1
|
Varveri A, Papadopoulou M, Papadovasilakis Z, Compeer EB, Legaki AI, Delis A, Damaskou V, Boon L, Papadogiorgaki S, Samiotaki M, Foukas PG, Eliopoulos AG, Hatzioannou A, Alissafi T, Dustin ML, Verginis P. Immunological synapse formation between T regulatory cells and cancer-associated fibroblasts promotes tumour development. Nat Commun 2024; 15:4988. [PMID: 38862534 PMCID: PMC11167033 DOI: 10.1038/s41467-024-49282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) have emerged as a dominant non-hematopoietic cell population in the tumour microenvironment, serving diverse functions in tumour progression. However, the mechanisms via which CAFs influence the anti-tumour immunity remain poorly understood. Here, using multiple tumour models and biopsies from cancer patients, we report that α-SMA+ CAFs can form immunological synapses with Foxp3+ regulatory T cells (Tregs) in tumours. Notably, α-SMA+ CAFs can phagocytose and process tumour antigens and exhibit a tolerogenic phenotype which instructs movement arrest, activation and proliferation in Tregs in an antigen-specific manner. Moreover, α-SMA+ CAFs display double-membrane structures resembling autophagosomes in their cytoplasm. Single-cell transcriptomic data showed an enrichment in autophagy and antigen processing/presentation pathways in α-SMA-expressing CAF clusters. Conditional knockout of Atg5 in α-SMA+ CAFs promoted inflammatory re-programming in CAFs, reduced Treg cell infiltration and attenuated tumour development. Overall, our findings reveal an immunosuppressive mechanism entailing the formation of synapses between α-SMA+ CAFs and Tregs in an autophagy-dependent manner.
Collapse
Affiliation(s)
- Athina Varveri
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Miranta Papadopoulou
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Zacharias Papadovasilakis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
| | - Ewoud B Compeer
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Aigli-Ioanna Legaki
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Anastasios Delis
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Vasileia Damaskou
- 2nd Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | | | | | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Centre Alexander Fleming, Vari, Athens, 166 72, Greece
| | - Periklis G Foukas
- 2nd Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Aristides G Eliopoulos
- Laboratory of Biology, School of Medicine, Medical School National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Hatzioannou
- Laboratory of Biology, School of Medicine, Medical School National and Kapodistrian University of Athens, Athens, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Themis Alissafi
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Laboratory of Biology, School of Medicine, Medical School National and Kapodistrian University of Athens, Athens, Greece
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Panayotis Verginis
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece.
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece.
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany.
| |
Collapse
|
2
|
Ravendran S, Hernández SS, König S, Bak RO. CRISPR/Cas-Based Gene Editing Strategies for DOCK8 Immunodeficiency Syndrome. Front Genome Ed 2022; 4:793010. [PMID: 35373187 PMCID: PMC8969908 DOI: 10.3389/fgeed.2022.793010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Defects in the DOCK8 gene causes combined immunodeficiency termed DOCK8 immunodeficiency syndrome (DIDS). DIDS previously belonged to the disease category of autosomal recessive hyper IgE syndrome (AR-HIES) but is now classified as a combined immunodeficiency (CID). This genetic disorder induces early onset of susceptibility to severe recurrent viral and bacterial infections, atopic diseases and malignancy resulting in high morbidity and mortality. This pathological state arises from impairment of actin polymerization and cytoskeletal rearrangement, which induces improper immune cell migration-, survival-, and effector functions. Owing to the severity of the disease, early allogenic hematopoietic stem cell transplantation is recommended even though it is associated with risk of unintended adverse effects, the need for compatible donors, and high expenses. So far, no alternative therapies have been developed, but the monogenic recessive nature of the disease suggests that gene therapy may be applied. The advent of the CRISPR/Cas gene editing system heralds a new era of possibilities in precision gene therapy, and positive results from clinical trials have already suggested that the tool may provide definitive cures for several genetic disorders. Here, we discuss the potential application of different CRISPR/Cas-mediated genetic therapies to correct the DOCK8 gene. Our findings encourage the pursuit of CRISPR/Cas-based gene editing approaches, which may constitute more precise, affordable, and low-risk definitive treatment options for DOCK8 deficiency.
Collapse
Affiliation(s)
| | | | | | - Rasmus O. Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Kearney CJ, Randall KL, Oliaro J. DOCK8 regulates signal transduction events to control immunity. Cell Mol Immunol 2017; 14:406-411. [PMID: 28366940 DOI: 10.1038/cmi.2017.9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 02/07/2023] Open
Abstract
Genetic mutations in the gene encoding DOCK8 cause an autosomal recessive form of hyper immunoglobulin E syndrome (AR-HIES), referred to as DOCK8 deficiency. DOCK8 deficiency in humans results in the onset of combined immunodeficiency disease (CID), clinically associated with chronic infections with diverse microbial pathogens, and a predisposition to malignancy. It is now becoming clear that DOCK8 regulates the function of diverse immune cell sub-types, particularly lymphocytes, to drive both innate and adaptive immune responses. Early studies demonstrated that DOCK8 is required for lymphocyte survival, migration and immune synapse formation, which translates to poor pathogen control in the absence of DOCK8. However, more recent advances have pointed to a crucial role for DOCK8 in regulating the signal transduction events that control transcriptional activity, cytokine production and functional polarization of immune cells. Here, we summarize recent advances in our understanding of DOCK8 function, paying particular attention to an emerging role as a signaling intermediate to promote immune responses to diverse external stimuli.
Collapse
Affiliation(s)
- Conor J Kearney
- Immune Defence Laboratory, Cancer Immunology Division, The Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Katrina L Randall
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory 2601, Australia.,Australian National University Medical School, Australian National University, Acton, Australian Capital Territory 2605, Australia
| | - Jane Oliaro
- Immune Defence Laboratory, Cancer Immunology Division, The Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
4
|
Manikwar P, Kiptoo P, Badawi AH, Büyüktimkin B, Siahaan TJ. Antigen-specific blocking of CD4-specific immunological synapse formation using BPI and current therapies for autoimmune diseases. Med Res Rev 2012; 32:727-64. [PMID: 21433035 PMCID: PMC4441537 DOI: 10.1002/med.20243] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this review, we discuss T-cell activation, etiology, and the current therapies of autoimmune diseases (i.e., MS, T1D, and RA). T-cells are activated upon interaction with antigen-presenting cells (APC) followed by a "bull's eye"-like formation of the immunological synapse (IS) at the T-cell-APC interface. Although the various disease-modifying therapies developed so far have been shown to modulate the IS and thus help in the management of these diseases, they are also known to present some undesirable side effects. In this study, we describe a novel and selective way to suppress autoimmunity by using a bifunctional peptide inhibitor (BPI). BPI uses an intercellular adhesion molecule-1 (ICAM-1)-binding peptide to target antigenic peptides (e.g., proteolipid peptide, glutamic acid decarboxylase, and type II collagen) to the APC and therefore modulate the immune response. The central hypothesis is that BPI blocks the IS formation by simultaneously binding to major histocompatibility complex-II and ICAM-1 on the APC and selectively alters the activation of T cells from T(H)1 to T(reg) and/or T(H)2 phenotypes, leading to tolerance.
Collapse
Affiliation(s)
- Prakash Manikwar
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KA 66047, USA
| | | | | | | | | |
Collapse
|
5
|
Linker for activation of T cells is displaced from lipid rafts and decreases in lupus T cells after activation via the TCR/CD3 pathway. Clin Immunol 2011; 142:243-51. [PMID: 22285373 DOI: 10.1016/j.clim.2011.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/23/2022]
Abstract
Systemic lupus erythematosus (SLE) is characterized by abnormal signal transduction mechanisms in T lymphocytes. Linker for activation of T cells (LAT) couples TCR/CD3 activation with downstream signaling pathways. We reported diminished ERK 1/2 kinase activity in TCR/CD3 stimulated lupus T cells. In this study we evaluated the expression, phosphorylation, lipid raft and immunological synapse (IS) localization and colocalization of LAT with key signalosome molecules. We observed a diminished expression and an abnormal localization of LAT in lipid rafts and at the IS in activated lupus T cells. LAT phosphorylation, capture by GST-Grb2 fusion protein, and coupling to Grb2 and PLCγ1, was similar in healthy control and lupus T cells. Our results suggest that an abnormal localization of LAT within lipid rafts and its accelerated degradation after TCR/CD3 activation may compromise the assembly of the LAT signalosome and downstream signaling pathways required for full MAPK activation in lupus T cells.
Collapse
|
6
|
Tinsley KW, Herzog D, Leitenberg D. CD4 co-receptor dependent signaling promotes competency for re-stimulation induced cell death of effector T cells. Cell Immunol 2010; 266:200-7. [PMID: 21071017 DOI: 10.1016/j.cellimm.2010.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 10/18/2010] [Accepted: 10/18/2010] [Indexed: 11/25/2022]
Abstract
The elimination of activated T cells by FAS-mediated signaling is an important immunoregulatory mechanism used to maintain homeostasis and prevent tissue damage. T cell receptor-dependent signals are required to confer sensitivity to FAS-mediated re-stimulation-induced cell death (RICD), however, the nature of these signals is not well understood. In this report, we show, using T cells from CD4-deficient mice reconstituted with a tail-less CD4 transgene, that CD4-dependent signaling events are a critical part of the competency signal required for RICD. This is in part due to defects in FAS receptor signaling complex formation as shown by decreased recruitment of FAS and caspase 8 into lipid rafts following antigen re-stimulation in the absence of CD4-dependent signals. In addition, in the absence of CD4-dependent signals, effector T cells have a selective defect in IL-2 secretion following peptide re-stimulation, while provision of exogenous IL-2 during re-stimulation partially restores susceptibility to RICD. Importantly, IL-2 production and proliferation after primary peptide stimulation is comparable between wild type and CD4-deficient T cells indicating that the requirement for CD4-dependent signaling events for IL-2 production is developmentally regulated and is particularly critical in previously activated effector T cells. In total, our results indicate that CD4 co-receptor dependent signaling events specifically regulate effector T cell survival and function. Further, these data suggest that CD4-dependent signaling events may protect against the decreased IL-2 production and resistance to cell death seen during chronic immune stimulation.
Collapse
Affiliation(s)
- Kevin W Tinsley
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037, USA
| | | | | |
Collapse
|
7
|
Kam LC. Capturing the nanoscale complexity of cellular membranes in supported lipid bilayers. J Struct Biol 2009; 168:3-10. [PMID: 19500676 PMCID: PMC2844504 DOI: 10.1016/j.jsb.2009.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 05/24/2009] [Accepted: 05/27/2009] [Indexed: 11/28/2022]
Abstract
The lateral mobility of cell membranes plays an important role in cell signaling, governing the rate at which embedded proteins can interact with other biomolecules. The past two decades have seen a dramatic transformation in understanding of this environment, as the mechanisms and potential implications of nanoscale structure of these systems has become accessible to theoretical and experimental investigation. In particular, emerging micro- and nano-scale fabrication techniques have made possible the direct manipulation of model membranes at the scales relevant to these biological processes. This review focuses on recent advances in nanopatterning of supported lipid bilayers, capturing the impact of membrane nanostructure on molecular diffusion and providing a powerful platform for further investigation of the role of this spatial complexity on cell signaling.
Collapse
Affiliation(s)
- Lance C Kam
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
8
|
Abstract
The movements of Dictyostelium discoideum amoebae translocating on a glass surface in the absence of chemoattractant have been reconstructed at 5-second intervals and motion analyzed by employing 3D-DIAS software. A morphometric analysis of pseudopods, the main cell body, and the uropod provides a comprehensive description of the basic motile behavior of a cell in four dimensions (4D), resulting in a list of 18 characteristics. A similar analysis of the myosin II phosphorylation mutant 3XASP reveals a role for the cortical localization of myosin II in the suppression of lateral pseudopods, formation of the uropod, cytoplasmic distribution of cytoplasm in the main cell body, and efficient motility. The results of the morphometric analysis suggest that pseudopods, the main cell body, and the uropod represent three motility compartments that are coordinated for efficient translocation. It provides a contextual framework for interpreting the effects of mutations, inhibitors, and chemoattractants on the basic motile behavior of D. discoideum. The generality of the characteristics of the basic motile behavior of D. discoideum must now be tested by similar 4D analyses of the motility of amoeboid cells of higher eukaryotic cells, in particular human polymorphonuclear leukocytes.
Collapse
|
9
|
Receptor mosaics of neural and immune communication: Possible implications for basal ganglia functions. ACTA ACUST UNITED AC 2008; 58:400-14. [DOI: 10.1016/j.brainresrev.2007.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 10/09/2007] [Accepted: 10/10/2007] [Indexed: 12/22/2022]
|
10
|
Abstract
The storage conditions of the donor kidney may influence the deleterious consequences of ischemia/reperfusion (IR), which remains a major source of complications in clinical practice. Delayed graft function (DGF), seen in 20% to 50% of transplanted cadaver kidneys, is a major risk factor affecting early and long-term graft survival, patient management, and costs of transplantation. Cold preservation plays a key role in this process and is based on hypothermia and high potassium solutions. In this review, the authors focused on the major molecular mechanisms of cold storage (CS) injury at the cellular level, which have been recently evidenced with modern biochemical and cell biologic methods. These newly uncovered aspects of cold preservation injury are often not fully addressed by preservation solutions in current clinical practice. The role of new molecules such as polyethylene glycol (PEG) is presented and their properties are analyzed in the organ preservation context. PEG improves organ function recovery and reduces inflammation and fibrosis development in several models. Because organs shortage is also a real public health problem, organs from non-heart beating donors or marginal donors are now used to expand pool of organs. As a consequence, the development of better organ preservation methods remains a major target and deserves scientific consideration.
Collapse
|
11
|
Williams S, Ryan C, Jacobson C. Agrin and neuregulin, expanding roles and implications for therapeutics. Biotechnol Adv 2008; 26:187-201. [DOI: 10.1016/j.biotechadv.2007.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/21/2007] [Accepted: 11/21/2007] [Indexed: 01/15/2023]
|
12
|
Antigen-induced clustering of surface CD38 and recruitment of intracellular CD38 to the immunologic synapse. Blood 2008; 111:3653-64. [PMID: 18212246 DOI: 10.1182/blood-2007-07-101600] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During immunologic synapse (IS) formation, human CD38 redistributes to the contact area of T cell-antigen-presenting cell (APC) conjugates in an antigen-dependent manner. Confocal microscopy showed that CD38 preferentially accumulated along the contact zone, whereas CD3-zeta redistributed toward the central zone of the IS. APC conjugates with human T cells or B cells transiently expressing CD38-green fluorescent protein revealed the presence of 2 distinct pools of CD38, one localized at the cell membrane and the other in recycling endosomes. Both pools were recruited to the T/APC contact sites and required antigen-pulsed APCs. The process appeared more efficient in T cells than in APCs. CD38 was actively recruited at the IS of T cells by means of Lck-mediated signals. Overexpression of CD38 in T cells increased the levels of antigen-induced intracellular calcium release. Opposite results were obtained by down-regulating surface CD38 expression by means of CD38 siRNA. CD38 blockade in influenza HA-specific T cells inhibited IL-2 and IFN-gamma production, PKC phosphorylation at Thr538, and PKC recruitment to the IS induced by antigen-pulsed APCs. These results reveal a new role for CD38 in modulating antigen-mediated T-cell responses during IS formation.
Collapse
|
13
|
Marshall NB, Oda SK, London CA, Moulton HM, Iversen PL, Kerkvliet NI, Mourich DV. Arginine-rich cell-penetrating peptides facilitate delivery of antisense oligomers into murine leukocytes and alter pre-mRNA splicing. J Immunol Methods 2007; 325:114-26. [PMID: 17673254 DOI: 10.1016/j.jim.2007.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 06/07/2007] [Accepted: 06/19/2007] [Indexed: 11/26/2022]
Abstract
Phosphorodiamidate morpholino oligomers (PMO) are synthetic antisense molecules that interfere with translation, pre-mRNA splicing and RNA synthesis. Like other gene-silencing technologies, PMO are poorly taken up by primary leukocytes without the use of physical or chemical delivery techniques. We sought an alternative delivery mechanism of PMO into immune cells that eliminates the need for such manipulations. Here we demonstrate the first use of arginine-rich cell-penetrating peptides (CPPs) to deliver PMO (P-PMO) directly into primary murine leukocytes for inhibition of gene expression and promotion of altered pre-mRNA splicing. We compared the P-PMO delivery efficacy of four arginine-rich CPPs including HIV Tat and penetratin, and one histidine rich CPP, and found that the (RXR)(4) peptide was the most efficacious for PMO delivery and targeted antisense effect. The delivery and antisense effects of P-PMO are time- and dose-dependent and influenced by the activation and maturation states of T cells and dendritic cells, respectively. Targeted expression of several genes using P-PMO is shown including surface signaling proteins (CD45 and OX-40), a cytokine (interleukin-2), and a nuclear transcription factor (Foxp3). Considering the abundance of naturally occurring alternatively spliced gene products involved in immune regulation, P-PMO offer an effective method for modulating gene activity for immunological research and applications beyond traditional antisense approaches.
Collapse
Affiliation(s)
- N B Marshall
- AVI BioPharma Inc., Corvallis, Oregon 97333, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Liu J, Qi S, Groves JT, Chakraborty AK. Phase segregation on different length scales in a model cell membrane system. J Phys Chem B 2007; 109:19960-9. [PMID: 16853581 DOI: 10.1021/jp053562j] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipid rafts are sphingolipid- and cholesterol-enriched domains on cell membranes that have been implicated in many biological functions, especially in T lymphocytes. We used a field theory to examine the forces underlying raft formation on resting living cell membranes. We find that it is difficult to reconcile the observed size of rafts on living cell membranes ( approximately 100 nm) with a mechanism that involves coupling between spontaneous curvature differences and concentration fluctuations. Such a mechanism seems to predict raft domain sizes that are larger and commensurate with those observed on synthetic membranes. Therefore, using a Poisson-Boltzmann approach, we explore whether electrostatic forces originating from transmembrane proteins and net negative charges on cell membranes could play a role in determining the raft size in living cell membranes. We find that a balance among the intrinsic tendency of raft components to segregate, the line tension, and the effective dipolar interactions among membrane constituents leads to a stable phase with a characteristic length scale commensurate with the observed size of rafts on living cell membranes. We calculate the phase diagram of a system in which these three types of forces are important. In a certain region of the parameter space, an interesting phase with mosaic-like morphology consisting of an intertwined pattern of raft and nonraft domains is predicted. Experiments that could further assess the importance of dipolar interactions for lateral organization of the components on multiple length scales in membranes are suggested.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
15
|
Morley SC, Sung J, Sun GP, Martelli MP, Bunnell SC, Bierer BE. Gelsolin overexpression alters actin dynamics and tyrosine phosphorylation of lipid raft-associated proteins in Jurkat T cells. Mol Immunol 2007; 44:2469-80. [PMID: 17178161 PMCID: PMC1945820 DOI: 10.1016/j.molimm.2006.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 09/29/2006] [Indexed: 12/18/2022]
Abstract
Upon T cell receptor engagement, both the actin cytoskeleton and substrates of tyrosine phosphorylation are remodeled to create a signaling complex at the interface of the antigen-presenting cell and responding T cell. While T cell signaling has been shown to regulate actin reorganization, the mechanisms by which changes in actin dynamics affect early T cell signaling have not been fully explored. Using gelsolin, an actin-binding protein with capping and severing activities, and latrunculin, an actin-depolymerizing agent, we have further investigated the interplay between actin dynamics and the regulation of T cell signaling. Overexpression of gelsolin altered actin dynamics in Jurkat T cells, and alteration of actin dynamics correlated with dysregulation of tyrosine phosphorylation of raft-associated substrates. This perturbation of tyrosine phosphorylation was correlated with inhibition of activation-dependent signaling pathways regulating Erk-1/2 phosphorylation, NF-AT transcriptional activation and IL-2 production. Modification of actin by the depolymerizing agent latrunculin also altered the tyrosine phosphorylation patterns of proteins associated with lipid rafts, and pre-treatment with latrunculin inhibited anti-CD3 mAb-mediated NF-AT activation. Thus, our data indicate that actin cytoskeletal dynamics modulate the tyrosine phosphorylation of raft-associated proteins and subsequent downstream signal transduction.
Collapse
Affiliation(s)
- S Celeste Morley
- Laboratory of Lymphocyte Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Dunehoo AL, Anderson M, Majumdar S, Kobayashi N, Berkland C, Siahaan TJ. Cell Adhesion Molecules for Targeted Drug Delivery. J Pharm Sci 2006; 95:1856-72. [PMID: 16850395 DOI: 10.1002/jps.20676] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapid advancement of the understanding of the structure and function of cell adhesion molecules (i.e., integrins, cadherins) has impacted the design and development of drugs (i.e., peptide, proteins) with the potential to treat cancer and heart and autoimmune diseases. For example, RGD peptides/peptidomimetics have been marketed as anti-thrombic agents and are being investigated for inhibiting tumor angiogenesis. Other cell adhesion peptides derived from ICAM-1 and LFA-1 sequences were found to block T-cell adhesion to vascular endothelial cells and epithelial cells; these peptides are being investigated for treating autoimmune diseases. Recent findings suggest that cell adhesion receptors such as integrins can internalize their peptide ligands into the intracellular space. Thus, many cell adhesion peptides (i.e., RGD peptide) were used to target drugs, particles, and diagnostic agents to a specific cell that has increased expression of cell adhesion receptors. This review is focused on the utilization of cell adhesion peptides and receptors in specific targeted drug delivery, diagnostics, and tissue engineering. In the future, more information on the mechanism of internalization and intracellular trafficking of cell adhesion molecules will be exploited for delivering drug molecules to a specific type of cell or for diagnosis of cancer and heart and autoimmune diseases.
Collapse
Affiliation(s)
- Alison L Dunehoo
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Research Laboratories, 2095 Constant Avenue, Lawrence, Kansas 66047, USA
| | | | | | | | | | | |
Collapse
|
17
|
Jou I, Lee JH, Park SY, Yoon HJ, Joe EH, Park EJ. Gangliosides trigger inflammatory responses via TLR4 in brain glia. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1619-30. [PMID: 16651628 PMCID: PMC1606595 DOI: 10.2353/ajpath.2006.050924] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gangliosides participate in various cellular events of the central nervous system and have been closely implicated in many neuronal diseases. However, the precise molecular mechanisms underlying the pathological activity of gangliosides are poorly understood. Here we report that toll-like receptor 4 (TLR4) may mediate the ganglioside-triggered inflammation in glia, brain resident immune cells. Gangliosides rapidly altered the cell surface expression of TLR4 in microglia and astrocytes within 3 hours. Using TLR4-specific siRNA and a dominant-negative TLR4 gene, we clearly demonstrate the functional importance of TLR4 in ganglioside-triggered activation of glia. Inhibition of TLR4 expression by TLR4-siRNA suppressed nuclear factor (NF)-kappaB-binding activity, NF-kappaB-dependent luciferase activity, and transcription of inflammatory cytokines after exposure to gangliosides. Transient transfection of dominant-negative TLR4 also attenuated NF-kappaB-binding activity and interleukin-6 promoter activity. In contrast, these activities were slightly elevated in cells with wild-type TLR4. In addition, CD14 was required for ganglioside-triggered activation of glia, and lipid raft formation may be associated with ganglioside-stimulated signal propagation. Taken together, these results suggest that TLR4 may provide an explanation for the pathological ability of gangliosides to cause inflammatory conditions in the brain.
Collapse
Affiliation(s)
- Ilo Jou
- Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, 443-721, Korea
| | | | | | | | | | | |
Collapse
|
18
|
Larbi A, Dupuis G, Khalil A, Douziech N, Fortin C, Fülöp T. Differential role of lipid rafts in the functions of CD4+ and CD8+ human T lymphocytes with aging. Cell Signal 2006; 18:1017-30. [PMID: 16236485 DOI: 10.1016/j.cellsig.2005.08.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Revised: 08/22/2005] [Accepted: 08/22/2005] [Indexed: 02/04/2023]
Abstract
Lipid rafts are critical to the assembly of the T-cell receptor (TCR) signaling machinery. It is not known whether lipid raft properties differ in CD4+ and CD8+ T cells and whether there are age-related differences that may account in part for immune senescence. Data presented here showed that time-dependent interleukin-2 (IL-2) production was different between CD4+ and CD8+ T cells. The defect in IL-2 production by CD4+ T cells was not due to lower levels of expression of the TCR or CD28. There was a direct correlation between the activation of p56(Lck) and LAT and their association/recruitment with the lipid raft fractions of CD4+ and CD8+ T cells. p56Lck, LAT and Akt/PKB were weakly phosphorylated in lipid rafts of stimulated CD4+ T cells of elderly as compared to young donors. Lipid rafts undergo changes in their lipid composition (ganglioside M1, cholesterol) in CD4+ and CD8+ T cells of elderly individuals. This study emphasizes the differential role of lipid rafts in CD4+ and CD8+ T-cell activation in aging and suggests that the differential localization of CD28 may explain disparities in response to stimulation in human aging.
Collapse
Affiliation(s)
- Anis Larbi
- Research Center on Aging, 1036 Belvedere Street South, Sherbrooke, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Liu J, Groves JT, Chakraborty AK. Kinetic Pathways of Phase Ordering in Lipid Raft Model Systems. J Phys Chem B 2006; 110:8416-21. [PMID: 16623527 DOI: 10.1021/jp054855f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied kinetic pathways of order-order transitions in bilayer lipid mixtures using a time-dependent Ginzburg-Landau (TDGL) approach. During the stripe-to-hexagonal phase transition in an incompressible two-component system, the stripe phase first develops a pearl-like instability along the phase boundaries, which grows and drives the stripes to break up into droplets that arrange into a hexagonal pattern. These dynamic features are consistent with recent experimental observations. During the disorder-to-hexagonal phase transition in an incompressible three-component system, the disordered state first passes through a transient stripelike structure, which eventually breaks up into a hexagonal droplet phase. Our results suggest experiments with synthetic vesicles where the stripelike patterns could be observed.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Department of Chemical Engineering, Biophysics Graduate Group, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
20
|
Kiessling LL, Gestwicki JE, Strong LE. Synthetische multivalente Liganden als Sonden für die Signaltransduktion. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502794] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Abstract
Cell-surface receptors acquire information from the extracellular environment and coordinate intracellular responses. Many receptors do not operate as individual entities, but rather as part of dimeric or oligomeric complexes. Coupling the functions of multiple receptors may endow signaling pathways with the sensitivity and malleability required to govern cellular responses. Moreover, multireceptor signaling complexes may provide a means of spatially segregating otherwise degenerate signaling cascades. Understanding the mechanisms, extent, and consequences of receptor co-localization and interreceptor communication is critical; chemical synthesis can provide compounds to address the role of receptor assembly in signal transduction. Multivalent ligands can be generated that possess a variety of sizes, shapes, valencies, orientations, and densities of binding elements. This Review focuses on the use of synthetic multivalent ligands to characterize receptor function.
Collapse
Affiliation(s)
- Laura L Kiessling
- Department of Chemistry, University of Wisconsin--Madison, 1101 University Ave., Madison, WI 53706, USA.
| | | | | |
Collapse
|
22
|
Abstract
Interactions between discrete and independent cells, immune or otherwise, present a variety of potential problems. How do you make sure the cells can communicate effectively? How do you preclude neighboring cells from "listening in on a conversation" that may be meant only for one set of "ears"? How can you sharpen the hearing of those ears so they will be capable of detecting small signals but not get distracted by random noise in the system? How can you selectively enhance the sense of hearing in times of great need or urgency and then diminish the "gain" of the system when it is not immediately required? How can you assure that the call will be terminated at the end of the conversation? Passage of communication molecules and/or interaction of cell surface markers require close and stable apposition of the cell delivering the message with the receiving cell. In the nervous system, these problems were successfully addressed in the nerve-nerve or nerve-myocyte (neuromuscular junction) synapses. Not surprisingly, given the parsimony of nature, the immune system uses some of the same design features, even some of the same molecules, to achieve an effective communication strategy. The term "immunologic synapse" was coined only 2 decades ago, but the structure it describes has become a very hot topic in immunology and cell biology. The immunologic synapse allows the activation of a unique T cell, with an antigen receptor recognizing its antigen in the grasp of the antigen-presenting cell's (APC's) major histocompatibility complex (MHC). A better understanding of this transient immune cell-cell interactive structure allows one to weave the functions of T cell antigen receptors, lipid rafts, adaptor molecules, and nuclear signaling molecules together into one cohesive, flowing communication supersystem. Appreciation of the intricacies of the synapse also identifies targets that one day may be used to interfere with antigen-specific immune responses, eg, autoimmunity.
Collapse
Affiliation(s)
- Leonard H Sigal
- Pharmaceutical Research Institute/Bristol-Myers Squibb, J.3100, PO Box 4000, Princeton, NJ 08543, USA.
| |
Collapse
|
23
|
Santana MA, Esquivel-Guadarrama F. Cell biology of T cell activation and differentiation. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 250:217-74. [PMID: 16861067 DOI: 10.1016/s0074-7696(06)50006-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
T cells are major components of the adaptive immune system. They can differentiate into two different populations of effector cells-type one and type two-and may also become tolerant. T cells respond to immune challenges by interacting with antigen-presenting cells of the innate immune system. These latter cells can identify the nature of any immune challenge and initiate adaptive immune responses. Dendritic cells are the most important antigen-presenting cells in the body. The T cell recognizes both peptides associated with MHC molecules on the antigen-presenting cells and also other molecules in a complex structure known as an immunological synapse. The nature of the antigen, the cytokine environment, and other molecules on the dendritic cell surface instruct the T cells as to the response required. A better understanding of the biology of T cell responses offers the prospect of more effective therapeutic interventions.
Collapse
Affiliation(s)
- María Angélica Santana
- Faculty of Sciences, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | | |
Collapse
|
24
|
Majumder B, Janket ML, Schafer EA, Schaubert K, Huang XL, Kan-Mitchell J, Rinaldo CR, Ayyavoo V. Human immunodeficiency virus type 1 Vpr impairs dendritic cell maturation and T-cell activation: implications for viral immune escape. J Virol 2005; 79:7990-8003. [PMID: 15956545 PMCID: PMC1143734 DOI: 10.1128/jvi.79.13.7990-8003.2005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antigen presentation and T-cell activation are dynamic processes involving signaling molecules present in both APCs and T cells. Effective APC function and T-cell activation can be compromised by viral immune evasion strategies, including those of human immunodeficiency virus type 1 (HIV-1). In this study, we determined the effects of HIV-1 Vpr on one of the initial target of the virus, dendritic cells (DC), by investigating DC maturation, cytokine profiling, and CD8-specific T-cell stimulation function followed by a second signal. Vpr impaired the expression of CD80, CD83, and CD86 at the transcriptional level without altering normal cellular transcription. Cytokine profiling indicated that the presence of Vpr inhibited production of interleukin 12 (IL-12) and upregulated IL-10, whereas IL-6 and IL-1beta were unaltered. Furthermore, DC infected with HIV-1 vpr+ significantly reduced the activation of antigen-specific memory and recall cytotoxic-T-lymphocyte responses. Taken together, these results indicate that HIV-1 Vpr may in part be responsible for HIV-1 immune evasion by inhibiting the maturation of costimulatory molecules and cytokines essential for immune activation.
Collapse
Affiliation(s)
- Biswanath Majumder
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lebedeva T, Dustin ML, Sykulev Y. ICAM-1 co-stimulates target cells to facilitate antigen presentation. Curr Opin Immunol 2005; 17:251-8. [PMID: 15886114 DOI: 10.1016/j.coi.2005.04.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Adhesion molecules are known to mediate cell-cell interactions, particularly those between T cells and antigen-presenting or target cells. Recent studies identified ICAM-1 as a co-stimulatory ligand that binds to lymphocyte function associated antigen-1 (LFA-1), thereby promoting the activation of T cells. As ICAM-1 is expressed on virtually any cell, it becomes a crucial molecule for the activation of CD8(+) T cells in the absence of co-stimulation provided by CD80 and CD86 molecules. In addition, ICAM-1 might function as cell-surface receptor, capable of initiating intracellular signaling. ICAM-1 is associated with other cell molecules, including MHC-I proteins, and our recent data show that productive engagement of ICAM-1 on target cells leads to recruitment of the MHC-I proteins to the contact area and enhances presentation of cognate peptide MHC-I complexes to cytotoxic T cells.
Collapse
Affiliation(s)
- Tatiana Lebedeva
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
26
|
Groves JT. Molekulare Organisation und Signaltransduktion an Kontaktstellen zwischen Membranen. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200461014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Groves JT. Molecular Organization and Signal Transduction at Intermembrane Junctions. Angew Chem Int Ed Engl 2005; 44:3524-38. [PMID: 15844101 DOI: 10.1002/anie.200461014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Surfaces create an environment in which multiple forces conspire together to yield a wealth of complex chemical processes. This is especially true of cell membranes, whose fluidity and flexibility enables responsive feedback with surface chemical interactions in ways not generally seen with inorganic materials. Spatial pattern formation of cell-surface proteins at intermembrane junctions provides many beautiful examples of these phenomena, and is also emerging as a functional aspect of intercellular signaling. Correspondingly, the study of interactions of cell-membrane surfaces is attracting significant attention from cell biologists and physical chemists alike. This convergence is fueled be recent, exquisite observations of protein pattern formation events within living immunological synapses along with parallel advances in membrane reconstitution, manipulation, and imaging technologies.
Collapse
Affiliation(s)
- Jay T Groves
- Department of Chemistry, University of California Berkeley, USA.
| |
Collapse
|
28
|
Mack KD, Von Goetz M, Lin M, Venegas M, Barnhart J, Lu Y, Lamar B, Stull R, Silvin C, Owings P, Bih FY, Abo A. Functional identification of kinases essential for T-cell activation through a genetic suppression screen. Immunol Lett 2005; 96:129-45. [PMID: 15585316 DOI: 10.1016/j.imlet.2004.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 08/14/2004] [Accepted: 08/15/2004] [Indexed: 01/18/2023]
Abstract
Activation of T-cells by antigens initiates a complex series of signal-transduction events that are critical for immune responses. While kinases are key mediators of signal transduction networks, several of which have been well characterized in T-cell activation, the functional roles of other kinases remain poorly defined. To address this deficiency, we developed a genetic screen to survey the functional roles of kinases in antigen mediated T-cell activation. A retroviral library was constructed that expressed genetic suppressor elements (GSEs) comprised of peptides and antisense nucleotides derived from kinase cDNAs including members of the STE, CAMK, AGC, CMGC, RGC, TK, TKL, Atypical, and Lipid kinase groups. The retroviral library was expressed in Jurkat T-cells and analyzed for their effect on T-cell activation as monitored by CD69 expression. Jurkat cells were activated by antigen presenting cells treated with superantigen, and sorted for a CD69 negative phenotype by flow cytometry. We identified 19 protein kinases that were previously implicated in T-cell signaling processes and 12 kinases that were not previously linked to T-cell activation. To further validate our approach, we characterized the role of the protein kinase MAP4K4 that was identified in the screen. siRNA studies showed a role for MAP4K4 in antigen mediated T-cell responses in Jurkat and primary T-cells. In addition, by analyzing multiple promoter elements using reporter assays, we have shown that MAP4K4 is implicated in the activation of the TNF-alpha promoter. Our results suggest that this methodology could be used to survey the function of the entire kinome in T-cell activation.
Collapse
Affiliation(s)
- Karl D Mack
- PPD Discovery Inc., 1505 O'Brien Drive, Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rutigliano JA, Johnson TR, Hollinger TN, Fischer JE, Aung S, Graham BS. Treatment with anti-LFA-1 delays the CD8+ cytotoxic-T-lymphocyte response and viral clearance in mice with primary respiratory syncytial virus infection. J Virol 2004; 78:3014-23. [PMID: 14990720 PMCID: PMC353752 DOI: 10.1128/jvi.78.6.3014-3023.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play an important role in the immune response against respiratory syncytial virus (RSV) infection. The cell surface molecule lymphocyte function-associated antigen 1 (LFA-1) is an important contributor to CTL activation, CTL-mediated direct cell lysis, and lymphocyte migration. In an attempt to determine the role of LFA-1 during RSV infection, we treated BALB/c mice with monoclonal antibodies to LFA-1 at days -1, +1, and +4 relative to primary RSV infection. Anti-LFA-1 treatment during primary RSV infection led to reduced illness and delayed clearance of virus-infected cells. CTLs from RSV-infected mice that were treated with anti-LFA-1 exhibited diminished cytolytic activity and reduced gamma interferon production. In addition, studies with BrdU (5-bromo-2'-deoxyuridine)- and CFSE [5-(and 6)-carboxyfluorescein diacetate succinimidyl ester]-labeled lymphocytes showed that anti-LFA-1 treatment led to delayed proliferation during RSV infection. These results indicate that LFA-1 plays a critical role in the initiation of the immune response to RSV infection by facilitating CTL activation. These results may prove useful in the development of new therapies to combat RSV infection or other inflammatory diseases.
Collapse
Affiliation(s)
- John A Rutigliano
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
30
|
Link C, Gavioli R, Ebensen T, Canella A, Reinhard E, Guzmán CA. The Toll-like receptor ligand MALP-2 stimulates dendritic cell maturation and modulates proteasome composition and activity. Eur J Immunol 2004; 34:899-907. [PMID: 14991620 DOI: 10.1002/eji.200324511] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 2-kDa synthetic derivative of the macrophage-activating lipopeptide (MALP-2) from Mycoplasma fermentans is a potent inducer of monocytes/macrophages and improves the immunogenicity of antigens co-administered by systemic and mucosal routes. Dendritic cells (DC) are the most potent antigen-presenting cells, which are able to prime naive T cells in vivo. To elucidate the underlying mechanisms of MALP-2 adjuvanticity, we analyzed its activity on bone marrow-derived murine DC. In vitro stimulation of immature murine DC with MALP-2 resulted in the induction of maturation with up-regulated expression of MHC class II, costimulatory (CD80, CD86) and adhesion (CD40, CD54) molecules. MALP-2 also enhances the secretion of cytokines (IL-1alpha, IL-6 and IL-12), and increases DC stimulatory activity on naive and antigen-specific T cells. Further studies demonstrated that MALP-2 treatment of DC results in a dose-dependent shift from the protein pattern of proteasomes to immunoproteasomes (up-regulation of LMP2, LMP7 and MECL1), which correlates with an increased proteolytic activity. Thus, the adjuvanticity of MALP-2 can be mediated, at least in part, by the stimulation of DC maturation, which in turn leads to an improved antigen presentation. Therefore, MALP-2 is a promising molecule for the development of immune therapeutic or prophylactic interventions.
Collapse
Affiliation(s)
- Claudia Link
- Vaccine Research Group, GBF-German Research Centre for Biotechnology, Braunschweig, Germany
| | - Riccardo Gavioli
- Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Thomas Ebensen
- Vaccine Research Group, GBF-German Research Centre for Biotechnology, Braunschweig, Germany
| | - Alessandro Canella
- Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Elena Reinhard
- Vaccine Research Group, GBF-German Research Centre for Biotechnology, Braunschweig, Germany
| | - Carlos A Guzmán
- Vaccine Research Group, GBF-German Research Centre for Biotechnology, Braunschweig, Germany
| |
Collapse
|
31
|
|
32
|
Chiaretti S, Li X, Gentleman R, Vitale A, Vignetti M, Mandelli F, Ritz J, Foa R. Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood 2003; 103:2771-8. [PMID: 14684422 DOI: 10.1182/blood-2003-09-3243] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gene expression profiles were examined in 33 adult patients with T-cell acute lymphocytic leukemia (T-ALL). Nonspecific filtering criteria identified 313 genes differentially expressed in the leukemic cells. Hierarchical clustering of samples identified 2 groups that reflected the degree of T-cell differentiation but was not associated with clinical outcome. Comparison between refractory patients and those who responded to induction chemotherapy identified a single gene, interleukin 8 (IL-8), that was highly expressed in refractory T-ALL cells and a set of 30 genes that was highly expressed in leukemic cells from patients who achieved complete remission. We next identified 19 genes that were differentially expressed in T-ALL cells from patients who either had a relapse or remained in continuous complete remission. A model based on the expression of 3 of these genes was predictive of duration of remission. The 3-gene model was validated on a further set of T-ALL samples from 18 additional patients treated on the same clinical protocol. This study demonstrates that gene expression profiling can identify a limited number of genes that are predictive of response to induction therapy and remission duration in adult patients with T-ALL.
Collapse
Affiliation(s)
- Sabina Chiaretti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Larbi A, Douziech N, Dupuis G, Khalil A, Pelletier H, Guerard KP, Fülöp T. Age-associated alterations in the recruitment of signal-transduction proteins to lipid rafts in human T lymphocytes. J Leukoc Biol 2003; 75:373-81. [PMID: 14657209 DOI: 10.1189/jlb.0703319] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aging is associated with a decline in T cell activation and proliferation, but the underlying mechanisms are not fully understood. Recent findings suggest that lipid rafts act as a platform in the initiation of T cell activation by selectively recruiting signaling proteins associated with formation of the initial complex of signal transduction. We tested the hypothesis that lipid raft properties are altered in T lymphocytes from elderly, healthy individuals in comparison with young subjects. Results showed that the cholesterol content of lipid rafts derived from these cells was consistently higher in the case of elderly donors and that membrane fluidity was decreased. In addition, lipid rafts coalescence to the site of T cell receptor engagement was impaired in T cells from elderly donors. The recruitment of p56(lck), linker of activated T cells, and their tyrosine-phosphorylated forms to lipid rafts was decreased in activated T cells from aged individuals. CD45 was not recruited to the lipid raft fractions in either group of subjects. Our data suggest that some properties of lipid rafts are altered in aging, and this finding may be part of the causes for the decline in T cell functions that are observed in elderly individuals.
Collapse
Affiliation(s)
- Anis Larbi
- Research Center on Aging, Geriatric Institute, Clinical Research Center, University of Sherbrooke, 1036 Belvedere St. South, Sherbrooke, QC, Canada J1H 4C4
| | | | | | | | | | | | | |
Collapse
|
34
|
Mueller A, Kreuzfelder E, Nyadu B, Lindemann M, Rebmannn V, Majetschak M, Obertacke U, Schade UF, Nast-Kolb D, Grosse-Wilde H. Human leukocyte antigen-DR expression in peripheral blood mononuclear cells from healthy donors influenced by the sera of injured patients prone to severe sepsis. Intensive Care Med 2003; 29:2285-2290. [PMID: 12955176 DOI: 10.1007/s00134-003-1992-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2002] [Accepted: 08/01/2003] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To study the influence of sera from severely injured patients on the human leukocyte antigen (HLA)-DR expression of normal peripheral blood mononuclear cells (PBMC). DESIGN In vitro study. SETTING University hospital. PATIENTS AND PARTICIPANTS Sera from 34 patients were obtained within 8 h after trauma. Seventeen of these patients developed posttraumatic sepsis (sepsis group) and 17 recovered without infectious complications. Sera from ten healthy individuals served as controls. Phytohemagglutinin (PHA)-activated PBMC from 44 healthy donors were used to study the effects of a patient's serum. MEASUREMENTS AND RESULTS Medium containing 5% of serum from the sepsis group significantly ( p<0.05) reduced the HLA-DR expression (channels, mean +/- standard error of the mean) on monocytes (patients 883+/-22, controls 962+/-15), B (patients 922+/-14, controls 972+/-7) and T cells (patients 932+/-13, controls 968+/-5) of PHA-activated PBMC. Significantly increased accumulation of TNFalpha on (1.8+/-0.4% of PBMC) and within T cells (0.98+/-0.26% of PBMC) was observed by flow cytometry after incubation with medium containing sera of the sepsis group compared with controls (on 0.5+/-0.1%, within 0.27+/-0.05% of PBMC). A significant negative correlation between relative cell counts of intracellular TNFalpha-positive T cells with HLA-DR expression was observed for monocytes ( r= -0.61), B cells ( r= -0.57) and proliferation ( r= -0.68) as estimated by (3)H-thymidine uptake [patients 139971+/-12844 counts per minute (cpm), controls 198973+/-19347 cpm, p<0.05] in the presence of sera from the sepsis group. CONCLUSIONS Reduced cellular immunity and, therefore, immunodeficiency after trauma appears to be caused by soluble factors influencing T cell function in particular.
Collapse
Affiliation(s)
- Anke Mueller
- Institute of Immunology, University of Essen, Virchowstrasse 171, 45122 , Essen, Germany
| | - Ernst Kreuzfelder
- Institute of Immunology, University of Essen, Virchowstrasse 171, 45122 , Essen, Germany
| | - Baerbel Nyadu
- Institute of Immunology, University of Essen, Virchowstrasse 171, 45122 , Essen, Germany
| | - Monika Lindemann
- Institute of Immunology, University of Essen, Virchowstrasse 171, 45122 , Essen, Germany
| | - Vera Rebmannn
- Institute of Immunology, University of Essen, Virchowstrasse 171, 45122 , Essen, Germany
| | - Matthias Majetschak
- Department of Trauma Surgery, University Hospital Mannheim, Ruprecht-Karls University, Theodor-Kutzer-Ufer 1-3, 68167 , Mannheim, Germany
| | - Udo Obertacke
- Department of Trauma Surgery, University Hospital Mannheim, Ruprecht-Karls University, Theodor-Kutzer-Ufer 1-3, 68167 , Mannheim, Germany
| | - Ulrich F Schade
- Department of Trauma Surgery, University of Essen, Hufelandstr. 55, 45122 , Essen, Germany
| | - Dieter Nast-Kolb
- Department of Trauma Surgery, University of Essen, Hufelandstr. 55, 45122 , Essen, Germany
| | - Hans Grosse-Wilde
- Institute of Immunology, University of Essen, Virchowstrasse 171, 45122 , Essen, Germany.
| |
Collapse
|
35
|
Dykstra M, Cherukuri A, Sohn HW, Tzeng SJ, Pierce SK. Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol 2003; 21:457-81. [PMID: 12615889 DOI: 10.1146/annurev.immunol.21.120601.141021] [Citation(s) in RCA: 381] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cells of both the adaptive and innate immune systems express a dizzying array of receptors that transduce and integrate an enormous amount of information about the environment that allows the cells to mount effective immune responses. Over the past several years, significant advances have been made in elucidating the molecular details of signal cascades initiated by the engagement of immune cell receptors by their ligands. Recent evidence indicates that immune receptors and components of their signaling cascades are spatially organized and that this spatial organization plays a central role in the initiation and regulation of signaling. A key organizing element for signaling receptors appears to be cholesterol- and sphingolipid-rich plasma membrane microdomains termed lipid rafts. Research into the molecular basis of the spatial segregation and organization of signaling receptors provided by rafts is adding fundamentally to our understanding of the initiation and prolongation of signals in the immune system.
Collapse
Affiliation(s)
- Michelle Dykstra
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Detergent-resistant membrane microdomains enriched in sphingolipids, cholesterol and glycosylphosphatidylinositol-anchored proteins play essential roles in T cell receptor (TCR) signaling. These 'membrane rafts' accumulate several cytoplasmic lipid-modified molecules, including Src-family kinases, coreceptors CD4 and CD8 and transmembrane adapters LAT and PAG/Cbp, essential for either initiation or amplification of the signaling process, while most other abundant transmembrane proteins are excluded from these structures. TCRs in various T cell subpopulations may differ in their use of membrane rafts. Membrane rafts also seem to be involved in many other aspects of T cell biology, such as functioning of cytokine and chemokine receptors, adhesion molecules, antigen presentation, establishing cell polarity or interaction with important pathogens. Although the concept of membrane rafts explains several diverse biological phenomena, many basic issues, such as composition, size and heterogeneity, under native conditions, as well as the dynamics of their interactions with TCRs and other immunoreceptors, remain unclear, partially because of technical problems.
Collapse
Affiliation(s)
- Václav Horejsí
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Praha, Czech Republic.
| |
Collapse
|
37
|
Abstract
The fundamental task of the immune system is to defend "self" from "nonself." Lymphocytes are the primary cells of the immune system that developed one of the most sophisticated and comprehensive defense mechanisms in the biological system. T cells play a central role in orchestrating the immune response. Further, they are instrumental in eliminating intracellular pathogens (viruses, some bacteria) through the generation of cytotoxic T cells. B cells defend against extracellular pathogens by producing antibodies. Natural killer cells are an important component of innate immunity. Dendritic cells play a key role in initiating the immune response by presenting foreign antigens to T cells. The interaction among T cells, B cells, dendritic cells, and natural killer cells constitute the fundamental defense network of the host. The failure of any of these components severely jeopardizes the integrity of the immune system and its ability to mount the most appropriate immune response.
Collapse
Affiliation(s)
- Rafeul Alam
- Division of Allergy and Immunology, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | |
Collapse
|
38
|
Abstract
Shc is a prototype adapter protein that is expressed from the earliest stages of T-cell development. Shc becomes rapidly tyrosine phosphorylated after T-cell receptor (TCR) engagement. Expression of dominant negative forms of Shc in T-cell lines had also suggested a role for this adapter downstream of the TCR. However, until recently, the relative significance of Shc compared to several other adapters in T cells was unclear. Mice lacking Shc expression specifically in the T-cell lineage together with inducible expression of dominant negative Shc in transgenic mice have revealed an essential and nonredundant role for Shc in thymic T-cell development. Functional defects in a Jurkat T-cell line lacking Shc expression also suggest a role for Shc in mature T-cell functions. While the requirement of Shc in T-cell signaling is now established, precisely what signaling pathways downstream of Shc make this adapter unique are less clear. Although the Shc-mediated activation of the extracellular signal regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) pathway could be one component, Shc likely signals to other pathways in T cells that are not yet discovered. A better molecular understanding of Shc function in the future could provide insights into how multiple adapters coordinate the various outcomes downstream of the TCR.
Collapse
Affiliation(s)
- Li Zhang
- Department of Microbiology and the Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
39
|
Affiliation(s)
- Carl G Gahmberg
- Department of Biosciences, Division of Biochemistry, University of Helsinki, Finland.
| | | |
Collapse
|
40
|
Abstract
Chemokines control selective targeting of circulating leukocytes to the microvasculature by triggering inside-out signal transduction pathways leading to integrin-dependent adhesion. Integrin activation by chemokines is very rapid, is downmodulated within minutes and appears to involve both enhanced heterodimer lateral mobility on the plasma membrane, facilitating encounters with dispersed ligand, as well as induction of a high-affinity state. These two modalities of integrin activation by chemokines involve distinct signaling pathways in the cell, yet complement each other functionally, allowing binding of rolling cells under conditions of low as well as high ligand density. Recent data show that chemokines generate both pro- and anti-adhesive intracellular signaling events, whose equilibrium is likely to be relevant to the kinetics of adhesion and de-adhesion, and to cell movement during diapedesis and chemotaxis. Importantly, chemokines utilize different signaling mechanisms to modulate the activity of distinct integrin subtypes. These recent advances suggest that chemokines may regulate adhesive responses of immune cells based not only on patterns of chemokine receptor expression, but also on variable signaling pathways that can modulate the pro-adhesive responses of leukocytes as a function of their differentiated state, and of the local microenvironment.
Collapse
Affiliation(s)
- Carlo Laudanna
- Section of General Pathology, Department of Pathology, Faculty of Medicine, University of Verona, 37138, Verona, Italy.
| | | | | | | |
Collapse
|
41
|
Friedl P, Bröcker EB. TCR triggering on the move: diversity of T-cell interactions with antigen-presenting cells. Immunol Rev 2002; 186:83-9. [PMID: 12234364 DOI: 10.1034/j.1600-065x.2002.18608.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Polarized T cells are mobile cells optimized for migration, receptor scanning, and signaling. When in contact with antigen-presenting cells (APCs), polarized T cells can develop a spectrum of biophysical interaction modes ranging from adhesive sticking to dynamic crawling. Both static and dynamic contacts support sustained triggering of the T-cell receptor (TCR), leading to signal induction, T blast formation, and proliferation. In dynamic interactions, T cells crawl across the surface of the APC at speeds of 2-6 micro m/min and simultaneously establish an asymmetric tight yet mobile junction plane, representing a dynamic immunological synapse. In dynamic synapses three functional compartments of the polarized T cell are in close contact with the APC surface, i.e. leading edge, cell body and uropod. Through its mobility, the asymmetric junction is topographically suited for receptor scanning and engagement at the leading edge, retrograde receptor movement along the junction, and exit from the uropod. Herein we develop a model on scanning encounters between T cells and APCs that includes the simultaneous engagement of T-cell leading edge and uropod and implicates a serial receptor triggering mode in cell-cell recognition.
Collapse
Affiliation(s)
- Peter Friedl
- Department of Dermatology, University of Wuerzburg, Wuerzburg, Germany.
| | | |
Collapse
|
42
|
Abstract
T cells are tightly controlled cellular machines that monitor changes in epitope presentation. Although T-cell function is regulated by means of numerous interactions with other cell types and soluble factors, the T-cell receptor (TCR) is the only structure on the T-cell surface that defines its antigen-recognition potential. Consequently, the transfer of T-cell receptors into recipient cells can be used as a strategy for the passive transfer of T-cell immunity. In this review, I discuss the pros and cons of TCR gene transfer as a strategy to induce defined virus- and tumour-specific T-cell immunity.
Collapse
Affiliation(s)
- Ton N M Schumacher
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Leo A, Wienands J, Baier G, Horejsi V, Schraven B. Adapters in lymphocyte signaling. J Clin Invest 2002. [DOI: 10.1172/jci0214942] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|