1
|
Van der Stede T, Van de Loock A, Turiel G, Hansen C, Tamariz-Ellemann A, Ullrich M, Lievens E, Spaas J, Yigit N, Anckaert J, Nuytens J, De Baere S, Van Thienen R, Weyns A, De Wilde L, Van Eenoo P, Croubels S, Halliwill JR, Mestdagh P, Richter EA, Gliemann L, Hellsten Y, Vandesompele J, De Bock K, Derave W. Cellular deconstruction of the human skeletal muscle microenvironment identifies an exercise-induced histaminergic crosstalk. Cell Metab 2025; 37:842-856.e7. [PMID: 39919738 DOI: 10.1016/j.cmet.2024.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 10/14/2024] [Accepted: 12/18/2024] [Indexed: 02/09/2025]
Abstract
Plasticity of skeletal muscle is induced by transcriptional and translational events in response to exercise, leading to multiple health and performance benefits. The skeletal muscle microenvironment harbors myofibers and mononuclear cells, but the rich cell diversity has been largely ignored in relation to exercise adaptations. Using our workflow of transcriptome profiling of individual myofibers, we observed that their exercise-induced transcriptional response was surprisingly modest compared with the bulk muscle tissue response. Through the integration of single-cell data, we identified a small mast cell population likely responsible for histamine secretion during exercise and for targeting myeloid and vascular cells rather than myofibers. We demonstrated through histamine H1 or H2 receptor blockade in humans that this paracrine histamine signaling cascade drives muscle glycogen resynthesis and coordinates the transcriptional exercise response. Altogether, our cellular deconstruction of the human skeletal muscle microenvironment uncovers a histamine-driven intercellular communication network steering muscle recovery and adaptation to exercise.
Collapse
Affiliation(s)
- Thibaux Van der Stede
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium; Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Alexia Van de Loock
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Guillermo Turiel
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Camilla Hansen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | | - Max Ullrich
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jan Spaas
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nurten Yigit
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jasper Anckaert
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Justine Nuytens
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Siegrid De Baere
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
| | - Ruud Van Thienen
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Anneleen Weyns
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Laurie De Wilde
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Ghent, Belgium
| | - Peter Van Eenoo
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Ghent, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
| | - John R Halliwill
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Pieter Mestdagh
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Erik A Richter
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Gliemann
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jo Vandesompele
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Du G, Zheng K, Sun C, Sun M, Pan J, Meng D, Guan W, Zhao H. The relationship mammalian p38 with human health and its homolog Hog1 in response to environmental stresses in Saccharomyces cerevisiae. Front Cell Dev Biol 2025; 13:1522294. [PMID: 40129568 PMCID: PMC11931143 DOI: 10.3389/fcell.2025.1522294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/13/2025] [Indexed: 03/26/2025] Open
Abstract
The mammalian p38 MAPK pathway plays a vital role in transducing extracellular environmental stresses into numerous intracellular biological processes. The p38 MAPK have been linked to a variety of cellular processes including inflammation, cell cycle, apoptosis, development and tumorigenesis in specific cell types. The p38 MAPK pathway has been implicated in the development of many human diseases and become a target for treatment of cancer. Although MAPK p38 pathway has been extensively studied, many questions still await clarification. More comprehensive understanding of the MAPK p38 pathway will provide new possibilities for the treatment of human diseases. Hog1 in S. cerevisiae is the conserved homolog of p38 in mammalian cells and the HOG MAPK signaling pathway in S. cerevisiae has been extensively studied. The deep understanding of HOG MAPK signaling pathway will help provide clues for clarifying the p38 signaling pathway, thereby furthering our understanding of the relationship between p38 and disease. In this review, we elaborate the functions of p38 and the relationship between p38 and human disease. while also analyzing how Hog1 regulates cellular processes in response to environmental stresses. 1, p38 in response to various stresses in mammalian cells.2, The functions of mammalian p38 in human health.3, Hog1 as conserved homolog of p38 in response to environmental stresses in Saccharomyces cerevisiae. 1, p38 in response to various stresses in mammalian cells. 2, The functions of mammalian p38 in human health. 3, Hog1 as conserved homolog of p38 in response to environmental stresses in S. cerevisiae.
Collapse
Affiliation(s)
- Gang Du
- *Correspondence: Gang Du, ; Wenqiang Guan, ; Hui Zhao,
| | | | | | | | | | | | - Wenqiang Guan
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
3
|
Yin M, Zheng X, Shi L. Targeting p38 MAPK: A potential bridge between ER stress and age-related bone loss. Cell Signal 2025; 127:111549. [PMID: 39638139 DOI: 10.1016/j.cellsig.2024.111549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
The endoplasmic reticulum (ER) is crucial in the development of numerous age-related bone disorders. Notably, ER stress can precipitate bone loss by orchestrating inflammatory responses, apoptosis, and autophagy through the activation of the p38 MAPK pathway. Age-related bone loss diseases pose a significant burden on society and healthcare as the global population ages. This review provides a comprehensive analysis of recent research advancements, delving into the critical role of ER stress-activated p38 MAPK in inflammation, apoptosis, and autophagy, as well as its impact on bone formation and bone resorption. This review elucidates the molecular mechanisms underlying the involvement of ER stress-activated p38 MAPK in osteoporosis, rheumatoid arthritis, periodontitis, and osteoarthritis and discusses the therapeutic potential of targeting p38 MAPK. Furthermore, this review provides a scientific foundation for new therapeutic strategies by highlighting prospective research directions.
Collapse
Affiliation(s)
- Meng Yin
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China; Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xin Zheng
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Liang Shi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
4
|
Wang X, Yi Z, Zhang Y, Zhang J, Li X, Qi D, Wang Q, Chai X, Liu H, Wang G, Pan Y, Liu Y, Yu G. Identification and Therapeutic Potential of Polymethoxylated Flavones in Citri Reticulatae Pericarpium for Alzheimer's Disease: Targeting Neuroinflammation. Molecules 2025; 30:771. [PMID: 40005082 PMCID: PMC11857992 DOI: 10.3390/molecules30040771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Neuroinflammation is a significant driving force in the pathogenesis and progression of central nervous system (CNS) disorders. Polymethoxylated flavones (PMFs), the key lipid-soluble constituents in Citri Reticulatae Pericarpium (CRP), exhibit excellent blood-brain barrier permeability and anti-inflammatory properties, holding therapeutic potential for CNS disorders. However, the specific bioactive components and therapeutic effects of PMFs in treating CNS disorders are not well understood. This study employed a comprehensive sequential metabolism approach to elucidate the dynamic biotransformation of PMFs in vivo and identified seven brain-targeting components. Subsequently, network pharmacology and experimental validation were utilized to explore the potential mechanisms of PMFs. The results suggested that PMFs have potential therapeutic value for Alzheimer's disease (AD)-like mice, with the inhibition of neuroinflammation likely being a key mechanism of their anti-AD effects. Notably, sinensetin, tangeretin, nobiletin, and 3,5,6,7,8,3',4'-heptamethoxyflavone were identified as potent neuroinflammatory inhibitors. This research elucidated the chemical and therapeutic foundations of PMFs, indicating their potential as treatments or nutritional supplements for AD prevention and treatment. Moreover, the integrated triad approach of sequential metabolism, network pharmacology, and experimental validation may serve as a promising strategy for screening bioactive compounds in herbs or functional foods, as well as for elucidating their therapeutic mechanisms.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (X.W.); (Z.Y.); (X.L.); (D.Q.); (Q.W.); (X.C.); (H.L.)
| | - Zirong Yi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (X.W.); (Z.Y.); (X.L.); (D.Q.); (Q.W.); (X.C.); (H.L.)
| | - Yiming Zhang
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jing Zhang
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xueyan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (X.W.); (Z.Y.); (X.L.); (D.Q.); (Q.W.); (X.C.); (H.L.)
| | - Dongying Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (X.W.); (Z.Y.); (X.L.); (D.Q.); (Q.W.); (X.C.); (H.L.)
| | - Qianqian Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (X.W.); (Z.Y.); (X.L.); (D.Q.); (Q.W.); (X.C.); (H.L.)
| | - Xiaoyu Chai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (X.W.); (Z.Y.); (X.L.); (D.Q.); (Q.W.); (X.C.); (H.L.)
| | - Huan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (X.W.); (Z.Y.); (X.L.); (D.Q.); (Q.W.); (X.C.); (H.L.)
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd., Beijing 101500, China;
| | - Yanli Pan
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (X.W.); (Z.Y.); (X.L.); (D.Q.); (Q.W.); (X.C.); (H.L.)
| | - Guohua Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
5
|
Aikio M, Odeh HM, Wobst HJ, Lee BL, Chan Ú, Mauna JC, Mack KL, Class B, Ollerhead TA, Ford AF, Barbieri EM, Cupo RR, Drake LE, Smalley JL, Lin YT, Lam S, Thomas R, Castello N, Baral A, Beyer JN, Najar MA, Dunlop J, Gitler AD, Javaherian A, Kaye JA, Burslem GM, Brown DG, Donnelly CJ, Finkbeiner S, Moss SJ, Brandon NJ, Shorter J. Opposing roles of p38α-mediated phosphorylation and PRMT1-mediated arginine methylation in driving TDP-43 proteinopathy. Cell Rep 2025; 44:115205. [PMID: 39817908 PMCID: PMC11831926 DOI: 10.1016/j.celrep.2024.115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/21/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder typically characterized by insoluble inclusions of hyperphosphorylated TDP-43. The mechanisms underlying toxic TDP-43 accumulation are not understood. Persistent activation of p38 mitogen-activated protein kinase (MAPK) is implicated in ALS. However, it is unclear how p38 MAPK affects TDP-43 proteinopathy. Here, we show that p38α MAPK inhibition reduces pathological TDP-43 phosphorylation, aggregation, cytoplasmic mislocalization, and neurotoxicity. Remarkably, p38α MAPK inhibition mitigates aberrant TDP-43 phenotypes in diverse ALS patient-derived motor neurons. p38α MAPK phosphorylates TDP-43 at pathological S409/S410 and S292, which reduces TDP-43 liquid-liquid phase separation (LLPS) but allows pathological TDP-43 aggregation. Moreover, we establish that PRMT1 methylates TDP-43 at R293. Importantly, S292 phosphorylation reduces R293 methylation, and R293 methylation reduces S409/S410 phosphorylation. Notably, R293 methylation permits TDP-43 LLPS and reduces pathological TDP-43 aggregation. Thus, strategies to reduce p38α-mediated TDP-43 phosphorylation and promote PRMT1-mediated R293 methylation could have therapeutic utility for ALS and related TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Mari Aikio
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University, Boston, MA 02111, USA; Neumora Therapeutics, Watertown, MA 02472, USA
| | - Hana M Odeh
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heike J Wobst
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Bo Lim Lee
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Úna Chan
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jocelyn C Mauna
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; LiveLikeLou Center for ALS Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Korrie L Mack
- Neumora Therapeutics, Watertown, MA 02472, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley Class
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Thomas A Ollerhead
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Alice F Ford
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward M Barbieri
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan R Cupo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren E Drake
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua L Smalley
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Yuan-Ta Lin
- Neumora Therapeutics, Watertown, MA 02472, USA
| | - Stephanie Lam
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Reuben Thomas
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Nicholas Castello
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ashmita Baral
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jenna N Beyer
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohd A Najar
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Dunlop
- Neumora Therapeutics, Watertown, MA 02472, USA; Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ashkan Javaherian
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julia A Kaye
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dean G Brown
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; LiveLikeLou Center for ALS Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA; Deparments of Neurology and Physiology, Neuroscience Graduate Program and Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephen J Moss
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Nicholas J Brandon
- AstraZeneca-Tufts Laboratory for Basic and Translational Neuroscience, Department of Neuroscience, Tufts University, Boston, MA 02111, USA; Neumora Therapeutics, Watertown, MA 02472, USA; Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Hairi HA, Jusoh RR, Sadikan MZ, Hasan WNW, Shuid AN. Exploring the Potential of Moringa oleifera in Managing Bone Loss: Insights from Preclinical Studies. Int J Med Sci 2025; 22:819-833. [PMID: 39991771 PMCID: PMC11843146 DOI: 10.7150/ijms.103241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
Moringa oleifera (MO) is renowned for its remarkable medicinal uses, supported by claims across various cultures and growing scientific evidence. Preclinical experimental evidence indicated that MO may effectively reduce bone loss and promote bone remodelling through its effects on osteoclasts and osteoblasts. In vivo studies demonstrated that MO enhances critical aspects of bone health, such as bone volume, trabecular thickness and overall bone density. Furthermore, MO positively influenced bone biomarkers including alkaline phosphatase and procollagen type 1 N-terminal propeptide, reflecting improved bone formation. Additionally, in vitro and ex vivo studies revealed that MO boosted bone regeneration, stimulated osteoblast activity and reduced inflammation. In terms of mechanisms, MO may modulate signalling pathways related to bone metabolism, such as BMP2, PI3K/Akt/FOXO1, p38α/MAPK14 and RANKL/RANK//OPG pathways. This evidence provides a strong foundation for future clinical research and potential therapeutic applications in managing and preventing bone loss conditions.
Collapse
Affiliation(s)
- Haryati Ahmad Hairi
- Department of Biochemistry, Faculty of Medicine, Manipal University College Malaysia, Bukit Baru, 75150, Melaka, Malaysia
| | - Rusdiah Ruzanna Jusoh
- Department of Biochemistry, Faculty of Medicine, Manipal University College Malaysia, Bukit Baru, 75150, Melaka, Malaysia
| | - Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia, Bukit Baru, 75150, Melaka, Malaysia
| | - Wan Nuraini Wan Hasan
- Faculty of Bioeconomics, Food & Health Science, University of Geomatika Malaysia, Setiawangsa, 54200, Kuala Lumpur, Malaysia
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi Mara (UITM), Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
7
|
Hwang ES, Noh Y, Jeong HY, Lee JJ, Ahn BM, Lee J, Jang YJ. Improved skeletal muscle mass and strength through Protamex-mediated hydrolysis of perilla seed cake: Elevated rosmarinic acid levels as a contributing factor. Food Chem 2025; 463:141369. [PMID: 39326313 DOI: 10.1016/j.foodchem.2024.141369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Perilla seed cake (PSC) is a byproduct of oil extraction from perilla seeds. It is rich in proteins and bioactive compounds. PSC was enzymatically hydrolyzed to form PSC hydrolysate (PSCH) to enhance the absorption of PSC, and their effects on muscle health in mice were compared. High performance liquid chromatography-tandem mass spectrometry analysis revealed that PSC contains several polyphenols, including rosmarinic acid (RA), caffeic acid, apigenin, and luteolin. The hydrolysate showed 1.44- and 7.04-fold increases in RA and caffeic acid contents, respectively, compared to those of PSC. The intake of PSC, PSCH, and RA significantly improved muscle mass and exercise performance in mice by upregulating protein synthesis, myogenic differentiation, oxidative muscle fiber formation, fatty acid oxidation, and mitochondrial biogenesis; however, PSCH had better promoting effects than PSC. In conclusion, PSCH improves muscle health through its bioactive compounds (particularly RA), indicating the potential of PSCH and RA in functional foods.
Collapse
Affiliation(s)
- Eun Sol Hwang
- Department of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Yuran Noh
- Department of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Hyun Young Jeong
- Department of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Justin Jaesuk Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Byeong Min Ahn
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Young Jin Jang
- Department of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea.
| |
Collapse
|
8
|
Ye M, Chao X, Ye C, Guo L, Fan Z, Ma X, Liu A, Liang W, Chen S, Fang C, Zhang X, Luo Q. EGR1 mRNA expression levels and polymorphisms are associated with slaughter performance in chickens. Poult Sci 2025; 104:104533. [PMID: 39603185 PMCID: PMC11635649 DOI: 10.1016/j.psj.2024.104533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
With the implementation of the policy of "centralized slaughtering and chilled to market" and the development of the livestock processing industry, numerous researchers have begun to focus on the selection and breeding of broilers bred for slaughter. The selection of breeds with excellent slaughtering performance and high meat production performance has become one of the most important selective breeding goals. In our previous study, we conducted transcriptome sequencing on chicken breast tissues with high and low breast muscle rates and found higher early growth response protein 1 (EGR1) expression in breast tissues with a low breast muscle ratio, thus hypothesizing that the EGR1 gene is involved in the growth and development process of chicken muscle tissues. Therefore, we analyzed the gene functions and polymorphisms of EGR1 to investigate its association with slaughter traits. We used various experimental methods, including RT-qPCR, Cell Counting Kit 8, 5-ethynyl-2'-deoxyuridine, western blot, flow cytometry, and immunofluorescence, to validate EGR1's role in chicken primary myoblasts. The results of our functional validation experiments indicate that EGR1 is highly expressed in breast tissues with a low breast muscle content and plays a key role in regulating of muscle growth and development by promoting proliferation and inhibiting the differentiation of chicken primary myoblasts. In addition, we explored the relationship between the EGR1 gene polymorphisms and slaughter traits using mixed linear models for the first time. In a population of Jiangfeng M3 lineage partridge chickens, we identified 4 EGR1 single-nucleotide polymorphisms, 2 of which were significantly associated with slaughter traits, including live weight, slaughter weight, semi-eviscerated weight, eviscerated weight, leg weight, wing weight, and breast muscle rate. In summary, ectopic expression of EGR1 promotes the proliferation and differentiation of chicken primary myoblasts. In addition, polymorphisms in EGR1 were associated with slaughter performance, providing a potential basis for further utilization of EGR1 as a breeding marker.
Collapse
Affiliation(s)
- Mao Ye
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Xiaohuan Chao
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Chutian Ye
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Lijin Guo
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Zhexia Fan
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Xuerong Ma
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Aijun Liu
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Weiming Liang
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Shuya Chen
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Cheng Fang
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Xiquan Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Qingbin Luo
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China.
| |
Collapse
|
9
|
Rashnonejad A, Farea M, Amini-Chermahini G, Coulis G, Taylor N, Fowler A, Villalta A, King OD, Harper SQ. Sustained efficacy of CRISPR-Cas13b gene therapy for FSHD is challenged by immune response to Cas13b. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.18.629250. [PMID: 39829765 PMCID: PMC11741234 DOI: 10.1101/2024.12.18.629250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a potentially devastating muscle disease caused by de-repression of the toxic DUX4 gene in skeletal muscle. FSHD patients may benefit from DUX4 inhibition therapies, and although several experimental strategies to reduce DUX4 levels in skeletal muscle are being developed, no approved disease modifying therapies currently exist. We developed a CRISPR-Cas13b system that cleaves DUX4 mRNA and reduces DUX4 protein level, protects cells from DUX4-mediated death, and reduces FSHD-associated biomarkers in vitro . In vivo delivery of the CRISPR-Cas13b system with adeno-associated viral vectors reduced acute damage caused by high DUX4 levels in a mouse model of severe FSHD. However, protection was not sustained over time, with decreases in Cas13b and guide RNA levels between 8 weeks and 6 months after injection. In addition, wild-type mice injected with AAV6.Cas13b showed muscle inflammation with infiltrates containing Cas13b-responsive CD8+ cytotoxic T cells. Our RNA-seq data confirmed that several immune response pathways were significantly increased in human FSHD myoblasts transfected with Cas13b. Overall, our findings suggest that CRISPR-Cas13b is highly effective for DUX4 silencing but successful implementation of CRISPR/Cas13-based gene therapies may require strategies to mitigate immune responses.
Collapse
|
10
|
Chen P, Wu L, Lei J, Chen F, Feng L, Liu G, Zhou B. The ellagitannin metabolite urolithin C attenuated cognitive impairment by inhibiting neuroinflammation via downregulation of MAPK/NF-kB signaling pathways in aging mice. Int Immunopharmacol 2024; 142:113151. [PMID: 39303538 DOI: 10.1016/j.intimp.2024.113151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
The current study aimed to evaluate the preventive effects of urolithin C (Uro C), a gut microbial metabolite of ellagitannins on D-galactose (D-gal)-induced brain damage during the aging process and to elucidate the underlying mechanisms. In our study, the protective effect of Uro C on D-gal-induced BV2 microglia cell-mediated neuroinflammation damage in primary cortical neurons in vitro was confirmed. The results in an aging model in vivo induced by D-gal demonstrated that Uro C prevented D-gal-induced memory impairment, long-term potentiation (LTP) damage, and synaptic dysfunction through behavioral, electrophysiological, and histological examinations. Additionally, amyloidogenesis was observed in the central nervous system. The findings indicated that Uro C exhibited a preventive effect on the D-gal-induced elevation of β-amyloid (1-42 specific) (Aβ1-42) accumulation, APP levels, ABCE1 levels, and the equilibrium of the cholinergic system in the aging mouse brain. Moreover, Uro C demonstrated downregulation of D-gal-induced glial overactivation through inhibition of the MAPK/NF-kB pathway. This resulted in the regulation of inflammatory mediators and cytokines, including iNOS, IL-6, IL-1β, and TNF-ɑ, in the mouse brain and BV2 microglial cells. Taken together, our results suggested that Uro C treatment could effectively mitigate the D-gal-induced memory impairment and amyloidogenesis, and the underlying mechanism might be tightly related to the improvement of neuroinflammation by suppressing the MAPK/NF-kB pathway, indicating Uro C might be an alternative and promising agent for the treatment of aging and age-associated brain diseases.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei.
| | - Lining Wu
- Department of Pharmacy, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Jiexin Lei
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Fuchao Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, PR China
| | - Lihua Feng
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, PR China
| | - Gang Liu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei
| |
Collapse
|
11
|
Hosseini A, Sheibani M, Valipour M. Exploring the Therapeutic Potential of BBB-Penetrating Phytochemicals With p38 MAPK Modulatory Activity in Addressing Oxidative Stress-Induced Neurodegenerative Disorders, With a Focus on Alzheimer's Disease. Phytother Res 2024; 38:5598-5625. [PMID: 39300812 DOI: 10.1002/ptr.8329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/17/2024] [Accepted: 08/17/2024] [Indexed: 09/22/2024]
Abstract
Oxidative stress plays an important role in the occurrence of neurodegenerative diseases. Previous studies indicate a strong connection between oxidative stress, inappropriate activation of the p38 MAPK signaling pathway, and the pathogenesis of neurodegenerative diseases. Although antioxidant therapy is a valid strategy to alleviate these problems, the most important limitation of this approach is the ineffectiveness of drug administration due to the limited permeability of the BBB. Therefore, BBB-penetrating p38 MAPK modulators with proper antioxidant capacity could be useful in preventing/reducing the complications of neurodegenerative disorders. The current manuscript aims to review the therapeutic capabilities of some recently reviewed naturally occurring p38 MAPK inhibitors in the management of neurodegenerative problems such as Alzheimer's disease. In data collection, we tried to use more recent studies published in high-quality journals indexed in databases Scopus, Web of Science, PubMed, and so on, but no specific time frame was considered due to the nature of the study. Our evaluations indicate that natural compounds tanshinones, protoberberines, pinocembrin, osthole, rhynchophylline, oxymatrine, schisandrin, piperine, paeonol, ferulic acid, 6-gingerol, obovatol, and trolox have significant potential for use as supplements/adjuvants in the reduction of neurodegenerative-related problems. Our findings emphasize the usefulness of BBB-penetrating phytochemicals with p38 MAPK modulatory activity as potential therapeutic options against neurodegenerative disorders. Of course, the proper use of these compounds depends on considering their toxicity/safety profile and pharmacokinetic characteristics as well as the clinical conditions of users.
Collapse
Affiliation(s)
- Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Moriggi M, Ruggiero L, Torretta E, Zoppi D, Arosio B, Ferri E, Castegna A, Fiorillo C, Gelfi C, Capitanio D. Muscle Proteome Analysis of Facioscapulohumeral Dystrophy Patients Reveals a Metabolic Rewiring Promoting Oxidative/Reductive Stress Contributing to the Loss of Muscle Function. Antioxidants (Basel) 2024; 13:1406. [PMID: 39594549 PMCID: PMC11591206 DOI: 10.3390/antiox13111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the epigenetic de-repression of the double homeobox 4 (DUX4) gene, leading to asymmetric muscle weakness and atrophy that begins in the facial and scapular muscles and progresses to the lower limbs. This incurable condition can severely impair muscle function, ultimately resulting in a loss of ambulation. A thorough analysis of molecular factors associated with the varying degrees of muscle impairment in FSHD is still lacking. This study investigates the molecular mechanisms and biomarkers in the biceps brachii of FSHD patients, classified according to the FSHD clinical score, the A-B-C-D classification scheme, and global proteomic variation. Our findings reveal distinct metabolic signatures and compensatory responses in patients. In severe cases, we observe pronounced metabolic dysfunction, marked by dysregulated glycolysis, activation of the reductive pentose phosphate pathway (PPP), a shift toward a reductive TCA cycle, suppression of oxidative phosphorylation, and an overproduction of antioxidants that is not matched by an increase in the redox cofactors needed for their function. This imbalance culminates in reductive stress, exacerbating muscle wasting and inflammation. In contrast, mild cases show metabolic adaptations that mitigate stress by activating polyols and the oxidative PPP, preserving partial energy flow through the oxidative TCA cycle, which supports mitochondrial function and energy balance. Furthermore, activation of the hexosamine biosynthetic pathway promotes autophagy, protecting muscle cells from apoptosis. In conclusion, our proteomic data indicate that specific metabolic alterations characterize both mild and severe FSHD patients. Molecules identified in mild cases may represent potential diagnostic and therapeutic targets for FSHD.
Collapse
Affiliation(s)
- Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy; (M.M.); (D.C.)
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (L.R.); (D.Z.)
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Dario Zoppi
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (L.R.); (D.Z.)
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Via della Commenda 19, 20122 Milan, Italy;
| | - Evelyn Ferri
- IRCCS Ca’ Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, 20122 Milan, Italy;
| | - Alessandra Castegna
- Department of Biosciences, Biotechnologies and Environment, University of Bari ALDO MORO, Via Orabona 4, 70125 Bari, Italy;
| | - Chiara Fiorillo
- Child Neuropsychiatric Unit, IRCCS Istituto Giannina Gaslini, DINOGMI-University of Genova, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy; (M.M.); (D.C.)
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy; (M.M.); (D.C.)
| |
Collapse
|
13
|
Lee DH, Lee HJ, Yang G, Kim DY, Kim JU, Yook TH, Lee JH, Kim HJ. A novel treatment strategy targeting cellular pathways with natural products to alleviate sarcopenia. Phytother Res 2024; 38:5033-5051. [PMID: 39099170 DOI: 10.1002/ptr.8301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
Sarcopenia is a condition marked by a significant reduction in muscle mass and strength, primarily due to the aging process, which critically impacts muscle protein dynamics, metabolic functions, and overall physical functionality. This condition leads to increased body fat and reduced daily activity, contributing to severe health issues and a lower quality of life among the elderly. Recognized in the ICD-10-CM only in 2016, sarcopenia lacks definitive treatment options despite its growing prevalence and substantial social and economic implications. Given the aging global population, addressing sarcopenia has become increasingly relevant and necessary. The primary causes include aging, cachexia, diabetes, and nutritional deficiencies, leading to imbalances in protein synthesis and degradation, mitochondrial dysfunction, and hormonal changes. Exercise remains the most effective intervention, but it is often impractical for individuals with limited mobility, and pharmacological options such as anabolic steroids and myostatin inhibitors are not FDA-approved and are still under investigation. This review is crucial as it examines the potential of natural products as a novel treatment strategy for sarcopenia, targeting multiple mechanisms involved in its pathogenesis. By exploring natural products' multi-targeted effects, this study aims to provide innovative and practical solutions for sarcopenia management. Therefore, this review indicates significant improvements in muscle mass and function with the use of specific natural compounds, suggesting promising alternatives for those unable to engage in regular physical activity.
Collapse
Affiliation(s)
- Da Hee Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Hye Jin Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Gabsik Yang
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Dae Yong Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Jong Uk Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Tae Han Yook
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Jun Ho Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
- Da Capo Co., Ltd., Jeonju-si, Republic of Korea
| | - Hong Jun Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| |
Collapse
|
14
|
Thomas ACQ, Stead CA, Burniston JG, Phillips SM. Exercise-specific adaptations in human skeletal muscle: Molecular mechanisms of making muscles fit and mighty. Free Radic Biol Med 2024; 223:341-356. [PMID: 39147070 DOI: 10.1016/j.freeradbiomed.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
The mechanisms leading to a predominantly hypertrophied phenotype versus a predominantly oxidative phenotype, the hallmarks of resistance training (RT) or aerobic training (AT), respectively, are being unraveled. In humans, exposure of naïve persons to either AT or RT results in their skeletal muscle exhibiting generic 'exercise stress-related' signaling, transcription, and translation responses. However, with increasing engagement in AT or RT, the responses become refined, and the phenotype typically associated with each form of exercise emerges. Here, we review some of the mechanisms underpinning the adaptations of how muscles become, through AT, 'fit' and RT, 'mighty.' Much of our understanding of molecular exercise physiology has arisen from targeted analysis of post-translational modifications and measures of protein synthesis. Phosphorylation of specific residue sites has been a dominant focus, with canonical signaling pathways (AMPK and mTOR) studied extensively in the context of AT and RT, respectively. These alone, along with protein synthesis, have only begun to elucidate key differences in AT and RT signaling. Still, key yet uncharacterized differences exist in signaling and regulation of protein synthesis that drive unique adaptation to AT and RT. Omic studies are required to better understand the divergent relationship between exercise and phenotypic outcomes of training.
Collapse
Affiliation(s)
- Aaron C Q Thomas
- Protein Metabolism Research Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada; Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Connor A Stead
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jatin G Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Stuart M Phillips
- Protein Metabolism Research Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
15
|
Wu S, Miao J, Zhu S, Wu X, Shi J, Zhou J, Xing Y, Hu K, Ren J, Yang H. Pongamol Prevents Neurotoxicity via the Activation of MAPKs/Nrf2 Signaling Pathway in H 2O 2-Induced Neuronal PC12 Cells and Prolongs the Lifespan of Caenorhabditis elegans. Mol Neurobiol 2024; 61:8219-8233. [PMID: 38483657 DOI: 10.1007/s12035-024-04110-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/09/2024] [Indexed: 09/21/2024]
Abstract
Despite tremendous advances in modern medicine, effective prevention or therapeutic strategies for age-related neurodegenerative diseases such as Alzheimer's disease (AD) remain limited. Growing evidence now suggests that oxidative stress and apoptosis are increasingly associated with AD as promising therapeutic targets. Pongamol, a flavonoid, is the main constituent of pongamia pinnata and possesses a variety of pharmacological activities such as antioxidant, anti-aging and anti-inflammatory. In the present study, we investigated the antioxidant effects and mechanisms of pongamol in H2O2-induced PC12 cells and Caenorhabditis elegans (C. elegans). Our findings revealed that pongamol reduced cellular damage and apoptosis in H2O2-induced PC12 cells. Furthermore, pongamol reduced levels of apoptosis-related proteins Bax, Cyto C, Cleaved Caspase-3, and Cleaved PARP1, and increased the level of anti-apoptotic protein Bcl-2. Pongamol also effectively attenuated the level of oxidative stress markers such as glutathione (GSH) and reactive oxygen species (ROS) in H2O2-induced PC12 cells. Additionally, pongamol possessed antioxidant activity in H2O2-induced PC12 cells through the MAPKs/Nrf2 signaling pathway. Furthermore, pongamol exerted neuroprotective and anti-aging effects in C. elegans. All together, these results suggested that pongamol has a potential neuroprotective effect through the modulation of MAPKs/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Shaojun Wu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Jie Miao
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Susu Zhu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Xinyuan Wu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Jindan Shi
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Jichao Zhou
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Yi Xing
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Kun Hu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Jie Ren
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China.
| | - Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 68. Gehu Middle Road, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
16
|
Kools J, Voermans N, Jiang JG, Mitelman O, Mellion ML, Ramana V, van Engelen BGM. An open-label pilot study of losmapimod to evaluate the safety, tolerability, and changes in biomarker and clinical outcome assessments in participants with facioscapulohumeral muscular dystrophy type 1. J Neurol Sci 2024; 462:123096. [PMID: 38959779 DOI: 10.1016/j.jns.2024.123096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Facioscapulohumeral muscular dystrophy (FSHD) is a genetic disease caused by aberrant DUX4 expression, leading to progressive muscle weakness. No effective pharmaceutical treatment is available. Losmapimod, a small molecule selective inhibitor of p38 α/β MAPK, showed promising results in a phase 1 trial for the treatment of FSHD, prompting additional studies. We report the findings of an open-label phase 2 trial (NCT04004000) investigating the safety, tolerability, pharmacokinetics, pharmacodynamics, and exploratory efficacy of losmapimod in participants with FSHD1. METHODS This study was conducted at a single site in the Netherlands from August 2019 to March 2021, with an optional, ongoing open-label extension. Participants aged 18 to 65 years with FSHD1 took 15 mg of losmapimod twice daily for 52 weeks. Primary endpoints were measures of losmapimod safety and tolerability. Secondary endpoints were assessments of losmapimod pharmacokinetics and pharmacodynamics. RESULTS Fourteen participants were enrolled. No deaths, serious treatment-emergent adverse events (TEAEs), or discontinuations due to TEAEs were reported. Losmapimod achieved blood concentrations and target engagements that were previously associated with decreased DUX4 expression in vitro. Clinical outcome measures showed a trend toward stabilization or improvement. CONCLUSIONS Losmapimod was well tolerated and may be a promising new treatment for FSHD; a larger phase 3 study is ongoing.
Collapse
Affiliation(s)
- Joost Kools
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Nicol Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | | | | | | | | | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
17
|
Wang C, Li M, Li S, Wei X, Dong N, Liu S, Yuan Z, Li B, Pierro A, Tang X, Bai Y. Rack1-mediated ferroptosis affects hindgut development in rats with anorectal malformations: Spatial transcriptome insights. Cell Prolif 2024; 57:e13618. [PMID: 38523594 PMCID: PMC11216944 DOI: 10.1111/cpr.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Anorectal malformation (ARM), a common congenital anomaly of the digestive tract, is a result of insufficient elongation of the urorectal septum. The cytoplasmic protein Receptor of Activated C-Kinase 1 (Rack1) is involved in embryonic neural development; however, its role in embryonic digestive tract development and ARM formation is unexplored. Our study explored the hindgut development and cell death mechanisms in ARM-affected rats using spatial transcriptome analysis. We induced ARM in rats by administering ethylenethiourea via gavage on gestational day (GD) 10. On GDs 14-16, embryos from both normal and ARM groups underwent spatial transcriptome sequencing, which identified key genes and signalling pathways. Rack1 exhibited significant interactions among differentially expressed genes on GDs 15 and 16. Reduced Rack1 expression in the ARM-affected hindgut, verified by Rack1 silencing in intestinal epithelial cells, led to increased P38 phosphorylation and activation of the MAPK signalling pathway. The suppression of this pathway downregulated Nqo1 and Gpx4 expression, resulting in elevated intracellular levels of ferrous ions, reactive oxygen species (ROS) and lipid peroxides. Downregulation of Gpx4 expression in the ARM hindgut, coupled with Rack1 co-localisation and consistent mitochondrial morphology, indicated ferroptosis. In summary, Rack1, acting as a hub gene, modulates ferrous ions, lipid peroxides, and ROS via the P38-MAPK/Nqo1/Gpx4 axis. This modulation induces ferroptosis in intestinal epithelial cells, potentially influencing hindgut development during ARM onset.
Collapse
Affiliation(s)
- Chen‐Yi Wang
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Mu‐Yu Li
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Si‐Ying Li
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Xiao‐Gao Wei
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Nai‐Xuan Dong
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Shu‐Ting Liu
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Zheng‐Wei Yuan
- Key Laboratory of Health Ministry for Congenital MalformationShengjing Hospital of China Medical UniversityShenyangChina
| | - Bo Li
- Division of General and Thoracic SurgeryThe Hospital for Sick ChildrenTorontoCanada
| | - Agostino Pierro
- Division of General and Thoracic SurgeryThe Hospital for Sick ChildrenTorontoCanada
| | - Xiao‐Bing Tang
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Yu‐Zuo Bai
- Department of Pediatric SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
18
|
Fullenkamp DE, Willis AB, Curtin JL, Amaral AP, Dittloff KT, Harris SI, Chychula IA, Holgren CW, Burridge PW, Russell B, Demonbreun AR, McNally EM. Physiological stress improves stem cell modeling of dystrophic cardiomyopathy. Dis Model Mech 2024; 17:dmm050487. [PMID: 38050701 PMCID: PMC10820750 DOI: 10.1242/dmm.050487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
Heart failure contributes to Duchenne muscular dystrophy (DMD), which arises from mutations that ablate dystrophin, rendering the plasma membrane prone to disruption. Cardiomyocyte membrane breakdown in patients with DMD yields a serum injury profile similar to other types of myocardial injury with the release of creatine kinase and troponin isoforms. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are highly useful but can be improved. We generated hiPSC-CMs from a patient with DMD and subjected these cells to equibiaxial mechanical strain to mimic in vivo stress. Compared to healthy cells, DMD hiPSC-CMs demonstrated greater susceptibility to equibiaxial strain after 2 h at 10% strain. We generated an aptamer-based profile of proteins released from hiPSC-CMs both at rest and subjected to strain and identified a strong correlation in the mechanical stress-induced proteome from hiPSC-CMs and serum from patients with DMD. We exposed hiPSC-CMs to recombinant annexin A6, a protein resealing agent, and found reduced biomarker release in DMD and control hiPSC-CMs subjected to strain. Thus, the application of mechanical strain to hiPSC-CMs produces a model that reflects an in vivo injury profile, providing a platform to assess pharmacologic intervention.
Collapse
Affiliation(s)
- Dominic E. Fullenkamp
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alexander B. Willis
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jodi L. Curtin
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ansel P. Amaral
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kyle T. Dittloff
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sloane I. Harris
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ivana A. Chychula
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Cory W. Holgren
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Paul W. Burridge
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brenda Russell
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alexis R. Demonbreun
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
19
|
Millward DJ. Post-natal muscle growth and protein turnover: a narrative review of current understanding. Nutr Res Rev 2024; 37:141-168. [PMID: 37395180 DOI: 10.1017/s0954422423000124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A model explaining the dietary-protein-driven post-natal skeletal muscle growth and protein turnover in the rat is updated, and the mechanisms involved are described, in this narrative review. Dietary protein controls both bone length and muscle growth, which are interrelated through mechanotransduction mechanisms with muscle growth induced both from stretching subsequent to bone length growth and from internal work against gravity. This induces satellite cell activation, myogenesis and remodelling of the extracellular matrix, establishing a growth capacity for myofibre length and cross-sectional area. Protein deposition within this capacity is enabled by adequate dietary protein and other key nutrients. After briefly reviewing the experimental animal origins of the growth model, key concepts and processes important for growth are reviewed. These include the growth in number and size of the myonuclear domain, satellite cell activity during post-natal development and the autocrine/paracrine action of IGF-1. Regulatory and signalling pathways reviewed include developmental mechanotransduction, signalling through the insulin/IGF-1-PI3K-Akt and the Ras-MAPK pathways in the myofibre and during mechanotransduction of satellite cells. Likely pathways activated by maximal-intensity muscle contractions are highlighted and the regulation of the capacity for protein synthesis in terms of ribosome assembly and the translational regulation of 5-TOPmRNA classes by mTORC1 and LARP1 are discussed. Evidence for and potential mechanisms by which volume limitation of muscle growth can occur which would limit protein deposition within the myofibre are reviewed. An understanding of how muscle growth is achieved allows better nutritional management of its growth in health and disease.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, School of Biosciences & Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
20
|
Podgórska D, Cieśla M, Płonka A, Bajorek W, Czarny W, Król P, Podgórski R. Changes in Circulating MicroRNA Levels as Potential Indicators of Training Adaptation in Professional Volleyball Players. Int J Mol Sci 2024; 25:6107. [PMID: 38892295 PMCID: PMC11173131 DOI: 10.3390/ijms25116107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The increasing demand placed on professional athletes to enhance their fitness and performance has prompted the search for new, more sensitive biomarkers of physiological ability. One such potential biomarker includes microRNA (miRNA) small regulatory RNA sequences. The study investigated the levels of the selected circulating miRNAs before and after a 10-week training cycle in 12 professional female volleyball players, as well as their association with cortisol, creatine kinase (CK), and interleukin 6 (IL-6), using the qPCR technique. Significant decreases in the miR-22 (0.40 ± 0.1 vs. 0.28 ± 0.12, p = 0.009), miR-17 (0.35 ± 0.13 vs. 0.23 ± 0.08; p = 0.039), miR-24 (0.09 ± 0.04 vs. 0.05 ± 0.02; p = 0.001), and miR-26a (0.11 ± 0.06 vs. 0.06 ± 0.04; p = 0.003) levels were observed after training, alongside reduced levels of cortisol and IL-6. The correlation analysis revealed associations between the miRNAs' relative quantity and the CK concentrations, highlighting their potential role in the muscle repair processes. The linear regression analysis indicated that miR-24 and miR-26a had the greatest impact on the CK levels. The study provides insights into the dynamic changes in the miRNA levels during training, suggesting their potential as biomarkers for monitoring the adaptive responses to exercise. Overall, the findings contribute to a better understanding of the physiological effects of exercise and the potential use of miRNAs, especially miR-24 and miR-26a, as biomarkers in sports science and medicine.
Collapse
Affiliation(s)
- Dominika Podgórska
- Department of Internal Diseases, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Marek Cieśla
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland;
| | - Artur Płonka
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland; (A.P.); (W.B.); (W.C.); (P.K.)
| | - Wojciech Bajorek
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland; (A.P.); (W.B.); (W.C.); (P.K.)
| | - Wojciech Czarny
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland; (A.P.); (W.B.); (W.C.); (P.K.)
| | - Paweł Król
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland; (A.P.); (W.B.); (W.C.); (P.K.)
| | - Rafał Podgórski
- Department of Biochemistry, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland;
| |
Collapse
|
21
|
Wang R, Khatpe AS, Kumar B, Mang HE, Batic K, Adebayo AK, Nakshatri H. Mutant RAS-driven Secretome Causes Skeletal Muscle Defects in Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1282-1295. [PMID: 38651826 PMCID: PMC11094532 DOI: 10.1158/2767-9764.crc-24-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Cancer-induced skeletal muscle defects differ in severity between individuals with the same cancer type. Cancer subtype-specific genomic aberrations are suggested to mediate these differences, but experimental validation studies are very limited. We utilized three different breast cancer patient-derived xenograft (PDX) models to correlate cancer subtype with skeletal muscle defects. PDXs were derived from brain metastasis of triple-negative breast cancer (TNBC), estrogen receptor-positive/progesterone receptor-positive (ER+/PR+) primary breast cancer from a BRCA2-mutation carrier, and pleural effusion from an ER+/PR- breast cancer. While impaired skeletal muscle function as measured through rotarod performance and reduced levels of circulating and/or skeletal muscle miR-486 were common across all three PDXs, only TNBC-derived PDX activated phospho-p38 in skeletal muscle. To further extend these results, we generated transformed variants of human primary breast epithelial cells from healthy donors using HRASG12V or PIK3CAH1047R mutant oncogenes. Mutations in RAS oncogene or its modulators are found in approximately 37% of metastatic breast cancers, which is often associated with skeletal muscle defects. Although cells transformed with both oncogenes generated adenocarcinomas in NSG mice, only HRASG12V-derived tumors caused skeletal muscle defects affecting rotarod performance, skeletal muscle contraction force, and miR-486, Pax7, pAKT, and p53 levels in skeletal muscle. Circulating levels of the chemokine CXCL1 were elevated only in animals with tumors containing HRASG12V mutation. Because RAS pathway aberrations are found in 19% of cancers, evaluating skeletal muscle defects in the context of genomic aberrations in cancers, particularly RAS pathway mutations, may accelerate development of therapeutic modalities to overcome cancer-induced systemic effects. SIGNIFICANCE Mutant RAS- and PIK3CA-driven breast cancers distinctly affect the function of skeletal muscle. Therefore, research and therapeutic targeting of cancer-induced systemic effects need to take aberrant cancer genome into consideration.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Aditi S. Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Henry Elmer Mang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katie Batic
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
22
|
Basudkar V, Gujrati G, Ajgaonkar S, Gandhi M, Mehta D, Nair S. Emerging Vistas for the Nutraceutical Withania somnifera in Inflammaging. Pharmaceuticals (Basel) 2024; 17:597. [PMID: 38794167 PMCID: PMC11123800 DOI: 10.3390/ph17050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Inflammaging, a coexistence of inflammation and aging, is a persistent, systemic, low-grade inflammation seen in the geriatric population. Various natural compounds have been greatly explored for their potential role in preventing and treating inflammaging. Withania somnifera has been used for thousands of years in traditional medicine as a nutraceutical for its numerous health benefits including regenerative and adaptogenic effects. Recent preclinical and clinical studies on the role of Withania somnifera and its active compounds in treating aging, inflammation, and oxidative stress have shown promise for its use in healthy aging. We discuss the chemistry of Withania somnifera, the etiology of inflammaging and the protective role(s) of Withania somnifera in inflammaging in key organ systems including brain, lung, kidney, and liver as well as the mechanistic underpinning of these effects. Furthermore, we elucidate the beneficial effects of Withania somnifera in oxidative stress/DNA damage, immunomodulation, COVID-19, and the microbiome. We also delineate a putative protein-protein interaction network of key biomarkers modulated by Withania somnifera in inflammaging. In addition, we review the safety/potential toxicity of Withania somnifera as well as global clinical trials on Withania somnifera. Taken together, this is a synthetic review on the beneficial effects of Withania somnifera in inflammaging and highlights the potential of Withania somnifera in improving the health-related quality of life (HRQoL) in the aging population worldwide.
Collapse
Affiliation(s)
- Vivek Basudkar
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Gunjan Gujrati
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Saiprasad Ajgaonkar
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Manav Gandhi
- College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Dilip Mehta
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Sujit Nair
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| |
Collapse
|
23
|
Livshits G, Kalinkovich A. Restoration of epigenetic impairment in the skeletal muscle and chronic inflammation resolution as a therapeutic approach in sarcopenia. Ageing Res Rev 2024; 96:102267. [PMID: 38462046 DOI: 10.1016/j.arr.2024.102267] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Sarcopenia is an age-associated loss of skeletal muscle mass, strength, and function, accompanied by severe adverse health outcomes, such as falls and fractures, functional decline, high health costs, and mortality. Hence, its prevention and treatment have become increasingly urgent. However, despite the wide prevalence and extensive research on sarcopenia, no FDA-approved disease-modifying drugs exist. This is probably due to a poor understanding of the mechanisms underlying its pathophysiology. Recent evidence demonstrate that sarcopenia development is characterized by two key elements: (i) epigenetic dysregulation of multiple molecular pathways associated with sarcopenia pathogenesis, such as protein remodeling, insulin resistance, mitochondria impairments, and (ii) the creation of a systemic, chronic, low-grade inflammation (SCLGI). In this review, we focus on the epigenetic regulators that have been implicated in skeletal muscle deterioration, their individual roles, and possible crosstalk. We also discuss epidrugs, which are the pharmaceuticals with the potential to restore the epigenetic mechanisms deregulated in sarcopenia. In addition, we discuss the mechanisms underlying failed SCLGI resolution in sarcopenia and the potential application of pro-resolving molecules, comprising specialized pro-resolving mediators (SPMs) and their stable mimetics and receptor agonists. These compounds, as well as epidrugs, reveal beneficial effects in preclinical studies related to sarcopenia. Based on these encouraging observations, we propose the combination of epidrugs with SCLI-resolving agents as a new therapeutic approach for sarcopenia that can effectively attenuate of its manifestations.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
24
|
Sun C, Serra C, Kalicharan BH, Harding J, Rao M. Challenges and Considerations of Preclinical Development for iPSC-Based Myogenic Cell Therapy. Cells 2024; 13:596. [PMID: 38607035 PMCID: PMC11011706 DOI: 10.3390/cells13070596] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Cell therapies derived from induced pluripotent stem cells (iPSCs) offer a promising avenue in the field of regenerative medicine due to iPSCs' expandability, immune compatibility, and pluripotent potential. An increasing number of preclinical and clinical trials have been carried out, exploring the application of iPSC-based therapies for challenging diseases, such as muscular dystrophies. The unique syncytial nature of skeletal muscle allows stem/progenitor cells to integrate, forming new myonuclei and restoring the expression of genes affected by myopathies. This characteristic makes genome-editing techniques especially attractive in these therapies. With genetic modification and iPSC lineage specification methodologies, immune-compatible healthy iPSC-derived muscle cells can be manufactured to reverse the progression of muscle diseases or facilitate tissue regeneration. Despite this exciting advancement, much of the development of iPSC-based therapies for muscle diseases and tissue regeneration is limited to academic settings, with no successful clinical translation reported. The unknown differentiation process in vivo, potential tumorigenicity, and epigenetic abnormality of transplanted cells are preventing their clinical application. In this review, we give an overview on preclinical development of iPSC-derived myogenic cell transplantation therapies including processes related to iPSC-derived myogenic cells such as differentiation, scaling-up, delivery, and cGMP compliance. And we discuss the potential challenges of each step of clinical translation. Additionally, preclinical model systems for testing myogenic cells intended for clinical applications are described.
Collapse
Affiliation(s)
- Congshan Sun
- Vita Therapeutics, Baltimore, MD 21043, USA (M.R.)
| | - Carlo Serra
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Mahendra Rao
- Vita Therapeutics, Baltimore, MD 21043, USA (M.R.)
| |
Collapse
|
25
|
Pampalone M, Cuscino N, Iannolo G, Amico G, Ricordi C, Vitale G, Carcione C, Castelbuono S, Scilabra SD, Coronnello C, Gruttadauria S, Pietrosi G. Human Amniotic MSC Response in LPS-Stimulated Ascites from Patients with Cirrhosis: FOXO1 Gene and Th17 Activation in Enhanced Antibacterial Activation. Int J Mol Sci 2024; 25:2801. [PMID: 38474048 DOI: 10.3390/ijms25052801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Spontaneous bacterial peritonitis (SBP) is a severe complication in patients with decompensated liver cirrhosis and is commonly treated with broad spectrum antibiotics. However, the rise of antibiotic resistance requires alternative therapeutic strategies. As recently shown, human amnion-derived mesenchymal stem cells (hA-MSCs) are able, in vitro, to promote bacterial clearance and modulate the immune and inflammatory response in SBP. Our results highlight the upregulation of FOXO1, CXCL5, CXCL6, CCL20, and MAPK13 in hA-MSCs as well as the promotion of bacterial clearance, prompting a shift in the immune response toward a Th17 lymphocyte phenotype after 72 h treatment. In this study, we used an in vitro SBP model and employed omics techniques (next-generation sequencing) to investigate the mechanisms by which hA-MSCs modify the crosstalk between immune cells in LPS-stimulated ascitic fluid. We also validated the data obtained via qRT-PCR, cytofluorimetric analysis, and Luminex assay. These findings provide further support to the hope of using hA-MSCs for the prevention and treatment of infective diseases, such as SBP, offering a viable alternative to antibiotic therapy.
Collapse
Affiliation(s)
- Mariangela Pampalone
- Ri.MED Foundation, 90127 Palermo, Italy
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Nicola Cuscino
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Gioacchin Iannolo
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Giandomenico Amico
- Ri.MED Foundation, 90127 Palermo, Italy
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Camillo Ricordi
- Cell Transplant Center, Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL 33136, USA
| | | | | | - Salvatore Castelbuono
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Simone Dario Scilabra
- Ri.MED Foundation, 90127 Palermo, Italy
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | | | - Salvatore Gruttadauria
- Department for the Treatment and Study of Abdominal Disease and Abdominal Transplantation, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), UPMCI (University of Pittsburgh Medical Center Italy), 90127 Palermo, Italy
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95124 Catania, Italy
| | - Giada Pietrosi
- Department for the Treatment and Study of Abdominal Disease and Abdominal Transplantation, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), UPMCI (University of Pittsburgh Medical Center Italy), 90127 Palermo, Italy
| |
Collapse
|
26
|
Chodkowska KA, Barszcz M, Tuśnio A. MicroRNA expression and oxidative stress markers in pectoral muscle of broiler chickens fed diets supplemented with phytobiotics composition. Sci Rep 2024; 14:4413. [PMID: 38388757 PMCID: PMC10884404 DOI: 10.1038/s41598-024-54915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/18/2024] [Indexed: 02/24/2024] Open
Abstract
Phytobiotic compositions are commercially used in broiler production, mostly to improve general health and the production parameters. Moreover, some of their active substances may change the expression of miRNA in different tissues. Therefore, the purpose of this study was to evaluate the effect of the phytobiotic composition (PBC) containing white mustard, calamus, turmeric, and common ivy on production parameters, oxidative stress markers and expression of selected miRNAs in pectoral muscle of broiler chickens. The experiment was performed on broiler chickens fed the control diet (without PBC), and a diet supplemented with 60 or 100 mg/kg of PBC for 35 days. After the experiment, samples (blood and muscle) were collected for analyses. The analyzed production parameters included: feed conversion ratio, feed intake and body weight. There was no effect on growth performance of broiler chickens but feeding diet supplemented with 60 mg/kg phytobiotics significantly increased the expression of miR-30a-5p, miR-181a-5p, and miR-206, and decreased that of miR-99a-5p, miR-133a-5p, miR-142-5p, and miR-222 in pectoral muscle of chickens. The addition of 100 mg/kg phytobiotics significantly increased miR-99a-5p and miR-181a-5p expression, and caused down-regulation of the expression of miR-26a-5p and miR-30a-5p. Chickens fed diet supplemented with 100 mg/kg PBC had lower level of lipid peroxidation products in blood, while in the muscle tissue it was higher in birds fed a diet with the addition of 60 mg/kg as compared to the control group. The results suggest that this unique composition of phytobiotics does not affect productive traits but can change expression of miRNAs that are crucial for muscle physiology and pathology in broiler chickens. This additive may also protect against the oxidative stress but the effect is dose dependent.
Collapse
Affiliation(s)
- Karolina A Chodkowska
- Krzyżanowski Partners Spółka z o.o., Zakładowa 7, 26-670, Pionki, Poland.
- AdiFeed Sp. z o.o., Opaczewska 43, 02-201, Warszawa, Poland.
| | - Marcin Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Anna Tuśnio
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| |
Collapse
|
27
|
Petry ÉR, Dresch DDF, Carvalho C, Medeiros PC, Rosa TG, de Oliveira CM, Martins LAM, Guma FCR, Marroni NP, Wannmacher CMD. Oral glutamine supplementation relieves muscle loss in immobilized rats, altering p38MAPK and FOXO3a signaling pathways. Nutrition 2024; 118:112273. [PMID: 38096603 DOI: 10.1016/j.nut.2023.112273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Skeletal muscle synthesizes, stores, and releases body L-glutamine (GLN). Muscle atrophy due to disabling diseases triggers the activation of proteolytic and pro-apoptotic cell signaling, thus impairing the body's capacity to manage GLN content. This situation has a poor therapeutic prognosis. OBJECTIVE Evaluating if oral GLN supplementation can attenuate muscle wasting mediated by elevated plasma cortisol and activation of caspase-3, p38MAPK, and FOXO3a signaling pathways in soleus and gastrocnemius muscles of rats submitted to 14-day bilateral hindlimbs immobilization. METHODS Animals were randomly distributed into six groups: non-immobilized rats (Control), control orally supplemented with GLN (1 g kg-1) in solution with L-alanine (ALA: 0.61 g kg-1; GLN+ALA), control orally supplemented with dipeptide L-alanyl-L-glutamine (DIP; 1.49 g kg-1), hindlimbs immobilized rats (IMOB), IMOB orally GLN+ALA supplemented (GLN+ALA-IMOB), and IMOB orally DIP supplemented (DIP-IMOB). Plasma and muscle GLN concentration, plasma cortisol level, muscle caspase-3 activity, muscle p38MAPK and FOXO3a protein content (total and phosphorylated forms), and muscle cross-sectional area (CSA) were measured. RESULTS Compared to controls, IMOB rats presented: a) increased plasma cortisol levels; b) decreased plasma and muscle GLN concentration; c) increased muscle caspase-3 activity; d) increased total and phosphorylated p38MAPK protein content; e) increased FOXO3a and decreased phosphorylated FOXO3a protein content; f) reduced muscle weight and CSA befitting to atrophy. Oral supplementation with GLN+ALA and DIP was able to significantly attenuate these effects. CONCLUSIONS These findings attest that oral GLN supplementation in GLN+ALA solution or DIP forms attenuates rats' skeletal muscle mass wasting caused by disuse-mediated muscle atrophy.
Collapse
Affiliation(s)
- Éder Ricardo Petry
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, Hershey, Pennsylvania, USA; Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Diego de Freitas Dresch
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Clarice Carvalho
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Patricia Calçada Medeiros
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Tatiana Gomes Rosa
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Faculdades Integradas de Taquara (FACCAT), Taquara, Rio Grande do Sul, Brazil
| | - Cleverson Morais de Oliveira
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leo Anderson Meira Martins
- Laboratory of Endocrine and Tumor Molecular Biology, Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Brazil; Post-Graduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Fátima Costa Rodrigues Guma
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Norma Possas Marroni
- Post-Graduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Post-Graduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Pulmonological Sciences: Inflammation, Experimental Research Center, Clinical Hospital of Porto Alegre (HCPA), UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Clóvis Milton Duval Wannmacher
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
28
|
Abstract
Sarcopenia is a skeletal muscle disorder characterized by progressive and generalized decline in muscle mass and function. Although it is mostly known as an age-related disorder, it can also occur secondary to systemic diseases such as malignancy or organ failure. It has demonstrated a significant relationship with adverse outcomes, e.g., falls, disabilities, and even mortality. Several breakthroughs have been made to find a pharmaceutical therapy for sarcopenia over the years, and some have come up with promising findings. Yet still no drug has been approved for its treatment. The key factor that makes finding an effective pharmacotherapy so challenging is the general paradigm of standalone/single diseases, traditionally adopted in medicine. Today, it is well known that sarcopenia is a complex disorder caused by multiple factors, e.g., imbalance in protein turnover, satellite cell and mitochondrial dysfunction, hormonal changes, low-grade inflammation, senescence, anorexia of aging, and behavioral factors such as low physical activity. Therefore, pharmaceuticals, either alone or combined, that exhibit multiple actions on these factors simultaneously will likely be the drug of choice to manage sarcopenia. Among various drug options explored throughout the years, testosterone still has the most cumulated evidence regarding its effects on muscle health and its safety. A mas receptor agonist, BIO101, stands out as a recent promising pharmaceutical. In addition to the conventional strategies (i.e., nutritional support and physical exercise), therapeutics with multiple targets of action or combination of multiple therapeutics with different targets/modes of action appear to promise greater benefit for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Gulistan Bahat
- Division of Geriatrics, Department of Internal Medicine, Istanbul Medical School, Istanbul University, Capa, 34390, Istanbul, Turkey.
| | - Serdar Ozkok
- Division of Geriatrics, Department of Internal Medicine, Hatay Training and Research Hospital, Hatay, 31040, Turkey
| |
Collapse
|
29
|
Tomaz da Silva M, Joshi AS, Castillo MB, Koike TE, Roy A, Gunaratne PH, Kumar A. Fn14 promotes myoblast fusion during regenerative myogenesis. Life Sci Alliance 2023; 6:e202302312. [PMID: 37813488 PMCID: PMC10561765 DOI: 10.26508/lsa.202302312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
Skeletal muscle regeneration involves coordinated activation of an array of signaling pathways. Fibroblast growth factor-inducible 14 (Fn14) is a bona fide receptor for the TWEAK cytokine. Levels of Fn14 are increased in the skeletal muscle of mice after injury. However, the cell-autonomous role of Fn14 in muscle regeneration remains unknown. Here, we demonstrate that global deletion of the Fn14 receptor in mice attenuates muscle regeneration. Conditional ablation of Fn14 in myoblasts but not in differentiated myofibers of mice inhibits skeletal muscle regeneration. Fn14 promotes myoblast fusion without affecting the levels of myogenic regulatory factors in the regenerating muscle. Fn14 deletion in myoblasts hastens initial differentiation but impairs their fusion. The overexpression of Fn14 in myoblasts results in the formation of myotubes having an increased diameter after induction of differentiation. Ablation of Fn14 also reduces the levels of various components of canonical Wnt and calcium signaling both in vitro and in vivo. Forced activation of Wnt signaling rescues fusion defects in Fn14-deficient myoblast cultures. Collectively, our results demonstrate that Fn14-mediated signaling positively regulates myoblast fusion and skeletal muscle regeneration.
Collapse
Affiliation(s)
- Meiricris Tomaz da Silva
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Aniket S Joshi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Micah B Castillo
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Tatiana E Koike
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Anirban Roy
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| |
Collapse
|
30
|
Stella R, Bonadio RS, Cagnin S, Andreotti R, Massimino ML, Bertoli A, Peggion C. Secreted Metabolome of ALS-Related hSOD1(G93A) Primary Cultures of Myocytes and Implications for Myogenesis. Cells 2023; 12:2751. [PMID: 38067180 PMCID: PMC10706027 DOI: 10.3390/cells12232751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron (MN) disease associated with progressive muscle atrophy, paralysis, and eventually death. Growing evidence demonstrates that the pathological process leading to ALS is the result of multiple altered mechanisms occurring not only in MNs but also in other cell types inside and outside the central nervous system. In this context, the involvement of skeletal muscle has been the subject of a few studies on patients and ALS animal models. In this work, by using primary myocytes derived from the ALS transgenic hSOD1(G93A) mouse model, we observed that the myogenic capability of such cells was defective compared to cells derived from control mice expressing the nonpathogenic hSOD1(WT) isoform. The correct in vitro myogenesis of hSOD1(G93A) primary skeletal muscle cells was rescued by the addition of a conditioned medium from healthy hSOD1(WT) myocytes, suggesting the existence of an in trans activity of secreted factors. To define a dataset of molecules participating in such safeguard action, we conducted comparative metabolomic profiling of a culture medium collected from hSOD1(G93A) and hSOD1(WT) primary myocytes and report here an altered secretion of amino acids and lipid-based signaling molecules. These findings support the urgency of better understanding the role of the skeletal muscle secretome in the regulation of the myogenic program and mechanisms of ALS pathogenesis and progression.
Collapse
Affiliation(s)
- Roberto Stella
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | | | - Stefano Cagnin
- Department of Biology, University of Padova, 35131 Padova, Italy (S.C.)
- CIR-Myo Myology Center, University of Padova, 35131 Padova, Italy
| | - Roberta Andreotti
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy (A.B.)
| | - Maria Lina Massimino
- Neuroscience Institute, Consiglio Nazionale delle Ricerche, 35131 Padova, Italy;
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy (A.B.)
- Neuroscience Institute, Consiglio Nazionale delle Ricerche, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Caterina Peggion
- Department of Biology, University of Padova, 35131 Padova, Italy (S.C.)
| |
Collapse
|
31
|
Ahmadi A, Ahrari S, Salimian J, Salehi Z, Karimi M, Emamvirdizadeh A, Jamalkandi SA, Ghanei M. p38 MAPK signaling in chronic obstructive pulmonary disease pathogenesis and inhibitor therapeutics. Cell Commun Signal 2023; 21:314. [PMID: 37919729 PMCID: PMC10623820 DOI: 10.1186/s12964-023-01337-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by persistent respiratory symptoms and airflow limitation due to airway and/or alveolar remodeling. Although the abnormalities are primarily prompted by chronic exposure to inhaled irritants, maladjusted and self-reinforcing immune responses are significant contributors to the development and progression of the disease. The p38 isoforms are regarded as pivotal hub proteins that regulate immune and inflammatory responses in both healthy and disease states. As a result, their inhibition has been the subject of numerous recent studies exploring their therapeutic potential in COPD. MAIN BODY We performed a systematic search based on the PRISMA guidelines to find relevant studies about P38 signaling in COPD patients. We searched the PubMed and Google Scholar databases and used "P38" AND "COPD" Mesh Terms. We applied the following inclusion criteria: (1) human, animal, ex vivo and in vitro studies; (2) original research articles; (3) published in English; and (4) focused on P38 signaling in COPD pathogenesis, progression, or treatment. We screened the titles and abstracts of the retrieved studies and assessed the full texts of the eligible studies for quality and relevance. We extracted the following data from each study: authors, year, country, sample size, study design, cell type, intervention, outcome, and main findings. We classified the studies according to the role of different cells and treatments in P38 signaling in COPD. CONCLUSION While targeting p38 MAPK has demonstrated some therapeutic potential in COPD, its efficacy is limited. Nevertheless, combining p38 MAPK inhibitors with other anti-inflammatory steroids appears to be a promising treatment choice. Clinical trials testing various p38 MAPK inhibitors have produced mixed results, with some showing improvement in lung function and reduction in exacerbations in COPD patients. Despite these mixed results, research on p38 MAPK inhibitors is still a major area of study to develop new and more effective therapies for COPD. As our understanding of COPD evolves, we may gain a better understanding of how to utilize p38 MAPK inhibitors to treat this disease. Video Abstract.
Collapse
Affiliation(s)
- Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sajjad Ahrari
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Jafar Salimian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Emamvirdizadeh
- Department of Molecular Genetics, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Ward JM, Ambatipudi M, O'Hanlon TP, Smith MA, de Los Reyes M, Schiffenbauer A, Rahman S, Zerrouki K, Miller FW, Sanjuan MA, Li JL, Casey KA, Rider LG. Shared and Distinctive Transcriptomic and Proteomic Pathways in Adult and Juvenile Dermatomyositis. Arthritis Rheumatol 2023; 75:2014-2026. [PMID: 37229703 PMCID: PMC10615891 DOI: 10.1002/art.42615] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Transcript and protein expression were interrogated to examine gene locus and pathway regulation in the peripheral blood of active adult dermatomyositis (DM) and juvenile DM patients receiving immunosuppressive therapies. METHODS Expression data from 14 DM and 12 juvenile DM patients were compared to matched healthy controls. Regulatory effects at the transcript and protein level were analyzed by multi-enrichment analysis for assessment of affected pathways within DM and juvenile DM. RESULTS Expression of 1,124 gene loci were significantly altered at the transcript or protein levels across DM or juvenile DM, with 70 genes shared. A subset of interferon-stimulated genes was elevated, including CXCL10, ISG15, OAS1, CLEC4A, and STAT1. Innate immune markers specific to neutrophil granules and neutrophil extracellular traps were up-regulated in both DM and juvenile DM, including BPI, CTSG, ELANE, LTF, MPO, and MMP8. Pathway analysis revealed up-regulation of PI3K/AKT, ERK, and p38 MAPK signaling, whose central components were broadly up-regulated in DM, while peripheral upstream and downstream components were differentially regulated in both DM and juvenile DM. Up-regulated components shared by DM and juvenile DM included cytokine:receptor pairs LGALS9:HAVCR2, LTF/NAMPT/S100A8/HSPA1A:TLR4, CSF2:CSF2RA, EPO:EPOR, FGF2/FGF8:FGFR, several Bcl-2 components, and numerous glycolytic enzymes. Pathways unique to DM included sirtuin signaling, aryl hydrocarbon receptor signaling, protein ubiquitination, and granzyme B signaling. CONCLUSION The combination of proteomics and transcript expression by multi-enrichment analysis broadened the identification of up- and down-regulated pathways among active DM and juvenile DM patients. These pathways, particularly those which feed into PI3K/AKT and MAPK signaling and neutrophil degranulation, may be potential therapeutic targets.
Collapse
Affiliation(s)
- James M Ward
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Mythri Ambatipudi
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, Maryland and Research Triangle, Park, North Carolina
| | - Terrance P O'Hanlon
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, Maryland and Research Triangle, Park, North Carolina
| | | | | | - Adam Schiffenbauer
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, Maryland and Research Triangle, Park, North Carolina
| | - Saifur Rahman
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - Frederick W Miller
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, Maryland and Research Triangle, Park, North Carolina
| | | | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Kerry A Casey
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Lisa G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, Maryland and Research Triangle, Park, North Carolina
| |
Collapse
|
33
|
Luo X, Zhang H, Cao X, Yang D, Yan Y, Lu J, Wang X, Wang H. Endurance Exercise-Induced Fgf21 Promotes Skeletal Muscle Fiber Conversion through TGF-β1 and p38 MAPK Signaling Pathway. Int J Mol Sci 2023; 24:11401. [PMID: 37511159 PMCID: PMC10379449 DOI: 10.3390/ijms241411401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Fgf21 has been identified as playing a regulatory role in muscle growth and function. Although the mechanisms through which endurance training regulates skeletal muscle have been widely studied, the contribution of Fgf21 remains poorly understood. Here, muscle size and function were measured, and markers of fiber type were evaluated using immunohistochemistry, immunoblots, or qPCR in endurance-exercise-trained wild-type and Fgf21 KO mice. We also investigated Fgf21-induced fiber conversion in C2C12 cells, which were incubated with lentivirus and/or pathway inhibitors. We found that endurance exercise training enhanced the Fgf21 levels of liver and GAS muscle and exercise capacity and decreased the distribution of skeletal muscle fiber size, and fast-twitch fibers were observed converting to slow-twitch fibers in the GAS muscle of mice. Fgf21 promoted the markers of fiber-type transition and eMyHC-positive myotubes by inhibiting the TGF-β1 signaling axis and activating the p38 MAPK signaling pathway without apparent crosstalk. Our findings suggest that the transformation and function of skeletal muscle fiber types in response to endurance training could be mediated by Fgf21 and its downstream signaling pathways. Our results illuminate the mechanisms of Fgf21 in endurance-exercise-induced fiber-type conversion and suggest a potential use of Fgf21 in improving muscle health and combating fatigue.
Collapse
Affiliation(s)
- Xiaomao Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Huiling Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaorui Cao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Ding Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yi Yan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jiayin Lu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaonan Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
34
|
Roy A, Koike TE, Joshi AS, Tomaz da Silva M, Mathukumalli K, Wu M, Kumar A. Targeted regulation of TAK1 counteracts dystrophinopathy in a DMD mouse model. JCI Insight 2023; 8:e164768. [PMID: 37071470 PMCID: PMC10322678 DOI: 10.1172/jci.insight.164768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/12/2023] [Indexed: 04/19/2023] Open
Abstract
Muscular dystrophies make up a group of genetic neuromuscular disorders that involve severe muscle wasting. TGF-β-activated kinase 1 (TAK1) is an important signaling protein that regulates cell survival, growth, and inflammation. TAK1 has been recently found to promote myofiber growth in the skeletal muscle of adult mice. However, the role of TAK1 in muscle diseases remains poorly understood. In the present study, we have investigated how TAK1 affects the progression of dystrophic phenotype in the mdx mouse model of Duchenne muscular dystrophy (DMD). TAK1 is highly activated in the dystrophic muscle of mdx mice during the peak necrotic phase. While targeted inducible inactivation of TAK1 inhibits myofiber injury in young mdx mice, it results in reduced muscle mass and contractile function. TAK1 inactivation also causes loss of muscle mass in adult mdx mice. By contrast, forced activation of TAK1 through overexpression of TAK1 and TAB1 induces myofiber growth without having any deleterious effect on muscle histopathology. Collectively, our results suggest that TAK1 is a positive regulator of skeletal muscle mass and that targeted regulation of TAK1 can suppress myonecrosis and ameliorate disease progression in DMD.
Collapse
|
35
|
Zhong Q, Zheng K, Li W, An K, Liu Y, Xiao X, Hai S, Dong B, Li S, An Z, Dai L. Post-translational regulation of muscle growth, muscle aging and sarcopenia. J Cachexia Sarcopenia Muscle 2023. [PMID: 37127279 DOI: 10.1002/jcsm.13241] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/07/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023] Open
Abstract
Skeletal muscle makes up 30-40% of the total body mass. It is of great significance in maintaining digestion, inhaling and exhaling, sustaining body posture, exercising, protecting joints and many other aspects. Moreover, muscle is also an important metabolic organ that helps to maintain the balance of sugar and fat. Defective skeletal muscle function not only limits the daily activities of the elderly but also increases the risk of disability, hospitalization and death, placing a huge burden on society and the healthcare system. Sarcopenia is a progressive decline in muscle mass, muscle strength and muscle function with age caused by environmental and genetic factors, such as the abnormal regulation of protein post-translational modifications (PTMs). To date, many studies have shown that numerous PTMs, such as phosphorylation, acetylation, ubiquitination, SUMOylation, glycosylation, glycation, methylation, S-nitrosylation, carbonylation and S-glutathionylation, are involved in the regulation of muscle health and diseases. This article systematically summarizes the post-translational regulation of muscle growth and muscle atrophy and helps to understand the pathophysiology of muscle aging and develop effective strategies for diagnosing, preventing and treating sarcopenia.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kun Zheng
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wanmeng Li
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kang An
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xina Xiao
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Hai
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Biao Dong
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- Department of Endocrinology and Metabolism, General Practice Ward/International Medical Center Ward, General Practice Medical Center and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Li B, Wang J, Raza SHA, Wang S, Liang C, Zhang W, Yu S, Shah MA, Al Abdulmonem W, Alharbi YM, Aljohani ASM, Pant SD, Zan L. MAPK family genes' influences on myogenesis in cattle: Genome-wide analysis and identification. Res Vet Sci 2023; 159:198-212. [PMID: 37148739 DOI: 10.1016/j.rvsc.2023.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/11/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
The mitogen-activated protein kinase (MAPK) family is highly conserved in mammals, and is involved in a variety of physiological phenomena like regeneration, development, cell proliferation, and differentiation. In this study, 13 MAPK genes were identified in cattle and their corresponding protein properties were characterized using genome-wide identification and analysis. Phylogenetic analysis showed that the 13 BtMAPKs were cluster grouped into eight major evolutionary branches, which were segmented into three large subfamilies: ERK, p38 and JNK MAPK. BtMAPKs from the same subfamily had similar protein motif compositions, but considerably different exon-intron patterns. The heatmap analysis of transcriptome sequencing data showed that the expression of BtMAPKs was tissue-specific, with BtMAPK6 and BtMAPK12 highly expressed in muscle tissues. Furthermore, knockdown of BtMAPK6 and BtMAPK12 revealed that BtMAPK6 had no effect on myogenic cell proliferation, but negatively affected the differentiation of myogenic cells. In contrast, BtMAPK12 improved both the cell proliferation and differentiation. Taken together, these results provide novel insights into the functions of MAPK families in cattle, which could serve as a basis for further studies on the specific mechanisms of the genes in myogenesis.
Collapse
Affiliation(s)
- Bingzhi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China; Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642 China
| | - Sihu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Chengcheng Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Wenzheng Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shengchen Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Mujahid Ali Shah
- Faculty of Fisheries and Protection of Water, University of South Bohemia in Ceske Budejovice, Czech Republic
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Kingdom of Saudi Arabia
| | - Yousef Mesfer Alharbi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Sameer D Pant
- Gulbali Institute, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2678, Australia
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100 Shaanxi, China.
| |
Collapse
|
37
|
Grapentine S, Singh RK, Bakovic M. Skeletal Muscle Consequences of Phosphatidylethanolamine Synthesis Deficiency. FUNCTION 2023; 4:zqad020. [PMID: 37342414 PMCID: PMC10278983 DOI: 10.1093/function/zqad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/22/2023] Open
Abstract
The maintenance of phospholipid homeostasis is increasingly being implicated in metabolic health. Phosphatidylethanolamine (PE) is the most abundant phospholipid on the inner leaflet of cellular membranes, and we have previously shown that mice with a heterozygous ablation of the PE synthesizing enzyme, Pcyt2 (Pcyt2+/-), develop obesity, insulin resistance, and NASH. Skeletal muscle is a major determinant of systemic energy metabolism, making it a key player in metabolic disease development. Both the total PE levels and the ratio of PE to other membrane lipids in skeletal muscle are implicated in insulin resistance; however, the underlying mechanisms and the role of Pcyt2 regulation in this association remain unclear. Here, we show how reduced phospholipid synthesis due to Pcyt2 deficiency causes Pcyt2+/- skeletal muscle dysfunction and metabolic abnormalities. Pcyt2+/- skeletal muscle exhibits damage and degeneration, with skeletal muscle cell vacuolization, disordered sarcomeres, mitochondria ultrastructure irregularities and paucity, inflammation, and fibrosis. There is intramuscular adipose tissue accumulation, and major disturbances in lipid metabolism with impaired FA mobilization and oxidation, elevated lipogenesis, and long-chain fatty acyl-CoA, diacylglycerol, and triacylglycerol accumulation. Pcyt2+/- skeletal muscle exhibits perturbed glucose metabolism with elevated glycogen content, impaired insulin signaling, and reduced glucose uptake. Together, this study lends insight into the critical role of PE homeostasis in skeletal muscle metabolism and health with broad implications on metabolic disease development.
Collapse
Affiliation(s)
- Sophie Grapentine
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Rathnesh K Singh
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph N1G 2W1, Canada
| |
Collapse
|
38
|
Lee H, Jeong JH, Hwang SH, Yeon SH, Ryu JH. A Lignan from Alnus japonica Activates Myogenesis and Alleviates Dexamethasone-induced Myotube Atrophy. PLANTA MEDICA 2023; 89:484-492. [PMID: 35789994 DOI: 10.1055/a-1891-3366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To find inhibitors against skeletal muscle loss, we isolated a lignan compound ((-)-(2R,3R-1,4-O-diferuloylsecoisolarciresinol, DFS) from the stem of Alnus japonica. C2C12 myoblasts were treated with DFS during differentiation. To induce an in vitro atrophic condition, differentiated myotubes were treated with dexamethasone (a synthetic glucocorticoid). DFS (10 nM) increased expression levels of myogenic factors and the number of multi-nucleated myotubes expressing myosin heavy chain (MHC). The myogenic potential of DFS could be attributed to p38 MAPK activation. DFS also protected against dexamethasone-induced damage, showing increased expression of MHC and mammalian target of rapamycin (mTOR), a major anabolic factor. Under atrophic condition, the anti-myopathy effect of DFS was associated with inactivation of NF-κB signaling pathway and the subsequent suppression of muscle degradative E3 ligases and myostatin. DFS treatment also restored fast muscle fiber (type II a, II b, and II x), known to be susceptible to dexamethasone. These results indicate that DFS isolated from A. japonica can stimulate myogenesis via p38 MAPK activation and alleviate muscle atrophy by modulating the expression of genes associated with muscle protein anabolism/catabolism. Thus, we propose that DFS can be used as a pharmacological and nutraceutical agent for increasing muscle strength or protecting muscle loss.
Collapse
Affiliation(s)
- Hyejin Lee
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | - Ji Hye Jeong
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | | | | | - Jae-Ha Ryu
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
39
|
Wang J, Ma S, Wu Q, Xu Q, Wang J, Zhang R, Bai L, Li L, Liu H. Effects of testis testosterone deficiency on gene expression in the adrenal gland and skeletal muscle of ducks. Br Poult Sci 2023. [PMID: 36735924 DOI: 10.1080/00071668.2023.2176741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. Testosterone has an anabolic effect on skeletal muscle. The testes produce most of the testosterone in vivo, while the adrenal glands contribute smaller amounts. When testis testosterone is deficient the adrenal gland increases steroid hormone synthesis, which is referred to as compensatory testicular adaptation (CTA).2. To reveal the effects of testis testosterone deficiency on adrenal steroid hormones synthesis and skeletal muscle development, gene expression related to adrenal steroid hormones synthesis and skeletal muscle development were determined by RNA-seq.3. The results showed that castrating male ducks had significant effects on their body weight but no significant impact on cross-sectional area (CSA) or density of pectoral muscle fibres. In skeletal muscle protein metabolism, expression levels of the catabolic gene atrogin1/MAFbx and the anabolic gene eEF2 were significantly higher, with concomitant increases after castration. The adrenal glands' alteration of the steroid hormone 11β-hydroxylase (CYP11B1) was significantly lower following castration.4. Expression pattern analysis showed that the adrenal glands' glucocorticoid receptor (NR3C1/GR) had a potential regulatory relationship with the skeletal muscle-related genes (Pax7, mTOR, FBXO32, FOXO3, and FOXO4).5. The data showed that castration affected muscle protein metabolism, adrenal steroid and testosterone synthesis. In addition, it was speculated that, after castration, steroid hormones produced by the adrenal gland could have a compensatory effect, which might mediate the changes in skeletal muscle protein metabolism and development.
Collapse
Affiliation(s)
- J Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - S Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Q Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Q Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - J Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - R Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - L Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - L Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - H Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| |
Collapse
|
40
|
Anto EM, Sruthi CR, Krishnan L, Raghu KG, Purushothaman J. Tangeretin alleviates Tunicamycin-induced endoplasmic reticulum stress and associated complications in skeletal muscle cells. Cell Stress Chaperones 2023; 28:151-165. [PMID: 36653727 PMCID: PMC10050522 DOI: 10.1007/s12192-023-01322-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/10/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Endoplasmic reticulum (ER) stress and associated oxidative stress are involved in the genesis and progression of skeletal muscle diseases such as myositis and atrophy or muscle wasting. Targeting the ER stress and associated downstream pathways can aid in the development of better treatment strategies for these diseases with limited therapeutic approaches. There is a growing interest in identifying natural products against ER stress due to the lower toxicity and cost effectiveness. In the present study, we investigated the protective effect of Tangeretin, a citrus methoxyflavone found in citrus peels against Tunicamycin (pharmacological ER stress inducer)-induced ER stress and associated complications in rat skeletal muscle L6 cell lines. Treatment with Tunicamycin for a period of 24 h resulted in the upregulation of ER stress marker proteins, ER resident oxidoreductases and cellular reactive oxygen species (ROS). Co-treatment with Tangeretin was effective in alleviating Tunicamycin-induced ER stress and associated redox-related complications by significantly downregulating the unfolded protein response (UPR), ER resident oxidoreductase proteins, cellular ROS and improving the antioxidant enzyme activity. Tunicamycin also induced upregulation of phosphorylated p38 MAP Kinase and loss of mitochondrial membrane potential. Tangeretin significantly reduced the levels of phosphorylated p38 MAP Kinase and improved the mitochondrial membrane potential. From the results, it is evident that Tangeretin can be explored further as a potential candidate for skeletal muscle diseases involving protein misfolding and ER stress.
Collapse
Affiliation(s)
- Eveline M Anto
- Department of Biochemistry, Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C R Sruthi
- Department of Biochemistry, Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Lekshmy Krishnan
- Department of Biochemistry, Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, 695019, Kerala, India
| | - K G Raghu
- Department of Biochemistry, Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, 695019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Jayamurthy Purushothaman
- Department of Biochemistry, Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, 695019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
41
|
Qin H, Du L, Luo Z, He Z, Wang Q, Chen S, Zhu YL. The therapeutic effects of low-intensity pulsed ultrasound in musculoskeletal soft tissue injuries: Focusing on the molecular mechanism. Front Bioeng Biotechnol 2022; 10:1080430. [PMID: 36588943 PMCID: PMC9800839 DOI: 10.3389/fbioe.2022.1080430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Musculoskeletal soft tissue injuries are very common and usually occur during both sporting and everyday activities. The intervention of adjuvant therapies to promote tissue regeneration is of great importance to improving people's quality of life and extending their productive lives. Though many studies have focused on the positive results and effectiveness of the LIPUS on soft tissue, the molecular mechanisms standing behind LIPUS effects are much less explored and reported, especially the intracellular signaling pathways. We incorporated all research on LIPUS in soft tissue diseases since 2005 and summarized studies that uncovered the intracellular molecular mechanism. This review will also provide the latest evidence-based research progress in this field and suggest research directions for future experiments.
Collapse
Affiliation(s)
- Haocheng Qin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Du
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhong He
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Wang
- Department of Orthopedics, Kunshan Hospital of Chinese Medicine, Suzhou, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Lian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Brennan CM, Hill AS, St. Andre M, Li X, Madeti V, Breitkopf S, Garren S, Xue L, Gilbert T, Hadjipanayis A, Monetti M, Emerson CP, Moccia R, Owens J, Christoforou N. DUX4 expression activates JNK and p38 MAP kinases in myoblasts. Dis Model Mech 2022; 15:dmm049516. [PMID: 36196640 PMCID: PMC10655719 DOI: 10.1242/dmm.049516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by misexpression of the DUX4 transcription factor in skeletal muscle that results in transcriptional alterations, abnormal phenotypes and cell death. To gain insight into the kinetics of DUX4-induced stresses, we activated DUX4 expression in myoblasts and performed longitudinal RNA sequencing paired with proteomics and phosphoproteomics. This analysis revealed changes in cellular physiology upon DUX4 activation, including DNA damage and altered mRNA splicing. Phosphoproteomic analysis uncovered rapid widespread changes in protein phosphorylation following DUX4 induction, indicating that alterations in kinase signaling might play a role in DUX4-mediated stress and cell death. Indeed, we demonstrate that two stress-responsive MAP kinase pathways, JNK and p38, are activated in response to DUX4 expression. Inhibition of each of these pathways ameliorated DUX4-mediated cell death in myoblasts. These findings uncover that the JNK pathway is involved in DUX4-mediated cell death and provide additional insights into the role of the p38 pathway, a clinical target for the treatment of FSHD.
Collapse
Affiliation(s)
- Christopher M. Brennan
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
- WRDM Postdoctoral Program, Pfizer Inc., Cambridge, MA 02139, USA
| | - Abby S. Hill
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
| | | | - Xianfeng Li
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
| | - Vijaya Madeti
- NGS Technology Center, Inflammation and Immunology Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Susanne Breitkopf
- Proteomics Technology Center, Internal Medicine Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Seth Garren
- NGS Technology Center, Inflammation and Immunology Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Liang Xue
- Machine Learning and Computational Science, Pfizer Inc., Cambridge, MA 02139, USA
| | - Tamara Gilbert
- High Content Imaging Technology Center, Internal Medicine Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Angela Hadjipanayis
- NGS Technology Center, Inflammation and Immunology Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Mara Monetti
- Proteomics Technology Center, Internal Medicine Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Charles P. Emerson
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Robert Moccia
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
| | - Jane Owens
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
| | | |
Collapse
|
43
|
Brown AD, Stewart CE, Burniston JG. Degradation of ribosomal and chaperone proteins is attenuated during the differentiation of replicatively aged C2C12 myoblasts. J Cachexia Sarcopenia Muscle 2022; 13:2562-2575. [PMID: 35819316 PMCID: PMC9530526 DOI: 10.1002/jcsm.13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/12/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cell assays are important for investigating the mechanisms of ageing, including losses in protein homeostasis and 'proteostasis collapse'. We used novel isotopic labelling and proteomic methods to investigate protein turnover in replicatively aged (>140 population doublings) murine C2C12 myoblasts that exhibit impaired differentiation and serve as a model for age-related declines in muscle homeostasis. METHODS The Absolute Dynamic Profiling Technique for Proteomics (Proteo-ADPT) was used to investigate proteostasis in young (passage 6-10) and replicatively aged (passage 48-50) C2C12 myoblast cultures supplemented with deuterium oxide (D2 O) during early (0-24 h) or late (72-96 h) periods of differentiation. Peptide mass spectrometry was used to quantify the absolute rates of abundance change, synthesis and degradation of individual proteins. RESULTS Young cells exhibited a consistent ~25% rise in protein accretion over the 96-h experimental period. In aged cells, protein accretion increased by 32% (P < 0.05) during early differentiation, but then fell back to baseline levels by 96-h. Proteo-ADPT encompassed 116 proteins and 74 proteins exhibited significantly (P < 0.05, FDR < 5% interaction between age × differentiation stage) different changes in abundance between young and aged cells at early and later periods of differentiation, including proteins associated with translation, glycolysis, cell-cell adhesion, ribosomal biogenesis, and the regulation of cell shape. During early differentiation, heat shock and ribosomal protein abundances increased in aged cells due to suppressed degradation rather than heightened synthesis. For instance, HS90A increased at a rate of 10.62 ± 1.60 ng/well/h in aged which was significantly greater than the rate of accretion (1.86 ± 0.49 ng/well/h) in young cells. HS90A synthesis was similar in young (21.23 ± 3.40 ng/well/h) and aged (23.69 ± 1.13 ng/well/h), but HS90A degradation was significantly (P = 0.05) greater in young (19.37 ± 2.93 ng/well/h) versus aged (13.06 ± 0.76 ng/well/h) cells. During later differentiation the HS90A degradation (8.94 ± 0.38 ng/well/h) and synthesis (7.89 ± 1.28 ng/well/h) declined and were significantly less than the positive net balance between synthesis and degradation (synthesis = 28.14 ± 3.70 ng/well/h vs. degradation = 21.49 ± 3.13 ng/well/h) in young cells. CONCLUSIONS Our results suggest a loss of proteome quality as a precursor to the lack of fusion of aged myoblasts. The quality of key chaperone proteins, including HS90A, HS90B and HSP7C was reduced in aged cells and may account for the disruption to cell signalling required for the later stages of differentiation and fusion.
Collapse
Affiliation(s)
- Alexander D Brown
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Claire E Stewart
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jatin G Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
44
|
Olson LC, Redden JT, Gilliam L, Nguyen TM, Vossen JA, Cohen DJ, Schwartz Z, McClure MJ. Human Adipose-Derived Stromal Cells Delivered on Decellularized Muscle Improve Muscle Regeneration and Regulate RAGE and P38 MAPK. Bioengineering (Basel) 2022; 9:bioengineering9090426. [PMID: 36134970 PMCID: PMC9495328 DOI: 10.3390/bioengineering9090426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Volumetric muscle loss (VML) is the acute loss of muscle mass due to trauma. Such injuries occur primarily in the extremities and are debilitating, as there is no clinical treatment to restore muscle function. Pro-inflammatory advanced glycation end-products (AGEs) and the soluble receptor for advanced glycation end-products (RAGE) are known to increase in acute trauma patient’s serum and are correlated with increased injury severity. However, it is unclear whether AGEs and RAGE increase in muscle post-trauma. To test this, we used decellularized muscle matrix (DMM), a pro-myogenic, non-immunogenic extracellular matrix biomaterial derived from skeletal muscle. We delivered adipose-derived stromal cells (ASCs) and primary myoblasts to support myogenesis and immunomodulation (N = 8 rats/group). DMM non-seeded and seeded grafts were compared to empty defect and sham controls. Then, 56 days after surgery muscle force was assessed, histology characterized, and protein levels for AGEs, RAGE, p38 MAPK, and myosin heavy chains were measured. Overall, our data showed improved muscle regeneration in ASC-treated injury sites and a regulation of RAGE and p38 MAPK signaling, while myoblast-treated injuries resulted in minor improvements. Taken together, these results suggested that ASCs combined with DMM provides a pro-myogenic microenvironment with immunomodulatory capabilities and indicates further exploration of RAGE signaling in VML.
Collapse
Affiliation(s)
- Lucas C. Olson
- College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Department of Gerontology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - James T. Redden
- College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - LaStar Gilliam
- College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Tri M. Nguyen
- College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Josephina A. Vossen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - David J. Cohen
- College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Zvi Schwartz
- College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michael J. McClure
- College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: ; Tel.: +1-804-828-8337
| |
Collapse
|
45
|
Dlamini SN, Norris SA, Mendham AE, Mtintsilana A, Ward KA, Olsson T, Goedecke JH, Micklesfield LK. Targeted proteomics of appendicular skeletal muscle mass and handgrip strength in black South Africans: a cross-sectional study. Sci Rep 2022; 12:9512. [PMID: 35680977 PMCID: PMC9178538 DOI: 10.1038/s41598-022-13548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
Although appendicular skeletal muscle mass (ASM) and handgrip strength (HGS) are key components of sarcopenia, their underlying biological mechanisms remain poorly understood. We aimed to investigate associations of circulating biomarkers with ASM and HGS in middle-aged black South Africans. This study consisted of 934 black South Africans (469 men and 465 women, aged 41-72 years) from the Middle-aged Soweto cohort. Linear regression models were used to examine relationships between 182 biomarkers (measured with proximity extension assay) and dual-energy X-ray absorptiometry-measured ASM and dynamometer-measured HGS. Age, height, sex, smoking, alcohol, food insecurity, physical activity, visceral adipose tissue, HIV and menopausal status were included as confounders. Regression models showing sex-interactions were stratified by sex. The Benjamini-Hochberg false discovery rate (FDR) was used to control for multiple testing, and FDR-adjusted P values were reported. In the total sample, 10 biomarkers were associated with higher ASM and 29 with lower ASM (P < 0.05). Out of these 39 biomarkers, 8 were also associated with lower HGS (P < 0.05). MMP-7 was associated with lower HGS only (P = 0.011) in the total sample. Sex-interactions (P < 0.05) were identified for 52 biomarkers for ASM, and 6 for HGS. For men, LEP, MEPE and SCF were associated with higher ASM (P < 0.001, = 0.004, = 0.006, respectively), and MEPE and SCF were also associated with higher HGS (P = 0.001, 0.012, respectively). Also in men, 37 biomarkers were associated with lower ASM (P < 0.05), with none of these being associated with lower HGS. Furthermore, DLK-1 and MYOGLOBIN were associated with higher HGS only (P = 0.004, 0.006, respectively), while GAL-9 was associated with lower HGS only (P = 0.005), among men. For women, LEP, CD163, IL6, TNF-R1 and TNF-R2 were associated with higher ASM (P < 0.001, = 0.014, = 0.027, = 0.014, = 0.048, respectively), while IGFBP-2, CTRC and RAGE were associated with lower ASM (P = 0.043, 0.001, 0.014, respectively). No biomarker was associated with HGS in women. In conclusion, most biomarkers were associated with ASM and not HGS, and the associations of biomarkers with ASM and HGS displayed sex-specificity in middle-aged black South Africans. Proteomic studies should examine ASM and HGS individually. Future research should also consider sexual dimorphism in the pathophysiology of sarcopenia for development of sex-specific treatment and diagnostic methods.
Collapse
Affiliation(s)
- Siphiwe N Dlamini
- SAMRC/Wits Developmental Pathways for Health Research Unit, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Shane A Norris
- SAMRC/Wits Developmental Pathways for Health Research Unit, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Global Health Research Institute, School of Health and Human Development, University of Southampton, Southampton, UK
| | - Amy E Mendham
- SAMRC/Wits Developmental Pathways for Health Research Unit, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Health Through Physical Activity, Lifestyle and Sport Research Centre, FIMS International Collaborating Centre of Sports Medicine, Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Asanda Mtintsilana
- SAMRC/Wits Developmental Pathways for Health Research Unit, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kate A Ward
- SAMRC/Wits Developmental Pathways for Health Research Unit, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Medical Research Council Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Tommy Olsson
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden
| | - Julia H Goedecke
- SAMRC/Wits Developmental Pathways for Health Research Unit, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Lisa K Micklesfield
- SAMRC/Wits Developmental Pathways for Health Research Unit, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
46
|
Bao Z, Wang J, He M, Zhang P, Shan L, Yao Y, Wang Q, Zheng L, Ge H, Zhou J. Benzo[a]pyrene inhibits myoblast differentiation through downregulating the Hsp70-K2-p38MAPK complex. Toxicol In Vitro 2022; 82:105356. [PMID: 35427736 DOI: 10.1016/j.tiv.2022.105356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
Cigarette smoking causes skeletal muscle dysfunction and worse prognosis for patients with diverse systemic diseases. Benzo[a]pyrene (BaP), one major constituent that is inhaled during smoking, is particularly known for its ability to impair neurodevelopment, impede reproductivity, or reduce birth weight. Here, we found that BaP exposure led to the inhibition of C2C12 myoblasts differentiation in a dose-dependent manner and reduced the expression of both early and late myogenic differentiation markers. BaP exposure significantly decreased the expression of p38 mitogen-activated protein kinase (p38MAPK), but not AKT, which are both critical during myogenic differentiation. Mechanistically, BaP deregulated the expression levels of MAPK-activated protein kinase 2 (MK2) and heat shock protein 70 (Hsp70), both of which stabilize p38MAPK. Interestingly, treatment of proteasome inhibitor MG132 was able to reverse BaP-induced degradation of Hsp70/ MK2 and p38MAPK in myoblasts, implying BaP-mediated p38MAPK degradation is proteasome-dependent. Overexpression of p38MAPK also rescued the defective differentiation phenotype of C2C12 induced by BaP. Taken together, we suggest that BaP exposure induces MK2/Hsp70/p38MAPK complex degradation in C2C12 myoblasts and impairs myogenic differentiation by proteasomal-dependent mechanisms. As application of the proteasome inhibitor MG132 or overexpression of p38MAPK could reverse impaired differentiation of myoblasts induced by BaP, this may suggest potential related strategies for preventing tobacco-related skeletal muscle diseases or for respiratory rehabilitation.
Collapse
Affiliation(s)
- Zhang Bao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianfeng Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Mingjie He
- Department of Biochemistry and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Laboratory for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Pei Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lu Shan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yinan Yao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qing Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Liling Zheng
- Department of Biochemistry and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Laboratory for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huiqing Ge
- Department of Respiratory Care, Regional Medical Center for the National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Jianying Zhou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
47
|
Brown DG, Wobst HJ. A survey of the clinical pipeline in neuroscience. Bioorg Med Chem Lett 2022; 56:128482. [PMID: 34864194 DOI: 10.1016/j.bmcl.2021.128482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/02/2022]
Abstract
Many new first-in-class drugs for neuroscience indications have been introduced in the past decade including new treatments for migraine, amyotrophic lateral sclerosis, depression, and multiple sclerosis. However, significant unmet patient needs remain in areas such as chronic pain, neurodegeneration, psychiatric diseases, and epilepsy. This review summarizes some of the advanced clinical compounds for these indications. Additionally, current opportunities and challenges that remain with respect to genetic validation, biomarkers, and translational models are discussed.
Collapse
Affiliation(s)
- Dean G Brown
- Jnana Therapeutics, 6 Tide St, MA 02210, United States.
| | - Heike J Wobst
- Jnana Therapeutics, 6 Tide St, MA 02210, United States
| |
Collapse
|
48
|
Exercise and Nutrition Impact on Osteoporosis and Sarcopenia-The Incidence of Osteosarcopenia: A Narrative Review. Nutrients 2021; 13:nu13124499. [PMID: 34960050 PMCID: PMC8705961 DOI: 10.3390/nu13124499] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis and sarcopenia are diseases which affect the myoskeletal system and often occur in older adults. They are characterized by low bone density and loss of muscle mass and strength, factors which reduce the quality of life and mobility. Recently, apart from pharmaceutical interventions, many studies have focused on non-pharmaceutical approaches for the prevention of osteoporosis and sarcopenia with exercise and nutrition to being the most important and well studied of those. The purpose of the current narrative review is to describe the role of exercise and nutrition on prevention of osteoporosis and sarcopenia in older adults and to define the incidence of osteosarcopenia. Most of the publications which were included in this review show that resistance and endurance exercises prevent the development of osteoporosis and sarcopenia. Furthermore, protein and vitamin D intake, as well as a healthy diet, present a protective role against the development of the above bone diseases. However, current scientific data are not sufficient for reaching solid conclusions. Although the roles of exercise and nutrition on osteoporosis and sarcopenia seem to have been largely evaluated in literature over the recent years, most of the studies which have been conducted present high heterogeneity and small sample sizes. Therefore, they cannot reach final conclusions. In addition, osteosarcopenia seems to be caused by the effects of osteoporosis and sarcopenia on elderly. Larger meta-analyses and randomized controlled trials are needed designed based on strict inclusion criteria, in order to describe the exact role of exercise and nutrition on osteoporosis and sarcopenia.
Collapse
|