1
|
Seretis A, Amon L, Tripp CH, Cappellano G, Hornsteiner F, Dieckmann S, Vierthaler J, Ortner-Tobider D, Kanduth M, Steindl R, Boon L, den Haan JMM, Lehmann CHK, Dudziak D, Stoitzner P. Multi-Epitope DC Vaccines with Melanoma Antigens for Immunotherapy of Melanoma. Vaccines (Basel) 2025; 13:346. [PMID: 40333215 PMCID: PMC12031154 DOI: 10.3390/vaccines13040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 05/09/2025] Open
Abstract
Background/Objectives: The revolution for the treatment of melanoma came with the approval of checkpoint blockade antibodies. However, a substantial proportion of patients show primary or secondary resistance to this type of immunotherapy, indicating the need for alternative therapeutic strategies. Dendritic cells (DCs) of the skin are prime targets for vaccination approaches due to their potential to prime naïve T cells and their accessibility. This study aimed to develop and evaluate novel vaccines targeting the C-type lectin receptor DEC-205 to deliver melanoma-associated antigenic peptides to skin DCs. Methods: We cloned MHC-I-restricted peptides from the glycoprotein (gp)10025-33 and Tyrosinase-related protein (trp)2180-188 into the DEC-205 antibody sequence with modified peptide cutting sites from the OVA257-264 SIINFEKL peptide. We tested their potential to induce CD8+ T cell responses in both in vitro and in vivo settings. Tumor growth inhibition was evaluated in the transplantable B16.OVA melanoma murine model using a multi-epitope DC-based vaccine combining both peptides. Results: The cross-presentation of both gp100 and trp2 peptides was confirmed in vivo when peptide sequences were flanked by the OVA257-264 peptide cutting sites. Moreover, the combination of both antigenic peptides into a multi-epitope DC vaccine was required to inhibit B16.OVA melanoma growth. Conclusions: Our findings suggest that a DC-targeted vaccination approach using multiple epitopes deriving from melanoma antigens could represent a promising strategy for melanoma therapy.
Collapse
Affiliation(s)
- Athanasios Seretis
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.S.); (C.H.T.); (F.H.); (S.D.); (D.O.-T.)
- Research Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (L.A.); (C.H.K.L.); (D.D.)
| | - Christoph H. Tripp
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.S.); (C.H.T.); (F.H.); (S.D.); (D.O.-T.)
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, Università del Piemonte Orientale, 28100 Novara, Italy;
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Florian Hornsteiner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.S.); (C.H.T.); (F.H.); (S.D.); (D.O.-T.)
| | - Sophie Dieckmann
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.S.); (C.H.T.); (F.H.); (S.D.); (D.O.-T.)
| | - Janine Vierthaler
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.S.); (C.H.T.); (F.H.); (S.D.); (D.O.-T.)
| | - Daniela Ortner-Tobider
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.S.); (C.H.T.); (F.H.); (S.D.); (D.O.-T.)
| | - Markus Kanduth
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.S.); (C.H.T.); (F.H.); (S.D.); (D.O.-T.)
| | - Rita Steindl
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.S.); (C.H.T.); (F.H.); (S.D.); (D.O.-T.)
| | | | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Neatherlands;
| | - Christian H. K. Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (L.A.); (C.H.K.L.); (D.D.)
- FAU I-MED, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Department for Paediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (L.A.); (C.H.K.L.); (D.D.)
- Comprehensive Cancer Center Central Germany Jena/Leipzig (CCCG), 07743 Jena, Germany
- Institute of Immunology, Jena University Hospital, 07743 Jena, Germany
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.S.); (C.H.T.); (F.H.); (S.D.); (D.O.-T.)
| |
Collapse
|
2
|
Chen MY, Zhang F, Goedegebuure SP, Gillanders WE. Dendritic cell subsets and implications for cancer immunotherapy. Front Immunol 2024; 15:1393451. [PMID: 38903502 PMCID: PMC11188312 DOI: 10.3389/fimmu.2024.1393451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Dendritic cells (DCs) play a central role in the orchestration of effective T cell responses against tumors. However, their functional behavior is context-dependent. DC type, transcriptional program, location, intratumoral factors, and inflammatory milieu all impact DCs with regard to promoting or inhibiting tumor immunity. The following review introduces important facets of DC function, and how subset and phenotype can affect the interplay of DCs with other factors in the tumor microenvironment. It will also discuss how current cancer treatment relies on DC function, and survey the myriad ways with which immune therapy can more directly harness DCs to enact antitumor cytotoxicity.
Collapse
Affiliation(s)
- Michael Y. Chen
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Felicia Zhang
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Simon Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, United States
| | - William E. Gillanders
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
3
|
Alves Costa Silva C, Piccinno G, Suissa D, Bourgin M, Schreibelt G, Durand S, Birebent R, Fidelle M, Sow C, Aprahamian F, Manghi P, Punčochář M, Asnicar F, Pinto F, Armanini F, Terrisse S, Routy B, Drubay D, Eggermont AMM, Kroemer G, Segata N, Zitvogel L, Derosa L, Bol KF, de Vries IJM. Influence of microbiota-associated metabolic reprogramming on clinical outcome in patients with melanoma from the randomized adjuvant dendritic cell-based MIND-DC trial. Nat Commun 2024; 15:1633. [PMID: 38395948 PMCID: PMC10891084 DOI: 10.1038/s41467-024-45357-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor immunosurveillance plays a major role in melanoma, prompting the development of immunotherapy strategies. The gut microbiota composition, influencing peripheral and tumoral immune tonus, earned its credentials among predictors of survival in melanoma. The MIND-DC phase III trial (NCT02993315) randomized (2:1 ratio) 148 patients with stage IIIB/C melanoma to adjuvant treatment with autologous natural dendritic cell (nDC) or placebo (PL). Overall, 144 patients collected serum and stool samples before and after 2 bimonthly injections to perform metabolomics (MB) and metagenomics (MG) as prespecified exploratory analysis. Clinical outcomes are reported separately. Here we show that different microbes were associated with prognosis, with the health-related Faecalibacterium prausnitzii standing out as the main beneficial taxon for no recurrence at 2 years (p = 0.008 at baseline, nDC arm). Therapy coincided with major MB perturbations (acylcarnitines, carboxylic and fatty acids). Despite randomization, nDC arm exhibited MG and MB bias at baseline: relative under-representation of F. prausnitzii, and perturbations of primary biliary acids (BA). F. prausnitzii anticorrelated with BA, medium- and long-chain acylcarnitines. Combined, these MG and MB biomarkers markedly determined prognosis. Altogether, the host-microbial interaction may play a role in localized melanoma. We value systematic MG and MB profiling in randomized trials to avoid baseline differences attributed to host-microbe interactions.
Collapse
Grants
- The MIND-DC trial was funded by ZonMw, Ministry of Health, Welfare and Sport (VWS), Stichting ATK, Miltenyi Biotec (in-kind). This work was supported by SEERAVE Foundation, European Union Horizon 2020:Project Number: 825410 and Project Acronym: ONCOBIOME, Institut National du Cancer (INCa), ANR Ileobiome - 19-CE15-0029-01, ANR RHU5 “ANR-21-RHUS-0017” IMMUNOLIFE”, MAdCAM INCA_ 16698, Ligue contre le cancer, LABEX OncoImmunology, la direction generale de l’offre de soins (DGOS), Universite Paris-Sud, SIRIC SOCRATE (INCa/DGOS/INSERM 6043), and PACRI network. G.K. is supported by the Ligue contre le Cancer (équipe labellisée); Agence National de la Recherche (ANR) – Projets blancs; AMMICa US23/CNRS UMS3655; Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; Fondation pour la Recherche Médicale (FRM); a donation by Elior; Equipex Onco-Pheno-Screen; European Joint Programme on Rare Diseases (EJPRD); European Research Council Advanced Investigator Award (ERC-2021-ADG, ICD-Cancer, Grant No. 101052444), European Union Horizon 2020 Projects Oncobiome, Prevalung (grant No. 101095604) and Crimson; Fondation Carrefour; Institut National du Cancer (INCa); Institut Universitaire de France; LabEx Immuno-Oncology (ANR-18-IDEX-0001); a Cancer Research ASPIRE Award from the Mark Foundation; the RHU Immunolife; Seerave Foundation; SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); and SIRIC Cancer Research and Personalized Medicine (CARPEM). This study contributes to the IdEx Université de Paris ANR-18-IDEX-0001. This work is supported by the Prism project funded by the Agence Nationale de la Recherche under grant number ANR-18-IBHU-0002. CACS was funded by MSD Avenir. MF is funded by SEERAVE Foundation and MERCK Foundation. LD and BR were supported by Philantropia at Gustave Roussy Foundation.
Collapse
Affiliation(s)
- Carolina Alves Costa Silva
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Gianmarco Piccinno
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Déborah Suissa
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Mélanie Bourgin
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
| | - Gerty Schreibelt
- Medical BioSciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands
| | - Sylvère Durand
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
| | - Roxanne Birebent
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Marine Fidelle
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Cissé Sow
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Fanny Aprahamian
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
| | - Paolo Manghi
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michal Punčochář
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Francesco Asnicar
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Federica Pinto
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Federica Armanini
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Safae Terrisse
- Oncology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Paris, France
| | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Damien Drubay
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France
- Office of Biostatistics and Epidemiology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Inserm, Université Paris-Saclay, CESP U1018, Oncostat, labeled Ligue Contre le Cancer, Villejuif, France
| | - Alexander M M Eggermont
- Princess Máxima Center and University Medical Center Utrecht, 3584 CS Utrecht, The Netherlands
- Comprehensive Cancer Center Munich, Technical University Munich & Ludwig Maximiliaan University, Munich, Germany
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Nicola Segata
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France.
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France.
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France.
- Center of Clinical Investigations BIOTHERIS, INSERM CIC1428, Villejuif, France.
| | - Lisa Derosa
- Gustave Roussy Cancer Campus (GRCC), ClinicObiome, Villejuif Cedex, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Kalijn F Bol
- Medical BioSciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Medical BioSciences, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Gautam N, Ramamoorthi G, Champion N, Han HS, Czerniecki BJ. Reviewing the significance of dendritic cell vaccines in interrupting breast cancer development. Mol Aspects Med 2024; 95:101239. [PMID: 38150884 DOI: 10.1016/j.mam.2023.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Breast cancer is a heterogeneous disease and is the most prevalent cancer in women. According to the U.S breast cancer statistics, about 1 in every 8 women develop an invasive form of breast cancer during their lifetime. Immunotherapy has been a significant advancement in the treatment of cancer with multiple studies reporting favourable patient outcomes by modulating the immune response to cancer cells. Here, we review the significance of dendritic cell vaccines in treating breast cancer patients. We discuss the involvement of dendritic cells and oncodrivers in breast tumorigenesis, highlighting the rationale for targeting oncodrivers and neoantigens using dendritic cell vaccine therapy. We review different dendritic cell subsets and maturation states previously used to develop vaccines and suggest the use of DC vaccines for breast cancer prevention. Further, we highlight that the intratumoral delivery of type 1 dendritic cell vaccines in breast cancer patients activates tumor antigen-specific CD4+ T helper cell type 1 (Th1) cells, promoting an anti-tumorigenic immune response while concurrently blocking pro-tumorigenic responses. In summary, this review provides an overview of the current state of dendritic cell vaccines in breast cancer highlighting the challenges and considerations necessary for an efficient dendritic cell vaccine design in interrupting breast cancer development.
Collapse
Affiliation(s)
- Namrata Gautam
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ganesan Ramamoorthi
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Nicholas Champion
- Department of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Hyo S Han
- Department of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Brian J Czerniecki
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA; Department of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
5
|
Anayyat U, Ahad F, Muluh TA, Zaidi SAA, Usmani F, Yang H, Li M, Hassan HA, Wang X. Immunotherapy: Constructive Approach for Breast Cancer Treatment. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:925-951. [PMID: 38116189 PMCID: PMC10729681 DOI: 10.2147/bctt.s424624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
A novel and rapid therapeutic approach is the treatment of human breast cancer by enhancing the host's immune system. In initial findings, program death one (PD-1) and program cell death ligand one (PD-L1) showed positive results towards solid tumors, but tumor relapse and drug resistance are the major concerns. Breast cancer therapy has been transformed by the advent of immune checkpoint blockades (ICBs). Triple-negative breast cancers (TNBCs) have exhibited enduring responses to clinical usage of immune checkpoint inhibitors (ICBs) like atezolizumab and pembrolizumab. Nonetheless, a notable proportion of individuals with TNBC do not experience advantages from these treatments, and there is limited comprehension of the resistance mechanisms. Another approach to overcome resistance is cancer stem cells (CSCs), as these cells are crucial for the initiation and growth of tumors in the body. Various cancer vaccines are created using stem cells (dendritic, whole cell, bacterial) and focus primarily on targeting tumor-related antigens. The ultimate objective of cancer vaccines is to immunize the patients by active artificial immunity against cancer, though. In this review, we primarily focused on existing immunotherapeutic options, immune checkpoint blockers, the latest progress in understanding the molecular mechanisms underlying resistance to immune checkpoint inhibitors (ICBs), advanced strategies to overcome resistance to ICBs, cancer stem cell antigens and molecular markers, ongoing clinical trials for BCs and cancer vaccines for breast cancer.
Collapse
Affiliation(s)
- Umer Anayyat
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Faiza Ahad
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Tobias Achu Muluh
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Syed Aqib Ali Zaidi
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Faiza Usmani
- Department of Biotechnology, University of Karachi, Karachi, Pakistan
| | - Hua Yang
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Mengqing Li
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Hammad Ali Hassan
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiaomei Wang
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| |
Collapse
|
6
|
Zhang R, Tang L, Wang Y, Li Q, Yang L. α-d-Glucose-1,6-Biphosphate Induces Dendritic Cell Homing to Enhance the Antitumor Effect of Neoantigen Vaccines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:932-943. [PMID: 37556117 DOI: 10.4049/jimmunol.2200687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/02/2023] [Indexed: 08/10/2023]
Abstract
Neoantigen vaccines have achieved good therapeutic effects in animal experiments and early clinical trials on certain malignant tumors. However, their overall objective effectiveness in clinical trials still needs to be improved. Low-efficiency dendritic cell (DC) migration (<5%) to lymph nodes is one of the factors that limits vaccine effectiveness. For neoantigen vaccines, improving the homing efficiency of DCs is expected to further improve the immunotherapeutic effect. In this study, we used α-d-glucose-1,6-biphosphate (α-d-Glu), a metabolite that successfully enhanced C57BL/6J mouse bone marrow-derived DC homing induced by neoantigen peptide, mRNA, and DC vaccines during the administration process and improved the antitumor effects in the mouse C57BL/6J model with a neoantigen vaccine. We clarified that α-d-Glu activated MAPK8IP1 by inhibiting the expression of microRNA-10a-5p, thereby activating the MAPK signaling pathway to promote DC homing. Excitingly, the efficiency of α-d-Glu in promoting DC migration is not weaker than that of PGE2, which is the gold standard used to promote DC migration in clinical trials of DC vaccines. Thus, this study lays the foundation for further enhancing the objective clinical response rate of neoantigen vaccines and overcoming the limitation of an insufficient clinical response rate for neoantigen vaccines caused by low DC homing efficiency.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Lee KW, Yam JWP, Mao X. Dendritic Cell Vaccines: A Shift from Conventional Approach to New Generations. Cells 2023; 12:2147. [PMID: 37681880 PMCID: PMC10486560 DOI: 10.3390/cells12172147] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
In the emerging era of cancer immunotherapy, immune checkpoint blockades (ICBs) and adoptive cell transfer therapies (ACTs) have gained significant attention. However, their therapeutic efficacies are limited due to the presence of cold type tumors, immunosuppressive tumor microenvironment, and immune-related side effects. On the other hand, dendritic cell (DC)-based vaccines have been suggested as a new cancer immunotherapy regimen that can address the limitations encountered by ICBs and ACTs. Despite the success of the first generation of DC-based vaccines, represented by the first FDA-approved DC-based therapeutic cancer vaccine Provenge, several challenges remain unsolved. Therefore, new DC vaccine strategies have been actively investigated. This review addresses the limitations of the currently most adopted classical DC vaccine and evaluates new generations of DC vaccines in detail, including biomaterial-based, immunogenic cell death-inducing, mRNA-pulsed, DC small extracellular vesicle (sEV)-based, and tumor sEV-based DC vaccines. These innovative DC vaccines are envisioned to provide a significant breakthrough in cancer immunotherapy landscape and are expected to be supported by further preclinical and clinical studies.
Collapse
Affiliation(s)
- Kyu-Won Lee
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; (K.-W.L.); (J.W.P.Y.)
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; (K.-W.L.); (J.W.P.Y.)
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Xiaowen Mao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| |
Collapse
|
8
|
Xiang Y, Gong M, Deng Y, Wang H, Ye D. T cell effects and mechanisms in immunotherapy of head and neck tumors. Cell Commun Signal 2023; 21:49. [PMID: 36872320 PMCID: PMC9985928 DOI: 10.1186/s12964-023-01070-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/06/2023] [Indexed: 03/07/2023] Open
Abstract
Head and neck tumors (HNCs) are a common tumor in otorhinolaryngology head and neck surgery, accounting for 5% of all malignant tumors in the body and are the sixth most common malignant tumor worldwide. In the body, immune cells can recognize, kill, and remove HNCs. T cell-mediated antitumor immune activity is the most important antitumor response in the body. T cells have different effects on tumor cells, among which cytotoxic T cells and helper T cells play a major killing and regulating role. T cells recognize tumor cells, activate themselves, differentiate into effector cells, and activate other mechanisms to induce antitumor effects. In this review, the immune effects and antitumor mechanisms mediated by T cells are systematically described from the perspective of immunology, and the application of new immunotherapy methods related to T cells are discussed, with the objective of providing a theoretical basis for exploring and forming new antitumor treatment strategies. Video Abstract.
Collapse
Affiliation(s)
- Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Hongli Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated People Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
9
|
Filin IY, Mayasin YP, Kharisova CB, Gorodilova AV, Kitaeva KV, Chulpanova DS, Solovyeva VV, Rizvanov AA. Cell Immunotherapy against Melanoma: Clinical Trials Review. Int J Mol Sci 2023; 24:2413. [PMID: 36768737 PMCID: PMC9916554 DOI: 10.3390/ijms24032413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Melanoma is one of the most aggressive and therapy-resistant types of cancer, the incidence rate of which grows every year. However, conventional methods of chemo- and radiotherapy do not allow for completely removing neoplasm, resulting in local, regional, and distant relapses. In this case, adjuvant therapy can be used to reduce the risk of recurrence. One of the types of maintenance cancer therapy is cell-based immunotherapy, in which immune cells, such as T-cells, NKT-cells, B cells, NK cells, macrophages, and dendritic cells are used to recognize and mobilize the immune system to kill cancer cells. These cells can be isolated from the patient's peripheral blood or biopsy material and genetically modified, cultured ex vivo, following infusion back into the patient for powerful induction of an anti-tumor immune response. In this review, the advantages and problems of the most relevant methods of cell-based therapy and ongoing clinical trials of adjuvant therapy of melanoma are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
10
|
Stoitzner P, Romani N, Rademacher C, Probst HC, Mahnke K. Antigen targeting to dendritic cells: Still a place in future immunotherapy? Eur J Immunol 2022; 52:1909-1924. [PMID: 35598160 PMCID: PMC10084009 DOI: 10.1002/eji.202149515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/01/2022] [Accepted: 05/20/2022] [Indexed: 12/16/2022]
Abstract
The hallmark of DCs is their potent and outstanding capacity to activate naive resting T cells. As such, DCs are the sentinels of the immune system and instrumental for the induction of immune responses. This is one of the reasons, why DCs became the focus of immunotherapeutical strategies to fight infections, cancer, and autoimmunity. Besides the exploration of adoptive DC-therapy for which DCs are generated from monocytes or purified in large numbers from the blood, alternative approaches were developed such as antigen targeting of DCs. The idea behind this strategy is that DCs resident in patients' lymphoid organs or peripheral tissues can be directly loaded with antigens in situ. The proof of principle came from mouse models; subsequent translational studies confirmed the potential of this therapy. The first clinical trials demonstrated feasibility and the induction of T-cell immunity in patients. This review will cover: (i) the historical aspects of antigen targeting, (ii) briefly summarize the biology of DCs and the immunological functions upon which this concept rests, (iii) give an overview on attempts to target DC receptors with antibodies or (glycosylated) ligands, and finally, (iv) discuss the translation of antigen targeting into clinical therapy.
Collapse
Affiliation(s)
- Patrizia Stoitzner
- Department of Dermatology, Venereology, and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nikolaus Romani
- Department of Dermatology, Venereology, and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Rademacher
- Department of Microbiology, Immunology and Genetics, University of Vienna, Vienna, Austria.,Institute of Immunology, University Medical Center Mainz, Mainz, Germany
| | - Hans Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany.,Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
11
|
Vera J, Lai X, Baur A, Erdmann M, Gupta S, Guttà C, Heinzerling L, Heppt MV, Kazmierczak PM, Kunz M, Lischer C, Pützer BM, Rehm M, Ostalecki C, Retzlaff J, Witt S, Wolkenhauer O, Berking C. Melanoma 2.0. Skin cancer as a paradigm for emerging diagnostic technologies, computational modelling and artificial intelligence. Brief Bioinform 2022; 23:6761961. [PMID: 36252807 DOI: 10.1093/bib/bbac433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/28/2022] [Accepted: 09/08/2022] [Indexed: 12/19/2022] Open
Abstract
We live in an unprecedented time in oncology. We have accumulated samples and cases in cohorts larger and more complex than ever before. New technologies are available for quantifying solid or liquid samples at the molecular level. At the same time, we are now equipped with the computational power necessary to handle this enormous amount of quantitative data. Computational models are widely used helping us to substantiate and interpret data. Under the label of systems and precision medicine, we are putting all these developments together to improve and personalize the therapy of cancer. In this review, we use melanoma as a paradigm to present the successful application of these technologies but also to discuss possible future developments in patient care linked to them. Melanoma is a paradigmatic case for disruptive improvements in therapies, with a considerable number of metastatic melanoma patients benefiting from novel therapies. Nevertheless, a large proportion of patients does not respond to therapy or suffers from adverse events. Melanoma is an ideal case study to deploy advanced technologies not only due to the medical need but also to some intrinsic features of melanoma as a disease and the skin as an organ. From the perspective of data acquisition, the skin is the ideal organ due to its accessibility and suitability for many kinds of advanced imaging techniques. We put special emphasis on the necessity of computational strategies to integrate multiple sources of quantitative data describing the tumour at different scales and levels.
Collapse
Affiliation(s)
- Julio Vera
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Xin Lai
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Andreas Baur
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Michael Erdmann
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock 18051, Germany
| | - Cristiano Guttà
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Lucie Heinzerling
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany.,Department of Dermatology, LMU University Hospital, Munich, Germany
| | - Markus V Heppt
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | | | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University of Leipzig, 04103 Leipzig, Germany
| | - Christopher Lischer
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Christian Ostalecki
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Jimmy Retzlaff
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | | | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock 18051, Germany
| | - Carola Berking
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| |
Collapse
|
12
|
Bellmann L, Strandt H, Zelle‐Rieser C, Ortner D, Tripp CH, Schmid S, Rühl J, Cappellano G, Schaffenrath S, Prokopi A, Spoeck S, Seretis A, Del Frari B, Sigl S, Krapf J, Heufler C, Keler T, Münz C, Romani N, Stoitzner P. Targeted delivery of a vaccine protein to Langerhans cells in the human skin via the C-type lectin receptor Langerin. Eur J Immunol 2022; 52:1829-1841. [PMID: 34932821 PMCID: PMC9788233 DOI: 10.1002/eji.202149670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/26/2021] [Indexed: 12/30/2022]
Abstract
Human skin is a preferred vaccination site as it harbors multiple dendritic cell (DC) subsets, which display distinct C-type lectin receptors (CLR) that recognize pathogens. Antigens can be delivered to CLR by antibodies or ligands to boost antigen-specific immune responses. This concept has been established in mouse models but detailed insights into the functional consequences of antigen delivery to human skin DC in situ are sparse. In this study, we cloned and produced an anti-human Langerin antibody conjugated to the EBV nuclear antigen 1 (EBNA1). We confirmed specific binding of anti-Langerin-EBNA1 to Langerhans cells (LC). This novel LC-based vaccine was then compared to an existing anti-DEC-205-EBNA1 fusion protein by loading LC in epidermal cell suspensions before coculturing them with autologous T cells. After restimulation with EBNA1-peptides, we detected elevated levels of IFN-γ- and TNF-α-positive CD4+ T cells with both vaccines. When we injected the fusion proteins intradermally into human skin explants, emigrated skin DC targeted via DEC-205-induced cytokine production by T cells, whereas the Langerin-based vaccine failed to do so. In summary, we demonstrate that antibody-targeting approaches via the skin are promising vaccination strategies, however, further optimizations of vaccines are required to induce potent immune responses.
Collapse
Affiliation(s)
- Lydia Bellmann
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Helen Strandt
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Claudia Zelle‐Rieser
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Daniela Ortner
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Christoph H. Tripp
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Sandra Schmid
- Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Julia Rühl
- Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Giuseppe Cappellano
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria,Department of Health SciencesInterdisciplinary Research Center of Autoimmune DiseasesCenter for Translational Research on Autoimmune and Allergic Disease‐CAADUniversità del Piemonte OrientaleNovaraItaly
| | - Sandra Schaffenrath
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Anastasia Prokopi
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Sarah Spoeck
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Athanasios Seretis
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria,Research Institute for Biomedical Aging ResearchUniversity of InnsbruckAustria
| | - Barbara Del Frari
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Stephan Sigl
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Johanna Krapf
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Christine Heufler
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | | | - Christian Münz
- Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Nikolaus Romani
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Patrizia Stoitzner
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
13
|
Ferris ST, Ohara RA, Ou F, Wu R, Huang X, Kim S, Chen J, Liu TT, Schreiber RD, Murphy TL, Murphy KM. cDC1 Vaccines Drive Tumor Rejection by Direct Presentation Independently of Host cDC1. Cancer Immunol Res 2022; 10:920-931. [PMID: 35648641 PMCID: PMC9357132 DOI: 10.1158/2326-6066.cir-21-0865] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/07/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023]
Abstract
As a cell-based cancer vaccine, dendritic cells (DC), derived from peripheral blood monocytes or bone marrow (BM) treated with GM-CSF (GMDC), were initially thought to induce antitumor immunity by presenting tumor antigens directly to host T cells. Subsequent work revealed that GMDCs do not directly prime tumor-specific T cells, but must transfer their antigens to host DCs. This reduces their advantage over strictly antigen-based strategies proposed as cancer vaccines. Type 1 conventional DCs (cDC1) have been reported to be superior to GMDCs as a cancer vaccine, but whether they act by transferring antigens to host DCs is unknown. To test this, we compared antitumor responses induced by GMDCs and cDC1 in Irf8 +32-/- mice, which lack endogenous cDC1 and cannot reject immunogenic fibrosarcomas. Both GMDCs and cDC1 could cross-present cell-associated antigens to CD8+ T cells in vitro. However, injection of GMDCs into tumors in Irf8 +32-/- mice did not induce antitumor immunity, consistent with their reported dependence on host cDC1. In contrast, injection of cDC1s into tumors in Irf8 +32-/- mice resulted in their migration to tumor-draining lymph nodes, activation of tumor-specific CD8+ T cells, and rejection of the tumors. Tumor rejection did not require the in vitro loading of cDC1 with antigens, indicating that acquisition of antigens in vivo is sufficient to induce antitumor responses. Finally, cDC1 vaccination showed abscopal effects, with rejection of untreated tumors growing concurrently on the opposite flank. These results suggest that cDC1 may be a useful future avenue to explore for antitumor therapy. See related Spotlight by Hubert et al., p. 918.
Collapse
Affiliation(s)
- Stephen T. Ferris
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Ray A. Ohara
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Feiya Ou
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Renee Wu
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Xiao Huang
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Sunkyung Kim
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Jing Chen
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Robert D. Schreiber
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Theresa L. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
14
|
Zhang S, Chen K, Zhao Z, Zhang X, Xu L, Liu T, Yu S. Lower Expression of GBP2 Associated With Less Immune Cell Infiltration and Poor Prognosis in Skin Cutaneous Melanoma (SKCM). J Immunother 2022; 45:274-283. [PMID: 35543550 DOI: 10.1097/cji.0000000000000421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
Guanylate binding protein 2 (GBP2) could bind to guanine nucleotides (GMP, GDP, and GTP) and exhibits antiviral activity against influenza virus through the innate immune response. Some researchers have demonstrated that the value of GBP2 in predicting the prognosis of multiple cancers and the complex correlation with immune response. However, the correlation of GBP2 to prognosis and immune cell infiltration level were unknown in skin cutaneous melanoma (SKCM). The GBP2 expression in multiple cancers were evaluated through Tumor Immune Estimation Resource (TIMER) and Oncomine. We also evaluated the influence of GBP2 on overall survival in multiple caners through GEPIA, TIMER, and tissue microarray. The correlation between GBP2 expression level and immune cell or gene markers of immune infiltration level was explored on TIMER and GEPIA. Gene set enrichment analysis was performed using the TCGA dataset. The GBP2 expression level represented a significant reduction and the GBP2 expression was lower compared with the SKCM-Metastasis with P<0.01. Lower GBP2 expression was significantly correlated with the poor overall survival of SKCM patients. Simultaneously, higher GBP2 expression predicted the better SKCM-free survival with P=0.019. GBP2 expression was positively correlated with the infiltration cells of B-cell, CD8+ T-cell, CD4+ T-cell, macrophage, neutrophil, and dendritic cell in SKCM. And there was a significant negative correlation between the expression of GBP2 and DNA methylation in the cBioPortal database (P=3.39e-42). Gene set enrichment analysis revealed that GBP2 was closely correlated with multiple pathways of immune response in cancer. In conclusion, Lower expression of GBP2 associated with less immune cell infiltration and poor prognosis in SKCM and the high promoter methylation of GBP2 represented a promising biomarker for poor prognostication in SKCM.
Collapse
Affiliation(s)
| | - Kun Chen
- State Key Lab of Molecular Oncology and Immunology Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
15
|
Koch EAT, Schaft N, Kummer M, Berking C, Schuler G, Hasumi K, Dörrie J, Schuler-Thurner B. A One-Armed Phase I Dose Escalation Trial Design: Personalized Vaccination with IKKβ-Matured, RNA-Loaded Dendritic Cells for Metastatic Uveal Melanoma. Front Immunol 2022; 13:785231. [PMID: 35185883 PMCID: PMC8854646 DOI: 10.3389/fimmu.2022.785231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/14/2022] [Indexed: 11/19/2022] Open
Abstract
Uveal melanoma (UM) is an orphan disease with a mortality of 80% within one year upon the development of metastatic disease. UM does hardly respond to chemotherapy and kinase inhibitors and is largely resistant to checkpoint inhibition. Hence, further therapy approaches are urgently needed. To improve clinical outcome, we designed a trial employing the 3rd generation personalized IKKβ-matured RNA-transfected dendritic cell (DC) vaccine which primes T cells and in addition activates NK cells. This ongoing phase I trial [NCT04335890 (www.clinicaltrials.gov), Eudract: 2018-004390-28 (www.clinicaltrialsregister.eu)] investigates patients with treatment-naive metastatic UM. Monocytes are isolated by leukapheresis, differentiated to immature DCs, matured with a cytokine cocktail, and activated via the NF-κB pathway by electroporation with RNA encoding a constitutively active mutant of IKKβ. Three types of antigen-RNA are co-electroporated: i) amplified mRNA of the tumor representing the whole transcriptome, ii) RNA encoding driver mutations identified by exome sequencing, and iii) overexpressed non-mutated tumor antigens detected by transcriptome sequencing. This highly personalized DC vaccine is applied by 9 intravenous infusions in a staggered schedule over one year. Parallel to the vaccination, standard therapy, usually an immune checkpoint blockade (ICB) as mono (anti-PD-1) or combined (anti-CTLA4 and anti-PD-1) regimen is initiated. The coordinated vaccine-induced immune response encompassing tumor-specific T cells and innate NK cells should synergize with ICB, perhaps resulting in measurable clinical responses in this resistant tumor entity. Primary outcome measures of this trial are safety, tolerability and toxicity; secondary outcome measures comprise overall survival and induction of antigen-specific T cells.
Collapse
Affiliation(s)
- Elias A. T. Koch
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- *Correspondence: Niels Schaft,
| | - Mirko Kummer
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Gerold Schuler
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | | | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Beatrice Schuler-Thurner
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
16
|
Shi Y, Li Z, Zhou Z, Liao S, Wu Z, Li J, Yin J, Wang M, Weng M. Identification and validation of an epithelial mesenchymal transition-related gene pairs signature for prediction of overall survival in patients with skin cutaneous melanoma. PeerJ 2022; 10:e12646. [PMID: 35116193 PMCID: PMC8785661 DOI: 10.7717/peerj.12646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND We aimed to construct a novel epithelial-mesenchymal transition (EMT)-related gene pairs (ERGPs) signature to predict overall survival (OS) in skin cutaneous melanoma (CM) patients. METHODS Expression data of the relevant genes, corresponding clinicopathological parameters, and follow-up data were obtained from The Cancer Genome Atlas database. Univariate Cox regression analysis was utilized to identify ERGPs significantly associated with OS, and LASSO analysis was used to identify the genes used for the construction of the ERGPs signature. The optimal cutoff value determined by the receiver operating characteristic curve was used to classify patients into high-risk and low-risk groups. Survival curves were generated using the Kaplan-Meier method, and differences between the two groups were estimated using the log-rank test. The independent external datasets GSE65904 and GSE19234 were used to verify the performance of the ERGPs signature using the area under the curve (AUC) values. In addition, we also integrated clinicopathological parameters and risk scores to develop a nomogram that can individually predict the prognosis of patients with CM. RESULTS A total of 104 ERGPs related to OS were obtained, of which 21 ERGPs were selected for the construction of the signature. All CM patients were stratified into high-and low-risk groups based on an optimal risk score cutoff value of 0.281. According to the Kaplan-Meier analysis, the mortality rate in the low-risk group was lower than that in the high-risk group in the TCGA cohort (P < 0.001), GSE65904 cohort (P = 0.006), and GSE19234 cohort (P = 0.002). Multivariate Cox regression analysis indicated that our ERGP signature was an independent risk factor for OS in CM patients in the three cohorts (for TCGA: HR, 2.560; 95% CI [1.907-3.436]; P < 0.001; for GSE65904: HR = 2.235, 95% CI [1.492-3.347], P < 0.001; for GSE19234: HR = 2.458, 95% CI [1.065-5.669], P = 0.035). The AUC value for predicting the 5-year survival rate of patients with CM of our developed model was higher than that of two previously established prognostic signatures. Both the calibration curve and the C-index (0.752, 95% CI [0.678-0.826]) indicated that the developed nomogram was highly accurate. Most importantly, the decision curve analysis results showed that the nomogram had a higher net benefit than that of the American Joint Committee on Cancer stage system. CONCLUSION Our study established an ERGPs signature that could be potentially used in a clinical setting as a genetic biomarker for risk stratification of CM patients. In addition, the ERGPs signature could also predict which CM patients will benefit from PD-1 and PD-L1 inhibitors.
Collapse
Affiliation(s)
- Yucang Shi
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhanpeng Li
- Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Zhihong Zhou
- Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Simu Liao
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhiyuan Wu
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jie Li
- Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Jiasheng Yin
- Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Meng Wang
- Department of Plastic Surgery, Longhua District People’s Hospital, Shenzhen, China
| | - Meilan Weng
- Graduate School of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
17
|
Vaccines for Non-Viral Cancer Prevention. Int J Mol Sci 2021; 22:ijms222010900. [PMID: 34681560 PMCID: PMC8535337 DOI: 10.3390/ijms222010900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer vaccines are a type of immune therapy that seeks to modulate the host’s immune system to induce durable and protective immune responses against cancer-related antigens. The little clinical success of therapeutic cancer vaccines is generally attributed to the immunosuppressive tumor microenvironment at late-stage diseases. The administration of cancer-preventive vaccination at early stages, such as pre-malignant lesions or even in healthy individuals at high cancer risk could increase clinical efficacy by potentiating immune surveillance and pre-existing specific immune responses, thus eliminating de novo appearing lesions or maintaining equilibrium. Indeed, research focus has begun to shift to these approaches and some of them are yielding encouraging outcomes.
Collapse
|
18
|
Stadtmauer EA, Sullivan KM, El Idrissi M, Salaun B, Alonso Alonso A, Andreadis C, Anttila VJ, Bloor AJ, Broady R, Cellini C, Cuneo A, Dagnew AF, Di Paolo E, Eom H, González-Rodríguez AP, Grigg A, Guenther A, Heineman TC, Jarque I, Kwak JY, Lucchesi A, Oostvogels L, Polo Zarzuela M, Schuind AE, Shea TC, Sinisalo UM, Vural F, Yáñez San Segundo L, Zachée P, Bastidas A. Adjuvanted recombinant zoster vaccine in adult autologous stem cell transplant recipients: polyfunctional immune responses and lessons for clinical practice. Hum Vaccin Immunother 2021; 17:4144-4154. [PMID: 34406911 PMCID: PMC8828160 DOI: 10.1080/21645515.2021.1953346] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Immunocompromised individuals, particularly autologous hematopoietic stem cell transplant (auHSCT) recipients, are at high risk for herpes zoster (HZ). We provide an in-depth description of humoral and cell-mediated immune (CMI) responses by age (protocol-defined) or underlying disease (post-hoc) as well as efficacy by underlying disease (post-hoc) of the adjuvanted recombinant zoster vaccine (RZV) in a randomized observer-blind phase III trial (ZOE-HSCT, NCT01610414). 1846 adult auHSCT recipients were randomized to receive a first dose of either RZV or placebo 50–70 days post-auHSCT, followed by the second dose at 1–2 months (M) later. In cohorts of 114–1721 participants, at 1 M post-second vaccine dose: Anti-gE antibody geometric mean concentrations (GMCs) and median gE-specific CD4[2+] T-cell frequencies (CD4 T cells expressing ≥2 of four assessed activation markers) were similar between 18–49 and ≥50-year-olds. Despite lower anti-gE antibody GMCs in non-Hodgkin B-cell lymphoma (NHBCL) patients, CD4[2+] T-cell frequencies were similar between NHBCL and other underlying diseases. The proportion of polyfunctional CD4 T cells increased over time, accounting for 79.6% of gE-specific CD4 T cells at 24 M post-dose two. Vaccine efficacy against HZ ranged between 42.5% and 82.5% across underlying diseases and was statistically significant in NHBCL and multiple myeloma patients. In conclusion, two RZV doses administered early post-auHSCT induced robust, persistent, and polyfunctional gE-specific immune responses. Efficacy against HZ was also high in NHBCL patients despite the lower humoral response.
What is the context?
After haematopoietic stem cell transplantation, patients have impaired immunity from conditioning chemotherapy regimens, often exacerbated by underlying diseases, putting them at high risk of developing herpes zoster. In this population, antiviral prophylaxis is the current standard of care to reduce herpes zoster risk. Vaccination provides an additional means to prevent herpes zoster. Live-attenuated vaccines are generally contraindicated in immunocompromised patients. A non-live, adjuvanted recombinant zoster vaccine (RZV, Shingrix, GSK), has been approved for use in adults ≥50 years of age in the European Union, United States, Canada, Australia, Japan, and China. This vaccine is highly efficacious at preventing herpes zoster in adults over 50 years of age, as demonstrated in large, placebo-controlled randomised trials. Importantly, Shingrix use is not contraindicated in immunocompromised conditions, and was found to be highly efficacious in adults who had recently undergone autologous haematopoietic stem cell transplant.
What is new?
In autologous haematopoietic stem cell transplant recipients in whom Shingrix has demonstrated efficacy, two doses elicited high and persistent immune responses. Date presented here further support our understanding of the impact of specific factors such as age or underlying diseases on the vaccine’s effect in the population studied, as well as the characteristics of the elicited cell-mediated immune responses.
What is the impact?
These results indicate that Shingrix, given shortly after haematopoietic stem cell transplant, can induce robust immune responses and reduce the risk of herpes zoster, even in individuals with immunosuppression due to underlying disease and/or use of immunosuppressive therapies, regardless of age or underlying disease.
Collapse
Affiliation(s)
| | - Keith M Sullivan
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | - Veli-Jukka Anttila
- Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Adrian Jc Bloor
- Haematology and Transplant Unit, The Christie NHS Foundation Trust, Manchester, UK
| | | | - Claudia Cellini
- U.O. di Ematologia, Ospedale Santa Maria Delle Croci, Ravenna, Italy
| | - Antonio Cuneo
- Unità Operativa di Ematologia, Azienda Osp. Universitaria Arcispedale S. Anna, Cona, Italy
| | | | | | - HyeonSeok Eom
- National Cancer Center, Goyang-si, Republic of Korea
| | | | - Andrew Grigg
- Department of Clinical Haematology, Austin Health, Heidelberg, Australia
| | | | | | - Isidro Jarque
- Hematology Department & CIBERONC, Instituto Carlos III, Hospital Universitario y Politécnico la fe, Valencia, Spain
| | - Jae-Yong Kwak
- Chonbuk National University Hospital, DukJin-Gu, Republic of Korea
| | - Alessandro Lucchesi
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | | | | | | - Thomas C Shea
- Division of Hematology and Medical Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ulla Marjatta Sinisalo
- Hematology Unit, Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Filiz Vural
- Ege University Medical Faculty Hospital, Izmir, Turkey
| | - Lucrecia Yáñez San Segundo
- Hematology Department, Hospital Universitario Marqués De Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - Pierre Zachée
- Hematologie - Oncologie, Ziekenhuisnetwerk Antwerpen - ZNA Stuivenberg & ZNA Middelheim, Antwerpen, Belgium
| | | |
Collapse
|
19
|
Dagnew AF, Vink P, Drame M, Willer DO, Salaun B, Schuind AE. Immune responses to the adjuvanted recombinant zoster vaccine in immunocompromised adults: a comprehensive overview. Hum Vaccin Immunother 2021; 17:4132-4143. [PMID: 34190658 PMCID: PMC8827627 DOI: 10.1080/21645515.2021.1930846] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immunocompromised (IC) persons are at increased risk for herpes zoster (HZ) and its complications, mainly due to impairment of cell-mediated immunity (CMI). The adjuvanted recombinant zoster vaccine (RZV) demonstrated efficacy against HZ in autologous hematopoietic stem cell transplant (auto-HSCT) recipients and hematologic malignancy (HM) patients. We review immune responses to RZV in 5 adult IC populations, 4 of which were receiving multiple, concomitant immunosuppressive medications: auto-HSCT and renal transplant recipients, HM and solid tumor patients, and human immunodeficiency virus-infected adults. Although administered in most cases when immunosuppression was near its maximum, including concomitantly with chemotherapy cycles, RZV induced robust and persistent humoral and, more importantly, CMI responses in all 5 IC populations. Based on the overall clinical data generated in older adults and IC individuals, RZV is expected to provide benefit in a broad adult population at risk for HZ.
Collapse
|
20
|
Abstract
Therapeutic cancer vaccines have undergone a resurgence in the past decade. A better understanding of the breadth of tumour-associated antigens, the native immune response and development of novel technologies for antigen delivery has facilitated improved vaccine design. The goal of therapeutic cancer vaccines is to induce tumour regression, eradicate minimal residual disease, establish lasting antitumour memory and avoid non-specific or adverse reactions. However, tumour-induced immunosuppression and immunoresistance pose significant challenges to achieving this goal. In this Review, we deliberate on how to improve and expand the antigen repertoire for vaccines, consider developments in vaccine platforms and explore antigen-agnostic in situ vaccines. Furthermore, we summarize the reasons for failure of cancer vaccines in the past and provide an overview of various mechanisms of resistance posed by the tumour. Finally, we propose strategies for combining suitable vaccine platforms with novel immunomodulatory approaches and standard-of-care treatments for overcoming tumour resistance and enhancing clinical efficacy.
Collapse
Affiliation(s)
- Mansi Saxena
- Vaccine and Cell Therapy Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Hematology and Oncology Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | | | - Nina Bhardwaj
- Vaccine and Cell Therapy Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Hematology and Oncology Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
21
|
Tripp CH, Voit H, An A, Seidl-Philipp M, Krapf J, Sigl S, Romani N, Del Frari B, Stoitzner P. Laser-assisted epicutaneous immunization to target human skin dendritic cells. Exp Dermatol 2021; 30:1279-1289. [PMID: 33797121 DOI: 10.1111/exd.14346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 01/11/2023]
Abstract
Dendritic cells (DC) are promising targets for immunotherapy of cancer. Clinically, immunization against cancer antigens by means of the most potent antigen-presenting cells, that is DC, remains an important treatment option in combination with the modern immune checkpoint approaches. Instead of adoptively transferring in vitro monocyte-derived DC, they can also be loaded in situ by antibody-mediated targeting of antigen. Conventionally, these vaccines are delivered by classical intradermal injections. Here, we tested an alternative approach, namely laser-assisted epicutaneous immunization. With an infrared laser ("Precise Laser Epidermal System"/P.L.E.A.S.E.® Laser System), we created micropores in human skin and applied monoclonal antibodies (mAbs) against C-type lectins, for example DEC-205/CD205 and Langerin/CD207. Optimal parameters for formation of pores in epidermis and dermis were determined. We could induce pores of defined depths without enhanced apoptosis around them. Antibodies applied epicutaneously to the laser-porated skin could be detected both in Langerhans cells (LC) in situ in the epidermis and in migratory skin DC subsets from short term human skin explant culture, demonstrating uptake and transport of Langerin and DEC-205 mAbs. Efficacy of targeting was similar between the different laser treatments and pore depths. Thus, laser-assisted epicutaneous immunization may be a valuable alternative to intradermal injection, yet the loading efficacy of DC needs to be further improved.
Collapse
Affiliation(s)
- Christoph H Tripp
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hermann Voit
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Angela An
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Magdalena Seidl-Philipp
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johanna Krapf
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephan Sigl
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Nikolaus Romani
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Del Frari
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
22
|
Sutherland SIM, Ju X, Horvath LG, Clark GJ. Moving on From Sipuleucel-T: New Dendritic Cell Vaccine Strategies for Prostate Cancer. Front Immunol 2021; 12:641307. [PMID: 33854509 PMCID: PMC8039370 DOI: 10.3389/fimmu.2021.641307] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Tumors evade the immune system though a myriad of mechanisms. Using checkpoint inhibitors to help reprime T cells to recognize tumor has had great success in malignancies including melanoma, lung, and renal cell carcinoma. Many tumors including prostate cancer are resistant to such treatment. However, Sipuleucel-T, a dendritic cell (DC) based immunotherapy, improved overall survival (OS) in prostate cancer. Despite this initial success, further DC vaccines have failed to progress and there has been limited uptake of Sipuleucel-T in the clinic. We know in prostate cancer (PCa) that both the adaptive and the innate arms of the immune system contribute to the immunosuppressive environment. This is at least in part due to dysfunction of DC that play a crucial role in the initiation of an immune response. We also know that there is a paucity of DC in PCa, and that those there are immature, creating a tolerogenic environment. These attributes make PCa a good candidate for a DC based immunotherapy. Ultimately, the knowledge gained by much research into antigen processing and presentation needs to translate from bench to bedside. In this review we will analyze why newer vaccine strategies using monocyte derived DC (MoDC) have failed to deliver clinical benefit, particularly in PCa, and highlight the emerging antigen loading and presentation technologies such as nanoparticles, antibody-antigen conjugates and virus co-delivery systems that can be used to improve efficacy. Lastly, we will assess combination strategies that can help overcome the immunosuppressive microenvironment of PCa.
Collapse
Affiliation(s)
- Sarah I. M. Sutherland
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Concord Repatriation General Hospital, Concord, NSW, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | - Xinsheng Ju
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - L. G. Horvath
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Georgina J. Clark
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
Yan S, Liu K, Mu L, Liu J, Tang W, Liu B. Research and application of hydrostatic high pressure in tumor vaccines (Review). Oncol Rep 2021; 45:75. [PMID: 33760193 PMCID: PMC8020208 DOI: 10.3892/or.2021.8026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/05/2021] [Indexed: 11/29/2022] Open
Abstract
It is well known that hydrostatic pressure (HP) is a physical parameter that is now regarded as an important variable for life. High hydrostatic pressure (HHP) technology has influenced biological systems for more than 100 years. Food and bioscience researchers have shown great interest in HHP technology over the past few decades. The development of knowledge related to this area can better facilitate the application of HHP in the life sciences. Furthermore, new applications for HHP may come from these current studies, particularly in tumor vaccines. Currently, cancer recurrence and metastasis continue to pose a serious threat to human health. The limited efficacy of conventional treatments has led to the need for breakthroughs in immunotherapy and other related areas. Research into tumor vaccines is providing new insights for cancer treatment. The purpose of this review is to present the main findings reported thus far in the relevant scientific literature, focusing on knowledge related to HHP technology and tumor vaccines, and to demonstrate the potential of applying HHP technology to tumor vaccine development.
Collapse
Affiliation(s)
- Shuai Yan
- Department of Operating Room, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Kai Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lin Mu
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jianfeng Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wan Tang
- Department of Operating Room, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
24
|
Shadbad MA, Hajiasgharzadeh K, Derakhshani A, Silvestris N, Baghbanzadeh A, Racanelli V, Baradaran B. From Melanoma Development to RNA-Modified Dendritic Cell Vaccines: Highlighting the Lessons From the Past. Front Immunol 2021; 12:623639. [PMID: 33692796 PMCID: PMC7937699 DOI: 10.3389/fimmu.2021.623639] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Although melanoma remains the deadliest skin cancer, the current treatment has not resulted in the desired outcomes. Unlike chemotherapy, immunotherapy has provided more tolerable approaches and revolutionized cancer therapy. Although dendritic cell-based vaccines have minor side effects, the undesirable response rates of traditional approaches have posed questions about their clinical translation. The immunosuppressive tumor microenvironment can be the underlying reason for their low response rates. Immune checkpoints and indoleamine 2,3-dioxygenase have been implicated in the induction of immunosuppressive tumor microenvironment. Growing evidence indicates that the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase/Protein kinase B (PKB) (PI3K/AKT) pathways, as the main oncogenic pathways of melanoma, can upregulate the tumoral immune checkpoints, like programmed death-ligand 1. This study briefly represents the main oncogenic pathways of melanoma and highlights the cross-talk between these oncogenic pathways with indoleamine 2,3-dioxygenase, tumoral immune checkpoints, and myeloid-derived suppressor cells. Moreover, this study sheds light on a novel tumor antigen on melanoma, which has substantial roles in tumoral immune checkpoints expression, indoleamine 2,3-dioxygenase secretion, and stimulating the oncogenic pathways. Finally, this review collects the lessons from the previous unsuccessful trials and integrates their lessons with new approaches in RNA-modified dendritic cell vaccines. Unlike traditional approaches, the advances in single-cell RNA-sequencing techniques and RNA-modified dendritic cell vaccines along with combined therapy of the immune checkpoint inhibitors, indoleamine 2,3-dioxygenase inhibitor, and RNA-modified dendritic cell-based vaccine can overcome these auto-inductive loops and pave the way for developing robust dendritic cell-based vaccines with the most favorable response rate and the least side effects.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/adverse effects
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/therapeutic use
- Cancer Vaccines/adverse effects
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/transplantation
- Humans
- Immune Checkpoint Proteins/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Melanoma/genetics
- Melanoma/immunology
- Melanoma/metabolism
- Melanoma/therapy
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/metabolism
- RNA, Small Interfering/adverse effects
- RNA, Small Interfering/genetics
- RNA, Small Interfering/immunology
- RNA, Small Interfering/therapeutic use
- Signal Transduction
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- Skin Neoplasms/therapy
- Tumor Escape
- Tumor Microenvironment
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/therapeutic use
- mRNA Vaccines
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Nicola Silvestris
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Santos PM, Adamik J, Howes TR, Du S, Vujanovic L, Warren S, Gambotto A, Kirkwood JM, Butterfield LH. Impact of checkpoint blockade on cancer vaccine-activated CD8+ T cell responses. J Exp Med 2021; 217:151736. [PMID: 32369107 PMCID: PMC7336310 DOI: 10.1084/jem.20191369] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/04/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
Immune and molecular profiling of CD8 T cells of patients receiving DC vaccines expressing three full-length melanoma antigens (MAs) was performed. Antigen expression levels in DCs had no significant impact on T cell or clinical responses. Patients who received checkpoint blockade before DC vaccination had higher baseline MA-specific CD8 T cell responses but no evidence for improved functional responses to the vaccine. Patients who showed the best clinical responses had low PD-1 expression on MA-specific T cells before and after DC vaccination; however, blockade of PD-1 during antigen presentation by DC had minimal functional impact on PD-1high MA-specific T cells. Gene and protein expression analyses in lymphocytes and tumor samples identified critical immunoregulatory pathways, including CTLA-4 and PD-1. High immune checkpoint gene expression networks correlated with inferior clinical outcomes. Soluble serum PD-L2 showed suggestive positive association with improved outcome. These findings show that checkpoint molecular pathways are critical for vaccine outcomes and suggest specific sequencing of vaccine combinations.
Collapse
Affiliation(s)
- Patricia M Santos
- University of Pittsburgh Medical Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Juraj Adamik
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | - Timothy R Howes
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | - Samuel Du
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Lazar Vujanovic
- University of Pittsburgh Medical Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | | | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - John M Kirkwood
- University of Pittsburgh Medical Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Lisa H Butterfield
- University of Pittsburgh Medical Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA.,Parker Institute for Cancer Immunotherapy, San Francisco, CA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
26
|
Menzner AK, Rottmar T, Voelkl S, Bosch JJ, Mougiakakos D, Mackensen A, Resheq YJ. Hydrogen-Peroxide Synthesis and LDL-Uptake Controls Immunosuppressive Properties in Monocyte-Derived Dendritic Cells. Cancers (Basel) 2021; 13:461. [PMID: 33530408 PMCID: PMC7865547 DOI: 10.3390/cancers13030461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIMS Induction of myeloid-derived suppressor cells (MDSC) is a critical step in immune cell evasion by different cancer types, including liver cancer. In the liver, hepatic stromal cells orchestrate induction of MDSCs, employing a mechanism dependent on hydrogen peroxide (H2O2) depletion. However, the effects on monocyte-derived dendritic cells (moDCs) are unknown. METHODS Monocytes from healthy donors were differentiated to moDCs in the presence of extracellular enzymatic H2O2-depletion (hereinafter CAT-DCs), and studied phenotypically and functionally. To elucidate the underlying molecular mechanisms, we analyzed H2O2- and LDL-metabolism as they are interconnected in monocyte-driven phagocytosis. RESULTS CAT-DCs were of an immature DC phenotype, particularly characterized by impaired expression of the costimulatory molecules CD80/86. Moreover, CAT-DCs were able to suppress T-cells using indoleamine 2,3-dioxygenase (IDO), and induced IL10/IL17-secreting T-cells-a subtype reported to exert immunosuppression in acute myeloid leukemia. CAT-DCs also displayed significantly increased NADPH-oxidase-driven H2O2-production, enhancing low-density lipoprotein (LDL)-uptake. Blocking LDL-uptake restored maturation, and attenuated the immunosuppressive properties of CAT-DCs. DISCUSSION Here, we report a novel axis between H2O2- and LDL-metabolism controlling tolerogenic properties in moDCs. Given that moDCs are pivotal in tumor-rejection, and lipid-accumulation is associated with tumor-immune-escape, LDL-metabolism appears to play an important role in tumor-immunology.
Collapse
Affiliation(s)
- Ann-Katrin Menzner
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; (A.-K.M.); (T.R.); (S.V.); (J.J.B.); (D.M.); (A.M.)
| | - Tanja Rottmar
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; (A.-K.M.); (T.R.); (S.V.); (J.J.B.); (D.M.); (A.M.)
| | - Simon Voelkl
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; (A.-K.M.); (T.R.); (S.V.); (J.J.B.); (D.M.); (A.M.)
| | - Jacobus J. Bosch
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; (A.-K.M.); (T.R.); (S.V.); (J.J.B.); (D.M.); (A.M.)
- Clinical Research Center Hannover, MH Hannover, Feodor-Lynen-Straße 15, 30625 Hannover, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; (A.-K.M.); (T.R.); (S.V.); (J.J.B.); (D.M.); (A.M.)
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; (A.-K.M.); (T.R.); (S.V.); (J.J.B.); (D.M.); (A.M.)
| | - Yazid J. Resheq
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; (A.-K.M.); (T.R.); (S.V.); (J.J.B.); (D.M.); (A.M.)
| |
Collapse
|
27
|
Lühr JJ, Alex N, Amon L, Kräter M, Kubánková M, Sezgin E, Lehmann CHK, Heger L, Heidkamp GF, Smith AS, Zaburdaev V, Böckmann RA, Levental I, Dustin ML, Eggeling C, Guck J, Dudziak D. Maturation of Monocyte-Derived DCs Leads to Increased Cellular Stiffness, Higher Membrane Fluidity, and Changed Lipid Composition. Front Immunol 2020; 11:590121. [PMID: 33329576 PMCID: PMC7728921 DOI: 10.3389/fimmu.2020.590121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/15/2020] [Indexed: 01/02/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells of the immune system. Upon sensing pathogenic material in their environment, DCs start to mature, which includes cellular processes, such as antigen uptake, processing and presentation, as well as upregulation of costimulatory molecules and cytokine secretion. During maturation, DCs detach from peripheral tissues, migrate to the nearest lymph node, and find their way into the correct position in the net of the lymph node microenvironment to meet and interact with the respective T cells. We hypothesize that the maturation of DCs is well prepared and optimized leading to processes that alter various cellular characteristics from mechanics and metabolism to membrane properties. Here, we investigated the mechanical properties of monocyte-derived dendritic cells (moDCs) using real-time deformability cytometry to measure cytoskeletal changes and found that mature moDCs were stiffer compared to immature moDCs. These cellular changes likely play an important role in the processes of cell migration and T cell activation. As lipids constitute the building blocks of the plasma membrane, which, during maturation, need to adapt to the environment for migration and DC-T cell interaction, we performed an unbiased high-throughput lipidomics screening to identify the lipidome of moDCs. These analyses revealed that the overall lipid composition was significantly changed during moDC maturation, even implying an increase of storage lipids and differences of the relative abundance of membrane lipids upon maturation. Further, metadata analyses demonstrated that lipid changes were associated with the serum low-density lipoprotein (LDL) and cholesterol levels in the blood of the donors. Finally, using lipid packing imaging we found that the membrane of mature moDCs revealed a higher fluidity compared to immature moDCs. This comprehensive and quantitative characterization of maturation associated changes in moDCs sets the stage for improving their use in clinical application.
Collapse
Affiliation(s)
- Jennifer J. Lühr
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
- Nano-Optics, Max-Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Nils Alex
- Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Martin Kräter
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biological Optomechanics, Max-Planck Institute for the Science of Light, Erlangen, Germany
| | - Markéta Kubánková
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biological Optomechanics, Max-Planck Institute for the Science of Light, Erlangen, Germany
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Raddcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Christian H. K. Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Gordon F. Heidkamp
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
- Roche Innovation Center Munich, Roche Pharmaceutical Research and Early Development, pRED, Munich, Germany
| | - Ana-Sunčana Smith
- PULS Group, Department of Physics, IZNF, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Vasily Zaburdaev
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Mathematics in Life Sciences, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Medical Immunology Campus Erlangen, Erlangen, Germany
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ilya Levental
- McGovern Medical School, The University of Texas Health Science Center, Houston, TX, United States
| | - Michael L. Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Raddcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Institute for Applied Optics and Biophysics, Friedrich-Schiller University Jena, Jena, Germany
- Leibniz Institute of Photonic Technologies e.V., Jena, Germany
| | - Jochen Guck
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biological Optomechanics, Max-Planck Institute for the Science of Light, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
- Medical Immunology Campus Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
28
|
Eisendle K, Weinlich G, Ebner S, Forstner M, Reider D, Zelle‐Rieser C, Tripp CH, Fritsch P, Stoitzner P, Romani N, Nguyen VA. Combining chemotherapy and autologous peptide-pulsed dendritic cells provides survival benefit in stage IV melanoma patients. J Dtsch Dermatol Ges 2020; 18:1270-1277. [PMID: 33197129 PMCID: PMC7756560 DOI: 10.1111/ddg.14334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES We examined retrospectively whether the combination of standard dacarbazine (DTIC) and/or fotemustine chemotherapy and autologous peptide-loaded dendritic cell (DC) vaccination may improve survival of stage IV melanoma patients. Furthermore, a small cohort of long-term survivors was studied in more detail. PATIENTS AND METHODS Between 1998 and 2008, 41 patients were vaccinated at least three times with DCs while receiving chemotherapy and compared to all other 168 patients in our database who only received chemotherapy (1993-2008). RESULTS Median life expectancy of patients receiving additional DC-vaccination was 18 months, compared to eleven months for patients under standard chemotherapy alone. In contrast to patients with other haplotypes, the HLA-A1/A1 subset of DC-treated patients showed significantly lower median survival (12 vs. 25 months). Autoantibodies were frequently detected in serum of both vaccinated and non-vaccinated patients, and there was no correlation between titers, loss or appearance of autoantibodies and survival. Additionally, phenotyping of DCs and PBMCs also did not reveal any conspicuous correlation with survival. CONCLUSIONS Combining standard chemotherapy and DC vaccination appears superior to chemotherapy alone. The impact of HLA haplotypes on survival emphasizes the importance of a careful selection of patients with specific, well-defined HLA haplotypes for future vaccination trials using peptide-pulsed DCs, possibly combined with checkpoint inhibitors.
Collapse
Affiliation(s)
- Klaus Eisendle
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
- Department of Dermatology and VenerologyCentral Hospital of BolzanoItaly
| | - Georg Weinlich
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Susanne Ebner
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
- Department of VisceralTransplant and Thoracic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Markus Forstner
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Daniela Reider
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Claudia Zelle‐Rieser
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Christoph H. Tripp
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Peter Fritsch
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Patrizia Stoitzner
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Nikolaus Romani
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Van Anh Nguyen
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
29
|
Eisendle K, Weinlich G, Ebner S, Forstner M, Reider D, Zelle‐Rieser C, Tripp CH, Fritsch P, Stoitzner P, Romani N, Nguyen VA. Kombination von Chemotherapie und autologen, Peptid‐beladenen dendritischen Zellen bringt Überlebensvorteil bei Melanompatienten im Stadium IV. J Dtsch Dermatol Ges 2020; 18:1270-1279. [DOI: 10.1111/ddg.14334_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Klaus Eisendle
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
- Abteilung Dermatologie Venerologie und Allergologie Zentrales Lehrkrankenhaus Bolzano/Bozen Südtiroler Sanitätsbetriebe Bolzano/Bozen Italia
| | - Georg Weinlich
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Susanne Ebner
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
- Universitätsklinik Klinik für Visceral‐ Transplantations‐ und Thoraxchirurgie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Markus Forstner
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Daniela Reider
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Claudia Zelle‐Rieser
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Christoph H. Tripp
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Peter Fritsch
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Patrizia Stoitzner
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Nikolaus Romani
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Van Anh Nguyen
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| |
Collapse
|
30
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|
31
|
Abstract
As the most powerful antigen-presenting cell type, dendritic cells (DCs) can induce potent antigen-specific immune responses in vivo, hence becoming optimal cell population for vaccination purposes. DCs can be derived ex vivo in quantity and manipulated extensively to be endowed with adequate immune-stimulating capacity. After pulsing with cancer antigens in various ways, the matured DCs are administrated back into the patient. DCs home to lymphoid organs to present antigens to and activate specific lymphocytes that react to a given cancer. Ex vivo pulsed DC vaccines have been vigorously investigated for decades, registering encouraging results in relevant immunotherapeutic clinical trials, while facing some solid challenges. With more details in DC biology understood, new theory proposed, and novel technology introduced (featuring recently emerged mRNA vaccine technology), it is becoming increasingly likely that ex vivo pulsed DC vaccine will fulfill its potential in cancer immunotherapy.
Collapse
|
32
|
Martikainen MV, Roponen M. Cryopreservation affected the levels of immune responses of PBMCs and antigen-presenting cells. Toxicol In Vitro 2020; 67:104918. [PMID: 32565220 DOI: 10.1016/j.tiv.2020.104918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
The effect of cryopreservation on antigen-presenting cells (APCs) is understudied. It is important to understand the effects of cryopreservation on these cells as they play a major role in immune responses, and they could be utilized in different clinical applications. In this study, we compared fresh and cryopreserved PBMCs in regards of their general immune responsiveness and, furthermore, the effect of cryopreservation on the circulating APCs among PBMCs. We stimulated fresh and cryopreserved PBMCs (N = 6) with LPS or Poly(I:C).Cytokine production of PBMCs and expression of functional markers CD80 and ILT4 on major types of APCs, dendritic cells (DCs) and monocytes, were analysed. We also analysed whether cryopreservation affects different subtypes of DCs (plasmacytoid and myeloid DCs) differently. Cryopreserved PBMCs produced less cytokines than fresh cells in response to stimulation, but the response profiles were comparable. Cryopreservation had also an effect on the relative proportions of APCs. Stimuli-induced responses were somewhat parallel but weaker than those observed in fresh cells. This study suggests that the use of cryopreserved cells is more suitable in studies that assess general responses to stimuli instead of measuring exact levels of reactions. Thus, the interpretation and comparison of the results of different studies should not be done without considering the differences in cryopreservation techniques and their effects on PBMCs and, more specifically, on APCs.
Collapse
Affiliation(s)
- Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
33
|
Liu K, Yan S, Ma Z, Liu B. Effective pressure and treatment duration of high hydrostatic pressure to prepare melanoma vaccines. Oncol Lett 2020; 20:1135-1142. [PMID: 32724353 PMCID: PMC7377178 DOI: 10.3892/ol.2020.11657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Current therapeutic methods for melanoma have numerous limitations, and thus the improvement of such treatment methods are essential. One possible option is the vaccination of autologous inactivated tumor cells. The primary indispensable principles of a cell-based melanoma vaccine include: i) Entire inactivation of melanoma cells; ii) retaining the immunogenicity of melanoma cells; and iii) adherence to laws and ethical guidelines. However, traditional methods for the production of the vaccine, such as ultrasonic, chemotherapeutics and freeze-thawing, have some juridical or therapeutic constraints. Therefore, the present study used high hydrostatic pressure (HHP) to inactivate malignant cells, and treated B16-F10 tumor cells with different pressures (≥50 MPa) and different durations (≥1 min). It was identified that tumor cells in vitro lost their proliferative ability, but retained their immunogenicity following treatment. Furthermore, the vaccination of the melanoma cells significantly suppressed their oncogenesis. Collectively, the present results suggest that HHP treatment may be an economically viable and effective measure to develop a melanoma vaccine, when pressure was ≥200 MPa and the treatment duration was ≥30 min.
Collapse
Affiliation(s)
- Kai Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuai Yan
- Department of Operating Room, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhanchuan Ma
- Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
34
|
Ashour D, Arampatzi P, Pavlovic V, Förstner KU, Kaisho T, Beilhack A, Erhard F, Lutz MB. IL-12 from endogenous cDC1, and not vaccine DC, is required for Th1 induction. JCI Insight 2020; 5:135143. [PMID: 32434994 PMCID: PMC7259537 DOI: 10.1172/jci.insight.135143] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Success of DC vaccines relies on the quality of antigen presentation, costimulation, lymph node migration, and the release of IL-12, in case of Th1 priming. Here, we provide evidence for interaction between the injected vaccine DCs with endogenous lymph node–resident DCs for Th1 induction. While migration of the injected DCs was essential for antigen delivery to the lymph node, the injected DCs contributed only partially to Th0 priming and were unable to instruct Th1 generation. Instead, we provide evidence that the lymph node–resident XCR1+ DCs are activated by the injected DCs to present the cognate antigen and release IL-12 for Th1 polarization. The timing of interactions in the draining lymph nodes appeared step-wise as (a) injected DCs with cognate T cells, (b) injected DCs with bystander DCs, and (c) bystander DCs with T cells. The transcriptome of the bystander DCs showed a downregulation of Treg- and Th2/Th9-inducing genes and self-antigen presentation, as well as upregulation of MHC class II and genes required for Th1 instruction. Together, these data show that injected mature lymph node migratory DCs direct T cell priming and bystander DC activation, but not Th1 polarization, which is mediated by endogenous IL-12p70+XCR1+ resident bystander DCs. Our results are of importance for clinical DC-based vaccinations against tumors where endogenous DCs may be functionally impaired by chemotherapy. Successful Th1 priming by DC vaccines in mice depends on IL-12 from endogenous and XCR1+ cDC1 population.
Collapse
Affiliation(s)
| | | | | | - Konrad U Förstner
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany.,ZB MED, Information Centre for Life Sciences, Cologne, Germany.,TH Köln, University of Applied Sciences, Institute of Information Science, Cologne, Germany
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Andreas Beilhack
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
35
|
Wang X, Xiong H, Liang D, Chen Z, Li X, Zhang K. The role of SRGN in the survival and immune infiltrates of skin cutaneous melanoma (SKCM) and SKCM-metastasis patients. BMC Cancer 2020; 20:378. [PMID: 32370744 PMCID: PMC7201763 DOI: 10.1186/s12885-020-06849-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 04/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is one of most aggressive type of cancers worldwide. Serglycin (SRGN) is an intracellular proteoglycan that playing an important role in various tumors. However, its effect on immune infiltrates and whether it associates with survival of SKCM and SKCM-metastasis patients has not been explored. METHODS We evaluated SRGN expression via the databases of Oncomine, Tumor Immune Estimation Resource (TIMER) and Gene Expression Profiling Interactive Analysis (GEPIA). The influence of SRGN expression on survival of SKCM and SKCM-metastasis patients was analyzed using TIMER database. Furthermore, the correlations between SRGN expression and immune infiltrates or gene marker sets of immune infiltrates were also analyzed via TIMER database. RESULTS We found that the expression of SRGN in SKCM and SKCM-metastasis tissues was significantly increased compared to the normal skin tissues (P < 0.001). Interestingly, it was showed that lower level of SRGN expression and lower immune infiltrates of B cell, CD8+ T cell, Neutrophil, and Dendritic cell were correlated with poor survival rate of SKCM and SKCM-metastasis patients (P < 0.001) but not SKCM primary patients. We also demonstrated that SRGN expression was positively associated with the immune infiltrates and diverse immune marker sets in SKCM and SKCM-metastasis. CONCLUSIONS Our findings indicated that SRGN was associated with the survival of SKCM and SKCM-metastasis patients. SRGN may be a new immune therapy target for treating SKCM and SKCM-metastasis.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Dermatology and Venerology, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Hui Xiong
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Daning Liang
- Department of Dermatology and Venerology, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Zhenzhen Chen
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiqing Li
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kun Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
36
|
Shi Y, Men X, Li X, Yang Z, Wen H. Research progress and clinical prospect of immunocytotherapy for the treatment of hepatocellular carcinoma. Int Immunopharmacol 2020; 82:106351. [PMID: 32143005 DOI: 10.1016/j.intimp.2020.106351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023]
Abstract
As a common malignant tumor, hepatocellular carcinoma (HCC) has high fatality rate due to its strong metastasis and high degree of malignancy. Current treatment strategies adopted in clinical practice were still conventional surgery, assisted with interventional therapy, radiotherapy and chemotherapy. However these treatments have limited effects with high recurrence rate. Current research progress of immunocytotherapy has shown that tumor cells can be directly identified and killed by stimulating the immune function and enhancing the anti-tumor immunity in tumor microenvironment. Targeted immunotherapeutics have therefore become the hope of conquering cancer in the future. It can kill tumor cells without damaging the body's immune system and function, restore and strengthen the body's natural anti-tumor immune system. It can reduce the toxic side effects of radiotherapy and chemotherapy, reduce the recurrence rate and prolong the survival period of patients with HCC. Currently, the immune cells widely studied are mainly as follows: Dendritic cells (DC), Cytokine-induced killer (CIK), DC-CIK, Chimeric antigen receptor T cells (CAR-T), Tumor infiltrating lymphocyte (TIL) and Natural killer cell (NK). Immunocytotherapy is a long-term treatment method, some studies have combined traditional therapy with immunocytotherapy and achieved significant effects, providing experimental basis for the application of immunocytotherapy. However, there are still some difficulties in the clinical application of immune cells. In this article, we discuss the application of immunocytotherapy in the clinical treatment of HCC, their effectiveness either alone or in combination with conventional therapies, and how future immunocytotherapeutics can be further improved from investigations in tumour immunology.
Collapse
Affiliation(s)
- Yue Shi
- Department of Microbiology and Immunology, Changchun University of Chinese Medicine, Jilin 130021, PR China
| | - Xiaoping Men
- Department of Clinical Laboratory, The First Affiliated Hospital to Changchun University of Chinese Medicine, Jilin 130021, PR China
| | - Xueting Li
- Experimental Center, Changchun University of Chinese Medicine, Jilin 130021, PR China
| | - Zhicun Yang
- Experimental Center, Changchun University of Chinese Medicine, Jilin 130021, PR China
| | - Hongjuan Wen
- School of Health Management, Changchun University of Chinese Medicine, Jilin 130117, PR China.
| |
Collapse
|
37
|
Blood Eosinophilia is an on-Treatment Biomarker in Patients with Solid Tumors Undergoing Dendritic Cell Vaccination with Autologous Tumor-RNA. Pharmaceutics 2020; 12:pharmaceutics12030210. [PMID: 32121531 PMCID: PMC7150785 DOI: 10.3390/pharmaceutics12030210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/20/2022] Open
Abstract
Background: The approvals of immune checkpoint inhibitors for several cancer types and the rapidly growing recognition that T cell-based immunotherapy significantly improves outcomes for cancer patients led to a re-emergence of cancer vaccines, including dendritic cell (DC)-based immunotherapy. Blood and tissue biomarkers to identify responders and long-term survivors and to optimize cost and cost-effectiveness of treatment are greatly needed. We wanted to investigate whether blood eosinophilia is a predictive biomarker for patients with solid tumors receiving vaccinations with DCs loaded with autologous tumor-RNA. Methods: In total, 67 patients with metastatic solid tumors, who we treated with autologous monocyte-derived DCs transfected with total tumor mRNA, were serially analyzed for eosinophil counts and survival over the course of up to 14 years. Eosinophilic counts were performed on peripheral blood smears. Results: Up to 87% of the patients treated with DC-based immunotherapy experienced at least once an eosinophilia of ≥ 5% after initiation of therapy; 61 % reached levels of ≥ 10% eosinophils, and 13% of patients showed eosinophil counts of 20% or above. While prevaccination eosinophil levels were not associated with survival, patients with blood eosinophilia at any point after initiation of DC-based immunotherapy showed a trend towards longer survival. There was a statistically significant difference for the patients with eosinophil counts of 20% or more (p = 0.03). In those patients, survival was prolonged to a median of 58 months (range 2–111 months), compared to a median of 20 months (range 0–119 months) in patients with lower eosinophil counts. In 12% of the patients, an immediate increase in eosinophil count of at least 10 percentage points could be detected after the first vaccine, which also appeared to correlate with survival (65 vs. 24 months; p = 0.06). Conclusion: Blood eosinophilia appears to be an early, on-therapy biomarker in patients with solid tumors undergoing vaccination with RNA-transfected DC, specifically autologous tumor mRNA-transfected DC vaccines, and it correlates with long-term patient outcome. Eosinophilia should be systematically investigated in future trials.
Collapse
|
38
|
Breast cancer vaccines: Heeding the lessons of the past to guide a path forward. Cancer Treat Rev 2020; 84:101947. [DOI: 10.1016/j.ctrv.2019.101947] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 01/29/2023]
|
39
|
Lérias JR, de Sousa E, Paraschoudi G, Martins J, Condeço C, Figueiredo N, Carvalho C, Dodoo E, Maia A, Castillo-Martin M, Beltrán A, Ligeiro D, Rao M, Zumla A, Maeurer M. Trained Immunity for Personalized Cancer Immunotherapy: Current Knowledge and Future Opportunities. Front Microbiol 2020; 10:2924. [PMID: 31998254 PMCID: PMC6967396 DOI: 10.3389/fmicb.2019.02924] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022] Open
Abstract
Memory formation, guided by microbial ligands, has been reported for innate immune cells. Epigenetic imprinting plays an important role herein, involving histone modification after pathogen-/danger-associated molecular patterns (PAMPs/DAMPs) recognition by pattern recognition receptors (PRRs). Such "trained immunity" affects not only the nominal target pathogen, yet also non-related targets that may be encountered later in life. The concept of trained innate immunity warrants further exploration in cancer and how these insights can be implemented in immunotherapeutic approaches. In this review, we discuss our current understanding of innate immune memory and we reference new findings in this field, highlighting the observations of trained immunity in monocytic and natural killer cells. We also provide a brief overview of trained immunity in non-immune cells, such as stromal cells and fibroblasts. Finally, we present possible strategies based on trained innate immunity that may help to devise host-directed immunotherapies focusing on cancer, with possible extension to infectious diseases.
Collapse
Affiliation(s)
- Joana R Lérias
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Eric de Sousa
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - João Martins
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Carolina Condeço
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Nuno Figueiredo
- Digestive Unit, Champalimaud Clinical Centre, Lisbon, Portugal
| | - Carlos Carvalho
- Digestive Unit, Champalimaud Clinical Centre, Lisbon, Portugal
| | - Ernest Dodoo
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Andreia Maia
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Mireia Castillo-Martin
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Lisbon, Portugal.,Department of Pathology, Champalimaud Clinical Centre, Lisbon, Portugal
| | - Antonio Beltrán
- Department of Pathology, Champalimaud Clinical Centre, Lisbon, Portugal
| | - Dário Ligeiro
- Lisbon Centre for Blood and Transplantation, Instituto Português do Sangue e Transplantação, Lisbon, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Alimuddin Zumla
- Division of Infection and Immunity, NIHR Biomedical Research Centre, UCL Hospitals, NHS Foundation Trust, University College London, London, United Kingdom
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
40
|
Uslu U, Erdmann M, Wiesinger M, Schuler G, Schuler-Thurner B. Automated Good Manufacturing Practice–compliant generation of human monocyte-derived dendritic cells from a complete apheresis product using a hollow-fiber bioreactor system overcomes a major hurdle in the manufacture of dendritic cells for cancer vaccines. Cytotherapy 2019; 21:1166-1178. [DOI: 10.1016/j.jcyt.2019.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
|
41
|
Dhodapkar MV, Dhodapkar KM. Moving Immunoprevention Beyond Virally Mediated Malignancies: Do We Need to Link It to Early Detection? Front Immunol 2019; 10:2385. [PMID: 31649683 PMCID: PMC6795703 DOI: 10.3389/fimmu.2019.02385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022] Open
Abstract
Vaccines can successfully prevent viral infections and have emerged as an effective strategy for preventing some virally mediated malignancies. They also represent our major hope for cost-effective reduction of the cancer burden. The concept that the immune system mediates surveillance and editing roles against tumors is now well-established in murine models. However, harnessing the immune system to prevent human cancers that do not have a known viral etiology has not yet been realized. Most human cancers originate in a premalignant phase that is more common than the cancer itself. Many of the genetic changes that underlie carcinogenesis originate at this stage when the malignant phenotype is not manifest. Studies evaluating host response in human premalignancy have documented that these lesions are immunogenic, setting the stage for immune-based approaches for targeted prevention of human cancer. However, recent studies suggest that the hierarchy of T cell exhaustion and immune-suppressive factors have already begun to emerge in many preneoplastic states. These considerations underscore the need to link immune prevention to earlier detection of such lesions and to personalize such approaches based on the status of the pre-existing immune response.
Collapse
Affiliation(s)
- Madhav V. Dhodapkar
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Kavita M. Dhodapkar
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
42
|
Bulgarelli J, Tazzari M, Granato AM, Ridolfi L, Maiocchi S, de Rosa F, Petrini M, Pancisi E, Gentili G, Vergani B, Piccinini F, Carbonaro A, Leone BE, Foschi G, Ancarani V, Framarini M, Guidoboni M. Dendritic Cell Vaccination in Metastatic Melanoma Turns "Non-T Cell Inflamed" Into "T-Cell Inflamed" Tumors. Front Immunol 2019; 10:2353. [PMID: 31649669 PMCID: PMC6794451 DOI: 10.3389/fimmu.2019.02353] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/18/2019] [Indexed: 02/02/2023] Open
Abstract
Dendritic cell (DC)-based vaccination effectively induces anti-tumor immunity, although in the majority of cases this does not translate into a durable clinical response. However, DC vaccination is characterized by a robust safety profile, making this treatment a potential candidate for effective combination cancer immunotherapy. To explore this possibility, understanding changes occurring in the tumor microenvironment (TME) upon DC vaccination is required. In this line, quantitative and qualitative changes in tumor-infiltrating T lymphocytes (TILs) induced by vaccination with autologous tumor lysate/homogenate loaded DCs were investigated in a series of 16 patients with metastatic melanoma. Immunohistochemistry for CD4, CD8, Foxp3, Granzyme B (GZMB), PDL1, and HLA class I was performed in tumor biopsies collected before and after DC vaccination. The density of each marker was quantified by automated digital pathology analysis on whole slide images. Co-expression of markers defining functional phenotypes, i.e., Foxp3+ regulatory CD4+ T cells (Treg) and GZMB+ cytotoxic CD8+ T cells, was assessed with sequential immunohistochemistry. A significant increase of CD8+ TILs was found in post-vaccine biopsies of patients who were not previously treated with immune-modulating cytokines or Ipilimumab. Interestingly, along with a maintained tumoral HLA class I expression, after DC vaccination we observed a significant increase of PDL1+ tumor cells, which significantly correlated with intratumoral CD8+ T cell density. This observation might explain the lack of a significant concurrent cytotoxic reactivation of CD8+ T cell, as measured by the numbers of GZMB+ T cells. Altogether these findings indicate that DC vaccination exerts an important role in sustaining or de novo inducing a T cell inflamed TME. However, the strength of the intratumoral T cell activation detected in post-DC therapy lesions is lessened by an occurring phenomenon of adaptive immune resistance, yet the concomitant PDL1 up-regulation. Overall, this study sheds light on DC immunotherapy-induced TME changes, lending the rationale for the design of smarter immune-combination therapies.
Collapse
Affiliation(s)
- Jenny Bulgarelli
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Marcella Tazzari
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Anna Maria Granato
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Laura Ridolfi
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Serena Maiocchi
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Francesco de Rosa
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Massimiliano Petrini
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Elena Pancisi
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giorgia Gentili
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Barbara Vergani
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Filippo Piccinini
- Scientific Directorate, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Antonella Carbonaro
- Department of Computer Science and Engineering (DISI), University of Bologna, Bologna, Italy
| | - Biagio Eugenio Leone
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Giovanni Foschi
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Valentina Ancarani
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Massimo Framarini
- Advanced Oncological Surgery Unit, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Massimo Guidoboni
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
43
|
Horton BL, Fessenden TB, Spranger S. Tissue Site and the Cancer Immunity Cycle. Trends Cancer 2019; 5:593-603. [PMID: 31706507 PMCID: PMC7521621 DOI: 10.1016/j.trecan.2019.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Abstract
Checkpoint blockade immunotherapy (CBT) has revolutionized cancer treatment; however, the cellular and molecular factors that govern responsiveness to immunotherapy remain poorly understood. One emerging area of clinical importance is differential responsiveness to CBT across different tissue sites of tumor growth. Each tissue site in the body can contain unique tissue-resident immune cells from both the lymphoid and the myeloid compartment and differences in tissue-specific immune cell composition might predispose tumors in certain tissue sites to be more or less responsive to immunotherapy. Understanding the interplay between tissue-resident and systemic immune responses against tumors will help to determine how to better therapeutically target the immune system to fight cancer. This review summarizes clinical and preclinical investigations of tissue-specific antitumor immune responses and how they influence the tumor immune microenvironment and the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Brendan L Horton
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tim B Fessenden
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA; Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
44
|
Cunningham AL, Heineman TC, Lal H, Godeaux O, Chlibek R, Hwang SJ, McElhaney JE, Vesikari T, Andrews C, Choi WS, Esen M, Ikematsu H, Choma MK, Pauksens K, Ravault S, Salaun B, Schwarz TF, Smetana J, Abeele CV, Van den Steen P, Vastiau I, Weckx LY, Levin MJ. Immune Responses to a Recombinant Glycoprotein E Herpes Zoster Vaccine in Adults Aged 50 Years or Older. J Infect Dis 2019. [PMID: 29529222 PMCID: PMC5946839 DOI: 10.1093/infdis/jiy095] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background The herpes zoster subunit vaccine (HZ/su), consisting of varicella-zoster virus glycoprotein E (gE) and AS01B Adjuvant System, was highly efficacious in preventing herpes zoster in the ZOE-50 and ZOE-70 trials. We present immunogenicity results from those trials. Methods Participants (ZOE-50: ≥50; ZOE-70: ≥70 years of age) received 2 doses of HZ/su or placebo, 2 months apart. Serum anti-gE antibodies and CD4 T cells expressing ≥2 of 4 activation markers assessed (CD42+) after stimulation with gE-peptides were measured in subcohorts for humoral (n = 3293) and cell-mediated (n = 466) immunogenicity. Results After vaccination, 97.8% of HZ/su and 2.0% of placebo recipients showed a humoral response. Geometric mean anti-gE antibody concentrations increased 39.1-fold and 8.3-fold over baseline in HZ/su recipients at 1 and 36 months post-dose 2, respectively. A gE-specific CD42+ T-cell response was shown in 93.3% of HZ/su and 0% of placebo recipients. Median CD42+ T-cell frequencies increased 24.6-fold (1 month) and 7.9-fold (36 months) over baseline in HZ/su recipients and remained ≥5.6-fold above baseline in all age groups at 36 months. The proportion of CD4 T cells expressing all 4 activation markers increased over time in all age groups. Conclusions Most HZ/su recipients developed robust immune responses persisting for 3 years following vaccination. Clinical Trials Registration NCT01165177; NCT01165229.
Collapse
Affiliation(s)
| | | | | | | | - Roman Chlibek
- Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic
| | - Shinn-Jang Hwang
- Department of Family Medicine, Taipei Veterans General Hospital, and National Yang Ming University School of Medicine, Taiwan
| | | | - Timo Vesikari
- Vaccine Research Center, University of Tampere, Finland
| | | | - Won Suk Choi
- Division of Infectious Disease, Department of Internal Medicine, Korea University College of Medicine, Seoul
| | - Meral Esen
- Institute of Tropical Medicine, University Clinic of Tuebingen, Germany
| | | | | | - Karlis Pauksens
- Department of Infectious Diseases, Uppsala University Hospital, Sweden
| | | | | | - Tino F Schwarz
- Central Laboratory and Vaccination Centre, Klinikum Würzburg Mitte, Standort Juliusspital, Germany
| | - Jan Smetana
- Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic
| | | | | | | | | | - Myron J Levin
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora.,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora
| | | |
Collapse
|
45
|
Li R, Johnson R, Yu G, McKenna DH, Hubel A. Preservation of cell-based immunotherapies for clinical trials. Cytotherapy 2019; 21:943-957. [PMID: 31416704 PMCID: PMC6746578 DOI: 10.1016/j.jcyt.2019.07.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/22/2019] [Indexed: 12/29/2022]
Abstract
In the unique supply chain of cellular therapies, preservation is important to keep the cell product viable. Many factors in cryopreservation affect the outcome of a cell therapy: (i) formulation and introduction of a freezing medium, (ii) cooling rate, (iii) storage conditions, (iv) thawing conditions and (v) post-thaw processing. This article surveys clinical trials of cellular immunotherapy that used cryopreserved regulatory, chimeric antigen receptor or gamma delta T cells, dendritic cells or natural killer (NK) cells. Several observations are summarized from the given information. The aforementioned cell types have been similarly frozen in media containing 5-10% dimethyl sulfoxide (DMSO) with plasma, serum or human serum albumin. Two common freezing methods are an insulated freezing container such as Nalgene Mr. Frosty and a controlled-rate freezer at a cooling rate of -1°C/min. Water baths at approximately 37°C have been commonly used for thawing. Post-thaw processing of cryopreserved cells varied greatly: some studies infused the cells immediately upon thawing; some diluted the cells in a carrier solution of varying formulation before infusion; some washed cells to remove cryoprotective agents; and others re-cultured cells to recover cell viability or functionality lost due to cryopreservation. Emerging approaches to preserving cellular immunotherapies are also described. DMSO-free formulations of the freezing media have demonstrated improved preservation of cell viability in T lymphocytes and of cytotoxic function in natural killer cells. Saccharides are a common type of molecule used as an alternative cryoprotective agent to DMSO. Improving methods of preservation will be critical to growth in the clinical use of cellular immunotherapies.
Collapse
Affiliation(s)
- Rui Li
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rachel Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Guanglin Yu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - David H McKenna
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Allison Hubel
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
46
|
Seitz C, Rückert M, Deloch L, Weiss EM, Utz S, Izydor M, Ebel N, Schlücker E, Fietkau R, Gaipl US, Frey B. Tumor Cell-Based Vaccine Generated With High Hydrostatic Pressure Synergizes With Radiotherapy by Generating a Favorable Anti-tumor Immune Microenvironment. Front Oncol 2019; 9:805. [PMID: 31555582 PMCID: PMC6722191 DOI: 10.3389/fonc.2019.00805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
Dendritic cell (DC)-based vaccines pulsed with high hydrostatic pressure (HHP)-inactivated tumor cells have been demonstrated to be a promising immunotherapy for solid tumors. We focused on sole injection of tumor cells that were inactivated by HHP and their combination with local radiotherapy (RTx) for in vivo induction of anti-tumor immune responses. HHP-treatment of tumor cells resulted in pre-dominantly necrotic cells with degraded DNA. We confirmed that treatments at 200 MPa or higher completely inhibited the formation of tumor cell colonies in vitro. No tumor growth was seen in vivo after injection of HHP-treated tumor cells. Single vaccination with HHP-killed tumor cells combined with local RTx significantly retarded tumor growth and improved the survival as shown in B16-F10 and CT26 tumor models. In B16-F10 tumors that were irradiated with 2 × 5Gy and vaccinated once with HHP-killed tumor cells, the amount of natural killer (NK) cells, monocytes/macrophages, CD4+ T cells and NKT cells was significantly increased, while the amount of B cells was significantly decreased. In both models, a trend of increased CD8+ T cell infiltration was observed. Generally, in irradiated tumors high amounts of CD4+ and CD8+ T cells expressing PD-1 were found. We conclude that HHP generates inactivated tumor cells that can be used as a tumor vaccine. Moreover, we show for the first time that tumor cell-based vaccine acts synergistically with RTx to significantly retard tumor growth by generating a favorable anti-tumor immune microenvironment.
Collapse
Affiliation(s)
- Christoph Seitz
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Rückert
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lisa Deloch
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Eva-Maria Weiss
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sebastian Utz
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Marika Izydor
- Institute of Process Machinery and Systems Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nina Ebel
- Department of Cardiac Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Eberhard Schlücker
- Institute of Process Machinery and Systems Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
47
|
Human CD141 + dendritic cells generated from adult peripheral blood monocytes. Cytotherapy 2019; 21:1049-1063. [PMID: 31447319 DOI: 10.1016/j.jcyt.2019.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/20/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022]
Abstract
Human CD141+ dendritic cells (DCs), specialized for cross-presentation, have been extensively studied in the development of DC-based therapy against cancer. A series of attempts was made to generate CD141+ DCs from cord blood CD34+ hematopoietic progenitors to overcome the practical limitation of in vivo rareness. In the present study, we identified a culture system that generates high CD141+ DCs. After culture of CD14+ monocytes in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4 for 8 days, CD141 was detected on cells that adhered to the bottom of the culture plate. The attached cells exhibited typical features of immature monocyte-derived DCs (moDCs), except for higher CD86 expression, more dendrites and higher granularity compared with those that did not attach. With 3 additional days of culture, increased CD141 expression on the cells was retained along with adhesion ability and partial expression of CLEC9A, a c-type lectin receptor. Furthermore, the cells exhibited effective uptake of dead cells. Interestingly, the attached moDCs differently responded to polyinosinic:polycytidylic acid (poly I:C) stimulation as well as a mixed lymphocyte reaction. Collectively, our findings show that human CD141+ DCs can be sufficiently generated from peripheral blood CD14+ monocytes, potentiating further investigation into generation of higher yields of cross-priming human DCs in vitro.
Collapse
|
48
|
Schank TE, Hassel JC. Immunotherapies for the Treatment of Uveal Melanoma-History and Future. Cancers (Basel) 2019; 11:cancers11081048. [PMID: 31344957 PMCID: PMC6721437 DOI: 10.3390/cancers11081048] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/06/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Uveal melanoma is the most common primary intraocular malignancy among adults. It is, nevertheless, a rare disease, with an incidence of approximately one case per 100,000 individuals per year in Europe. Approximately half of tumors will eventually metastasize, and the liver is the organ usually affected. No standard-of-care treatment exists for metastasized uveal melanoma. Chemotherapies or liver-directed treatments do not usually result in long-term tumor control. Immunotherapies are currently the most promising therapy option available. Methods: We reviewed both relevant recent literature on PubMed concerning the treatment of uveal melanoma with immunotherapies, and currently investigated drugs on ClinicalTrials.gov. Our own experiences with immune checkpoint blockers are included in a case series of 20 patients. Results: Because few clinical trials have been conducted for metastasized uveal melanoma, no definitive treatment strategy exists for this rare disease. The outcomes of most immunotherapies are poor, especially compared with cutaneous melanoma. However, encouraging results have been found for some very recently investigated agents such as the bispecific tebentafusp, for which a remarkably increased one-year overall survival rate, and similarly increased disease control rate, were observed in early phase studies. Conclusions: The treatment of metastatic uveal melanoma remains challenging, and almost all patients still die from the disease. Long-term responses might be achievable by means of new immunological strategies. Patients should therefore be referred to large medical centers where they can take part in controlled clinical studies.
Collapse
Affiliation(s)
- Timo E Schank
- Department of Dermatology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
- National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Jessica C Hassel
- Department of Dermatology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
- National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
49
|
Abstract
It has been known for decades that the immune system can be spontaneously activated against melanoma. The presence of tumor infiltrating lymphocytes in tumor deposits is a positive prognostic factor. Cancer vaccination includes approaches to generate, amplify, or skew antitumor immunity. To accomplish this goal, tested approaches involve administration of tumor antigens, antigen presenting cells or other immune modulators, or direct modulation of the tumor. Because the success of checkpoint blockade can depend in part on an existing antitumor response, cancer vaccination may play an important role in future combination therapies. In this review, we discuss a variety of melanoma vaccine approaches and methods to determine the biological impact of vaccination.
Collapse
|
50
|
Koske I, Rössler A, Pipperger L, Petersson M, Barnstorf I, Kimpel J, Tripp CH, Stoitzner P, Bánki Z, von Laer D. Oncolytic virotherapy enhances the efficacy of a cancer vaccine by modulating the tumor microenvironment. Int J Cancer 2019; 145:1958-1969. [PMID: 30972741 PMCID: PMC6767478 DOI: 10.1002/ijc.32325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
Abstract
The efficacy of cancer vaccines has been limited by the immunosuppressive tumor microenvironment, which can be alleviated by immune checkpoint inhibitor (ICI) therapy. Here, we tested if oncolytic viruses (OVs), similar to ICI, can also synergize with cancer vaccines by modulating the tumor microenvironment. VSV‐GP, a chimeric vesicular stomatitis virus (VSV) pseudotyped with the glycoprotein (GP) of the lymphocytic choriomeningitis virus, is a promising new OV candidate. Here, we show that in mouse B16‐OVA melanoma, combination treatment of VSV‐GP with an ovalbumin (OVA) peptide‐loaded dendritic cell (DC) vaccine (DCVacc) significantly enhanced survival over the single agent therapies, although both DCVacc and DCVacc/VSV‐GP treatments induced comparable levels of OVA‐specific CD8 T cell responses. Virus replication was minimal so that direct viral oncolysis in B16‐OVA did not contribute to this synergism. The strong therapeutic effect of the DCVacc/VSV‐GP combination treatment was associated with high numbers of tumor‐infiltrating, highly activated T cells and the relative reduction of regulatory T cells in treated and contra‐lateral nontreated tumors. Accordingly, depletion of CD8 T cells but not natural killer cells abrogated the therapeutic effect of DCVacc/VSV‐GP supporting the crucial role of CD8 T cells. In addition, a drastic increase in several proinflammatory cytokines was observed in VSV‐GP‐treated tumors. Taken together, OVs, similar to ICI, have the potential to markedly increase the efficacy of cancer vaccines by alleviating local immune suppression in the tumor microenvironment. What's new? Cancer vaccine efficacy has been limited by the immunosuppressive tumor microenvironment. By inducing cancer cell death with the release of tumor‐related antigens, oncolytic viruses may have an adjuvant effect. Here, the authors show that a combination of the oncolytic rhabdovirus VSV‐GP and a dendritic cell vaccine is highly effective in the treatment of mouse melanoma, most likely because VSV‐GP reprograms the tumor microenvironment to enhance the effectivity of the vaccine‐induced immune response. Oncolytic viruses have the potential to dramatically increase the efficacy of cancer vaccines by alleviating local immune suppression in the tumor microenvironment.
Collapse
Affiliation(s)
- Iris Koske
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Annika Rössler
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lisa Pipperger
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Monika Petersson
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria.,ViraTherapeutics GmbH, Innsbruck, Austria
| | - Isabel Barnstorf
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Janine Kimpel
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph H Tripp
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorothee von Laer
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|