1
|
Ma H, Lu Y, Chen W, Gao Z, Wu D, Chong Y, Wu J, Xi D, Deng W, Hong J. Multiple omics analysis reveals the regulation of SIRT4 on lipid deposition and metabolism during the differentiation of bovine preadipocytes. Genomics 2025; 117:111006. [PMID: 39875030 DOI: 10.1016/j.ygeno.2025.111006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
The differentiation and lipid metabolism of preadipocytes are crucial processes in IMF deposition. Studies have demonstrated that SIRT4 plays essential roles in energy metabolism and redox homeostasis, with its expression being coordinately regulated by multiple transcription factors associated with energy and lipid metabolism. In this study, the findings of multiple omics analysis reveal that SIRT4 significantly up-regulates the expression of genes involved in adipogenesis and enhances the differentiation and lipid deposition of bovine preadipocytes. Furthermore, SIRT4 profoundly influences the expression pattern of metabolites by increasing the abundance of substances involved in lipid synthesis while decreasing those that promote lipid oxidative decomposition. Additionally, SIRT4 broadly up-regulates the expression levels of various lipid classes, including glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids. These findings not only provide a theoretical basis for molecular breeding and genetic improvement in beef cattle, but also offer potential therapeutic approaches for energy homeostasis disorders and obesity.
Collapse
Affiliation(s)
- Hongming Ma
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Wei Chen
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Zhendong Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yuqing Chong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jiao Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jieyun Hong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
2
|
Pan H, Hu W, Zhou C, Jian J, Xu J, Lu C, Quan G, Wu C, Pan X, Peng T. Microneedle-Mediated Treatment of Obesity. Pharmaceutics 2025; 17:248. [PMID: 40006614 PMCID: PMC11859603 DOI: 10.3390/pharmaceutics17020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/25/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Obesity has become a major public health threat, as it can cause various complications such as diabetes, cardiovascular disease, sleep apnea, cancer, and osteoarthritis. The primary anti-obesity therapies include dietary control, physical exercise, surgical interventions, and drug therapy; however, these treatments often have poor therapeutic efficacy, significant side effects, and unavoidable weight rebound. As a revolutionized transdermal drug delivery system, microneedles (MNs) have been increasingly used to deliver anti-obesity therapeutics to subcutaneous adipose tissue or targeted absorption sites, significantly enhancing anti-obese effects. Nevertheless, there is still a lack of a review to comprehensively summarize the latest progress of MN-mediated treatment of obesity. This review provides an overview of the application of MN technology in obesity, focusing on the delivery of various therapeutics to promote the browning of white adipose tissue (WAT), suppress adipogenesis, and improve metabolic function. In addition, this review presents detailed examples of the integration of MN technology with iontophoresis (INT) or photothermal therapy (PTT) to promote drug penetration into deeper dermis and exert synergistic anti-obese effects. Furthermore, the challenges and prospects of MN technology used for obesity treatment are also discussed, which helps to guide the design and optimization of MNs. Overall, this review provides insight into the development and clinical translation of MN technology for the treatment of obesity.
Collapse
Affiliation(s)
- Huanhuan Pan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Wanshan Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Chunxian Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Jubo Jian
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Jing Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
- Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Jiangmen 529031, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| |
Collapse
|
3
|
Xian J, Huang Y, Bai J, Liao Q, Chen Q, Cheng W, Su Z, Li S, Wu Y, Li J, Zhang J. Recent Advances in the Anti-Obesity Benefits of Phytoconstituents: From Phytochemistry to Targeting Novel-Systems. Phytother Res 2025; 39:630-660. [PMID: 39629748 DOI: 10.1002/ptr.8400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 02/19/2025]
Abstract
Obesity is a metabolic disorder that has become a global health concern. The existing pharmaceutical drugs for treating obesity have some side effects. Compounds from natural sources are prospective substitutes for treating chronic diseases such as obesity, with the added advantages of being safe and cost-effective. However, due to factors such as poor solubility, low bioavailability, and instability in the physiological environment, the therapeutic efficacy of phytoconstituents is limited. Nowadays, developing nanoscaled systems has emerged as a vital strategy for enhancing the delivery and therapeutic effect of phytoconstituents. The present study discusses and categorizes phytoconstituents with anti-obesity effects and concludes the main mechanisms underlying their effects. Importantly, strategies used to develop phytoconstituent-based nano-drug delivery systems (NDDS) for obesity treatment that show improved efficacy relative to traditional administration routes are reviewed. Finally, the progress of research on phytoconstituent-based NDDS for obesity treatment is summarized to provide a reference for the development of safe and effective treatment strategies for obesity.
Collapse
Affiliation(s)
- Jing Xian
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Qiyan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Weijian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziye Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Weijie S. Annexin A2: the feasibility of being a therapeutic target associated with cancer metastasis and drug resistance in cancer microenvironment. Discov Oncol 2024; 15:783. [PMID: 39692932 DOI: 10.1007/s12672-024-01693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024] Open
Abstract
At present, there is still a lack of effective treatment strategies for cancer metastasis and drug resistance, so finding effective biomarkers is particularly important. AnnexinA2 (ANXA2), a vital membrane protein, critically influences cancer progression, tumor invasion, and tumor microenvironment modulation. To assess the possible application of ANXA2 as a therapeutic target against cancer cell metastasis and drug resistance to chemotherapeutic drugs in the tumor microenvironment, we elucidated the functionality of ANXA2 in stromal cells, angiogenic vascular cells, and infiltrated immune cells that mediate metastasis and drug resistance, as well as its potential as a therapeutic target. ANXA2 shows a high expression level in many tissues, and its expression level is even higher in several tumors and their microenvironments. ANXA2 is a crucial regulator of many factors and may serve as a target against drug-resistant cancers.
Collapse
Affiliation(s)
- Song Weijie
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
5
|
Wilson ER, Nunes GDF, Shen S, Moore S, Gawron J, Maxwell J, Syed U, Hurley E, Lanka M, Qu J, Désaubry L, Wrabetz L, Poitelon Y, Feltri ML. Loss of prohibitin 2 in Schwann cells dysregulates key transcription factors controlling developmental myelination. Glia 2024; 72:2247-2267. [PMID: 39215540 PMCID: PMC11577967 DOI: 10.1002/glia.24610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/18/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Schwann cells are critical for the proper development and function of the peripheral nervous system (PNS), where they form a collaborative relationship with axons. Past studies highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiquitously expressed and versatile proteins. We have previously shown that while prohibitins play a crucial role in Schwann cell mitochondria for long-term myelin maintenance and axon health, they may also be present at the Schwann cell-axon interface during development. Here, we expand on this, showing that drug-mediated modulation of prohibitins in vitro disrupts myelination and confirming that Schwann cell-specific ablation of prohibitin 2 (Phb2) in vivo results in severe defects in radial sorting and myelination. We show in vivo that Phb2-null Schwann cells cannot effectively proliferate and the transcription factors EGR2 (KROX20), POU3F1 (OCT6), and POU3F2 (BRN2), necessary for proper Schwann cell maturation, are dysregulated. Schwann cell-specific deletion of Jun, a transcription factor associated with negative regulation of myelination, confers partial rescue of the developmental defect seen in mice lacking Schwann cell Phb2. Finally, we identify a pool of candidate PHB2 interactors that change their interaction with PHB2 depending on neuronal signals, and thus are potential mediators of PHB2-associated developmental defects. This work develops our understanding of Schwann cell biology, revealing that Phb2 may modulate the timely expression of transcription factors necessary for proper PNS development, and proposing candidates that may play a role in PHB2-mediated integration of axon signals in the Schwann cell.
Collapse
Affiliation(s)
- Emma R Wilson
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, England, UK
| | - Gustavo Della-Flora Nunes
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Seth Moore
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Joseph Gawron
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Jessica Maxwell
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Umair Syed
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Edward Hurley
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Meghana Lanka
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Laurent Désaubry
- Center of Research in Biomedicine of Strasbourg, Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Strasbourg, France
| | - Lawrence Wrabetz
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - M Laura Feltri
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
6
|
Wang J, Guo H, Zheng LF, Li P, Zhao TJ. Context-specific fatty acid uptake is a finely-tuned multi-level effort. Trends Endocrinol Metab 2024:S1043-2760(24)00256-X. [PMID: 39490380 DOI: 10.1016/j.tem.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/02/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024]
Abstract
Fatty acids (FAs) are essential nutrients that play multiple roles in cellular activities. To meet cell-specific needs, cells exhibit differential uptake of FAs in diverse physiological or pathological contexts, coordinating to maintain metabolic homeostasis. Cells tightly regulate the localization and transcription of CD36 and other key proteins that transport FAs across the plasma membrane in response to different stimuli. Dysregulation of FA uptake results in diseases such as obesity, steatotic liver, heart failure, and cancer progression. Targeting FA uptake might provide potential therapeutic strategies for metabolic diseases and cancer. Here, we review recent advances in context-specific regulation of FA uptake, focusing on the regulation of CD36 in metabolic organs and other cells.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lang-Fan Zheng
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Peng Li
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Tong-Jin Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
7
|
Vélez-López O, Carrasquillo-Carrión K, Cantres-Rosario YM, Machín-Martínez E, Álvarez-Ríos ME, Roche-Lima A, Tosado-Rodríguez EL, Meléndez LM. Analysis of Sigma-1 Receptor Antagonist BD1047 Effect on Upregulating Proteins in HIV-1-Infected Macrophages Exposed to Cocaine Using Quantitative Proteomics. Biomedicines 2024; 12:1934. [PMID: 39335448 PMCID: PMC11428496 DOI: 10.3390/biomedicines12091934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/30/2024] Open
Abstract
HIV-1 infects monocyte-derived macrophages (MDM) that migrate into the brain and secrete virus and neurotoxic molecules, including cathepsin B (CATB), causing cognitive dysfunction. Cocaine potentiates CATB secretion and neurotoxicity in HIV-infected MDM. Pretreatment with BD1047, a sigma-1 receptor antagonist, before cocaine exposure reduces HIV-1, CATB secretion, and neuronal apoptosis. We aimed to elucidate the intracellular pathways modulated by BD1047 in HIV-infected MDM exposed to cocaine. We hypothesized that the Sig1R antagonist BD1047, prior to cocaine, significantly deregulates proteins and pathways involved in HIV-1 replication and CATB secretion that lead to neurotoxicity. MDM culture lysates from HIV-1-infected women treated with BD1047 before cocaine were compared with untreated controls using TMT quantitative proteomics, bioinformatics, Lima statistics, and pathway analyses. Results demonstrate that pretreatment with BD1047 before cocaine dysregulated eighty (80) proteins when compared with the infected cocaine group. We found fifteen (15) proteins related to HIV-1 infection, CATB, and mitochondrial function. Upregulated proteins were related to oxidative phosphorylation (SLC25A-31), mitochondria (ATP5PD), ion transport (VDAC2-3), endoplasmic reticulum transport (PHB, TMED10, CANX), and cytoskeleton remodeling (TUB1A-C, ANXA1). BD1047 treatment protects HIV-1-infected MDM exposed to cocaine by upregulating proteins that reduce mitochondrial damage, ER transport, and exocytosis associated with CATB-induced neurotoxicity.
Collapse
Affiliation(s)
- Omar Vélez-López
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
| | - Kelvin Carrasquillo-Carrión
- Integrated Informatics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00934, USA; (K.C.-C.); (A.R.-L.); (E.L.T.-R.)
| | - Yadira M. Cantres-Rosario
- Translational Proteomics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00921, USA;
| | - Eraysy Machín-Martínez
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00921, USA; (E.M.-M.); (M.E.Á.-R.)
| | - Manuel E. Álvarez-Ríos
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00921, USA; (E.M.-M.); (M.E.Á.-R.)
| | - Abiel Roche-Lima
- Integrated Informatics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00934, USA; (K.C.-C.); (A.R.-L.); (E.L.T.-R.)
| | - Eduardo L. Tosado-Rodríguez
- Integrated Informatics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00934, USA; (K.C.-C.); (A.R.-L.); (E.L.T.-R.)
| | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
- Translational Proteomics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00921, USA;
| |
Collapse
|
8
|
Gao Z, Santos RB, Rupert J, Van Drunen R, Yu Y, Eckel‐Mahan K, Kolonin MG. Endothelial-specific telomerase inactivation causes telomere-independent cell senescence and multi-organ dysfunction characteristic of aging. Aging Cell 2024; 23:e14138. [PMID: 38475941 PMCID: PMC11296101 DOI: 10.1111/acel.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
It has remained unclear how aging of endothelial cells (EC) contributes to pathophysiology of individual organs. Cell senescence results in part from inactivation of telomerase (TERT). Here, we analyzed mice with Tert knockout specifically in EC. Tert loss in EC induced transcriptional changes indicative of senescence and tissue hypoxia in EC and in other cells. We demonstrate that EC-Tert-KO mice have leaky blood vessels. The blood-brain barrier of EC-Tert-KO mice is compromised, and their cognitive function is impaired. EC-Tert-KO mice display reduced muscle endurance and decreased expression of enzymes responsible for oxidative metabolism. Our data indicate that Tert-KO EC have reduced mitochondrial content and function, which results in increased dependence on glycolysis. Consistent with this, EC-Tert-KO mice have metabolism changes indicative of increased glucose utilization. In EC-Tert-KO mice, expedited telomere attrition is observed for EC of adipose tissue (AT), while brain and skeletal muscle EC have normal telomere length but still display features of senescence. Our data indicate that the loss of Tert causes EC senescence in part through a telomere length-independent mechanism undermining mitochondrial function. We conclude that EC-Tert-KO mice is a model of expedited vascular senescence recapitulating the hallmarks aging, which can be useful for developing revitalization therapies.
Collapse
Affiliation(s)
- Zhanguo Gao
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Rafael Bravo Santos
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Joseph Rupert
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Rachel Van Drunen
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Yongmei Yu
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Kristin Eckel‐Mahan
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| |
Collapse
|
9
|
Kulsange SE, Sharma M, Sonawane B, Jaiswal MR, Kulkarni MJ, Santhakumari B. SWATH-MS reveals that bisphenol A and its analogs regulate pathways leading to disruption in insulin signaling and fatty acid metabolism. Food Chem Toxicol 2024; 188:114667. [PMID: 38653447 DOI: 10.1016/j.fct.2024.114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC), associated with obesity and insulin resistance. The FDA prohibited the use of BPA-based polycarbonate resins in infant formula packaging; thus, its analogs, viz. Bisphenol S (BPS) and Bisphenol F (BPF) were considered alternatives in epoxy resins, plastics, and food cans. As these analogs might evoke a similar response, we investigated the role of Bisphenols (BPA, BPF, and BPS), on insulin signaling in CHO-HIRc-myc-GLUT4eGFP cells at environmentally relevant concentrations of 2 nM and 200 nM. Insulin signaling demonstrated that Bisphenols reduced phosphorylation of IR and AKT2, GLUT4 translocation, and glucose uptake. This was accompanied by increased oxidative stress. Furthermore, SWATH-MS-based proteomics of 3T3-L1 cells demonstrated that Bisphenol-treated cells regulate proteins in insulin resistance, adipogenesis, and fatty acid metabolism pathways differently. All three Bisphenols induced differentially expressed proteins enriched similar pathways, although their abundance differed for each Bisphenol. This might be due to their varying toxicity level, structural differences, and estrogen-mimetic activity. This study has important implications in addressing health concerns related to EDCs. Given that the analogs of BPA are considered alternatives to BPA, the findings of this study suggest they are equally potent in altering fatty acid metabolism and inducing insulin resistance.
Collapse
Affiliation(s)
- Shabda E Kulsange
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Monika Sharma
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Babasaheb Sonawane
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Meera R Jaiswal
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahesh J Kulkarni
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - B Santhakumari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Centre for Material Characterization, CSIR-National Chemical Laboratory, Pune 411008, India.
| |
Collapse
|
10
|
Todosenko N, Yurova K, Vulf M, Khaziakhmatova O, Litvinova L. Prohibitions in the meta-inflammatory response: a review. Front Mol Biosci 2024; 11:1322687. [PMID: 38813101 PMCID: PMC11133639 DOI: 10.3389/fmolb.2024.1322687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Prohibitins are the central regulatory element of cellular homeostasis, especially by modulating the response at different levels: Nucleus, mitochondria and membranes. Their localization and interaction with various proteins, homons, transcription and nuclear factors, and mtDNA indicate the globality and complexity of their pleiotropic properties, which remain to be investigated. A more detailed deciphering of cellular metabolism in relation to prohibitins under normal conditions and in various metabolic diseases will allow us to understand the precise role of prohibitins in the signaling cascades of PI3K/Akt, Raf/MAP/ERK, STAT3, p53, and others and to fathom their mutual influence. A valuable research perspective is to investigate the role of prohibitins in the molecular and cellular interactions between the two major players in the pathogenesis of obesity-adipocytes and macrophages - that form the basis of the meta-inflammatory response. Investigating the subtle intercellular communication and molecular cascades triggered in these cells will allow us to propose new therapeutic strategies to eliminate persistent inflammation, taking into account novel molecular genetic approaches to activate/inactivate prohibitins.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
11
|
Wilson ER, Nunes GDF, Shen S, Moore S, Gawron J, Maxwell J, Syed U, Hurley E, Lanka M, Qu J, Desaubry L, Wrabetz L, Poitelon Y, Feltri ML. Loss of prohibitin 2 in Schwann cells dysregulates key transcription factors controlling developmental myelination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585915. [PMID: 38562812 PMCID: PMC10983910 DOI: 10.1101/2024.03.20.585915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Schwann cells are critical for the proper development and function of the peripheral nervous system, where they form a mutually beneficial relationship with axons. Past studies have highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiquitously expressed and versatile proteins. We have previously shown that while prohibitins play a crucial role in Schwann cell mitochondria for long-term myelin maintenance and axon health, they may also be present at the Schwann cell-axon interface during development. Here, we expand on this work, showing that drug-mediated modulation of prohibitins in vitro disrupts myelination and confirming that Schwann cell-specific ablation of prohibitin 2 (Phb2) in vivo results in early and severe defects in peripheral nerve development. Using a proteomic approach in vitro, we identify a pool of candidate PHB2 interactors that change their interaction with PHB2 depending on the presence of axonal signals. Furthermore, we show in vivo that loss of Phb2 in mouse Schwann cells causes ineffective proliferation and dysregulation of transcription factors EGR2 (KROX20), POU3F1 (OCT6) and POU3F2 (BRN2) that are necessary for proper Schwann cell maturation. Schwann cell-specific deletion of Jun, a transcription factor associated with negative regulation of myelination, confers partial rescue of the development defect seen in mice lacking Schwann cell Phb2. This work develops our understanding of Schwann cell biology, revealing that Phb2 may directly or indirectly modulate the timely expression of transcription factors necessary for proper peripheral nervous system development, and proposing candidates that may play a role in PHB2-mediated integration of axon signals in the Schwann cell.
Collapse
Affiliation(s)
- Emma R Wilson
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Clinical Neurosciences, Cambridge University, Cambridge, UK
| | - Gustavo Della-Flora Nunes
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Seth Moore
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Joseph Gawron
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jessica Maxwell
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Umair Syed
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Edward Hurley
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Meghana Lanka
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Laurent Desaubry
- Center of Research in Biomedicine of Strasbourg, Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, 67000 Strasbourg, France
| | - Lawrence Wrabetz
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - M Laura Feltri
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
12
|
Ciavattone NG, Guan N, Farfel A, Stauff J, Desmond T, Viglianti BL, Scott PJ, Brooks AF, Luker GD. Evaluating immunotherapeutic outcomes in triple-negative breast cancer with a cholesterol radiotracer in mice. JCI Insight 2024; 9:e175320. [PMID: 38502228 PMCID: PMC11141879 DOI: 10.1172/jci.insight.175320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
Evaluating the response to immune checkpoint inhibitors (ICIs) remains an unmet challenge in triple-negative breast cancer (TNBC). The requirement for cholesterol in the activation and function of T cells led us to hypothesize that quantifying cellular accumulation of this molecule could distinguish successful from ineffective checkpoint immunotherapy. To analyze accumulation of cholesterol by T cells in the immune microenvironment of breast cancer, we leveraged the PET radiotracer, eFNP-59. eFNP-59 is an analog of cholesterol that our group validated as an imaging biomarker for cholesterol uptake in preclinical models and initial human studies. In immunocompetent mouse models of TNBC, we found that elevated uptake of exogenous labeled cholesterol analogs functions as a marker for T cell activation. When comparing ICI-responsive and -nonresponsive tumors directly, uptake of fluorescent cholesterol and eFNP-59 increased in T cells from ICI-responsive tumors. We discovered that accumulation of cholesterol by T cells increased in ICI-responding tumors that received anti-PD-1 checkpoint immunotherapy. In patients with TNBC, tumors containing cycling T cells had features of cholesterol uptake and trafficking within those populations. These results suggest that uptake of exogenous cholesterol analogs by tumor-infiltrating T cells allows detection of T cell activation and has potential to assess the success of ICI therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gary D Luker
- Department of Radiology, and
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
AlZaim I, de Rooij LPMH, Sheikh BN, Börgeson E, Kalucka J. The evolving functions of the vasculature in regulating adipose tissue biology in health and obesity. Nat Rev Endocrinol 2023; 19:691-707. [PMID: 37749386 DOI: 10.1038/s41574-023-00893-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/27/2023]
Abstract
Adipose tissue is an endocrine organ and a crucial regulator of energy storage and systemic metabolic homeostasis. Additionally, adipose tissue is a pivotal regulator of cardiovascular health and disease, mediated in part by the endocrine and paracrine secretion of several bioactive products, such as adipokines. Adipose vasculature has an instrumental role in the modulation of adipose tissue expansion, homeostasis and metabolism. The role of the adipose vasculature has been extensively explored in the context of obesity, which is recognized as a global health problem. Obesity-induced accumulation of fat, in combination with vascular rarefaction, promotes adipocyte dysfunction and induces oxidative stress, hypoxia and inflammation. It is now recognized that obesity-associated endothelial dysfunction often precedes the development of cardiovascular diseases. Investigations have revealed heterogeneity within the vascular niche and dynamic reciprocity between vascular and adipose cells, which can become dysregulated in obesity. Here we provide a comprehensive overview of the evolving functions of the vasculature in regulating adipose tissue biology in health and obesity.
Collapse
Affiliation(s)
- Ibrahim AlZaim
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Laura P M H de Rooij
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bilal N Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Emma Börgeson
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
14
|
Ciavattone NG, Guan J, Farfel A, Desmond T, Viglianti BL, Scott PJ, Brooks AF, Luker GD. Predicting efficacy of immunotherapy in mice with triple negative breast cancer using a cholesterol PET radiotracer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560577. [PMID: 37873149 PMCID: PMC10592945 DOI: 10.1101/2023.10.02.560577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Predicting the response to cancer immunotherapy remains an unmet challenge in triple-negative breast cancer (TNBC) and other malignancies. T cells, the major target of current checkpoint inhibitor immunotherapies, accumulate cholesterol during activation to support proliferation and signaling. The requirement of cholesterol for anti-tumor functions of T cells led us to hypothesize that quantifying cellular accumulation of this molecule could distinguish successful from ineffective checkpoint immunotherapy. To analyze accumulation of cholesterol by T cells in the immune microenvironment of breast cancer, we leveraged a novel positron emission tomography (PET) radiotracer, FNP-59. FNP-59 is an analog of cholesterol that our group has validated as an imaging biomarker for cholesterol uptake in pre-clinical models and initial human studies. In immunocompetent mouse models of TNBC, we found that elevated uptake of exogenous labeled cholesterol analogs functions as a marker for T cell activation. When comparing immune checkpoint inhibitor (ICI)-responsive EO771 tumors to non-responsive AT-3 tumors, we found significantly higher uptake of a fluorescent cholesterol analog in T cells of the ICI-responsive tumors both in vitro and in vivo. Using the FNP-59 radiotracer, we discovered that accumulation of cholesterol by T cells increased further in ICI-responding tumors that received ant-PD-1 checkpoint immunotherapy. We verified these data by mining single cell sequencing data from patients with TNBC. Patients with tumors containing cycling T cells showed gene expression signatures of cholesterol uptake and trafficking. These results suggest that uptake of exogenous cholesterol analogs by tumor-infiltrating T cells predict T cell activation and success of ICI therapy.
Collapse
|
15
|
Luo Z, Yao J, Wang Z, Xu J. Mitochondria in endothelial cells angiogenesis and function: current understanding and future perspectives. J Transl Med 2023; 21:441. [PMID: 37407961 DOI: 10.1186/s12967-023-04286-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Endothelial cells (ECs) angiogenesis is the process of sprouting new vessels from the existing ones, playing critical roles in physiological and pathological processes such as wound healing, placentation, ischemia/reperfusion, cardiovascular diseases and cancer metastasis. Although mitochondria are not the major sites of energy source in ECs, they function as important biosynthetic and signaling hubs to regulate ECs metabolism and adaptations to local environment, thus affecting ECs migration, proliferation and angiogenic process. The understanding of the importance and potential mechanisms of mitochondria in regulating ECs metabolism, function and the process of angiogenesis has developed in the past decades. Thus, in this review, we discuss the current understanding of mitochondrial proteins and signaling molecules in ECs metabolism, function and angiogeneic signaling, to provide new and therapeutic targets for treatment of diverse cardiovascular and angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Zhen Luo
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Zhe Wang
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China
| | - Jianxiong Xu
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China.
| |
Collapse
|
16
|
Lee HJ, Lee J, Yang MJ, Kim YC, Hong SP, Kim JM, Hwang GS, Koh GY. Endothelial cell-derived stem cell factor promotes lipid accumulation through c-Kit-mediated increase of lipogenic enzymes in brown adipocytes. Nat Commun 2023; 14:2754. [PMID: 37179330 PMCID: PMC10183046 DOI: 10.1038/s41467-023-38433-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Active thermogenesis in the brown adipose tissue (BAT) facilitating the utilization of lipids and glucose is critical for maintaining body temperature and reducing metabolic diseases, whereas inactive BAT accumulates lipids in brown adipocytes (BAs), leading to BAT whitening. Although cellular crosstalk between endothelial cells (ECs) and adipocytes is essential for the transport and utilization of fatty acid in BAs, the angiocrine roles of ECs mediating this crosstalk remain poorly understood. Using single-nucleus RNA sequencing and knock-out male mice, we demonstrate that stem cell factor (SCF) derived from ECs upregulates gene expressions and protein levels of the enzymes for de novo lipogenesis, and promotes lipid accumulation by activating c-Kit in BAs. In the early phase of lipid accumulation induced by denervation or thermoneutrality, transiently expressed c-Kit on BAs increases the protein levels of the lipogenic enzymes via PI3K and AKT signaling. EC-specific SCF deletion and BA-specific c-Kit deletion attenuate the induction of the lipogenic enzymes and suppress the enlargement of lipid droplets in BAs after denervation or thermoneutrality in male mice. These data provide insight into SCF/c-Kit signaling as a regulator that promotes lipid accumulation through the increase of lipogenic enzymes in BAT when thermogenesis is inhibited.
Collapse
Affiliation(s)
- Hyuek Jong Lee
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03760, Republic of Korea
| | - Myung Jin Yang
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Young-Chan Kim
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jung Mo Kim
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03760, Republic of Korea.
- Colleage of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
17
|
Yoon H, Seo JK, Park TE. Microphysiological system recapitulating the pathophysiology of adipose tissue in obesity. Acta Biomater 2023; 159:188-200. [PMID: 36724863 DOI: 10.1016/j.actbio.2023.01.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/30/2023]
Abstract
A growing body of evidence has indicated that white adipose tissue (AT) remodeling is a major trigger for obesity-associated metabolic complications. However, the scarcity of translational models is an obstacle to the development of medicines that act on adipose restoration. Here, we describe a microphysiological system (MPS) that emulates the unique features of reprogrammed AT as a new in vitro tool for studying AT pathophysiology in obesity. The AT MPS contained mature adipocytes embedded in an extracellular matrix (ECM) hydrogel interfaced with AT microvascular endothelium, which was constantly perfused with fresh media. The unique biochemical signals due to the remodeled ECM in obesity were recapitulated using a decellularized AT ECM (AT dECM) hydrogel, which preserves the features of altered ECM composition in obesity. The mature adipocytes embedded in the AT dECM hydrogel maintained their function and morphology for a week without dedifferentiation. Using the AT MPS, we successfully modeled inflammation-induced AT microvascular dysfunction, the recruitment of immune cells due to the upregulation of cell adhesion molecules, and higher cancer cell adhesion as an indicator of metastasis, which are observed in obese individuals. The AT MPS may therefore represent a promising platform for understanding the dynamic cellular interplay in obesity-induced AT remodeling and validating the efficacy of drugs targeting AT in obesity. STATEMENT OF SIGNIFICANCE: The lack of translational in vitro white adipose tissue (AT) models is one of the main obstacles for understanding the obesity-induced reprogramming and the development of medicines. We report herein the AT microphysiological system (MPS), which recapitulates obesity and normal conditions and yields cell- and AT dECM-derived signals, thereby allowing accurate comparative in vitro analyses. Using the AT MPS, we successfully modeled reprogrammed AT in obesity conditions, including inflammation-induced AT vascular dysfunction, the recruitment of immune cells, and higher cancer cell metastasis, which are observed in obese individuals. Our proposed adipose tissue model providing physiological relevance and complexity may therefore enhance the understanding of obesity-associated disorders and be used to investigate their underlying molecular mechanisms to develop pharmacologic treatment strategies.
Collapse
Affiliation(s)
- Heejeong Yoon
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
18
|
Matthews CEP, Fussner LA, Yaeger M, Aloor JJ, Reece SW, Kilburg-Basnyat BJ, Varikuti S, Luo B, Inks M, Sergin S, Schmidt CA, Neufer PD, Pennington ER, Fisher-Wellman KH, Chowdhury SM, Fessler MB, Fenton JI, Anderson EJ, Shaikh SR, Gowdy KM. The prohibitin complex regulates macrophage fatty acid composition, plasma membrane packing, and lipid raft-mediated inflammatory signaling. Prostaglandins Leukot Essent Fatty Acids 2023; 190:102540. [PMID: 36706677 PMCID: PMC9992117 DOI: 10.1016/j.plefa.2023.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/28/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Prohibitins (PHB1 and PHB2) are ubiquitously expressed proteins which play critical roles in multiple biological processes, and together form the ring-like PHB complex found in phospholipid-rich cellular compartments including lipid rafts. Recent studies have implicated PHB1 as a mediator of fatty acid transport as well as a membrane scaffold mediating B lymphocyte and mast cell signal transduction. However, the specific role of PHBs in the macrophage have not been characterized, including their role in fatty acid uptake and lipid raft-mediated inflammatory signaling. We hypothesized that the PHB complex regulates macrophage inflammatory signaling through the formation of lipid rafts. To evaluate our hypothesis, RAW 264.7 macrophages were transduced with shRNA against PHB1, PHB2, or scrambled control (Scr), and then stimulated with lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-α), which activate lipid raft-dependent receptor signaling (CD14/TLR4 and TNFR1, respectively). PHB1 knockdown was lethal, whereas PHB2 knockdown (PHB2kd), which also resulted in decreased PHB1 expression, led to attenuated nuclear factor-kappa-B (NF-κB) activation and subsequent cytokine and chemokine production. PHB2kd macrophages also had decreased cell surface TNFR1, CD14, TLR4, and lipid raft marker ganglioside GM1 at baseline and post-stimuli. Post-LPS, PHB2kd macrophages did not increase the concentration of cellular saturated, monounsaturated, and polyunsaturated fatty acids. This was accompanied by decreased lipid raft formation and modified plasma membrane molecular packing, further supporting the PHB complex's importance in lipid raft formation. Taken together, these data suggest a critical role for PHBs in regulating macrophage inflammatory signaling via maintenance of fatty acid composition and lipid raft structure. SUMMARY: Prohibitins are proteins found in phospholipid-rich cellular compartments, including lipid rafts, that play important roles in signaling, transcription, and multiple other cell functions. Macrophages are key cells in the innate immune response and the presence of membrane lipid rafts is integral to signal transduction, but the role of prohibitins in macrophage lipid rafts and associated signaling is unknown. To address this question, prohibitin knockdown macrophages were generated and responses to lipopolysaccharide and tumor necrosis factor-alpha, which act through lipid raft-dependent receptors, were analyzed. Prohibitin knockdown macrophages had significantly decreased cytokine and chemokine production, transcription factor activation, receptor expression, lipid raft assembly and membrane packing, and altered fatty acid remodeling. These data indicate a novel role for prohibitins in macrophage inflammatory signaling through regulation of fatty acid composition and lipid raft formation.
Collapse
Affiliation(s)
- Christine E Psaltis Matthews
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Lynn A Fussner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Michael Yaeger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Jim J Aloor
- Diabetes and Obesity Institute, Department of Physiology, East Carolina University, Greenville, NC, United States
| | - Sky W Reece
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Brita J Kilburg-Basnyat
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Sanjay Varikuti
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Bin Luo
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Morgan Inks
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Selin Sergin
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Cameron A Schmidt
- Diabetes and Obesity Institute, Department of Physiology, East Carolina University, Greenville, NC, United States
| | - P Darrell Neufer
- Diabetes and Obesity Institute, Department of Physiology, East Carolina University, Greenville, NC, United States
| | - Edward Ross Pennington
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Kelsey H Fisher-Wellman
- Diabetes and Obesity Institute, Department of Physiology, East Carolina University, Greenville, NC, United States
| | - Saiful M Chowdhury
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, United States
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, United States
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Ethan J Anderson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, FOE Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
19
|
Gupta M, Balachandran H, Louie RHY, Li H, Agapiou D, Keoshkerian E, Christ D, Rawlinson W, Mina MM, Post JJ, Hudson B, Gilroy N, Konecny P, Bartlett AW, Sasson SC, Ahlenstiel G, Dwyer D, Lloyd AR, Martinello M, Luciani F, Bull RA. High activation levels maintained in receptor-binding domain-specific memory B cells in people with severe coronavirus disease 2019. Immunol Cell Biol 2023; 101:142-155. [PMID: 36353774 PMCID: PMC9878167 DOI: 10.1111/imcb.12607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/02/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
Abstract
The long-term health consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are still being understood. The molecular and phenotypic properties of SARS-CoV-2 antigen-specific T cells suggest a dysfunctional profile that persists in convalescence in those who were severely ill. By contrast, the antigen-specific memory B-cell (MBC) population has not yet been analyzed to the same degree, but phenotypic analysis suggests differences following recovery from mild or severe coronavirus disease 2019 (COVID-19). Here, we performed single-cell molecular analysis of the SARS-CoV-2 receptor-binding domain (RBD)-specific MBC population in three patients after severe COVID-19 and four patients after mild/moderate COVID-19. We analyzed the transcriptomic and B-cell receptor repertoire profiles at ~2 months and ~4 months after symptom onset. Transcriptomic analysis revealed a higher level of tumor necrosis factor-alpha (TNF-α) signaling via nuclear factor-kappa B in the severe group, involving CD80, FOS, CD83 and TNFAIP3 genes that was maintained over time. We demonstrated the presence of two distinct activated MBCs subsets based on expression of CD80hi TNFAIP3hi and CD11chi CD95hi at the transcriptome level. Both groups revealed an increase in somatic hypermutation over time, indicating progressive evolution of humoral memory. This study revealed distinct molecular signatures of long-term RBD-specific MBCs in convalescence, indicating that the longevity of these cells may differ depending on acute COVID-19 severity.
Collapse
Affiliation(s)
- Money Gupta
- Faculty of Medicine, School of Medical SciencesUniversity of New South Wales AustraliaSydneyNSWAustralia
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | - Harikrishnan Balachandran
- Faculty of Medicine, School of Medical SciencesUniversity of New South Wales AustraliaSydneyNSWAustralia
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | - Raymond H Y Louie
- Faculty of Medicine, School of Medical SciencesUniversity of New South Wales AustraliaSydneyNSWAustralia
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | - Hui Li
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | - David Agapiou
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | | | - Daniel Christ
- Antibody Therapeutics LabGarvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | - William Rawlinson
- Faculty of Medicine, School of Medical SciencesUniversity of New South Wales AustraliaSydneyNSWAustralia
- Serology and Virology Division, Department of MicrobiologyNSW Health Pathology, Prince of Wales HospitalSydneyNSWAustralia
| | | | - Jeffrey J Post
- Prince of Wales Clinical SchoolUniversity of New South Wales, AustraliaSydneyNSWAustralia
| | - Bernard Hudson
- Infectious diseasesRoyal North Shore HospitalSydneyNSWAustralia
| | - Nicky Gilroy
- Infectious DiseasesWestmead HospitalSydneyNSWAustralia
| | - Pamela Konecny
- St George and Sutherland Clinical SchoolUniversity of New South Wales, SydneySydneyNSWAustralia
| | - Adam W Bartlett
- Faculty of Medicine, School of Medical SciencesUniversity of New South Wales AustraliaSydneyNSWAustralia
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
- Sydney Children's Hospital RandwickSydneyNSWAustralia
| | - Sarah C Sasson
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | | | - Dominic Dwyer
- Infectious DiseasesWestmead HospitalSydneyNSWAustralia
| | - Andrew R Lloyd
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | - Marianne Martinello
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
- Infectious DiseasesWestmead HospitalSydneyNSWAustralia
- Blacktown Mount Druitt HospitalBlacktownNSWAustralia
| | - Fabio Luciani
- Faculty of Medicine, School of Medical SciencesUniversity of New South Wales AustraliaSydneyNSWAustralia
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | - Rowena A Bull
- Faculty of Medicine, School of Medical SciencesUniversity of New South Wales AustraliaSydneyNSWAustralia
- The Kirby Institute, University of New South Wales, AustraliaSydneyNSWAustralia
| | | |
Collapse
|
20
|
Liao ZZ, Ran L, Qi XY, Wang YD, Wang YY, Yang J, Liu JH, Xiao XH. Adipose endothelial cells mastering adipose tissues metabolic fate. Adipocyte 2022; 11:108-119. [PMID: 35067158 PMCID: PMC8786343 DOI: 10.1080/21623945.2022.2028372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Dynamic communication within adipose tissue depends on highly vascularized structural characteristics to maintain systemic metabolic homoeostasis. Recently, it has been noted that adipose endothelial cells (AdECs) act as essential bridges for biological information transmission between adipose-resident cells. Hence, paracrine regulators that mediate crosstalk between AdECs and adipose stromal cells were summarized. We also highlight the importance of AdECs to maintain adipocytes metabolic homoeostasis by regulating insulin sensitivity, lipid turnover and plasticity. The differential regulation of AdECs in adipose plasticity often depends on vascular density and metabolic states. Although choosing pro-angiogenic or anti-angiogenic therapies for obesity is still a matter of debate in clinical settings, the growing numbers of drugs have been confirmed to play an anti-obesity effect by affecting vascularization. Pharmacologic angiogenesis intervention has great potential as therapeutic strategies for obesity.
Collapse
Affiliation(s)
- Zhe-Zhen Liao
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Ran
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao-Yan Qi
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ya-Di Wang
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuan-Yuan Wang
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jing Yang
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiang-Hua Liu
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin-Hua Xiao
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
21
|
Oyang L, Li J, Jiang X, Lin J, Xia L, Yang L, Tan S, Wu N, Han Y, Yang Y, Luo X, Li J, Liao Q, Shi Y, Zhou Y. The function of prohibitins in mitochondria and the clinical potentials. Cancer Cell Int 2022; 22:343. [DOI: 10.1186/s12935-022-02765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractProhibitins (PHBs) are a class of highly evolutionarily conserved proteins that widely distribute in prokaryotes and eukaryotes. PHBs function in cell growth and proliferation or differentiation, regulating metabolism and signaling pathways. PHBs have different subcellular localization in eukaryotes, but they are mainly located in mitochondria. In the mitochondria, PHBs stabilize the structure of the mitochondrial membrane and regulate mitochondrial autophagy, mitochondrial dynamics, mitochondrial biogenesis and quality control, and mitochondrial unfolded protein response. PHBs has shown to be associated with many diseases, such as mitochondria diseases, cancers, infectious diseases, and so on. Some molecule targets of PHBs can interfere with the occurrence and development of diseases. Therefore, this review clarifies the functions of PHBs in mitochondria, and provides a summary of the potential values in clinics.
Collapse
|
22
|
Wang X, Kim S, Guan Y, Parker R, Rodrigues RM, Feng D, Lu SC, Gao B. Deletion of adipocyte prohibitin 1 exacerbates high-fat diet-induced steatosis but not liver inflammation and fibrosis. Hepatol Commun 2022; 6:3335-3348. [PMID: 36200169 PMCID: PMC9701483 DOI: 10.1002/hep4.2092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 01/21/2023] Open
Abstract
Adipose tissue dysfunction is closely associated with the development and progression of nonalcoholic fatty liver disease (NAFLD). Recent studies have implied an important role of prohibitin-1 (PHB1) in adipose tissue function. In the current study, we aimed to explore the function of adipocyte PHB1 in the development and progression of NAFLD. The PHB1 protein levels in adipose tissues were markedly decreased in mice fed a high-fat diet (HFD) compared to those fed a chow diet. To explore the function of adipocyte PHB1 in the progression of NAFLD, mice with adipocyte-specific (adipo) deletion of Phb1 (Phb1adipo-/- mice) were generated. Notably, Phb1adipo-/- mice did not develop obesity but displayed severe liver steatosis under HFD feeding. Compared to HFD-fed wild-type (WT) mice, HFD-fed Phb1adipo-/- mice displayed dramatically lower fat mass with significantly decreased levels of total adipose tissue inflammation, including macrophage and neutrophil number as well as the expression of inflammatory mediators. To our surprise, although liver steatosis in Phb1adipo-/- mice was much more severe, liver inflammation and fibrosis were similar to WT mice after HFD feeding. RNA sequencing analyses revealed that the interferon pathway was markedly suppressed while the bone morphogenetic protein 2 pathway was significantly up-regulated in the liver of HFD-fed Phb1adipo-/- mice compared with HFD-fed WT mice. Conclusion: HFD-fed Phb1adipo-/- mice display a subtype of the lean NAFLD phenotype with severe hepatic steatosis despite low adipose mass. This subtype of the lean NAFLD phenotype has similar inflammation and fibrosis as obese NAFLD in HFD-fed WT mice; this is partially due to reduced total adipose tissue inflammation and the hepatic interferon pathway.
Collapse
Affiliation(s)
- Xiaolin Wang
- Laboratory of Liver DiseasesNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA,Department of Infectious DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Seung‐Jin Kim
- Laboratory of Liver DiseasesNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA,Department of Biochemistry, College of Natural SciencesKangwon Institute of Inclusive Technology and Global/Gangwon Innovative Biologics‐Regional Leading Research Center, Kangwon National UniversityChuncheonKorea
| | - Yukun Guan
- Laboratory of Liver DiseasesNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Richard Parker
- Laboratory of Liver DiseasesNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA,Leeds Liver UnitSt James's University HospitalLeedsUK
| | - Robim M. Rodrigues
- Laboratory of Liver DiseasesNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA,Department of In Vitro Toxicology and Dermato‐Cosmetology, Faculty of Medicine and PharmacyVrije Universiteit BrusselBrusselsBelgium
| | - Dechun Feng
- Laboratory of Liver DiseasesNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Department of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Bin Gao
- Laboratory of Liver DiseasesNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
23
|
Chen C, Wen M, Wang C, Yuan Z, Jin Y. Differential proteomic analysis of mouse cerebrums with high-fat diet (HFD)-induced hyperlipidemia. PeerJ 2022; 10:e13806. [PMID: 35942128 PMCID: PMC9356585 DOI: 10.7717/peerj.13806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023] Open
Abstract
Hyperlipidemia is a chronic disease characterized by elevated blood cholesterol and triglycerides and there is accumulated evidence that the disease might affect brain functions. Here we report on a proteomic analysis of the brain proteins in hyperlipidemic mice. Hyperlipidemia was successfully induced in mice by a 20 week high-fat diet (HFD) feeding (model group). A control group with a normal diet and a treatment group with HFD-fed mice treated with a lipid-lowering drug simvastatin (SIM) were established accordingly. The proteins were extracted from the left and right cerebrum hemispheres of the mice in the three groups and subjected to shotgun proteomic analysis. A total of 4,422 proteins were detected in at least half of the samples, among which 324 proteins showed significant difference (fold change >1.5 or <0.67, p < 0.05) in at least one of the four types of comparisons (left cerebrum hemispheres of the model group versus the control group, right cerebrums of model versus control, left cerebrums of SIM versus model, right cerebrums of SIM versus model). Biological process analysis revealed many of these proteins were enriched in the processes correlated with lipid metabolism, neurological disorders, synaptic events and nervous system development. For the first time, it has been reported that some of the proteins have been altered in the brain under the conditions of HFD feeding, obesity or hyperlipidemia. Further, 22 brain processes-related proteins showed different expression in the two cerebrum hemispheres, suggesting changes of the brain proteins caused by hyperlipidemia might also be asymmetric. We hope this work will provide useful information to understand the effects of HFD and hyperlipidemia on brain proteins.
Collapse
Affiliation(s)
- Changming Chen
- Guangdong University of Technology, School of Biomedical and Pharmaceutical Sciences, Guangzhou, Guangdong, China
| | - Meiling Wen
- Guangdong University of Technology, School of Biomedical and Pharmaceutical Sciences, Guangzhou, Guangdong, China
| | - Caixia Wang
- Guangdong University of Technology, School of Biomedical and Pharmaceutical Sciences, Guangzhou, Guangdong, China
| | - Zhongwen Yuan
- The Third Clinical School of Guangzhou Medical University, Department of Pharmacy, Guangzhou, Guangdong, China,Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, Guangdong, China
| | - Ya Jin
- Guangdong University of Technology, School of Biomedical and Pharmaceutical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Kim B, Arany Z. Endothelial Lipid Metabolism. Cold Spring Harb Perspect Med 2022; 12:a041162. [PMID: 35074792 PMCID: PMC9310950 DOI: 10.1101/cshperspect.a041162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endothelial cells (ECs) line all vessels of all vertebrates and are fundamental to organismal metabolism. ECs rely on their metabolism both to transport nutrients in and out of underlying parenchyma, and to support their own cellular activities, including angiogenesis. ECs primarily consume glucose, and much is known of how ECs transport and consume glucose and other carbohydrates. In contrast, how lipids are transported, and the role of lipids in normal EC function, has garnered less attention. We review here recent developments on the role of lipids in endothelial metabolism, with a focus on lipid uptake and transport in quiescent endothelium, and the use of lipid pathways during angiogenesis.
Collapse
Affiliation(s)
- Boa Kim
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zolt Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
25
|
Daquinag AC, Gao Z, Yu Y, Kolonin MG. Endothelial TrkA coordinates vascularization and innervation in thermogenic adipose tissue and can be targeted to control metabolism. Mol Metab 2022; 63:101544. [PMID: 35835372 PMCID: PMC9310128 DOI: 10.1016/j.molmet.2022.101544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE Brown adipogenesis and thermogenesis in brown and beige adipose tissue (AT) involve vascular remodeling and sympathetic neuronal guidance. Here, we investigated the molecular mechanism coordinating these processes. METHODS We used mouse models to identify the molecular target of a peptide CPATAERPC homing to the endothelium of brown and beige AT. RESULTS We demonstrate that CPATAERPC mimics nerve growth factor (NGF) and identify a low molecular weight isoform of NGF receptor, TrkA, as the CPATAERPC cell surface target. We show that the expression of truncated endothelial TrkA is selective for brown and subcutaneous AT. Analysis of mice with endothelium-specific TrkA knockout revealed the role of TrkA in neuro-vascular coordination supporting the thermogenic function of brown adipocytes. A hunter-killer peptide D-BAT, composed of CPATAERPC and a pro-apoptotic domain, induced cell death in the endothelium and adipocytes. This resulted in thermogenesis impairment, and predisposed mice to obesity and glucose intolerance. We also tested if this treatment can inhibit the tumor recruitment of lipids mobilized from adipocytes from adjacent AT. Indeed, in a mouse model of breast cancer D-BAT suppressed tumor-associated AT lipolysis, which resulted in reduced fatty acid utilization by cancer cells. CONCLUSION Our study demonstrates that TrkA signaling in the endothelium supports neuro-vascular coordination enabling beige adipogenesis.
Collapse
Affiliation(s)
- Alexes C Daquinag
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Zhanguo Gao
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yongmei Yu
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Gao Z, Daquinag AC, Yu Y, Kolonin MG. Endothelial Prohibitin Mediates Bidirectional Long-Chain Fatty Acid Transport in White and Brown Adipose Tissues. Diabetes 2022; 71:1400-1409. [PMID: 35499627 PMCID: PMC9233243 DOI: 10.2337/db21-0972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/27/2022] [Indexed: 11/13/2022]
Abstract
The function of prohibitin-1 (PHB1) in adipocyte mitochondrial respiration, adaptive thermogenesis, and long-chain fatty acid (LCFA) metabolism has been reported. While intracellular PHB1 expression is ubiquitous, cell surface PHB1 localization is selective for adipocytes and endothelial cells of adipose tissue. The importance of PHB1 in adipose endothelium has not been investigated, and its vascular cell surface function has remained unclear. Here, we generated and analyzed mice with PHB1 knock-out specifically in endothelial cells (PHB1 EC-KO). Despite the lack of endothelial PHB1, mice developed normally and had normal vascularization in both white adipose tissue and brown adipose tissue (BAT). Tumor and ex vivo explant angiogenesis assays also have not detected a functional defect in PHB1 KO endothelium. No metabolic phenotype was observed in PHB1 EC-KO mice raised on a regular diet. We show that both male and female PHB1 EC-KO mice have normal body composition and adaptive thermogenesis. However, PHB1 EC-KO mice displayed higher insulin sensitivity and increased glucose clearance when fed a high-fat diet. We demonstrate that the efficacy of LCFA deposition by adipocytes is decreased by PHB1 EC-KO, in particular in BAT. Consistent with that, EC-KO mice have a defect in clearing triglycerides from systemic circulation. Free fatty acid release upon lipolysis induction was also found to be reduced in PHB1 EC-KO mice. Our results demonstrate that PHB1 in endothelial cells regulates bidirectional LCFA transport and thereby suppresses glucose utilization.
Collapse
|
27
|
Fatty acid translocase: a culprit of lipid metabolism dysfunction in disease. IMMUNOMETABOLISM 2022; 4:e00001. [PMID: 35991116 PMCID: PMC9380421 DOI: 10.1097/in9.0000000000000001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
Dysregulation of lipid deposition into and mobilization from white adipose tissue (WAT) underlies various diseases. Long-chain fatty acids (LCFA) and cholesterol trafficking in and out of adipocytes is a process relying on transporters shuttling lipids from the plasma membrane (PM) to lipid droplets (LD). CD36 is the fatty acid translocase (FAT) that transports LCFA and cholesterol across the PM. Interactions of CD36 with proteins PHB1, ANX2, and CAV1 mediate intercellular lipid transport between adipocytes, hematopoietic, epithelial, and endothelial cells. Intracellularly, the FAT complex has been found to regulate LCFA trafficking between the PM and LD. This process is regulated by CD36 glycosylation and S-acylation, as well as by post-translational modifications of PHB1 and ANX2, which determine both protein–protein interactions and the cellular localization of the complex. Changes in extracellular and intracellular LCFA levels have been found to induce the post-translational modifications and the function of the FAT complex in lipid uptake and mobilization. The role of the CD36/PHB1/ANX2 complex may span beyond lipid trafficking. The requirement of PHB1 for mitochondrial oxidative metabolism in brown adipocytes has been revealed. Cancer cells which take advantage of lipids mobilized by adipocytes and oxidized in leukocytes are indirectly affected by the function of FAT complex in other tissues. The direct importance of CD36 interaction with PHB1/and ANX2 in cancer cells remains to be established. This review highlights the multifaceted roles of the FAT complex in systemic lipid trafficking and discuss it as a potential target in metabolic disease and cancer.
Collapse
|
28
|
Latorre J, Aroca A, Fernández-Real JM, Romero LC, Moreno-Navarrete JM. The Combined Partial Knockdown of CBS and MPST Genes Induces Inflammation, Impairs Adipocyte Function-Related Gene Expression and Disrupts Protein Persulfidation in Human Adipocytes. Antioxidants (Basel) 2022; 11:antiox11061095. [PMID: 35739994 PMCID: PMC9220337 DOI: 10.3390/antiox11061095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Recent studies in mice and humans demonstrated the relevance of H2S synthesising enzymes, such as CTH, CBS, and MPST, in the physiology of adipose tissue and the differentiation of preadipocyte into adipocytes. Here, our objective was to investigate the combined role of CTH, CBS, and MPST in the preservation of adipocyte protein persulfidation and adipogenesis. Combined partial CTH, CBS, and MPST gene knockdown was achieved treating fully human adipocytes with siRNAs against these transcripts (siRNA_MIX). Adipocyte protein persulfidation was analyzed using label-free quantitative mass spectrometry coupled with a dimedone-switch method for protein labeling and purification. Proteomic analysis quantified 216 proteins with statistically different levels of persulfidation in KD cells compared to control adipocytes. In fully differentiated adipocytes, CBS and MPST mRNA and protein levels were abundant, while CTH expression was very low. It is noteworthy that siRNA_MIX administration resulted in a significant decrease in CBS and MPST expression, without impacting on CTH. The combined partial knockdown of the CBS and MPST genes resulted in reduced cellular sulfide levels in parallel to decreased expression of relevant genes for adipocyte biology, including adipogenesis, mitochondrial biogenesis, and lipogenesis, but increased proinflammatory- and senescence-related genes. It should be noted that the combined partial knockdown of CBS and MPST genes also led to a significant disruption in the persulfidation pattern of the adipocyte proteins. Although among the less persulfidated proteins, we identified several relevant proteins for adipocyte adipogenesis and function, among the most persulfidated, key mediators of adipocyte inflammation and dysfunction as well as some proteins that might play a positive role in adipogenesis were found. In conclusion, the current study indicates that the combined partial elimination of CBS and MPST (but not CTH) in adipocytes affects the expression of genes related to the maintenance of adipocyte function and promotes inflammation, possibly by altering the pattern of protein persulfidation in these cells, suggesting that these enzymes were required for the functional maintenance of adipocytes.
Collapse
Affiliation(s)
- Jessica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones and Universidad de Sevilla, 41092 Seville, Spain; (A.A.); (L.C.R.)
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, Universitat de Girona, 17003 Girona, Spain
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones and Universidad de Sevilla, 41092 Seville, Spain; (A.A.); (L.C.R.)
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-872-987087 (ext. 70)
| |
Collapse
|
29
|
Bioinformatics study of the potential therapeutic effects of ginsenoside Rf in reversing nonalcoholic fatty liver disease. Biomed Pharmacother 2022; 149:112879. [PMID: 35358801 DOI: 10.1016/j.biopha.2022.112879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/12/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Ginsenoside Rf, a tetracyclic triterpenoid only present in Panax ginseng, has been proven to relieve lipid metabolism and inflammatory reactions, which can be a potential treatment for nonalcoholic fatty liver disease (NAFLD). Therefore, this study aimed to reveal the underlying mechanisms of ginsenoside Rf in the treatment of early-stage NAFLD (NAFL) by using a bioinformatics method and biological experiments. METHODS Target genes associated with NAFL were screened from the Gene Expression Omnibus (GEO) database, a database repository of high-throughput gene expression data and hybridization arrays, chips, and microarrays. Subsequently, gene set enrichment analysis was performed by using Gene Ontology enrichment analysis tool. Then, the binding capacity between ginsenoside Rf and NAFL-related targets was evaluated by molecular docking. Finally, the FFA-induced HepG2 cell model treated with ginsenoside Rf was adopted to verify the effect of ginsenoside Rf and the related mechanisms. RESULTS There were 41 common differentially expressed genes in the GEO dataset. Gene Ontology and Reactome pathway enrichment analysis of the differentially expressed genes showed that many pathways could be related to the pathogenesis of NAFL, including those participating in the cytokine-mediated signaling pathway, G protein-coupled receptor signaling pathway, and response to lipopolysaccharide. Finally, the qRT-PCR analysis results indicated that ginsenoside Rf therapy could ameliorate the transcription of ANXA2, BAZ1A, DNMT3L and MMP9. CONCLUSION Our research discovered the relevant mechanisms and basic pharmacological effects of ginsenoside Rf in the treatment of NAFL. These results might facilitate the development of ginsenoside Rf as an alternative medication for NAFL.
Collapse
|
30
|
Ioannidou A, Fisher RM, Hagberg CE. The multifaceted roles of the adipose tissue vasculature. Obes Rev 2022; 23:e13403. [PMID: 34866318 DOI: 10.1111/obr.13403] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/30/2022]
Abstract
The prevalence of obesity and its associated pathologies continue to increase, which has led to a renewed interest in our major weight-regulating organ, the white adipose tissue. It has become clear that its development, expansion, and physiological function depend on proper crosstalk between each of its cellular constituents, with a central role for the vascular endothelium lining the blood vessels. Although first considered a mere barrier, the endothelium has emerged as a dynamic unit modulating many critical adipose tissue functions. It not only oversees the uptake of all nutrients to be stored in the adipocytes but also provides an important growth niche for adipocyte progenitors and regulates the expandability of the tissue during overfeeding and obesity. In this review, we describe the reciprocal relationship between endothelial cells, adipocytes, and obesity. We present recent studies that support an important role for endothelial cells as central mediators of many of the physiological and pathological functions of the adipose tissue and highlight several unknown aspects of adipose tissue vascular biology. This new perspective could present exciting opportunities to develop new therapeutic approaches against obesity-related pathologies and is thus of great interest in our increasingly obese society.
Collapse
Affiliation(s)
- Anna Ioannidou
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Rachel M Fisher
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
31
|
Naserkheil M, Mehrban H, Lee D, Park MN. Genome-wide Association Study for Carcass Primal Cut Yields Using Single-step Bayesian Approach in Hanwoo Cattle. Front Genet 2021; 12:752424. [PMID: 34899840 PMCID: PMC8662546 DOI: 10.3389/fgene.2021.752424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
The importance of meat and carcass quality is growing in beef cattle production to meet both producer and consumer demands. Primal cut yields, which reflect the body compositions of carcass, could determine the carcass grade and, consequently, command premium prices. Despite its importance, there have been few genome-wide association studies on these traits. This study aimed to identify genomic regions and putative candidate genes related to 10 primal cut traits, including tenderloin, sirloin, striploin, chuck, brisket, top round, bottom round, shank, flank, and rib in Hanwoo cattle using a single-step Bayesian regression (ssBR) approach. After genomic data quality control, 43,987 SNPs from 3,745 genotyped animals were available, of which 3,467 had phenotypic records for the analyzed traits. A total of 16 significant genomic regions (1-Mb window) were identified, of which five large-effect quantitative trait loci (QTLs) located on chromosomes 6 at 38–39 Mb, 11 at 21–22 Mb, 14 at 6–7 Mb and 26–27 Mb, and 19 at 26–27 Mb were associated with more than one trait, while the remaining 11 QTLs were trait-specific. These significant regions were harbored by 154 genes, among which TOX, FAM184B, SPP1, IBSP, PKD2, SDCBP, PIGY, LCORL, NCAPG, and ABCG2 were noteworthy. Enrichment analysis revealed biological processes and functional terms involved in growth and lipid metabolism, such as growth (GO:0040007), muscle structure development (GO:0061061), skeletal system development (GO:0001501), animal organ development (GO:0048513), lipid metabolic process (GO:0006629), response to lipid (GO:0033993), metabolic pathways (bta01100), focal adhesion (bta04510), ECM–receptor interaction (bta04512), fat digestion and absorption (bta04975), and Rap1 signaling pathway (bta04015) being the most significant for the carcass primal cut traits. Thus, identification of quantitative trait loci regions and plausible candidate genes will aid in a better understanding of the genetic and biological mechanisms regulating carcass primal cut yields.
Collapse
Affiliation(s)
- Masoumeh Naserkheil
- Animal Breeding and Genetics Division, National Institute of Animal Science, Cheonan-si, South Korea
| | - Hossein Mehrban
- Department of Animal Science, Shahrekord University, Shahrekord, Iran
| | - Deukmin Lee
- Department of Animal Life and Environment Sciences, Hankyong National University, Anseong-si, South Korea
| | - Mi Na Park
- Animal Breeding and Genetics Division, National Institute of Animal Science, Cheonan-si, South Korea
| |
Collapse
|
32
|
Urso CJ, Zhou H. Role of CD36 in Palmitic Acid Lipotoxicity in Neuro-2a Neuroblastoma Cells. Biomolecules 2021; 11:1567. [PMID: 34827565 PMCID: PMC8615720 DOI: 10.3390/biom11111567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023] Open
Abstract
Elevated level of palmitic acid (PA), a long-chain saturated fatty acid (SFA), is lipotoxic to many different types of cells including Neuro-2a (N2a) neuroblastoma cells. CD36 is a multifunctional membrane glycoprotein that acts as a fatty acid translocase (FAT) facilitating the transport of long-chain free fatty acids (FFAs) into cells, serves a fatty acid (FA) sensing function in areas including taste buds and the proximal gut, and acts as a scavenger receptor that binds to many ligands, including FAs, collagen, oxidized low-density lipoproteins, and anionic phospholipids. However, the involvement of CD36 in FA uptake and PA lipotoxicity in N2a cells remains unclear. In this study, we examined FA uptake in BSA- and PA-treated N2a cells and investigated the involvement of CD36 in FA uptake and PA lipotoxicity in N2a cells. Our data showed that PA treatment promoted FA uptake in N2a cells, and that treatment with sulfo-N-succinimidyl oleate (SSO), a CD36 inhibitor, significantly decreased FA uptake in BSA- and PA-treated N2a cells, and ameliorated PA-induced decrease of cell viability, decrease of diploid cells, and increase of tetraploid cells. We also found that CD36 knockdown significantly decreased FA uptake in both BSA- and PA-treated cells as compared to their corresponding wild-type controls, and dramatically attenuated PA-induced cell cycle defects in N2a cells. Our data suggest that CD36 may play a critical role in FA uptake and PA lipotoxicity in N2a cells. CD36 may therefore represent a regulatory target against pathologies caused by excess FAs.
Collapse
Affiliation(s)
| | - Heping Zhou
- Department of Biological Sciences, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA;
| |
Collapse
|
33
|
Gao Z, Lu A, Daquinag AC, Yu Y, Huard M, Tseng C, Gao X, Huard J, Kolonin MG. Partial Ablation of Non-Myogenic Progenitor Cells as a Therapeutic Approach to Duchenne Muscular Dystrophy. Biomolecules 2021; 11:biom11101519. [PMID: 34680151 PMCID: PMC8534118 DOI: 10.3390/biom11101519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD), caused by the loss of dystrophin, remains incurable. Reduction in muscle regeneration with DMD is associated with the accumulation of fibroadipogenic progenitors (FAPs) differentiating into myofibroblasts and leading to a buildup of the collagenous tissue aggravating DMD pathogenesis. Mesenchymal stromal cells (MSCs) expressing platelet-derived growth factor receptors (PDGFRs) are activated in muscle during DMD progression and give rise to FAPs promoting DMD progression. Here, we hypothesized that muscle dysfunction in DMD could be delayed via genetic or pharmacologic depletion of MSC-derived FAPs. In this paper, we test this hypothesis in dystrophin-deficient mdx mice. To reduce fibro/adipose infiltration and potentiate muscle progenitor cells (MPCs), we used a model for inducible genetic ablation of proliferating MSCs via a suicide transgene, viral thymidine kinase (TK), expressed under the Pdgfrb promoter. We also tested if MSCs from fat tissue, the adipose stromal cells (ASCs), contribute to FAPs and could be targeted in DMD. Pharmacological ablation was performed with a hunter-killer peptide D-CAN targeting ASCs. MSC depletion with these approaches resulted in increased endurance, measured based on treadmill running, as well as grip strength, without significantly affecting fibrosis. Although more research is needed, our results suggest that depletion of pathogenic MSCs mitigates muscle damage and delays the loss of muscle function in mouse models of DMD.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Proliferation/genetics
- Disease Models, Animal
- Dystrophin/genetics
- Humans
- Mesenchymal Stem Cells/metabolism
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Myofibroblasts/cytology
- Myofibroblasts/metabolism
- Promoter Regions, Genetic/genetics
- Receptors, Platelet-Derived Growth Factor/genetics
- Stem Cells/cytology
- Stem Cells/metabolism
Collapse
Affiliation(s)
- Zhanguo Gao
- Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (Z.G.); (A.C.D.); (Y.Y.)
| | - Aiping Lu
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (A.L.); (M.H.); (X.G.)
| | - Alexes C. Daquinag
- Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (Z.G.); (A.C.D.); (Y.Y.)
| | - Yongmei Yu
- Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (Z.G.); (A.C.D.); (Y.Y.)
| | - Matthieu Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (A.L.); (M.H.); (X.G.)
| | - Chieh Tseng
- M.D. Anderson Cancer Center, The University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Xueqin Gao
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (A.L.); (M.H.); (X.G.)
| | - Johnny Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (A.L.); (M.H.); (X.G.)
- Correspondence: (J.H.); (M.G.K.); Tel.: +970-479-1595 (J.H.); +713-500-3146 (M.G.K.)
| | - Mikhail G. Kolonin
- Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (Z.G.); (A.C.D.); (Y.Y.)
- Correspondence: (J.H.); (M.G.K.); Tel.: +970-479-1595 (J.H.); +713-500-3146 (M.G.K.)
| |
Collapse
|
34
|
Rocha MR, Morgado-Diaz JA. Epithelial-Mesenchymal Transition in colorectal cancer: Annexin A2 is caught in the crosshairs. J Cell Mol Med 2021; 25:10774-10777. [PMID: 34626069 PMCID: PMC8581319 DOI: 10.1111/jcmm.16962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Murilo Ramos Rocha
- Grupo de Estrutura e Dinâmica Celular, Programa de Oncobiologia Celular e Molecular, Instituto Nacional de Câncer, Rio de Janeiro, Brasil
| | - Jose Andres Morgado-Diaz
- Grupo de Estrutura e Dinâmica Celular, Programa de Oncobiologia Celular e Molecular, Instituto Nacional de Câncer, Rio de Janeiro, Brasil
| |
Collapse
|
35
|
Abstract
Despite the advances in immunotherapies, effective against some types of
cancer, progression of several types of carcinoma remains uncurable. Recent
studies indicate that changes in lipid metabolism, aggravated by obesity,
disable anti-tumor immune response. In the July issue of
Immunity, Xu et al. use mouse models to demonstrate that
certain types of oxidized lipids, transported by CD36, suppress the capacity of
CD8+ T lymphocytes to secrete cytotoxic molecules. This study
sheds light on how lipid modifications in the tumor microenvironment make killer
T cells incapable of inhibiting tumor growth.
Collapse
|
36
|
Gao Z, Daquinag AC, Fussell C, Djehal A, Désaubry L, Kolonin MG. Prohibitin Inactivation in Adipocytes Results in Reduced Lipid Metabolism and Adaptive Thermogenesis Impairment. Diabetes 2021; 70:2204-2212. [PMID: 34257070 PMCID: PMC8576510 DOI: 10.2337/db21-0094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022]
Abstract
Prohibitin-1 (PHB) is a multifunctional protein previously reported to be important for adipocyte function. PHB is expressed on the surface of adipose cells, where it interacts with a long-chain fatty acid (LCFA) transporter. Here, we show that mice lacking PHB in adipocytes (PHB adipocyte [Ad]-knockout [KO]) have a defect in fat tissue accumulation despite having larger lipid droplets in adipocytes due to reduced lipolysis. Although PHB Ad-KO mice do not display glucose intolerance, they are insulin resistant. We show that PHB Ad-KO mice are lipid intolerant due to a decreased capacity of adipocytes for LCFA uptake. Instead, PHB Ad-KO mice have increased expression of GLUT1 in various tissues and use glucose as a preferred energy source. We demonstrate that PHB Ad-KO mice have defective brown adipose tissue, are intolerant to cold, and display reduced basal energy expenditure. Systemic repercussions of PHB inactivation in adipocytes were observed in both males and females. Consistent with lower cellular mitochondrial content and reduced uncoupling protein 1 protein expression, brown adipocytes lacking PHB display decreased proton leak and switch from aerobic metabolism to glycolysis. Treatment of differentiating brown adipocytes with small molecules targeting PHB suppressed mitochondrial respiration and uncoupling. Our results demonstrate that PHB in adipocytes is essential for normal fatty acid uptake, oxidative metabolism, and adaptive thermogenesis. We conclude that PHB inhibition could be investigated as an approach to altering energy substrate utilization.
Collapse
Affiliation(s)
- Zhanguo Gao
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | - Alexes C Daquinag
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | - Cale Fussell
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | - Amel Djehal
- Regenerative Nanomedicine Laboratory (UMR1260), Faculty of Medicine, Fédération de Médecine Translationnelle, INSERM-University of Strasbourg, Strasbourg, France
- Superior National School Biotechnology Taoufik Khaznadar, Constantine, Algeria
| | - Laurent Désaubry
- Regenerative Nanomedicine Laboratory (UMR1260), Faculty of Medicine, Fédération de Médecine Translationnelle, INSERM-University of Strasbourg, Strasbourg, France
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| |
Collapse
|
37
|
Han S, Jung M, Kim AS, Lee DY, Cha BH, Putnam CW, Lim KS, Bull DA, Won YW. Peptide Adjuvant to Invigorate Cytolytic Activity of NK Cells in an Obese Mouse Cancer Model. Pharmaceutics 2021; 13:pharmaceutics13081279. [PMID: 34452238 PMCID: PMC8401452 DOI: 10.3390/pharmaceutics13081279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022] Open
Abstract
Cancer patients who are overweight compared to those with normal body weight have obesity-associated alterations of natural killer (NK) cells, characterized by poor cytotoxicity, slow proliferation, and inadequate anti-cancer activity. Concomitantly, prohibitin overexpressed by cancer cells elevates glucose metabolism, rendering the tumor microenvironment (TME) more tumor-favorable, and leading to malfunction of immune cells present in the TME. These changes cause vicious cycles of tumor growth. Adoptive immunotherapy has emerged as a promising option for cancer patients; however, obesity-related alterations in the TME allow the tumor to bypass immune surveillance and to down-regulate the activity of adoptively transferred NK cells. We hypothesized that inhibiting the prohibitin signaling pathway in an obese model would reduce glucose metabolism of cancer cells, thereby changing the TME to a pro-immune microenvironment and restoring the cytolytic activity of NK cells. Priming tumor cells with an inhibitory the prohibitin-binding peptide (PBP) enhances cytokine secretion and augments the cytolytic activity of adoptively transferred NK cells. NK cells harvested from the PBP-primed tumors exhibit multiple markers associated with the effector function of active NK cells. Our findings suggest that PBP has the potential as an adjuvant to enhance the cytolytic activity of adoptively transferred NK cells in cancer patients with obesity.
Collapse
Affiliation(s)
- Seungmin Han
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA; (S.H.); (M.J.); (A.S.K.); (D.Y.L.); (B.-H.C.); (C.W.P.); (D.A.B.)
| | - Minjin Jung
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA; (S.H.); (M.J.); (A.S.K.); (D.Y.L.); (B.-H.C.); (C.W.P.); (D.A.B.)
| | - Angela S. Kim
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA; (S.H.); (M.J.); (A.S.K.); (D.Y.L.); (B.-H.C.); (C.W.P.); (D.A.B.)
| | - Daniel Y. Lee
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA; (S.H.); (M.J.); (A.S.K.); (D.Y.L.); (B.-H.C.); (C.W.P.); (D.A.B.)
| | - Byung-Hyun Cha
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA; (S.H.); (M.J.); (A.S.K.); (D.Y.L.); (B.-H.C.); (C.W.P.); (D.A.B.)
| | - Charles W. Putnam
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA; (S.H.); (M.J.); (A.S.K.); (D.Y.L.); (B.-H.C.); (C.W.P.); (D.A.B.)
| | - Kwang Suk Lim
- Interdisciplinary Program in Biohealth-Machinery Convergence Engineering, Department of Biotechnology and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Korea;
| | - David A. Bull
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA; (S.H.); (M.J.); (A.S.K.); (D.Y.L.); (B.-H.C.); (C.W.P.); (D.A.B.)
| | - Young-Wook Won
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA; (S.H.); (M.J.); (A.S.K.); (D.Y.L.); (B.-H.C.); (C.W.P.); (D.A.B.)
- Correspondence:
| |
Collapse
|
38
|
Daquinag AC, Gao Z, Fussell C, Immaraj L, Pasqualini R, Arap W, Akimzhanov AM, Febbraio M, Kolonin MG. Fatty acid mobilization from adipose tissue is mediated by CD36 post-translational modifications and intracellular trafficking. JCI Insight 2021; 6:e147057. [PMID: 34314388 PMCID: PMC8492349 DOI: 10.1172/jci.insight.147057] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
The mechanism controlling long-chain fatty acid (LCFA) mobilization from adipose tissue is not well understood. Here, we investigated how the LCFA transporter CD36 regulates this process. By using tissue-specific KO mouse models, we showed that CD36 in adipocytes and endothelial cells mediated both LCFA deposition into and release from adipose tissue. We demonstrated the role of adipocytic and endothelial CD36 in promoting tumor growth and chemoresistance conferred by adipose tissue–derived LCFAs. We showed that dynamic cysteine S-acylation of CD36 in adipocytes, endothelial cells, and cancer cells mediated intercellular LCFA transport. We demonstrated that lipolysis induction in adipocytes triggered CD36 deacylation and deglycosylation, as well as its dissociation from interacting proteins, prohibitin-1 (PHB) and annexin 2 (ANX2). Our data indicate that lipolysis triggers caveolar endocytosis and translocation of CD36 from the cell membrane to lipid droplets. This study suggests a mechanism for both outside-in and inside-out cellular LCFA transport regulated by CD36 S-acylation and its interactions with PHB and ANX2.
Collapse
Affiliation(s)
- Alexes C Daquinag
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, United States of America
| | - Zhanguo Gao
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, United States of America
| | - Cale Fussell
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, United States of America
| | - Linnet Immaraj
- Department of Dentistry, University of Alberta, Edmonton, Canada
| | - Renata Pasqualini
- Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, United States of America
| | - Wadih Arap
- Department of Medicine, Rutgers New Jersey Medical School, Newark, United States of America
| | - Askar M Akimzhanov
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, United States of America
| | - Maria Febbraio
- Department of Dentistry, University of Alberta, Edmonton, Canada
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, United States of America
| |
Collapse
|
39
|
da Silva Rosa SC, Liu M, Sweeney G. Adiponectin Synthesis, Secretion and Extravasation from Circulation to Interstitial Space. Physiology (Bethesda) 2021; 36:134-149. [PMID: 33904786 PMCID: PMC8461789 DOI: 10.1152/physiol.00031.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adiponectin, an adipokine that circulates as multiple multimeric complexes at high levels in serum, has antidiabetic, anti-inflammatory, antiatherogenic, and cardioprotective properties. Understanding the mechanisms regulating adiponectin's physiological effects is likely to provide critical insight into the development of adiponectin-based therapeutics to treat various metabolic-related diseases. In this review, we summarize our current understanding on adiponectin action in its various target tissues and in cellular models. We also focus on recent advances in two particular regulatory aspects; namely, the regulation of adiponectin gene expression, multimerization, and secretion, as well as extravasation of circulating adiponectin to the interstitial space and its degradation. Finally, we discuss some potential therapeutic approaches using adiponectin as a target and the current challenges facing adiponectin-based therapeutic interventions.
Collapse
Affiliation(s)
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Grewal T, Rentero C, Enrich C, Wahba M, Raabe CA, Rescher U. Annexin Animal Models-From Fundamental Principles to Translational Research. Int J Mol Sci 2021; 22:ijms22073439. [PMID: 33810523 PMCID: PMC8037771 DOI: 10.3390/ijms22073439] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Routine manipulation of the mouse genome has become a landmark in biomedical research. Traits that are only associated with advanced developmental stages can now be investigated within a living organism, and the in vivo analysis of corresponding phenotypes and functions advances the translation into the clinical setting. The annexins, a family of closely related calcium (Ca2+)- and lipid-binding proteins, are found at various intra- and extracellular locations, and interact with a broad range of membrane lipids and proteins. Their impacts on cellular functions has been extensively assessed in vitro, yet annexin-deficient mouse models generally develop normally and do not display obvious phenotypes. Only in recent years, studies examining genetically modified annexin mouse models which were exposed to stress conditions mimicking human disease often revealed striking phenotypes. This review is the first comprehensive overview of annexin-related research using animal models and their exciting future use for relevant issues in biology and experimental medicine.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Mohamed Wahba
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Carsten A. Raabe
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
| | - Ursula Rescher
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| |
Collapse
|
41
|
Méndez-Barbero N, Gutiérrez-Muñoz C, Blázquez-Serra R, Martín-Ventura JL, Blanco-Colio LM. Annexins: Involvement in cholesterol homeostasis, inflammatory response and atherosclerosis. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2021; 33:206-216. [PMID: 33622609 DOI: 10.1016/j.arteri.2020.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 11/27/2022]
Abstract
The annexin superfamily consists of 12 proteins with a highly structural homology that binds to phospholipids depending on the availability of Ca2+-dependent. Different studies of overexpression, inhibition, or using recombinant proteins have linked the main function of these proteins to their dynamic and reversible binding to membranes. Annexins are found in multiple cellular compartments, regulating different functions, such as membrane trafficking, anchoring to the cell cytoskeleton, ion channel regulation, as well as pro- or anti-inflammatory and anticoagulant activities. The use of animals deficient in any of these annexins has established their possible functions in vivo, demonstrating that annexins can participate in relevant functions independent of Ca2+ signalling. This review will focus mainly on the role of different annexins in the pathological vascular remodelling that underlies the formation of the atherosclerotic lesion, as well as in the control of cholesterol homeostasis.
Collapse
Affiliation(s)
- Nerea Méndez-Barbero
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - Carmen Gutiérrez-Muñoz
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | | | - José Luis Martín-Ventura
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - Luis Miguel Blanco-Colio
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España.
| |
Collapse
|
42
|
Abumrad NA, Cabodevilla AG, Samovski D, Pietka T, Basu D, Goldberg IJ. Endothelial Cell Receptors in Tissue Lipid Uptake and Metabolism. Circ Res 2021; 128:433-450. [PMID: 33539224 DOI: 10.1161/circresaha.120.318003] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipid uptake and metabolism are central to the function of organs such as heart, skeletal muscle, and adipose tissue. Although most heart energy derives from fatty acids (FAs), excess lipid accumulation can cause cardiomyopathy. Similarly, high delivery of cholesterol can initiate coronary artery atherosclerosis. Hearts and arteries-unlike liver and adrenals-have nonfenestrated capillaries and lipid accumulation in both health and disease requires lipid movement from the circulation across the endothelial barrier. This review summarizes recent in vitro and in vivo findings on the importance of endothelial cell receptors and uptake pathways in regulating FAs and cholesterol uptake in normal physiology and cardiovascular disease. We highlight clinical and experimental data on the roles of ECs in lipid supply to tissues, heart, and arterial wall in particular, and how this affects organ metabolism and function. Models of FA uptake into ECs suggest that receptor-mediated uptake predominates at low FA concentrations, such as during fasting, whereas FA uptake during lipolysis of chylomicrons may involve paracellular movement. Similarly, in the setting of an intact arterial endothelial layer, recent and historic data support a role for receptor-mediated processes in the movement of lipoproteins into the subarterial space. We conclude with thoughts on the need to better understand endothelial lipid transfer for fuller comprehension of the pathophysiology of hyperlipidemia, and lipotoxic diseases such as some forms of cardiomyopathy and atherosclerosis.
Collapse
Affiliation(s)
- Nada A Abumrad
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| | - Dmitri Samovski
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Terri Pietka
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| |
Collapse
|
43
|
Daquinag AC, Gao Z, Fussell C, Sun K, Kolonin MG. Glycosaminoglycan Modification of Decorin Depends on MMP14 Activity and Regulates Collagen Assembly. Cells 2020; 9:cells9122646. [PMID: 33317052 PMCID: PMC7764107 DOI: 10.3390/cells9122646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Proper processing of collagens COL1 and COL6 is required for normal function of adipose tissue and skeletal muscle. Proteoglycan decorin (DCN) regulates collagen fiber formation. The amino-terminus of DCN is modified with an O-linked glycosaminoglycan (GAG), the function of which has remained unclear. Previously, non-glycanated DCN (ngDCN) was identified as a marker of adipose stromal cells. Here, we identify MMP14 as the metalloprotease that cleaves DCN to generate ngDCN. We demonstrate that mice ubiquitously lacking DCN GAG (ngDCN mice) have reduced matrix rigidity, enlarged adipocytes, fragile skin, as well as skeletal muscle hypotrophy, fibrosis, and dysfunction. Our results indicate that DCN deglycanation results in reduced intracellular DCN—collagen binding and increased production of truncated COL6 chains, leading to aberrant procollagen processing and extracellular localization. This study reveals that the GAG of DCN functions to regulate collagen assembly in adipose tissue and skeletal muscle and uncovers a new mechanism of matrix dysfunction in obesity and aging.
Collapse
|
44
|
Hiradate R, Khalil IA, Matsuda A, Sasaki M, Hida K, Harashima H. A novel dual-targeted rosiglitazone-loaded nanoparticle for the prevention of diet-induced obesity via the browning of white adipose tissue. J Control Release 2020; 329:665-675. [PMID: 33038450 DOI: 10.1016/j.jconrel.2020.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/20/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Adipose tissue in the body is classified as white adipose tissue (WAT); a fat-accumulating tissue, or brown adipose tissue (BAT); an energy-dissipating tissue. Transforming WAT-to-BAT (browning) is a promising strategy for the treatment of obesity, since it would lead to an increase in energy expenditure. Rosiglitazone (Rosi), an agonist of the peroxisome proliferator-activated receptor γ (PPARγ), is known to be a potent browning inducer in subcutaneous WAT. However, the effectiveness of Rosi has been quite limited because of several off-target effects. The objective of this study was to develop locally administered Rosi-loaded nanoparticles (Rs-NPs) with the ability to target adipocytes to achieve the adipose tissue-specific activation of PPARγ, thus causing the browning of WAT. We prepared dual targeted Rs-NPs that were modified with a specific peptide that targets prohibitin that are expressed in adipocytes, and a cell penetrating peptide for enhancing cellular uptake and controlling intracellular trafficking. The Rs-NPs modified with a single ligand were internalized into mature adipocytes and induced browning activity in vitro but they failed to significantly affect the body weight of the diet-induced obese mice model. The dual-targeted Rs-NPs induced a strong browning activity, both in vitro and in vivo, and successfully inhibited the progression of obesity, as evidenced by the shrinkage of hypertrophied adipocytes without any detectable systemic adverse effects. Meanwhile, free Rosi aggravated hepatic steatosis and did not cause adipose tissue browning nor the inhibition of body weight gain. We conclude that the increased energy expenditure via adipose tissue browning using dual-targeted Rs-NP is a promising strategy for the treatment of obesity and its related metabolic syndrome.
Collapse
Affiliation(s)
- Ryu Hiradate
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Ikramy A Khalil
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Aya Matsuda
- Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Mika Sasaki
- Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Hideyoshi Harashima
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| |
Collapse
|
45
|
Onogi Y, Khalil AEMM, Ussar S. Identification and characterization of adipose surface epitopes. Biochem J 2020; 477:2509-2541. [PMID: 32648930 PMCID: PMC7360119 DOI: 10.1042/bcj20190462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Adipose tissue is a central regulator of metabolism and an important pharmacological target to treat the metabolic consequences of obesity, such as insulin resistance and dyslipidemia. Among the various cellular compartments, the adipocyte cell surface is especially appealing as a drug target as it contains various proteins that when activated or inhibited promote adipocyte health, change its endocrine function and eventually maintain or restore whole-body insulin sensitivity. In addition, cell surface proteins are readily accessible by various drug classes. However, targeting individual cell surface proteins in adipocytes has been difficult due to important functions of these proteins outside adipose tissue, raising various safety concerns. Thus, one of the biggest challenges is the lack of adipose selective surface proteins and/or targeting reagents. Here, we discuss several receptor families with an important function in adipogenesis and mature adipocytes to highlight the complexity at the cell surface and illustrate the problems with identifying adipose selective proteins. We then discuss that, while no unique adipocyte surface protein might exist, how splicing, posttranslational modifications as well as protein/protein interactions can create enormous diversity at the cell surface that vastly expands the space of potentially unique epitopes and how these selective epitopes can be identified and targeted.
Collapse
Affiliation(s)
- Yasuhiro Onogi
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ahmed Elagamy Mohamed Mahmoud Khalil
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Siegfried Ussar
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
46
|
Banerjee A, Sharma D, Trivedi R, Singh J. Treatment of insulin resistance in obesity-associated type 2 diabetes mellitus through adiponectin gene therapy. Int J Pharm 2020; 583:119357. [PMID: 32334065 DOI: 10.1016/j.ijpharm.2020.119357] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/13/2020] [Accepted: 04/19/2020] [Indexed: 12/30/2022]
Abstract
Global rise in obesity-associated type 2 diabetes mellitus (T2DM) has led to a major healthcare crisis. Development of efficient treatments to treat the underlying chronic inflammation in obesity-associated T2DM, is an unmet medical need. To this end, we have developed a plasmid adiponectin (pADN) based nanomedicine for the treatment of insulin resistance in type 2 diabetes mellitus. Adiponectin is a potent anti-inflammatory/anti-diabetic adipokine, which is downregulated in obesity. In this study, nanomicelles comprising chitosan conjugated to oleic acid and adipose homing peptide (AHP) were developed to deliver pADN to adipocytes. Cationic chitosan-oleic-AHP micelles were 112 nm in size, encapsulated 93% of pADN and protected gene cargo from DNase I mediated enzymatic degradation. In vitro, the nanomicellar formulation significantly increased adiponectin production compared to free plasmid as well as standard transfecting agent FuGENE®HD. Single dose subcutaneous administration of pADN-chitosan-oleic-AHP to obese-diabetic rats, resulted in improved insulin sensitivity for up to 6 weeks, which matched the glucose disposal ability of healthy rats. Serum adiponectin level in pADN-chitosan-oleic-AHP treated rats was comparable to healthy rats for up to 3 weeks post treatment. Overall, the results indicate that pADN-chitosan-oleic-AHP based therapy is a promising treatment approach for obesity-associated T2DM.
Collapse
Affiliation(s)
- Amrita Banerjee
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA.
| | - Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Riddhi Trivedi
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA.
| |
Collapse
|
47
|
Jo CS, Park HI, Jung HJ, Park JI, Lee JE, Myung CH, Hwang JS. A novel function of Prohibitin on melanosome transport in melanocytes. Theranostics 2020; 10:3880-3891. [PMID: 32226526 PMCID: PMC7086355 DOI: 10.7150/thno.41383] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/13/2020] [Indexed: 01/26/2023] Open
Abstract
Prohibitin (PHB, also known as PHB1 or BAP32), is a highly conserved 31kDa protein that expressed in many cellular compartments, such as mitochondria, nucleus, cytosol, and plasma membrane, and plays roles in regulating the transcription of genes, apoptosis, and mitochondrial biogenesis. There is a report that Prohibitin expression is required for the stimulation of pigmentation by melanogenin. However, no studies have been published on the function of PHB in melanocytes, especially in melanosome transport. Methods: Immunofluorescence was performed to confirm the localization of PHB. siRNA transfections, Co-immunoprecipitation, western blotting and proximity ligation assay were performed to find binding state between proteins and demonstrate functions of PHB on melanosome transport. Results: PHB is located in the melanosome and perinuclear aggregation of melanosome is induced when expression of PHB is reduced with no influence on melanin contents. PHB binds directly to Rab27a and Mlph but not Myosin-Va. Rab27a and Mlph bind to specific domains of PHB. Reduced expression of PHB led to the impaired binding affinity between Rab27a and Mlph. Conclusion: PHB regulates melanosome transport by linking to Rab27a and Mlph in melanocytes. Targeting and regulating PHB not only manages pigmentation in melanocytes, but also controls hyperpigmentation in melanoma
Collapse
|
48
|
Piras C, Morittu VM, Spina AA, Soggiu A, Greco V, Ramé C, Briant E, Mellouk N, Tilocca B, Bonizzi L, Roncada P, Dupont J. Unraveling the Adipose Tissue Proteome of Transition Cows through Severe Negative Energy Balance. Animals (Basel) 2019; 9:E1013. [PMID: 31766506 PMCID: PMC6940989 DOI: 10.3390/ani9121013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 01/05/2023] Open
Abstract
Fat mobilization in high-yielding dairy cows during early lactation occurs to overcome negative energy balance (NEB), caused by insufficient feed intake and the concomitant increased nutritional requirements. For this reason, adipose tissue represents an essential organ for healthy and performant lactation. However, only a few data are known about adipose tissue proteome and its metabolic status during peripartum. The aim of this study was to analyze the differential proteomics profiles of subcutaneous adipose tissue belonging to cows with different NEB scores (low NEB and severe NEB). Both groups were analyzed at three different time points (one month before calving, one and sixteen weeks after calving) that were related to different levels and rates of adipose tissue mobilization. The dataset highlighted the differential expression of the same four key proteins (annexin A2, actin-related protein 10, glyceraldehyde-3-phosphate dehydrogenase, and fatty acid-binding protein) involved in lipid metabolism during all time points and of other 22 proteins typical of the other comparisons among remaining time points. The obtained dataset suggested that the individual variability in adipose tissue metabolism/mobilization/energy availability could be linked to the different outcomes in levels of energy balance and related physical complications among dairy cows during peripartum.
Collapse
Affiliation(s)
- Cristian Piras
- Department of Chemistry, University of Reading, Reading RG66AH, UK;
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Valeria Maria Morittu
- Department of Health Sciences, University Magna Graæcia, 88100 Catanzaro, Italy; (V.M.M.); (A.A.S.); (B.T.)
| | - Anna Antonella Spina
- Department of Health Sciences, University Magna Graæcia, 88100 Catanzaro, Italy; (V.M.M.); (A.A.S.); (B.T.)
| | - Alessio Soggiu
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Viviana Greco
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Christelle Ramé
- Department of Animal Physiology and Livestock Systems, French National Institute for Agricultural Research—INRA, F-37380 Nouzilly, France; (C.R.); (E.B.); (N.M.)
| | - Eric Briant
- Department of Animal Physiology and Livestock Systems, French National Institute for Agricultural Research—INRA, F-37380 Nouzilly, France; (C.R.); (E.B.); (N.M.)
| | - Namya Mellouk
- Department of Animal Physiology and Livestock Systems, French National Institute for Agricultural Research—INRA, F-37380 Nouzilly, France; (C.R.); (E.B.); (N.M.)
| | - Bruno Tilocca
- Department of Health Sciences, University Magna Graæcia, 88100 Catanzaro, Italy; (V.M.M.); (A.A.S.); (B.T.)
| | - Luigi Bonizzi
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Paola Roncada
- Department of Health Sciences, University Magna Graæcia, 88100 Catanzaro, Italy; (V.M.M.); (A.A.S.); (B.T.)
| | - Joëlle Dupont
- Department of Animal Physiology and Livestock Systems, French National Institute for Agricultural Research—INRA, F-37380 Nouzilly, France; (C.R.); (E.B.); (N.M.)
| |
Collapse
|
49
|
Bauknight DK, Osinski V, Dasa SSK, Nguyen AT, Marshall MA, Hartman J, Harms M, O’Mahony G, Boucher J, Klibanov AL, McNamara CA, Kelly KA. Importance of thorough tissue and cellular level characterization of targeted drugs in the evaluation of pharmacodynamic effects. PLoS One 2019; 14:e0224917. [PMID: 31725756 PMCID: PMC6855449 DOI: 10.1371/journal.pone.0224917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/24/2019] [Indexed: 12/31/2022] Open
Abstract
Targeted nanoparticle delivery is a promising strategy for increasing efficacy and limiting side effects of therapeutics. When designing a targeted liposomal formulation, the in vivo biodistribution of the particles must be characterized to determine the value of the targeting approach. Peroxisome proliferator-activated receptor (PPAR) agonists effectively treat metabolic syndrome by decreasing dyslipidemia and insulin resistance but side effects have limited their use, making them a class of compounds that could benefit from targeted liposomal delivery. The adipose targeting sequence peptide (ATS) could fit this role, as it has been shown to bind to adipose tissue endothelium and induce weight loss when delivered conjugated to a pro-apoptotic peptide. To date, however, a full assessment of ATS in vivo biodistribution has not been reported, leaving important unanswered questions regarding the exact mechanisms whereby ATS targeting enhances therapeutic efficacy. We designed this study to evaluate the biodistribution of ATS-conjugated liposomes loaded with the PPARα/γ dual agonist tesaglitazar in leptin-deficient ob/ob mice. The ATS-liposome biodistribution in adipose tissue and other organs was examined at the cellular and tissue level using microscopy, flow cytometry, and fluorescent molecular tomography. Changes in metabolic parameters and gene expression were measured by target and off-target tissue responses to the treatment. Unexpectedly, ATS targeting did not increase liposomal uptake in adipose relative to other tissues, but did increase uptake in the kidneys. Targeting also did not significantly alter metabolic parameters. Analysis of the liposome cellular distribution in the stromal vascular fraction with flow cytometry revealed high uptake by multiple cell types. Our findings highlight the need for thorough study of in vivo biodistribution when evaluating a targeted therapy.
Collapse
Affiliation(s)
- Dustin K. Bauknight
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America
- Cancer Center, University of Virginia, Charlottesville, VA, United States of America
| | - Victoria Osinski
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America
- Department of Pathology, University of Virginia, Charlottesville, VA, United States of America
| | - Siva Sai Krishna Dasa
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America
- Cancer Center, University of Virginia, Charlottesville, VA, United States of America
| | - Anh T. Nguyen
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America
| | - Melissa A. Marshall
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America
| | - Julia Hartman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America
| | - Matthew Harms
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Gavin O’Mahony
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jeremie Boucher
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Alexander L. Klibanov
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America
- Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, United States of America
| | - Coleen A. McNamara
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America
- Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, United States of America
| | - Kimberly A. Kelly
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America
- Cancer Center, University of Virginia, Charlottesville, VA, United States of America
- * E-mail:
| |
Collapse
|
50
|
Grewal T, Enrich C, Rentero C, Buechler C. Annexins in Adipose Tissue: Novel Players in Obesity. Int J Mol Sci 2019; 20:ijms20143449. [PMID: 31337068 PMCID: PMC6678658 DOI: 10.3390/ijms20143449] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Obesity and the associated comorbidities are a growing health threat worldwide. Adipose tissue dysfunction, impaired adipokine activity, and inflammation are central to metabolic diseases related to obesity. In particular, the excess storage of lipids in adipose tissues disturbs cellular homeostasis. Amongst others, organelle function and cell signaling, often related to the altered composition of specialized membrane microdomains (lipid rafts), are affected. Within this context, the conserved family of annexins are well known to associate with membranes in a calcium (Ca2+)- and phospholipid-dependent manner in order to regulate membrane-related events, such as trafficking in endo- and exocytosis and membrane microdomain organization. These multiple activities of annexins are facilitated through their diverse interactions with a plethora of lipids and proteins, often in different cellular locations and with consequences for the activity of receptors, transporters, metabolic enzymes, and signaling complexes. While increasing evidence points at the function of annexins in lipid homeostasis and cell metabolism in various cells and organs, their role in adipose tissue, obesity and related metabolic diseases is still not well understood. Annexin A1 (AnxA1) is a potent pro-resolving mediator affecting the regulation of body weight and metabolic health. Relevant for glucose metabolism and fatty acid uptake in adipose tissue, several studies suggest AnxA2 to contribute to coordinate glucose transporter type 4 (GLUT4) translocation and to associate with the fatty acid transporter CD36. On the other hand, AnxA6 has been linked to the control of adipocyte lipolysis and adiponectin release. In addition, several other annexins are expressed in fat tissues, yet their roles in adipocytes are less well examined. The current review article summarizes studies on the expression of annexins in adipocytes and in obesity. Research efforts investigating the potential role of annexins in fat tissue relevant to health and metabolic disease are discussed.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Carlos Enrich
- Department of Biomedicine, Unit of Cell Biology, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Carles Rentero
- Department of Biomedicine, Unit of Cell Biology, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany.
| |
Collapse
|