1
|
Hosseini A, Dhall A, Ikonen N, Sikora N, Nguyen S, Shen Y, Amaral MLJ, Jiao A, Wallner F, Sergeev P, Lim Y, Yang Y, Vick B, Kawabata KC, Melnick A, Vyas P, Ren B, Jeremias I, Psaila B, Heckman CA, Blanco MA, Shi Y. Perturbing LSD1 and WNT rewires transcription to synergistically induce AML differentiation. Nature 2025:10.1038/s41586-025-08915-1. [PMID: 40240608 DOI: 10.1038/s41586-025-08915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
Impaired differentiation is a hallmark of myeloid malignancies1,2. Therapies that enable cells to circumvent the differentiation block, such as all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), are by and large curative in acute promyelocytic leukaemia3, but whether 'differentiation therapy' is a generalizable therapeutic approach for acute myeloid leukaemia (AML) and beyond remains incompletely understood. Here we demonstrate that simultaneous inhibition of the histone demethylase LSD1 (LSD1i) and the WNT pathway antagonist GSK3 kinase4 (GSK3i) robustly promotes therapeutic differentiation of established AML cell lines and primary human AML cells, as well as reducing tumour burden and significantly extending survival in a patient-derived xenograft mouse model. Mechanistically, this combination promotes differentiation by activating genes in the type I interferon pathway via inducing expression of transcription factors such as IRF7 (LSD1i) and the co-activator β-catenin (GSK3i), and their selective co-occupancy at targets such as STAT1, which is necessary for combination-induced differentiation. Combination treatment also suppresses the canonical, pro-oncogenic WNT pathway and cell cycle genes. Analysis of datasets from patients with AML suggests a correlation between the combination-induced transcription signature and better prognosis, highlighting clinical potential of this strategy. Collectively, this combination strategy rewires transcriptional programs to suppress stemness and to promote differentiation, which may have important therapeutic implications for AML and WNT-driven cancers beyond AML.
Collapse
Affiliation(s)
- Amir Hosseini
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Abhinav Dhall
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nemo Ikonen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Natalia Sikora
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sylvain Nguyen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yuqi Shen
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM), University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | | | - Alan Jiao
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Felice Wallner
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philipp Sergeev
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Yuhua Lim
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yuanqin Yang
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Binje Vick
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and University Hospital LMU Munich, Munich, Germany
| | - Kimihito Cojin Kawabata
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Ari Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Paresh Vyas
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM), University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Bing Ren
- Cell and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and University Hospital LMU Munich, Munich, Germany
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Bethan Psaila
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM), University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.
| | - M Andrés Blanco
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Righolt CH, Sever E, Mahmud SM. Glycogen synthase kinase-3ß inhibitor use and prostate cancer incidence in Manitoba, Canada: A population-based nested case-control study. Cancer Epidemiol 2025; 95:102740. [PMID: 39813871 DOI: 10.1016/j.canep.2024.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Little is known on the effect of glycogen synthase kinase-3ß inhibitors (GSK3Is), as a class, on prostate cancer (PC). We aimed to study this in the Canadian province of Manitoba, because mixed results have been reported on the effect of valproate. METHODS We conducted a nested case-control study among cancer-free Manitobans with ≥ 5 years of medical history in which we matched all men 40 years or older diagnosed with PC between 2000 and 2018 (N = 11,189) on period, age, length of available drug information to cancer-free controls (N = 55,728). We used conditional logistic regression to analyze GSK3I use (lithium, valproate, olanzapine, famotidine). We repeated this analysis for bipolar disorder and for epilepsy, the main indications for GSK3I and performed period, dose, and duration analysis. RESULTS Roughly the same proportion of cases and controls were ever-users of GSK3Is (4.0 % vs. 4.5 %). GSK3I use among the general population was associated with a reduced risk of PC (OR=0.81; 95 % CI 0.72-0.91). This effect was seen for both famotidine, 0.87 (0.76-1.00), and olanzapine, 0.72 (0.54-0.96). Valproate appeared to have a protective effect on PC for epilepsy patients (0.35, 0.12-0.99). None of the GSK3Is seem to affect PC risk in bipolar disorder patients. CONCLUSION Possible protection against PC from olanzapine or famotidine is not supported by a period, dose, or duration response and this effect could be due to chance and/or residual confounding. Valproate was possibly associated with a lower risk of PC in epilepsy patients, but a larger analysis would be needed to confirm that this association was not due to chance given the uncertainty in the period, dose, and duration analyses.
Collapse
Affiliation(s)
- Christiaan H Righolt
- Vaccine and Drug Evaluation Centre, Department of Community Health Sciences, University of Manitoba, S108-750 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada; College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.
| | - Emrah Sever
- Vaccine and Drug Evaluation Centre, Department of Community Health Sciences, University of Manitoba, S108-750 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada
| | - Salaheddin M Mahmud
- Vaccine and Drug Evaluation Centre, Department of Community Health Sciences, University of Manitoba, S108-750 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada; College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
3
|
Ahmad F, Gupta A, Marzook H, Woodgett JR, Saleh MA, Qaisar R. Natural compound screening predicts novel GSK-3 isoform-specific inhibitors. Biochimie 2024; 225:68-80. [PMID: 38723940 DOI: 10.1016/j.biochi.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024]
Abstract
Glycogen synthase kinase-3 (GSK-3) plays important roles in the pathogenesis of cardiovascular, metabolic, neurological disorders and cancer. Isoform-specific loss of either GSK-3α or GSK-3β often provides cytoprotective effects under such clinical conditions. However, available synthetic small molecule inhibitors are relatively non-specific, and their chronic use may lead to adverse effects. Therefore, screening for natural compound inhibitors to identify the isoform-specific inhibitors may provide improved clinical utility. Here, we screened 70 natural compounds to identify novel natural GSK-3 inhibitors employing comprehensive in silico and biochemical approaches. Molecular docking and pharmacokinetics analysis identified two natural compounds Psoralidin and Rosmarinic acid as potential GSK-3 inhibitors. Specifically, Psoralidin and Rosmarinic acid exhibited the highest binding affinities for GSK-3α and GSK-3β, respectively. Consistent with in silico findings, the kinase assay-driven IC50 revealed superior inhibitory effects of Psoralidin against GSK-3α (IC50 = 2.26 μM) vs. GSK-3β (IC50 = 4.23 μM) while Rosmarinic acid was found to be more potent against GSK-3β (IC50 = 2.24 μM) than GSK-3α (IC50 = 5.14 μM). Taken together, these studies show that the identified natural compounds may serve as GSK-3 inhibitors with Psoralidin serving as a better inhibitor for GSK-3α and Rosmarinic for GSK-3β isoform, respectively. Further characterization employing in vitro and preclinical models will be required to test the utility of these compounds as GSK-3 inhibitors for cardiometabolic and neurological disorders and cancers.
Collapse
Affiliation(s)
- Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; Space Medicine Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Anamika Gupta
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hezlin Marzook
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Mohamed A Saleh
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; Space Medicine Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
4
|
Li J, Zhang Y, Tang R, Liu H, Li X, Lei W, Chen J, Jin Z, Tang J, Wang Z, Yang Y, Wu X. Glycogen synthase kinase-3β: A multifaceted player in ischemia-reperfusion injury and its therapeutic prospects. J Cell Physiol 2024; 239:e31335. [PMID: 38962880 DOI: 10.1002/jcp.31335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
Ischemia-reperfusion injury (IRI) results in irreversible metabolic dysfunction and structural damage to tissues or organs, posing a formidable challenge in the field of organ implantation, cardiothoracic surgery, and general surgery. Glycogen synthase kinase-3β (GSK-3β) a multifunctional serine/threonine kinase, is involved in a variety of biological processes, including cell proliferation, apoptosis, and immune response. Phosphorylation of its tyrosine 216 and serine 9 sites positively and negatively regulates the activation and inactivation of the enzyme. Significantly, inhibition or inactivation of GSK-3β provides protection against IRI, making it a viable target for drug development. Though numerous GSK-3β inhibitors have been identified to date, the development of therapeutic treatments remains a considerable distance away. In light of this, this review summarizes the complicated network of GSK-3β roles in IRI. First, we provide an overview of GSK-3β's basic background. Subsequently, we briefly review the pathological mechanisms of GSK-3β in accelerating IRI, and highlight the latest progress of GSK-3β in multiorgan IRI, encompassing heart, brain, kidney, liver, and intestine. Finally, we discuss the current development of GSK-3β inhibitors in various organ IRI, offering a thorough and insightful reference for GSK-3β as a potential target for future IRI therapy.
Collapse
Affiliation(s)
- Jiayan Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yan Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ran Tang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Hui Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiayun Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Junmin Chen
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiaopeng Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| |
Collapse
|
5
|
Lee G, Franklin J, Gupta K, Liu R, Zhou L, Ryder C, Sobieraj L, Molitor L, Abiona O, Meyerson H, Das I, Jackson Z, Wald DN. Loss of GSK3β in hematopoietic stem cells results in normal hematopoiesis in mice. Blood Adv 2023; 7:7185-7189. [PMID: 37922427 PMCID: PMC10698258 DOI: 10.1182/bloodadvances.2022008094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 11/05/2023] Open
Affiliation(s)
- Grace Lee
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Jude Franklin
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Kalpana Gupta
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Ruifu Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Christopher Ryder
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Lukasz Sobieraj
- Midwestern University Chicago College of Osteopathic Medicine, Downers Grove, IL
| | - Luke Molitor
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Olubukola Abiona
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Howard Meyerson
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Indrani Das
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Zachary Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - David N. Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH
- Department of Pathology, Louis Stokes Cleveland VA Medical Center, Cleveland, OH
| |
Collapse
|
6
|
Li C, Furth EE, Rustgi AK, Klein PS. When You Come to a Fork in the Road, Take It: Wnt Signaling Activates Multiple Pathways through the APC/Axin/GSK-3 Complex. Cells 2023; 12:2256. [PMID: 37759479 PMCID: PMC10528086 DOI: 10.3390/cells12182256] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The Wnt signaling pathway is a highly conserved regulator of metazoan development and stem cell maintenance. Activation of Wnt signaling is an early step in diverse malignancies. Work over the past four decades has defined a "canonical" Wnt pathway that is initiated by Wnt proteins, secreted glycoproteins that bind to a surface receptor complex and activate intracellular signal transduction by inhibiting a catalytic complex composed of the classical tumor suppressor Adenomatous Polyposis Coli (APC), Axin, and Glycogen Synthase Kinase-3 (GSK-3). The best characterized effector of this complex is β-catenin, which is stabilized by inhibition of GSK-3, allowing β-catenin entrance to the nucleus and activation of Wnt target gene transcription, leading to multiple cancers when inappropriately activated. However, canonical Wnt signaling through the APC/Axin/GSK-3 complex impinges on other effectors, independently of β-catenin, including the mechanistic Target of Rapamycin (mTOR), regulators of protein stability, mitotic spindle orientation, and Hippo signaling. This review focuses on these alternative effectors of the canonical Wnt pathway and how they may contribute to cancers.
Collapse
Affiliation(s)
- Chenchen Li
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emma E. Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Peter S. Klein
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Amaral B, Capacci A, Anderson T, Tezer C, Bajrami B, Lulla M, Lucas B, Chodaparambil JV, Marcotte D, Kumar PR, Murugan P, Spilker K, Cullivan M, Wang T, Peterson AC, Enyedy I, Ma B, Chen T, Yousaf Z, Calhoun M, Golonzhka O, Dillon GM, Koirala S. Elucidation of the GSK3α Structure Informs the Design of Novel, Paralog-Selective Inhibitors. ACS Chem Neurosci 2023; 14:1080-1094. [PMID: 36812145 PMCID: PMC10020971 DOI: 10.1021/acschemneuro.2c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Glycogen synthase kinase 3 (GSK3) remains a therapeutic target of interest for diverse clinical indications. However, one hurdle in the development of small molecule GSK3 inhibitors has been safety concerns related to pan-inhibition of both GSK3 paralogs, leading to activation of the Wnt/β-catenin pathway and potential for aberrant cell proliferation. Development of GSK3α or GSK3β paralog-selective inhibitors that could offer an improved safety profile has been reported but further advancement has been hampered by the lack of structural information for GSK3α. Here we report for the first time the crystal structure for GSK3α, both in apo form and bound to a paralog-selective inhibitor. Taking advantage of this new structural information, we describe the design and in vitro testing of novel compounds with up to ∼37-fold selectivity for GSK3α over GSK3β with favorable drug-like properties. Furthermore, using chemoproteomics, we confirm that acute inhibition of GSK3α can lower tau phosphorylation at disease-relevant sites in vivo, with a high degree of selectivity over GSK3β and other kinases. Altogether, our studies advance prior efforts to develop GSK3 inhibitors by describing GSK3α structure and novel GSK3α inhibitors with improved selectivity, potency, and activity in disease-relevant systems.
Collapse
Affiliation(s)
- Brenda Amaral
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Andrew Capacci
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Trip Anderson
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ceren Tezer
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Bekim Bajrami
- Departments of Chemical Biology and Proteomics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Mukesh Lulla
- Departments of Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Brian Lucas
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jayanth V Chodaparambil
- Departments of Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Douglas Marcotte
- Departments of Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - P Rajesh Kumar
- Departments of Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Paramasivam Murugan
- Departments of Bioassays, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kerri Spilker
- Departments of Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Mike Cullivan
- Departments of Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ti Wang
- Departments of Bioassays, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Anton C Peterson
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Istvan Enyedy
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Bin Ma
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - TeYu Chen
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Zain Yousaf
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael Calhoun
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Olga Golonzhka
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Gregory M Dillon
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Samir Koirala
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
8
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
9
|
Hinze L, Schreek S, Zeug A, Ibrahim NK, Fehlhaber B, Loxha L, Cinar B, Ponimaskin E, Degar J, McGuckin C, Chiosis G, Eckert C, Cario G, Bornhauser B, Bourquin JP, Stanulla M, Gutierrez A. Supramolecular assembly of GSK3α as a cellular response to amino acid starvation. Mol Cell 2022; 82:2858-2870.e8. [PMID: 35732190 PMCID: PMC9357031 DOI: 10.1016/j.molcel.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/13/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022]
Abstract
The tolerance of amino acid starvation is fundamental to robust cellular fitness. Asparagine depletion is lethal to some cancer cells, a vulnerability that can be exploited clinically. We report that resistance to asparagine starvation is uniquely dependent on an N-terminal low-complexity domain of GSK3α, which its paralog GSK3β lacks. In response to depletion of specific amino acids, including asparagine, leucine, and valine, this domain mediates supramolecular assembly of GSK3α with ubiquitin-proteasome system components in spatially sequestered cytoplasmic bodies. This effect is independent of mTORC1 or GCN2. In normal cells, GSK3α promotes survival during essential amino acid starvation. In human leukemia, GSK3α body formation predicts asparaginase resistance, and sensitivity to asparaginase combined with a GSK3α inhibitor. We propose that GSK3α body formation provides a cellular mechanism to maximize the catalytic efficiency of proteasomal protein degradation in response to amino acid starvation, an adaptive response co-opted by cancer cells for asparaginase resistance.
Collapse
Affiliation(s)
- Laura Hinze
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover 30625, Germany.
| | - Sabine Schreek
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover 30625, Germany
| | - Andre Zeug
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover 30625, Germany
| | - Nurul Khalida Ibrahim
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover 30625, Germany
| | - Beate Fehlhaber
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover 30625, Germany
| | - Lorent Loxha
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover 30625, Germany
| | - Buesra Cinar
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover 30625, Germany
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover 30625, Germany
| | - James Degar
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Connor McGuckin
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Cornelia Eckert
- Department of Pediatric Hematology and Oncology, Charité Universitätsmedizin, Berlin, Berlin 10117, Germany
| | - Gunnar Cario
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel 21405, Germany
| | - Beat Bornhauser
- Department of Pediatric Hematology/Oncology, University Children's Hospital, Zurich 8032, Switzerland
| | - Jean-Pierre Bourquin
- Department of Pediatric Hematology/Oncology, University Children's Hospital, Zurich 8032, Switzerland
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover 30625, Germany
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
10
|
Montanaro A, Kitara S, Cerretani E, Marchesini M, Rompietti C, Pagliaro L, Gherli A, Su A, Minchillo ML, Caputi M, Fioretzaki R, Lorusso B, Ross L, Alexe G, Masselli E, Marozzi M, Rizzi FMA, La Starza R, Mecucci C, Xiong Y, Jin J, Falco A, Knoechel B, Aversa F, Candini O, Quaini F, Sportoletti P, Stegmaier K, Roti G. Identification of an Epi-metabolic dependency on EHMT2/G9a in T-cell acute lymphoblastic leukemia. Cell Death Dis 2022; 13:551. [PMID: 35710782 PMCID: PMC9203761 DOI: 10.1038/s41419-022-05002-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 01/21/2023]
Abstract
Genomic studies have identified recurrent somatic alterations in genes involved in DNA methylation and post-translational histone modifications in acute lymphoblastic leukemia (ALL), suggesting new opportunities for therapeutic interventions. In this study, we identified G9a/EHMT2 as a potential target in T-ALL through the intersection of epigenome-centered shRNA and chemical screens. We subsequently validated G9a with low-throughput CRISPR-Cas9-based studies targeting the catalytic G9a SET-domain and the testing of G9a chemical inhibitors in vitro, 3D, and in vivo T-ALL models. Mechanistically we determined that G9a repression promotes lysosomal biogenesis and autophagic degradation associated with the suppression of sestrin2 (SESN2) and inhibition of glycogen synthase kinase-3 (GSK-3), suggesting that in T-ALL glycolytic dependent pathways are at least in part under epigenetic control. Thus, targeting G9a represents a strategy to exhaust the metabolic requirement of T-ALL cells.
Collapse
Grants
- K08 CA191091 NCI NIH HHS
- Rotary International fellowship (global grant GG2096899), the Italian Society of Experimental Hematology (SIES) fellowship
- EHA-ASH Translational Research Training in Hematology (TRTH) and a Beat-Leukemia scholar
- Feliciani Ferretti fellowship
- Associazione Italiana contro Leucemie-Linfomi e Mieloma (AIL, Parma chapter)
- the Italian Ministry of Education, University and Research (MIUR), PRIN- 2017PPS2X4
- R01HD088626 and R01GM122749 from the U.S. National Institutes of Health
- AIRC IG 2018 – ID. 21352 and from the MIUR- SIR n. RBSI14GPBL
- SCOR Award from the Leukemia & Lymphoma Society, the William Lawrence and Blanche Hughes Foundation, the Children’s Leukemia Research Association
- AIRC Start-up Investigator Grant (n. 17107 G.R.), the Italian Minister of Health Ricerca Finalizzata (n° 95/GR-2011-02348917 GR), Fondazione Umberto Veronesi Fellowship, Fondazione Cariparma (3576/2017, 0180/2018 G.R.), the Claudia Adams Barr Program in Cancer Research, the Grande Ale Onlus, the Leukemia Research Foundation
Collapse
Affiliation(s)
- Anna Montanaro
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - Samuel Kitara
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Elisa Cerretani
- Department of Medical Science, University of Ferrara, Ferrara, 44121, Italy
| | - Matteo Marchesini
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
- IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" IRST (S.r.l.), Meldola, 47014, Italy
| | - Chiara Rompietti
- Department of Medicine, Hematology and Clinical Immunology, University of Perugia, Perugia, 06123, Italy
| | - Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - Andrea Gherli
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - Angela Su
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | | | | | - Rodanthi Fioretzaki
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - Bruno Lorusso
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - Linda Ross
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Elena Masselli
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
- Azienda-Ospedaliera di Parma, Hematology and BMT Unit, Parma, 43126, Italy
| | - Marina Marozzi
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - Federica Maria Angela Rizzi
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
- National Institute for Biostructures and Biosystems (I.N.B.B.), Rome, Italy
| | - Roberta La Starza
- Department of Medicine, Hematology and Clinical Immunology, University of Perugia, Perugia, 06123, Italy
| | - Cristina Mecucci
- Department of Medicine, Hematology and Clinical Immunology, University of Perugia, Perugia, 06123, Italy
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Angela Falco
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - Birgit Knoechel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02215, USA
| | - Franco Aversa
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | | | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - Paolo Sportoletti
- Department of Medicine, Hematology and Clinical Immunology, University of Perugia, Perugia, 06123, Italy
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02215, USA
- The Broad Institute, Cambridge, MA, 02142, USA
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy.
- Azienda-Ospedaliera di Parma, Hematology and BMT Unit, Parma, 43126, Italy.
| |
Collapse
|
11
|
Morales F, Pérez P, Tapia JC, Lobos-González L, Herranz JM, Guevara F, de Santiago PR, Palacios E, Andaur R, Sagredo EA, Marcelain K, Armisén R. Increase in ADAR1p110 activates the canonical Wnt signaling pathway associated with aggressive phenotype in triple negative breast cancer cells. Gene 2022; 819:146246. [PMID: 35122924 DOI: 10.1016/j.gene.2022.146246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/13/2021] [Accepted: 01/18/2022] [Indexed: 12/21/2022]
Abstract
Triple-negative breast cancer (TNBC) represents a challenge in the search for new therapeutic targets. TNBCs are aggressive and generate resistance to chemotherapy. Tumors of TNBC patients with poor prognosis present a high level of adenosine deaminase acting on RNA1 (ADAR1). We explore the connection of ADAR1 with the canonical Wnt signaling pathway and the effect of modulation of its expression in TNBC. Expression data from cell line sequencing (DepMap) and TCGA samples were downloaded and analyzed. We lentivirally generated an MDA-MB-231 breast cancer cell line that overexpress (OE) ADAR1p110 or an ADAR knockdown. Abundance of different proteins related to Wnt/β-catenin pathway and activity of nuclear β-catenin were analyzed by Western blot and luciferase TOP/FOP reporter assay, respectively. Cell invasion was analyzed by matrigel assay. In mice, we study the behavior of tumors generated from ADAR1p110 (OE) cells and tumor vascularization immunostaining were analyzed. ADAR1 connects to the canonical Wnt pathway in TNBC. ADAR1p110 overexpression decreased GSK-3β, while increasing active β-catenin. It also increased the activity of nuclear β-catenin and increased its target levels. ADAR1 knockdown has the opposite effect. MDA-MB-231 ADAR1 (OE) cells showed increased capacity of invasion. Subsequently, we observed that tumors derived from ADAR1p110 (OE) cells showed increased invasion towards the epithelium, and increased levels of Survivin and CD-31 expressed in vascular endothelial cells. These results indicate that ADAR1 overexpression alters the expression of some key components of the canonical Wnt pathway, favoring invasion and neovascularization, possibly through activation of the β-catenin, which suggests an unknown role of ADAR1p110 in aggressiveness of TNBC tumors.
Collapse
Affiliation(s)
- Fernanda Morales
- Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile; Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, Santiago, Chile
| | - Paola Pérez
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, Santiago, Chile; NIDCR, National Institute of Health, 9000 Rockville Pike, Bldg 10, Room 1A01, Bethesda, MD, USA
| | - Julio C Tapia
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Lorena Lobos-González
- Centro De Medicina Regenerativa, Facultad de Medicina - Clínica Alemana, Universidad Del Desarrollo, Av. Las Condes 12496, Santiago, Chile; Fundación Ciencia & Vida - Andes Biotechnologies S.A., Av. Zanartu 1482, Santiago, Chile
| | - José Manuel Herranz
- Departamento de Anatomía Patológica, Hospital Clínico Universidad de Chile, Santos Dumont 999, Santiago, Chile
| | - Francisca Guevara
- Fundación Ciencia & Vida - Andes Biotechnologies S.A., Av. Zanartu 1482, Santiago, Chile
| | - Pamela Rojas de Santiago
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, Santiago, Chile; Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo ÓHiggins 340, Santiago, Chile
| | - Esteban Palacios
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Rodrigo Andaur
- Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile; Comisión Chilena de Energía Nuclear, Nueva Bilbao 12501, Las Condes, Santiago Chile
| | - Eduardo A Sagredo
- Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile; Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, Santiago, Chile; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91 Stockholm, Sweden
| | - Katherine Marcelain
- Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile; Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Ricardo Armisén
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Av. Las Condes 12461, Edificio 3, oficina 205, CP 7590943, Santiago, Chile.
| |
Collapse
|
12
|
Wang SY, Shih YH, Shieh TM, Tseng YH. Proteasome Inhibitors Interrupt the Activation of Non-Canonical NF-κB Signaling Pathway and Induce Cell Apoptosis in Cytarabine-Resistant HL60 Cells. Int J Mol Sci 2021; 23:ijms23010361. [PMID: 35008789 PMCID: PMC8745175 DOI: 10.3390/ijms23010361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Over half of older patients with acute myeloid leukemia (AML) do not respond to cytotoxic chemotherapy, and most responders relapse because of drug resistance. Cytarabine is the main drug used for the treatment of AML. Intensive treatment with high-dose cytarabine can increase the overall survival rate and reduce the relapse rate, but it also increases the likelihood of drug-related side effects. To optimize cytarabine treatment, understanding the mechanism underlying cytarabine resistance in leukemia is necessary. In this study, the gene expression profiles of parental HL60 cells and cytarabine-resistant HL60 (R-HL60) cells were compared through gene expression arrays. Then, the differential gene expression between parental HL60 and R-HL60 cells was measured using KEGG software. The expression of numerous genes associated with the nuclear factor κB (NF-κB) signaling pathway changed during the development of cytarabine resistance. Proteasome inhibitors inhibited the activity of non-canonical NF-κB signaling pathway and induced the apoptosis of R-HL60 cells. The study results support the application and possible mechanism of proteasome inhibitors in patients with relapsed or refractory leukemia.
Collapse
Affiliation(s)
- Shuo-Yu Wang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan;
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan;
- Department of Dental Hygiene, China Medical University, Taichung 40402, Taiwan
| | - Yu-Hsin Tseng
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Correspondence: ; Tel.: +88-673-121-101 (ext. 6356)
| |
Collapse
|
13
|
Stati G, Passaretta F, Gindraux F, Centurione L, Di Pietro R. The Role of the CREB Protein Family Members and the Related Transcription Factors in Radioresistance Mechanisms. Life (Basel) 2021; 11:1437. [PMID: 34947968 PMCID: PMC8706059 DOI: 10.3390/life11121437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 02/05/2023] Open
Abstract
In the framework of space flight, the risk of radiation carcinogenesis is considered a "red" risk due to the high likelihood of occurrence as well as the high potential impact on the quality of life in terms of disease-free survival after space missions. The cyclic AMP response element-binding protein (CREB) is overexpressed both in haematological malignancies and solid tumours and its expression and function are modulated following irradiation. The CREB protein is a transcription factor and member of the CREB/activating transcription factor (ATF) family. As such, it has an essential role in a wide range of cell processes, including cell survival, proliferation, and differentiation. Among the CREB-related nuclear transcription factors, NF-κB and p53 have a relevant role in cell response to ionising radiation. Their expression and function can decide the fate of the cell by choosing between death or survival. The aim of this review was to define the role of the CREB/ATF family members and the related transcription factors in the response to ionising radiation of human haematological malignancies and solid tumours.
Collapse
Affiliation(s)
- Gianmarco Stati
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Francesca Passaretta
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Florelle Gindraux
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, 25030 Besançon, France;
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU, 25030 Besançon, France
| | - Lucia Centurione
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| |
Collapse
|
14
|
Tripathi D, Sodani M, Gupta PK, Kulkarni S. Host directed therapies: COVID-19 and beyond. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100058. [PMID: 34870156 PMCID: PMC8464038 DOI: 10.1016/j.crphar.2021.100058] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 12/15/2022] Open
Abstract
The global spread of SARS-CoV-2 has necessitated the development of novel, safe and effective therapeutic agents against this virus to stop the pandemic, however the development of novel antivirals may take years, hence, the best alternative available, is to repurpose the existing antiviral drugs with known safety profile in humans. After more than one year into this pandemic, global efforts have yielded the fruits and with the launch of many vaccines in the market, the world is inching towards the end of this pandemic, nonetheless, future pandemics of this magnitude or even greater cannot be denied. The preparedness against viruses of unknown origin should be maintained and the broad-spectrum antivirals with activity against range of viruses should be developed to curb future viral pandemics. The majority of antivirals developed till date are pathogen specific agents, which target critical viral pathways and lack broad spectrum activity required to target wide range of viruses. The surge in drug resistance among pathogens has rendered a compelling need to shift our focus towards host directed factors in the treatment of infectious diseases. This gains special relevance in the case of viral infections, where the pathogen encodes a handful of genes and predominantly depends on host factors for their propagation and persistence. Therefore, future antiviral drug development should focus more on targeting molecules of host pathways that are often hijacked by many viruses. Such cellular proteins of host pathways offer attractive targets for the development of broad-spectrum anticipatory antivirals. In the present article, we have reviewed the host directed therapies (HDTs) effective against viral infections with a special focus on COVID-19. This article also discusses the strategies involved in identifying novel host targets and subsequent development of broad spectrum HDTs.
Collapse
Affiliation(s)
- Devavrat Tripathi
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Megha Sodani
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pramod Kumar Gupta
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Corresponding author.
| | - Savita Kulkarni
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Corresponding author. Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India.
| |
Collapse
|
15
|
Benajiba L, Kiladjian JJ. The challenge of targets and drug discovery using large-scale screening approaches in onco-hematology. Therapie 2021; 77:151-155. [PMID: 34895756 DOI: 10.1016/j.therap.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/10/2021] [Indexed: 11/28/2022]
Abstract
Target identification and drug discovery roads have been widely improved over the past decades in onco-hematology. In this review, we summarize recent improvements in the use of physio-pathologically relevant models and innovative screening approaches to accelerate efficient drug development. Using acute myeloid leukemia as an example, we also discuss the main encountered pitfalls and propose alternative roads to improve the drug discovery journey in onco-hematology.
Collapse
Affiliation(s)
- Lina Benajiba
- Inserm CIC1427, Clinical Investigations Center, hôpital Saint-Louis, université de Paris, AP-HP, 75010 Paris, France; Inserm UMR 944, Saint-Louis Research Institute, 75010 Paris, France
| | - Jean-Jacques Kiladjian
- Inserm CIC1427, Clinical Investigations Center, hôpital Saint-Louis, université de Paris, AP-HP, 75010 Paris, France; Inserm UMR 1131, Saint-Louis Research Institute, 75010 Paris, France.
| |
Collapse
|
16
|
Wang L, Li J, Di LJ. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev 2021; 42:946-982. [PMID: 34729791 PMCID: PMC9298385 DOI: 10.1002/med.21867] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/01/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022]
Abstract
Glycogen synthase kinase‐3 (GSK3) is a highly evolutionarily conserved serine/threonine protein kinase first identified as an enzyme that regulates glycogen synthase (GS) in response to insulin stimulation, which involves GSK3 regulation of glucose metabolism and energy homeostasis. Both isoforms of GSK3, GSK3α, and GSK3β, have been implicated in many biological and pathophysiological processes. The various functions of GSK3 are indicated by its widespread distribution in multiple cell types and tissues. The studies of GSK3 activity using animal models and the observed effects of GSK3‐specific inhibitors provide more insights into the roles of GSK3 in regulating energy metabolism and homeostasis. The cross‐talk between GSK3 and some important energy regulators and sensors and the regulation of GSK3 in mitochondrial activity and component function further highlight the molecular mechanisms in which GSK3 is involved to regulate the metabolic activity, beyond its classical regulatory effect on GS. In this review, we summarize the specific roles of GSK3 in energy metabolism regulation in tissues that are tightly associated with energy metabolism and the functions of GSK3 in the development of metabolic disorders. We also address the impacts of GSK3 on the regulation of mitochondrial function, activity and associated metabolic regulation. The application of GSK3 inhibitors in clinical tests will be highlighted too. Interactions between GSK3 and important energy regulators and GSK3‐mediated responses to different stresses that are related to metabolism are described to provide a brief overview of previously less‐appreciated biological functions of GSK3 in energy metabolism and associated diseases through its regulation of GS and other functions.
Collapse
Affiliation(s)
- Li Wang
- Proteomics, Metabolomics, and Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Jiajia Li
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Li-Jun Di
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
17
|
Takahashi S. Kinase Inhibitors and Interferons as Other Myeloid Differentiation Inducers in Leukemia Therapy. Acta Haematol 2021; 145:113-121. [PMID: 34673646 DOI: 10.1159/000519769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022]
Abstract
Differentiation therapy using all-trans retinoic acid (ATRA) is well established for the treatment of acute promyelocytic leukemia (APL). Several attempts have been made to treat non-APL acute myeloid leukemia (AML) patients by employing differentiation inducers, such as hypomethylating agents and low-dose cytarabine, with encouraging results. In the present review, I focus on other possible differentiation inducers: kinase inhibitors and interferons (IFNs). A number of kinase inhibitors have been reported to induce differentiation, including CDK inhibitors, GSK3 inhibitors, Akt inhibitors, p38 MAPK inhibitors, Src family kinase inhibitors, Syk inhibitors, mTOR inhibitors, and HSP90 inhibitors. Other powerful inducers are IFNs, which were reported to enhance differentiation with ATRA. Although clinical trials for these kinase modulators remain scarce, their mechanisms of action have been, at least partly, clarified. The Raf/MEK/ERK MAPK pathway and the RARα downstream are affected by many of the kinase inhibitors and IFNs and seem to play a pivotal role for the induction of myeloid differentiation. Further clarification of the mechanisms, as well as the establishment of efficient combination therapies with the kinase inhibitors or IFNs, may lead to the development of effective therapeutic strategies for AML.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
18
|
Martelli AM, Evangelisti C, Paganelli F, Chiarini F, McCubrey JA. GSK-3: a multifaceted player in acute leukemias. Leukemia 2021; 35:1829-1842. [PMID: 33811246 DOI: 10.1038/s41375-021-01243-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) consists of two isoforms (α and β) that were originally linked to glucose metabolism regulation. However, GSK-3 is also involved in several signaling pathways controlling many different key functions in healthy cells. GSK-3 is a unique kinase in that its isoforms are constitutively active, while they are inactivated mainly through phosphorylation at Ser residues by a variety of upstream kinases. In the early 1990s, GSK-3 emerged as a key player in cancer cell pathophysiology. Since active GSK-3 promotes destruction of multiple oncogenic proteins (e.g., β-catenin, c-Myc, Mcl-1) it was considered to be a tumor suppressor. Accordingly, GSK-3 is frequently inactivated in human cancer via aberrant regulation of upstream signaling pathways. More recently, however, it has emerged that GSK-3 isoforms display also oncogenic properties, as they up-regulate pathways critical for neoplastic cell proliferation, survival, and drug-resistance. The regulatory roles of GSK-3 isoforms in cell cycle, apoptosis, DNA repair, tumor metabolism, invasion, and metastasis reflect the therapeutic relevance of these kinases and provide the rationale for combining GSK-3 inhibitors with other targeted drugs. Here, we discuss the multiple and often conflicting roles of GSK-3 isoforms in acute leukemias. We also review the current status of GSK-3 inhibitor development for innovative leukemia therapy.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
19
|
ARIH1 signaling promotes anti-tumor immunity by targeting PD-L1 for proteasomal degradation. Nat Commun 2021; 12:2346. [PMID: 33879767 PMCID: PMC8058344 DOI: 10.1038/s41467-021-22467-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/12/2021] [Indexed: 02/02/2023] Open
Abstract
Cancer expression of PD-L1 suppresses anti-tumor immunity. PD-L1 has emerged as a remarkable therapeutic target. However, the regulation of PD-L1 degradation is not understood. Here, we identify several compounds as inducers of PD-L1 degradation using a high-throughput drug screen. We find EGFR inhibitors promote PD-L1 ubiquitination and proteasomal degradation following GSK3α-mediated phosphorylation of Ser279/Ser283. We identify ARIH1 as the E3 ubiquitin ligase responsible for targeting PD-L1 to degradation. Overexpression of ARIH1 suppresses tumor growth and promotes cytotoxic T cell activation in wild-type, but not in immunocompromised mice, highlighting the role of ARIH1 in anti-tumor immunity. Moreover, combining EGFR inhibitor ES-072 with anti-CTLA4 immunotherapy results in an additive effect on both tumor growth and cytotoxic T cell activation. Our results delineate a mechanism of PD-L1 degradation and cancer escape from immunity via EGFR-GSK3α-ARIH1 signaling and suggest GSK3α and ARIH1 might be potential drug targets to boost anti-tumor immunity and enhance immunotherapies.
Collapse
|
20
|
Kim N, Kim MY, Choi WS, Yi E, Lee HJ, Kim HS. GSK-3α Inhibition in Drug-Resistant CML Cells Promotes Susceptibility to NK Cell-Mediated Lysis in an NKG2D- and NKp30-Dependent Manner. Cancers (Basel) 2021; 13:cancers13081802. [PMID: 33918810 PMCID: PMC8070516 DOI: 10.3390/cancers13081802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/19/2021] [Accepted: 04/08/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Glycogen synthase kinase-3 (GSK-3) is a serine/threonine protein kinase that has gained considerable interest as a therapeutic target for cancer due to its key involvement in growth arrest and apoptosis of tumor cells. Moreover, GSK-3, especially GSK-3β, limits the activation of NK cells, key innate effectors in cancer immunosurveillance, triggered by diverse activating receptors. However, the role of GSK-3 in the regulation of activating ligands on target cells that confer susceptibility to NK cells remains unclear and is the aim of this study. Here, we provide evidence that GSK-3α primarily restrains the expression of ligands for activating receptors such as NKG2D, NKp30 but not DNAM-1, thereby reducing target susceptibility to NK cells. Thus, our results suggest a distinct role of GSK-3 isoforms in target cells vs NK cells for regulating NK cell reactivity and GSK-3α inhibition as a relevant strategy to enhance target susceptibility to NK cells. Abstract Natural killer (NK) cells are innate cytotoxic lymphocytes that provide early protection against cancer. NK cell cytotoxicity against cancer cells is triggered by multiple activating receptors that recognize specific ligands expressed on target cells. We previously demonstrated that glycogen synthase kinase (GSK)-3β, but not GSK-3α, is a negative regulator of NK cell functions via diverse activating receptors, including NKG2D and NKp30. However, the role of GSK-3 isoforms in the regulation of specific ligands on target cells is poorly understood, which remains a challenge limiting GSK-3 targeting for NK cell-based therapy. Here, we demonstrate that GSK-3α rather than GSK-3β is the primary isoform restraining the expression of NKG2D ligands, particularly ULBP2/5/6, on tumor cells, thereby regulating their susceptibility to NK cells. GSK-3α also regulated the expression of the NKp30 ligand B7-H6, but not the DNAM-1 ligands PVR or nectin-2. This regulation occurred independently of BCR-ABL1 mutation that confers tyrosine kinase inhibitor (TKI) resistance. Mechanistically, an increase in PI3K/Akt signaling in concert with c-Myc was required for ligand upregulation in response to GSK-3α inhibition. Importantly, GSK-3α inhibition improved cancer surveillance by human NK cells in vivo. Collectively, our results highlight the distinct role of GSK-3 isoforms in the regulation of NK cell reactivity against target cells and suggest that GSK-3α modulation could be used to enhance tumor cell susceptibility to NK cells in an NKG2D- and NKp30-dependent manner.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Mi Yeon Kim
- Department of Biomedical Sciences, Microbiology, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.Y.K.); (W.S.C.); (E.Y.); (H.J.L.)
| | - Woo Seon Choi
- Department of Biomedical Sciences, Microbiology, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.Y.K.); (W.S.C.); (E.Y.); (H.J.L.)
- Stem Cell Immunomodulation Research Center (SCIRC), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eunbi Yi
- Department of Biomedical Sciences, Microbiology, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.Y.K.); (W.S.C.); (E.Y.); (H.J.L.)
| | - Hyo Jung Lee
- Department of Biomedical Sciences, Microbiology, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.Y.K.); (W.S.C.); (E.Y.); (H.J.L.)
| | - Hun Sik Kim
- Department of Biomedical Sciences, Microbiology, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.Y.K.); (W.S.C.); (E.Y.); (H.J.L.)
- Stem Cell Immunomodulation Research Center (SCIRC), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Correspondence: ; Tel.: +82-2-3010-2207
| |
Collapse
|
21
|
Roux B, Vaganay C, Vargas JD, Alexe G, Benaksas C, Pardieu B, Fenouille N, Ellegast JM, Malolepsza E, Ling F, Sodaro G, Ross L, Pikman Y, Conway AS, Tang Y, Wu T, Anderson DJ, Le Moigne R, Zhou HJ, Luciano F, Hartigan CR, Galinsky I, DeAngelo DJ, Stone RM, Auberger P, Schenone M, Carr SA, Guirouilh-Barbat J, Lopez B, Khaled M, Lage K, Hermine O, Hemann MT, Puissant A, Stegmaier K, Benajiba L. Targeting acute myeloid leukemia dependency on VCP-mediated DNA repair through a selective second-generation small-molecule inhibitor. Sci Transl Med 2021; 13:eabg1168. [PMID: 33790022 PMCID: PMC8672851 DOI: 10.1126/scitranslmed.abg1168] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
The development and survival of cancer cells require adaptive mechanisms to stress. Such adaptations can confer intrinsic vulnerabilities, enabling the selective targeting of cancer cells. Through a pooled in vivo short hairpin RNA (shRNA) screen, we identified the adenosine triphosphatase associated with diverse cellular activities (AAA-ATPase) valosin-containing protein (VCP) as a top stress-related vulnerability in acute myeloid leukemia (AML). We established that AML was the most responsive disease to chemical inhibition of VCP across a panel of 16 cancer types. The sensitivity to VCP inhibition of human AML cell lines, primary patient samples, and syngeneic and xenograft mouse models of AML was validated using VCP-directed shRNAs, overexpression of a dominant-negative VCP mutant, and chemical inhibition. By combining mass spectrometry-based analysis of the VCP interactome and phospho-signaling studies, we determined that VCP is important for ataxia telangiectasia mutated (ATM) kinase activation and subsequent DNA repair through homologous recombination in AML. A second-generation VCP inhibitor, CB-5339, was then developed and characterized. Efficacy and safety of CB-5339 were validated in multiple AML models, including syngeneic and patient-derived xenograft murine models. We further demonstrated that combining DNA-damaging agents, such as anthracyclines, with CB-5339 treatment synergizes to impair leukemic growth in an MLL-AF9-driven AML murine model. These studies support the clinical testing of CB-5339 as a single agent or in combination with standard-of-care DNA-damaging chemotherapy for the treatment of AML.
Collapse
Affiliation(s)
- Blandine Roux
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Camille Vaganay
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | | | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Chaima Benaksas
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Bryann Pardieu
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Nina Fenouille
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Jana M Ellegast
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Edyta Malolepsza
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Frank Ling
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Gaetano Sodaro
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Linda Ross
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Amy S Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Tony Wu
- Cleave Therapeutics Inc., San Francisco, CA 94105, USA
| | | | | | - Han-Jie Zhou
- Cleave Therapeutics Inc., San Francisco, CA 94105, USA
| | | | - Christina R Hartigan
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ilene Galinsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Patrick Auberger
- C3M, INSERM U1065, Team Cell Death, Differentiation, Inflammation and Cancer, 06204 Nice, France
| | - Monica Schenone
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Steven A Carr
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Josée Guirouilh-Barbat
- Université de Paris, INSERM U1016 and CNRS UMR 8104, Institut Cochin, 75014 Paris, France
| | - Bernard Lopez
- Université de Paris, INSERM U1016 and CNRS UMR 8104, Institut Cochin, 75014 Paris, France
| | - Mehdi Khaled
- INSERM U1186, Gustave-Roussy Cancer Center, Université Paris-Saclay, 94805 Villejuif, France
| | - Kasper Lage
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Olivier Hermine
- Université de Paris, INSERM U1163 and CNRS 8254, Institut Imagine, Hôpital Necker, APHP, 75015 Paris, France
| | - Michael T Hemann
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Alexandre Puissant
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France.
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA.
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Lina Benajiba
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France.
| |
Collapse
|
22
|
Targeting AXL kinase sensitizes leukemic stem and progenitor cells to venetoclax treatment in acute myeloid leukemia. Blood 2021; 137:3641-3655. [PMID: 33786587 PMCID: PMC8462401 DOI: 10.1182/blood.2020007651] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
AXL activity is upregulated in AML stem/progenitor cells, so a novel AXL inhibitor with favorable pharmaceutical properties was developed. AXL inhibition sensitizes AML cells to venetoclax, with strong synergistic effects via AXL/BCL-2–mediated oxidative phosphorylation signaling pathways.
The abundance of genetic abnormalities and phenotypic heterogeneities in acute myeloid leukemia (AML) poses significant challenges to the development of improved treatments. Here, we demonstrated that a key growth arrest-specific gene 6/AXL axis is highly activated in cells from patients with AML, particularly in stem/progenitor cells. We developed a potent selective AXL inhibitor that has favorable pharmaceutical properties and efficacy against preclinical patient-derived xenotransplantation (PDX) models of AML. Importantly, inhibition of AXL sensitized AML stem/progenitor cells to venetoclax treatment, with strong synergistic effects in vitro and in PDX models. Mechanistically, single-cell RNA-sequencing and functional validation studies uncovered that AXL inhibition, alone or in combination with venetoclax, potentially targets intrinsic metabolic vulnerabilities of AML stem/progenitor cells and shows a distinct transcriptomic profile and inhibits mitochondrial oxidative phosphorylation. Inhibition of AXL or BCL-2 also differentially targets key signaling proteins to synergize in leukemic cell killing. These findings have a direct translational impact on the treatment of AML and other cancers with high AXL activity.
Collapse
|
23
|
Lewis AC, Kats LM. Non-genetic heterogeneity, altered cell fate and differentiation therapy. EMBO Mol Med 2021; 13:e12670. [PMID: 33555144 PMCID: PMC7933953 DOI: 10.15252/emmm.202012670] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Altered capacity for self-renewal and differentiation is a hallmark of cancer, and many tumors are composed of cells with a developmentally immature phenotype. Among the malignancies where processes that govern cell fate decisions have been studied most extensively is acute myeloid leukemia (AML), a disease characterized by the presence of large numbers of "blasts" that resemble myeloid progenitors. Classically, the defining properties of AML cells were said to be aberrant self-renewal and a block of differentiation, and the term "differentiation therapy" was coined to describe drugs that promote the maturation of leukemic blasts. Notionally however, the simplistic view that such agents "unblock" differentiation is at odds with the cancer stem cell (CSC) hypothesis that posits that tumors are hierarchically organized and that CSCs, which underpin cancer growth, retain the capacity to progress to a developmentally more mature state. Herein, we will review recent developments that are providing unprecedented insights into non-genetic heterogeneity both at steady state and in response to treatment, and propose a new conceptual framework for therapies that aim to alter cell fate decisions in cancer.
Collapse
Affiliation(s)
| | - Lev M Kats
- The Peter MacCallum Cancer CentreMelbourneVICAustralia
- The Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVICAustralia
| |
Collapse
|
24
|
Silva-García O, Cortés-Vieyra R, Mendoza-Ambrosio FN, Ramírez-Galicia G, Baizabal-Aguirre VM. GSK3α: An Important Paralog in Neurodegenerative Disorders and Cancer. Biomolecules 2020; 10:E1683. [PMID: 33339170 PMCID: PMC7765659 DOI: 10.3390/biom10121683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
The biological activity of the enzyme glycogen synthase kinase-3 (GSK3) is fulfilled by two paralogs named GSK3α and GSK3β, which possess both redundancy and specific functions. The upregulated activity of these proteins is linked to the development of disorders such as neurodegenerative disorders (ND) and cancer. Although various chemical inhibitors of these enzymes restore the brain functions in models of ND such as Alzheimer's disease (AD), and reduce the proliferation and survival of cancer cells, the particular contribution of each paralog to these effects remains unclear as these molecules downregulate the activity of both paralogs with a similar efficacy. Moreover, given that GSK3 paralogs phosphorylate more than 100 substrates, the simultaneous inhibition of both enzymes has detrimental effects during long-term inhibition. Although the GSK3β kinase function has usually been taken as the global GSK3 activity, in the last few years, a growing interest in the study of GSK3α has emerged because several studies have recognized it as the main GSK3 paralog involved in a variety of diseases. This review summarizes the current biological evidence on the role of GSK3α in AD and various types of cancer. We also provide a discussion on some strategies that may lead to the design of the paralog-specific inhibition of GSK3α.
Collapse
Affiliation(s)
- Octavio Silva-García
- Departamento de Química Teórica, Universidad del Papaloapan, Oaxaca 68301, Mexico; (F.N.M.-A.); (G.R.-G.)
| | - Ricarda Cortés-Vieyra
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Michoacán 58000, Mexico;
| | | | - Guillermo Ramírez-Galicia
- Departamento de Química Teórica, Universidad del Papaloapan, Oaxaca 68301, Mexico; (F.N.M.-A.); (G.R.-G.)
| | - Víctor M. Baizabal-Aguirre
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán 58893, Mexico
| |
Collapse
|
25
|
Mishra M, Thacker G, Sharma A, Singh AK, Upadhyay V, Sanyal S, Verma SP, Tripathi AK, Bhatt MLB, Trivedi AK. FBW7 Inhibits Myeloid Differentiation in Acute Myeloid Leukemia via GSK3-Dependent Ubiquitination of PU.1. Mol Cancer Res 2020; 19:261-273. [PMID: 33188146 DOI: 10.1158/1541-7786.mcr-20-0268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/17/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Glycogen synthase kinase 3β (GSK3β), an ubiquitously expressed serine/threonine kinase is reported to be overexpressed and hyperactivated in cancers including acute myeloid leukemia (AML) where it promotes self-renewal, growth, and survival of AML cells. Therefore, GSK3β inhibition results in AML cell growth inhibition and myeloid differentiation. Here we identified master transcription factor PU.1 of monocyte-macrophage differentiation pathway as potential GSK3β target. We demonstrate that GSK3β phosphorylates PU.1 at Ser41 and Ser140 leading to its recognition and subsequent ubiquitin-mediated degradation by E3 ubiquitin ligase FBW7. This GSK3-dependent degradation of PU.1 by FBW7 inhibited monocyte-macrophage differentiation. We further showed that a phospho-deficient PU.1 mutant (PU.1-S41, S140A) neither bound to FBW7 nor was degraded by it. Consequently, PU.1-S41, S140A retained its transactivation, DNA-binding ability and promoted monocyte-macrophage differentiation of U937 cells even without phorbol 12-myristate 13-acetate (PMA) treatment. We further showed that FBW7 overexpression inhibited both PMA as well as M-CSF-induced macrophage differentiation of myeloid cell lines and peripheral blood mononuclear cells (PBMC) from healthy volunteers, respectively. Contrarily, FBW7 depletion promoted differentiation of these cells even without any inducer suggesting for a robust role of GSK3β-FBW7 axis in negatively regulating myeloid differentiation. Furthermore, we also recapitulated these findings in PBMCs isolated from patients with leukemia where FBW7 overexpression markedly inhibited endogenous PU.1 protein levels. In addition, PBMCs also showed enhanced differentiation when treated with M-CSF and GSK3 inhibitor (SB216763) together compared with M-CSF treatment alone. IMPLICATIONS: Our data demonstrate a plausible mechanism behind PU.1 restoration and induction of myeloid differentiation upon GSK3β inhibition and further substantiates potential of GSK3β as a therapeutic target in AML.
Collapse
Affiliation(s)
- Mukul Mishra
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Gatha Thacker
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Akshay Sharma
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Anil Kumar Singh
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Vishal Upadhyay
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Sabyasachi Sanyal
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | | | - Anil Kumar Tripathi
- King George's Medical University, Lucknow, UP, India.,Ram Manohar Lohia Institute of Medical Sciences (RMLIMS), UP, Lucknow, India
| | | | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| |
Collapse
|
26
|
Liu Q, Garcia M, Wang S, Chen CW. Therapeutic Target Discovery Using High-Throughput Genetic Screens in Acute Myeloid Leukemia. Cells 2020; 9:cells9081888. [PMID: 32806592 PMCID: PMC7465943 DOI: 10.3390/cells9081888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
The development of high-throughput gene manipulating tools such as short hairpin RNA (shRNA) and CRISPR/Cas9 libraries has enabled robust characterization of novel functional genes contributing to the pathological states of the diseases. In acute myeloid leukemia (AML), these genetic screen approaches have been used to identify effector genes with previously unknown roles in AML. These AML-related genes centralize alongside the cellular pathways mediating epigenetics, signaling transduction, transcriptional regulation, and energy metabolism. The shRNA/CRISPR genetic screens also realized an array of candidate genes amenable to pharmaceutical targeting. This review aims to summarize genes, mechanisms, and potential therapeutic strategies found via high-throughput genetic screens in AML. We also discuss the potential of these findings to instruct novel AML therapies for combating drug resistance in this genetically heterogeneous disease.
Collapse
Affiliation(s)
- Qiao Liu
- Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou 350108, China; (Q.L.); (S.W.)
- Union Clinical Medical College, Fujian Medical University, Fuzhou 350108, China
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
| | - Michelle Garcia
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
- Pomona College, Claremont, CA 91711, USA
| | - Shaoyuan Wang
- Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou 350108, China; (Q.L.); (S.W.)
- Union Clinical Medical College, Fujian Medical University, Fuzhou 350108, China
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
- Correspondence:
| |
Collapse
|
27
|
Hinze L, Labrosse R, Degar J, Han T, Schatoff EM, Schreek S, Karim S, McGuckin C, Sacher JR, Wagner F, Stanulla M, Yuan C, Sicinska E, Giannakis M, Ng K, Dow LE, Gutierrez A. Exploiting the Therapeutic Interaction of WNT Pathway Activation and Asparaginase for Colorectal Cancer Therapy. Cancer Discov 2020; 10:1690-1705. [PMID: 32703769 DOI: 10.1158/2159-8290.cd-19-1472] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/16/2020] [Accepted: 07/20/2020] [Indexed: 12/09/2022]
Abstract
Colorectal cancer is driven by mutations that activate canonical WNT/β-catenin signaling, but inhibiting WNT has significant on-target toxicity, and there are no approved therapies targeting dominant oncogenic drivers. We recently found that activating a β-catenin-independent branch of WNT signaling that inhibits GSK3-dependent protein degradation induces asparaginase sensitivity in drug-resistant leukemias. To test predictions from our model, we turned to colorectal cancer because these cancers can have WNT-activating mutations that function either upstream (i.e., R-spondin fusions) or downstream (APC or β-catenin mutations) of GSK3, thus allowing WNT/β-catenin and WNT-induced asparaginase sensitivity to be unlinked genetically. We found that asparaginase had little efficacy in APC or β-catenin-mutant colorectal cancer, but was profoundly toxic in the setting of R-spondin fusions. Pharmacologic GSK3α inhibition was sufficient for asparaginase sensitization in APC or β-catenin-mutant colorectal cancer, but not in normal intestinal progenitors. Our findings demonstrate that WNT-induced therapeutic vulnerabilities can be exploited for colorectal cancer therapy. SIGNIFICANCE: Solid tumors are thought to be asparaginase-resistant via de novo asparagine synthesis. In leukemia, GSK3α-dependent protein degradation, a catabolic amino acid source, mediates asparaginase resistance. We found that asparaginase is profoundly toxic to colorectal cancers with WNT-activating mutations that inhibit GSK3. Aberrant WNT activation can provide a therapeutic vulnerability in colorectal cancer.See related commentary by Davidsen and Sullivan, p. 1632.This article is highlighted in the In This Issue feature, p. 1611.
Collapse
Affiliation(s)
- Laura Hinze
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Roxane Labrosse
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - James Degar
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Teng Han
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York.,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York
| | - Emma M Schatoff
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York.,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York.,Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD program, New York, New York
| | - Sabine Schreek
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Salmaan Karim
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Connor McGuckin
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joshua R Sacher
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Florence Wagner
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Lukas E Dow
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York.,Departments of Medicine and Biochemistry, Weill Cornell Medicine, New York, New York
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts. .,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
Kobren SN, Chazelle B, Singh M. PertInInt: An Integrative, Analytical Approach to Rapidly Uncover Cancer Driver Genes with Perturbed Interactions and Functionalities. Cell Syst 2020; 11:63-74.e7. [PMID: 32711844 PMCID: PMC7493809 DOI: 10.1016/j.cels.2020.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/23/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
Abstract
A major challenge in cancer genomics is to identify genes with functional roles in cancer and uncover their mechanisms of action. We introduce an integrative framework that identifies cancer-relevant genes by pinpointing those whose interaction or other functional sites are enriched in somatic mutations across tumors. We derive analytical calculations that enable us to avoid time-prohibitive permutation-based significance tests, making it computationally feasible to simultaneously consider multiple measures of protein site functionality. Our accompanying software, PertInInt, combines knowledge about sites participating in interactions with DNA, RNA, peptides, ions, or small molecules with domain, evolutionary conservation, and gene-level mutation data. When applied to 10,037 tumor samples, PertInInt uncovers both known and newly predicted cancer genes, while additionally revealing what types of interactions or other functionalities are disrupted. PertInInt’s analysis demonstrates that somatic mutations are frequently enriched in interaction sites and domains and implicates interaction perturbation as a pervasive cancer-driving event. A fast, analytical framework called PertInInt enables efficient integration of multiple measures of protein site functionality—including interaction, domain, and evolutionary conservation—with gene-level mutation data in order to rapidly detect cancer driver genes along with their disrupted functionalities.
Collapse
Affiliation(s)
- Shilpa Nadimpalli Kobren
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Department of Computer Science, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Bernard Chazelle
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Mona Singh
- Department of Computer Science, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
29
|
Cho HJ, Lee J, Yoon SR, Lee HG, Jung H. Regulation of Hematopoietic Stem Cell Fate and Malignancy. Int J Mol Sci 2020; 21:ijms21134780. [PMID: 32640596 PMCID: PMC7369689 DOI: 10.3390/ijms21134780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The regulation of hematopoietic stem cell (HSC) fate decision, whether they keep quiescence, self-renew, or differentiate into blood lineage cells, is critical for maintaining the immune system throughout one’s lifetime. As HSCs are exposed to age-related stress, they gradually lose their self-renewal and regenerative capacity. Recently, many reports have implicated signaling pathways in the regulation of HSC fate determination and malignancies under aging stress or pathophysiological conditions. In this review, we focus on the current understanding of signaling pathways that regulate HSC fate including quiescence, self-renewal, and differentiation during aging, and additionally introduce pharmacological approaches to rescue defects of HSC fate determination or hematopoietic malignancies by kinase signaling pathways.
Collapse
Affiliation(s)
- Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
| | - Jungwoon Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea;
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
- Department of Biomolecular Science, Korea University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (H.G.L.); (H.J.)
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
- Correspondence: (H.G.L.); (H.J.)
| |
Collapse
|
30
|
Lee YC, Shi YJ, Wang LJ, Chiou JT, Huang CH, Chang LS. GSK3β suppression inhibits MCL1 protein synthesis in human acute myeloid leukemia cells. J Cell Physiol 2020; 236:570-586. [PMID: 32572959 DOI: 10.1002/jcp.29884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/27/2020] [Accepted: 06/04/2020] [Indexed: 01/09/2023]
Abstract
Previous studies have shown that glycogen synthase kinase 3β (GSK3β) suppression is a potential strategy for human acute myeloid leukemia (AML) therapy. However, the cytotoxic mechanism associated with GSK3β suppression remains unresolved. Thus, the underlying mechanism of N-(4-methoxybenzyl)-N'-(5-nitro-1,3-thiazol-2-yl)urea (AR-A014418)-elicited GSK3β suppression in the induction of AML U937 and HL-60 cell death was investigated in this study. Our study revealed that AR-A014418-induced MCL1 downregulation remarkably elicited apoptosis of U937 cells. Furthermore, the AR-A014418 treatment increased p38 MAPK phosphorylation and decreased the phosphorylated Akt and ERK levels. Activation of p38 MAPK subsequently evoked autophagic degradation of 4EBP1, while Akt inactivation suppressed mTOR-mediated 4EBP1 phosphorylation. Furthermore, AR-A014418-elicited ERK inactivation inhibited Mnk1-mediated eIF4E phosphorylation, which inhibited MCL1 mRNA translation in U937 cells. In contrast to GSK3α, GSK3β downregulation recapitulated the effect of AR-A014418 in U937 cells. Transfection of constitutively active GSK3β or cotransfection of constitutively activated MEK1 and Akt suppressed AR-A014418-induced MCL1 downregulation. Moreover, AR-A014418 sensitized U937 cells to ABT-263 (BCL2/BCL2L1 inhibitor) cytotoxicity owing to MCL1 suppression. Collectively, these results indicate that AR-A014418-induced GSK3β suppression inhibits ERK-Mnk1-eIF4E axis-modulated de novo MCL1 protein synthesis and thereby results in U937 cell apoptosis. Our findings also indicate a similar pathway underlying AR-A014418-induced death in human AML HL-60 cells.
Collapse
Affiliation(s)
- Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
31
|
Valli D, Gruszka AM, Alcalay M. Has Drug Repurposing Fulfilled its Promise in Acute Myeloid Leukaemia? J Clin Med 2020; 9:E1892. [PMID: 32560371 PMCID: PMC7356362 DOI: 10.3390/jcm9061892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Drug repurposing is a method of drug discovery that consists of finding a new therapeutic context for an old drug. Compound identification arises from screening of large libraries of active compounds, through interrogating databases of cell line gene expression response upon treatment or by merging several types of information concerning disease-drug relationships. Although, there is a general consensus on the potential and advantages of this drug discovery modality, at the practical level to-date no non-anti-cancer repurposed compounds have been introduced into standard acute myeloid leukaemia (AML) management, albeit that preclinical validation yielded several candidates. The review presents the state-of-the-art drug repurposing approach in AML and poses the question of what has to be done in order to take a full advantage of it, both at the stage of screening design and later when progressing from the preclinical to the clinical phases of drug development. We argue that improvements are needed to model and read-out systems as well as to screening technologies, but also to more funding and trust in drug repurposing strategies.
Collapse
Affiliation(s)
- Debora Valli
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy; (D.V.); (M.A.)
| | - Alicja M. Gruszka
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy; (D.V.); (M.A.)
| | - Myriam Alcalay
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy; (D.V.); (M.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20 122 Milan, Italy
| |
Collapse
|
32
|
Glycogen Synthase Kinase 3β in Cancer Biology and Treatment. Cells 2020; 9:cells9061388. [PMID: 32503133 PMCID: PMC7349761 DOI: 10.3390/cells9061388] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase (GSK)3β is a multifunctional serine/threonine protein kinase with more than 100 substrates and interacting molecules. GSK3β is normally active in cells and negative regulation of GSK3β activity via phosphorylation of its serine 9 residue is required for most normal cells to maintain homeostasis. Aberrant expression and activity of GSK3β contributes to the pathogenesis and progression of common recalcitrant diseases such as glucose intolerance, neurodegenerative disorders and cancer. Despite recognized roles against several proto-oncoproteins and mediators of the epithelial–mesenchymal transition, deregulated GSK3β also participates in tumor cell survival, evasion of apoptosis, proliferation and invasion, as well as sustaining cancer stemness and inducing therapy resistance. A therapeutic effect from GSK3β inhibition has been demonstrated in 25 different cancer types. Moreover, there is increasing evidence that GSK3β inhibition protects normal cells and tissues from the harmful effects associated with conventional cancer therapies. Here, we review the evidence supporting aberrant GSK3β as a hallmark property of cancer and highlight the beneficial effects of GSK3β inhibition on normal cells and tissues during cancer therapy. The biological rationale for targeting GSK3β in the treatment of cancer is also discussed at length.
Collapse
|
33
|
Ratti S, Mongiorgi S, Rusciano I, Manzoli L, Follo MY. Glycogen Synthase Kinase-3 and phospholipase C-beta signalling: Roles and possible interactions in myelodysplastic syndromes and acute myeloid leukemia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118649. [DOI: 10.1016/j.bbamcr.2020.118649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023]
|
34
|
Ueda M, Stefan T, Stetson L, Ignatz-Hoover JJ, Tomlinson B, Creger RJ, Cooper B, Lazarus HM, de Lima M, Wald DN, Caimi PF. Phase I Trial of Lithium and Tretinoin for Treatment of Relapsed and Refractory Non-promyelocytic Acute Myeloid Leukemia. Front Oncol 2020; 10:327. [PMID: 32211336 PMCID: PMC7076174 DOI: 10.3389/fonc.2020.00327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/25/2020] [Indexed: 11/13/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK3) inhibitors induce differentiation and growth inhibition of acute myeloid leukemia (AML) cells. Our pre-clinical studies showed GSK3 inhibition leads to sensitization of AML cells to tretinoin-mediated differentiation. We conducted a phase I trial of lithium, a GSK3 inhibitor, plus tretinoin for relapsed, refractory non-promyelocytic AML. Nine patients with median (range) age 65 (42–82) years were enrolled. All subjects had relapsed leukemia after prior therapy, with a median (range) of 3 (1–3) prior therapies. Oral lithium carbonate 300 mg was given 2–3 times daily and adjusted to meet target serum concentration (0.6 to 1.0 mmol/L); tretinoin 22.5 or 45 mg/m2/day (two equally divided doses) was administered orally on days 1–7 and 15–21 of a 28-day cycle. Four patients attained disease stability with no increase in circulating blasts for ≥4 weeks. Median (range) survival was 106 days (60–502). Target serum lithium concentration was achieved in all patients and correlated with GSK3 inhibition in leukemic cells. Immunophenotypic changes associated with myeloid differentiation were observed in five patients. The combination treatment led to a reduction in the CD34+ CD38– AML stem cell population both in vivo and in vitro. The combination of lithium and tretinoin is well-tolerated, induces differentiation of leukemic cells, and may target AML stem cells, but has limited clinical activity in the absence of other antileukemic agents. The results of this clinical trial suggest GSK3 inhibition can result in AML cell differentiation and may be a novel therapeutic strategy in this disease, particularly in combination with other antileukemic agents. Lithium is a weak GSK3 inhibitor and future strategies in AML treatment will probably require more potent agents targeting this pathway or combinations with other antileukemic agents. This trial is registered at ClinicalTrials.gov NCT01820624.
Collapse
Affiliation(s)
- Masumi Ueda
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, United States
| | - Tammy Stefan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Lindsay Stetson
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - James J Ignatz-Hoover
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Benjamin Tomlinson
- Stem Cell Transplant and Hematologic Malignancies Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Richard J Creger
- Stem Cell Transplant and Hematologic Malignancies Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Brenda Cooper
- Stem Cell Transplant and Hematologic Malignancies Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Hillard M Lazarus
- Stem Cell Transplant and Hematologic Malignancies Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Marcos de Lima
- Stem Cell Transplant and Hematologic Malignancies Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - David N Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Paolo F Caimi
- Stem Cell Transplant and Hematologic Malignancies Program, University Hospitals Seidman Cancer Center, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
35
|
Alanazi B, Munje CR, Rastogi N, Williamson AJK, Taylor S, Hole PS, Hodges M, Doyle M, Baker S, Gilkes AF, Knapper S, Pierce A, Whetton AD, Darley RL, Tonks A. Integrated nuclear proteomics and transcriptomics identifies S100A4 as a therapeutic target in acute myeloid leukemia. Leukemia 2020; 34:427-440. [PMID: 31611628 PMCID: PMC6995695 DOI: 10.1038/s41375-019-0596-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
Inappropriate localization of proteins can interfere with normal cellular function and drive tumor development. To understand how this contributes to the development of acute myeloid leukemia (AML), we compared the nuclear proteome and transcriptome of AML blasts with normal human CD34+ cells. Analysis of the proteome identified networks and processes that significantly affected transcription regulation including misexpression of 11 transcription factors with seven proteins not previously implicated in AML. Transcriptome analysis identified changes in 40 transcription factors but none of these were predictive of changes at the protein level. The highest differentially expressed protein in AML nuclei compared with normal CD34+ nuclei (not previously implicated in AML) was S100A4. In an extended cohort, we found that over-expression of nuclear S100A4 was highly prevalent in AML (83%; 20/24 AML patients). Knock down of S100A4 in AML cell lines strongly impacted their survival whilst normal hemopoietic stem progenitor cells were unaffected. These data are the first analysis of the nuclear proteome in AML and have identified changes in transcription factor expression or regulation of transcription that would not have been seen at the mRNA level. These data also suggest that S100A4 is essential for AML survival and could be a therapeutic target in AML.
Collapse
Affiliation(s)
- Bader Alanazi
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Chinmay R Munje
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Namrata Rastogi
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Andrew J K Williamson
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, M20 3LJ, UK
| | - Samuel Taylor
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, M20 3LJ, UK
| | - Paul S Hole
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Marie Hodges
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Michelle Doyle
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Sarah Baker
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Amanda F Gilkes
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Steven Knapper
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Andrew Pierce
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, M20 3LJ, UK
| | - Anthony D Whetton
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, M20 3LJ, UK
| | - Richard L Darley
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Alex Tonks
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK.
| |
Collapse
|
36
|
Mudgapalli N, Nallasamy P, Chava H, Chava S, Pathania AS, Gunda V, Gorantla S, Pandey MK, Gupta SC, Challagundla KB. The role of exosomes and MYC in therapy resistance of acute myeloid leukemia: Challenges and opportunities. Mol Aspects Med 2019; 70:21-32. [PMID: 31623866 PMCID: PMC7775410 DOI: 10.1016/j.mam.2019.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/27/2019] [Accepted: 10/06/2019] [Indexed: 12/12/2022]
Abstract
Acute myeloid leukemia (AML) is caused by abnormal production of white blood cells, red blood cells or platelets. The leukemia cells communicate with their microenvironment through nano-vesicle exosomes that are 30-100 nm in diameter. These nano-vesicles are released from body fluids upon fusion of an endocytic compartment with the cell membrane. Exosomes function as cargo to deliver signaling molecules to distant cells. This allows cross-talk between hematopoietic cells and other distant target cell environments. Exosomes support leukemia growth by acting as messengers between tumor cells and the microenvironment as well as inducing oncogenic factors such as c-Myc. Exosomes have also been used as biomarkers in the clinical diagnosis of leukemia. Glycogen synthase kinase-3 (GSK-3) and protein phosphatase 2A (PP2A) are two crucial signaling molecules involved in the AML pathogenesis and MYC stability. GSK-3 is a serine/threonine protein kinase that coordinates with over 40 different proteins during physiological/pathological conditions in blood cells. The dysregulation in GSK-3 has been reported during hematological malignancies. GSK-3 acts as a tumor suppressor by targeting c-MYC, MCL-1 and β-catenin. Conversely, GSK-3 can also act as tumor promoter in some instances. The pharmacological modulators of GSK-3 such as ABT-869, 6-Bromoindirubin-3'-oxime (BIO), GS-87 and LY2090314 have shown promise in the treatment of hematological malignancy. PP2A is a heterotrimeric serine/threonine phosphatase involved in the regulation of hematological malignancy. PP2A-activating drugs (PADs) can effectively antagonize leukemogenesis. The discovery of exosomes, kinase inhibitors and phosphatase activators have provided new hope to the leukemia patients. This review discusses the role of exosomes, GSK-3 and PP2A in the pathogenesis of leukemia. We provide evidence from both preclinical and clinical studies.
Collapse
Affiliation(s)
- Nithya Mudgapalli
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
; UNMC Summer Undergraduate Research Program, University of Nebraska Medical Center, Omaha, NE, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Haritha Chava
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Srinivas Chava
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anup S Pathania
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Venugopal Gunda
- Pediatric Oncology Laboratory, Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Subash C Gupta
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
.
| |
Collapse
|
37
|
Ahmad F, Woodgett JR. Emerging roles of GSK-3α in pathophysiology: Emphasis on cardio-metabolic disorders. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118616. [PMID: 31785335 DOI: 10.1016/j.bbamcr.2019.118616] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/18/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a widely expressed serine/threonine kinase regulates a variety of cellular processes including proliferation, differentiation and death. Mammals harbor two structurally similar isoforms GSK-3α and β that have overlapping as well as unique functions. Of the two, GSK-3β has been studied (and reviewed) in far greater detail with analysis of GSK-3α often as an afterthought. It is now evident that systemic, chronic inhibition of either GSK-3β or both GSK-3α/β is not clinically feasible and if achieved would likely lead to adverse clinical conditions. Emerging evidence suggests important and specific roles for GSK-3α in fatty acid accumulation, insulin resistance, amyloid-β-protein precursor metabolism, atherosclerosis, cardiomyopathy, fibrosis, aging, fertility, and in a variety of cancers. Selective targeting of GSK-3α may present a novel therapeutic opportunity to alleviate a number of pathological conditions. In this review, we assess the evidence for roles of GSK-3α in a variety of pathophysiological settings.
Collapse
Affiliation(s)
- Firdos Ahmad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Canada
| |
Collapse
|
38
|
Kumar R, Harilal S, Gupta SV, Jose J, Thomas Parambi DG, Uddin MS, Shah MA, Mathew B. Exploring the new horizons of drug repurposing: A vital tool for turning hard work into smart work. Eur J Med Chem 2019; 182:111602. [PMID: 31421629 PMCID: PMC7127402 DOI: 10.1016/j.ejmech.2019.111602] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
Drug discovery and development are long and financially taxing processes. On an average it takes 12-15 years and costs 1.2 billion USD for successful drug discovery and approval for clinical use. Many lead molecules are not developed further and their potential is not tapped to the fullest due to lack of resources or time constraints. In order for a drug to be approved by FDA for clinical use, it must have excellent therapeutic potential in the desired area of target with minimal toxicities as supported by both pre-clinical and clinical studies. The targeted clinical evaluations fail to explore other potential therapeutic applications of the candidate drug. Drug repurposing or repositioning is a fast and relatively cheap alternative to the lengthy and expensive de novo drug discovery and development. Drug repositioning utilizes the already available clinical trials data for toxicity and adverse effects, at the same time explores the drug's therapeutic potential for a different disease. This review addresses recent developments and future scope of drug repositioning strategy.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Seetha Harilal
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Sheeba Varghese Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, 33612, USA
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Science, NITTE Deemed to be University, Manglore, 575018, India
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, 2014, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Muhammad Ajmal Shah
- Department of Pharmacogonosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, 678557, Kerala, India.
| |
Collapse
|
39
|
Wagner FF, Benajiba L, Campbell AJ, Weïwer M, Sacher JR, Gale JP, Ross L, Puissant A, Alexe G, Conway A, Back M, Pikman Y, Galinsky I, DeAngelo DJ, Stone RM, Kaya T, Shi X, Robers MB, Machleidt T, Wilkinson J, Hermine O, Kung A, Stein AJ, Lakshminarasimhan D, Hemann MT, Scolnick E, Zhang YL, Pan JQ, Stegmaier K, Holson EB. Exploiting an Asp-Glu "switch" in glycogen synthase kinase 3 to design paralog-selective inhibitors for use in acute myeloid leukemia. Sci Transl Med 2019. [PMID: 29515000 DOI: 10.1126/scitranslmed.aam8460] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glycogen synthase kinase 3 (GSK3), a key regulatory kinase in the wingless-type MMTV integration site family (WNT) pathway, is a therapeutic target of interest in many diseases. Although dual GSK3α/β inhibitors have entered clinical trials, none has successfully translated to clinical application. Mechanism-based toxicities, driven in part by the inhibition of both GSK3 paralogs and subsequent β-catenin stabilization, are a concern in the translation of this target class because mutations and overexpression of β-catenin are associated with many cancers. Knockdown of GSK3α or GSK3β individually does not increase β-catenin and offers a conceptual resolution to targeting GSK3: paralog-selective inhibition. However, inadequate chemical tools exist. The design of selective adenosine triphosphate (ATP)-competitive inhibitors poses a drug discovery challenge due to the high homology (95% identity and 100% similarity) in this binding domain. Taking advantage of an Asp133→Glu196 "switch" in their kinase hinge, we present a rational design strategy toward the discovery of paralog-selective GSK3 inhibitors. These GSK3α- and GSK3β-selective inhibitors provide insights into GSK3 targeting in acute myeloid leukemia (AML), where GSK3α was identified as a therapeutic target using genetic approaches. The GSK3α-selective compound BRD0705 inhibits kinase function and does not stabilize β-catenin, mitigating potential neoplastic concerns. BRD0705 induces myeloid differentiation and impairs colony formation in AML cells, with no apparent effect on normal hematopoietic cells. Moreover, BRD0705 impairs leukemia initiation and prolongs survival in AML mouse models. These studies demonstrate feasibility of paralog-selective GSK3α inhibition, offering a promising therapeutic approach in AML.
Collapse
Affiliation(s)
- Florence F Wagner
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.
| | - Lina Benajiba
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,INSERM U1163 and CNRS 8254, Imagine Institute, Université Paris Saclay, 91190 Paris, France
| | - Arthur J Campbell
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Michel Weïwer
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Joshua R Sacher
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Jennifer P Gale
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Linda Ross
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alexandre Puissant
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,INSERM U944, Institute of Hematology, St. Louis Hospital, 75010 Paris, France
| | - Gabriela Alexe
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,Bioinformatics Graduate Program, Boston University, Boston, MA 02215, USA
| | - Amy Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Morgan Back
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yana Pikman
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ilene Galinsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Taner Kaya
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Xi Shi
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Matthew B Robers
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA
| | - Thomas Machleidt
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA
| | | | - Olivier Hermine
- INSERM U1163 and CNRS 8254, Imagine Institute, Université Sorbonne Paris Cité, Paris, France.,Department of Hematology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, University Paris Descartes, 75006 Paris, France
| | - Andrew Kung
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | - Michael T Hemann
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Edward Scolnick
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Yan-Ling Zhang
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Kimberly Stegmaier
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA. .,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Edward B Holson
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| |
Collapse
|
40
|
Therapeutic Targeting of Notch Signaling Pathway in Hematological Malignancies. Mediterr J Hematol Infect Dis 2019; 11:e2019037. [PMID: 31308913 PMCID: PMC6613627 DOI: 10.4084/mjhid.2019.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/18/2019] [Indexed: 12/16/2022] Open
Abstract
The Notch pathway plays a key role in several processes, including stem-cell self-renewal, proliferation, and cell differentiation. Several studies identified recurrent mutations in hematological malignancies making Notch one of the most desirable targets in leukemia and lymphoma. The Notch signaling mediates resistance to therapy and controls cancer stem cells supporting the development of on-target therapeutic strategies to improve patients’ outcome. In this brief review, we outline the therapeutic potential of targeting Notch pathway in T-cell acute jlymphoblastic leukemia, chronic lymphocytic leukemia, and mantle cell lymphoma.
Collapse
|
41
|
Milan T, Canaj H, Villeneuve C, Ghosh A, Barabé F, Cellot S, Wilhelm BT. Pediatric leukemia: Moving toward more accurate models. Exp Hematol 2019; 74:1-12. [PMID: 31154068 DOI: 10.1016/j.exphem.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
Abstract
Leukemia is a complex genetic disease caused by errors in differentiation, growth, and apoptosis of hematopoietic cells in either lymphoid or myeloid lineages. Large-scale genomic characterization of thousands of leukemia patients has produced a tremendous amount of data that have enabled a better understanding of the differences between adult and pediatric patients. For instance, although phenotypically similar, pediatric and adult myeloid leukemia patients differ in their mutational profiles, typically involving either chromosomal translocations or recurrent single-base-pair mutations, respectively. To elucidate the molecular mechanisms underlying the biology of this cancer, continual efforts have been made to develop more contextually and biologically relevant experimental models. Leukemic cell lines, for example, provide an inexpensive and tractable model but often fail to recapitulate critical aspects of tumor biology. Likewise, murine leukemia models of leukemia have been highly informative but also do not entirely reproduce the human disease. More recent advances in the development of patient-derived xenografts (PDXs) or human models of leukemias are poised to provide a more comprehensive, and biologically relevant, approach to directly assess the impact of the in vivo environment on human samples. In this review, the advantages and limitations of the various current models used to functionally define the genetic requirements of leukemogenesis are discussed.
Collapse
MESH Headings
- Adolescent
- Animals
- Cell Differentiation
- Child
- Child, Preschool
- Female
- Heterografts
- Humans
- Infant
- Infant, Newborn
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/therapy
- Male
- Mice
- Neoplasm Transplantation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Translocation, Genetic
Collapse
Affiliation(s)
- Thomas Milan
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Hera Canaj
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Chloe Villeneuve
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Aditi Ghosh
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Frédéric Barabé
- Centre de recherche en infectiologie du CHUL, Centre de recherche du CHU de Québec, Quebec City, QC, Canada; CHU de Québec Hôpital Enfant-Jésus, Quebec City, QC, Canada; Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Sonia Cellot
- Division of Hematology, Department of Pediatrics, Ste-Justine Hospital, Montréal, Université de Montréal, Montréal, QC, Canada
| | - Brian T Wilhelm
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
42
|
Morande PE, Sivina M, Uriepero A, Seija N, Berca C, Fresia P, Landoni AI, Di Noia JM, Burger JA, Oppezzo P. Ibrutinib therapy downregulates AID enzyme and proliferative fractions in chronic lymphocytic leukemia. Blood 2019; 133:2056-2068. [PMID: 30814061 PMCID: PMC7022232 DOI: 10.1182/blood-2018-09-876292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates somatic hypermutation and class switch recombination of the immunoglobulin genes. As a trade-off for its physiological function, AID also contributes to tumor development through its mutagenic activity. In chronic lymphocytic leukemia (CLL), AID is overexpressed in the proliferative fractions (PFs) of the malignant B lymphocytes, and its anomalous expression has been associated with a clinical poor outcome. Recent preclinical data suggested that ibrutinib and idelalisib, 2 clinically approved kinase inhibitors, increase AID expression and genomic instability in normal and neoplastic B cells. These results raise concerns about a potential mutagenic risk in patients receiving long-term therapy. To corroborate these findings in the clinical setting, we analyzed AID expression and PFs in a CLL cohort before and during ibrutinib treatment. We found that ibrutinib decreases the CLL PFs and, interestingly, also reduces AID expression, which correlates with dampened AKT and Janus Kinase 1 signaling. Moreover, although ibrutinib increases AID expression in a CLL cell line, it is unable to do so in primary CLL samples. Our results uncover a differential response to ibrutinib between cell lines and the CLL clone and imply that ibrutinib could differ from idelalisib in their potential to induce AID in treated patients. Possible reasons for the discrepancy between preclinical and clinical findings, and their effect on treatment safety, are discussed.
Collapse
Affiliation(s)
- Pablo Elías Morande
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Mariela Sivina
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Angimar Uriepero
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Noé Seija
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Catalina Berca
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Fresia
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ana Inés Landoni
- Hospital Maciel, Administración de los Servicios de Salud del Estado, Ministerio de Salud, Montevideo, Uruguay
| | - Javier M Di Noia
- Division of Immunity and Viral Infections, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada; and
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
43
|
Guo Q, Huang F, Goncalves C, Del Rincón SV, Miller WH. Translation of cancer immunotherapy from the bench to the bedside. Adv Cancer Res 2019; 143:1-62. [PMID: 31202357 DOI: 10.1016/bs.acr.2019.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The tremendous success of immune checkpoint blockades has revolutionized cancer management. Our increased understanding of the cell types that compose the tumor microenvironment (TME), including those of the innate and adaptive immune system, has helped to shape additional immune modulatory strategies in cancer care. Pre-clinical and clinical investigations targeting novel checkpoint interactions and key pathways that regulate cancer immunity continue to increase rapidly. Various combinatorial drug regimens are being tested in attempt to achieve durable response and survival rates of patients with cancer. This review provides an overview of specific components of the TME, an introduction to novel immune checkpoints, followed by a survey of present day and future combination immune modulatory therapies. The idea that the immune system can recognize and destroy tumor cells was first described in the cancer immunosurveillance hypothesis of Burnet and Thomas. However, early experimental evidence failed to support the concept. It was not until the late 1990s when seminal papers clearly showed the existence of cancer immunosurveillance, leading to the cancer immunoediting hypothesis. In this century, progress in the understanding of negative regulators of the immune response led to the discovery that inhibition of these regulators in patients with cancer could lead to dramatic and durable remissions. Drs. Tasuku Honjo and James P. Allison were awarded the Nobel Prize in 2018 for their pioneering work in this field. We now see rapid advances in cancer immunology and emerging effective therapies revolutionizing cancer care across tumor types in the clinic, while pre-clinical research is moving from a focus on the malignant cells themselves to dissect the highly heterogenic and complex multi-cellular tumor microenvironment (TME).
Collapse
Affiliation(s)
- Qianyu Guo
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Fan Huang
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Christophe Goncalves
- Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Sonia V Del Rincón
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Wilson H Miller
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada; Rossy Cancer Network, Montreal, QC, Canada.
| |
Collapse
|
44
|
Hinze L, Pfirrmann M, Karim S, Degar J, McGuckin C, Vinjamur D, Sacher J, Stevenson KE, Neuberg DS, Orellana E, Stanulla M, Gregory RI, Bauer DE, Wagner FF, Stegmaier K, Gutierrez A. Synthetic Lethality of Wnt Pathway Activation and Asparaginase in Drug-Resistant Acute Leukemias. Cancer Cell 2019; 35:664-676.e7. [PMID: 30991026 PMCID: PMC6541931 DOI: 10.1016/j.ccell.2019.03.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 02/05/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023]
Abstract
Resistance to asparaginase, an antileukemic enzyme that depletes asparagine, is a common clinical problem. Using a genome-wide CRISPR/Cas9 screen, we found a synthetic lethal interaction between Wnt pathway activation and asparaginase in acute leukemias resistant to this enzyme. Wnt pathway activation induced asparaginase sensitivity in distinct treatment-resistant subtypes of acute leukemia, but not in normal hematopoietic progenitors. Sensitization to asparaginase was mediated by Wnt-dependent stabilization of proteins (Wnt/STOP), which inhibits glycogen synthase kinase 3 (GSK3)-dependent protein ubiquitination and proteasomal degradation, a catabolic source of asparagine. Inhibiting the alpha isoform of GSK3 phenocopied this effect, and pharmacologic GSK3α inhibition profoundly sensitized drug-resistant leukemias to asparaginase. Our findings provide a molecular rationale for activation of Wnt/STOP signaling to improve the therapeutic index of asparaginase.
Collapse
Affiliation(s)
- Laura Hinze
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover 30625, Germany
| | - Maren Pfirrmann
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Salmaan Karim
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - James Degar
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Connor McGuckin
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Divya Vinjamur
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Joshua Sacher
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Kristen E Stevenson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02445, USA
| | - Donna S Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02445, USA
| | - Esteban Orellana
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover 30625, Germany
| | - Richard I Gregory
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02445, USA
| | - Florence F Wagner
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Kimberly Stegmaier
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02445, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02445, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
45
|
Wang Y, Dou X, Jiang L, Jin H, Zhang L, Zhang L, Liu Z. Discovery of novel glycogen synthase kinase-3α inhibitors: Structure-based virtual screening, preliminary SAR and biological evaluation for treatment of acute myeloid leukemia. Eur J Med Chem 2019; 171:221-234. [PMID: 30925338 DOI: 10.1016/j.ejmech.2019.03.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 12/26/2022]
Abstract
Glycogen synthase kinase 3α (GSK-3α) plays a constitutive role in various physiological processes and has been proved to be a therapeutic target for acute myeloid leukemia (AML). In this paper, by means of computer-aided drug design, we discovered a novel chemical series of GSK-3α inhibitors with an IC50 value of 0.033-2.804 μM. The preliminary structure-activity relationship was concluded and, notably, the most potent and isoform-selective compound G28_14 was identified with IC50 values of 33 nM and 218 nM against GSK-3α and -3β, respectively, exhibiting a nearly ten-fold isoform-selectivity. Further cell viability assays and colony formation assays revealed that G28_14 suppressed cell survival by impairing cell proliferation by up to 90% in two AML cell lines. Moreover, surface marker expression analysis demonstrated that G28_14 induced terminal differentiation with a high level of CD11b, CD11c, and CD14. Western immunoblotting showed that G28_14 isoform-selectively inhibited the phosphorylation of GSK-3α in-cell without activating Wnt/β-catenin signaling. In addition, to elucidate its structure-activity relationship, the binding mode of this chemical series was proposed using molecular docking and molecular dynamics simulations. Taken together, this chemical series is worth developing as differentiation therapies for the treatment of AML.
Collapse
Affiliation(s)
- Yanxing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Lan Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
46
|
Kuenzi BM, Remsing Rix LL, Kinose F, Kroeger JL, Lancet JE, Padron E, Rix U. Off-target based drug repurposing opportunities for tivantinib in acute myeloid leukemia. Sci Rep 2019; 9:606. [PMID: 30679640 PMCID: PMC6345777 DOI: 10.1038/s41598-018-37174-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023] Open
Abstract
GSK3α has been identified as a new target in the treatment of acute myeloid leukemia (AML). However, most GSK3 inhibitors lack specificity for GSK3α over GSK3β and other kinases. We have previously shown in lung cancer cells that GSK3α and to a lesser extent GSK3β are inhibited by the advanced clinical candidate tivantinib (ARQ197), which was designed as a MET inhibitor. Thus, we hypothesized that tivantinib would be an effective therapy for the treatment of AML. Here, we show that tivantinib has potent anticancer activity across several AML cell lines and primary patient cells. Tivantinib strongly induced apoptosis, differentiation and G2/M cell cycle arrest and caused less undesirable stabilization of β-catenin compared to the pan-GSK3 inhibitor LiCl. Subsequent drug combination studies identified the BCL-2 inhibitor ABT-199 to synergize with tivantinib while cytarabine combination with tivantinib was antagonistic. Interestingly, the addition of ABT-199 to tivantinib completely abrogated tivantinib induced β-catenin stabilization. Tivantinib alone, or in combination with ABT-199, downregulated anti-apoptotic MCL-1 and BCL-XL levels, which likely contribute to the observed synergy. Importantly, tivantinib as single agent or in combination with ABT-199 significantly inhibited the colony forming capacity of primary patient AML bone marrow mononuclear cells. In summary, tivantinib is a novel GSK3α/β inhibitor that potently kills AML cells and tivantinib single agent or combination therapy with ABT-199 may represent attractive new therapeutic opportunities for AML.
Collapse
Affiliation(s)
- Brent M Kuenzi
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, 33612, United States.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, 33620, United States
| | - Lily L Remsing Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, 33612, United States
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, 33612, United States
| | - Jodi L Kroeger
- Flow Cytometry Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, 33612, United States
| | - Jeffrey E Lancet
- Department of Hematologic Malignancies, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, 33612, United States
| | - Eric Padron
- Department of Hematologic Malignancies, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, 33612, United States
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, 33612, United States.
| |
Collapse
|
47
|
Lynch JR, Salik B, Connerty P, Vick B, Leung H, Pijning A, Jeremias I, Spiekermann K, Trahair T, Liu T, Haber M, Norris MD, Woo AJ, Hogg P, Wang J, Wang JY. JMJD1C-mediated metabolic dysregulation contributes to HOXA9-dependent leukemogenesis. Leukemia 2019; 33:1400-1410. [DOI: 10.1038/s41375-018-0354-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
|
48
|
Benajiba L, Alexe G, Su A, Raffoux E, Soulier J, Hemann MT, Hermine O, Itzykson R, Stegmaier K, Puissant A. Creatine kinase pathway inhibition alters GSK3 and WNT signaling in EVI1-positive AML. Leukemia 2018; 33:800-804. [PMID: 30390009 DOI: 10.1038/s41375-018-0291-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/24/2018] [Accepted: 09/18/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Lina Benajiba
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA.,INSERM U1163 and CNRS 8254, Imagine Institute, Université Paris Saclay, Paris, France
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA.,Bioinformatics Graduate Program, Boston University, Boston, MA, USA
| | - Angela Su
- INSERM UMR 944, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
| | - Emmanuel Raffoux
- Département d'Hématologie, Hôpital Saint-Louis, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Jean Soulier
- Département d'Hématologie, Hôpital Saint-Louis, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Michael T Hemann
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olivier Hermine
- INSERM U1163 and CNRS 8254, Imagine Institute, Université Paris Saclay, Paris, France
| | - Raphael Itzykson
- INSERM UMR 944, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France.,Département d'Hématologie, Hôpital Saint-Louis, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. .,The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Alexandre Puissant
- INSERM UMR 944, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France.
| |
Collapse
|
49
|
Lin B, Srikanth P, Castle AC, Nigwekar S, Malhotra R, Galloway JL, Sykes DB, Rajagopal J. Modulating Cell Fate as a Therapeutic Strategy. Cell Stem Cell 2018; 23:329-341. [PMID: 29910150 PMCID: PMC6128730 DOI: 10.1016/j.stem.2018.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In injured tissues, regeneration is often associated with cell fate plasticity, in that cells deviate from their normal lineage paths. It is becoming increasingly clear that this plasticity often creates alternative strategies to restore damaged or lost cells. Alternatively, cell fate plasticity is also part and parcel of pathologic tissue transformations that accompany disease. In this Perspective, we summarize a few illustrative examples of physiologic and aberrant cellular plasticity. Then, we speculate on how one could enhance endogenous plasticity to promote regeneration and reverse pathologic plasticity, perhaps inspiring interest in a new class of therapies targeting cell fate modulation.
Collapse
Affiliation(s)
- Brian Lin
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Priya Srikanth
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alison C Castle
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sagar Nigwekar
- Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rajeev Malhotra
- Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, MA 02114, USA.
| |
Collapse
|
50
|
Liu X, Klein PS. Glycogen synthase kinase-3 and alternative splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1501. [PMID: 30118183 DOI: 10.1002/wrna.1501] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a highly conserved negative regulator of receptor tyrosine kinase, cytokine, and Wnt signaling pathways. Stimulation of these pathways inhibits GSK-3 to modulate diverse downstream effectors that include transcription factors, nutrient sensors, glycogen synthesis, mitochondrial function, circadian rhythm, and cell fate. GSK-3 also regulates alternative splicing in response to T-cell receptor activation, and recent phosphoproteomic studies have revealed that multiple splicing factors and regulators of RNA biosynthesis are phosphorylated in a GSK-3-dependent manner. Furthermore, inhibition of GSK-3 alters the splicing of hundreds of mRNAs, indicating a broad role for GSK-3 in the regulation of RNA processing. GSK-3-regulated phosphoproteins include SF3B1, SRSF2, PSF, RBM8A, nucleophosmin 1 (NPM1), and PHF6, many of which are mutated in leukemia and myelodysplasia. As GSK-3 is inhibited by pathways that are pathologically activated in leukemia and loss of Gsk3 in hematopoietic cells causes a severe myelodysplastic neoplasm in mice, these findings strongly implicate GSK-3 as a critical regulator of mRNA processing in normal and malignant hematopoiesis. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Xiaolei Liu
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter S Klein
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|