1
|
Born-Bony M, Cornu C, Villeret B, Gratio V, Voulhoux R, Sallenave JM. Intrapulmonary-administered myeloid derived suppressor cells rescue mice from Pseudomonas aeruginosa infection and promote a regulatory/repair phenotype. Mucosal Immunol 2025:S1933-0219(25)00027-3. [PMID: 40107423 DOI: 10.1016/j.mucimm.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Pseudomonas aeruginosa (P.aeruginosa) is a pathogenic opportunistic bacterium, classified as a priority by the WHO for the research of new treatments. As this bacterium is harmful through the inflammation and tissue damage it causes, we investigated the role of Myeloid Derived Suppressor Cells (MDSC) in P.aeruginosa infections and their potential as a therapeutic tool. Using both 'classically' obtained MDSC (through mice bone-marrow differentiation), and a new procedure developed here (using the ER-Hoxb8 hematopoietic cell line), we observed that after administering intra-nasally a lethal dose of P.aeruginosa (PAO1), intra-pulmonary transfer of MDSC, in both prophylactic and therapeutic protocols, markedly improves survival of P.aeruginosa infected animals. Mechanistically, with a sub-lethal dose of P.aeruginosa, we observed that MDSC transfer modulated lung tissue injury, down-regulated inflammatory responses and elicited lung repair. We further showed that WT-PAO1 and MDSC (and their subtypes PMN-MDSC and M-MDSC) could interact directly in vitro and in vivo, and that both PMN- and M-MDSC gene expression (assessed through RNA sequencing) was modulated after in vitro P.aeruginosa infection, and that WT-PAO1 (but not ΔFlic-PAO1) infection led to inhibition of T cell proliferation and promoted epithelial cell wound healing. Furthermore, we showed that the transcription factor Nr4A1 was up-regulated in both PMN- and M-MDSC- infected cells and may be an important mediator in the process. Altogether, we highlight a potential beneficial role of MDSC in P.aeruginosa infection responses and suggest that the unique properties of these cells make them attractive potential new therapeutic tools for patients with acute or chronic inflammatory diseases.
Collapse
Affiliation(s)
- Maëlys Born-Bony
- Institut National de la Santé et de la Recherche Médicale, U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, 16 rue Henri Huchard, 75018 Paris, France
| | - Clémentine Cornu
- Institut National de la Santé et de la Recherche Médicale, U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, 16 rue Henri Huchard, 75018 Paris, France
| | - Bérengère Villeret
- Institut National de la Santé et de la Recherche Médicale, U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, 16 rue Henri Huchard, 75018 Paris, France
| | - Valérie Gratio
- INSERM UMR1149/Inflammation ResearchCenter (CRI), 16 rue Henri Huchard, 75018 Paris, France; INSERM UMR1149/Inflammation ResearchCenter (CRI), Flow Cytometry Platform (CytoCRI), 16 rue Henri Huchard, 75018 Paris, France
| | - Romé Voulhoux
- Laboratoire de Chimie Bactérienne LCB-UMR7283, CNRS, Aix Marseille Université, IMM, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Jean-Michel Sallenave
- Institut National de la Santé et de la Recherche Médicale, U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, 16 rue Henri Huchard, 75018 Paris, France.
| |
Collapse
|
2
|
Holmes CL, Dailey KG, Hullahalli K, Wilcox AE, Mason S, Moricz BS, Unverdorben LV, Balazs GI, Waldor MK, Bachman MA. Patterns of Klebsiella pneumoniae bacteremic dissemination from the lung. Nat Commun 2025; 16:785. [PMID: 39824859 PMCID: PMC11742683 DOI: 10.1038/s41467-025-56095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
Bacteremia, a leading cause of death, generally arises after bacteria establish infection in a particular tissue and transit to secondary sites. Studying dissemination from primary sites by solely measuring bacterial burdens does not capture the movement of individual clones. By barcoding Klebsiella pneumoniae, a leading cause of bacteremia, we track pathogen dissemination following pneumonia. Variability in organ bacterial burdens is attributable to two distinct dissemination patterns distinguished by the degree of similarity between the lung and systemic sites. In metastatic dissemination, lung bacterial clones undergo heterogeneous expansion and the dominant clones spread to secondary organs, leading to greater similarity between sites. In direct dissemination, bacterial clones exit the lungs without clonal expansion, leading to lower burdens in systemic sites and more dissimilarity from the lung. We uncover bacterial and host factors that influence the dynamics of clonal sharing and expansion. Here, our data reveal unexpected heterogeneity in Klebsiella bacteremia dynamics and define a framework for understanding within-host bacterial dissemination.
Collapse
Affiliation(s)
- Caitlyn L Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Katherine G Dailey
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Karthik Hullahalli
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexis E Wilcox
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sophia Mason
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bridget S Moricz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lavinia V Unverdorben
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - George I Balazs
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Matthew K Waldor
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Michael A Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Zhang Y, Liang S, Zhang S, Bai Q, Dai L, Wang J, Yao H, Zhang W, Liu G. Streptococcal arginine deiminase system defences macrophage bactericidal effect mediated by XRE family protein XtrSs. Virulence 2024; 15:2306719. [PMID: 38251714 PMCID: PMC10841013 DOI: 10.1080/21505594.2024.2306719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
The arginine deiminase system (ADS) has been identified in various bacteria and functions to supplement energy production and enhance biological adaptability. The current understanding of the regulatory mechanism of ADS and its effect on bacterial pathogenesis is still limited. Here, we found that the XRE family transcriptional regulator XtrSs negatively affected Streptococcus suis virulence and significantly repressed ADS transcription when the bacteria were incubated in blood. Electrophoretic mobility shift (EMSA) and lacZ fusion assays further showed that XtrSs directly bind to the promoter of ArgR, an acknowledged positive regulator of bacterial ADS, to repress ArgR transcription. Moreover, we provided compelling evidence that S. suis could utilize arginine via ADS to adapt to acid stress, while ΔxtrSs enhanced this acid resistance by upregulating the ADS operon. Moreover, whole ADS-knockout S. suis increased arginine and antimicrobial NO in the infected macrophage cells, decreased intracellular survival, and even caused significant attenuation of bacterial virulence in a mouse infection model, while ΔxtrSs consistently presented the opposite results. Our experiments identified a novel ADS regulatory mechanism in S. suis, whereby XtrSs regulated ADS to modulate NO content in macrophages, promoting S. suis intracellular survival. Meanwhile, our findings provide a new perspective on how Streptococci evade the host's innate immune system.
Collapse
Affiliation(s)
- Yumin Zhang
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Song Liang
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shidan Zhang
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiankun Bai
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lei Dai
- Hainan Animal Disease Prevention and Control Center, Haikou, China
| | - Jinxiu Wang
- Hainan Animal Disease Prevention and Control Center, Haikou, China
| | - Huochun Yao
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Guangjin Liu
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Tajuelo A, Gato E, Oteo-Iglesias J, Pérez-Vázquez M, McConnell MJ, Martín-Galiano AJ, Pérez A. Deep Intraclonal Analysis for the Development of Vaccines against Drug-Resistant Klebsiella pneumoniae Lineages. Int J Mol Sci 2024; 25:9837. [PMID: 39337325 PMCID: PMC11431857 DOI: 10.3390/ijms25189837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Despite its medical relevance, there is no commercial vaccine that protects the population at risk from multidrug-resistant (MDR) Klebsiella pneumoniae infections. The availability of massive omic data and novel algorithms may improve antigen selection to develop effective prophylactic strategies. Up to 133 exposed proteins in the core proteomes, between 516 and 8666 genome samples, of the six most relevant MDR clonal groups (CGs) carried conserved B-cell epitopes, suggesting minimized future evasion if utilized for vaccination. Antigens showed a range of epitopicity, functional constraints, and potential side effects. Eleven antigens, including three sugar porins, were represented in all MDR-CGs, constitutively expressed, and showed limited reactivity with gut microbiota. Some of these antigens had important interactomic interactions and may elicit adhesion-neutralizing antibodies. Synergistic bivalent to pentavalent combinations that address expression conditions, interactome location, virulence activities, and clone-specific proteins may overcome the limiting protection of univalent vaccines. The combination of five central antigens accounted for 41% of all non-redundant interacting partners of the antigen dataset. Specific antigen mixtures represented in a few or just one MDR-CG further reduced the chance of microbiota interference. Rational antigen selection schemes facilitate the design of high-coverage and "magic bullet" multivalent vaccines against recalcitrant K. pneumoniae lineages.
Collapse
Affiliation(s)
- Ana Tajuelo
- Intrahospital Infections Unit, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
- Universidad Nacional de Educación a Distancia (UNED), 28015 Madrid, Spain
| | - Eva Gato
- Intrahospital Infections Unit, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
| | - Jesús Oteo-Iglesias
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - María Pérez-Vázquez
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Michael J McConnell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Antonio J Martín-Galiano
- Core Scientific and Technical Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
| | - Astrid Pérez
- Intrahospital Infections Unit, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
5
|
Du C, Lu M, Zheng J, Liu C, Yang P, Yi J, Zhu L, Shen N. Distinctive features and prognostic utility of neutrophil in severe patients with Klebsiella pneumoniae infection. Front Cell Infect Microbiol 2024; 14:1406168. [PMID: 39290978 PMCID: PMC11405363 DOI: 10.3389/fcimb.2024.1406168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Background Neutrophil plays a pivotal role in the management of Klebsiella pneumoniae infection. Delineate the clinical characteristics and prognostic utility of neutrophil in severe patients with K. pneumoniae infection are crucial for clinical management and prognostic assessment. Methods K. pneumoniae patients with different infection sites were enrolled from Medical Information Mart for Intensive Care IV and eICU Collaborative Research Database. Temporal variations of neutrophil counts within 30 days of clinical onset were examined using locally weighted scatterplot smoothing curves. Logistic regression analysis was performed to assess the relationship between neutrophil counts and hospital mortality. Results A total of 1,705 patients caused by K. pneumonia were included in the study. The non-survivor group exhibited a comparatively older age and a higher proportion of K. pneumoniae infections originating from respiratory and bloodstream sources compared to the survivor group (38.4% vs 21.1%, p<0.0001, and 15.1% vs 10.3%, p=0.021). Patients combined with multiple drug resistance strains, respiratory infection, liver disease, and above 60 years exhibited a specific dynamic process of neutrophil levels. Neutrophils counts peaked at admission and 1-2 weeks later. There was a 'U'-shaped relationship between neutrophil counts and hospital mortality. Conclusions Neutrophils in K. pneumoniae infected patients have distinctive features and dynamic clinical trajectories. Close monitoring of severe patients infected with K. pneumoniae upon admission and during the first 1-2 weeks after admission is of utmost importance, particularly for patients with a neutrophil count exceeding 8.0×109/L.
Collapse
Affiliation(s)
- Chunjing Du
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| | - Ming Lu
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Chao Liu
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
| | - Ping Yang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Juan Yi
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Liuluan Zhu
- Beijing Key laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
6
|
Goh KJ, Altuvia Y, Argaman L, Raz Y, Bar A, Lithgow T, Margalit H, Gan YH. RIL-seq reveals extensive involvement of small RNAs in virulence and capsule regulation in hypervirulent Klebsiella pneumoniae. Nucleic Acids Res 2024; 52:9119-9138. [PMID: 38804271 PMCID: PMC11347178 DOI: 10.1093/nar/gkae440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) can infect healthy individuals, in contrast to classical strains that commonly cause nosocomial infections. The recent convergence of hypervirulence with carbapenem-resistance in K. pneumoniae can potentially create 'superbugs' that are challenging to treat. Understanding virulence regulation of hvKp is thus critical. Accumulating evidence suggest that posttranscriptional regulation by small RNAs (sRNAs) plays a role in bacterial virulence, but it has hardly been studied in K. pneumoniae. We applied RIL-seq to a prototypical clinical isolate of hvKp to unravel the Hfq-dependent RNA-RNA interaction (RRI) network. The RRI network is dominated by sRNAs, including predicted novel sRNAs, three of which we validated experimentally. We constructed a stringent subnetwork composed of RRIs that involve at least one hvKp virulence-associated gene and identified the capsule gene loci as a hub target where multiple sRNAs interact. We found that the sRNA OmrB suppressed both capsule production and hypermucoviscosity when overexpressed. Furthermore, OmrB base-pairs within kvrA coding region and partially suppresses translation of the capsule regulator KvrA. This agrees with current understanding of capsule as a major virulence and fitness factor. It emphasizes the intricate regulatory control of bacterial phenotypes by sRNAs, particularly of genes critical to bacterial physiology and virulence.
Collapse
Affiliation(s)
- Kwok Jian Goh
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Yael Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Liron Argaman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yair Raz
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Amir Bar
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yunn-Hwen Gan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
7
|
Bain W, Ahn B, Peñaloza HF, McElheny CL, Tolman N, van der Geest R, Gonzalez-Ferrer S, Chen N, An X, Hosuru R, Tabary M, Papke E, Kohli N, Farooq N, Bachman W, Olonisakin TF, Xiong Z, Griffith MP, Sullivan M, Franks J, Mustapha MM, Iovleva A, Suber T, Shanks RQ, Ferreira VP, Stolz DB, Van Tyne D, Doi Y, Lee JS. In Vivo Evolution of a Klebsiella pneumoniae Capsule Defect With wcaJ Mutation Promotes Complement-Mediated Opsonophagocytosis During Recurrent Infection. J Infect Dis 2024; 230:209-220. [PMID: 39052750 PMCID: PMC11272070 DOI: 10.1093/infdis/jiae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae carbapenemase-producing K pneumoniae (KPC-Kp) bloodstream infections are associated with high mortality. We studied clinical bloodstream KPC-Kp isolates to investigate mechanisms of resistance to complement, a key host defense against bloodstream infection. METHODS We tested growth of KPC-Kp isolates in human serum. In serial isolates from a single patient, we performed whole genome sequencing and tested for complement resistance and binding by mixing study, direct enzyme-linked immunosorbent assay, flow cytometry, and electron microscopy. We utilized an isogenic deletion mutant in phagocytosis assays and an acute lung infection model. RESULTS We found serum resistance in 16 of 59 (27%) KPC-Kp clinical bloodstream isolates. In 5 genetically related bloodstream isolates from a single patient, we noted a loss-of-function mutation in the capsule biosynthesis gene, wcaJ. Disruption of wcaJ was associated with decreased polysaccharide capsule, resistance to complement-mediated killing, and surprisingly, increased binding of complement proteins. Furthermore, an isogenic wcaJ deletion mutant exhibited increased opsonophagocytosis in vitro and impaired in vivo control in the lung after airspace macrophage depletion in mice. CONCLUSIONS Loss of function in wcaJ led to increased complement resistance, complement binding, and opsonophagocytosis, which may promote KPC-Kp persistence by enabling coexistence of increased bloodstream fitness and reduced tissue virulence.
Collapse
Affiliation(s)
- William Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Brian Ahn
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus School of Medicine, Denver
| | - Hernán F Peñaloza
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | | | - Nathanial Tolman
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Rick van der Geest
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Shekina Gonzalez-Ferrer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Nathalie Chen
- Division of Infectious Diseases, Department of Medicine
| | - Xiaojing An
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Ria Hosuru
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Mohammadreza Tabary
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Erin Papke
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Naina Kohli
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | | | | | - Tolani F Olonisakin
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Zeyu Xiong
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | | | - Mara Sullivan
- Center for Biologic Imaging, Department of Cell Biology
| | | | | | - Alina Iovleva
- Division of Infectious Diseases, Department of Medicine
| | - Tomeka Suber
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
| | - Robert Q Shanks
- Department of Ophthalmology, University of Pittsburgh, Pennsylvania
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Ohio
| | - Donna B Stolz
- Center for Biologic Imaging, Department of Cell Biology
| | | | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine
| | - Janet S Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh
- Division of Pulmonary and Critical Care Medicine, Washington University in St Louis, Missouri
| |
Collapse
|
8
|
Tang M, Zhao D, Zhang Y, Qian C, Chen H, Chen L, Ye J, Zhou T. Impact of LuxS on virulence and pathogenicity in Klebsiella pneumoniae exhibiting varied mucoid phenotypes. Infect Immun 2024; 92:e0001224. [PMID: 38358274 PMCID: PMC10929404 DOI: 10.1128/iai.00012-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
How the LuxS/AI-2 quorum sensing (QS) system influences the pathogenicity of K. pneumoniae is complicated by the heterogeneity of the bacterial mucoid phenotypes. This study aims to explore the LuxS-mediated regulation of the pathogenicity of K. pneumoniae with diverse mucoid phenotypes, including hypermucoid, regular-mucoid, and nonmucoid. The wild-type, luxS knockout, and complemented strains of three K. pneumoniae clinical isolates with distinct mucoid phenotypes were constructed. The results revealed the downregulation of virulence genes of regular-mucoid, and nonmucoid but not hypermucoid strains. The deletion of luxS reduced the pathogenicity of the regular-mucoid, and nonmucoid strains in mice; while in hypermucoid strain, luxS knockout reduced virulence in late growth but enhanced virulence in the early growth phase. Furthermore, the absence of luxS led the regular-mucoid and nonmucoid strains to be more sensitive to the host cell defense, and less biofilm-productive than the wild-type at both the low and high-density growth state. Nevertheless, luxS knockout enhanced the resistances to adhesion and phagocytosis by macrophage as well as serum-killing, of hypermucoid K. pneumoniae at its early low-density growth state, while it was opposite to those in its late high-density growth phase. Collectively, our results suggested that LuxS plays a crucial role in the pathogenicity of K. pneumoniae, and it is highly relevant to the mucoid phenotypes and growth phases of the strains. LuxS probably depresses the capsule in the early low-density phase and promotes the capsule, biofilm, and pathogenicity during the late high-density phase, but inhibits lipopolysaccharide throughout the growth phase, in K. pneumoniae.IMPORTANCECharacterizing the regulation of physiological functions by the LuxS/AI-2 quorum sensing (QS) system in Klebsiella pneumoniae strains will improve our understanding of this important pathogen. The genetic heterogeneity of K. pneumoniae isolates complicates our understanding of its pathogenicity, and the association of LuxS with bacterial pathogenicity has remained poorly addressed in K. pneumoniae. Our results demonstrated strain and growth phase-dependent variation in the contributions of LuxS to the virulence and pathogenicity of K. pneumoniae. Our findings provide new insights into the important contribution of the LuxS/AI-2 QS system to the networks that regulate the pathogenicity of K. pneumoniae. Our study will facilitate our understanding of the regulatory mechanisms of LuxS/AI-2 QS on the pathogenicity of K. pneumoniae under the background of their genetic heterogeneity and help develop new strategies for diminished bacterial virulence within the clinical K. pneumoniae population.
Collapse
Affiliation(s)
- Miran Tang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Deyi Zhao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Changrui Qian
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huale Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijiang Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianzhong Ye
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
9
|
Bai R, Guo J. Interactions and Implications of Klebsiella pneumoniae with Human Immune Responses and Metabolic Pathways: A Comprehensive Review. Infect Drug Resist 2024; 17:449-462. [PMID: 38333568 PMCID: PMC10849896 DOI: 10.2147/idr.s451013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae), a significant contributor to the global challenge of antibiotic resistance, is not only a ubiquitous component of the human microbiome but also a potent pathogen capable of causing a spectrum of diseases. This review provides a thorough analysis of the intricate interactions between K. pneumoniae and the human immune system, elucidating its substantial impact on metabolic processes. We explore the mechanisms employed by K. pneumoniae to evade and manipulate immune responses, including molecular mimicry, immune modulation, and biofilm formation. The review further investigates the bacterium's influence on metabolic pathways, particularly glycolysis, highlighting how these interactions exacerbate disease severity. The emergence of multidrug-resistant and extremely drug-resistant strains within the Enterobacteriaceae family has heightened the public health crisis, underscoring the urgency for comprehensive research. We investigate the roles of the host's complement system, autophagy, cell death mechanisms, and various cytokines in combating K. pneumoniae infections, shedding light on areas that warrant further academic investigation. Additionally, the review discusses the challenges posed by K1- and K2-capsule polysaccharides in vaccine development due to their complex molecular structures and adhesive properties. Acknowledging the limited availability of effective antimicrobials, this review advocates for exploring alternative approaches such as immunotherapeutics, vaccinations, and phage therapy. We consolidate current knowledge on K. pneumoniae, covering classical and non-classical subtypes, antimicrobial resistance-mediated genes, virulence factors, and epidemiological trends in isolation and antibiotic resistance rates. This comprehensive review not only advances our understanding of K. pneumoniae but also underscores the imperative for ongoing research and collaborative efforts to develop new prevention and treatment strategies against this formidable pathogen.
Collapse
Affiliation(s)
- Ruojing Bai
- Department of Geriatric Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Jun Guo
- Department of Geriatric Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People’s Republic of China
| |
Collapse
|
10
|
Holmes CL. mSphere of Influence: Coordinating effective clearance of bacterial bloodstream infections. mSphere 2023; 8:e0052123. [PMID: 37874135 PMCID: PMC10732069 DOI: 10.1128/msphere.00521-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023] Open
Abstract
Caitlyn Holmes works in the field of bacterial pathogenesis and host-pathogen interactions. In this mSphere of Influence article, she reflects on how the papers "Innate Lymphocyte/Ly6Chi Monocyte Crosstalk Promotes Klebsiella pneumoniae Clearance" by Xiong et al. (H. Xiong, J. W. Keith, D. W. Samilo, R. A. Carter, et al., Cell 165:679-89, 2016, https://doi.org/10.1016/j.cell.2016.03.017) and "Dual-Track Clearance of Circulating Bacteria Balances Rapid Restoration of Blood Sterility with Induction of Adaptive Immunity" by Broadley et al. (S. P. Broadley, A. Plaumann, R. Coletti, C. Lehmann, et al., Cell Host Microbe 20:36-48, 2016, https://doi.org/10.1016/j.chom.2016.05.023) impacted her research by highlighting the tangled web of immune responses that influence bacterial bloodstream infections.
Collapse
Affiliation(s)
- Caitlyn L. Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Prince A, Wong Fok Lung T. Immunometabolic control by Klebsiella pneumoniae. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00028. [PMID: 37492184 PMCID: PMC10364963 DOI: 10.1097/in9.0000000000000028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
Klebsiella pneumoniae is a common Gram-negative pathogen associated with community-acquired and healthcare-associated infections. Its ability to acquire genetic elements resulted in its rapid development of resistance to virtually all antimicrobial agents. Once infection is established, K. pneumoniae is able to evade the host immune response and perhaps more importantly, undergo metabolic rewiring to optimize its ability to maintain infection. K. pneumoniae lipopolysaccharide and capsular polysaccharide are central factors in the induction and evasion of immune clearance. Less well understood is the importance of immunometabolism, the intersection between cellular metabolism and immune function, in the host response to K. pneumoniae infection. Bacterial metabolism itself is perceived as a metabolic stress to the host, altering the microenvironment at the site of infection. In this review, we will discuss the metabolic responses induced by K. pneumoniae, particularly in response to stimulation with the metabolically active bacteria versus pathogen-associated molecular patterns alone, and their implications in shaping the nature of the immune response and the infection outcome. A better understanding of the immunometabolic response to K. pneumoniae may help identify new targets for therapeutic intervention in the treatment of multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Alice Prince
- Department of Pediatrics, Columbia University, New York, NY, USA
| | | |
Collapse
|
12
|
Zhang MN, Yuan YL, Ao SH. Advances in the study of myeloid-derived suppressor cells in infectious lung diseases. Front Immunol 2023; 14:1125737. [PMID: 37063919 PMCID: PMC10090681 DOI: 10.3389/fimmu.2023.1125737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature cells capable of inhibiting T-cell responses. MDSCs have a crucial role in the regulation of the immune response of the body to pathogens, especially in inflammatory response and pathogenesis during anti-infection. Pathogens such as bacteria and viruses use MDSCs as their infectious targets, and even some pathogens may exploit the inhibitory activity of MDSCs to enhance pathogen persistence and chronic infection of the host. Recent researches have revealed the pathogenic significance of MDSCs in pathogens such as bacteria and viruses, despite the fact that the majority of studies on MDSCs have focused on tumor immune evasion. With the increased prevalence of viral respiratory infections, the resurgence of classical tuberculosis, and the advent of medication resistance in common bacterial pneumonia, research on MDSCs in these illnesses is intensifying. The purpose of this work is to provide new avenues for treatment approaches to pulmonary infectious disorders by outlining the mechanism of action of MDSCs as a biomarker and therapeutic target in pulmonary infectious diseases.
Collapse
Affiliation(s)
- Meng-Nan Zhang
- College of Integrated Chinese and Western Medicine and the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu-Lai Yuan
- The Department of Respirology of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Su-Hua Ao
- The Department of Respirology of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- *Correspondence: Su-Hua Ao,
| |
Collapse
|
13
|
van der Geest R, Fan H, Peñaloza HF, Bain WG, Xiong Z, Kohli N, Larson E, Sullivan MLG, Franks JM, Stolz DB, Ito R, Chen K, Doi Y, Harriff MJ, Lee JS. Phagocytosis is a primary determinant of pulmonary clearance of clinical Klebsiella pneumoniae isolates. Front Cell Infect Microbiol 2023; 13:1150658. [PMID: 37056705 PMCID: PMC10086180 DOI: 10.3389/fcimb.2023.1150658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction Klebsiella pneumoniae (Kp) is a common cause of hospital-acquired pneumonia. Although previous studies have suggested that evasion of phagocytic uptake is a virulence determinant of Kp, few studies have examined phagocytosis sensitivity in clinical Kp isolates. Methods We screened 19 clinical respiratory Kp isolates that were previously assessed for mucoviscosity for their sensitivity to macrophage phagocytic uptake, and evaluated phagocytosis as a functional correlate of in vivo Kp pathogenicity. Results The respiratory Kp isolates displayed heterogeneity in the susceptibility to macrophage phagocytic uptake, with 14 out of 19 Kp isolates displaying relative phagocytosis-sensitivity compared to the reference Kp strain ATCC 43816, and 5 out of 19 Kp isolates displaying relative phagocytosis-resistance. Intratracheal infection with the non-mucoviscous phagocytosis-sensitive isolate S17 resulted in a significantly lower bacterial burden compared to infection with the mucoviscous phagocytosis-resistant isolate W42. In addition, infection with S17 was associated with a reduced inflammatory response, including reduced bronchoalveolar lavage fluid (BAL) polymorphonuclear (PMN) cell count, and reduced BAL TNF, IL-1β, and IL-12p40 levels. Importantly, host control of infection with the phagocytosis-sensitive S17 isolate was impaired in alveolar macrophage (AM)-depleted mice, whereas AM-depletion had no significant impact on host defense against infection with the phagocytosis-resistant W42 isolate. Conclusion Altogether, these findings show that phagocytosis is a primary determinant of pulmonary clearance of clinical Kp isolates.
Collapse
Affiliation(s)
- Rick van der Geest
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hongye Fan
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hernán F. Peñaloza
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - William G. Bain
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Veterans Affairs (VA) Pittsburgh Health Care System, Pittsburgh, PA, United States
| | - Zeyu Xiong
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Naina Kohli
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emily Larson
- Veterans Affairs (VA) Portland Health Care System, Portland, OR, United States
| | - Mara L. G. Sullivan
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jonathan M. Franks
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donna B. Stolz
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ryota Ito
- Department of Respiratory Medicine, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Japan
| | - Kong Chen
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Departments of Microbiology and Infectious Diseases, Fujita Health University, Toyoake, Japan
| | - Melanie J. Harriff
- Veterans Affairs (VA) Portland Health Care System, Portland, OR, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health State University, Portland, OR, United States
| | - Janet S. Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Pulmonary and Critical Care Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
14
|
Dumigan A, Cappa O, Morris B, Sá Pessoa J, Calderon‐Gonzalez R, Mills G, Lancaster R, Simpson D, Kissenpfennig A, Bengoechea JA. In vivo single-cell transcriptomics reveal Klebsiella pneumoniae skews lung macrophages to promote infection. EMBO Mol Med 2022; 14:e16888. [PMID: 36337046 PMCID: PMC9727930 DOI: 10.15252/emmm.202216888] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
The strategies deployed by antibiotic-resistant bacteria to counteract host defences are poorly understood. Here, we elucidate a novel host-pathogen interaction resulting in skewing lung macrophage polarisation by the human pathogen Klebsiella pneumoniae. We identify interstitial macrophages (IMs) as the main population of lung macrophages associated with Klebsiella. Single-cell transcriptomics and trajectory analysis of cells reveal type I IFN and IL10 signalling, and macrophage polarisation are characteristic of infected IMs, whereas Toll-like receptor (TLR) and Nod-like receptor signalling are features of infected alveolar macrophages. Klebsiella-induced macrophage polarisation is a singular M2-type we termed M(Kp). To rewire macrophages, Klebsiella hijacks a TLR-type I IFN-IL10-STAT6 axis. Absence of STAT6 limits Klebsiella intracellular survival and facilitates the clearance of the pathogen in vivo. Glycolysis characterises M(Kp) metabolism, and inhibition of glycolysis results in clearance of intracellular Klebsiella. Capsule polysaccharide governs M(Kp). Klebsiella also skews human macrophage polarisation towards M(Kp) in a type I IFN-IL10-STAT6-dependent manner. Klebsiella induction of M(Kp) represents a novel strategy to overcome host restriction, and identifies STAT6 as target to boost defences against Klebsiella.
Collapse
Affiliation(s)
- Amy Dumigan
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Oisin Cappa
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Brenda Morris
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Joana Sá Pessoa
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Ricardo Calderon‐Gonzalez
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Grant Mills
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Rebecca Lancaster
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - David Simpson
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Adrien Kissenpfennig
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Jose A Bengoechea
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| |
Collapse
|
15
|
Singh S, Maurya SK, Aqdas M, Bashir H, Arora A, Bhalla V, Agrewala JN. Mycobacterium tuberculosis exploits MPT64 to generate myeloid-derived suppressor cells to evade the immune system. Cell Mol Life Sci 2022; 79:567. [PMID: 36283989 PMCID: PMC11803053 DOI: 10.1007/s00018-022-04596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/19/2022] [Accepted: 10/09/2022] [Indexed: 11/24/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is a smart and successful pathogen since it can persist in the intimidating environment of the host by taming and tuning the immune system. Mtb releases MPT64 (Rv1980c) protein in high amounts in patients with active tuberculosis (TB). Consequently, we were curious to decipher the role of MPT64 on the differentiating dendritic cells (DCs) and its relation to evading the immune system. We observed that pre-exposure of differentiating DCs to MPT64 (DCMPT64) transformed them into a phenotype of myeloid-derived suppressor cells (MDSCs). DCMPT64 expressed a high level of immunosuppressive molecules PD-L1, TIM-3, nitric oxide (NO), arginase 1, IDO-1, IL-10 and TGF-β, but inhibited the production of pro-inflammatory cytokines TNF-α, IL-6 and IL-12. DCMPT64 chemotaxis function was diminished due to the reduced expression of CCR7. DCMPT64 promoted the generation of regulatory T cells (Tregs) but inhibited the differentiation of Th1 cells and Th17 cells. Further, high lipid and methylglyoxal content, and reduced glucose consumption by DCMPT64, rendered them metabolically quiescent and consequently, reduced DCMPT64 ability to phagocytose Mtb and provided a safer shelter for the intracellular survival of the mycobacterium. The mechanism identified in impairing the function of DCMPT64 was through the increased production and accumulation of methylglyoxal. Hence, for the first time, we demonstrate the novel role of MPT64 in promoting the generation of MDSCs to favor Mtb survival and escape its destruction by the immune system.
Collapse
Affiliation(s)
- Sanpreet Singh
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Sudeep K Maurya
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Mohammad Aqdas
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Hilal Bashir
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Ashish Arora
- Department of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Vijayender Bhalla
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
- Biosensor Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Javed N Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India.
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India.
| |
Collapse
|
16
|
The mitochondrial calcium uniporter of pulmonary type 2 cells determines severity of acute lung injury. Nat Commun 2022; 13:5837. [PMID: 36192486 PMCID: PMC9529882 DOI: 10.1038/s41467-022-33543-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/21/2022] [Indexed: 11/28/2022] Open
Abstract
Acute Lung Injury (ALI) due to inhaled pathogens causes high mortality. Underlying mechanisms are inadequately understood. Here, by optical imaging of live mouse lungs we show that a key mechanism is the viability of cytosolic Ca2+ buffering by the mitochondrial Ca2+ uniporter (MCU) in the lung’s surfactant-secreting, alveolar type 2 cells (AT2). The buffering increased mitochondrial Ca2+ and induced surfactant secretion in wild-type mice, but not in mice with AT2-specific MCU knockout. In the knockout mice, ALI due to intranasal LPS instillation caused severe pulmonary edema and mortality, which were mitigated by surfactant replenishment prior to LPS instillation, indicating surfactant’s protective effect against alveolar edema. In wild-type mice, intranasal LPS, or Pseudomonas aeruginosa decreased AT2 MCU. Loss of MCU abrogated buffering. The resulting mortality was reduced by spontaneous recovery of MCU expression, or by MCU replenishment. Enhancement of AT2 mitochondrial buffering, hence endogenous surfactant secretion, through MCU replenishment might be a therapy against ALI. Acute lung injury caused by inhalation of pathogens leads to mortality, but the mechanisms are unclear. Here, the authors show in mice that that loss of the mitochondrial calcium uniporter (MCU) of alveolar type 2 cells (AT2) impaired mitochondrial Ca2+ buffering and surfactant secretion, and increased mortality, in response to LPS instillation, suggesting the MCU as a potential therapeutic target in ALI.
Collapse
|
17
|
Banerjee K, Motley MP, Boniche-Alfaro C, Bhattacharya S, Shah R, Ardizzone A, Fries BC. Patient-Derived Antibody Data Yields Development of Broadly Cross-Protective Monoclonal Antibody against ST258 Carbapenem-Resistant Klebsiella pneumoniae. Microbiol Spectr 2022; 10:e0176022. [PMID: 35862974 PMCID: PMC9430753 DOI: 10.1128/spectrum.01760-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
The most pressing challenge for the development of anti-capsular antibodies is maximizing coverage against the heterogenous capsular polysaccharide (CPS) of carbapenem-resistant Klebsiella pneumoniae (CR-Kp). So far, only CR-Kp with wzi154 CPS has been successfully targeted by antibodies. Here, we present murine antibody 24D11, which was developed by vaccinating mice with purified wzi50-type CPS. Cross-reactivity and protective efficacy of MAb 24D11 were confirmed against CR-Kp that express the 3 most prevalent CPS types (wzi29, wzi154, wzi50) using both in vitro and in vivo infection models. 24D11 induced complement-mediated and independent opsonophagocytosis in macrophages as well as killing of all CR-Kp strains in whole blood cells derived from healthy donors. In a murine intratracheal infection model, 24D11 reduced lung burden and dissemination of CR-Kp strains when administered 4 h pre- or postinfection. The protective efficacy of 24D11 remained effective in neutropenic mice. This is the first antibody which exhibits cross-protective efficacy against clade 1 and 2 ST258 CR-Kp strains. It overcomes a major barrier to successfully target wzi29, a major CPS expressed by ST258 CR-Kp. The finding that 24D11 also exhibits potent protective efficacy against wzi154 CR-Kp strains highlights its high potential as a lead agent for the development of broadly active immunotherapy. IMPORTANCE Here, we present in vitro and in vivo data for the wzi50 CPS-specific monoclonal antibody MAb 24D11, demonstrating its cross-protective efficacy against three prominent win types (wzi29, wzi154, and wzi50) of the carbapenem-resistant clonal group CG258. In a murine pulmonary infection model, MAb 24D11 reduced bacterial lung burden and dissemination to other organs even if administered 4 h postinfection. Its protective efficacy was also observed in neutropenic mice, which highlights its potential value in clinical settings where oncology patients with CG258 infections may also be neutropenic.
Collapse
Affiliation(s)
- Kasturi Banerjee
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Veteran’s Administration Medical Center, Northport, New York, USA
| | - Michael P. Motley
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Camila Boniche-Alfaro
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Veteran’s Administration Medical Center, Northport, New York, USA
| | - Somanon Bhattacharya
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
| | - Raj Shah
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
| | - Andrew Ardizzone
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
| | - Bettina C. Fries
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Veteran’s Administration Medical Center, Northport, New York, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
18
|
Feriotti C, Sá-Pessoa J, Calderón-González R, Gu L, Morris B, Sugisawa R, Insua JL, Carty M, Dumigan A, Ingram RJ, Kissenpfening A, Bowie AG, Bengoechea JA. Klebsiella pneumoniae hijacks the Toll-IL-1R protein SARM1 in a type I IFN-dependent manner to antagonize host immunity. Cell Rep 2022; 40:111167. [PMID: 35947948 PMCID: PMC9638020 DOI: 10.1016/j.celrep.2022.111167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
Many bacterial pathogens antagonize host defense responses by translocating effector proteins into cells. It remains an open question how those pathogens not encoding effectors counteract anti-bacterial immunity. Here, we show that Klebsiella pneumoniae exploits the evolutionary conserved innate protein SARM1 to regulate negatively MyD88- and TRIF-governed inflammation, and the activation of the MAP kinases ERK and JNK. SARM1 is required for Klebsiella induction of interleukin-10 (IL-10) by fine-tuning the p38-type I interferon (IFN) axis. SARM1 inhibits the activation of Klebsiella-induced absent in melanoma 2 inflammasome to limit IL-1β production, suppressing further inflammation. Klebsiella exploits type I IFNs to induce SARM1 in a capsule and lipopolysaccharide O-polysaccharide-dependent manner via the TLR4-TRAM-TRIF-IRF3-IFNAR1 pathway. Absence of SARM1 reduces the intracellular survival of K. pneumoniae in macrophages, whereas sarm1-deficient mice control the infection. Altogether, our results illustrate an anti-immunology strategy deployed by a human pathogen. SARM1 inhibition will show a beneficial effect to treat Klebsiella infections.
Collapse
Affiliation(s)
- Claudia Feriotti
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Joana Sá-Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Ricardo Calderón-González
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Lili Gu
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Brenda Morris
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Ryoichi Sugisawa
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Jose L Insua
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Michael Carty
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Amy Dumigan
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Rebecca J Ingram
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Adrien Kissenpfening
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK.
| |
Collapse
|
19
|
Holmes CL, Smith SN, Gurczynski SJ, Severin GB, Unverdorben LV, Vornhagen J, Mobley HLT, Bachman MA. The ADP-Heptose Biosynthesis Enzyme GmhB is a Conserved Gram-Negative Bacteremia Fitness Factor. Infect Immun 2022; 90:e0022422. [PMID: 35762751 PMCID: PMC9302095 DOI: 10.1128/iai.00224-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Klebsiella pneumoniae is a leading cause of Gram-negative bacteremia, which is a major source of morbidity and mortality worldwide. Gram-negative bacteremia requires three major steps: primary site infection, dissemination to the blood, and bloodstream survival. Because K. pneumoniae is a leading cause of health care-associated pneumonia, the lung is a common primary infection site leading to secondary bacteremia. K. pneumoniae factors essential for lung fitness have been characterized, but those required for subsequent bloodstream infection are unclear. To identify K. pneumoniae genes associated with dissemination and bloodstream survival, we combined previously and newly analyzed insertion site sequencing (InSeq) data from a murine model of bacteremic pneumonia. This analysis revealed the gene gmhB as important for either dissemination from the lung or bloodstream survival. In Escherichia coli, GmhB is a partially redundant enzyme in the synthesis of ADP-heptose for the lipopolysaccharide (LPS) core. To characterize its function in K. pneumoniae, an isogenic knockout strain (ΔgmhB) and complemented mutant were generated. During pneumonia, GmhB did not contribute to lung fitness and did not alter normal immune responses. However, GmhB enhanced bloodstream survival in a manner independent of serum susceptibility, specifically conveying resistance to spleen-mediated killing. In a tail-vein injection of murine bacteremia, GmhB was also required by K. pneumoniae, E. coli, and Citrobacter freundii for optimal fitness in the spleen and liver. Together, this study identifies GmhB as a conserved Gram-negative bacteremia fitness factor that acts through LPS-mediated mechanisms to enhance fitness in blood-filtering organs.
Collapse
Affiliation(s)
- Caitlyn L. Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Stephen J. Gurczynski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Geoffrey B. Severin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lavinia V. Unverdorben
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jay Vornhagen
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael A. Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Urso A, Prince A. Anti-Inflammatory Metabolites in the Pathogenesis of Bacterial Infection. Front Cell Infect Microbiol 2022; 12:925746. [PMID: 35782110 PMCID: PMC9240774 DOI: 10.3389/fcimb.2022.925746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/23/2022] [Indexed: 01/13/2023] Open
Abstract
Host and pathogen metabolism have a major impact on the outcome of infection. The microenvironment consisting of immune and stromal cells drives bacterial proliferation and adaptation, while also shaping the activity of the immune system. The abundant metabolites itaconate and adenosine are classified as anti-inflammatory, as they help to contain the local damage associated with inflammation, oxidants and proteases. A growing literature details the many roles of these immunometabolites in the pathogenesis of infection and their diverse functions in specific tissues. Some bacteria, notably P. aeruginosa, actively metabolize these compounds, others, such as S. aureus respond by altering their own metabolic programs selecting for optimal fitness. For most of the model systems studied to date, these immunometabolites promote a milieu of tolerance, limiting local immune clearance mechanisms, along with promoting bacterial adaptation. The generation of metabolites such as adenosine and itaconate can be host protective. In the setting of acute inflammation, these compounds also represent potential therapeutic targets to prevent infection.
Collapse
Affiliation(s)
| | - Alice Prince
- *Correspondence: Alice Prince, ; Andreacarola Urso,
| |
Collapse
|
21
|
Wong Fok Lung T, Charytonowicz D, Beaumont KG, Shah SS, Sridhar SH, Gorrie CL, Mu A, Hofstaedter CE, Varisco D, McConville TH, Drikic M, Fowler B, Urso A, Shi W, Fucich D, Annavajhala MK, Khan IN, Oussenko I, Francoeur N, Smith ML, Stockwell BR, Lewis IA, Hachani A, Upadhyay Baskota S, Uhlemann AC, Ahn D, Ernst RK, Howden BP, Sebra R, Prince A. Klebsiella pneumoniae induces host metabolic stress that promotes tolerance to pulmonary infection. Cell Metab 2022; 34:761-774.e9. [PMID: 35413274 PMCID: PMC9081115 DOI: 10.1016/j.cmet.2022.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/18/2022] [Accepted: 03/22/2022] [Indexed: 12/21/2022]
Abstract
K. pneumoniae sequence type 258 (Kp ST258) is a major cause of healthcare-associated pneumonia. However, it remains unclear how it causes protracted courses of infection in spite of its expression of immunostimulatory lipopolysaccharide, which should activate a brisk inflammatory response and bacterial clearance. We predicted that the metabolic stress induced by the bacteria in the host cells shapes an immune response that tolerates infection. We combined in situ metabolic imaging and transcriptional analyses to demonstrate that Kp ST258 activates host glutaminolysis and fatty acid oxidation. This response creates an oxidant-rich microenvironment conducive to the accumulation of anti-inflammatory myeloid cells. In this setting, metabolically active Kp ST258 elicits a disease-tolerant immune response. The bacteria, in turn, adapt to airway oxidants by upregulating the type VI secretion system, which is highly conserved across ST258 strains worldwide. Thus, much of the global success of Kp ST258 in hospital settings can be explained by the metabolic activity provoked in the host that promotes disease tolerance.
Collapse
Affiliation(s)
| | - Daniel Charytonowicz
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Shivang S Shah
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Shwetha H Sridhar
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Claire L Gorrie
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Andre Mu
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Casey E Hofstaedter
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - David Varisco
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | | | - Marija Drikic
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada
| | - Brandon Fowler
- Microbiome & Pathogen Genomics Collaborative Center, Columbia University, New York, NY 10032, USA
| | - Andreacarola Urso
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Wei Shi
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Dario Fucich
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Medini K Annavajhala
- Department of Medicine, Columbia University, New York, NY 10032, USA; Microbiome & Pathogen Genomics Collaborative Center, Columbia University, New York, NY 10032, USA
| | - Ibrahim N Khan
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Irina Oussenko
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Nancy Francoeur
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Melissa L Smith
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Ian A Lewis
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | | | - Anne-Catrin Uhlemann
- Department of Medicine, Columbia University, New York, NY 10032, USA; Microbiome & Pathogen Genomics Collaborative Center, Columbia University, New York, NY 10032, USA
| | - Danielle Ahn
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA; Sema4: A Mount Sinai Venture, Stamford, CT 06902, USA
| | - Alice Prince
- Department of Pediatrics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
22
|
Opoku-Temeng C, Malachowa N, Kobayashi SD, DeLeo FR. Innate Host Defense against Klebsiella pneumoniae and the Outlook for Development of Immunotherapies. J Innate Immun 2021; 14:167-181. [PMID: 34628410 DOI: 10.1159/000518679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a Gram-negative commensal bacterium and opportunistic pathogen. In healthy individuals, the innate immune system is adept at protecting against K. pneumoniae infection. Notably, the serum complement system and phagocytic leukocytes (e.g., neutrophils) are highly effective at eliminating K. pneumoniae and thereby preventing severe disease. On the other hand, the microbe is a major cause of healthcare-associated infections, especially in individuals with underlying susceptibility factors, such as pre-existing severe illness or immune suppression. The burden of K. pneumoniae infections in hospitals is compounded by antibiotic resistance. Treatment of these infections is often difficult largely because the microbes are usually resistant to multiple antibiotics (multidrug resistant [MDR]). There are a limited number of treatment options for these infections and new therapies, and preventative measures are needed. Here, we review host defense against K. pneumoniae and discuss recent therapeutic measures and vaccine approaches directed to treat and prevent severe disease caused by MDR K. pneumoniae.
Collapse
Affiliation(s)
- Clement Opoku-Temeng
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Natalia Malachowa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
23
|
Intrathymic differentiation of natural antibody-producing plasma cells in human neonates. Nat Commun 2021; 12:5761. [PMID: 34599177 PMCID: PMC8486820 DOI: 10.1038/s41467-021-26069-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
The thymus is a central lymphoid organ primarily responsible for the development of T cells. A small proportion of B cells, however, also reside in the thymus to assist negative selection of self-reactive T cells. Here we show that the thymus of human neonates contains a consistent contingent of CD138+ plasma cells, producing all classes and subclasses of immunoglobulins with the exception of IgD. These antibody-secreting cells are part of a larger subset of B cells that share the expression of signature genes defining mouse B1 cells, yet lack the expression of complement receptors CD21 and CD35. Data from single-cell transcriptomic, clonal correspondence and in vitro differentiation assays support the notion of intrathymic CD138+ plasma cell differentiation, alongside other B cell subsets with distinctive molecular phenotypes. Lastly, neonatal thymic plasma cells also include clones reactive to commensal and pathogenic bacteria that commonly infect children born with antibody deficiency. Thus, our findings point to the thymus as a source of innate humoral immunity in human neonates.
Collapse
|
24
|
Abstract
The Coronavirus Disease 2019 (COVID-19) is caused by the betacoronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus that can mediate asymptomatic or fatal infections characterized by pneumonia, acute respiratory distress syndrome (ARDS), and multi-organ failure. Several studies have highlighted the importance of B and T lymphocytes, given that neutralizing antibodies and T cell responses are required for an effective immunity. In addition, other reports have described myeloid cells such as macrophages and monocytes play a major role in the immunity against SARS-CoV-2 as well as dysregulated pro-inflammatory signature that characterizes severe COVID-19. During COVID-19, neutrophils have been defined as a heterogeneous group of cells, functionally linked to severe inflammation and thrombosis triggered by degranulation and NETosis, but also to suppressive phenotypes. The physiological role of suppressive neutrophils during COVID-19 and their implications in severe disease have been poorly studied and is not well understood. Here, we discuss the current evidence regarding the role of neutrophils with suppressive properties such as granulocytic myeloid-derived suppressor cells (G-MDSCs) and their possible role in suppressing CD4+ and CD8+ T lymphocytes expansion and giving rise to lymphopenia in severe COVID-19 infection.
Collapse
Affiliation(s)
- Hernán F. Peñaloza
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Janet S. Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Prabir Ray
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
25
|
Ahn D, Bhushan G, McConville TH, Annavajhala MK, Soni RK, Wong Fok Lung T, Hofstaedter CE, Shah SS, Chong AM, Castano VG, Ernst RK, Uhlemann AC, Prince A. An acquired acyltransferase promotes Klebsiella pneumoniae ST258 respiratory infection. Cell Rep 2021; 35:109196. [PMID: 34077733 PMCID: PMC8283688 DOI: 10.1016/j.celrep.2021.109196] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/12/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Klebsiella pneumoniae ST258 is a human pathogen associated with poor outcomes worldwide. We identify a member of the acyltransferase superfamily 3 (atf3), enriched within the ST258 clade, that provides a major competitive advantage for the proliferation of these organisms in vivo. Comparison of a wild-type ST258 strain (KP35) and a Δatf3 isogenic mutant generated by CRISPR-Cas9 targeting reveals greater NADH:ubiquinone oxidoreductase transcription and ATP generation, fueled by increased glycolysis. The acquisition of atf3 induces changes in the bacterial acetylome, promoting lysine acetylation of multiple proteins involved in central metabolism, specifically Zwf (glucose-6 phosphate dehydrogenase). The atf3-mediated metabolic boost leads to greater consumption of glucose in the host airway and increased bacterial burden in the lung, independent of cytokine levels and immune cell recruitment. Acquisition of this acyltransferase enhances fitness of a K. pneumoniae ST258 isolate and may contribute to the success of this clonal complex as a healthcare-associated pathogen.
Collapse
Affiliation(s)
- Danielle Ahn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Gitanjali Bhushan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Thomas H McConville
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Medini K Annavajhala
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tania Wong Fok Lung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Casey E Hofstaedter
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Shivang S Shah
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexander M Chong
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Victor G Castano
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Anne-Catrin Uhlemann
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alice Prince
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
26
|
Effective Photodynamic Therapy with Ir(III) for Virulent Clinical Isolates of Extended-Spectrum Beta-Lactamase Klebsiella pneumoniae. Pharmaceutics 2021; 13:pharmaceutics13050603. [PMID: 33922077 PMCID: PMC8143563 DOI: 10.3390/pharmaceutics13050603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022] Open
Abstract
Background: The extended-spectrum beta-lactamase (ESBL) Klebsiella pneumoniae is one of the leading causes of health-associated infections (HAIs), whose antibiotic treatments have been severely reduced. Moreover, HAI bacteria may harbor pathogenic factors such as siderophores, enzymes, or capsules, which increase the virulence of these strains. Thus, new therapies, such as antimicrobial photodynamic inactivation (aPDI), are needed. Method: A collection of 118 clinical isolates of K. pneumoniae was characterized by susceptibility and virulence through the determination of the minimum inhibitory concentration (MIC) of amikacin (Amk), cefotaxime (Cfx), ceftazidime (Cfz), imipenem (Imp), meropenem (Mer), and piperacillin–tazobactam (Pip–Taz); and, by PCR, the frequency of the virulence genes K2, magA, rmpA, entB, ybtS, and allS. Susceptibility to innate immunity, such as human serum, macrophages, and polymorphonuclear cells, was tested. All the strains were tested for sensitivity to the photosensitizer PSIR-3 (4 µg/mL) in a 17 µW/cm2 for 30 min aPDI. Results: A significantly higher frequency of virulence genes in ESBL than non-ESBL bacteria was observed. The isolates of the genotype K2+, ybtS+, and allS+ display enhanced virulence, since they showed higher resistance to human serum, as well as to phagocytosis. All strains are susceptible to the aPDI with PSIR-3 decreasing viability in 3log10. The combined treatment with Cfx improved the aPDI to 6log10 for the ESBL strains. The combined treatment is synergistic, as it showed a fractional inhibitory concentration (FIC) index value of 0.15. Conclusions: The aPDI effectively inhibits clinical isolates of K. pneumoniae, including the riskier strains of ESBL-producing bacteria and the K2+, ybtS+, and allS+ genotype. The aPDI with PSIR-3 is synergistic with Cfx.
Collapse
|
27
|
Abstract
Klebsiella pneumoniae are Gram-negative facultative anaerobes that are found within host-associated commensal microbiomes, but they can also cause a wide range of infections that are often difficult to treat. These infections are caused by different pathotypes of K. pneumoniae, called either classical or hypervirulent strains. Klebsiella pneumoniae are Gram-negative facultative anaerobes that are found within host-associated commensal microbiomes, but they can also cause a wide range of infections that are often difficult to treat. These infections are caused by different pathotypes of K. pneumoniae, called either classical or hypervirulent strains. These two groups are genetically distinct, inhabit nonoverlapping geographies, and cause different types of harmful infections in humans. These distinct bacterial groups have also been found to interact differently with the host immune system. Initial innate immune defenses against K. pneumoniae infection include complement, macrophages, neutrophils, and monocytes; these defenses are primary strategies employed by the host to clear infections. K. pneumoniae pathogenesis depends upon the interactions between the microbe and each of these host defenses, and it is becoming increasingly apparent that bacterial genetic diversity impacts the outcomes of these interactions. Here, we highlight recent advances in our understanding of K. pneumoniae pathogenesis, with a focus on how bacterial evolution and diversity impact K. pneumoniae interactions with mammalian innate immune host defenses. We also discuss outstanding questions regarding how K. pneumoniae can frustrate normal immune responses, capitalize upon states of immunocompromise, and cause infections with high mortality.
Collapse
|
28
|
Domingues A, Jolibois J, Marquet de Rougé P, Nivet-Antoine V. The Emerging Role of TXNIP in Ischemic and Cardiovascular Diseases; A Novel Marker and Therapeutic Target. Int J Mol Sci 2021; 22:ijms22041693. [PMID: 33567593 PMCID: PMC7914816 DOI: 10.3390/ijms22041693] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
Thioredoxin interacting protein (TXNIP) is a metabolism- oxidative- and inflammation-related marker induced in cardiovascular diseases and is believed to represent a possible link between metabolism and cellular redox status. TXNIP is a potential biomarker in cardiovascular and ischemic diseases but also a novel identified target for preventive and curative medicine. The goal of this review is to focus on the novelties concerning TXNIP. After an overview in TXNIP involvement in oxidative stress, inflammation and metabolism, the remainder of this review presents the clues used to define TXNIP as a new marker at the genetic, blood, or ischemic site level in the context of cardiovascular and ischemic diseases.
Collapse
Affiliation(s)
- Alison Domingues
- INSERM 1140, Innovative Therapies in Haemostasis, Faculty of Pharmacy, Université de Paris, 75006 Paris, France; (A.D.); (J.J.); (P.M.d.R.)
| | - Julia Jolibois
- INSERM 1140, Innovative Therapies in Haemostasis, Faculty of Pharmacy, Université de Paris, 75006 Paris, France; (A.D.); (J.J.); (P.M.d.R.)
| | - Perrine Marquet de Rougé
- INSERM 1140, Innovative Therapies in Haemostasis, Faculty of Pharmacy, Université de Paris, 75006 Paris, France; (A.D.); (J.J.); (P.M.d.R.)
| | - Valérie Nivet-Antoine
- INSERM 1140, Innovative Therapies in Haemostasis, Faculty of Pharmacy, Université de Paris, 75006 Paris, France; (A.D.); (J.J.); (P.M.d.R.)
- Clinical Biochemistry Department, Assistance Publique des Hôpitaux de Paris, Necker Hospital, 75015 Paris, France
- Correspondence:
| |
Collapse
|
29
|
Peñaloza HF, Ahn D, Schultz BM, Piña-Iturbe A, González LA, Bueno SM. L-Arginine Enhances Intracellular Killing of Carbapenem-Resistant Klebsiella pneumoniae ST258 by Murine Neutrophils. Front Cell Infect Microbiol 2020; 10:571771. [PMID: 33282749 PMCID: PMC7691228 DOI: 10.3389/fcimb.2020.571771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae ST258 (CRKP-ST258) are a global concern due to their rapid dissemination, high lethality, antibiotic resistance and resistance to components of the immune response, such as neutrophils. Neutrophils are major host mediators, able to kill well-studied and antibiotic-sensitive laboratory reference strains of K. pneumoniae. However, CRKP-ST258 are able to evade neutrophil phagocytic killing, persisting longer in the host despite robust neutrophil recruitment. Here, we show that neutrophils are unable to clear a CRKP-ST258 isolate (KP35). Compared to the response elicited by a prototypic K. pneumoniae ATCC 43816 (KPPR1), the neutrophil intracellular response against KP35 is characterized by equivalent production of reactive oxygen species (ROS) and myeloperoxidase content, but impaired phagosomal acidification. Our results ruled out that this phenomenon is due to a phagocytosis defect, as we observed similar efficiency of phagocytosis by neutrophils infected with KP35 or KPPR1. Genomic analysis of the cps loci of KPPR1 and KP35 suggest that the capsule composition of KP35 explain the high phagocytosis efficiency by neutrophils. Consistent with other reports, we show that KP35 did not induce DNA release by neutrophils and KPPR1 only induced it at 3 h, when most of the bacteria have already been cleared. l-arginine metabolism has been identified as an important modulator of the host immune response and positively regulate T cells, macrophages and neutrophils in response to microbes. Our data show that l-arginine supplementation improved phagosome acidification, increased ROS production and enhanced nitric oxide consumption by neutrophils in response to KP35. The enhanced intracellular response observed after l-arginine supplementation ultimately improved KP35 clearance in vitro. KP35 was able to dysregulate the intracellular microbicidal machinery of neutrophils to survive in the intracellular environment. This process, however, can be reversed after l-arginine supplementation.
Collapse
Affiliation(s)
- Hernán F Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Danielle Ahn
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| | - Bárbara M Schultz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro Piña-Iturbe
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Liliana A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
30
|
Abstract
Klebsiella pneumoniae has been singled out as an urgent threat to human health due to the increasing isolation of strains resistant to “last-line” antimicrobials, narrowing the treatment options against Klebsiella infections. Unfortunately, at present, we cannot identify candidate compounds in late-stage development for treatment of multidrug-resistant Klebsiella infections; this pathogen is exemplary of the mismatch between unmet medical needs and the current antimicrobial research and development pipeline. Furthermore, there is still limited evidence on K. pneumoniae pathogenesis at the molecular and cellular levels in the context of the interactions between bacterial pathogens and their hosts. In this research, we have uncovered a sophisticated strategy employed by Klebsiella to subvert the activation of immune defenses by controlling the modification of proteins. Our research may open opportunities to develop new therapeutics based on counteracting this Klebsiella-controlled immune evasion strategy. Klebsiella pneumoniae is an important cause of multidrug-resistant infections worldwide. Understanding the virulence mechanisms of K. pneumoniae is a priority and timely to design new therapeutics. Here, we demonstrate that K. pneumoniae limits the SUMOylation of host proteins in epithelial cells and macrophages (mouse and human) to subvert cell innate immunity. Mechanistically, in lung epithelial cells, Klebsiella increases the levels of the deSUMOylase SENP2 in the cytosol by affecting its K48 ubiquitylation and its subsequent degradation by the ubiquitin proteasome. This is dependent on Klebsiella preventing the NEDDylation of the Cullin-1 subunit of the ubiquitin ligase complex E3-SCF-βTrCP by exploiting the CSN5 deNEDDylase. Klebsiella induces the expression of CSN5 in an epidermal growth factor receptor (EGFR)-phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT)-extracellular signal-regulated kinase (ERK)-glycogen synthase kinase 3 beta (GSK3β) signaling pathway-dependent manner. In macrophages, Toll-like receptor 4 (TLR4)-TRAM-TRIF-induced type I interferon (IFN) via IFN receptor 1 (IFNAR1)-controlled signaling mediates Klebsiella-triggered decrease in the levels of SUMOylation via let-7 microRNAs (miRNAs). Our results revealed the crucial role played by Klebsiella polysaccharides, the capsule, and the lipopolysaccharide (LPS) O-polysaccharide, to decrease the levels of SUMO-conjugated proteins in epithelial cells and macrophages. A Klebsiella-induced decrease in SUMOylation promotes infection by limiting the activation of inflammatory responses and increasing intracellular survival in macrophages.
Collapse
|
31
|
Liu Y, Wang Q, Zhao C, Chen H, Li H, Wang H, Cares Network OBOT. Prospective multi-center evaluation on risk factors, clinical characteristics and outcomes due to carbapenem resistance in Acinetobacter baumannii complex bacteraemia: experience from the Chinese Antimicrobial Resistance Surveillance of Nosocomial Infections (CARES) Network. J Med Microbiol 2020; 69:949-959. [PMID: 32584215 DOI: 10.1099/jmm.0.001222] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Increasing evidence demonstrates unfavourable outcomes in bloodstream infections (BSI) due to the carbapenem-resistant Acinetobacter baumannii complex (CRAB).Aim. To investigate the differences in risk factors, clinical characteristics and outcomes in patients with A. baumannii complex BSI stratified by carbapenem resistance, a prospective multi-center study was conducted.Methodology. Information was collected in a predefined form. A total of 317 cases was included for comparison between CRAB BSI vs. carbapenem-susceptible A. baumannii complex (CSAB) BSI. Among these cases, 229 cases were defined as CRAB BSI and 88 cases as CSAB BSI.Results. Univariable analysis showed that male gender, underlying neurologic disease, prior carbapenems exposure, intensive care unit (ICU) stay, presence of central venous catheter, endotracheal intubation, tracheotomy, Foley catheter, nasogastric intubation, lower respiratory tract infections and catheter-related infections were more prevalent in CRAB BSI. Only male gender, prior carbapenems exposure and presence of endotracheal intubation persisted as independent risk factors for acquiring CRAB BSI. Patients with CRAB BSI displayed unfavourable outcomes characterized by failure of pathogen clearance, continuous fever, disease aggravation and higher incidence of 30-day all-cause mortality. Multivariate analysis demonstrated carbapenem resistance as an independent risk factor for 30-day all-cause mortality.Conclusion. Our findings reveal the epidemiological differences between CRAB BSI and CSAB BSI in a Chinese cohort. Our data suggest that carbapenem resistance has a significant impact on mortality for patients with A. baumannii complex BSI, further strengthening the importance of active prevention and control strategies for the spread of CRAB in Chinese hospitals.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, PR China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, PR China
| | - Chunjiang Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, PR China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, PR China
| | - Henan Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, PR China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, PR China
| | | |
Collapse
|
32
|
Kelly AM, McLoughlin RM. Target the Host, Kill the Bug; Targeting Host Respiratory Immunosuppressive Responses as a Novel Strategy to Improve Bacterial Clearance During Lung Infection. Front Immunol 2020; 11:767. [PMID: 32425944 PMCID: PMC7203494 DOI: 10.3389/fimmu.2020.00767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
The lung is under constant pressure to protect the body from invading bacteria. An effective inflammatory immune response must be tightly orchestrated to ensure complete clearance of any invading bacteria, while simultaneously ensuring that inflammation is kept under strict control to preserve lung viability. Chronic bacterial lung infections are seen as a major threat to human life with the treatment of these infections becoming more arduous as the prevalence of antibiotic resistance becomes increasingly commonplace. In order to survive within the lung bacteria target the host immune system to prevent eradication. Many bacteria directly target inflammatory cells and cytokines to impair inflammatory responses. However, bacteria also have the capacity to take advantage of and strongly promote anti-inflammatory immune responses in the host lung to inhibit local pro-inflammatory responses that are critical to bacterial elimination. Host cells such as T regulatory cells and myeloid-derived suppressor cells are often enhanced in number and activity during chronic pulmonary infection. By increasing suppressive cell populations and cytokines, bacteria promote a permissive environment suitable for their prolonged survival. This review will explore the anti-inflammatory aspects of the lung immune system that are targeted by bacteria and how bacterial-induced immunosuppression could be inhibited through the use of host-directed therapies to improve treatment options for chronic lung infections.
Collapse
Affiliation(s)
- Alanna M Kelly
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
33
|
Pires S, Peignier A, Seto J, Smyth DS, Parker D. Biological sex influences susceptibility to Acinetobacter baumannii pneumonia in mice. JCI Insight 2020; 5:132223. [PMID: 32191638 DOI: 10.1172/jci.insight.132223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/11/2020] [Indexed: 12/31/2022] Open
Abstract
Acinetobacter baumannii (A. baumannii) is an extremely versatile multidrug-resistant pathogen with a very high mortality rate; therefore, it has become crucial to understand the host response during its infection. Given the importance of mice for modeling infection and their role in preclinical drug development, equal emphasis should be placed on the use of both sexes. Through our studies using a murine model of acute pneumonia with A. baumannii, we observed that female mice were more susceptible to infection. Likewise, treatment of male mice with estradiol increased their susceptibility to infection. Analysis of the airway compartment revealed enhanced inflammation and reduced neutrophil and alveolar macrophage numbers compared with male mice. Depletion of either neutrophils or alveolar macrophages was important for bacterial clearance; however, depletion of alveolar macrophages further exacerbated female susceptibility because of severe alterations in metabolic homeostasis. Our data highlight the importance of using both sexes when assessing host immune pathways.
Collapse
Affiliation(s)
- Sílvia Pires
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Adeline Peignier
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jeremy Seto
- Department of Biological Sciences, New York City College of Technology, Brooklyn, New York, New York, USA
| | - Davida S Smyth
- Department of Natural Sciences, Eugene Lang College of Liberal Arts at The New School, New York, New York, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
34
|
Valenzuela-Valderrama M, González IA, Palavecino CE. Photodynamic treatment for multidrug-resistant Gram-negative bacteria: Perspectives for the treatment of Klebsiella pneumoniae infections. Photodiagnosis Photodyn Ther 2019; 28:256-264. [PMID: 31505296 DOI: 10.1016/j.pdpdt.2019.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/09/2019] [Indexed: 12/25/2022]
Abstract
The emergence of multi-drug resistance for pathogenic bacteria is one of the most pressing global threats to human health in the 21st century. Hence, the availability of new treatment becomes indispensable to prevent morbidity and mortality caused by infectious agents. This article reviews the antimicrobial properties of photodynamic therapy (PDT), which is based on the use of photosensitizers compounds (PSs). The PSs are non-toxic small molecules, which induce oxidative stress only under excitation with light. Then, the PDT has the advantage to be locally activated using phototherapy devices. We focus on PDT for the Klebsiella pneumoniae, as an example of Gram-negative bacteria, due to its relevance as an agent of health-associated infections (HAI) and a multi-drug resistant bacteria. K. pneumoniae is a fermentative bacillus, member of the Enterobacteriaceae family, which is most commonly associated with producing infection of the urinary tract (UTI) and pneumonia. K. pneumoniae infections may occur in deep organs such as bladder or lungs tissues; therefore, activating light must get access or penetrate tissues with sufficient power to produce effective PDT. Consequently, the rationale for selecting the most appropriate PSs, as well as photodynamic devices and photon fluence doses, were reviewed. Also, the mechanisms by which PDT activates the immune system and its importance to eradicate the infection successfully, are discussed.
Collapse
Affiliation(s)
- Manuel Valenzuela-Valderrama
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile; Centro de Estudios Avanzados en Enfermedades Crónicas (ACCDiS), Independencia, Santiago 8380000, Chile.
| | - Iván Alonzo González
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile.
| | - Christian Erick Palavecino
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile.
| |
Collapse
|
35
|
Jones-Nelson O, Hilliard JJ, DiGiandomenico A, Warrener P, Alfaro A, Cheng L, Stover CK, Cohen TS, Sellman BR. The Neutrophilic Response to Pseudomonas Damages the Airway Barrier, Promoting Infection by Klebsiella pneumoniae. Am J Respir Cell Mol Biol 2019; 59:745-756. [PMID: 30109945 DOI: 10.1165/rcmb.2018-0107oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas aeruginosa and Klebsiella pneumoniae are two common gram-negative pathogens that are associated with bacterial pneumonia and can often be isolated from the same patient. We used a mixed-pathogen pneumonia infection model in which mice were infected with sublethal concentrations of P. aeruginosa and K. pneumoniae, resulting in significant lethality, outgrowth of both bacteria in the lung, and systemic dissemination of K. pneumoniae. Inflammation, induced by P. aeruginosa activation of Toll-like receptor 5, results in prolonged neutrophil recruitment to the lung and increased levels of neutrophil elastase in the airway, resulting in lung damage and epithelial barrier dysfunction. Live P. aeruginosa was not required to potentiate K. pneumoniae infection, and flagellin alone was sufficient to induce lethality when delivered along with Klebsiella. Prophylaxis with an anti-Toll-like receptor 5 antibody or Sivelestat, a neutrophil elastase inhibitor, reduced neutrophil influx, inflammation, and mortality. Furthermore, pathogen-specific monoclonal antibodies targeting P. aeruginosa or K. pneumoniae prevented the outgrowth of both bacteria and reduced host inflammation and lethality. These findings suggest that coinfection with P. aeruginosa may enable the outgrowth and dissemination of K. pneumoniae, and that a pathogen- or host-specific prophylactic approach targeting P. aeruginosa may prevent or limit the severity of such infections by reducing neutrophil-induced lung damage.
Collapse
Affiliation(s)
| | | | | | | | - Alex Alfaro
- 2 Department of Laboratory Animal Research, and
| | - Lily Cheng
- 3 Department of Translational Science, MedImmune, LLC, Gaithersburg, Maryland
| | | | | | | |
Collapse
|
36
|
Castillo LA, Birnberg-Weiss F, Rodriguez-Rodrigues N, Martire-Greco D, Bigi F, Landoni VI, Gomez SA, Fernandez GC. Klebsiella pneumoniae ST258 Negatively Regulates the Oxidative Burst in Human Neutrophils. Front Immunol 2019; 10:929. [PMID: 31105712 PMCID: PMC6497972 DOI: 10.3389/fimmu.2019.00929] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/11/2019] [Indexed: 11/13/2022] Open
Abstract
The epidemic clone of Klebsiella pneumoniae (Kpn), sequence type 258 (ST258), carbapenamase producer (KPC), commonly infects hospitalized patients that are left with scarce therapeutic option since carbapenems are last resort antibiotics for life-threatening bacterial infections. To improve prevention and treatment, we should better understand the biology of Kpn KPC ST258 infections. Our hypothesis was that Kpn KPC ST258 evade the first line of defense of innate immunity, the polymorphonuclear neutrophil (PMN), by decreasing its functional response. Therefore, our aim was to evaluate how the ST258 Kpn clone affects PMN responses, focusing on the respiratory burst, compared to another opportunistic pathogen, Escherichia coli (Eco). We found that Kpn KPC ST258 was unable to trigger bactericidal responses as reactive oxygen species (ROS) generation and NETosis, compared to the high induction observed with Eco, but both bacterial strains were similarly phagocytized and cause increases in cell size and CD11b expression. The absence of ROS induction was also observed with other Kpn ST258 strains negative for KPC. These results reflect certain selectivity in terms of the functions that are triggered in PMN by Kpn, which seems to evade specifically those responses critical for bacterial survival. In this sense, bactericidal mechanisms evasion was associated with a higher survival of Kpn KPC ST258 compared to Eco. To investigate the mechanisms and molecules involved in ROS inhibition, we used bacterial extracts (BE) and found that BE were able to inhibit ROS generation triggered by the well-known ROS inducer, fMLP. A sequence of experiments led us to elucidate that the polysaccharide part of LPS was responsible for this inhibition, whereas lipid A mediated the other responses that were not affected by bacteria, such as cell size increase and CD11b up-regulation. In conclusion, we unraveled a mechanism of immune evasion of Kpn KPC ST258, which may contribute to design more effective strategies for the treatment of these multi-resistant bacterial infections.
Collapse
Affiliation(s)
- Luis A Castillo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)- Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Federico Birnberg-Weiss
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)- Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Nahuel Rodriguez-Rodrigues
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)- Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Daiana Martire-Greco
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)- Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Veronica I Landoni
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)- Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Sonia A Gomez
- Servicio de Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas Dr. Carlos G. Malbrán (INEI), Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), Buenos Aires, Argentina
| | - Gabriela C Fernandez
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)- Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
37
|
Interleukin-10 Produced by Myeloid-Derived Suppressor Cells Provides Protection to Carbapenem-Resistant Klebsiella pneumoniae Sequence Type 258 by Enhancing Its Clearance in the Airways. Infect Immun 2019; 87:IAI.00665-18. [PMID: 30804104 DOI: 10.1128/iai.00665-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/17/2019] [Indexed: 02/06/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae sequence type 258 (CRKP-ST258) can cause chronic infections in lungs and airways, with repeated episodes of bacteremia. In this report we addressed whether the recruitment of myeloid cells producing the anti-inflammatory cytokine interleukin-10 (IL-10) modulates the clearance of CKRP-ST258 in the lungs and establishes bacterial persistence. Our data demonstrate that during pneumonia caused by a clinical isolate of CRKP-ST258 (KP35) there is an early recruitment of monocyte-myeloid-derived suppressor cells (M-MDSCs) and neutrophils that actively produce IL-10. However, M-MDSCs were the cells that sustained the production of IL-10 over the time of infection evaluated. Using mice unable to produce IL-10 (IL-10-/-), we observed that the production of this cytokine during the infection caused by KP35 is important to control bacterial burden, to prevent lung damage, to modulate cytokine production, and to improve host survival. Importantly, intranasal transfer of bone marrow-derived M-MDSCs from mice able to produce IL-10 at 1 day prior to infection improved the ability of IL-10-/- mice to clear KP35 in the lungs, decreasing their mortality. Altogether, our data demonstrate that IL-10 produced by M-MDSCs is required for bacterial clearance, reduction of lung tissue damage, and host survival during KP35 pneumonia.
Collapse
|
38
|
Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev 2019; 43:123-144. [PMID: 30452654 PMCID: PMC6435446 DOI: 10.1093/femsre/fuy043] [Citation(s) in RCA: 321] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/16/2018] [Indexed: 12/26/2022] Open
Abstract
Klebsiella species cause a wide range of diseases including pneumonia, urinary tract infections (UTIs), bloodstream infections and sepsis. These infections are particularly a problem among neonates, elderly and immunocompromised individuals. Klebsiella is also responsible for a significant number of community-acquired infections. A defining feature of these infections is their morbidity and mortality, and the Klebsiella strains associated with them are considered hypervirulent. The increasing isolation of multidrug-resistant strains has significantly narrowed, or in some settings completely removed, the therapeutic options for the treatment of Klebsiella infections. Not surprisingly, this pathogen has then been singled out as an 'urgent threat to human health' by several organisations. This review summarises the tremendous progress that has been made to uncover the sophisticated immune evasion strategies of K. pneumoniae. The co-evolution of Klebsiella in response to the challenge of an activated immune has made Klebsiella a formidable pathogen exploiting stealth strategies and actively suppressing innate immune defences to overcome host responses to survive in the tissues. A better understanding of Klebsiella immune evasion strategies in the context of the host-pathogen interactions is pivotal to develop new therapeutics, which can be based on antagonising the anti-immune strategies of this pathogen.
Collapse
Affiliation(s)
- José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Joana Sa Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
39
|
Ahn D, Wickersham M, Riquelme S, Prince A. The Effects of IFN-λ on Epithelial Barrier Function Contribute to Klebsiella pneumoniae ST258 Pneumonia. Am J Respir Cell Mol Biol 2019; 60:158-166. [PMID: 30183325 PMCID: PMC6376406 DOI: 10.1165/rcmb.2018-0021oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
IFN-λ and IL-22, cytokines that share the coreceptor IL-10RB, are both induced over the course of Klebsiella pneumoniae ST258 (KP35) pneumonia. IL-22 is known to protect mucosal barriers, whereas the effects of IFN-λ on the mucosa are not established. We postulated that IFN-λ plays a role in regulating the airway epithelial barrier to facilitate cellular trafficking to the site of infection. In response to IFN-λ, the transmigration of neutrophils across a polarized monolayer of airway epithelial cells was increased, consistent with diminished epithelial integrity. KP35 infection increased epithelial permeability, and pretreatment with IFN-λ amplified this effect and facilitated bacterial transmigration. These effects of IFN-λ were confirmed in vivo, in that mice lacking the receptor for IFN-λ (Ifnlr1-/-) were protected from bacteremia in a murine model of KP35 pneumonia. Conversely, the integrity of the epithelial barrier was protected by IL-22, with subsequent impairment of neutrophil and bacterial transmigration in vitro. Maximal expression of IL-22 in vivo was observed later in the course of infection than IFN-λ production, with high levels of IL-22 produced by recruited immune cells at 48 hours, consistent with a role in epithelial barrier recovery. The divergent and opposing expression of these two related cytokines suggests a regulated interaction in the host response to KP35 infection. A major physiological effect of IFN-λ signaling is a decrease in epithelial barrier integrity, which facilitates immune cell recruitment but also enables K. pneumoniae invasion.
Collapse
Affiliation(s)
- Danielle Ahn
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Matthew Wickersham
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Sebastian Riquelme
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Alice Prince
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
40
|
Agrawal N, Streata I, Pei G, Weiner J, Kotze L, Bandermann S, Lozza L, Walzl G, du Plessis N, Ioana M, Kaufmann SHE, Dorhoi A. Human Monocytic Suppressive Cells Promote Replication of Mycobacterium tuberculosis and Alter Stability of in vitro Generated Granulomas. Front Immunol 2018; 9:2417. [PMID: 30405617 PMCID: PMC6205994 DOI: 10.3389/fimmu.2018.02417] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis (TB) has tremendous public health relevance. It most frequently affects the lung and is characterized by the development of unique tissue lesions, termed granulomas. These lesions encompass various immune populations, with macrophages being most extensively investigated. Myeloid derived suppressor cells (MDSCs) have been recently identified in TB patients, both in the circulation and at the site of infection, however their interactions with Mycobacterium tuberculosis (Mtb) and their impact on granulomas remain undefined. We generated human monocytic MDSCs and observed that their suppressive capacities are retained upon Mtb infection. We employed an in vitro granuloma model, which mimics human TB lesions to some extent, with the aim of analyzing the roles of MDSCs within granulomas. MDSCs altered the structure of and affected bacterial containment within granuloma-like structures. These effects were partly controlled through highly abundant secreted IL-10. Compared to macrophages, MDSCs activated primarily the NF-κB and MAPK pathways and the latter largely contributed to the release of IL-10 and replication of bacteria within in vitro generated granulomas. Moreover, MDSCs upregulated PD-L1 and suppressed proliferation of lymphocytes, albeit with negligible effects on Mtb replication. Further comprehensive characterization of MDSCs in TB will contribute to a better understanding of disease pathogenesis and facilitate the design of novel immune-based interventions for this deadly infection.
Collapse
Affiliation(s)
- Neha Agrawal
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - Ioana Streata
- University of Medicine and Pharmacy Craiova, Human Genomics Laboratory, Craiova, Romania
| | - Gang Pei
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - January Weiner
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - Leigh Kotze
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, SAMRC Centre for Tuberculosis Research, DST and NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, Tygerberg, South Africa
| | - Silke Bandermann
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - Laura Lozza
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - Gerhard Walzl
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, SAMRC Centre for Tuberculosis Research, DST and NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, Tygerberg, South Africa
| | - Nelita du Plessis
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, SAMRC Centre for Tuberculosis Research, DST and NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, Tygerberg, South Africa
| | - Mihai Ioana
- University of Medicine and Pharmacy Craiova, Human Genomics Laboratory, Craiova, Romania
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - Anca Dorhoi
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany.,Institute of Immunology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Insel Riems, Germany.,Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
41
|
Peñaloza HF, Noguera LP, Riedel CA, Bueno SM. Expanding the Current Knowledge About the Role of Interleukin-10 to Major Concerning Bacteria. Front Microbiol 2018; 9:2047. [PMID: 30279680 PMCID: PMC6153308 DOI: 10.3389/fmicb.2018.02047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022] Open
Abstract
Interleukin-10 (IL-10) is one of the most important anti-inflammatory cytokine produced during bacterial infection. Two related phenomena explain the importance of IL-10 production in this context: first, the wide range of cells able to produce this cytokine and second, the wide effects that it causes on target cells. In a previous report we described opposing roles of IL-10 production during bacterial infection. Overall, during infections caused by intracellular bacteria or by pathogens that modulate the inflammatory response, IL-10 production facilitates bacterial persistence and dissemination within the host. Whereas during infections caused by extracellular or highly inflammatory bacteria, IL-10 production reduces host tissue damage and facilitates host survival. Given that these data were obtained using antibiotic susceptible bacteria, the potential application of these studies to multi-drug resistant (MDR) bacteria needs to be evaluated. MDR bacteria can become by 2050 a major death cause worldwide, not only for its ability to resist antimicrobial therapy but also because the virulence of these strains is different as compared to antibiotic susceptible strains. Therefore, it is important to understand the interaction of MDR-bacteria with the immune system during infection. This review discusses the current data about the role of IL-10 during infections caused by major circulating antibiotic resistant bacteria. We conclude that the production of IL-10 improves host survival during infections caused by extracellular or highly inflammatory bacteria, however, it is detrimental during infections caused by intracellular bacteria or bacterial pathogens that modulate the inflammatory response. Importantly, during MDR-bacterial infections a differential IL-10 production has been described, compared to non-MDR bacteria, which might be due to virulence factors specific of MDR bacteria that modulate production of IL-10. This knowledge is important for the development of new therapies against infections caused by these bacteria, where antibiotics effectiveness is dramatically decreasing.
Collapse
Affiliation(s)
- Hernán F. Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreani P. Noguera
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
42
|
Piña-Iturbe A, Ulloa-Allendes D, Pardo-Roa C, Coronado-Arrázola I, Salazar-Echegarai FJ, Sclavi B, González PA, Bueno SM. Comparative and phylogenetic analysis of a novel family of Enterobacteriaceae-associated genomic islands that share a conserved excision/integration module. Sci Rep 2018; 8:10292. [PMID: 29980701 PMCID: PMC6035254 DOI: 10.1038/s41598-018-28537-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
Genomic Islands (GIs) are DNA regions acquired through horizontal gene transfer that encode advantageous traits for bacteria. Many GIs harbor genes that encode the molecular machinery required for their excision from the bacterial chromosome. Notably, the excision/integration dynamics of GIs may modulate the virulence of some pathogens. Here, we report a novel family of GIs found in plant and animal Enterobacteriaceae pathogens that share genes with those found in ROD21, a pathogenicity island whose excision is involved in the virulence of Salmonella enterica serovar Enteritidis. In these GIs we identified a conserved set of genes that includes an excision/integration module, suggesting that they are excisable. Indeed, we found that GIs within carbapenem-resistant Klebsiella pneumoniae ST258 KP35 and enteropathogenic Escherichia coli O127:H6 E2348/69 are excised from the bacterial genome. In addition to putative virulence factors, these GIs encode conjugative transfer-related proteins and short and full-length homologues of the global transcriptional regulator H-NS. Phylogenetic analyses suggest that the identified GIs likely originated in phytopathogenic bacteria. Taken together, our findings indicate that these GIs are excisable and may play a role in bacterial interactions with their hosts.
Collapse
Affiliation(s)
- Alejandro Piña-Iturbe
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diego Ulloa-Allendes
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Pardo-Roa
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Irenice Coronado-Arrázola
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco J Salazar-Echegarai
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bianca Sclavi
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique UMR 8113, École Normale Supérieure Paris-Saclay, Cachan, France
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
43
|
Riquelme SA, Ahn D, Prince A. Pseudomonas aeruginosa and Klebsiella pneumoniae Adaptation to Innate Immune Clearance Mechanisms in the Lung. J Innate Immun 2018; 10:442-454. [PMID: 29617698 PMCID: PMC6785651 DOI: 10.1159/000487515] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 01/02/2023] Open
Abstract
Many different species of gram-negative bacteria are associated with infection in the lung, causing exacerbations of chronic obstructive pulmonary disease, cystic fibrosis (CF), and ventilator-associated pneumonias. These airway pathogens must adapt to common host clearance mechanisms that include killing by antimicrobial peptides, antibiotics, oxidative stress, and phagocytosis by leukocytes. Bacterial adaptation to the host is often evident phenotypically, with increased extracellular polysaccharide production characteristic of some biofilm-associated organisms. Given the relatively limited repertoire of bacterial strategies to elude airway defenses, it seems likely that organisms sharing the same ecological niche might also share common strategies to persistently infect the lung. In this review, we will highlight some of the major factors responsible for the adaptation of Pseudomonas aeruginosa to the lung, addressing how growth in biofilms enables persistent infection, relevant to, but not limited to, the pathogenesis of infection in CF. In contrast, we will discuss how carbapenem-resistant Klebsiella pneumoniae evade immune clearance, an organism often associated with ventilator-associated pneumonia and health-care-acquired pneumonias, but not a typical pathogen in CF.
Collapse
Affiliation(s)
| | | | - Alice Prince
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
44
|
Dorhoi A, Du Plessis N. Monocytic Myeloid-Derived Suppressor Cells in Chronic Infections. Front Immunol 2018; 8:1895. [PMID: 29354120 PMCID: PMC5758551 DOI: 10.3389/fimmu.2017.01895] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/11/2017] [Indexed: 01/04/2023] Open
Abstract
Heterogeneous populations of myeloid regulatory cells (MRC), including monocytes, macrophages, dendritic cells, and neutrophils, are found in cancer and infectious diseases. The inflammatory environment in solid tumors as well as infectious foci with persistent pathogens promotes the development and recruitment of MRC. These cells help to resolve inflammation and establish host immune homeostasis by restricting T lymphocyte function, inducing regulatory T cells and releasing immune suppressive cytokines and enzyme products. Monocytic MRC, also termed monocytic myeloid-derived suppressor cells (M-MDSC), are bona fide phagocytes, capable of pathogen internalization and persistence, while exerting localized suppressive activity. Here, we summarize molecular pathways controlling M-MDSC genesis and functions in microbial-induced non-resolved inflammation and immunopathology. We focus on the roles of M-MDSC in infections, including opportunistic extracellular bacteria and fungi as well as persistent intracellular pathogens, such as mycobacteria and certain viruses. Better understanding of M-MDSC biology in chronic infections and their role in antimicrobial immunity, will advance development of novel, more effective and broad-range anti-infective therapies.
Collapse
Affiliation(s)
- Anca Dorhoi
- Institute of Immunology, Bundesforschungsinstitut für Tiergesundheit, Friedrich-Loeffler-Institut (FLI), Insel Riems, Germany.,Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany.,Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Nelita Du Plessis
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, SAMRC Centre for Tuberculosis Research, DST and NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
45
|
Wickersham M, Wachtel S, Wong Fok Lung T, Soong G, Jacquet R, Richardson A, Parker D, Prince A. Metabolic Stress Drives Keratinocyte Defenses against Staphylococcus aureus Infection. Cell Rep 2017; 18:2742-2751. [PMID: 28297676 DOI: 10.1016/j.celrep.2017.02.055] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/25/2017] [Accepted: 02/16/2017] [Indexed: 12/25/2022] Open
Abstract
Human skin is commonly colonized and infected by Staphylococcus aureus. Exactly how these organisms are sensed by keratinocytes has not been clearly delineated. Using a combination of metabolic and transcriptomic methodologies, we found that S. aureus infection is sensed as a metabolic stress by the hypoxic keratinocytes. This induces HIF1α signaling, which promotes IL-1β production and stimulates aerobic glycolysis to meet the metabolic requirements of infection. We demonstrate that staphylococci capable of glycolysis, including WT and agr mutants, readily induce HIF1α responses. In contrast, Δpyk glycolytic mutants fail to compete with keratinocytes for their metabolic needs. Suppression of glycolysis using 2-DG blocked keratinocyte production of IL-1β in vitro and significantly exacerbated the S. aureus cutaneous infection in a murine model. Our data suggest that S. aureus impose a metabolic stress on keratinocytes that initiates signaling necessary to promote both glycolysis and the proinflammatory response to infection.
Collapse
Affiliation(s)
- Matthew Wickersham
- Deparment of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Sarah Wachtel
- Deparment of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Tania Wong Fok Lung
- Deparment of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Grace Soong
- Deparment of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Rudy Jacquet
- Deparment of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Anthony Richardson
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Dane Parker
- Deparment of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Alice Prince
- Deparment of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
46
|
Kumar V, Ahmad A. Targeting calpains: A novel immunomodulatory approach for microbial infections. Eur J Pharmacol 2017; 814:28-44. [PMID: 28789934 DOI: 10.1016/j.ejphar.2017.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 02/09/2023]
Abstract
Calpains are a family of Ca2+ dependent cytosolic non-lysosomal proteases with well conserved cysteine-rich domains for enzymatic activity. Due to their functional dependency on Ca2+ concentrations, they are involved in various cellular processes that are regulated by intracellular ca2+ concentration (i.e. embryo development, cell development and migration, maintenance of cellular architecture and structure etc.). Calpains are widely studied proteases in mammalian (i.e. mouse and human) physiology and pathophysiology due to their ubiquitous presence. For example, these proteases have been found to be involved in various inflammatory disorders such as neurodegeneration, cancer, brain and myocardial ischemia and infarction, cataract and muscular dystrophies etc. Besides their role in these sterile inflammatory conditions, calpains have also been shown to regulate a wide range of infectious diseases (i.e. sepsis, tuberculosis, gonorrhoea and bacillary dysentery etc.). One of these regulatory mechanisms mediated by calpains (i.e. calpain 1 and 2) during microbial infections involves the regulation of innate immune response, inflammation and cell death. Thus, the major emphasis of this review is to highlight the importance of calpains in the pathogenesis of various microbial (i.e. bacterial, fungal and viral) diseases and the use of calpain modulators as potential immunomodulators in microbial infections.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Paediatrics and Child Health, Children's Health Queensland Clinical Unit, School of Medicine, University of Queensland, Brisbane, Queensland, Australia.
| | - Ali Ahmad
- Laboratory of innate immunity, CHU Ste-Justine Research Center/Department of Microbiology, Infectious Diseases and Immunology, University of Montreal, 3175 Cote Ste Catherine, Montreal, Quebec, Canada H3T 1C5.
| |
Collapse
|
47
|
Cohen TS, Pelletier M, Cheng L, Pennini ME, Bonnell J, Cvitkovic R, Chang CS, Xiao X, Cameroni E, Corti D, Semenova E, Warrener P, Sellman BR, Suzich J, Wang Q, Stover CK. Anti-LPS antibodies protect against Klebsiella pneumoniae by empowering neutrophil-mediated clearance without neutralizing TLR4. JCI Insight 2017; 2:92774. [PMID: 28469079 DOI: 10.1172/jci.insight.92774] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022] Open
Abstract
Initial promising results with immune sera guided early human mAb approaches against Gram-negative sepsis to an LPS neutralization mechanism, but these efforts failed in human clinical trials. Emergence of multidrug resistance has renewed interest in pathogen-specific mAbs. We utilized a pair of antibodies targeting Klebsiella pneumoniae LPS, one that both neutralizes LPS/TLR4 signaling and mediates opsonophagocytic killing (OPK) (54H7) and one that only promotes OPK (KPE33), to better understand the contribution of each mechanism to mAb protection in an acutely lethal pneumonia model. Passive immunization 24 hours prior to infection with KPE33 protected against lethal infection significantly better than 54H7, while delivery of either mAb 1 hour after infection resulted in similar levels of protection. These data suggest that early neutralization of LPS-induced signaling limits protection afforded by these mAbs. LPS neutralization prevented increases in the numbers of γδT cells, a major producer of the antimicrobial cytokine IL-17A, the contribution of which was confirmed using il17a-knockout mice. We conclude that targeting LPS for OPK without LPS signaling neutralization has potential to combat Gram-negative infection by engaging host immune defenses, rather than inhibiting beneficial innate immune pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chew-Shun Chang
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, Maryland, USA
| | - Xiaodong Xiao
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ahn D, Prince A. Participation of Necroptosis in the Host Response to Acute Bacterial Pneumonia. J Innate Immun 2017; 9:262-270. [PMID: 28125817 PMCID: PMC5413418 DOI: 10.1159/000455100] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022] Open
Abstract
Common pulmonary pathogens, such as Streptococcus pneumoniae and Staphylococcus aureus, as well as the host-adapted pathogens responsible for health care-associated pneumonias, such as the carbapenem-resistant Klebsiella pneumoniae and Serratia marcecsens, are able to activate cell death through the RIPK1/RIPK3/MLKL cascade that causes necroptosis. Necroptosis can influence the pathogenesis of pneumonia through several mechanisms. Activation of this pathway can result in the loss of specific types of immune cells, especially macrophages, and, in so doing, contribute to host pathology through the loss of their critical immunoregulatory functions. However, in other settings of infection, necroptosis promotes pathogen removal and the eradication of infected cells to control excessive proinflammatory signaling. Bacterial production of pore-forming toxins provides a common mechanism to activate necroptosis by diverse bacterial species, with variable consequences depending upon the specific pathogen. Included in this brief review are data demonstrating the ability of the carbapenem-resistant ST258 K. pneumoniae to activate necroptosis in the setting of pneumonia, which is counterbalanced by their suppression of CYLD expression. Exactly how necroptosis and other mechanisms of cell death are coregulated in the response to specific pulmonary pathogens remains a topic of active investigation, and it may provide potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Danielle Ahn
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Alice Prince
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
- Department of Pharmacology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|