1
|
Li H, Zhao Z, Jiang S, Wu H. Brain circuits that regulate social behavior. Mol Psychiatry 2025:10.1038/s41380-025-03037-6. [PMID: 40287553 DOI: 10.1038/s41380-025-03037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Social interactions are essential for the survival of individuals and the reproduction of populations. Social stressors, such as social defeat and isolation, can lead to emotional disorders and cognitive impairments. Furthermore, dysfunctional social behaviors are hallmark symptoms of various neuropsychiatric disorders, including autism spectrum disorder (ASD) and post-traumatic stress disorder (PTSD). Consequently, understanding the neural circuit mechanisms underlying social behaviors has become a major focus in neuroscience. Social behaviors, which encompass a wide range of expressions and phases, are regulated by complex neural networks. In this review, we summarize recent progress in identifying the circuits involved in different types of social behaviors, including general social investigation, social preference, mating, aggression, parenting, prosocial behaviors, and dominance behaviors. We also outline the circuit mechanisms associated with social deficits in neuropsychiatric disorders, such as ASD, schizophrenia, and PTSD. Given the pivotal role of rodents in social behavior research, our review primarily focuses on neural circuits in these animals. Finally, we propose future research directions, including the development of specific behavioral paradigms, the identification of circuits involved in motor output, the integration of activity, transcriptome, and connectome data, the multifunctional roles of neurons with multiple targets, and the interactions among multiple brain regions.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhe Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Shaofei Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
2
|
Cavalcante JC, da Silva FG, Sáenz de Miera C, Elias CF. The ventral premammillary nucleus at the interface of environmental cues and social behaviors. Front Neurosci 2025; 19:1589156. [PMID: 40276575 PMCID: PMC12018337 DOI: 10.3389/fnins.2025.1589156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
The survival of species heavily depends on social behaviors, which in turn rely on the ability to recognize conspecifics within an appropriate environmental context. These behaviors are regulated by the hypothalamus, which processes signals from both the external environment (such as food availability, photoperiod, and chemical cues from other animals) and the internal state (including sex, estrous cycle stage, nutritional status, and levels of stress). Understanding the brain circuits responsible for specific behaviors in experimental animals is a complex task given the intricate interactions between these factors and the diverse behavioral strategies employed by different species. In this review, we will critically evaluate recent studies focused on the ventral premammillary nucleus (PMv) and discuss findings that reveal the PMv as a key, yet sometimes overlooked, node in integrating external and internal environmental cues. We will examine its structural components, internal connectivity, humoral influences, and associated functions, demonstrating the PMv role in the neural regulation of neuroendocrine responses and social behaviors. While much of the existing research centers on rats and mice as model organisms, we will highlight relevant species differences and include a dedicated section for findings in other species.
Collapse
Affiliation(s)
- Judney Cley Cavalcante
- Laboratory of Neuroanatomy, Department of Morphology, Center of Biosciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Fabiano Gomes da Silva
- Laboratory of Neuroanatomy, Department of Morphology, Center of Biosciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Cristina Sáenz de Miera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Carol Fuzeti Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Goto T, Hagihara M, Irie S, Abe T, Kiyonari H, Miyamichi K. Dietary availability acutely influences puberty onset via a hypothalamic neural circuit. Neuron 2025; 113:1036-1050.e5. [PMID: 39999843 DOI: 10.1016/j.neuron.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 08/21/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
Reproduction poses a substantial burden, especially for mammalian females. Puberty onset serves as a vital checkpoint, regulated based on the body's energy state, to prevent inappropriate reproductive activity under malnutrition. However, the neural basis of this puberty checkpoint remains poorly understood. Here, we demonstrate that peripubertal malnutrition in female mice reduces the synchronous activity episodes of arcuate kisspeptin neurons, which are critical regulators of the gonadotropin axis. Improved dietary availability increased the frequency of this pulsatile activity, facilitating puberty onset. Using a viral-genetic approach, we show that the activity of agouti-related protein neurons in the arcuate nucleus, a hunger center, can bidirectionally regulate the pulsatile activity of kisspeptin neurons and follicular maturation in the ovaries. Collectively, a neural circuit connecting feeding to reproductive centers acts as an adjuster of the frequency of pulsatile kisspeptin neuron activity based on dietary availability, contributing to the neural basis of the puberty checkpoint.
Collapse
Affiliation(s)
- Teppei Goto
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.
| | - Mitsue Hagihara
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Satsuki Irie
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Kazunari Miyamichi
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
4
|
Koysombat K, Tsoutsouki J, Patel AH, Comninos AN, Dhillo WS, Abbara A. Kisspeptin and neurokinin B: roles in reproductive health. Physiol Rev 2025; 105:707-764. [PMID: 39813600 DOI: 10.1152/physrev.00015.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/17/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Kisspeptin and neurokinin B (NKB) play a key role in several physiological processes including in puberty, adult reproductive function including the menstrual cycle, as well as mediating the symptoms of menopause. Infundibular kisspeptin neurons, which coexpress NKB, regulate the activity of gonadotropin-releasing hormone (GnRH) neurons and thus the physiological pulsatile secretion of GnRH from the hypothalamus. Outside of their hypothalamic reproductive roles, these peptides are implicated in several physiological functions including sexual behavior and attraction, placental function, and bone health. Over the last two decades, research findings have considerably enhanced our understanding of the physiological regulation of the hypothalamic-pituitary-gonadal (HPG) axis and identified potential therapeutic applications. For example, recognition of the role of kisspeptin as the natural inductor of ovulation has led to research investigating its use as a safer, more physiological trigger of oocyte maturation in in vitro fertilization (IVF) treatment. Moreover, the key role of NKB in the pathophysiology of menopausal hot flashes has led to the development of pharmacological antagonism of this pathway. Indeed, fezolinetant, a neurokinin 3 receptor antagonist, has recently received Food and Drug Administration (FDA) approval for clinical use to treat menopausal vasomotor symptoms. Here, we discuss the roles of kisspeptin and NKB in human physiology, including in the regulation of puberty, menstrual cyclicity, reproductive behavior, pregnancy, menopause, and bone homeostasis. We describe how perturbations of these key physiological processes can result in disease states and consider how kisspeptin and NKB could be exploited diagnostically as well as therapeutically to treat reproductive disorders.
Collapse
Affiliation(s)
- Kanyada Koysombat
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Jovanna Tsoutsouki
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Aaran H Patel
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Alexander N Comninos
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Waljit S Dhillo
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Ali Abbara
- Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
5
|
Basu S, Waghade A, Parveen R, Kushwaha A, Mitra S, Kokare DM, Singru PS. CART neurons in the hypothalamic ventral premammillary nucleus (PMv) in rats mediate maternal, but not inter-male aggression. J Neurosci 2025; 45:e2140242025. [PMID: 40086871 PMCID: PMC12019109 DOI: 10.1523/jneurosci.2140-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/24/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
Compared to males, aggression is less frequently noticed in females. Fierce maternal-aggression to thwart the attack/threat of male-conspecific/intruder is transiently expressed as she defends her pups. The odor cues emanated by the intruder provoke aggressive behavior by robustly activating the ventral-premammillary nucleus (PMv) in the hypothalamic-attack area (HAA). But, how PMv activation triggers aggression is unclear. In view of neuropeptide CART's potential to reconfigure neural circuits for behavioral demands, occurrence throughout aggression-circuitry, and abundance particularly in PMv, we test the role of PMvCART in maternal and inter-male aggression in the rats. Males/dams actively attacked the intruder; virgin-females did not. The dams/males without intruder showed isolated cFos-cells in PMv, but intruder's presence triggered cFos-activation in different PMv-subdivisions in dams/males. Compared to dams without intruder, confrontation with intruder robustly activated PMvCART-neurons, augmented CART-ir in ventral-PMv and cart-mRNA in PMv-containing tissues in dams. Conversely, in males, intruder's presence activated lateral-PMv CART neurons, but CART-levels remained unaltered. Intra-PMv CART-siRNA administration suppressed maternal-aggression but male-aggression was unaffected. Since PMv is strongly connected with ventrolateral-ventromedial hypothalamus (VMHvl) and medial-preoptic nucleus (MPN), we test whether CART-signalling to these nuclei triggers maternal-aggression. While VMHvl showed stronger CARTergic-axonal input than MPN, immunoneutralization of CART in VMHvl but not MPN, blocked maternal-aggression. CART may drive the circuit beyond HAA since VMHvl neurons contacted by CART-axons project to periaqueductal-gray. We identify engagement of vPMv and lPMv during maternal and inter-male aggression, respectively, and CART as a key mediator in PMv-VMHvl-pathway to express maternal-aggression in rats.Significance statement Pregnant/lactating rat transiently become fiercely aggressive to protect her pups when challenged by an intruder. The neural mechanism underlying this transitory expression of aggressive behavior is not clear. We identify the role of neuropeptide CART-containing neurons in the hypothalamic premammillary nucleus (PMv) in dams that gives her the behavioral flexibility to display maternal-aggression. A subset of PMvCART neurons in dams shows dramatic activation when provoked by an intruder while silencing of these neurons suppressed maternal- but not male-male aggression. Further, CART signals the ventrolateral part of the ventromedial hypothalamus to trigger aggression in dams. The study shows CART as a novel messenger in aggression circuitry and PMvCART a key regulator of maternal-aggression.
Collapse
Affiliation(s)
- Sumela Basu
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Akash Waghade
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj (R.T.M.) Nagpur University, Nagpur, India
| | - Roshni Parveen
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Ayushi Kushwaha
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Saptarsi Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj (R.T.M.) Nagpur University, Nagpur, India
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
6
|
Tinano FR, Machado IFR, Latronico AC, Gomes LG. Shared Pathophysiological Mechanisms and Genetic Factors in Early Menarche and Polycystic Ovary Syndrome. J Neurosci 2025; 45:e1681242024. [PMID: 40074331 PMCID: PMC11905354 DOI: 10.1523/jneurosci.1681-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 03/14/2025] Open
Abstract
Early age at menarche (early AAM) and polycystic ovary syndrome (PCOS) are reproductive and metabolic disorders with overlapping pathophysiological and genetic features. Epidemiological studies suggest a link between these two conditions, both of which are characterized by dysregulation of the neuroendocrine pathways that control pulsatile gonadotropin-releasing hormone secretion, thus affecting gonadotropin release, particularly luteinizing hormone secretion. A common pathophysiology involving positive energy balance and abnormal metabolic status is evident in both disorders. Genetic and epigenetic factors influence the onset of puberty and reproductive outcomes. Genome-wide association studies have identified common genetic variants associated with AAM and PCOS, particularly in genes related to the neuroendocrine axis (e.g., FSHB) and obesity (e.g., FTO). In addition, high-throughput sequencing has revealed rare loss-of-function variants in the DLK1 gene in women with central precocious puberty (CPP), early menarche, and PCOS, who experienced adverse metabolic outcomes in adulthood. This review explores the shared pathophysiological mechanisms between CPP/early AAM and PCOS, examines potential genetic and epigenetic factors that may link these neuroendocrine reproductive conditions, and offers insights into future research and treatment strategies. Understanding these connections may provide new targets for therapeutic interventions and improve outcomes for individuals with these reproductive disorders.
Collapse
Affiliation(s)
- Flavia Rezende Tinano
- Discipline of Endocrinology & Metabolism, Department of Internal Medicine, University of Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Sao Paulo 01246 903, Brazil
| | - Iza Franklin Roza Machado
- Discipline of Endocrinology & Metabolism, Department of Internal Medicine, University of Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Sao Paulo 01246 903, Brazil
| | - Ana Claudia Latronico
- Discipline of Endocrinology & Metabolism, Department of Internal Medicine, University of Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Sao Paulo 01246 903, Brazil
| | - Larissa Garcia Gomes
- Discipline of Endocrinology & Metabolism, Department of Internal Medicine, University of Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Sao Paulo 01246 903, Brazil
| |
Collapse
|
7
|
Sáenz de Miera C, Bellefontaine N, Silveira MA, Fortin CN, Zampieri TT, Donato J, Williams KW, Mendes-da-Silva C, Heikkinen L, Broberger C, Frazao R, Elias CF. Nutritionally responsive PMv DAT neurons are dynamically regulated during pubertal transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636271. [PMID: 39975315 PMCID: PMC11838509 DOI: 10.1101/2025.02.03.636271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Pubertal development is tightly regulated by energy balance. The crosstalk between metabolism and reproduction is orchestrated by complex neural networks and leptin action in the hypothalamus plays a critical role. The ventral premammillary nucleus (PMv) leptin receptor (LepRb) neurons act as an essential relay for leptin action on reproduction. Here, we show that mouse PMv cells expressing the dopamine transporter (DAT) gene, Slc6a3 (PMvDAT) form a novel subpopulation of LepRb neurons. Virtually all PMvDAT neurons expressed Lepr mRNA and responded to acute leptin treatment. Electrophysiological recordings from DATCRE;tdTomato mice showed that PMvDAT cells in prepubertal females have a hyperpolarized resting membrane potential compared to diestrous females. Slc6a3 mRNA expression in the PMv was higher in prepubertal than in adult females. In prepubertal females Slc6a3 mRNA expression was higher in overnourished females from small size litters than in controls. Prepubertal Lep ob females showed decreased PMv Slc6a3 mRNA expression, that recovered to control levels after 3 days of leptin injections. Using a tracer adenoassociated virus in the PMv of adult DATCre;Kiss1hrGFP females, we observed PMvDAT projections in the anteroventral periventricular and periventricular nucleus (AVPV/PeN), surrounding Kiss1hrGFP neurons, a population critical for sexual maturation and positive estrogen feedback in females. The DATCRE;tdTomato projections to the AVPV were denser in adult than in prepubertal females. In adults, they surrounded tyrosine hydroxylase neurons. Overall, these findings suggest that the DAT expressing PMvLepRb subpopulation play a role in leptin regulation of sexual maturation via actions on AVPV kisspeptin/tyrosine hydroxylase neurons.
Collapse
Affiliation(s)
- Cristina Sáenz de Miera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
| | - Nicole Bellefontaine
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
| | - Marina A Silveira
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil, 05508
| | - Chelsea N Fortin
- Department of Obstetrics and Gynecology University of Michigan, Ann Arbor, MI, 48109
| | - Thais T Zampieri
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil, 05508
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil, 05508
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, Peter O’Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390
| | | | - Laura Heikkinen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Christian Broberger
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Renata Frazao
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil, 05508
| | - Carol F Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
- Department of Obstetrics and Gynecology University of Michigan, Ann Arbor, MI, 48109
| |
Collapse
|
8
|
Ahmadi S, Ohkubo T. A Bird's-Eye Overview of Leptin and Female Reproduction -with Mammalian Comparisons. J Poult Sci 2025; 62:2025007. [PMID: 39916995 PMCID: PMC11794366 DOI: 10.2141/jpsa.2025007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
Leptin, a key regulator of reproductive physiology, influences various processes in vertebrates, including oocyte proliferation, embryogenesis, the onset of puberty, ovarian function, and follicle development. In mammals, leptin affects steroidogenesis, folliculogenesis, and hormonal regulation through the hypothalamic-pituitary-gonadal axis. Instead, in avian species, leptin-controlled mechanisms are poorly understood, because birds do not produce leptin in adipocytes. In birds, leptin is expressed in the brain, pituitary glands, and gonads, where it enhances ovarian function and egg-laying performance, particularly during feed deprivation. In this review, we discuss and summarize the recently discovered role of leptin in regulating ovarian function during different life stages in birds and compare it with its function in mammals.
Collapse
Affiliation(s)
- Sadequllah Ahmadi
- College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan
- Faculty of Animal Science, Afghanistan National Agricultural Sciences and Technology University (ANASTU), Kandahar 3801, Afghanistan
| | - Takeshi Ohkubo
- College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan
| |
Collapse
|
9
|
Long BY, Liao X, Liang X. The Hypothalamus and Pituitary Gland Regulate Reproduction and Are Involved in the Development of Polycystic Ovary Syndrome. Neuroendocrinology 2025; 115:315-334. [PMID: 39894018 DOI: 10.1159/000543877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex condition with unclear mechanisms, posing a challenge for prevention and treatment of PCOS. The role of the hypothalamus and pituitary gland in regulating female reproduction is critical. Abnormalities in the hypothalamus and pituitary can impair reproductive function. It is important to study hypothalamic and pituitary changes in patients with PCOS. SUMMARY This article reviews articles on the hypothalamus and PCOS with the goal of summarizing what abnormalities of the hypothalamic-pituitary-ovarian axis are present in patients with PCOS and to clarify the pathogenesis of PCOS. We find that the mechanisms by which the hypothalamus and pituitary regulate reproduction in girls are complex and are associated with altered sex hormone levels, obesity, and insulin resistance. Different animal models of PCOS are characterized by different alterations in the hypothalamus and pituitary and respond differently to different treatments, which correspond to the complex pathogenesis of patients with PCOS. KEY MESSAGES Arcuate nucleus (ARC) is associated with luteinizing hormone (LH) surges. Suprachiasmatic nucleus, ARC, and RP3V are associated with LH surges. Animal models of PCOS have different characteristics.
Collapse
Affiliation(s)
- Bin-Yang Long
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xipeng Liao
- Tianjin University of Technology, Tianjin, China
| | - Xin Liang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Papp RS, Könczöl K, Sípos K, Tóth ZE. Nesfatin-1 Neurons in the Ventral Premammillary Nucleus Integrate Metabolic and Reproductive Signals in Male Rats. Int J Mol Sci 2025; 26:739. [PMID: 39859453 PMCID: PMC11765514 DOI: 10.3390/ijms26020739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The ability to reproduce depends on metabolic status. In rodents, the ventral premammillary nucleus (PMv) integrates metabolic and reproductive signals. While leptin (adiposity-related) signaling in the PMv is critical for female fertility, male reproductive functions are strongly influenced by glucose homeostasis. The anorexigenic peptide nesfatin-1 is a leptin-independent central regulator of blood glucose. Therefore, its integrative role in male rats can be assumed. To investigate this, we mapped the distribution of nesfatin-1 mRNA- and protein-producing cells in the PMv during postnatal development via in situ hybridization and immunohistochemistry, respectively. Fos-nesfatin-1, double immunostaining was used to determine the combined effect of heterosexual pheromone challenge and insulin-induced hypoglycemia on neuronal activation in adults. We found that ~75% of the pheromone-activated neurons were nesfatin-1 cells. Hypoglycemia reduced pheromone-induced cell activation, particularly in nesfatin-1 neurons. Immuno-electron microscopy revealed innervation of PMv nesfatin-1 neurons by urocortin3-immunoreactive terminals, reportedly originating from the medial amygdala. Nesfatin-1 immunopositive neurons expressed GPR10 mRNA, a receptor associated with metabolic signaling, but did not respond with accumulation of phosphorylated STAT3 immunopositivity, a marker of leptin receptor signaling, in response to intracerebroventricular leptin treatment. Our results suggest that PMv nesfatin-1 neurons are primarily responsible for integrating reproductive and metabolic signaling in male rats.
Collapse
Affiliation(s)
- Rege Sugárka Papp
- Human Brain Tissue Bank and Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary;
| | - Katalin Könczöl
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary; (K.K.); (K.S.)
| | - Klaudia Sípos
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary; (K.K.); (K.S.)
| | - Zsuzsanna E. Tóth
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary; (K.K.); (K.S.)
| |
Collapse
|
11
|
Patel AH, Koysombat K, Pierret A, Young M, Comninos AN, Dhillo WS, Abbara A. Kisspeptin in functional hypothalamic amenorrhea: Pathophysiology and therapeutic potential. Ann N Y Acad Sci 2024; 1540:21-46. [PMID: 39287750 DOI: 10.1111/nyas.15220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Functional hypothalamic amenorrhea (FHA) is one of the most common causes of secondary amenorrhea, resulting in anovulation and infertility, and is a low estrogen state that increases the risk of cardiovascular disease and impairs bone health. FHA is characterized by acquired suppression of physiological pulsatile gonadotropin-releasing hormone (GnRH) release by the hypothalamus in the absence of an identifiable structural cause, resulting in a functional hypogonadotropic hypogonadism. FHA results from either decreased energy intake and/or excessive exercise, leading to low energy availability and weight loss-often in combination with psychological stress on top of a background of genetic susceptibility. The hypothalamic neuropeptide kisspeptin is a key component of the GnRH pulse generator, tightly regulating pulsatile GnRH secretion and the downstream reproductive axis. Here, we review the physiological regulation of pulsatile GnRH secretion by hypothalamic kisspeptin neurons and how their activity is modulated by signals of energy status to affect reproductive function. We explore endocrine factors contributing to the suppression of GnRH pulsatility in the pathophysiology of FHA and how hypothalamic kisspeptin neurons likely represent a final common pathway through which these factors affect GnRH pulse generation. Finally, we discuss the therapeutic potential of kisspeptin as a novel treatment for women with FHA.
Collapse
Affiliation(s)
- Aaran H Patel
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Chelsea and Westminster Hospital, London, UK
| | - Kanyada Koysombat
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Aureliane Pierret
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Megan Young
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
12
|
Mączka K, Stasiak O, Przybysz P, Grymowicz M, Smolarczyk R. The Impact of the Endocrine and Immunological Function of Adipose Tissue on Reproduction in Women with Obesity. Int J Mol Sci 2024; 25:9391. [PMID: 39273337 PMCID: PMC11395521 DOI: 10.3390/ijms25179391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity, which leads to metabolic dysregulation and body function impairment, emerges as one of the pressing health challenges worldwide. Excessive body fat deposits comprise a dynamic and biologically active organ possessing its own endocrine function. One of the mechanisms underlying the pathophysiology of obesity is low-grade systemic inflammation mediated by pro-inflammatory factors such as free fatty acids, lipopolysaccharides, adipokines (including leptin, resistin and visfatin) and cytokines (TNF-α, IL-1β, Il-6), which are secreted by adipose tissue. Together with obesity-induced insulin resistance and hyperandrogenism, the exacerbated immune response has a negative impact on the hypothalamic-pituitary-gonadal axis at all levels and directly affects reproduction. In women, it results in disrupted ovarian function, irregular menstrual cycles and anovulation, contributing to infertility. This review focuses on the abnormal intracellular communication, altered gene expression and signaling pathways activated in obesity, underscoring its multifactorial character and consequences at a molecular level. Extensive presentation of the complex interplay between adipokines, cytokines, immune cells and neurons may serve as a foundation for future studies in search of potential sites for more targeted treatment of reproductive disorders related to obesity.
Collapse
Affiliation(s)
- Katarzyna Mączka
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Olga Stasiak
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Paulina Przybysz
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Monika Grymowicz
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| |
Collapse
|
13
|
Sáenz de Miera C, Bellefontaine N, Allen SJ, Myers MG, Elias CF. Glutamate neurotransmission from leptin receptor cells is required for typical puberty and reproductive function in female mice. eLife 2024; 13:RP93204. [PMID: 39007235 PMCID: PMC11249761 DOI: 10.7554/elife.93204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
The hypothalamic ventral premammillary nucleus (PMv) is a glutamatergic nucleus essential for the metabolic control of reproduction. However, conditional deletion of leptin receptor long form (LepRb) in vesicular glutamate transporter 2 (Vglut2) expressing neurons results in virtually no reproductive deficits. In this study, we determined the role of glutamatergic neurotransmission from leptin responsive PMv neurons on puberty and fertility. We first assessed if stimulation of PMv neurons induces luteinizing hormone (LH) release in fed adult females. We used the stimulatory form of designer receptor exclusively activated by designer drugs (DREADDs) in LeprCre (LepRb-Cre) mice. We collected blood sequentially before and for 1 hr after intravenous clozapine-N-oxide injection. LH level increased in animals correctly targeted to the PMv, and LH level was correlated to the number of Fos immunoreactive neurons in the PMv. Next, females with deletion of Slc17a6 (Vglut2) in LepRb neurons (LeprΔVGlut2) showed delayed age of puberty, disrupted estrous cycles, increased gonadotropin-releasing hormone (GnRH) concentration in the axon terminals, and disrupted LH secretion, suggesting impaired GnRH release. To assess if glutamate is required for PMv actions in pubertal development, we generated a Cre-induced reexpression of endogenous LepRb (LeprloxTB) with concomitant deletion of Slc17a6 (Vglut2flox) mice. Rescue of Lepr and deletion of Slc17a6 in the PMv was obtained by stereotaxic injection of an adeno-associated virus vector expressing Cre recombinase. Control LeprloxTB mice with PMv LepRb rescue showed vaginal opening, follicle maturation, and became pregnant, while LeprloxTB;Vglut2flox mice showed no pubertal development. Our results indicate that glutamatergic neurotransmission from leptin sensitive neurons regulates the reproductive axis, and that leptin action on pubertal development via PMv neurons requires Vglut2.
Collapse
Affiliation(s)
- Cristina Sáenz de Miera
- Department of Molecular and Integrative Physiology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Nicole Bellefontaine
- Department of Molecular and Integrative Physiology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Susan J Allen
- Department of Molecular and Integrative Physiology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Martin G Myers
- Department of Molecular and Integrative Physiology, University of Michigan–Ann ArborAnn ArborUnited States
- Elizabeth W. Caswell Diabetes Institute, University of Michigan–Ann ArborAnn ArborUnited States
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan–Ann ArborAnn ArborUnited States
| | - Carol F Elias
- Department of Molecular and Integrative Physiology, University of Michigan–Ann ArborAnn ArborUnited States
- Elizabeth W. Caswell Diabetes Institute, University of Michigan–Ann ArborAnn ArborUnited States
- Department of Obstetrics and Gynecology, University of Michigan–Ann ArborAnn ArborUnited States
| |
Collapse
|
14
|
Wang M, Pugh SM, Daboul J, Miller D, Xu Y, Hill JW. IGF-1 Acts through Kiss1-expressing Cells to Influence Metabolism and Reproduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601722. [PMID: 39005405 PMCID: PMC11244982 DOI: 10.1101/2024.07.02.601722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Objective Kisspeptin, encoded by the Kiss1 gene, ties puberty and fertility to energy status; however, the metabolic factors that control Kiss1-expressing cells need to be clarified. Methods To evaluate the impact of IGF-1 on the metabolic and reproductive functions of kisspeptin producing cells, we created mice with IGF-1 receptor deletion driven by the Kiss1 promoter (IGF1RKiss1 mice). Previous studies have shown IGF-1 and insulin can bind to each other's receptor, permitting IGF-1 signaling in the absence of IGF1R. Therefore, we also generated mice with simultaneous deletion of the IGF1R and insulin receptor (IR) in Kiss1-expressing cells (IGF1R/IRKiss1 mice). Results Loss of IGF1R in Kiss1 cells caused stunted body length. In addition, female IGF1RKiss1 mice displayed lower body weight and food intake plus higher energy expenditure and physical activity. This phenotype was linked to higher proopiomelanocortin (POMC) expression and heightened brown adipose tissue (BAT) thermogenesis. Male IGF1RKiss1 mice had mild changes in metabolic functions. Moreover, IGF1RKiss1 mice of both sexes experienced delayed puberty. Notably, male IGF1RKiss1 mice had impaired adulthood fertility accompanied by lower gonadotropin and testosterone levels. Thus, IGF1R in Kiss1-expressing cells impacts metabolism and reproduction in a sex-specific manner. IGF1R/IRKiss1 mice had higher fat mass and glucose intolerance, suggesting IGF1R and IR in Kiss1-expressing cells together regulate body composition and glucose homeostasis. Conclusions Overall, our study shows that IGF1R and IR in Kiss1 have cooperative roles in body length, metabolism, and reproduction.
Collapse
Affiliation(s)
- Mengjie Wang
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, Ohio, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Seamus M. Pugh
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Judy Daboul
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - David Miller
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Yong Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer W. Hill
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, Ohio, USA
- Department of Obstetrics and Gynecology, University of Toledo College of Medicine, Toledo, Ohio, USA
| |
Collapse
|
15
|
Salmeri N, Viganò P, Cavoretto P, Marci R, Candiani M. The kisspeptin system in and beyond reproduction: exploring intricate pathways and potential links between endometriosis and polycystic ovary syndrome. Rev Endocr Metab Disord 2024; 25:239-257. [PMID: 37505370 DOI: 10.1007/s11154-023-09826-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Endometriosis and polycystic ovary syndrome (PCOS) are two common female reproductive disorders with a significant impact on the health and quality of life of women affected. A novel hypothesis by evolutionary biologists suggested that these two diseases are inversely related to one another, representing a pair of diametrical diseases in terms of opposite alterations in reproductive physiological processes but also contrasting phenotypic traits. However, to fully explain the phenotypic features observed in women with these conditions, we need to establish a potential nexus system between the reproductive system and general biological functions. The recent discovery of kisspeptin as pivotal mediator of internal and external inputs on the hypothalamic-pituitary-gonadal axis has led to a new understanding of the neuroendocrine upstream regulation of the human reproductive system. In this review, we summarize the current knowledge on the physiological roles of kisspeptin in human reproduction, as well as its involvement in complex biological functions such as metabolism, inflammation and pain sensitivity. Importantly, these functions are known to be dysregulated in both PCOS and endometriosis. Within the evolving scientific field of "kisspeptinology", we critically discuss the clinical relevance of these discoveries and their potential translational applications in endometriosis and PCOS. By exploring the possibilities of manipulating this complex signaling system, we aim to pave the way for novel targeted therapies in these reproductive diseases.
Collapse
Affiliation(s)
- Noemi Salmeri
- Gynecology and Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Paola Viganò
- Infertility Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via M. Fanti 6, 20122, Milan, Italy.
| | - Paolo Cavoretto
- Gynecology and Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Roberto Marci
- Gynecology & Obstetrics, University of Ferrara, 44121, Ferrara, Italy
| | - Massimo Candiani
- Gynecology and Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| |
Collapse
|
16
|
Manglani K, Anika NN, Patel D, Jhaveri S, Avanthika C, Sudan S, Alimohamed Z, Tiwari K. Correlation of Leptin in Patients With Type 2 Diabetes Mellitus. Cureus 2024; 16:e57667. [PMID: 38707092 PMCID: PMC11070180 DOI: 10.7759/cureus.57667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
The exponential increase in diabetes mellitus (DM) poses serious public health concerns. In this review, we focus on the role of leptin in type 2 DM. The peripheral actions of leptin consist of upregulating proinflammatory cytokines which play an important role in the pathogenesis of type 2 DM and insulin resistance. Moreover, leptin is known to inhibit insulin secretion and plays a significant role in insulin resistance in obesity and type 2 DM. A literature search was conducted on Medline, Cochrane, Embase, and Google Scholar for relevant articles published until December 2023. The following search strings and Medical Subject Headings (MeSH terms) were used: "Diabetes Mellitus," "Leptin," "NPY," and "Biomarker." This article aims to discuss the physiology of leptin in type 2 DM, its glucoregulatory actions, its relationship with appetite, the impact that various lifestyle modifications can have on leptin levels, and, finally, explore leptin as a potential target for various treatment strategies.
Collapse
Affiliation(s)
- Kajol Manglani
- Internal Medicine, MedStar Washington Hospital Center, Washington, USA
| | | | - Dhriti Patel
- Medicine and Surgery, B.J. Medical College and Civil Hospital, Ahmedabad, IND
| | - Sharan Jhaveri
- Medicine and Surgery, Smt. Nathiba Hargovandas Lakhmichand Municipal Medical College, Gujarat University, Ahmedabad, IND
| | - Chaithanya Avanthika
- Pediatrics, Icahn School of Medicine at Mount Sinai, Elmhurst Hospital Center, New York, USA
- Medicine and Surgery, Karnataka Institute of Medical Sciences, Hubballi, IND
| | - Sourav Sudan
- Internal Medicine, Government Medical College, Rajouri, Rajouri, IND
| | - Zainab Alimohamed
- Division of Research & Academic Affairs, Larkin Health System, South Miami, USA
| | - Kripa Tiwari
- Internal Medicine, Maimonides Medical Center, New York, USA
| |
Collapse
|
17
|
de Miera CS, Bellefontaine N, Allen SJ, Myers MG, Elias CF. Glutamate neurotransmission from leptin receptor cells is required for typical puberty and reproductive function in female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558865. [PMID: 37790549 PMCID: PMC10542178 DOI: 10.1101/2023.09.21.558865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The hypothalamic ventral premammillary nucleus (PMv) is a glutamatergic nucleus essential for the metabolic control of reproduction. However, conditional deletion of leptin receptor (LepRb) in vesicular glutamate transporter 2 (Vglut2) expressing neurons results in virtually no reproductive deficits. In this study, we determine the role of glutamatergic signaling from leptin responsive PMv neurons on puberty and fertility. We first assessed if stimulation of PMv neurons induces LH release in fed adult females. We used the stimulatory form of designer receptor exclusively activated by designer drugs (DREADDs) in LepRb-Cre mice. We collected blood sequentially before and for 1h after iv. clozapine-N-oxide injection. LH level increased in animals correctly targeted to the PMv, and LH level was correlated to the number of cFos immunoreactive neurons in the PMv. Next, females with deletion of Vglut2 in LepRb neurons (LepR∆VGlut2) showed delayed age of puberty, disrupted estrous cycles, increased GnRH concentration in the axon terminals and disrupted LH responses, suggesting impaired GnRH release. To assess if glutamate is required for PMv actions in pubertal development, we generated a Cre-induced reexpression of endogenous LepRb (LepRloxTB) with concomitant deletion of Vglut2 (Vglut2-floxed) mice. Rescue of Lepr and deletion of Vglut2 in the PMv was obtained by stereotaxic injection of an adeno-associated virus vector expressing Cre recombinase. Control LepRloxTB mice with PMv LepRb rescue showed vaginal opening, follicle maturation and became pregnant, while LepRloxTB;Vglut2flox mice showed no pubertal development. Our results indicate that glutamatergic signaling from leptin sensitive neurons regulates the reproductive axis, and that leptin action on pubertal development via PMv neurons requires Vglut2.
Collapse
Affiliation(s)
- Cristina Sáenz de Miera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Nicole Bellefontaine
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Susan J. Allen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Martin G. Myers
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
- Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, 48109-5622, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Carol F. Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
- Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, 48109-5622, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| |
Collapse
|
18
|
Anderson GM, Hill JW, Kaiser UB, Navarro VM, Ong KK, Perry JRB, Prevot V, Tena-Sempere M, Elias CF. Metabolic control of puberty: 60 years in the footsteps of Kennedy and Mitra's seminal work. Nat Rev Endocrinol 2024; 20:111-123. [PMID: 38049643 PMCID: PMC10843588 DOI: 10.1038/s41574-023-00919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/06/2023]
Abstract
An individual's nutritional status has a powerful effect on sexual maturation. Puberty onset is delayed in response to chronic energy insufficiency and is advanced under energy abundance. The consequences of altered pubertal timing for human health are profound. Late puberty increases the chances of cardiometabolic, musculoskeletal and neurocognitive disorders, whereas early puberty is associated with increased risks of adult obesity, type 2 diabetes mellitus, cardiovascular diseases and various cancers, such as breast, endometrial and prostate cancer. Kennedy and Mitra's trailblazing studies, published in 1963 and using experimental models, were the first to demonstrate that nutrition is a key factor in puberty onset. Building on this work, the field has advanced substantially in the past decade, which is largely due to the impressive development of molecular tools for experimentation and population genetics. In this Review, we discuss the latest advances in basic and translational sciences underlying the nutritional and metabolic control of pubertal development, with a focus on perspectives and future directions.
Collapse
Affiliation(s)
- Greg M Anderson
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor M Navarro
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken K Ong
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - John R B Perry
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Vincent Prevot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain.
| | - Carol F Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Mei L, Osakada T, Lin D. Hypothalamic control of innate social behaviors. Science 2023; 382:399-404. [PMID: 37883550 PMCID: PMC11105421 DOI: 10.1126/science.adh8489] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Sexual, parental, and aggressive behaviors are central to the reproductive success of individuals and species survival and thus are supported by hardwired neural circuits. The reproductive behavior control column (RBCC), which comprises the medial preoptic nucleus (MPN), the ventrolateral part of the ventromedial hypothalamus (VMHvl), and the ventral premammillary nucleus (PMv), is essential for all social behaviors. The RBCC integrates diverse hormonal and metabolic cues and adjusts an animal's physical activity, hence the chance of social encounters. The RBCC further engages the mesolimbic dopamine system to maintain social interest and reinforces cues and actions that are time-locked with social behaviors. We propose that the RBCC and brainstem form a dual-control system for generating moment-to-moment social actions. This Review summarizes recent progress regarding the identities of RBCC cells and their pathways that drive different aspects of social behaviors.
Collapse
Affiliation(s)
- Long Mei
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Takuya Osakada
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10016, USA
| |
Collapse
|
20
|
Rupp AC, Tomlinson AJ, Affinati AH, Yacawych WT, Duensing AM, True C, Lindsley SR, Kirigiti MA, MacKenzie A, Polex-Wolf J, Li C, Knudsen LB, Seeley RJ, Olson DP, Kievit P, Myers MG. Suppression of food intake by Glp1r/Lepr-coexpressing neurons prevents obesity in mouse models. J Clin Invest 2023; 133:e157515. [PMID: 37581939 PMCID: PMC10541203 DOI: 10.1172/jci157515] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
The adipose-derived hormone leptin acts via its receptor (LepRb) in the brain to control energy balance. A potentially unidentified population of GABAergic hypothalamic LepRb neurons plays key roles in the restraint of food intake and body weight by leptin. To identify markers for candidate populations of LepRb neurons in an unbiased manner, we performed single-nucleus RNA-Seq of enriched mouse hypothalamic LepRb cells, identifying several previously unrecognized populations of hypothalamic LepRb neurons. Many of these populations displayed strong conservation across species, including GABAergic Glp1r-expressing LepRb (LepRbGlp1r) neurons, which expressed more Lepr than other LepRb cell populations. Ablating Lepr from LepRbGlp1r cells provoked hyperphagic obesity without impairing energy expenditure. Similarly, improvements in energy balance caused by Lepr reactivation in GABA neurons of otherwise Lepr-null mice required Lepr expression in GABAergic Glp1r-expressing neurons. Furthermore, restoration of Glp1r expression in LepRbGlp1r neurons in otherwise Glp1r-null mice enabled food intake suppression by the GLP1R agonist, liraglutide. Thus, the conserved GABAergic LepRbGlp1r neuron population plays crucial roles in the suppression of food intake by leptin and GLP1R agonists.
Collapse
Affiliation(s)
| | | | | | - Warren T. Yacawych
- Department of Internal Medicine and
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Allison M. Duensing
- Department of Internal Medicine and
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cadence True
- Oregon National Primate Research Center, Beaverton, Oregon, USA
| | | | | | | | | | - Chien Li
- Novo Nordisk, Copenhagen, Denmark
| | | | | | - David P. Olson
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul Kievit
- Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Martin G. Myers
- Department of Internal Medicine and
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Mansano NDS, Vieira HR, Araujo-Lopes R, Szawka RE, Donato J, Frazao R. Fasting Modulates GABAergic Synaptic Transmission to Arcuate Kisspeptin Neurons in Female Mice. Endocrinology 2023; 164:bqad150. [PMID: 37793082 DOI: 10.1210/endocr/bqad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023]
Abstract
It is well-established that the hypothalamic-pituitary-gonadal (HPG) axis is suppressed due to negative energy balance. However, less information is available on whether kisspeptin neuronal activity contributes to fasting-induced responses. In the present study, female and male mice were fasted for 24 hours or provided food ad libitum (fed group) to determine whether acute fasting is sufficient to modulate kisspeptin neuronal activity. In female mice, fasting attenuated luteinizing hormone (LH) and prolactin (PRL) serum levels and increased follicle-stimulating hormone levels compared with the fed group. In contrast, fasting did not affect gonadotropin or PRL secretion in male mice. By measuring genes related to LH pulse generation in micropunches obtained from the arcuate nucleus of the hypothalamus (ARH), we observed that fasting reduced Kiss1 mRNA levels in female and male mice. In contrast, Pdyn expression was upregulated only in fasted female mice, whereas no changes in the Tac2 mRNA levels were observed in both sexes. Interestingly, the frequency and amplitude of the GABAergic postsynaptic currents recorded from ARH kisspeptin neurons (ARHKisspeptin) were reduced in 24-hour fasted female mice but not in males. Additionally, neuropeptide Y induced a hyperpolarization in the resting membrane potential of ARHKisspeptin neurons of fed female mice but not in males. Thus, the response of ARHKisspeptin neurons to fasting is sexually dependent with a female bias, associated with changes in gonadotropins and PRL secretion. Our findings suggest that GABAergic transmission to ARHKisspeptin neurons modulates the activity of the HPG axis during situations of negative energy balance.
Collapse
Affiliation(s)
- Naira da Silva Mansano
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Anatomia, São Paulo, SP 05508-000, Brazil
| | - Henrique Rodrigues Vieira
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Anatomia, São Paulo, SP 05508-000, Brazil
| | - Roberta Araujo-Lopes
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Belo Horizonte, MG 31270-901, Brazil
| | - Raphael Escorsim Szawka
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Belo Horizonte, MG 31270-901, Brazil
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, São Paulo, SP 05508-000, Brazil
| | - Renata Frazao
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Anatomia, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
22
|
Duittoz AH, Kenny DA. Review: Early and late determinants of puberty in ruminants and the role of nutrition. Animal 2023; 17 Suppl 1:100812. [PMID: 37567653 DOI: 10.1016/j.animal.2023.100812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 08/13/2023] Open
Abstract
This article reviews the scientific literature on puberty with a focus on ruminants and draws inference, where appropriate, from recent findings in transgenic mouse models and human pathology. Early genetic determinants of puberty have been discovered in humans suffering from hypogonadotropic hypogonadism or central precocious puberty. Transgenic mouse models selected on the basis of the causative defective genes helped in discovering the cellular and molecular mechanisms involved. Most of the genes found are involved in the development of neuroendocrine networks during embryo development and early postnatal life. Notwithstanding that the development of neuroendocrine networks takes place early in puberty, a delay or acceleration in the development of Gonadotropin Releasing Hormone (GnRH) neurons has an impact on puberty onset inducing a delay or an advance, respectively. Among the genes discovered in humans and laboratory models, only a few of them displayed polymorphisms associated with advanced sexual maturity, but also marbling, growth traits and callipygian conformation. This could be related to the fact that rather than puberty onset, most research monitored sexual maturity. Sexual maturity occurs after puberty onset and involves factors regulating the maturation of gonads and in the expression of sexual behaviour. The association with growth and metabolic traits is not surprising since nutrition is the major environmental factor that will act on late genetic determinants of puberty onset. However, a recent hypothesis emerged suggesting that it is the postnatal activation of the GnRH neuronal network that induces the acceleration of growth and weight gain. Hence, nutritional factors need the activation of GnRH neurons first before acting on late genetic determinants. Moreover, nutritional factors can also affect the epigenetic landscape of parental gamete's genome with the consequence of specific methylation of genes involved in GnRH neuron development in the embryo. Season is another important regulator of puberty onset in seasonal small ruminants and appears to involve the same mechanisms that are involved in seasonal transition in adults. The social environment is also an underestimated factor affecting puberty onset in domestic ruminants, most research studies focused on olfactory cues, but the genetic basis has not heretofore been adequately tackled by the scientific community. Additionally, there is some evidence to suggest transgenerational effects exist, in that nutritional and social cues to which parents were exposed, could affect the epigenetic landscape of parental gametes resulting in the epigenetic regulation of early genetic determinants of puberty onset in their offspring.
Collapse
Affiliation(s)
- A H Duittoz
- UMR 0083 BOA, INRAE, Centre Val de Loire, 37380 Nouzilly, France.
| | - D A Kenny
- Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath. C15 PW93, Ireland
| |
Collapse
|
23
|
Velasco I, Franssen D, Daza-Dueñas S, Skrapits K, Takács S, Torres E, Rodríguez-Vazquez E, Ruiz-Cruz M, León S, Kukoricza K, Zhang FP, Ruohonen S, Luque-Cordoba D, Priego-Capote F, Gaytan F, Ruiz-Pino F, Hrabovszky E, Poutanen M, Vázquez MJ, Tena-Sempere M. Dissecting the KNDy hypothesis: KNDy neuron-derived kisspeptins are dispensable for puberty but essential for preserved female fertility and gonadotropin pulsatility. Metabolism 2023; 144:155556. [PMID: 37121307 DOI: 10.1016/j.metabol.2023.155556] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Kiss1 neurons in the hypothalamic arcuate-nucleus (ARC) play key roles in the control of GnRH pulsatility and fertility. A fraction of ARC Kiss1 neurons, termed KNDy, co-express neurokinin B (NKB; encoded by Tac2). Yet, NKB- and Kiss1-only neurons are also found in the ARC, while a second major Kiss1-neuronal population is present in the rostral hypothalamus. The specific contribution of different Kiss1 neuron sub-sets and kisspeptins originating from them to the control of reproduction and eventually other bodily functions remains to be fully determined. METHODS To tease apart the physiological roles of KNDy-born kisspeptins, conditional ablation of Kiss1 in Tac2-expressing cells was implemented in vivo. To this end, mice with Tac2 cell-specific Kiss1 KO (TaKKO) were generated and subjected to extensive reproductive and metabolic characterization. RESULTS TaKKO mice displayed reduced ARC kisspeptin content and Kiss1 expression, with greater suppression in females, which was detectable at infantile-pubertal age. In contrast, Tac2/NKB levels were fully preserved. Despite the drop of ARC Kiss1/kisspeptin, pubertal timing was normal in TaKKO mice of both sexes. However, young-adult TaKKO females displayed disturbed LH pulsatility and sex steroid levels, with suppressed basal LH and pre-ovulatory LH surges, early-onset subfertility and premature ovarian insufficiency. Conversely, testicular histology and fertility were grossly conserved in TaKKO males. Ablation of Kiss1 in Tac2-cells led also to sex-dependent alterations in body composition, glucose homeostasis, especially in males, and locomotor activity, specifically in females. CONCLUSIONS Our data document that KNDy-born kisspeptins are dispensable/compensable for puberty in both sexes, but required for maintenance of female gonadotropin pulsatility and fertility, as well as for adult metabolic homeostasis. SIGNIFICANCE STATEMENT Neurons in the hypothalamic arcuate nucleus (ARC) co-expressing kisspeptins and NKB, named KNDy, have been recently suggested to play a key role in pulsatile secretion of gonadotropins, and hence reproduction. However, the relative contribution of this Kiss1 neuronal-subset, vs. ARC Kiss1-only and NKB-only neurons, as well as other Kiss1 neuronal populations, has not been assessed in physiological settings. We report here findings in a novel mouse-model with elimination of KNDy-born kisspeptins, without altering other kisspeptin compartments. Our data highlights the heterogeneity of ARC Kiss1 populations and document that, while dispensable/compensable for puberty, KNDy-born kisspeptins are required for proper gonadotropin pulsatility and fertility, specifically in females, and adult metabolic homeostasis. Characterization of this functional diversity is especially relevant, considering the potential of kisspeptin-based therapies for management of human reproductive disorders.
Collapse
Affiliation(s)
- Inmaculada Velasco
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Delphine Franssen
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; GIGA-Neurosciences Unit, University of Liège, Liège, Belgium
| | - Silvia Daza-Dueñas
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Encarnación Torres
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Elvira Rodríguez-Vazquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Miguel Ruiz-Cruz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Silvia León
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Krisztina Kukoricza
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Fu-Ping Zhang
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Suvi Ruohonen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Diego Luque-Cordoba
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Analytical Chemistry, University of Córdoba, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Spain
| | - Feliciano Priego-Capote
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Analytical Chemistry, University of Córdoba, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Spain
| | - Francisco Gaytan
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - María J Vázquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain; Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain.
| |
Collapse
|
24
|
Bakshi A, Rai U. Reproductive phase-dependent and sexually dimorphic expression of leptin and its receptor in different parts of brain of spotted snakehead Channa punctata. JOURNAL OF FISH BIOLOGY 2023; 102:904-912. [PMID: 36704849 DOI: 10.1111/jfb.15334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The reproductive phase-wise leptin (lep) and its receptor (lepr) expression in different parts of the brain of adult male and female spotted snakehead Channa punctata reveals sexual dimorphism in the brain leptin system. In anterior, middle and posterior parts of the brain of males, a maximum lep was observed in resting, spawning and postspawning reproductive phases, respectively. In females, a high level of lep was seen during the preparatory phase in the anterior brain, preparatory and postspawning phases in the middle brain and resting and postspawning phases in the posterior brain. Nonetheless, the transcript level of lepr was recorded highest during the spawning phase, irrespective of sex and region of the brain. Regardless of the reproductive state of fishes, lep and lepr were seen considerably high in middle and posterior parts of male brain than that of female, implying the involvement of factors other than sex steroids for sex-related variation in the leptin system in these regions of the brain. Nonetheless, no sex difference was evidenced in the expression of either ligand or its receptor in the anterior brain. In summary, the presence of lep and lepr in different regions of the brain and variation in their expression depending on sex and reproductive phases raise the possibility of pivotal actions of leptin in influencing neuronal circuitry and thereby reproductive functions.
Collapse
Affiliation(s)
- Amrita Bakshi
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | | |
Collapse
|
25
|
Stimulation of GHRH Neuron Axon Growth by Leptin and Impact of Nutrition during Suckling in Mice. Nutrients 2023; 15:nu15051077. [PMID: 36904077 PMCID: PMC10005278 DOI: 10.3390/nu15051077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Nutrition during the early postnatal period can program the growth trajectory and adult size. Nutritionally regulated hormones are strongly suspected to be involved in this physiological regulation. Linear growth during the postnatal period is regulated by the neuroendocrine somatotropic axis, whose development is first controlled by GHRH neurons of the hypothalamus. Leptin that is secreted by adipocytes in proportion to fat mass is one of the most widely studied nutritional factors, with a programming effect in the hypothalamus. However, it remains unclear whether leptin stimulates the development of GHRH neurons directly. Using a Ghrh-eGFP mouse model, we show here that leptin can directly stimulate the axonal growth of GHRH neurons in vitro in arcuate explant cultures. Moreover, GHRH neurons in arcuate explants harvested from underfed pups were insensitive to the induction of axonal growth by leptin, whereas AgRP neurons in these explants were responsive to leptin treatment. This insensitivity was associated with altered activating capacities of the three JAK2, AKT and ERK signaling pathways. These results suggest that leptin may be a direct effector of linear growth programming by nutrition, and that the GHRH neuronal subpopulation may display a specific response to leptin in cases of underfeeding.
Collapse
|
26
|
Wang L, Xu F, Zhang Q, Chen J, Zhou Q, Sun C. Causal relationships between birth weight, childhood obesity and age at menarche: A two-sample Mendelian randomization analysis. Clin Endocrinol (Oxf) 2023; 98:212-220. [PMID: 36237121 DOI: 10.1111/cen.14831] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Observational studies suggest birth weight and childhood obesity are closely associated with age at menarche. However, the relationships between them are currently inconsistent and it remains elusive whether such associations are causal. Therefore, the aim of the study was to investigate whether there existed causal relationships between birth weight, childhood obesity and age at menarche. DESIGN, PATIENTS AND MEASUREMENTS A two-sample Mendelian randomization (MR) study. The standard inverse variance weighted MR analyses were adopted to evaluate the causal effects of birth weight (n = 143,677), childhood body mass index (BMI) (n = 39,620) on age at menarche (n = 182,416) with summary statistics from large-scale genome-wide association studies (GWASs). Meanwhile, we validated our MR results with some sensitivity analyses including maximum likelihood, weighted-median and MR pleiotropy residual sum and outlier methods. RESULTS The present study showed that each one standard deviation (1-SD) lower birth weight was predicted to result in a 0.1479 years earlier of age at menarche (β = .1479, 95% confidence interval [CI] = 0.0422-0.2535; p = 0.0061). We also found that genetically predicted 1-SD increase in childhood BMI was causally associated with early age at menarche (β = -.3966, 95% CI = -0.5294 to -0.2639; p = 4.73E-09). CONCLUSIONS Our MR study suggests the causal effect of lower birth weight and higher childhood BMI on the increased risk of earlier menarche. It may be the opportune time to carry out weight control intervention in prenatal and early childhood development periods to prevent early menarche onset, thus decreasing the future adverse consequences.
Collapse
Affiliation(s)
- Lianke Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Fei Xu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiang Zhang
- Department of Community Nursing, College of Nursing and Health, Zhengzhou University, Henan, Zhengzhou, China
| | - Jiajun Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qianyu Zhou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Changqing Sun
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
27
|
Cara AL, Burger LL, Beekly BG, Allen SJ, Henson EL, Auchus RJ, Myers MG, Moenter SM, Elias CF. Deletion of Androgen Receptor in LepRb Cells Improves Estrous Cycles in Prenatally Androgenized Mice. Endocrinology 2023; 164:bqad015. [PMID: 36683455 PMCID: PMC10091504 DOI: 10.1210/endocr/bqad015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Androgens are steroid hormones crucial for sexual differentiation of the brain and reproductive function. In excess, however, androgens may decrease fertility as observed in polycystic ovary syndrome, a common endocrine disorder characterized by oligo/anovulation and/or polycystic ovaries. Hyperandrogenism may also disrupt energy homeostasis, inducing higher central adiposity, insulin resistance, and glucose intolerance, which may exacerbate reproductive dysfunction. Androgens bind to androgen receptors (ARs), which are expressed in many reproductive and metabolic tissues, including brain sites that regulate the hypothalamo-pituitary-gonadal axis and energy homeostasis. The neuronal populations affected by androgen excess, however, have not been defined. We and others have shown that, in mice, AR is highly expressed in leptin receptor (LepRb) neurons, particularly in the arcuate (ARH) and the ventral premammillary nuclei (PMv). Here, we assessed if LepRb neurons, which are critical in the central regulation of energy homeostasis and exert permissive actions on puberty and fertility, have a role in the pathogenesis of female hyperandrogenism. Prenatally androgenized (PNA) mice lacking AR in LepRb cells (LepRbΔAR) show no changes in body mass, body composition, glucose homeostasis, or sexual maturation. They do show, however, a remarkable improvement of estrous cycles combined with normalization of ovary morphology compared to PNA controls. Our findings indicate that the prenatal androgenization effects on adult reproductive physiology (ie, anestrus and anovulation) are mediated by a subpopulation of LepRb neurons directly sensitive to androgens. They also suggest that the effects of hyperandrogenism on sexual maturation and reproductive function in adult females are controlled by distinct neural circuits.
Collapse
Affiliation(s)
- Alexandra L Cara
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Laura L Burger
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Bethany G Beekly
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Susan J Allen
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Emily L Henson
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Richard J Auchus
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Martin G Myers
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Suzanne M Moenter
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Carol F Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
28
|
Zurita-Cruz JN, Villasís-Keever MA, Manuel-Apolinar L, Damasio-Santana L, Garrido-Magaña E, Rivera-Hernández ADJ. Leptin/adiponectin ratio as a prognostic factor for increased weight gain in girls with central precocious puberty. Front Endocrinol (Lausanne) 2023; 14:1101399. [PMID: 36967781 PMCID: PMC10036755 DOI: 10.3389/fendo.2023.1101399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
OBJECTIVE To determine if the leptin, adiponectin, and leptin/adiponectin ratio (LAR) can predict weight gain at the end of GnRH analogs (GnRHa) treatment in girls with central precocious puberty (CPP). MATERIAL AND METHODS Study design: prospective cohort. Serum levels of leptin and adiponectin were determined at diagnosis of CPP. Anthropometry was performed at diagnosis of CPP and every six-months, until treatment with GnRHa was discontinued and they presented menarche. Patients were divided according to BMI<94 and BMI>95 percentile at diagnosis of CPP. The outcome was the increased in weight gain (e.g., from normal weight to overweight) at the end of follow-up. Statistical analysis: repeated measures ANOVA test and Student's t-test were used to compare groups. Logistic regression analysis was used to evaluate the association of leptin and adiponectin levels, as well as LAR values with increased weight gain. RESULTS Fifty-six CPP patients were studied, 18 had BMI >95 percentile and 38 BMI <94 percentile. Of the 18 patients who initially had BMI >95th, two patients went from obesity to overweight, while among the 38 patients who started with BMI <94th, 21 (55.2%) increased their weight gain at the end of follow-up. This last group had higher leptin levels (8.99 ± 0.6 vs 6.14 ± 0.8, p=0.005) and higher LAR values compared to those who remained in the same weight (1.3 ± 0.5 vs 0.96 ± 0.56, p=0.01). In the logistic regression analysis, it was found that higher leptin levels and higher LAR values were associated with increased weight gain (RR 1.31, 95%CI 1.03-1.66, RR 4.86, 95%CI 1.10-21.51, respectively), regardless of birth weight, pubertal stage, age, and bone/chronological age ratio. CONCLUSIONS In patients with CPP, leptin levels and higher LAR values appear to be associated with significantly greater weight gain during GhRHa treatment, particularly in girls starting with BMI < 94 percentile.
Collapse
Affiliation(s)
- Jessie Nallely Zurita-Cruz
- Medicine Faculty of Autonomous National University, Clinical Research Department, Hospital Infantil de México Federico Gómez, Ciudad de Mexico, Mexico
| | - Miguel Angel Villasís-Keever
- Unit of Analysis and Synthesis of the Evidence, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
- *Correspondence: Miguel Angel Villasís-Keever,
| | - Leticia Manuel-Apolinar
- Department of Endocrinology Research, Hospital of Medical Specialties, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Leticia Damasio-Santana
- Department of Endocrinology Research, Hospital of Medical Specialties, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Eulalia Garrido-Magaña
- Department of Pediatric Endocrinology, Children’s Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Aleida de Jesús Rivera-Hernández
- Department of Pediatric Endocrinology, Children’s Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| |
Collapse
|
29
|
Liu J, Yuan Y, Peng X, Wang Y, Cao R, Zhang Y, Fu L. Mechanism of leptin-NPY on the onset of puberty in male offspring rats after androgen intervention during pregnancy. Front Endocrinol (Lausanne) 2023; 14:1090552. [PMID: 37056673 PMCID: PMC10086166 DOI: 10.3389/fendo.2023.1090552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVES The time of onset of puberty has been increasingly earlier, but its mechanism is still unclear. This study aimed to reveal the mechanism of leptin and NPY in the onset of puberty in male offspring rats after androgen intervention during pregnancy. METHODS Eight-week-old specific pathogen-free (SPF) healthy male Sprague-Dawley (SD) rats and 16 female SD rats were selected and caged at 1:2. The pregnant rats were randomly divided into the olive oil control group (OOG) and testosterone intervention group (TG), with 8 rats in each group. Olive oil and testosterone were injected from the 15th day of pregnancy, for a total of 4 injections (15th, 17th, 19th, 21st day). After the onset of puberty, the male offspring rats were anesthetized with 2% pentobarbital sodium to collect blood by ventral aorta puncture and decapitated to peel off the hypothalamus and abdominal fat. Serum testosterone (T), free testosterone (FT), dihydrotestosterone (DHT), dehydroepiandrosterone (DHEA), sex hormone binding globulin (SHBG), and leptin were detected by ELISA, and then the free androgen index (FAI) was calculated. The mRNA levels of androgen receptor (AR), estrogen receptor α (ERα), NPY, leptinR, and NPY2R in the hypothalamus and abdominal fat were detected by RT-PCR. Protein expression levels of AR, ERα, NPY, leptinR, and NPY2R in the arcuate nucleus (ARC) of the hypothalamus were detected by immunohistochemistry. RESULTS The time of onset of puberty was significantly earlier in the TG than in the OOG (P< 0.05) and was positively correlated with body weight, body length, abdominal fat, and leptinR mRNA levels in adipose tissue in the OOG (P< 0.05), while it was positively correlated with serum DHT and DHEA concentrations and FAI and AR mRNA levels in the hypothalamus in the TG (P< 0.05). The NPY2R mRNA level and protein expression levels of ERα, NPY2R, and leptinR in the TG were significantly higher than those in the OOG, while the protein expression levels of AR and NPY in the TG were significantly lower than those in the OOG (P< 0.05). CONCLUSIONS Testosterone intervention during pregnancy led to an earlier onset of puberty in male offspring rats, which may render the male offspring rats more sensitive to androgens, leptin, and NPY at the onset of puberty.
Collapse
|
30
|
Iwasa T, Noguchi H, Aoki H, Tamura K, Maeda T, Takeda A, Uchishiba M, Arakaki R, Minato S, Kamada S, Yamamoto S, Imaizumi J, Kagawa T, Yoshida A, Fukui R, Daizumoto K, Kon M, Shinohara N, Yoshida K, Yamamoto Y. Effects of undernutrition and low energy availability on reproductive functions and their underlying neuroendocrine mechanisms. Endocr J 2022; 69:1363-1372. [PMID: 36372440 DOI: 10.1507/endocrj.ej22-0426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been well established that undernutrition and low energy availability disturb female reproductive functions in humans and many animal species. These reproductive dysfunctions are mainly caused by alterations of some hypothalamic factors, and consequent reduction of gonadotrophin-releasing hormone (GnRH) secretion. Evidence from literature suggests that increased activity of orexigenic factors and decreased activity of anorexigenic/satiety-related factors in undernourished conditions attenuate GnRH secretion in an integrated manner. Likewise, the activity of kisspeptin neurons, which is a potent stimulator of GnRH, is also reduced in undernourished conditions. In addition, it has been suggested that gonadotrophin-inhibitory hormone, which has anti-GnRH and gonadotrophic effects, may be involved in reproductive dysfunctions under several kinds of stress conditions. It should be remembered that these alterations, i.e., promotion of feeding behavior and temporary suppression of reproductive functions, are induced to prioritize the survival of individual over that of species, and that improvements in metabolic and nutritional conditions should be considered with the highest priority.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hiroki Noguchi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hidenori Aoki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Kou Tamura
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Takaaki Maeda
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Asuka Takeda
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Maimi Uchishiba
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Ryosuke Arakaki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Saki Minato
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Shuhei Kamada
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Shota Yamamoto
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Junki Imaizumi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Tomohiro Kagawa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Atsuko Yoshida
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Rijin Fukui
- Department of Obstetrics & Gynecology, Tokushima Municipal Hospital, Tokushima 770-0812, Japan
| | - Kei Daizumoto
- Department of Urology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Masafumi Kon
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Kanako Yoshida
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
31
|
Abstract
Type 2 diabetes (T2D) and obesity are common and associated with increased morbidity and mortality. Cross-sectional and longitudinal studies have demonstrated a clear association between T2D, obesity and reduced total testosterone concentration. This relationship becomes less significant or absent with correction for changes in body composition, supporting the notion that changes in body composition are mediating these effects. Moreover, this mediating effect of body composition changes is bi-directional, as evidenced by interventional studies of weight loss and testosterone treatment. On the one hand, in obese men, serum testosterone increases markedly with weight loss. On the other hand, testosterone improves body composition. This relationship is driven by multiple complex interaction between obesity and insulin resistance and the hypothalamic-pituitary-testicular axis, at all levels. Data from randomised control trials have demonstrated that intervention with testosterone therapy increases muscle mass and reduces adiposity. Most recently it has been shown that treatment with testosterone prevents progression of impaired glucose tolerance to T2D, or reverses newly diagnosed T2D beyond lifestyle intervention alone. At present there are insufficient safety data to support the use of testosterone for prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Mahesh Umapathysivam
- Endocrine and Metabolic Health Unit, Royal Adelaide Hospital, South Australia; School of Medicine, University of Adelaide, South Australia
| | - Mathis Grossmann
- Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia; Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Gary A Wittert
- Endocrine and Metabolic Health Unit, Royal Adelaide Hospital, South Australia; School of Medicine, University of Adelaide, South Australia; Freemasons Centre for Male Health and Wellbeing, South Australian Health and Medical Research Institute.
| |
Collapse
|
32
|
Socs3 ablation in kisspeptin cells partially prevents lipopolysaccharide-induced body weight loss. Cytokine 2022; 158:155999. [PMID: 35985175 DOI: 10.1016/j.cyto.2022.155999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022]
Abstract
Many cytokines have been proposed to regulate reproduction due to their actions on hypothalamic kisspeptin cells, the main modulators of gonadotropin-releasing hormone (GnRH) neurons. Hormones such as leptin, prolactin and growth hormone are good examples of cytokines that lead to Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway activation, consequently exerting effects in kisspeptin neurons. Different studies have investigated how specific components of the JAK/STAT signaling pathway affect the functions of kisspeptin cells, but the role of the suppressor of cytokine signaling 3 (SOCS3) in mediating cytokine actions in kisspeptin cells remains unknown. Cre-Loxp technology was used in the present study to ablate Socs3 expression in kisspeptin cells (Kiss1/Socs3-KO). Then, male and female control and Kiss1/Socs3-KO mice were evaluated for sexual maturation, energy homeostasis features, and fertility. It was found that hypothalamic Kiss1 mRNA expression is significantly downregulated in Kiss1/Socs3-KO mice. Despite reduced hypothalamic Kiss1 mRNA content, these mice did not present any sexual maturation or fertility impairments. Additionally, body weight gain, leptin sensitivity and glucose homeostasis were similar to control mice. Interestingly, Kiss1/Socs3-KO mice were partially protected against lipopolysaccharide (LPS)-induced body weight loss. Our results suggest that Socs3 ablation in kisspeptin cells partially prevents the sickness behavior induced by LPS, suggesting that kisspeptin cells can modulate energy metabolism in mice in certain situations.
Collapse
|
33
|
Jamieson BB, Piet R. Kisspeptin neuron electrophysiology: Intrinsic properties, hormonal modulation, and regulation of homeostatic circuits. Front Neuroendocrinol 2022; 66:101006. [PMID: 35640722 DOI: 10.1016/j.yfrne.2022.101006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 11/04/2022]
Abstract
The obligatory role of kisspeptin (KISS1) and its receptor (KISS1R) in regulating the hypothalamic-pituitary-gonadal axis, puberty and fertility was uncovered in 2003. In the few years that followed, an impressive body of work undertaken in many species established that neurons producing kisspeptin orchestrate gonadotropin-releasing hormone (GnRH) neuron activity and subsequent GnRH and gonadotropin hormone secretory patterns, through kisspeptin-KISS1R signaling, and mediate many aspects of gonadal steroid hormone feedback regulation of GnRH neurons. Here, we review knowledge accrued over the past decade, mainly in genetically modified mouse models, of the electrophysiological properties of kisspeptin neurons and their regulation by hormonal feedback. We also discuss recent progress in our understanding of the role of these cells within neuronal circuits that control GnRH neuron activity and GnRH secretion, energy balance and, potentially, other homeostatic and reproductive functions.
Collapse
Affiliation(s)
| | - Richard Piet
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
34
|
Stincic TL, Kelly MJ. Estrogenic regulation of reproduction and energy homeostasis by a triumvirate of hypothalamic arcuate neurons. J Neuroendocrinol 2022; 34:e13145. [PMID: 35581942 DOI: 10.1111/jne.13145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022]
Abstract
Pregnancy is energetically demanding and therefore, by necessity, reproduction and energy balance are inextricably linked. With insufficient or excessive energy stores a female is liable to suffer complications during pregnancy or produce unhealthy offspring. Gonadotropin-releasing hormone neurons are responsible for initiating both the pulsatile and subsequent surge release of luteinizing hormone to control ovulation. Meticulous work has identified two hypothalamic populations of kisspeptin (Kiss1) neurons that are critical for this pattern of release. The involvement of the hypothalamus is unsurprising because its quintessential function is to couple the endocrine and nervous systems, coordinating energy balance and reproduction. Estrogens, more specifically 17β-estradiol (E2 ), orchestrate the activity of a triumvirate of hypothalamic neurons within the arcuate nucleus (ARH) that govern the physiological underpinnings of these behavioral dynamics. Arising from a common progenitor pool, these cells differentiate into ARH kisspeptin, pro-opiomelanocortin (POMC), and agouti related peptide/neuropeptide Y (AgRP) neurons. Although the excitability of all these subpopulations is subject to genomic and rapid estrogenic regulation, Kiss1 neurons are the most sensitive, reflecting their integral function in female fertility. Based on the premise that E2 coordinates autonomic functions around reproduction, we review recent findings on how Kiss1 neurons interact with gonadotropin-releasing hormone, AgRP and POMC neurons, as well as how the rapid membrane-initiated and intracellular signaling cascades activated by E2 in these neurons are critical for control of homeostatic functions supporting reproduction. In particular, we highlight how Kiss1 and POMC neurons conspire to inhibit AgRP neurons and diminish food motivation in service of reproductive success.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| |
Collapse
|
35
|
Goodman RL, Herbison AE, Lehman MN, Navarro VM. Neuroendocrine control of gonadotropin-releasing hormone: Pulsatile and surge modes of secretion. J Neuroendocrinol 2022; 34:e13094. [PMID: 35107859 PMCID: PMC9948945 DOI: 10.1111/jne.13094] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/28/2022]
Abstract
The concept that different systems control episodic and surge secretion of gonadotropin-releasing hormone (GnRH) was well established by the time that GnRH was identified and formed the framework for studies of the physiological roles of GnRH, and later kisspeptin. Here, we focus on recent studies identifying the neural mechanisms underlying these two modes of secretion, with an emphasis on their core components. There is now compelling data that kisspeptin neurons in the arcuate nucleus that also contain neurokinin B (NKB) and dynorphin (i.e., KNDy cells) and their projections to GnRH dendrons constitute the GnRH pulse generator in mice and rats. There is also strong evidence for a similar role for KNDy neurons in sheep and goats, and weaker data in monkeys and humans. However, whether KNDy neurons act on GnRH dendrons and/or GnRH soma and dendrites that are found in the mediobasal hypothalamus (MBH) of these species remains unclear. The core components of the GnRH/luteinising hormone surge consist of an endocrine signal that initiates the process and a neural trigger that drives GnRH secretion during the surge. In all spontaneous ovulators, the core endocrine signal is a rise in estradiol secretion from the maturing follicle(s), with the site of estrogen positive feedback being the rostral periventricular kisspeptin neurons in rodents and neurons in the MBH of sheep and primates. There is considerable species variations in the neural trigger, with three major classes. First, in reflex ovulators, this trigger is initiated by coitus and carried to the hypothalamus by neural or vascular pathways. Second, in rodents, there is a time of day signal that originates in the suprachiasmatic nucleus and activates rostral periventricular kisspeptin neurons and GnRH soma and dendrites. Finally, in sheep nitric oxide-producing neurons in the ventromedial nucleus, KNDy neurons and rostral kisspeptin neurons all appear to participate in driving GnRH release during the surge.
Collapse
Affiliation(s)
- Robert L. Goodman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Allan E. Herbison
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Michael N. Lehman
- Brain Health Research Institute, Kent State University, Kent, OH, USA
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Victor M. Navarro
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School and Department of Medicine, Boston, MA, USA
| |
Collapse
|
36
|
Brain-Wide Synaptic Inputs to Aromatase-Expressing Neurons in the Medial Amygdala Suggest Complex Circuitry for Modulating Social Behavior. eNeuro 2022; 9:ENEURO.0329-21.2021. [PMID: 35074828 PMCID: PMC8925724 DOI: 10.1523/eneuro.0329-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/18/2021] [Accepted: 12/26/2021] [Indexed: 12/16/2022] Open
Abstract
Here, we reveal an unbiased view of the brain regions that provide specific inputs to aromatase-expressing cells in the medial amygdala, neurons that play an outsized role in the production of sex-specific social behaviors, using rabies tracing and light sheet microscopy. While the downstream projections from these cells are known, the specific inputs to the aromatase-expressing cells in the medial amygdala remained unknown. We observed established connections to the medial amygdala (e.g., bed nucleus of the stria terminalis and accessory olfactory bulb) indicating that aromatase neurons are a major target cell type for efferent input including from regions associated with parenting and aggression. We also identified novel and unexpected inputs from areas involved in metabolism, fear and anxiety, and memory and cognition. These results confirm the central role of the medial amygdala in sex-specific social recognition and social behavior, and point to an expanded role for its aromatase-expressing neurons in the integration of multiple sensory and homeostatic factors, which are likely used to modulate many other social behaviors.
Collapse
|
37
|
Chen X, Xiao Z, Cai Y, Huang L, Chen C. Hypothalamic mechanisms of obesity-associated disturbance of hypothalamic-pituitary-ovarian axis. Trends Endocrinol Metab 2022; 33:206-217. [PMID: 35063326 DOI: 10.1016/j.tem.2021.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022]
Abstract
Ovulatory disorders are the most common clinical feature exhibited among obese women. Initiation of ovulation physiologically requires a surge of gonadotropin-releasing hormone (GnRH) released from GnRH neurons located in the hypothalamus. These GnRH neurons receive metabolic signals from circulation and vicinal neurons to regulate GnRH release. Leptin acts indirectly on GnRH via adjacent leptin receptor (LEPR)-expressing neurons such as proopiomelanocortin (POMC), neuropeptide Y (NPY)/agouti-related peptide (AgRP), and neuronal nitric oxide (NO) synthase (nNOS) neurons to affect GnRH neuronal activities. Additionally, hypothalamic inflammation also affects ovulation independent of obesity. Therefore, this review focuses on hypothalamic mechanisms that underlie the disturbance of hypothalamic-pituitary-ovarian (HPO) axis during obesity with an attempt to promote future studies and/or novel therapeutic strategies for ovulatory disorders in obesity.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Zhuoni Xiao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Lili Huang
- School of Biomedical Science, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Chen Chen
- School of Biomedical Science, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
38
|
Moinho TM, Tavares MR, Campos AM, Frazão R, Metzger M, Donato J. Simple method to induce denaturation of fluorescent proteins in free-floating brain slices. J Neurosci Methods 2022; 371:109500. [DOI: 10.1016/j.jneumeth.2022.109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
|
39
|
Chemerinski A, Liu C, Morelli SS, Babwah AV, Douglas NC. Mouse Cre drivers: tools for studying disorders of the human female neuroendocrine-reproductive axis†. Biol Reprod 2022; 106:835-853. [PMID: 35084017 PMCID: PMC9113446 DOI: 10.1093/biolre/ioac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 01/29/2023] Open
Abstract
Benign disorders of the human female reproductive system, such primary ovarian insufficiency and polycystic ovary syndrome are associated with infertility and recurrent miscarriage, as well as increased risk of adverse health outcomes, including cardiovascular disease and type 2 diabetes. For many of these conditions, the contributing molecular and cellular processes are poorly understood. The overarching similarities between mice and humans have rendered mouse models irreplaceable in understanding normal physiology and elucidating pathological processes that underlie disorders of the female reproductive system. The utilization of Cre-LoxP recombination technology, which allows for spatial and temporal control of gene expression, has identified the role of numerous genes in development of the female reproductive system and in processes, such as ovulation and endometrial decidualization, that are required for the establishment and maintenance of pregnancy in mammals. In this comprehensive review, we provide a detailed overview of Cre drivers with activity in the neuroendocrine-reproductive axis that have been used to study disruptions in key intracellular signaling pathways. We first summarize normal development of the hypothalamus, pituitary, ovary, and uterus, highlighting similarities and differences between mice and humans. We then describe human conditions resulting from abnormal development and/or function of the organ. Finally, we describe loss-of-function models for each Cre driver that elegantly recapitulate some key features of the human condition and are associated with impaired fertility. The examples we provide illustrate use of each Cre driver as a tool for elucidating genetic and molecular underpinnings of reproductive dysfunction.
Collapse
Affiliation(s)
- Anat Chemerinski
- Correspondence: Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB E561, Newark, NJ 07103, USA. Tel: 301-910-6800; Fax: 973-972-4574. E-mail:
| | | | - Sara S Morelli
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | | | | |
Collapse
|
40
|
Iwasa T, Yamamoto Y, Noguchi H, Takeda A, Minato S, Kamada S, Imaizumi J, Kagawa T, Yoshida A, Kawakita T, Yoshida K. Neuroendocrine mechanisms of reproductive dysfunctions in undernourished condition. J Obstet Gynaecol Res 2022; 48:568-575. [PMID: 34979587 DOI: 10.1111/jog.15144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/28/2022]
Abstract
It is well known that undernourished conditions disturb female reproductive functions in many species, including humans. These alterations are mainly caused by a reduction in gonadotrophin-releasing hormone (GnRH) secretion from the hypothalamus. Evidence from the literature suggests that some hypothalamic factors play pivotal roles in the coordination of reproductive functions and energy homeostasis in response to environmental cues and internal nutritional status. Generally, anorexigenic/satiety-related factors, such as leptin, alpha-melanocyte-stimulating hormone, and proopiomelanocortin, promote GnRH secretion, whereas orexigenic factors, such as neuropeptide Y, agouti-related protein, orexin, and ghrelin, attenuate GnRH secretion. Conversely, gonadotrophin-inhibitory hormone, which exerts anti-GnRH and gonadotrophic effects, promotes feeding behavior in many species. In addition, the activity of kisspeptin, which is a potent stimulator of GnRH, is reduced by undernourished conditions. Under normal nutritional conditions, these factors are coordinated to maintain both feeding behavior and reproductive functions. However, in undernourished conditions their activity levels are markedly altered to promote feeding behavior and temporarily suppress reproductive functions, in order to prioritize the survival of the individual over that of the species.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroki Noguchi
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Asuka Takeda
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Saki Minato
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shuhei Kamada
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Junki Imaizumi
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tomohiro Kagawa
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Atsuko Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takako Kawakita
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kanako Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
41
|
Franssen D, Svingen T, Lopez Rodriguez D, Van Duursen M, Boberg J, Parent AS. A Putative Adverse Outcome Pathway Network for Disrupted Female Pubertal Onset to Improve Testing and Regulation of Endocrine Disrupting Chemicals. Neuroendocrinology 2022; 112:101-114. [PMID: 33640887 DOI: 10.1159/000515478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/25/2021] [Indexed: 11/19/2022]
Abstract
The average age for pubertal onset in girls has declined over recent decades. Epidemiological studies in humans and experimental studies in animals suggest a causal role for endocrine disrupting chemicals (EDCs) that are present in our environment. Of concern, current testing and screening regimens are inadequate in identifying EDCs that may affect pubertal maturation, not least because they do not consider early-life exposure. Also, the causal relationship between EDC exposure and pubertal timing is still a matter of debate. To address this issue, we have used current knowledge to elaborate a network of putative adverse outcome pathways (pAOPs) to identify how chemicals can affect pubertal onset. By using the AOP framework, we highlight current gaps in mechanistic understanding that need to be addressed and simultaneously point towards events causative of pubertal disturbance that could be exploited for alternative test methods. We propose 6 pAOPs that could explain the disruption of pubertal timing by interfering with the central hypothalamic trigger of puberty, GnRH neurons, and by so doing highlight specific modes of action that could be targeted for alternative test method development.
Collapse
Affiliation(s)
- Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Majorie Van Duursen
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
- Department of Pediatrics, CHU de Liège, Liège, Belgium
| |
Collapse
|
42
|
Villasís-Keever MA, Zurita-Cruz JN, Serret-Montoya J, Zepeda-Martinez CDC, Alegria-Torres G, Barradas-Vazquez AS, Hernández-Hernández BC, Alonso-Flores SR, Manuel-Apolinar L, Damasio-Santana L. Leptin receptor and prolactin in pubertal disorders and chronic kidney disease. Pediatr Int 2022; 64:e15183. [PMID: 36348518 DOI: 10.1111/ped.15183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Knowledge of chronic kidney disease (CKD) with pubertal disorders (PD) in adolescent boys is limited as few studies have explored this disorder. This study aimed to identify the usefulness of assessing hormonal parameters in male adolescents with CKD and their correlation with PD in a 12-month follow-up period. METHODS A prospective cohort study was conducted among male adolescents with CKD (stages IV and V). Data regarding the age at puberty onset were collected from the patients' clinical records and through interview. The patients were followed up for 12 months during their pubertal development. At the beginning, routine hormonal profile tests were performed to examine the patients' thyroid profile, prolactin levels, luteinizing hormone, follicle-stimulating hormone, testosterone, leptin, and receptor leptin. The hormonal profiles of patients with and without PD were compared. Comparisons between the groups were performed using the Student t-test and Fisher's exact tests. Logistic regression analysis was also performed. RESULTS Data of 64 patients (26/64 with PD) were analyzed. The median age was 15 years and the median time for CKD evolution was 11 months. No differences between groups were noted in the general or biochemical characteristics of the patients. The hormonal parameters, prolactin levels were higher and the free leptin and free thyroxine levels were lower in patients with PD. Leptin receptor levels of >0.90 ng/mL (risk ratio [RR], 8.6; P = 0.004) and hyperprolactinemia (RR, 21.3; P = 0.049) were the risk factors for PD. CONCLUSIONS Leptin receptor levels of >0.90 ng/mL and hyperprolactinemia are associated with the development of PD in male adolescents with CKD.
Collapse
Affiliation(s)
- Miguel A Villasís-Keever
- Research Unit in Analysis and Synthesis of the Evidence, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jessie N Zurita-Cruz
- Facultad de Medicina Universidad Nacional Autónoma de Mexico, Hospital Infantil de Mexico Federico Gómez, Mexico City, Mexico.,Unit of Research in Medical Nutrition, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Juana Serret-Montoya
- Adolescent Medicine Service, Hospital Infantil de Mexico Federico Gómez, Ministry of Health (SSA), Mexico City, Mexico
| | - Claudia Del Carmen Zepeda-Martinez
- Department of Pediatric Nephology, Children's Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Gabriela Alegria-Torres
- Department of Pediatric Nephology, Children's Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Aly S Barradas-Vazquez
- Unit of Research in Medical Nutrition, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Beatriz C Hernández-Hernández
- Department of Pediatric Nephology, Children's Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Sara R Alonso-Flores
- Department of Pediatric Nephology, Children's Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Leticia Manuel-Apolinar
- Endocrine Research Unit, Centro Médico Nacional, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Leticia Damasio-Santana
- Endocrine Research Unit, Centro Médico Nacional, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
43
|
Iwasa T, Minato S, Imaizumi J, Yoshida A, Kawakita T, Yoshida K, Yamamoto Y. Effects of low energy availability on female reproductive function. Reprod Med Biol 2021; 21:e12414. [PMID: 34934398 PMCID: PMC8656184 DOI: 10.1002/rmb2.12414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 01/15/2023] Open
Abstract
Background It is known that metabolic and nutritional disturbances induce reproductive dysfunction in females. The main cause of these alterations is reduced gonadotrophin‐releasing hormone (GnRH) secretion from the hypothalamus, and the underlying mechanisms have gradually been elucidated. Methods The present review summarizes current knowledge about the effects of nutrition/metabolism on reproductive functions, especially focusing on the GnRH regulation system. Main findings Various central and peripheral factors are involved in the regulation of GnRH secretion, and alterations in their activity combine to affect GnRH neurons. Satiety‐related factors, i.e., leptin, insulin, and alpha‐melanocyte‐stimulating hormone, directly and indirectly stimulate GnRH secretion, whereas orexigenic factors, i.e., neuropeptide Y, Agouti‐related protein, orexin, and ghrelin, attenuate GnRH secretion. In addition, kisspeptin, which is a potent positive regulator of GnRH, expression is reduced by metabolic and nutritional disturbances. Conclusion These neuroendocrine systems may be defensive mechanisms, which help organisms to survive adverse conditions by temporarily suppressing reproduction.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Saki Minato
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Junki Imaizumi
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Atsuko Yoshida
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Takako Kawakita
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Kanako Yoshida
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| |
Collapse
|
44
|
Ozawa H. Kisspeptin neurons as an integration center of reproductive regulation: Observation of reproductive function based on a new concept of reproductive regulatory nervous system. Reprod Med Biol 2021; 21:e12419. [PMID: 34934400 PMCID: PMC8656200 DOI: 10.1002/rmb2.12419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022] Open
Abstract
Background Regulation of the reproductive system has been explained by the actions and feedback of gonadotropin releasing hormone‐luteinizing hormone/follicle stimulating hormone (GnRH‐LH/FSH) ‐sex steroids; however, the discovery of kisspeptin neurons and a kisspeptin‐GnRH‐LH/FSH axis has prompted this regulation to be reviewed. Methods We investigated changes in kisspeptin neurons and associated changes in the hypothalamic‐pituitary‐gonadal (HPG) axis under various situations and experimental conditions using histochemical methods. Main findings (Results) Kisspeptin neurons play an important role in receiving and integrating information from internal and external environmental factors and communicating it to the conventional HPG axis. Conclusion The recently described Kisspeptin‐GnRH‐LH/FSH‐gonad system regulates reproductive function via mechanisms that until recently were not completely understood.
Collapse
Affiliation(s)
- Hitoshi Ozawa
- Department of Anatomy and Neurobiology Graduate School of Medicine Nippon Medical School Tokyo Japan
| |
Collapse
|
45
|
de Paula DG, Bohlen TM, Zampieri TT, Mansano NS, Vieira HR, Gusmao DO, Wasinski F, Donato J, Frazao R. Distinct effects of growth hormone deficiency and disruption of hypothalamic kisspeptin system on reproduction of male mice. Life Sci 2021; 285:119970. [PMID: 34562435 DOI: 10.1016/j.lfs.2021.119970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022]
Abstract
Growth hormone (GH) deficiency is a common cause of late sexual maturation and fertility issues. To determine whether GH-induced effects on reproduction are associated with alterations in hypothalamic kisspeptin system, we studied the male reproduction in two distinct GH deficiency mouse models. In the first model, mice present GH deficiency secondary to arcuate nucleus of the hypothalamus (ARH) lesions induced by posnatal monosodium glutamate (MSG) injections. MSG-induced ARH lesions led to significant reductions in hypothalamic Ghrh mRNA expression and consequently growth. Hypothalamic Kiss1 mRNA expression and Kiss1-expressing cells in the ARH were disrupted in the MSG-treated mice. In contrast, kisspeptin immunoreactivity remained preserved in the anteroventral periventricular and rostral periventricular nuclei (AVPV/PeN) of MSG-treated mice. Importantly, ARH lesions caused late sexual maturation and infertility in male mice. In our second mouse model, we studied animals profound GH deficiency due to a loss-of-function mutation in the Ghrhr gene (Ghrhrlit/lit mice). Interestingly, although Ghrhrlit/lit mice exhibited late puberty onset, hypothalamic Kiss1 mRNA expression and hypothalamic kisspeptin fiber density were normal in Ghrhrlit/lit mice. Despite presenting dwarfism, the majority of Ghrhrlit/lit male mice were fertile. These findings suggest that spontaneous GH deficiency during development does not compromise the kisspeptin system. Furthermore, ARH Kiss1-expressing neurons are required for fertility, while AVPV/PeN kisspeptin expression is sufficient to allow maturation of the hypothalamic-pituitary-gonadal axis in male mice.
Collapse
Affiliation(s)
- Daniella G de Paula
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Tabata M Bohlen
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Thais Tessari Zampieri
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Naira S Mansano
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Henrique R Vieira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Daniela O Gusmao
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Frederick Wasinski
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Renata Frazao
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
46
|
Quaresma PGF, Wasinski F, Mansano NS, Furigo IC, Teixeira PDS, Gusmao DO, Frazao R, Donato J. Leptin Receptor Expression in GABAergic Cells is Not Sufficient to Normalize Metabolism and Reproduction in Mice. Endocrinology 2021; 162:6353267. [PMID: 34402859 DOI: 10.1210/endocr/bqab168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Previous studies indicate that leptin receptor (LepR) expression in GABAergic neurons is necessary for the biological effects of leptin. However, it is not clear whether LepR expression only in GABAergic neurons is sufficient to prevent the metabolic and neuroendocrine imbalances caused by LepR deficiency. In the present study, we produced mice that express the LepR exclusively in GABAergic cells (LepRVGAT mice) and compared them with wild-type (LepR+/+) and LepR-deficient (LepRNull/Null) mice. Although LepRVGAT mice showed a pronounced reduction in body weight and fat mass, as compared with LepRNull/Null mice, male and female LepRVGAT mice exhibited an obese phenotype relative to LepR+/+ mice. Food intake was normalized in LepRVGAT mice; however, LepRVGAT mice still exhibited lower energy expenditure in both sexes and reduced ambulatory activity in the females, compared with LepR+/+ mice. The acute anorexigenic effect of leptin and hedonic feeding were normalized in LepRVGAT mice despite the hyperleptinemia they present. Although LepRVGAT mice showed improved glucose homeostasis compared with LepRNull/Null mice, both male and female LepRVGAT mice exhibited insulin resistance. In contrast, LepR expression only in GABAergic cells was sufficient to normalize the density of agouti-related peptide (AgRP) and α-MSH immunoreactive fibers in the paraventricular nucleus of the hypothalamus. However, LepRVGAT mice exhibited reproductive dysfunctions, including subfertility in males and alterations in the estrous cycle of females. Taken together, our findings indicate that LepR expression in GABAergic cells, although critical to the physiology of leptin, is insufficient to normalize several metabolic aspects and the reproductive function in mice.
Collapse
Affiliation(s)
- Paula G F Quaresma
- Universidade de São Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, São Paulo, SP, 05508-000, Brazil
| | - Frederick Wasinski
- Universidade de São Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, São Paulo, SP, 05508-000, Brazil
| | - Naira S Mansano
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Isadora C Furigo
- Universidade de São Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, São Paulo, SP, 05508-000, Brazil
| | - Pryscila D S Teixeira
- Universidade de São Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, São Paulo, SP, 05508-000, Brazil
| | - Daniela O Gusmao
- Universidade de São Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, São Paulo, SP, 05508-000, Brazil
| | - Renata Frazao
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Jose Donato
- Universidade de São Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
47
|
Maione L, Bouvattier C, Kaiser UB. Central precocious puberty: Recent advances in understanding the aetiology and in the clinical approach. Clin Endocrinol (Oxf) 2021; 95:542-555. [PMID: 33797780 PMCID: PMC8586890 DOI: 10.1111/cen.14475] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Central precocious puberty (CPP) results from early activation of the hypothalamic-pituitary-gonadal (HPG) axis. The current state of knowledge of the complex neural network acting at the level of the hypothalamus and the GnRH neuron to control puberty onset has expanded, particularly in the context of molecular interactions. Along with these advances, the knowledge of pubertal physiology and pathophysiology has also increased. This review focuses on regulatory abnormalities occurring at the hypothalamic level of the HPG axis to cause CPP. The clinical approach to diagnosis of puberty and pubertal disorders is also reviewed, with a particular focus on aetiologies of CPP. The recent identification of mutations in MKRN3 and DLK1 in familial as well sporadic forms of CPP has changed the state of the art of the approach to patients with CPP. Genetic advances have also had important repercussions beyond consideration of puberty alone. Syndromic disorders and central nervous system lesions associated with CPP are also discussed. If untreated, these conditions may lead to adverse physical, psychosocial and medical outcomes.
Collapse
Affiliation(s)
- Luigi Maione
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l’Hypophyse, Université Paris-Saclay, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Claire Bouvattier
- Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l’Hypophyse, Université Paris-Saclay, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Leon S, Talbi R, McCarthy EA, Ferrari K, Fergani C, Naule L, Choi JH, Carroll RS, Kaiser UB, Aylwin CF, Lomniczi A, Navarro VM. Sex-specific pubertal and metabolic regulation of Kiss1 neurons via Nhlh2. eLife 2021; 10:e69765. [PMID: 34494548 PMCID: PMC8439651 DOI: 10.7554/elife.69765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Hypothalamic Kiss1 neurons control gonadotropin-releasing hormone release through the secretion of kisspeptin. Kiss1 neurons serve as a nodal center that conveys essential regulatory cues for the attainment and maintenance of reproductive function. Despite this critical role, the mechanisms that control kisspeptin synthesis and release remain largely unknown. Using Drop-Seq data from the arcuate nucleus of adult mice and in situ hybridization, we identified Nescient Helix-Loop-Helix 2 (Nhlh2), a transcription factor of the basic helix-loop-helix family, to be enriched in Kiss1 neurons. JASPAR analysis revealed several binding sites for NHLH2 in the Kiss1 and Tac2 (neurokinin B) 5' regulatory regions. In vitro luciferase assays evidenced a robust stimulatory action of NHLH2 on human KISS1 and TAC3 promoters. The recruitment of NHLH2 to the KISS1 and TAC3 promoters was further confirmed through chromatin immunoprecipitation. In vivo conditional ablation of Nhlh2 from Kiss1 neurons using Kiss1Cre:Nhlh2fl/fl mice induced a male-specific delay in puberty onset, in line with a decrease in arcuate Kiss1 expression. Females retained normal reproductive function albeit with irregular estrous cycles. Further analysis of male Kiss1Cre:Nhlh2fl/fl mice revealed higher susceptibility to metabolic challenges in the release of luteinizing hormone and impaired response to leptin. Overall, in Kiss1 neurons, Nhlh2 contributes to the metabolic regulation of kisspeptin and NKB synthesis and release, with implications for the timing of puberty onset and regulation of fertility in male mice.
Collapse
Affiliation(s)
- Silvia Leon
- Harvard Medical SchoolBostonUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s HospitalBostonUnited States
| | - Rajae Talbi
- Harvard Medical SchoolBostonUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s HospitalBostonUnited States
| | - Elizabeth A McCarthy
- Harvard Medical SchoolBostonUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s HospitalBostonUnited States
| | - Kaitlin Ferrari
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s HospitalBostonUnited States
| | - Chrysanthi Fergani
- Harvard Medical SchoolBostonUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s HospitalBostonUnited States
| | - Lydie Naule
- Harvard Medical SchoolBostonUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s HospitalBostonUnited States
| | - Ji Hae Choi
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s HospitalBostonUnited States
| | - Rona S Carroll
- Harvard Medical SchoolBostonUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s HospitalBostonUnited States
| | - Ursula B Kaiser
- Harvard Medical SchoolBostonUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s HospitalBostonUnited States
| | - Carlos F Aylwin
- Division of Neuroscience, Oregon National Primate Research CenterBeavertonUnited States
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research CenterBeavertonUnited States
| | - Víctor M Navarro
- Harvard Medical SchoolBostonUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s HospitalBostonUnited States
- Harvard Program in NeuroscienceBostonUnited States
| |
Collapse
|
49
|
Multiple Leptin Signalling Pathways in the Control of Metabolism and Fertility: A Means to Different Ends? Int J Mol Sci 2021; 22:ijms22179210. [PMID: 34502119 PMCID: PMC8430761 DOI: 10.3390/ijms22179210] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023] Open
Abstract
The adipocyte-derived ‘satiety promoting’ hormone, leptin, has been identified as a key central regulator of body weight and fertility, such that its absence leads to obesity and infertility. Plasma leptin levels reflect body adiposity, and therefore act as an ‘adipostat’, whereby low leptin levels reflect a state of low body adiposity (under-nutrition/starvation) and elevated leptin levels reflect a state of high body adiposity (over-nutrition/obesity). While genetic leptin deficiency is rare, obesity-related leptin resistance is becoming increasingly common. In the absence of adequate leptin sensitivity, leptin is unable to exert its ‘anti-obesity’ effects, thereby exacerbating obesity. Furthermore, extreme leptin resistance and consequent low or absent leptin signalling resembles a state of starvation and can thus lead to infertility. However, leptin resistance occurs on a spectrum, and it is possible to be resistant to leptin’s metabolic effects while retaining leptin’s permissive effects on fertility. This may be because leptin exerts its modulatory effects on energy homeostasis and reproductive function through discrete intracellular signalling pathways, and these pathways are differentially affected by the molecules that promote leptin resistance. This review discusses the potential mechanisms that enable leptin to exert differential control over metabolic and reproductive function in the contexts of healthy leptin signalling and of diet-induced leptin resistance.
Collapse
|
50
|
Bakshi A, Singh R, Rai U. Trajectory of leptin and leptin receptor in vertebrates: Structure, function and their regulation. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110652. [PMID: 34343670 DOI: 10.1016/j.cbpb.2021.110652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
The present review provides a comparative insight into structure, function and control of leptin system in fishes, herptiles, birds and mammals. In general, leptin acts as an anorexigenic hormone since its administration results in decrease of food intake in vertebrates. Nonetheless, functional paradox arises in fishes from contradictory observations on level of leptin during fasting and re-feeding. In addition, leptin is shown to modulate metabolic functions in fishes, reptiles, birds and mammals. Leptin also regulates reproductive and immune functions though more studies are warranted in non-mammalian vertebrates. The expression of leptin and its receptor is influenced by numerous factors including sex steroids, stress and stress-induced catecholamines and glucocorticoids though their effect in non-mammalian vertebrates is hard to be generalized due to limited studies.
Collapse
Affiliation(s)
- Amrita Bakshi
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Rajeev Singh
- Satyawati College, University of Delhi, Delhi 110052, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|