1
|
Rahman MA, Bissa M, Scinto H, Howe SE, Sarkis S, Ma ZM, Gutowska A, Jiang X, Luo CC, Schifanella L, Moles R, Silva de Castro I, Basu S, N'guessan KF, Williams LD, Becerra-Flores M, Doster MN, Hoang T, Choo-Wosoba H, Woode E, Sui Y, Tomaras GD, Paquin-Proulx D, Rao M, Talton JD, Kong XP, Zolla-Pazner S, Cardozo T, Franchini G, Berzofsky JA. Loss of HIV candidate vaccine efficacy in male macaques by mucosal nanoparticle immunization rescued by V2-specific response. Nat Commun 2024; 15:9102. [PMID: 39438480 PMCID: PMC11496677 DOI: 10.1038/s41467-024-53359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Systemic vaccination of macaques with V1-deleted (ΔV1) envelope immunogens reduce the risk of SIVmac251 acquisition by approximately 60%, with protective roles played by V2-specific ADCC and envelope-specific mucosal IL-17+NKp44+ innate lymphoid cells (ILCs). We investigated whether increased mucosal responses to V2 benefit vaccine efficacy by delivering oral nanoparticles (NPs) that release V2-scaffolded on Typhoid Toxin B (TTB) to the large intestine. Strikingly, mucosal immunization of male macaques abrogated vaccine efficacy with control TTB or empty NPs, but vaccine efficacy of up to 47.6% was preserved with V2-TTB NPs. The deleterious effects of NPs were linked to preferential recruitment of mucosal plasmacytoid dendritic cells (pDCs), reduction of protective mucosal NKp44+ ILCs, increased non-protective mucosal PMA/Ionomycin-induced IFN-γ+NKG2A-NKp44-ILCs, and increased levels of mucosal activated Ki67+CD4+ T cells, a potential target for virus infection. V2-TTB NP mucosal boosting rescued vaccine efficacy, likely via high avidity V2-specific antibodies mediating ADCC, and higher frequencies of mucosal NKp44+ ILCs and of ∆V1gp120 binding antibody-secreting B cells in the rectal mucosa. These findings emphasize the central role of systemic immunization and mucosal V2-specific antibodies in the protection afforded by ΔV1 envelope immunogens and encourage careful evaluation of vaccine delivery platforms to avoid inducing immune responses favorable to HIV transmission.
Collapse
Affiliation(s)
- Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hanna Scinto
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Savannah E Howe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhong-Min Ma
- California National Primate Research Center, University of California, Davis, Davis, USA
| | - Anna Gutowska
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Christina C Luo
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ramona Moles
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shraddha Basu
- United States Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Kombo F N'guessan
- United States Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - LaTonya D Williams
- Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Melvin N Doster
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tanya Hoang
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyoyoung Choo-Wosoba
- Office of Collaborative Biostatistics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Emmanuel Woode
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Dominic Paquin-Proulx
- United States Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Mangala Rao
- United States Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Timothy Cardozo
- New York University School of Medicine, NYU Langone Health, New York, NY, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Kalams SA, Felber BK, Mullins JI, Scott HM, Allen MA, De Rosa SC, Heptinstall J, Tomaras GD, Hu J, DeCamp AC, Rosati M, Bear J, Pensiero MN, Eldridge J, Egan MA, Hannaman D, McElrath MJ, Pavlakis GN, HIV Vaccine Trials Network 119(HVTN 119) Study Team. Focusing HIV-1 Gag T cell responses to highly conserved regions by DNA vaccination in HVTN 119. JCI Insight 2024; 9:e180819. [PMID: 39088271 PMCID: PMC11466283 DOI: 10.1172/jci.insight.180819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUNDAn HIV-1 DNA vaccine composed of 7 highly conserved, structurally important elements (conserved elements, CE) of p24Gag was tested in a phase I randomized, double-blind clinical trial (HVTN 119, NCT03181789) in people without HIV. DNA vaccination of CE prime/CE+p55Gag boost was compared with p55Gag.METHODSTwo groups (n = 25) received 4 DNA vaccinations (CE/CE+p55Gag or p55Gag) by intramuscular injection/electroporation, including IL-12 DNA adjuvant. The placebo group (n = 6) received saline. Participants were followed for safety and tolerability. Immunogenicity was assessed for T cell and antibody responses.RESULTSBoth regimens were safe and generally well tolerated. The p24CE vaccine was immunogenic and significantly boosted by CE+p55Gag (64% CD4+, P = 0.037; 42% CD8+, P = 0.004). CE+p55Gag induced responses to 5 of 7 CE, compared with only 2 CE by p55Gag DNA, with a higher response to CE5 in 30% of individuals (P = 0.006). CE+p55Gag induced significantly higher CD4+ CE T cell breadth (0.68 vs. 0.22 CE; P = 0.029) and a strong trend for overall T cell breadth (1.14 vs. 0.52 CE; P = 0.051). Both groups developed high cellular and humoral responses. p24CE vaccine-induced CD4+ CE T cell responses correlated (P = 0.007) with p24Gag antibody responses.CONCLUSIONThe CE/CE+p55Gag DNA vaccine induced T cell responses to conserved regions in p24Gag, increasing breadth and epitope recognition throughout p55Gag compared with p55Gag DNA. Vaccines focusing immune responses by priming responses to highly conserved regions could be part of a comprehensive HIV vaccine strategy.TRIAL REGISTRATIONClinical Trials.gov NCT03181789FUNDINGHVTN, NIAID/NIH.
Collapse
Affiliation(s)
- Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - James I. Mullins
- Departments of Microbiology, Medicine and Global Health, University of Washington, Seattle, Washington, USA
| | - Hyman M. Scott
- San Francisco Department of Public Health, San Francisco, California, USA
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Mary A. Allen
- Division of AIDS, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jack Heptinstall
- Duke Center for Human Systems Immunology, Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Durham, North Carolina, USA
| | - Georgia D. Tomaras
- Duke Center for Human Systems Immunology, Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Durham, North Carolina, USA
| | - Jiani Hu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Allan C. DeCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Margherita Rosati
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Michael N. Pensiero
- Division of AIDS, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - John Eldridge
- Auro Vaccines LLC (formerly Profectus BioSciences, Inc.), Pearl River, New York, USA
| | - Michael A. Egan
- Auro Vaccines LLC (formerly Profectus BioSciences, Inc.), Pearl River, New York, USA
| | | | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | | |
Collapse
|
3
|
Parkin N, Gao F, Grebe E, Cutrell A, Das M, Donnell D, Duerr A, Glidden DV, Hughes JP, Murray J, Robertson MN, Zinserling J, Lau J, Miller V. Facilitating Next-Generation Pre-Exposure Prophylaxis Clinical Trials Using HIV Recent Infection Assays: A Consensus Statement from the Forum HIV Prevention Trial Design Project. Clin Pharmacol Ther 2023; 114:29-40. [PMID: 36550769 DOI: 10.1002/cpt.2830] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Standard-of-care HIV pre-exposure prophylaxis (PrEP) is highly efficacious, but uptake of and persistence on a daily oral pill is low in many settings. Evaluation of alternate PrEP products will require innovation to avoid the unpractically large sample sizes in noninferiority trials. We propose estimating HIV incidence in people not on PrEP as an external counterfactual to which on-PrEP incidence in trial subjects can be compared. HIV recent infection testing algorithms (RITAs), such as the limiting antigen avidity assay plus viral load used on specimens from untreated HIV positive people identified during screening, is one possible approach. Its feasibility is partly dependent on the sample size needed to ensure adequate power, which is impacted by RITA performance, the number of recent infections identified, the expected efficacy of the intervention, and other factors. Screening sample sizes to support detection of an 80% reduction in incidence for 3 key populations are more modest, and comparable to the number of participants in recent phase III PrEP trials. Sample sizes would be significantly larger in populations with lower incidence, where the false recency rate is higher or if PrEP efficacy is expected to be lower. Our proposed counterfactual approach appears to be feasible, offers high statistical power, and is nearly contemporaneous with the on-PrEP population. It will be important to monitor the performance of this approach during new product development for HIV prevention. If successful, it could be a model for preventive HIV vaccines and prevention of other infectious diseases.
Collapse
Affiliation(s)
- Neil Parkin
- Data First Consulting, Sebastopol, California, USA
| | - Fei Gao
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Eduard Grebe
- Vitalant Research Institute, San Francisco, California, USA
- Edward Grebe Consulting, Cape Town, South Africa
| | - Amy Cutrell
- ViiV Healthcare, Research Triangle Park, North Carolina, USA
| | - Moupali Das
- Gilead Sciences, Foster City, California, USA
| | - Deborah Donnell
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ann Duerr
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | | | - Joerg Zinserling
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Joseph Lau
- Forum for Collaborative Research, Washington, DC, USA
| | | |
Collapse
|
4
|
Rahman MA, Becerra-Flores M, Patskovsky Y, Silva de Castro I, Bissa M, Basu S, Shen X, Williams LD, Sarkis S, N’guessan KF, LaBranche C, Tomaras GD, Aye PP, Veazey R, Paquin-Proulx D, Rao M, Franchini G, Cardozo T. Cholera toxin B scaffolded, focused SIV V2 epitope elicits antibodies that influence the risk of SIV mac251 acquisition in macaques. Front Immunol 2023; 14:1139402. [PMID: 37153584 PMCID: PMC10160393 DOI: 10.3389/fimmu.2023.1139402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction An efficacious HIV vaccine will need to elicit a complex package of innate, humoral, and cellular immune responses. This complex package of responses to vaccine candidates has been studied and yielded important results, yet it has been a recurring challenge to determine the magnitude and protective effect of specific in vivo immune responses in isolation. We therefore designed a single, viral-spike-apical, epitope-focused V2 loop immunogen to reveal individual vaccine-elicited immune factors that contribute to protection against HIV/SIV. Method We generated a novel vaccine by incorporating the V2 loop B-cell epitope in the cholera toxin B (CTB) scaffold and compared two new immunization regimens to a historically protective 'standard' vaccine regimen (SVR) consisting of 2xDNA prime boosted with 2xALVAC-SIV and 1xΔV1gp120. We immunized a cohort of macaques with 5xCTB-V2c vaccine+alum intramuscularly simultaneously with topical intrarectal vaccination of CTB-V2c vaccine without alum (5xCTB-V2/alum). In a second group, we tested a modified version of the SVR consisting of 2xDNA prime and boosted with 1xALVAC-SIV and 2xALVAC-SIV+CTB-V2/alum, (DA/CTB-V2c/alum). Results In the absence of any other anti-viral antibodies, V2c epitope was highly immunogenic when incorporated in the CTB scaffold and generated highly functional anti-V2c antibodies in the vaccinated animals. 5xCTB-V2c/alum vaccination mediated non-neutralizing ADCC activity and efferocytosis, but produced low avidity, trogocytosis, and no neutralization of tier 1 virus. Furthermore, DA/CTB-V2c/alum vaccination also generated lower total ADCC activity, avidity, and neutralization compared to the SVR. These data suggest that the ΔV1gp120 boost in the SVR yielded more favorable immune responses than its CTB-V2c counterpart. Vaccination with the SVR generates CCR5- α4β7+CD4+ Th1, Th2, and Th17 cells, which are less likely to be infected by SIV/HIV and likely contributed to the protection afforded in this regimen. The 5xCTB-V2c/alum regimen likewise elicited higher circulating CCR5- α4β7+ CD4+ T cells and mucosal α4β7+ CD4+ T cells compared to the DA/CTB-V2c/alum regimen, whereas the first cell type was associated with reduced risk of viral acquisition. Conclusion Taken together, these data suggest that individual viral spike B-cell epitopes can be highly immunogenic and functional as isolated immunogens, although they might not be sufficient on their own to provide full protection against HIV/SIV infection.
Collapse
Affiliation(s)
- Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, NIH Bethesda, MD, United States
| | - Manuel Becerra-Flores
- NYU Langone Health, New York University School of Medicine, New York, NY, United States
| | - Yury Patskovsky
- NYU Langone Health, New York University School of Medicine, New York, NY, United States
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, NIH Bethesda, MD, United States
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, NIH Bethesda, MD, United States
| | - Shraddha Basu
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - LaTonya D. Williams
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, NIH Bethesda, MD, United States
| | - Kombo F. N’guessan
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Celia LaBranche
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Georgia D. Tomaras
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Pyone Pyone Aye
- Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, United States
| | - Ronald Veazey
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| | - Dominic Paquin-Proulx
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Mangala Rao
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, NIH Bethesda, MD, United States
| | - Timothy Cardozo
- NYU Langone Health, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
5
|
Xu S, Carpenter MC, Spreng RL, Neidich SD, Sarkar S, Tenney D, Goodman D, Sawant S, Jha S, Dunn B, Juliana McElrath M, Bekker V, Mudrak SV, Flinko R, Lewis GK, Ferrari G, Tomaras GD, Shen X, Ackerman ME. Impact of adjuvants on the biophysical and functional characteristics of HIV vaccine-elicited antibodies in humans. NPJ Vaccines 2022; 7:90. [PMID: 35927399 PMCID: PMC9352797 DOI: 10.1038/s41541-022-00514-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/01/2022] [Indexed: 01/14/2023] Open
Abstract
Adjuvants can alter the magnitude, characteristics, and persistence of the humoral response to protein vaccination. HIV vaccination might benefit from tailored adjuvant choice as raising a durable and protective response to vaccination has been exceptionally challenging. Analysis of trials of partially effective HIV vaccines have identified features of the immune response that correlate with decreased risk, including high titers of V1V2-binding IgG and IgG3 responses with low titers of V1V2-binding IgA responses and enhanced Fc effector functions, notably antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). However, there has been limited opportunity to compare the effect of different adjuvants on these activities in humans. Here, samples from the AVEG015 study, a phase 1 trial in which participants (n = 112) were immunized with gp120SF-2 and one of six different adjuvants or combinations thereof were assessed for antibody titer, biophysical features, and diverse effector functions. Three adjuvants, MF59 + MTP-PE, SAF/2, and SAF/2 + MDP, increased the peak magnitude and durability of antigen-specific IgG3, IgA, FcγR-binding responses and ADCP activity, as compared to alum. While multiple adjuvants increased the titer of IgG, IgG3, and IgA responses, none consistently altered the balance of IgG to IgA or IgG3 to IgA. Linear regression analysis identified biophysical features including gp120-specific IgG and FcγR-binding responses that could predict functional activity, and network analysis identified coordinated aspects of the humoral response. These analyses reveal the ability of adjuvants to drive the character and function of the humoral response despite limitations of small sample size and immune variability in this human clinical trial.
Collapse
Affiliation(s)
- Shiwei Xu
- Quantitative Biomedical Science Program, Dartmouth College, Hanover, NH, USA
| | | | - Rachel L Spreng
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Scott D Neidich
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Sharanya Sarkar
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - DeAnna Tenney
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Derrick Goodman
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Sheetal Sawant
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Shalini Jha
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Brooke Dunn
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Departments of Laboratory Medicine and Medicine, University of Washington, Seattle, WA, USA
| | - Valerie Bekker
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Sarah V Mudrak
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Robin Flinko
- Division of Vaccine Research, The Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - George K Lewis
- Division of Vaccine Research, The Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Georgia D Tomaras
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA.
| | - Margaret E Ackerman
- Quantitative Biomedical Science Program, Dartmouth College, Hanover, NH, USA.
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
6
|
Yufenyuy EL, Detorio M, Dobbs T, Patel HK, Jackson K, Vedapuri S, Parekh BS. Performance evaluation of the Asante Rapid Recency Assay for verification of HIV diagnosis and detection of recent HIV-1 infections: Implications for epidemic control. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000316. [PMID: 36962217 PMCID: PMC10021762 DOI: 10.1371/journal.pgph.0000316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/09/2022] [Indexed: 11/18/2022]
Abstract
We previously described development of a rapid test for recent infection (RTRI) that can diagnose HIV infection and detect HIV-1 recent infections in a single device. This technology was transferred to a commercial partner as Asante Rapid Recency Assay (ARRA). We evaluated performance of the ARRA kits in the laboratory using a well-characterized panel of specimens. The plasma specimen panel (N = 1500) included HIV-1 (N = 570), HIV-2 (N = 10), and HIV-negatives (N = 920) representing multiple subtypes and geographic locations. Reference diagnostic data were generated using the Bio-Rad HIV-1-2-O EIA/Western blot algorithm with further serotyping performed using the Multispot HIV-1/2 assay. The LAg-Avidity EIA was used to generate reference data on recent and long-term infection for HIV-1 positive specimens at a normalized optical density (ODn) cutoff of 2.0 corresponding to a mean duration of about 6 months. All specimens were tested with ARRA according to the manufacturer's recommendations. Test strips were also read for line intensities using a reader and results were correlated with visual interpretation. ARRA's positive verification line (PVL) correctly classified 575 of 580 HIV-positive and 910 of 920 negative specimens resulting in a sensitivity of 99.1% (95% CI: 98.0-99.6) and specificity of 98.9% (95% CI: 98.1-99.4), respectively. The reader-based classification was similar for PVL with sensitivity of 99.3% (576/580) and specificity of 98.8% (909/920). ARRA's long-term line (LTL) classified 109 of 565 HIV-1 specimens as recent and 456 as long-term compared to 98 as recent and 467 as long-term (LT) by LAg-Avidity EIA (cutoff ODn = 2.0), suggesting a mean duration of recent infection (MDRI) close to 6 months. Agreement of ARRA with LAg recent cases was 81.6% (80/98) and LT cases was 93.8% (438/467), with an overall agreement of 91.7% (kappa = 0.72). The reader (cutoff 2.9) classified 109/566 specimens as recent infections compared to 99 by the LAg-Avidity EIA for recency agreement of 81.8% (81/99), LT agreement of 9% (439/467) with overall agreement of 91.9% (kappa = 0.72). The agreement between visual interpretation and strip reader was 99.9% (95% CI: 99.6-99.9) for the PVL and 98.1% (95% CI: 96.6-98.9) for the LTL. ARRA performed well with HIV diagnostic sensitivity >99% and specificity >98%. Its ability to identify recent infections is comparable to the LA-Avidity EIA corresponding to an MDRI of about 6 months. This point-of-care assay has implications for real-time surveillance of new infections among newly diagnosed individuals for targeted prevention and interrupting ongoing transmission thus accelerating epidemic control.
Collapse
Affiliation(s)
- Ernest L Yufenyuy
- Division of Global HIV and TB, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Mervi Detorio
- Division of Global HIV and TB, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Trudy Dobbs
- Division of Global HIV and TB, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Hetal K Patel
- Division of Global HIV and TB, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Keisha Jackson
- Division of Global HIV and TB, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Shanmugam Vedapuri
- Division of Global HIV and TB, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Bharat S Parekh
- Division of Global HIV and TB, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
7
|
Nyanhete TE, Edwards RJ, LaBranche CC, Mansouri K, Eaton A, Dennison SM, Saunders KO, Goodman D, Janowska K, Spreng RL, Zhang L, Mudrak SV, Hope TJ, Hora B, Bradley T, Georgiev IS, Montefiori DC, Acharya P, Tomaras GD. Polyclonal Broadly Neutralizing Antibody Activity Characterized by CD4 Binding Site and V3-Glycan Antibodies in a Subset of HIV-1 Virus Controllers. Front Immunol 2021; 12:670561. [PMID: 35003053 PMCID: PMC8733328 DOI: 10.3389/fimmu.2021.670561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs), known to mediate immune control of HIV-1 infection, only develop in a small subset of HIV-1 infected individuals. Despite being traditionally associated with patients with high viral loads, bNAbs have also been observed in therapy naïve HIV-1+ patients naturally controlling virus replication [Virus Controllers (VCs)]. Thus, dissecting the bNAb response in VCs will provide key information about what constitutes an effective humoral response to natural HIV-1 infection. In this study, we identified a polyclonal bNAb response to natural HIV-1 infection targeting CD4 binding site (CD4bs), V3-glycan, gp120-gp41 interface and membrane-proximal external region (MPER) epitopes on the HIV-1 envelope (Env). The polyclonal antiviral antibody (Ab) response also included antibody-dependent cellular phagocytosis of clade AE, B and C viruses, consistent with both the Fv and Fc domain contributing to function. Sequence analysis of envs from one of the VCs revealed features consistent with potential immune pressure and virus escape from V3-glycan targeting bNAbs. Epitope mapping of the polyclonal bNAb response in VCs with bNAb activity highlighted the presence of gp120-gp41 interface and CD4bs antibody classes with similar binding profiles to known potent bNAbs. Thus, these findings reveal the induction of a broad and polyfunctional humoral response in VCs in response to natural HIV-1 infection.
Collapse
Affiliation(s)
- Tinashe E. Nyanhete
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Celia C. LaBranche
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Amanda Eaton
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - S. Moses Dennison
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Derrick Goodman
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Katarzyna Janowska
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Rachel L. Spreng
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Lu Zhang
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Sarah V. Mudrak
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Thomas J. Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Todd Bradley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Georgia D. Tomaras
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
8
|
Assessing donor suitability for blood donation: Utility of Geenius HIV 1/2 confirmatory assay. Transfus Apher Sci 2020; 60:103008. [PMID: 33183985 DOI: 10.1016/j.transci.2020.103008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/25/2020] [Accepted: 10/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Blood donor care and blood safety require a quick and accurate decision on the presence or absence of Human Immunodeficiency Virus (HIV) infection, based on the proper selection of blood donors, serological and molecular HIV testing as well as western blot test. The aim was investigating the possibility of inclusion of Geenius HIV 1/2 Confirmatory Assay in blood donor testing algorithm in order to shorten test time and decrease the number of indeterminate results. METHODS A total of 75 archived serum/plasma samples were tested. Their previous serological and molecular HIV results were: 3 negative samples, 7 positive samples, 65 serological indeterminate or positive but confirmatory testing and NAT negative samples. RESULTS Geenius assay confirmed the presence of antibodies in all blood donors with HIV positive serology and Nucleic Acid Testing (NAT). HIV-1 gp160 and gp41 antibodies were detected in these donors, while p31 and p24 antibodies were not detected in two and three donors, respectively. HIV-2 antibodies gp36 and gp140 were not found. Blood donor with HIV indeterminate or positive serology but negative confirmatory testing and NAT, were negative in Geenius assay. Conclusion The results obtained are consistent with western blot results. The assay proved simple and quick to perform. Studies have confirmed the possibility of introducing Bio-Rad Geenius into a routine blood donor testing protocol.
Collapse
|
9
|
Chu TH, Crowley AR, Backes I, Chang C, Tay M, Broge T, Tuyishime M, Ferrari G, Seaman MS, Richardson SI, Tomaras GD, Alter G, Leib D, Ackerman ME. Hinge length contributes to the phagocytic activity of HIV-specific IgG1 and IgG3 antibodies. PLoS Pathog 2020; 16:e1008083. [PMID: 32092122 PMCID: PMC7058349 DOI: 10.1371/journal.ppat.1008083] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 03/05/2020] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Antibody functions such as neutralization require recognition of antigen by the Fab region, while effector functions are additionally mediated by interactions of the Fc region with soluble factors and cellular receptors. The efficacy of individual antibodies varies based on Fab domain characteristics, such as affinity for antigen and epitope-specificity, and on Fc domain characteristics that include isotype, subclass, and glycosylation profile. Here, a series of HIV-specific antibody subclass and hinge variants were constructed and tested to define those properties associated with differential effector function. In the context of the broadly neutralizing CD4 binding site-specific antibody VRC01 and the variable loop (V3) binding antibody 447-52D, hinge truncation and extension had a considerable impact on the magnitude of phagocytic activity of both IgG1 and IgG3 subclasses. The improvement in phagocytic potency of antibodies with extended hinges could not be attributed to changes in either intrinsic antigen or antibody receptor affinity. This effect was specific to phagocytosis and was generalizable to different phagocytes, at different effector cell to target ratios, for target particles of different size and composition, and occurred across a range of antibody concentrations. Antibody dependent cellular cytotoxicity and neutralization were generally independent of hinge length, and complement deposition displayed variable local optima. In vivo stability testing showed that IgG molecules with altered hinges can exhibit similar biodistribution and pharmacokinetic profiles as IgG1. Overall, these results suggest that when high phagocytic activity is desirable, therapeutic antibodies may benefit from being formatted as human IgG3 or engineered IgG1 forms with elongated hinges.
Collapse
Affiliation(s)
- Thach H. Chu
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Andrew R. Crowley
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Iara Backes
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Cheryl Chang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Matthew Tay
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Thomas Broge
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Marina Tuyishime
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael S. Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Simone I. Richardson
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - David Leib
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| |
Collapse
|
10
|
Neidich SD, Fong Y, Li SS, Geraghty DE, Williamson BD, Young WC, Goodman D, Seaton KE, Shen X, Sawant S, Zhang L, deCamp AC, Blette BS, Shao M, Yates NL, Feely F, Pyo CW, Ferrari G, HVTN 505 Team, Frank I, Karuna ST, Swann EM, Mascola JR, Graham BS, Hammer SM, Sobieszczyk ME, Corey L, Janes HE, McElrath MJ, Gottardo R, Gilbert PB, Tomaras GD. Antibody Fc effector functions and IgG3 associate with decreased HIV-1 risk. J Clin Invest 2019; 129:4838-4849. [PMID: 31589165 PMCID: PMC6819135 DOI: 10.1172/jci126391] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 08/07/2019] [Indexed: 12/30/2022] Open
Abstract
HVTN 505 is a preventative vaccine efficacy trial testing DNA followed by recombinant adenovirus serotype 5 (rAd5) in circumcised, Ad5-seronegative men and transgendered persons who have sex with men in the United States. Identified immune correlates of lower HIV-1 risk and a virus sieve analysis revealed that, despite lacking overall efficacy, vaccine-elicited responses exerted pressure on infecting HIV-1 viruses. To interrogate the mechanism of the antibody correlate of HIV-1 risk, we examined antigen-specific antibody recruitment of Fcγ receptors (FcγRs), antibody-dependent cellular phagocytosis (ADCP), and the role of anti-envelope (anti-Env) IgG3. In a prespecified immune correlates analysis, antibody-dependent monocyte phagocytosis and antibody binding to FcγRIIa correlated with decreased HIV-1 risk. Follow-up analyses revealed that anti-Env IgG3 breadth correlated with reduced HIV-1 risk, anti-Env IgA negatively modified infection risk by Fc effector functions, and that vaccine recipients with a specific FcγRIIa single-nucleotide polymorphism locus had a stronger correlation with decreased HIV-1 risk when ADCP, Env-FcγRIIa, and IgG3 binding were high. Additionally, FcγRIIa engagement correlated with decreased viral load setpoint in vaccine recipients who acquired HIV-1. These data support a role for vaccine-elicited anti-HIV-1 Env IgG3, antibody engagement of FcRs, and phagocytosis as potential mechanisms for HIV-1 prevention.
Collapse
Affiliation(s)
- Scott D. Neidich
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Youyi Fong
- Statistical Center for HIV/AIDS Research and Prevention
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Shuying S. Li
- Statistical Center for HIV/AIDS Research and Prevention
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Brian D. Williamson
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | | | - Derrick Goodman
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Kelly E. Seaton
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Sheetal Sawant
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Lu Zhang
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | | | - Bryan S. Blette
- Department of Biostatistics, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Mengshu Shao
- Statistical Center for HIV/AIDS Research and Prevention
| | - Nicole L. Yates
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Frederick Feely
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Chul-Woo Pyo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Surgery and
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - HVTN 505 Team
- The HVTN 505 Team is detailed in the Supplemental Acknowledgments
| | - Ian Frank
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia Pennsylvania, USA
| | - Shelly T. Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Scott M. Hammer
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Magdalena E. Sobieszczyk
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Holly E. Janes
- Statistical Center for HIV/AIDS Research and Prevention
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Raphael Gottardo
- Statistical Center for HIV/AIDS Research and Prevention
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Peter B. Gilbert
- Statistical Center for HIV/AIDS Research and Prevention
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Surgery and
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
- Department of Immunology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
11
|
Facente SN, Busch MP, Grebe E, Pilcher CD, Welte A, Rice B, Murphy G. Challenges to the performance of current HIV diagnostic assays and the need for centralized specimen archives: a review of the Consortium for the Evaluation and Performance of HIV Incidence Assays (CEPHIA) repository. Gates Open Res 2019; 3:1511. [PMID: 31460496 PMCID: PMC6706958 DOI: 10.12688/gatesopenres.13048.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2019] [Indexed: 11/20/2022] Open
Abstract
Background: New challenges for diagnosis of HIV infection abound, including the impact on key viral and immunological markers of HIV vaccine studies, pre-exposure prophylaxis usage and breakthrough infections, and very early initiation of anti-retroviral treatment. These challenges impact the performance of current diagnostic assays, and require suitable specimens for development and evaluation. In this article we review and describe an archive developed by the Consortium for the Evaluation and Performance of HIV Incidence Assays (CEPHIA), in order to identify the critical features required to create a centralized specimen archive to support these current and future developments. Review and Findings: We review and describe the CEPHIA repository, a large, consolidated repository comprised of over 31,000 highly-selected plasma samples and other body fluid specimen types, with over 50 purposely designed specimen panels distributed to 19 groups since 2012. The CEPHIA repository provided financial return on investment, supported the standardization of HIV incidence assays, and informed guidance and standards set by the World Health Organization and UNAIDS. Unified data from extensively characterized specimens has allowed this resource to support biomarker discovery, assay optimization, and development of new strategies for estimating duration of HIV infection. Critical features of a high-value repository include 1) extensively-characterized samples, 2) high-quality clinical background data, 3) multiple collaborations facilitating ongoing sample replenishment, and 4) sustained history of high-level specimen utilization. Conclusion: With strong governance and leadership, a large consolidated archive of samples from multiple studies provides investigators and assay developers with easy access to diverse samples designed to address challenges associated with HIV diagnosis, helping to enable improvements to HIV diagnostic assays and ultimately elimination of HIV. Its creation and ongoing utilization should compel funders, institutions and researchers to address and improve upon current approaches to sharing specimens.
Collapse
Affiliation(s)
- Shelley N. Facente
- University of California, San Francisco, San Francisco, CA, 94110, USA
- Vitalant Research Institute (formerly Blood Systems Research Institute), San Francisco, CA, 94118, USA
- Facente Consulting, Richmond, CA, 94804, USA
| | - Michael P. Busch
- University of California, San Francisco, San Francisco, CA, 94110, USA
- Vitalant Research Institute (formerly Blood Systems Research Institute), San Francisco, CA, 94118, USA
| | - Eduard Grebe
- University of California, San Francisco, San Francisco, CA, 94110, USA
- Vitalant Research Institute (formerly Blood Systems Research Institute), San Francisco, CA, 94118, USA
- The South African DST-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa
| | | | - Alex Welte
- The South African DST-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa
| | - Brian Rice
- London School of Hygiene and Tropical Medicine, London, UK
| | | |
Collapse
|
12
|
Moody MA. Strength through Organization: Classifying Antibody Activity against EBOV. Cell Host Microbe 2019; 24:185-186. [PMID: 30092192 DOI: 10.1016/j.chom.2018.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this issue of Cell Host & Microbe and in a related Cell paper, works by Gunn et al. (2018) and Saphire et al. (2018) describe a large number of monoclonal antibodies against Ebola virus (EBOV) and correlate their activity with in vivo protection.
Collapse
Affiliation(s)
- M Anthony Moody
- Departments of Pediatrics and Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
13
|
Nascimento EJM, Huleatt JW, Cordeiro MT, Castanha PMS, George JK, Grebe E, Welte A, Brown M, Burke DS, Marques ETA. Development of antibody biomarkers of long term and recent dengue virus infections. J Virol Methods 2018; 257:62-68. [PMID: 29684416 DOI: 10.1016/j.jviromet.2018.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 11/18/2022]
Abstract
Dengue virus (DENV) infections elicit antibody responses to the non-structural protein 1 (NS1) that are associated with protection against disease. However, the antibody isotypes and subclasses involved, and their kinetics have not been extensively studied. We characterized the antibody responses to DENV NS1 by enzyme-linked immunosorbent assay (ELISA) in a longitudinal cohort of 266 confirmed dengue cases in Recife, Northeast Brazil. Samples were collected during the febrile phase and up to over 3 years after onset of symptoms. The antibodies investigated [IgA, IgM, total IgG (all subclasses measured together) and each subclass (IgG2, IgG3 and IgG4) measured separately] had distinct kinetic profiles following primary or secondary DENV infections. Of interest, most of these antibodies were consistently detected greater than 6 months after onset of symptoms, except for IgG3. Anti-dengue NS1-specific IgG was consistently detected from the acute phase to beyond 3 years after symptom onset. In contrast, anti-dengue NS1-specific IgG3 was detected within the first week, peaked at week 2-3, and disappeared within 4-6 months after onset of symptoms. The mean duration of the IgG3 positive signal was 149 days (ranging from 126 to 172 days). In conclusion, anti-dengue NS1-specific IgG and IgG3 are potential biomarkers of long-term and recent (less than 6 months) DENV infections, respectively.
Collapse
Affiliation(s)
- Eduardo J M Nascimento
- Graduate School of Public Health and Center for Vaccine Research, University of Pittsburgh, Biomedical Science Tower 3, room 9052, 3501 5th Avenue, Pittsburgh, PA 15261, USA.
| | - James W Huleatt
- Sanofi Pasteur, One Discovery Drive, Swiftwater, PA, 18370, USA
| | - Marli T Cordeiro
- Aggeu Magalhaes Institute, Oswaldo Cruz Foundation (FIOCRUZ), Av. Prof. Moraes Rego, s/n - Cidade Universitária - Campus da UFPE, CEP: 50.740-465, Recife, Pernambuco, Brazil
| | - Priscila M S Castanha
- Aggeu Magalhaes Institute, Oswaldo Cruz Foundation (FIOCRUZ), Av. Prof. Moraes Rego, s/n - Cidade Universitária - Campus da UFPE, CEP: 50.740-465, Recife, Pernambuco, Brazil; School of Medical Science, University of Pernambuco, Recife, Brazil
| | - James K George
- Sanofi Pasteur, One Discovery Drive, Swiftwater, PA, 18370, USA
| | - Eduard Grebe
- DST-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch, Western Cape, South Africa
| | - Alex Welte
- DST-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch, Western Cape, South Africa
| | - Monique Brown
- Sanofi Pasteur, One Discovery Drive, Swiftwater, PA, 18370, USA
| | - Donald S Burke
- Graduate School of Public Health and Center for Vaccine Research, University of Pittsburgh, Biomedical Science Tower 3, room 9052, 3501 5th Avenue, Pittsburgh, PA 15261, USA
| | - Ernesto T A Marques
- Graduate School of Public Health and Center for Vaccine Research, University of Pittsburgh, Biomedical Science Tower 3, room 9052, 3501 5th Avenue, Pittsburgh, PA 15261, USA; Aggeu Magalhaes Institute, Oswaldo Cruz Foundation (FIOCRUZ), Av. Prof. Moraes Rego, s/n - Cidade Universitária - Campus da UFPE, CEP: 50.740-465, Recife, Pernambuco, Brazil.
| |
Collapse
|