied, increasing evidence suggests that tubule injury, whether primary or secondary, can also promote glomerular damage. This feedback from the tubule to the glomerulus might be mediated by changes in the reabsorptive capacity of the tubule, which can affect the glomerular filtration rate, or by mediators released by injured proximal tubular cells that can induce damage in both podocytes and parietal epithelial cells. Examining the crosstalk between the various compartments of the kidney is important for understanding the mechanisms underlying kidney pathology and identifying potential therapeutic interventions.
Collapse
Affiliation(s)
- Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raymond C Harris
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Tennessee Department of Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|
8
|
Khan S, Gaivin RJ, Liu Z, Li V, Samuels I, Son J, Osei-Owusu P, Garvin JL, Accili D, Schelling JR. Fatty Acid Transport Protein-2 (FATP2) Inhibition Enhances Glucose Tolerance through α-Cell-mediated GLP-1 Secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635976. [PMID: 39975070 PMCID: PMC11838418 DOI: 10.1101/2025.01.31.635976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Type 2 diabetes affects more than 30 million people in the US, and a major complication is kidney disease. During the analysis of lipotoxicity in diabetic kidney disease, global fatty acid transport protein-2 (FATP2) gene deletion was noted to markedly reduce plasma glucose in db/db mice due to sustained insulin secretion. To identify the mechanism, we observed that islet FATP2 expression was restricted to α-cells, and α-cell FATP2 was functional. Direct evidence of FATP2KO-induced α-cell-mediated GLP-1 secretion included increased GLP-1-positive α-cell mass in FATP2KO db/db mice, small molecule FATP2 inhibitor enhancement of GLP-1 secretion in αTC1-6 cells and human islets, and exendin[9-39]-inhibitable insulin secretion in FATP2 inhibitor-treated human islets. FATP2-dependent enteroendocrine GLP-1 secretion was excluded by demonstration of similar glucose tolerance and plasma GLP-1 concentrations in db/db FATP2KO mice following oral versus intraperitoneal glucose loading, non-overlapping FATP2 and preproglucagon mRNA expression, and lack of FATP2/GLP-1 co-immunolocalization in intestine. We conclude that FATP2 deletion or inhibition exerts glucose-lowering effects through α-cell-mediated GLP-1 secretion and paracrine β-cell insulin release. Graphical abstract
Collapse
|
9
|
Du J, Shen M, Chen J, Yan H, Xu Z, Yang X, Yang B, Luo P, Ding K, Hu Y, He Q. The impact of solute carrier proteins on disrupting substance regulation in metabolic disorders: insights and clinical applications. Front Pharmacol 2025; 15:1510080. [PMID: 39850557 PMCID: PMC11754210 DOI: 10.3389/fphar.2024.1510080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025] Open
Abstract
Carbohydrates, lipids, bile acids, various inorganic salt ions and organic acids are the main nutrients or indispensable components of the human body. Dysregulation in the processes of absorption, transport, metabolism, and excretion of these metabolites can lead to the onset of severe metabolic disorders, such as type 2 diabetes, non-alcoholic fatty liver disease, gout and hyperbilirubinemia. As the second largest membrane receptor supergroup, several major families in the solute carrier (SLC) supergroup have been found to play key roles in the transport of substances such as carbohydrates, lipids, urate, bile acids, monocarboxylates and zinc ions. Based on common metabolic dysregulation and related metabolic substances, we explored the relationship between several major families of SLC supergroup and metabolic diseases, providing examples of drugs targeting SLC proteins that have been approved or are currently in clinical/preclinical research as well as SLC-related diagnostic techniques that are in clinical use or under investigation. By highlighting these connections, we aim to provide insights that may contribute to the development of improved treatment strategies and targeted therapies for metabolic disorders.
Collapse
Affiliation(s)
- Jiangxia Du
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minhui Shen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiajia Chen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Pharmaceutical and Translational Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| | - Kefeng Ding
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuhuai Hu
- Yuhong Pharmaceutical Technology Co., Ltd., Hangzhou, Zhejiang, China
| | - Qiaojun He
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Pharmaceutical and Translational Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Jin R, Dai Y, Wang Z, Hu Q, Zhang C, Gao H, Yan Q. Unraveling Ferroptosis: A New Frontier in Combating Renal Fibrosis and CKD Progression. BIOLOGY 2024; 14:12. [PMID: 39857243 PMCID: PMC11763183 DOI: 10.3390/biology14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025]
Abstract
Chronic kidney disease (CKD) is a global health concern caused by conditions such as hypertension, diabetes, hyperlipidemia, and chronic nephritis, leading to structural and functional kidney injury. Kidney fibrosis is a common outcome of CKD progression, with abnormal fatty acid oxidation (FAO) disrupting renal energy homeostasis and leading to functional impairments. This results in maladaptive repair mechanisms and the secretion of profibrotic factors, and exacerbates renal fibrosis. Understanding the molecular mechanisms of renal fibrosis is crucial for delaying CKD progression. Ferroptosis is a type of discovered an iron-dependent lipid peroxidation-regulated cell death. Notably, Ferroptosis contributes to tissue and organ fibrosis, which is correlated with the degree of renal fibrosis. This study aims to clarify the complex mechanisms of ferroptosis in renal parenchymal cells and explore how ferroptosis intervention may help alleviate renal fibrosis, particularly by addressing the gap in CKD mechanisms related to abnormal lipid metabolism under the ferroptosis context. The goal is to provide a new theoretical basis for clinically delaying CKD progression.
Collapse
Affiliation(s)
- Rui Jin
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.J.); (Y.D.); (Z.W.); (Q.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Dai
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.J.); (Y.D.); (Z.W.); (Q.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.J.); (Y.D.); (Z.W.); (Q.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qinyang Hu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.J.); (Y.D.); (Z.W.); (Q.H.); (C.Z.)
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.J.); (Y.D.); (Z.W.); (Q.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongyu Gao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.J.); (Y.D.); (Z.W.); (Q.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Yan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.J.); (Y.D.); (Z.W.); (Q.H.); (C.Z.)
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Provincial Clinical Medical Research Center for Nephropathy, Enshi 445000, China
| |
Collapse
|
11
|
Wu W, Wang Y, Shao X, Huang S, Wang J, Zhou S, Liu H, Lin Y, Yu P. GLP-1RA improves diabetic renal injury by alleviating glomerular endothelial cells pyrotosis via RXRα/circ8411/miR-23a-5p/ABCA1 pathway. PLoS One 2024; 19:e0314628. [PMID: 39621727 PMCID: PMC11611192 DOI: 10.1371/journal.pone.0314628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/13/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Lipotoxicity has been implicated in diabetic kidney disease (DKD). However, the role of high glucose levels in DKD and the underlying renal protective mechanisms of GLP-1 receptor agonists (GLP-1RAs) remain unclear. METHODS To investigate cholesterol accumulation, pyroptosis in glomerular endothelial cells (GEnCs), and the renal protective mechanisms of GLP-1RAs, we used various techniques, including RT-qPCR, Oil Red O staining, Western blotting, lactate dehydrogenase (LDH) activity assays, circRNA microarrays, bioinformatics analysis, gain and loss-of-function experiments, rescue experiments, and luciferase assays. Additionally, in vivo experiments were conducted using C57BL/6J and ApoE-deficient (ApoE-/-) mice. RESULTS GEnCs exposed to high glucose exhibited reduced cholesterol efflux, which was accompanied by downregulation of ATP-binding cassette transporter A1 (ABCA1) expression, cholesterol accumulation, and pyroptosis. Circ8411 was identified as a regulator of ABCA1, inhibiting miR-23a-5p through its binding to the 3'UTR. Additionally, higher glucose levels decreased circ8411 expression by inhibiting RXRα. GLP-1RAs effectively reduced cholesterol accumulation and cell pyroptosis by targeting the RXRα/circ8411/miR-23a-5p/ABCA1 pathway. In diabetic ApoE-/- mice, renal structure and function were impaired, with resulted in increased cholesterol accumulation and pyroptosis; however, GLP-1RAs treatment reversed these detrimental changes. CONCLUSIONS These findings suggest that the RXRα/circ8411/miR-23a-5p/ABCA1 pathway mediates the contribution of high glucose to lipotoxic renal injury. Targeting this pathway may represent a potential therapeutic strategy for patients with DKD and hypercholesterolemia. Moreover, GLP-1RAs may provide renal protective effects by activating this pathway.
Collapse
Affiliation(s)
- Weixi Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Yao Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Xian Shao
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Shuai Huang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Jian Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Saijun Zhou
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Hongyan Liu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Yao Lin
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| |
Collapse
|
12
|
Wang J, Wang L, Feng X, Xu Y, Zhou L, Wang C, Wang M. Astragaloside IV attenuates fatty acid-induced renal tubular injury in diabetic kidney disease by inhibiting fatty acid transport protein-2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155991. [PMID: 39217653 DOI: 10.1016/j.phymed.2024.155991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Renal tubular injury induced by free fatty acid bound to albumin is the key pathological basis for the progression of diabetic kidney disease. However, effective interventions are limited. Astragaloside IV, as a major bioactive component purified from Astragalus membranaceus (Fisch.) Bunge, possesses pharmacological properties of lowering blood glucose and proteinuria, and renal tubular protection in diabetic kidney disease. Further work is needed to understand the underlying molecular mechanisms. PURPOSE This study was designed to investigate the mechanism of renal tubular protection by astragaloside IV in diabetic kidney disease. METHODS Rats receiving high-fat diet combined with streptozotocin (30 mg/kg, i.p.) were gavaged with astragaloside IV (10 mg/kg/d or 20 mg/kg/d) or empagliflozin (1.72 mg/kg/d) for 8 weeks. In vitro, the NRK-52E cells were treated with free fatty acid-deleted BSA or palmitic acid-bound BSA in the presence or absence of astragaloside IV (5 μM, 10 μM, 20 μM) or 5 μM of mcc950. The effects of astragaloside IV on mitochondrial function, NLRP3/ASC/IL-18/IL-1β inflammatory cascade, and renal tubular injury were detected by pathological staining, immunoblotting, MitoSOX Red staining. Next, to investigate the mechanism of renal tubular protection by astragaloside IV, we transfected Fatp2 siRNA into BSA-PA-treated NRK-52E cells and injected lipofermata (a FATP2 inhibitor) intraperitoneally into free fatty acid-bound BSA overloaded rats with concomitant astragaloside IV treatment. RESULTS Treatment with astragaloside IV for 8 weeks dose-dependently attenuated the blood glucose, ratio of urinary albumin to creatinine, disorder of lipid metabolism, and pathological injury in diabetic kidney disease rats. In addition, astragaloside IV dose-dependently attenuated mitochondrial-derived reactive oxygen species and subsequent inhibiting NLRP3-mediated inflammatory cascade in diabetic kidney disease rats and palmitic acid-bound BSA-treated NRK-52E cells, thereby exerting renal tubular protection. More importantly, the effects of astragaloside IV on restoration of mitochondrial function, inhibition of inflammatory response and amelioration of renal tubular injury in vivo and in vitro were further enhanced when used in combination with Fatp2 siRNA or lipofermata. CONCLUSION Astragaloside IV exerts antioxidant and anti-inflammatory effects in diabetic kidney disease by inhibiting FATP2-mediated fatty acid transport, thereby attenuating renal tubular injury.
Collapse
Affiliation(s)
- Jing Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| | - Lingchen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoxuan Feng
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yizeng Xu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Zhou
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meng Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
13
|
Cortinovis M, Perico N, Remuzzi G. Tubulointerstitial injury in proteinuric chronic kidney diseases. Front Med (Lausanne) 2024; 11:1478697. [PMID: 39529801 PMCID: PMC11550959 DOI: 10.3389/fmed.2024.1478697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Proteinuria is an independent risk factor for chronic kidney disease progression and cardiovascular diseases. Apart from its prognostic role, the load of proteins that pass across the disrupted glomerular capillary wall trigger multiple pathophysiologic processes. These include, among others, intratubular complement activation and excessive proximal tubular reabsorption of filtered proteins, especially albumin and albumin-bound free fatty acids, which can set off several pathways of cellular damage. The activation of these pathways can cause apoptosis of proximal tubular cells and paracrine effects that incite the development of interstitial inflammation and fibrosis, ultimately leading to irreversible kidney injury. In this review, we provide a comprehensive overview of the current understanding on the mechanisms underlying the tubular toxicity of ultrafiltered proteins in the setting of proteinuric chronic kidney diseases. The acquired knowledge is expected to be instrumental for the development of novel therapeutic classes of medications to be tested on top of standard of care with optimized renin-angiotensin-aldosterone blockade and sodium-glucose cotransporter-2 inhibition, in order to further improve the clinical outcomes of patients with proteinuric chronic kidney diseases.
Collapse
Affiliation(s)
- Monica Cortinovis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | | |
Collapse
|
14
|
Rong J, Zhang Z, Peng X, Li P, Zhao T, Zhong Y. Mechanisms of hepatic and renal injury in lipid metabolism disorders in metabolic syndrome. Int J Biol Sci 2024; 20:4783-4798. [PMID: 39309427 PMCID: PMC11414397 DOI: 10.7150/ijbs.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Metabolic syndrome (MetS) is a group of metabolic abnormalities that identifies people at risk for diabetes and cardiovascular disease. MetS is characterized by lipid disorders, and non-alcoholic fatty liver disease (NAFLD) and diabetic kidney disease (DKD) are thought to be the common hepatic and renal manifestations of MetS following abnormal lipid metabolism. This paper reviews the molecular mechanisms of lipid deposition in NAFLD and DKD, highlighting the commonalities and differences in lipid metabolic pathways in NAFLD and DKD. Hepatic and renal steatosis is the result of lipid acquisition exceeding lipid processing, i.e., fatty acid uptake and lipid regeneration exceed fatty acid oxidation and export. This process is directly regulated by the interactions of nuclear receptors, transporter proteins and transcription factors, whereas pathways such as oxidative stress, autophagy, cellular pyroptosis and gut flora are also key regulatory hubs for lipid metabolic homeostasis but act slightly differently in the liver and kidney. Such insights based on liver-kidney similarities and differences offer potential options for improved treatment.
Collapse
Affiliation(s)
- Jin Rong
- Institute of Clinical Medical Sciences, State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, PR China
- College of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, PR China
| | - Zixuan Zhang
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xiaoyu Peng
- Institute of Clinical Medical Sciences, State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Ping Li
- Institute of Clinical Medical Sciences, State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, PR China
| | - Tingting Zhao
- Institute of Clinical Medical Sciences, State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, PR China
| | - Yifei Zhong
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
15
|
Kong X, Tao S, Ji Z, Li J, Li H, Jin J, Zhao Y, Liu J, Zhao F, Chen J, Feng Z, Chen B, Shan Z. FATP2 regulates osteoclastogenesis by increasing lipid metabolism and ROS production. J Bone Miner Res 2024; 39:737-752. [PMID: 38477781 DOI: 10.1093/jbmr/zjae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Lipid metabolism plays a crucial role in maintaining bone homeostasis, particularly in osteoclasts (OCs) formation. Here, we found that the expression level of FATP2, a transporter for long-chain and very-long-chain fatty acids, was significantly upregulated during OC differentiation and in the bone marrow of mice fed a high-fat diet (HFD). Notably, the use of FATP2 siRNA or a specific inhibitor (Lipofermata) resulted in significant inhibition of OC differentiation, while only slightly affecting osteoblasts. In pathological models of bone loss induced by LPS or ovariectomy, in vivo treatment with Lipofermata was able to rescue the loss of bone mass by inhibiting OC differentiation. RNA sequencing revealed that Lipofermata reduced fatty acid β-oxidation and inhibited energy metabolism, while regulating ROS metabolism to decrease ROS production, ultimately inhibiting OC differentiation. Treatment with Lipofermata, either in vivo or in vitro, effectively rescued the overactivation of OCs, indicating that FATP2 regulated OC differentiation by modulating fatty acid uptake and energy metabolism. These findings suggested that targeting FATP2 may represent a promising therapeutic approach for pathological osteoporosis.
Collapse
Affiliation(s)
- Xiangxi Kong
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Siyue Tao
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Zhongyin Ji
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Jie Li
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, 315100, Zhejiang, China
| | - Hui Li
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Jiayan Jin
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Yihao Zhao
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Junhui Liu
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Jian Chen
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Zhenhua Feng
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Binhui Chen
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, 315100, Zhejiang, China
| | - Zhi Shan
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
16
|
Yang M, Liu S, Sui Y, Zhang C. Macrophage metabolism impacts metabolic dysfunction-associated steatotic liver disease and its progression. IMMUNOMETABOLISM 2024; 6:e00047. [DOI: 10.1097/in9.0000000000000047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), with a progressive form of metabolic dysfunction-associated steatohepatitis (MASH), is the leading chronic liver disease worldwide, which can progress to advanced liver disease and hepatocellular carcinoma. MASLD is tightly associated with metabolic disorders such as obesity, insulin resistance, and type 2 diabetes. Macrophages, as an innate immune component and a linker of adaptive immune response, play important roles in the pathogenesis and treatment of MASLD or MASH. Metabolic reprogramming can regulate macrophage activation and polarization to inhibit MASLD or MASH progression to advanced liver disease. Here, we summarize the underlying mechanisms of how different metabolites such as amino acids, glucose, and fatty acids can regulate macrophage function and phenotype, the factors that regulate macrophage metabolism, and potential treatment options to regulate macrophage function in MASLD or MASH, as well as other associated metabolic disorders.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Connecticut Health, School of Medicine, Farmington, CT, USA
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen, China
| | - Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
17
|
Lee LE, Doke T, Mukhi D, Susztak K. The key role of altered tubule cell lipid metabolism in kidney disease development. Kidney Int 2024; 106:24-34. [PMID: 38614389 PMCID: PMC11193624 DOI: 10.1016/j.kint.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 04/15/2024]
Abstract
Kidney epithelial cells have very high energy requirements, which are largely met by fatty acid oxidation. Complex changes in lipid metabolism are observed in patients with kidney disease. Defects in fatty acid oxidation and increased lipid uptake, especially in the context of hyperlipidemia and proteinuria, contribute to this excess lipid build-up and exacerbate kidney disease development. Recent studies have also highlighted the role of increased de novo lipogenesis in kidney fibrosis. The defect in fatty acid oxidation causes energy starvation. Increased lipid uptake, synthesis, and lower fatty acid oxidation can cause toxic lipid build-up, reactive oxygen species generation, and mitochondrial damage. A better understanding of these metabolic processes may open new treatment avenues for kidney diseases by targeting lipid metabolism.
Collapse
Affiliation(s)
- Lauren E Lee
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
18
|
Fan X, Yang M, Lang Y, Lu S, Kong Z, Gao Y, Shen N, Zhang D, Lv Z. Mitochondrial metabolic reprogramming in diabetic kidney disease. Cell Death Dis 2024; 15:442. [PMID: 38910210 PMCID: PMC11194272 DOI: 10.1038/s41419-024-06833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Diabetic kidney disease, known as a glomerular disease, arises from a metabolic disorder impairing renal cell function. Mitochondria, crucial organelles, play a key role in substance metabolism via oxidative phosphorylation to generate ATP. Cells undergo metabolic reprogramming as a compensatory mechanism to fulfill energy needs for survival and growth, attracting scholarly attention in recent years. Studies indicate that mitochondrial metabolic reprogramming significantly influences the pathophysiological progression of DKD. Alterations in kidney metabolism lead to abnormal expression of signaling molecules and activation of pathways, inducing oxidative stress-related cellular damage, inflammatory responses, apoptosis, and autophagy irregularities, culminating in renal fibrosis and insufficiency. This review delves into the impact of mitochondrial metabolic reprogramming on DKD pathogenesis, emphasizing the regulation of metabolic regulators and downstream signaling pathways. Therapeutic interventions targeting renal metabolic reprogramming can potentially delay DKD progression. The findings underscore the importance of focusing on metabolic reprogramming to develop safer and more effective therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Dongdong Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
19
|
Fang Z, Liu R, Xie J, He JC. Molecular mechanism of renal lipid accumulation in diabetic kidney disease. J Cell Mol Med 2024; 28:e18364. [PMID: 38837668 PMCID: PMC11151220 DOI: 10.1111/jcmm.18364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 06/07/2024] Open
Abstract
Diabetic kidney disease (DKD) is a leading cause of end stage renal disease with unmet clinical demands for treatment. Lipids are essential for cell survival; however, renal cells have limited capability to metabolize overloaded lipids. Dyslipidaemia is common in DKD patients and renal ectopic lipid accumulation is associated with disease progression. Unveiling the molecular mechanism involved in renal lipid regulation is crucial for exploring potential therapeutic targets. In this review, we focused on the mechanism underlying cholesterol, oxysterol and fatty acid metabolism disorder in the context of DKD. Specific regulators of lipid accumulation in different kidney compartment and TREM2 macrophages, a lipid-related macrophages in DKD, were discussed. The role of sodium-glucose transporter 2 inhibitors in improving renal lipid accumulation was summarized.
Collapse
Affiliation(s)
- Zhengying Fang
- Department of Nephrology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Barbara T. Murphy Division of Nephrology, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ruijie Liu
- Barbara T. Murphy Division of Nephrology, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jingyuan Xie
- Department of Nephrology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - John Cijiang He
- Barbara T. Murphy Division of Nephrology, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Renal SectionJames J Peters Veterans Affair Medical CenterBronxNew YorkUSA
| |
Collapse
|
20
|
He P, Deng Y, Dong S, Li H, Liu C, Ma Y, Tang C, Zhang M. Association of different domains of physical activity with diabetic kidney disease: a population-based study. Front Endocrinol (Lausanne) 2024; 15:1364028. [PMID: 38863925 PMCID: PMC11165133 DOI: 10.3389/fendo.2024.1364028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Background The aim of this cross-sectional study was to elucidate the associations between various domains of physical activity, such as occupation-related (OPA), transportation-related (TPA), leisure-time (LTPA) and overall physical activity (PA), and diabetic kidney disease. Methods Our study encompassed 2,633 participants, drawn from the cross-sectional surveys of the National Health and Nutrition Examination Survey (NHANES) between 2007 and 2018, and employed survey-weighted logistic regression, generalized linear regression, and restricted cubic spline (RCS) analyses to ascertain the relationship between different domains of physical activity and diabetic kidney disease. Results After controlling for all confounders, multivariate logistic regression analyses revealed a lack of correlation between the various domains of physical activity and the prevalence of diabetic kidney disease. Multiple generalized linear regression analyses showed that durations of PA (β = 0.05, 95% CI, 0.01-0.09, P = 0.012) and TPA (β = 0.32, 95% CI, 0.10-0.55, P = 0.006) were positively associated with eGFR levels; and LTPA durations were inversely associated with UACR levels (β = -5.97, 95% CI, -10.50 - -1.44, P = 0.011). The RCS curves demonstrated a nonlinear relationship between PA, OPA, and eGFR, as well as a nonlinear correlation between PA and ACR. Subgroup and sensitivity analyses largely aligned with the outcomes of the multivariate generalized linear regression, underscoring the robustness of our findings. Conclusion Our population-based study explored the association between different domains of physical activity and diabetic kidney disease. Contrary to our expectations, we found no significant association between the duration of physical activity across all domains and the prevalence of diabetic nephropathy. Nonetheless, renal function markers, including eGFR and UACR, exhibited significant correlations with the duration of total physical activity (TPA) and leisure-time physical activity (LTPA), respectively, among diabetic patients. Interestingly, our findings suggest that diabetic patients engage in physical activity to preserve renal function, ensuring moderate exercise durations not exceeding 35 hours per week.
Collapse
Affiliation(s)
- Pengfei He
- Department of Nuphrology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Deng
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Shaoning Dong
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Hongdian Li
- Department of Nuphrology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Liu
- Department of Nuphrology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Ma
- Department of Nuphrology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Tang
- Department of Endocrinology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mianzhi Zhang
- Department of Nuphrology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
21
|
Han YZ, Du BX, Zhu XY, Wang YZY, Zheng HJ, Liu WJ. Lipid metabolism disorder in diabetic kidney disease. Front Endocrinol (Lausanne) 2024; 15:1336402. [PMID: 38742197 PMCID: PMC11089115 DOI: 10.3389/fendo.2024.1336402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetic kidney disease (DKD), a significant complication associated with diabetes mellitus, presents limited treatment options. The progression of DKD is marked by substantial lipid disturbances, including alterations in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Altered lipid metabolism serves as a crucial pathogenic mechanism in DKD, potentially intertwined with cellular ferroptosis, lipophagy, lipid metabolism reprogramming, and immune modulation of gut microbiota (thus impacting the liver-kidney axis). The elucidation of these mechanisms opens new potential therapeutic pathways for DKD management. This research explores the link between lipid metabolism disruptions and DKD onset.
Collapse
Affiliation(s)
- Yi-Zhen Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Xuan Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing-Yu Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang-Zhi-Yuan Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hui-Juan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei-Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
22
|
Lin S, Wang L, Jia Y, Sun Y, Qiao P, Quan Y, Liu J, Hu H, Yang B, Zhou H. Lipin-1 deficiency deteriorates defect of fatty acid β-oxidation and lipid-related kidney damage in diabetic kidney disease. Transl Res 2024; 266:1-15. [PMID: 37433392 DOI: 10.1016/j.trsl.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
Diabetic lipo-toxicity is a fundamental pathophysiologic mechanism in DM and is now increasingly recognized a key determinant of DKD. Targeting lipid metabolic disorders is an important therapeutic strategy for the treatment of DM and its complications, including DKD. This study aimed to explore the molecular mechanism of lipid metabolic regulation in kidney, especially renal PTECs, and elucidate the role of lipid metabolic related molecule lipin-1 in diabetic lipid-related kidney damage. In this study, lipin-1-deficient db/db mouse model and STZ/HFD-induced T2DM mouse model were used to determine the effect of lipin-1 on DKD development. Then RPTCs and LPIN1 knockdown or overexpressed HK-2 cells induced by PA were used to investigate the mechanism. We found that the expression of lipin-1 increased early and then decreased in kidney during the progression of DKD. Glucose and lipid metabolic disorders and renal insufficiency were found in these 2 types of diabetic mouse models. Interestingly, lipin-1 deficiency might be a pathogenic driver of DKD-to-CKD transition, which could further accelerate the imbalance of renal lipid homeostasis, the dysfunction of mitochondrial and energy metabolism in PTECs. Mechanistically, lipin-1 deficiency resulted in aggravated PTECs injury to tubulointerstitial fibrosis in DKD by downregulating FAO via inhibiting PGC-1α/PPARα mediated Cpt1α/HNF4α signaling and upregulating SREBPs to promote fat synthesis. This study provided new insights into the role of lipin-1 as a regulator for maintaining lipid homeostasis in the kidney, especially PTECs, and its deficiency led to the progression of DKD.
Collapse
Affiliation(s)
- Simei Lin
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Liang Wang
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yingli Jia
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Panshuang Qiao
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yazhu Quan
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jihan Liu
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Huihui Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Baoxue Yang
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hong Zhou
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China.
| |
Collapse
|
23
|
Wang M, Wang J, Wang L, Feng X, Qian Y, Ye C, Wang C. Icariside II prevents kidney fibrosis development in chronic kidney disease by promoting fatty acid oxidation. Phytother Res 2024; 38:839-855. [PMID: 38081477 DOI: 10.1002/ptr.8085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Renal interstitial fibrosis (RIF) is the main pathological basis for the progression of chronic kidney disease (CKD), however, effective interventions are limited. Here, we investigated the effect of Icariside II (ICA-II) on RIF and explored the underlying mechanisms. Rats receiving 5/6 ablation and infarction (A/I) surgery were gavaged with ICA-II (5 or 10 mg/kg) for 8 weeks. In vitro, TGF-β1-stimulated NRK-52E cells were treated with ICA-II and (or) oleic acid, etomoxir, ranolazine, fenofibrate, and GW6471. The effects of ICA-II on RIF, fatty acid oxidation, lipid deposition, and mitochondrial function were determined by immunoblotting, Oil red O staining, colorimetric, and fluorometric assays. Using adeno-associated virus injection and co-culture methods, we further determined mechanisms of ICA-II anti-RIF. ICA-II ameliorated the fibrotic responses in vivo and in vitro. RNA-seq analysis indicated that ICA-II regulated fatty acid degradation and PPAR pathway in 5/6 (A/I) kidneys. ICA-II attenuated lipid accumulation and up-regulated expression of PPARα, CPT-1α, Acaa2, and Acadsb proteins in vivo and in vitro. Compared to ICA-II treatment, ICA-II combined with Etomoxir exacerbated mitochondrial dysfunction and fibrotic responses in TGF-β-treated NRK-52E cells. Importantly, we determined that ICA-II improved lipid metabolism, fatty acid oxidation, mitochondrial function, and RIF by restoring PPARα. Co-culture revealed that ICA-II decreased the expression of Fibronectin, Collagen-I, α-SMA, and PCNA proteins in NRK-49F cells by restoring PPARα of renal tubular cells. ICA-II may serve as a promising therapeutic agent for RIF in 5/6 (A/I) rats, which may be important for the prevention and treatment of CKD.
Collapse
Affiliation(s)
- Meng Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lingchen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxuan Feng
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiling Qian
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Patera F, Gatticchi L, Cellini B, Chiasserini D, Reboldi G. Kidney Fibrosis and Oxidative Stress: From Molecular Pathways to New Pharmacological Opportunities. Biomolecules 2024; 14:137. [PMID: 38275766 PMCID: PMC10813764 DOI: 10.3390/biom14010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Kidney fibrosis, diffused into the interstitium, vessels, and glomerulus, is the main pathologic feature associated with loss of renal function and chronic kidney disease (CKD). Fibrosis may be triggered in kidney diseases by different genetic and molecular insults. However, several studies have shown that fibrosis can be linked to oxidative stress and mitochondrial dysfunction in CKD. In this review, we will focus on three pathways that link oxidative stress and kidney fibrosis, namely: (i) hyperglycemia and mitochondrial energy imbalance, (ii) the mineralocorticoid signaling pathway, and (iii) the hypoxia-inducible factor (HIF) pathway. We selected these pathways because they are targeted by available medications capable of reducing kidney fibrosis, such as sodium-glucose cotransporter-2 (SGLT2) inhibitors, non-steroidal mineralocorticoid receptor antagonists (MRAs), and HIF-1alpha-prolyl hydroxylase inhibitors. These drugs have shown a reduction in oxidative stress in the kidney and a reduced collagen deposition across different CKD subtypes. However, there is still a long and winding road to a clear understanding of the anti-fibrotic effects of these compounds in humans, due to the inherent practical and ethical difficulties in obtaining sequential kidney biopsies and the lack of specific fibrosis biomarkers measurable in easily accessible matrices like urine. In this narrative review, we will describe these three pathways, their interconnections, and their link to and activity in oxidative stress and kidney fibrosis.
Collapse
Affiliation(s)
- Francesco Patera
- Division of Nephrology, Azienda Ospedaliera di Perugia, 06132 Perugia, Italy;
| | - Leonardo Gatticchi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.); (B.C.)
| | - Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.); (B.C.)
| | - Davide Chiasserini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.); (B.C.)
| | - Gianpaolo Reboldi
- Division of Nephrology, Azienda Ospedaliera di Perugia, 06132 Perugia, Italy;
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.); (B.C.)
| |
Collapse
|
25
|
Chae SY, Kim Y, Park CW. Oxidative Stress Induced by Lipotoxicity and Renal Hypoxia in Diabetic Kidney Disease and Possible Therapeutic Interventions: Targeting the Lipid Metabolism and Hypoxia. Antioxidants (Basel) 2023; 12:2083. [PMID: 38136203 PMCID: PMC10740440 DOI: 10.3390/antiox12122083] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Oxidative stress, a hallmark pathophysiological feature in diabetic kidney disease (DKD), arises from the intricate interplay between pro-oxidants and anti-oxidants. While hyperglycemia has been well established as a key contributor, lipotoxicity emerges as a significant instigator of oxidative stress. Lipotoxicity encompasses the accumulation of lipid intermediates, culminating in cellular dysfunction and cell death. However, the mechanisms underlying lipotoxic kidney injury in DKD still require further investigation. The key role of cell metabolism in the maintenance of cell viability and integrity in the kidney is of paramount importance to maintain proper renal function. Recently, dysfunction in energy metabolism, resulting from an imbalance in oxygen levels in the diabetic condition, may be the primary pathophysiologic pathway driving DKD. Therefore, we aim to shed light on the pivotal role of oxidative stress related to lipotoxicity and renal hypoxia in the initiation and progression of DKD. Multifaceted mechanisms underlying lipotoxicity, including oxidative stress with mitochondrial dysfunction, endoplasmic reticulum stress activated by the unfolded protein response pathway, pro-inflammation, and impaired autophagy, are delineated here. Also, we explore potential therapeutic interventions for DKD, targeting lipotoxicity- and hypoxia-induced oxidative stress. These interventions focus on ameliorating the molecular pathways of lipid accumulation within the kidney and enhancing renal metabolism in the face of lipid overload or ameliorating subsequent oxidative stress. This review highlights the significance of lipotoxicity, renal hypoxia-induced oxidative stress, and its potential for therapeutic intervention in DKD.
Collapse
Affiliation(s)
- Seung Yun Chae
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (S.Y.C.); (Y.K.)
| | - Yaeni Kim
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (S.Y.C.); (Y.K.)
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (S.Y.C.); (Y.K.)
- Institute for Aging and Metabolic Disease, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
26
|
Molitoris BA, Dunn KW, Sandoval RM. Proximal tubule role in albumin homeostasis: controversy, species differences, and the contributions of intravital microscopy. Kidney Int 2023; 104:1065-1069. [PMID: 37981429 DOI: 10.1016/j.kint.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 11/21/2023]
Affiliation(s)
- Bruce A Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Kenneth W Dunn
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ruben M Sandoval
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
27
|
Zhu W, Chen M, Wang Y, Chen Y, Zhang Y, Wang Y, Liu P, Li P. Regulation of renal lipid deposition in diabetic nephropathy on morroniside via inhibition of NF-KB/TNF-a/SREBP1c signaling pathway. Chem Biol Interact 2023; 385:110711. [PMID: 37769864 DOI: 10.1016/j.cbi.2023.110711] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
Morroniside (MOR), a cyclic enol ether terpene glycoside isolated from Cornus officinalis, has been shown to inhibit lipid accumulation, although the mechanism of action is uncertain. The aim of this study was to investigate the potential pathways by which MOR affects renal lipid deposition in diabetic nephropathy (DN). In vitro and in vivo experiments were performed using the PA-induced HK-2 cell model and a KKAy animal model, respectively. Network pharmacological analysis was used to identify potential MOR signaling pathways for DN therapy, with results verified via Western blotting and immunofluorescence experiments. The effect of MOR on lipid metabolism was investigated using BODIPY 493/503 staining. Our results indicate that MOR significantly reduces lipid accumulation both in vitro and in vivo. According to network pharmacology studies, the NF-κB/TNF-α/SREBP1c signaling pathway may be the mechanism of action of MOR in DN. MOR was found to inhibit this pathway by reducing the phosphorylation of NF-κB p65 and the expression of TNF-α and SREBP1c, similar to the effects of Bay11-7082. Additionally, MOR significantly inhibited the expression of lipid factors such as ACC, FAS, and SCD1. In conclusion, MOR can regulate the disruption of lipid metabolism in DN and reduce renal lipid deposition via suppression of the NF-κB/TNF-α/SREBP1c signaling pathway.
Collapse
Affiliation(s)
- Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Ming Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yang Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yao Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yonggang Zhang
- First People's Hospital of Qiqihaer City, Heilongjiang Province, China
| | - Yan Wang
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
28
|
Szrok-Jurga S, Czumaj A, Turyn J, Hebanowska A, Swierczynski J, Sledzinski T, Stelmanska E. The Physiological and Pathological Role of Acyl-CoA Oxidation. Int J Mol Sci 2023; 24:14857. [PMID: 37834305 PMCID: PMC10573383 DOI: 10.3390/ijms241914857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Fatty acid metabolism, including β-oxidation (βOX), plays an important role in human physiology and pathology. βOX is an essential process in the energy metabolism of most human cells. Moreover, βOX is also the source of acetyl-CoA, the substrate for (a) ketone bodies synthesis, (b) cholesterol synthesis, (c) phase II detoxication, (d) protein acetylation, and (d) the synthesis of many other compounds, including N-acetylglutamate-an important regulator of urea synthesis. This review describes the current knowledge on the importance of the mitochondrial and peroxisomal βOX in various organs, including the liver, heart, kidney, lung, gastrointestinal tract, peripheral white blood cells, and other cells. In addition, the diseases associated with a disturbance of fatty acid oxidation (FAO) in the liver, heart, kidney, lung, alimentary tract, and other organs or cells are presented. Special attention was paid to abnormalities of FAO in cancer cells and the diseases caused by mutations in gene-encoding enzymes involved in FAO. Finally, issues related to α- and ω- fatty acid oxidation are discussed.
Collapse
Affiliation(s)
- Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Julian Swierczynski
- Institue of Nursing and Medical Rescue, State University of Applied Sciences in Koszalin, 75-582 Koszalin, Poland;
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| |
Collapse
|
29
|
Mitrofanova A, Merscher S, Fornoni A. Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease. Nat Rev Nephrol 2023; 19:629-645. [PMID: 37500941 DOI: 10.1038/s41581-023-00741-w] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Chronic kidney disease (CKD) is a global health problem with rising incidence and prevalence. Among several pathogenetic mechanisms responsible for disease progression, lipid accumulation in the kidney parenchyma might drive inflammation and fibrosis, as has been described in fatty liver diseases. Lipids and their metabolites have several important structural and functional roles, as they are constituents of cell and organelle membranes, serve as signalling molecules and are used for energy production. However, although lipids can be stored in lipid droplets to maintain lipid homeostasis, lipid accumulation can become pathogenic. Understanding the mechanisms linking kidney parenchymal lipid accumulation to CKD of metabolic or non-metabolic origin is challenging, owing to the tremendous variety of lipid species and their functional diversity across different parenchymal cells. Nonetheless, multiple research reports have begun to emphasize the effect of dysregulated kidney lipid metabolism in CKD progression. For example, altered cholesterol and fatty acid metabolism contribute to glomerular and tubular cell injury. Newly developed lipid-targeting agents are being tested in clinical trials in CKD, raising expectations for further therapeutic development in this field.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA.
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
30
|
Talukdar A, Basumatary M. Rodent models to study type 1 and type 2 diabetes induced human diabetic nephropathy. Mol Biol Rep 2023; 50:7759-7782. [PMID: 37458869 DOI: 10.1007/s11033-023-08621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/21/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Diabetic nephropathy (DN), an outcome of prolonged diabetes, has affected millions of people worldwide and every year the incidence and prevalence increase substantially. The symptoms may start with mild manifestations of the disease such as increased albuminuria, serum creatinine levels, thickening of glomerular basement membrane, expansion of mesangial matrix to severe pathological symptoms such as glomerular lesions and tubulointerstitial fibrosis which may further proceed to cardiovascular dysfunction or end-stage renal disease. PERSPECTIVE Numerous therapeutic interventions are being explored for the management of DN, however, these interventions do not completely halt the progression of this disease and hence animal models are being explored to identify critical genetic and molecular parameters which could help in tackling the disease. Rodent models which mostly include mice and rats are commonly used experimental animals which provide a wide range of advantages in understanding the onset and progression of disease in humans and also their response to a wide range of interventions helps in the development of effective therapeutics. Rodent models of type 1 and type 2 diabetes induced DN have been developed utilizing different platforms and interventions during the last few decades some of which mimic various stages of diabetes ranging from early to later stages. However, a rodent model which replicates all the features of human DN is still lacking. This review tries to evaluate the rodent models that are currently available and understand their features and limitations which may help in further development of more robust models of human DN. CONCLUSION Using these rodent models can help to understand different aspects of human DN although further research is required to develop more robust models utilizing diverse genetic platforms which may, in turn, assist in developing effective interventions to target the disease at different levels.
Collapse
Affiliation(s)
- Amit Talukdar
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, 784028, India.
| | - Mandira Basumatary
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, 784028, India
| |
Collapse
|
31
|
Kumar M, Gaivin RJ, Khan S, Fedorov Y, Adams DJ, Zhao W, Lee HY, Dai X, Dealwis CG, Schelling JR. Definition of fatty acid transport protein-2 (FATP2) structure facilitates identification of small molecule inhibitors for the treatment of diabetic complications. Int J Biol Macromol 2023; 244:125328. [PMID: 37307967 PMCID: PMC10527240 DOI: 10.1016/j.ijbiomac.2023.125328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Diabetes is a major public health problem due to morbidity and mortality associated with end organ complications. Uptake of fatty acids by Fatty Acid Transport Protein-2 (FATP2) contributes to hyperglycemia, diabetic kidney and liver disease pathogenesis. Because FATP2 structure is unknown, a homology model was constructed, validated by AlphaFold2 prediction and site-directed mutagenesis, and then used to conduct a virtual drug discovery screen. In silico similarity searches to two low-micromolar IC50 FATP2 inhibitors, followed by docking and pharmacokinetics predictions, narrowed a diverse 800,000 compound library to 23 hits. These candidates were further evaluated for inhibition of FATP2-dependent fatty acid uptake and apoptosis in cells. Two compounds demonstrated nanomolar IC50, and were further characterized by molecular dynamic simulations. The results highlight the feasibility of combining a homology model with in silico and in vitro screening, to economically identify high affinity inhibitors of FATP2, as potential treatment for diabetes and its complications.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Robert J Gaivin
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Shenaz Khan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Yuriy Fedorov
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Drew J Adams
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Weiyang Zhao
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Xinghong Dai
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Chris G Dealwis
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States of America; Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Jeffrey R Schelling
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, United States of America; Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America.
| |
Collapse
|
32
|
Bayır H, Dixon SJ, Tyurina YY, Kellum JA, Kagan VE. Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney. Nat Rev Nephrol 2023; 19:315-336. [PMID: 36922653 DOI: 10.1038/s41581-023-00689-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/17/2023]
Abstract
Ferroptosis is a mechanism of regulated necrotic cell death characterized by iron-dependent, lipid peroxidation-driven membrane destruction that can be inhibited by glutathione peroxidase 4. Morphologically, it is characterized by cellular, organelle and cytoplasmic swelling and the loss of plasma membrane integrity, with the release of intracellular components. Ferroptosis is triggered in cells with dysregulated iron and thiol redox metabolism, whereby the initial robust but selective accumulation of hydroperoxy polyunsaturated fatty acid-containing phospholipids is further propagated through enzymatic and non-enzymatic secondary mechanisms, leading to formation of oxidatively truncated electrophilic species and their adducts with proteins. Thus, ferroptosis is dependent on the convergence of iron, thiol and lipid metabolic pathways. The kidney is particularly susceptible to redox imbalance. A growing body of evidence has linked ferroptosis to acute kidney injury in the context of diverse stimuli, such as ischaemia-reperfusion, sepsis or toxins, and to chronic kidney disease, suggesting that ferroptosis may represent a novel therapeutic target for kidney disease. However, further work is needed to address gaps in our understanding of the triggers, execution and spreading mechanisms of ferroptosis.
Collapse
Affiliation(s)
- Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - John A Kellum
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Mohandes S, Doke T, Hu H, Mukhi D, Dhillon P, Susztak K. Molecular pathways that drive diabetic kidney disease. J Clin Invest 2023; 133:165654. [PMID: 36787250 PMCID: PMC9927939 DOI: 10.1172/jci165654] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Kidney disease is a major driver of mortality among patients with diabetes and diabetic kidney disease (DKD) is responsible for close to half of all chronic kidney disease cases. DKD usually develops in a genetically susceptible individual as a result of poor metabolic (glycemic) control. Molecular and genetic studies indicate the key role of podocytes and endothelial cells in driving albuminuria and early kidney disease in diabetes. Proximal tubule changes show a strong association with the glomerular filtration rate. Hyperglycemia represents a key cellular stress in the kidney by altering cellular metabolism in endothelial cells and podocytes and by imposing an excess workload requiring energy and oxygen for proximal tubule cells. Changes in metabolism induce early adaptive cellular hypertrophy and reorganization of the actin cytoskeleton. Later, mitochondrial defects contribute to increased oxidative stress and activation of inflammatory pathways, causing progressive kidney function decline and fibrosis. Blockade of the renin-angiotensin system or the sodium-glucose cotransporter is associated with cellular protection and slowing kidney function decline. Newly identified molecular pathways could provide the basis for the development of much-needed novel therapeutics.
Collapse
Affiliation(s)
- Samer Mohandes
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hailong Hu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Poonam Dhillon
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
McEvoy CM, Murphy JM, Zhang L, Clotet-Freixas S, Mathews JA, An J, Karimzadeh M, Pouyabahar D, Su S, Zaslaver O, Röst H, Arambewela R, Liu LY, Zhang S, Lawson KA, Finelli A, Wang B, MacParland SA, Bader GD, Konvalinka A, Crome SQ. Single-cell profiling of healthy human kidney reveals features of sex-based transcriptional programs and tissue-specific immunity. Nat Commun 2022; 13:7634. [PMID: 36496458 PMCID: PMC9741629 DOI: 10.1038/s41467-022-35297-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 11/27/2022] [Indexed: 12/13/2022] Open
Abstract
Knowledge of the transcriptional programs underpinning the functions of human kidney cell populations at homeostasis is limited. We present a single-cell perspective of healthy human kidney from 19 living donors, with equal contribution from males and females, profiling the transcriptome of 27677 cells to map human kidney at high resolution. Sex-based differences in gene expression within proximal tubular cells were observed, specifically, increased anti-oxidant metallothionein genes in females and aerobic metabolism-related genes in males. Functional differences in metabolism were confirmed in proximal tubular cells, with male cells exhibiting higher oxidative phosphorylation and higher levels of energy precursor metabolites. We identified kidney-specific lymphocyte populations with unique transcriptional profiles indicative of kidney-adapted functions. Significant heterogeneity in myeloid cells was observed, with a MRC1+LYVE1+FOLR2+C1QC+ population representing a predominant population in healthy kidney. This study provides a detailed cellular map of healthy human kidney, and explores the complexity of parenchymal and kidney-resident immune cells.
Collapse
Affiliation(s)
- Caitriona M McEvoy
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON, Canada
| | - Julia M Murphy
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lin Zhang
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Jessica A Mathews
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - James An
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Mehran Karimzadeh
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
| | - Delaram Pouyabahar
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Shenghui Su
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Olga Zaslaver
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Hannes Röst
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Rangi Arambewela
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Lewis Y Liu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sally Zhang
- Division of Urology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Keith A Lawson
- Division of Urology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Antonio Finelli
- Division of Urology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Bo Wang
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sonya A MacParland
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada.
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Sarah Q Crome
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
35
|
Chen Y, Lu S, Zhang Y, Chen B, Zhou H, Jiang H. Examination of the emerging role of transporters in the assessment of nephrotoxicity. Expert Opin Drug Metab Toxicol 2022; 18:787-804. [PMID: 36420583 DOI: 10.1080/17425255.2022.2151892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The kidney is vulnerable to various injuries based on its function in the elimination of many xenobiotics, endogenous substances and metabolites. Since transporters are critical for the renal elimination of those substances, it is urgent to understand the emerging role of transporters in nephrotoxicity. AREAS COVERED This review summarizes the contribution of major renal transporters to nephrotoxicity induced by some drugs or toxins; addresses the role of transporter-mediated endogenous metabolic disturbances in nephrotoxicity; and discusses the advantages and disadvantages of in vitro models based on transporter expression and function. EXPERT OPINION Due to the crucial role of transporters in the renal disposition of xenobiotics and endogenous substances, it is necessary to further elucidate their renal transport mechanisms and pay more attention to the underlying relationship between the transport of endogenous substances and nephrotoxicity. Considering the species differences in the expression and function of transporters, and the low expression of transporters in general cell models, in vitro humanized models, such as humanized 3D organoids, shows significant promise in nephrotoxicity prediction and mechanism study.
Collapse
Affiliation(s)
- Yujia Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Shuanghui Lu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yingqiong Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Binxin Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Jinhua Institute of Zhejiang University, Jinhua, P.R. China
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Jinhua Institute of Zhejiang University, Jinhua, P.R. China
| |
Collapse
|
36
|
The Contribution of Lipotoxicity to Diabetic Kidney Disease. Cells 2022; 11:cells11203236. [PMID: 36291104 PMCID: PMC9601125 DOI: 10.3390/cells11203236] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Lipotoxicity is a fundamental pathophysiologic mechanism in diabetes and non-alcoholic fatty liver disease and is now increasingly recognized in diabetic kidney disease (DKD) pathogenesis. This review highlights lipotoxicity pathways in the podocyte and proximal tubule cell, which are arguably the two most critical sites in the nephron for DKD. The discussion focuses on membrane transporters and lipid droplets, which represent potential therapeutic targets, as well as current and developing pharmacologic approaches to reduce renal lipotoxicity.
Collapse
|
37
|
Heyman SN, Raz I, Dwyer JP, Weinberg Sibony R, Lewis JB, Abassi Z. Diabetic Proteinuria Revisited: Updated Physiologic Perspectives. Cells 2022; 11:2917. [PMID: 36139492 PMCID: PMC9496872 DOI: 10.3390/cells11182917] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Albuminuria, a hallmark of diabetic nephropathy, reflects not only injury and dysfunction of the filtration apparatus, but is also affected by altered glomerular hemodynamics and hyperfiltration, as well as by the inability of renal tubular cells to fully retrieve filtered albumin. Albuminuria further plays a role in the progression of diabetic nephropathy, and the suppression of glomerular albumin leak is a key factor in its prevention. Although microalbuminuria is a classic manifestation of diabetic nephropathy, often progressing to macroalbuminuria or overt proteinuria over time, it does not always precede renal function loss in diabetes. The various components leading to diabetic albuminuria and their associations are herein reviewed, and the physiologic rationale and efficacy of therapeutic interventions that reduce glomerular hyperfiltration and proteinuria are discussed. With these perspectives, we propose that these measures should be initiated early, before microalbuminuria develops, as substantial renal injury may already be present in the absence of proteinuria. We further advocate that the inhibition of the renin-angiotensin axis or of sodium-glucose co-transport likely permits the administration of a normal recommended or even high-protein diet, highly desirable for sarcopenic diabetic patients.
Collapse
Affiliation(s)
- Samuel N. Heyman
- Department of Medicine, Hadassah Hebrew University Hospital, Mt. Scopus, Jerusalem 9765422, Israel
- Division of Geriatrics, Herzog Hospital, Jerusalem 9765422, Israel
| | - Itamar Raz
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9765422, Israel
- Diabetes Unit, Department of Endocrinology and Metabolism, Hadassah Medical Center, Jerusalem 9124001, Israel
| | - Jamie P. Dwyer
- Clinical and Translational Science Institute, University of Utah Health, Salt Lake City, UT 84112, USA
| | | | - Julia B. Lewis
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Departments of Medicine and Nephrology, Vanderbilt University Medical Center, Nashville, TN 37011, USA
| | - Zaid Abassi
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Department of Laboratory Medicine, Rambam Health Care Campus, Haifa 3109601, Israel
| |
Collapse
|
38
|
Immunometabolic rewiring of tubular epithelial cells in kidney disease. Nat Rev Nephrol 2022; 18:588-603. [PMID: 35798902 DOI: 10.1038/s41581-022-00592-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/20/2022]
Abstract
Kidney tubular epithelial cells (TECs) have a crucial role in the damage and repair response to acute and chronic injury. To adequately respond to constant changes in the environment, TECs have considerable bioenergetic needs, which are supported by metabolic pathways. Although little is known about TEC metabolism, a number of ground-breaking studies have shown that defective glucose metabolism or fatty acid oxidation in the kidney has a key role in the response to kidney injury. Imbalanced use of these metabolic pathways can predispose TECs to apoptosis and dedifferentiation, and contribute to lipotoxicity and kidney injury. The accumulation of lipids and aberrant metabolic adaptations of TECs during kidney disease can also be driven by receptors of the innate immune system. Similar to their actions in innate immune cells, pattern recognition receptors regulate the metabolic rewiring of TECs, causing cellular dysfunction and lipid accumulation. TECs should therefore be considered a specialized cell type - like cells of the innate immune system - that is subject to regulation by immunometabolism. Targeting energy metabolism in TECs could represent a strategy for metabolically reprogramming the kidney and promoting kidney repair.
Collapse
|
39
|
Identification of a Hydrogen-Sulfide-Releasing Isochroman-4-One Hybrid as a Cardioprotective Candidate for the Treatment of Cardiac Hypertrophy. Molecules 2022; 27:molecules27134114. [PMID: 35807360 PMCID: PMC9268299 DOI: 10.3390/molecules27134114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiac pathological hypertrophy is associated with undesirable epigenetic changes and causes maladaptive cardiac remodeling and heart failure, leading to high mortality rates. Specific drugs for the treatment of cardiac hypertrophy are still in urgent need. In the present study, a hydrogen-sulfide-releasing hybrid 13-E was designed and synthesized by appending p-hydroxythiobenzamide (TBZ), an H2S-releasing donor, to an analog of our previously discovered cardioprotective natural product XJP, 7,8-dihydroxy-3-methyl-isochromanone-4. This hybrid 13-E exhibited excellent H2S-generating ability and low cellular toxicity. The 13-E protected against cardiomyocyte hypertrophy In Vitro and reduced the induction of Anp and Bnp. More importantly, 13-E could reduce TAC-induced cardiac hypertrophy In Vivo, alleviate cardiac interstitial fibrosis and restore cardiac function. Unbiased transcriptomic analysis showed that 13-E regulated the AMPK signaling pathway and influenced fatty acid metabolic processes, which may be attributed to its cardioprotective activities.
Collapse
|
40
|
Abstract
Systemic Lupus Erythematosus is a complex autoimmune disease and its etiology remains unknown. Increased gut permeability has been reported in lupus patients, yet whether it promotes or results from lupus progression is unclear. Recent studies indicate that an impaired intestinal barrier allows the translocation of bacteria and bacterial components into systemic organs, increasing immune cell activation and autoantibody generation. Indeed, induced gut leakage in a mouse model of lupus enhanced disease characteristics, including the production of anti-dsDNA antibody, serum IL-6 as well as cell apoptosis. Gut microbiota dysbiosis has been suggested to be one of the factors that decreases gut barrier integrity by outgrowing harmful bacteria and their products, or by perturbation of gut immune homeostasis, which in turn affects gut barrier integrity. The restoration of microbial balance eliminates gut leakage in mice, further confirming the role of microbiota in maintaining gut barrier integrity. In this review, we discuss recent advances on the association between microbiota dysbiosis and leaky gut, as well as their influences on the progression of lupus. The modifications on host microbiota and gut integrity may offer insights into the development of new lupus treatment.
Collapse
Affiliation(s)
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
41
|
Gao Z, Chen X. Fatty Acid β-Oxidation in Kidney Diseases: Perspectives on Pathophysiological Mechanisms and Therapeutic Opportunities. Front Pharmacol 2022; 13:805281. [PMID: 35517820 PMCID: PMC9065343 DOI: 10.3389/fphar.2022.805281] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
The kidney is a highly metabolic organ and requires a large amount of ATP to maintain its filtration-reabsorption function, and mitochondrial fatty acid β-oxidation serves as the main source of energy to meet its functional needs. Reduced and inefficient fatty acid β-oxidation is thought to be a major mechanism contributing to kidney diseases, including acute kidney injury, chronic kidney disease and diabetic nephropathy. PPARα, AMPK, sirtuins, HIF-1, and TGF-β/SMAD3 activation have all been shown to play key roles in the regulation of fatty acid β-oxidation in kidney diseases, and restoration of fatty acid β-oxidation by modulation of these molecules can ameliorate the development of such diseases. Here, we disentangle the lipid metabolism regulation properties and potential mechanisms of mesenchymal stem cells and their extracellular vesicles, and emphasize the role of mesenchymal stem cells on lipid metabolism. This review aims to highlight the important role of fatty acid β-oxidation in the progression of kidney diseases, and to explore the fatty acid β-oxidation effects and therapeutic potential of mesenchymal stem cells for kidney diseases.
Collapse
Affiliation(s)
- Zhumei Gao
- Department of Nephrology, The Second Hospital of Jilin University, Jilin, China
| | - Xiangmei Chen
- Department of Nephrology, The Second Hospital of Jilin University, Jilin, China.,Department of Nephrology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
42
|
Baek J, He C, Afshinnia F, Michailidis G, Pennathur S. Lipidomic approaches to dissect dysregulated lipid metabolism in kidney disease. Nat Rev Nephrol 2022; 18:38-55. [PMID: 34616096 PMCID: PMC9146017 DOI: 10.1038/s41581-021-00488-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 01/03/2023]
Abstract
Dyslipidaemia is a hallmark of chronic kidney disease (CKD). The severity of dyslipidaemia not only correlates with CKD stage but is also associated with CKD-associated cardiovascular disease and mortality. Understanding how lipids are dysregulated in CKD is, however, challenging owing to the incredible diversity of lipid structures. CKD-associated dyslipidaemia occurs as a consequence of complex interactions between genetic, environmental and kidney-specific factors, which to understand, requires an appreciation of perturbations in the underlying network of genes, proteins and lipids. Modern lipidomic technologies attempt to systematically identify and quantify lipid species from biological systems. The rapid development of a variety of analytical platforms based on mass spectrometry has enabled the identification of complex lipids at great precision and depth. Insights from lipidomics studies to date suggest that the overall architecture of free fatty acid partitioning between fatty acid oxidation and complex lipid fatty acid composition is an important driver of CKD progression. Available evidence suggests that CKD progression is associated with metabolic inflexibility, reflecting a diminished capacity to utilize free fatty acids through β-oxidation, and resulting in the diversion of accumulating fatty acids to complex lipids such as triglycerides. This effect is reversed with interventions that improve kidney health, suggesting that targeting of lipid abnormalities could be beneficial in preventing CKD progression.
Collapse
Affiliation(s)
- Judy Baek
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Chenchen He
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Farsad Afshinnia
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Subramaniam Pennathur
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
43
|
Ventricular arrhythmias in mouse models of diabetic kidney disease. Sci Rep 2021; 11:20570. [PMID: 34663875 PMCID: PMC8523538 DOI: 10.1038/s41598-021-99891-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 12/05/2022] Open
Abstract
Chronic kidney disease (CKD) affects more than 20 million people in the US, and it is associated with a significantly increased risk of sudden cardiac death (SCD). Despite the significance, the mechanistic relationship between SCD and CKD is not clear and there are few effective therapies. Using optical mapping techniques, we tested the hypothesis that mouse models of progressive diabetic kidney disease (DKD) exhibit enhanced ventricular arrhythmia incidence and underlying arrhythmia substrates. Compared to wild-type mice, both Leprdb/db eNOS−/− (2KO) and high fat diet plus low dose streptozotocin (HFD + STZ) mouse models of DKD experienced sudden death and greater arrhythmia inducibility, which was more common with isoproterenol than programmed electrical stimulation. 2KO mice demonstrated slowed conduction velocity, prolonged action potential duration (APD), and myocardial fibrosis; both 2KO and HFD + STZ mice exhibited arrhythmias and calcium dysregulation with isoproterenol challenge. Finally, circulating concentrations of the uremic toxin asymmetric dimethylarginine (ADMA) were elevated in 2KO mice. Incubation of human cardiac myocytes with ADMA prolonged APD, as also observed in 2KO mice hearts ex vivo. The present study elucidates an arrhythmia-associated mechanism of sudden death associated with DKD, which may lead to more effective treatments in the vulnerable DKD patient population.
Collapse
|
44
|
Mitrofanova A, Burke G, Merscher S, Fornoni A. New insights into renal lipid dysmetabolism in diabetic kidney disease. World J Diabetes 2021; 12:524-540. [PMID: 33995842 PMCID: PMC8107981 DOI: 10.4239/wjd.v12.i5.524] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Lipid dysmetabolism is one of the main features of diabetes mellitus and manifests by dyslipidemia as well as the ectopic accumulation of lipids in various tissues and organs, including the kidney. Research suggests that impaired cholesterol metabolism, increased lipid uptake or synthesis, increased fatty acid oxidation, lipid droplet accumulation and an imbalance in biologically active sphingolipids (such as ceramide, ceramide-1-phosphate and sphingosine-1-phosphate) contribute to the development of diabetic kidney disease (DKD). Currently, the literature suggests that both quality and quantity of lipids are associated with DKD and contribute to increased reactive oxygen species production, oxidative stress, inflammation, or cell death. Therefore, control of renal lipid dysmetabolism is a very important therapeutic goal, which needs to be archived. This article will review some of the recent advances leading to a better understanding of the mechanisms of dyslipidemia and the role of particular lipids and sphingolipids in DKD.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| | - George Burke
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| | - Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| |
Collapse
|
45
|
Chang J, Yan J, Li X, Liu N, Zheng R, Zhong Y. Update on the Mechanisms of Tubular Cell Injury in Diabetic Kidney Disease. Front Med (Lausanne) 2021; 8:661076. [PMID: 33859992 PMCID: PMC8042139 DOI: 10.3389/fmed.2021.661076] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence supports a role of proximal tubular (PT) injury in the progression of diabetic kidney disease (DKD), in patients with or without proteinuria. Research on the mechanisms of the PT injury in DKD could help us to identify potential new biomarkers and drug targets for DKD. A high glucose transport state and mismatched local hypoxia in the PT of diabetes patients may be the initiating factors causing PT injury. Other mechanism such as mitochondrial dysfunction, reactive oxygen species (ROS) overproduction, ER stress, and deficiency of autophagy interact with each other leading to more PT injury by forming a vicious circle. PT injury eventually leads to the development of tubulointerstitial inflammation and fibrosis in DKD. Many downstream signaling pathways have been demonstrated to mediate these diseased processes. This review focuses mostly on the novel mechanisms of proximal renal tubular injury in DKD and we believe such review could help us to better understand the pathogenesis of DKD and identify potential new therapies for this disease.
Collapse
Affiliation(s)
- Jingsheng Chang
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiayi Yan
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueling Li
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ni Liu
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Zheng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Zhong
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
46
|
FATP2-targeted therapies - A role beyond fatty liver disease. Pharmacol Res 2020; 161:105228. [PMID: 33027714 DOI: 10.1016/j.phrs.2020.105228] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/31/2022]
Abstract
Fatty acid transport protein 2 (FATP2) is a multifunctional protein whose specific function is determined by the type of located cell, its intracellular location, or organelle-specific interactions. In the different diseases setting, a newfound appreciation for the biological function of FATP2 has come into view. Two main functions of FATP2 are to activate long-chain fatty acids (LCFAs) as a very long-chain acyl-coenzyme A (CoA) synthetase (ACSVL) and to transport LCFAs as a fatty acid transporter. FATP2 is not only involved in the occurrence of nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM), but also plays an important role in lithogenic diet-induced cholelithiasis, the formation of cancer tumor immunity, the progression of chronic kidney disease (CKD), and the regulation of zoledronate-induced nephrotoxicity. Herein, we review the updated information on the role of FATP2 in related diseases. In particular, we discuss the new functions of FATP2 and propose that FATP2 is a potential clinical biomarker and therapeutic target. In conclusion, regulatory strategies for FATP2 may bring new treatment options for cancer and lipid metabolism-related disorders.
Collapse
|