1
|
Huang H, Zhang W, Wu Q, Zhang L, Wu Y, Tong H, Su M. Fucoxanthin Targets β1 Integrin to Disrupt Adhesion and Migration in Human Glioma Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40261208 DOI: 10.1021/acs.jafc.4c10108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Glioblastoma, the most aggressive type of primary brain tumor, is marked by high invasiveness and metastasis, posing significant challenges in treatment. Fucoxanthin, a carotenoid derived from brown macroalgae, has demonstrated therapeutic potential in cancer therapy; however, its precise mechanisms of action remain unclear. In this study, we explored the inhibitory effects of fucoxanthin on integrin-mediated adhesion and migration in human glioma U-87 MG cells, shedding light on its potential antimetastatic properties. Our data indicated that fucoxanthin at 1 μM did not affect cell viability but inhibited integrin-mediated adhesion of human glioma U-87 MG cells to fibronectin, a key extracellular matrix (ECM) ligand for integrins, without affecting adhesion to poly-l-lysine, a nonintegrin ligand, indicating its selective impact on integrin-mediated adhesion. Fucoxanthin treatment significantly reduced the size and number of focal adhesions (FA), which play a central role in cell adhesion and migration. In addition, fucoxanthin significantly impaired U-87 MG cell migratory capacity, including a reduced accumulated migration distance and velocity, determined by time-lapse videomicroscopy. Further, fucoxanthin remarkably inhibited integrin engagement-mediated actin polymerization, Vav3 phosphorylation, and the downstream activation of Rac1, FAK, and paxillin, further supporting its role in disrupting integrin signaling and cytoskeletal remodeling. Additionally, complementary experiments utilizing protein binding assays, competitive ELISA, CETSA, DARTS, and MST collectively confirmed the direct interaction between fucoxanthin and β1 integrin as well as reduced ligand affinity of β1 integrin for fibronectin. The theoretical model of molecular docking and the dynamics simulation align with our experimental findings, providing a plausible mechanism by which fucoxanthin competitively inhibits the binding of β1 integrin to fibronectin. In summary, our study highlights fucoxanthin as a promising therapeutic agent that impairs integrin-mediated adhesion and migration in glioblastoma cells by directly targeting β1 integrin and disrupting integrin signaling pathways. These findings offer valuable insights into the potential of fucoxanthin as an antimetastatic agent in glioblastoma treatment.
Collapse
Affiliation(s)
- Hui Huang
- Department of Pharmacy, Wenzhou Hospital of Intergrated Traditonal Chinese and Western Medicine, Wenzhou 325000, China
| | - Wen Zhang
- Department of Neurosurgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Qifang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Lin Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Meng Su
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| |
Collapse
|
2
|
Jiang K, Xu Y, Wang Y, Yin N, Huang F, Chen M. Deciphering the role of IL-17D, its newly identified receptor CD93, and IL-17D-CD93 axis in health and disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf061. [PMID: 40258301 DOI: 10.1093/jimmun/vkaf061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 02/23/2025] [Indexed: 04/23/2025]
Abstract
This review explores interleukin (IL)-17D and its receptor CD93, highlighting their structural, functional, and clinical aspects. Identifying CD93 as the receptor for IL-17D has advanced understanding of the IL-17 family and its signaling pathways. IL-17D, with its unique glycoprotein structure, plays diverse roles in oxidative stress response and potential antitumor therapies. It is involved in autoimmune diseases, infections, and cancers, making it a promising therapeutic target. CD93 is crucial in various biological processes, from angiogenesis to inflammatory diseases. CD93's implications in cancers, neuroinflammation, and metabolism highlight its significance as a potential prognostic marker and therapeutic target. The review emphasizes IL-17D and CD93 as promising areas for future research, offering insights into their signaling pathways and potential applications in personalized medicine. Deciphering the relationship between IL-17D and CD93 is in its infancy and invites exploration for transformative advancements in immunology and beyond.
Collapse
Affiliation(s)
- Kexin Jiang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
- Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yanjiani Xu
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
- Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yan Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
- Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Nanhao Yin
- Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fangyang Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
- Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
- Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Raucci L, Perrone CD, Barbera S, de Boer LJ, Tosi GM, Brunetti J, Bracci L, Pozzi C, Galvagni F, Orlandini M. Structural and antigen-binding surface definition of an anti-CD93 monoclonal antibody for the treatment of degenerative vascular eye diseases. Int J Biol Macromol 2025; 309:143118. [PMID: 40228767 DOI: 10.1016/j.ijbiomac.2025.143118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
CD93 is a receptor predominantly expressed on the surface of endothelial cells, where it plays a pivotal role in angiogenesis through its interaction with the extracellular matrix. In our previous studies, we identified the monoclonal antibody 4E1 as a potent inhibitor of angiogenesis by targeting the CD93-Multimerin-2 axis. Here, we report the development of 4E1 as a recombinant whole immunoglobulin and a single-chain variable fragment, designated sc-4E. Both formats retained the binding properties of the parental monoclonal antibody and exhibited comparable inhibitory effects on endothelial cell migration and differentiation. To elucidate the molecular basis of the 4E1-CD93 interaction, we initially employed machine learning-based modeling and docking analyses of the variable heavy and light domains of 4E1. Subsequent crystallographic analysis of sc-4E provided high-resolution structural insights, confirming and validating the predicted model. Further docking experiments and molecular dynamics simulations using the crystallographic structures of CD93 and sc-4E revealed that the interaction is primarily mediated by the CDR-H3 and CDR-L2 loops. Notably, these regions engage with the sushi-like domain of CD93, which is critical for its interaction with Multimerin-2. This comprehensive structural and functional characterization of 4E1 and sc-4E underscores their potential as anti-angiogenic agents. By effectively inhibiting endothelial cell migration and differentiation, 4E1 derivatives represent promising therapeutic candidates for the treatment of ocular vascular diseases driven by pathological angiogenesis.
Collapse
Affiliation(s)
- Luisa Raucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy
| | - Cosimo Damiano Perrone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy
| | - Stefano Barbera
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy; Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala SE-75185, Sweden
| | - Laurens Julius de Boer
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy
| | - Gian Marco Tosi
- Department of Medicine, Surgery and Neuroscience, Ophthalmology Unit, University of Siena, Siena 53100, Italy
| | - Jlenia Brunetti
- Department of Medical Biotechnology, University of Siena, Siena 53100, Italy
| | - Luisa Bracci
- Department of Medical Biotechnology, University of Siena, Siena 53100, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, FI 50019, Italy.
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy.
| |
Collapse
|
4
|
Zhang Y, Dong X, Zhang Y, Chen Z, Zhou G, Chen N, Shen W, Yang K, Pei P. Biomaterials to regulate tumor extracellular matrix in immunotherapy. J Control Release 2024; 376:149-166. [PMID: 39389365 DOI: 10.1016/j.jconrel.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The tumor extracellular matrix (ECM) provides physical support and influences tumor development, metastasis, and the tumor microenvironment, creating barriers to immune drug delivery and cell infiltration. Therefore, modulating or degrading the ECM is of significant importance to enhance the efficacy of tumor immunotherapy. This manuscript initially summarizes the main strategies and mechanisms of biomaterials in modulating various components of the ECM, including collagen, fibronectin, hyaluronic acid, and in remodeling the ECM. Subsequently, it discusses the benefits of biomaterials for immunotherapy following ECM modulation, such as promoting the infiltration of drugs and immune cells, regulating immune cell function, and alleviating the immunosuppressive microenvironment. The manuscript also briefly introduces the application of biomaterials that utilize and mimic the ECM for tumor immunotherapy. Finally, it addresses the current challenges and future directions in this field, providing a comprehensive overview of the potential and innovation in leveraging biomaterials to enhance cancer treatment outcomes. Our work will offer a comprehensive overview of ECM modulation strategies and their application in biomaterials to enhance tumor immunotherapy.
Collapse
Affiliation(s)
- Yujie Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuexue Dong
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Yanxiang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zetong Chen
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China; Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Ni Chen
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China.
| | - Wenhao Shen
- Department of Oncology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Jiangsu, China.
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Department of Nuclear Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China; Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China.
| |
Collapse
|
5
|
Onyeogaziri FC, Smith R, Arce M, Huang H, Erzar I, Rorsman C, Malinverno M, Orsenigo F, Sundell V, Fernando D, Daniel G, Niemelä M, Laakso A, Jahromi BR, Olsson AK, Magnusson PU. Pharmacological blocking of neutrophil extracellular traps attenuates immunothrombosis and neuroinflammation in cerebral cavernous malformation. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1549-1567. [PMID: 39632986 PMCID: PMC11634782 DOI: 10.1038/s44161-024-00577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Cerebral cavernous malformation (CCM) is a neurovascular disease with symptoms such as strokes, hemorrhages and neurological deficits. With surgery being the only treatment strategy, understanding the molecular mechanisms of CCM is crucial in finding alternative therapeutic options for CCM. Neutrophil extracellular traps (NETs) were recently reported in CCM, and NETs were shown to have positive or negative effects in different disease contexts. In this study, we investigated the roles of NETs in CCM by pharmacologically inhibiting NET formation using Cl-amidine (a peptidyl arginine deiminase inhibitor). We show here that Cl-amidine treatment reduced lesion burden, coagulation and endothelial-to-mesenchymal transition. Furthermore, NETs promoted the activation of microglia and fibroblasts, leading to increased neuroinflammation and a chronic wound microenvironment in CCM. The inhibition of NET formation caused endothelial quiescence and promoted a healthier microenvironment. Our study suggests the inhibition of NETs as a potential therapeutic strategy in CCM.
Collapse
Affiliation(s)
- Favour C Onyeogaziri
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ross Smith
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maximiliano Arce
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hua Huang
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Iza Erzar
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Charlotte Rorsman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Matteo Malinverno
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Fabrizio Orsenigo
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Veronica Sundell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Dinesh Fernando
- Department of Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Geoffrey Daniel
- Department of Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mika Niemelä
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aki Laakso
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Behnam Rezai Jahromi
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Yao K, Yang M, Shu M, Wang T, Gao D, Zhou L, Wang G, Zhang Z, Tang J. SOX4 promotes vascular abnormality in glioblastoma and is a novel target to improve drug delivery. Transl Oncol 2024; 50:102120. [PMID: 39288695 PMCID: PMC11421337 DOI: 10.1016/j.tranon.2024.102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults with dismal prognosis. Vascular abnormality is a hallmark of GBM, and aggravates diseases progression by increasing hypoxia, inducing life-threaten edema and hindering drug delivery. Nonetheless, the intricate mechanism underlying vascular abnormality remains inadequately understood. Here, we revealed a key role of SOX4 on vascular abnormality in GBM. SOX4 expression was increased in endothelial cells (ECs) from human brain tumors compared with ECs from paired normal brain tissue. Knockdown of SOX4 in mouse brain ECs restrained cell migration and proliferation. Furthermore, in vitro suppression of SOX4 in brain ECs and in vivo conditional knockout of SOX4 in tumor ECs led to the downregulation of genes linked with vascular abnormality. Notably, specific depletion of SOX4 in ECs enhanced drug delivery and sensitive tumor to chemotherapeutic drugs in GBM. Taken together, these results demonstrated that SOX4 is a novel regulator for tumor angiogenesis and vascular abnormality in GBM. Our findings identify SOX4 as a potential vascular therapeutic target to improve drug delivery for GBM treatment.
Collapse
Affiliation(s)
- Kunhua Yao
- Department of Neurosurgery, First Affiliated Hospital of Hunan University of Medicine, Huaihua 418000, PR China
| | - Mingbiao Yang
- Department of Neurosurgery, First Affiliated Hospital of Hunan University of Medicine, Huaihua 418000, PR China
| | - Mi Shu
- Trauma Center, First Affiliated Hospital of Hunan University of Medicine, Huaihua 418000, PR China
| | - Tian Wang
- Department of Oncology, Xintai Hospital of Traditional Chinese Medicine, Tai'an, Shandong 271299,PR China
| | - Dan Gao
- Trauma Center, First Affiliated Hospital of Hunan University of Medicine, Huaihua 418000, PR China
| | - Liqi Zhou
- Trauma Center, First Affiliated Hospital of Hunan University of Medicine, Huaihua 418000, PR China
| | - Guangwei Wang
- Biomedical Research Center, Hunan University of Medicine, Huaihua 418000, PR China
| | - Zaiqi Zhang
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, Hunan 418000, PR China.
| | - Jiefu Tang
- Trauma Center, First Affiliated Hospital of Hunan University of Medicine, Huaihua 418000, PR China.
| |
Collapse
|
7
|
Liang Y, Zhang S, Wang D, Ji P, Zhang B, Wu P, Wang L, Liu Z, Wang J, Duan Y, Yuan L. Dual-Functional Nanodroplet for Tumor Vasculature Ultrasound Imaging and Tumor Immunosuppressive Microenvironment Remodeling. Adv Healthc Mater 2024; 13:e2401274. [PMID: 39031111 DOI: 10.1002/adhm.202401274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/24/2024] [Indexed: 07/22/2024]
Abstract
Accurately evaluating tumor neoangiogenesis and conducting precise interventions toward an immune-favorable microenvironment are of significant clinical importance. In this study, a novel nanodroplet termed as the nanodroplet-based ultrasound contrast agent and therapeutic (NDsUCA/Tx) is designed for ultrasound imaging and precise interventions of tumor neoangiogenesis. Briefly, the NDsUCA/Tx shell is constructed from an engineered CMs containing the tumor antigen, vascular endothelial growth factor receptor 1 (VEGFR1) extracellular domain 2-3, and CD93 ligand multimerin 2. The core is composed of perfluorohexane and the immune adjuvant R848. After injection, NDsUCA/Tx is found to be enriched in the tumor vasculature with high expression of CD93. When triggered by ultrasound, the perfluorohexane in NDsUCA/Tx underwent acoustic droplet vaporization and generated an enhanced ultrasound signal. Some microbubbles exploded and the resultant debris (with tumor antigen and R848) together with the adsorbed VEGF are taken up by nearby cells. This cleared the local VEGF for vascular normalization, and also served as a vaccine to activate the immune response. Using a syngeneic mouse model, the satisfactory performance of NDsUCA/Tx in tumor vasculature imaging and immune activation is confirmed. Thus, a multifunctional NDsUCA/Tx is successfully developed for molecular imaging of tumor neoangiogenesis and precise remodeling of the tumor microenvironment.
Collapse
Affiliation(s)
- Yuan Liang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China
| | - Siyan Zhang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China
| | - Dingyi Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China
| | - Panpan Ji
- Department of Digestive Surgery Xijing Hospital, Air Force Medical University, Xi'an, 710032, P. R. China
| | - Bin Zhang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China
| | - Pengying Wu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China
| | - Lantian Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China
| | - Zhaoyou Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China
| | - Jia Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China
| | - Yunyou Duan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China
| |
Collapse
|
8
|
Zhang Y, Liu Y, Ma Y, Xu Y, Wang G, Han X. CD93 aggravates cell proliferation, angiogenesis and immune escape in osteosarcoma through triggering the PI3K/AKT pathway. J Orthop Sci 2024:S0949-2658(24)00204-5. [PMID: 39542800 DOI: 10.1016/j.jos.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Osteosarcoma is the most familiar primary malignant tumor occurred in bone in young people and is featured by complicated genetic changes. CD93 has been affirmed to exhibit the facilitative roles in multiple cancers. METHODS But, the detailed impacts and related regulatory pathway of CD93 in osteosarcoma progression maintain unclear. RESULTS In this study, the elevated expression of CD93 was verified in osteosarcoma tissues from GEO database. Additionally, it was illustrated that CD93 existed the aggrandized mRNA and protein expressions in osteosarcoma cell lines. Moreover, suppression of CD93 restrained cell proliferation and angiogenesis in osteosarcoma. It was demonstrated that inhibition of CD93 retarded immune escape in osteosarcoma. Furthermore, CD93 triggered the PI3K/AKT pathway to aggravate the progression of osteosarcoma. At last, it was discovered that knockdown of CD93 attenuated tumor growth in vivo. CONCLUSIONS In conclusion, this study disclosed that CD93 aggravated cell proliferation, angiogenesis and immune escape in osteosarcoma through triggering the PI3K/AKT pathway. This work may supply useful opinions of CD93 on the cure of osteosarcoma.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China
| | - Yongheng Liu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China
| | - Yulin Ma
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China
| | - Yao Xu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China
| | - Xiuxin Han
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China.
| |
Collapse
|
9
|
Yu Y, Liu H, Xu L, Hu P, Cui N, Long J, Wu X, Long D, Zhou Z. Reendothelialization of Acellular Adipose Flaps under Mimetic Physiological Dynamic Conditions. Tissue Eng Part A 2024; 30:693-703. [PMID: 38562116 DOI: 10.1089/ten.tea.2023.0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The extensive soft-tissue defects resulting from trauma and tumors pose a prevalent challenge in clinical practice, characterized by a high incidence rate. Autologous tissue flap transplantation, considered the gold standard for treatment, is associated with various drawbacks, including the sacrifice of donor sources, postoperative complications, and limitations in surgical techniques, thereby impeding its widespread applicability. The emergence of tissue-engineered skin flaps, notably the acellular adipose flap (AAF), offers potential alternative solutions. However, a critical concern confronting large-scale tissue-engineered skin flaps currently revolves around the reendothelialization of internal vascular networks. In our study, we have developed an AAF utilizing perfusion decellularization, demonstrating excellent physical properties. Cytocompatibility experiments have confirmed its cellular safety, and cell adhesion experiments have revealed spatial specificity in facilitating endothelial cells adhesion within the adipose flap scaffold. Using a novel mimetic physiological fluid shear stress setting, endothelial cells were dynamically inoculated and cultured within the acellular vascular network of the pedicled AAF in our research. Histological and gene expression analyses have shown that the mimetic physiological fluid dynamic model significantly enhanced the reendothelialization of the AAF. This innovative platform of acellular adipose biomaterials combined with hydrodynamics may offer valuable insights for the design and manufacturing of 3D vascularized tissue constructs, which can be applied to the repair of extensive soft-tissue defects. Impact Statement This study investigated reendothelialization of the acellular adipose flap (AAF) using 2D and 3D culture models in vitro. Under 2D conditions, AAF regulated endothelial cells morphology with spatial differences. A 3D mimetic physiological hydrodynamics culture model was constructed to investigate the AAF reendothelialization. Exposure of endothelial cells to physiologically fluid shear stress improved the AAF reendothelialization and increased the expression of the extracellular matrix-integrins-cytoskeleton pathway. Conversely, exposure to nonphysiological hydrodynamics and static environments decreased the reendothelialization. These findings suggest that the platform of AAF combined with physiological hydrodynamics can be applied to construct vascularized tissues to repair large-scale soft-tissue defects.
Collapse
Affiliation(s)
- Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Xu
- Department of Ophthalmology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Hu
- Department of Ophthalmology, Hunan University of Chinese Medicine, Changsha, China
| | - Ning Cui
- Department of Ophthalmology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyi Long
- Department of Ophthalmology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Wu
- Department of Ophthalmology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Da Long
- Department of Ophthalmology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengbing Zhou
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Zhu Q, Nambiar R, Schultz E, Gao X, Liang S, Flamand Y, Stevenson K, Cole PD, Gennarini L, Harris MH, Kahn JM, Ladas EJ, Athale UH, Tran TH, Michon B, Welch JJ, Sallan SE, Silverman LB, Kelly KM, Yao S. Genome-wide study identifies novel genes associated with bone toxicities in children with acute lymphoblastic leukaemia. Br J Haematol 2024; 205:1889-1898. [PMID: 39143423 PMCID: PMC11568943 DOI: 10.1111/bjh.19696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/27/2024] [Indexed: 08/16/2024]
Abstract
Bone toxicities are common among paediatric patients treated for acute lymphoblastic leukaemia (ALL) with potentially major negative impact on patients' quality of life. To identify the underlying genetic contributors, we conducted a genome-wide association study (GWAS) and a transcriptome-wide association study (TWAS) in 260 patients of European-descent from the DFCI 05-001 ALL trial, with validation in 101 patients of European-descent from the DFCI 11-001 ALL trial. We identified a significant association between rs844882 on chromosome 20 and bone toxicities in the DFCI 05-001 trial (p = 1.7 × 10-8). In DFCI 11-001 trial, we observed a consistent trend of this variant with fracture. The variant was an eQTL for two nearby genes, CD93 and THBD. In TWAS, genetically predicted ACAD9 expression was associated with an increased risk of bone toxicities, which was confirmed by meta-analysis of the two cohorts (meta-p = 2.4 × 10-6). In addition, a polygenic risk score of heel quantitative ultrasound speed of sound was associated with fracture risk in both cohorts (meta-p = 2.3 × 10-3). Our findings highlight the genetic influence on treatment-related bone toxicities in this patient population. The genes we identified in our study provide new biological insights into the development of bone adverse events related to ALL treatment.
Collapse
Affiliation(s)
- Qianqian Zhu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Ram Nambiar
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Emily Schultz
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Xinyu Gao
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Shuyi Liang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Yael Flamand
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Kristen Stevenson
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Peter D. Cole
- Division of Pediatric Hematology/Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Lisa Gennarini
- Division of Pediatric Hematology, Oncology and Cellular Therapy, Children’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY
| | | | - Justine M. Kahn
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Irving Medical Center, New York, NY
| | - Elena J. Ladas
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Irving Medical Center, New York, NY
| | - Uma H. Athale
- Division of Pediatric Hematology/Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Thai Hoa Tran
- Division of Pediatric Hematology and Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Bruno Michon
- Division of Hematology-Oncology, Centre Hospitalier Universitaire de Québec, Quebec City, Canada
| | - Jennifer J.G. Welch
- Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Stephen E. Sallan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Pediatric Hematology-Oncology, Boston Children’s Hospital, Boston, MA
| | - Lewis B. Silverman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Pediatric Hematology-Oncology, Boston Children’s Hospital, Boston, MA
| | - Kara M. Kelly
- Department of Pediatric Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
11
|
Huang D, Mela A, Bhanu NV, Garcia BA, Canoll P, Casaccia P. PDGF-BB overexpression in p53 null oligodendrocyte progenitors increases H3K27me3 and induces transcriptional changes which favor proliferation. Neoplasia 2024; 57:101042. [PMID: 39216363 PMCID: PMC11402553 DOI: 10.1016/j.neo.2024.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Proneural gliomas are brain tumors characterized by enrichment of oligodendrocyte progenitor cell (OPC) transcripts and genetic alterations. In this study we sought to identify transcriptional and epigenetic differences between OPCs with Trp53 deletion and PDGF-BB overexpression (BB-p53n) and those carrying only p53 deletion (p53n). In culture, the BB-p53n OPCs display growth characteristics more similar to glioma cells than p53n OPCs. When injected in mouse brains, BB-p53n OPC form tumors, while the p53n OPCs do not. Unbiased histone proteomics and transcriptomic analysis on these OPC populations identified higher levels of the histone H3K27me3 mark and lower levels of the histone H4K20me3. The transcriptome of the BB-p53n OPCs was characterized by higher levels of transcripts related to proliferation and cell adhesion compared to p53n OPCs. Pharmacological inhibition of the enzyme responsible for histone H3K27 trimethylation (EZH2i) in BB-p53n OPCs, reduced cell cycle transcripts and increased the expression of differentiation markers, but was not sufficient to restore their growth characteristics. This suggests that PDGF-BB overexpression in p53n OPCs favors the early stages of transformation, by promoting proliferation and halting differentiation in a H3K27me3-dependent pathway, and favoring growth characteristics in a H3K27me3 independent manner.
Collapse
Affiliation(s)
- Dennis Huang
- Program in Molecular, Cellular and Developmental Biology at The Graduate Center of The City University of New, York 365 5th Ave, New York, NY 10016, United States; Belfer Research Institute, City University of New York & Weill Cornell Medical College, 413 E 69th St, New York, NY 10021, United States; Neuroscience Initiative, Advance Science Research Center, Graduate Center of The City University of New York, 85 St Nicholas Terrace, New York, NY 10031, United States; Department of Biological Sciences, Hunter College, City University of New York, 695 Park Ave, New York, NY 10065, United States
| | - Angeliki Mela
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W 168th St, New York, NY 10032, United States
| | - Natarajan V Bhanu
- Department Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Benjamin A Garcia
- Department Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W 168th St, New York, NY 10032, United States
| | - Patrizia Casaccia
- Program in Molecular, Cellular and Developmental Biology at The Graduate Center of The City University of New, York 365 5th Ave, New York, NY 10016, United States; Neuroscience Initiative, Advance Science Research Center, Graduate Center of The City University of New York, 85 St Nicholas Terrace, New York, NY 10031, United States.
| |
Collapse
|
12
|
Jiang D, Huang A, Zhu BX, Gong J, Ruan YH, Liu XC, Zheng L, Wu Y. Targeting CD93 on monocytes revitalizes antitumor immunity by enhancing the function and infiltration of CD8 + T cells. J Immunother Cancer 2024; 12:e010148. [PMID: 39448202 PMCID: PMC11499807 DOI: 10.1136/jitc-2024-010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Limited activation and infiltration of CD8+ T cells are major challenges facing T cell-based immunotherapy for most solid tumors, of which the mechanism is multilayered and not yet fully understood. METHODS Levels of CD93 expression on monocytes from paired non-tumor, peritumor and tumor tissues of human hepatocellular carcinoma (HCC) were evaluated. The underlying mechanisms mediating effects of CD93+ monocytes on the inhibition and tumor exclusion of CD8+ T cells were studied through both in vitro and in vivo experiments. RESULTS In this study, we found that monocytes in the peritumoral tissues of HCC significantly increased levels of CD93 expression, and these CD93+ monocytes collocated with CD8+ T cells, whose density was much higher in peritumor than intratumor areas. In vitro experiments showed that glycolytic switch mediated tumor-induced CD93 upregulation in monocytes via the Erk signaling pathway. CD93 on the one hand could enhance PD-L1 expression through the AKT-GSK3β axis, while on the other hand inducing monocytes to produce versican, a type of matrix component which interacted with hyaluronan and collagens to inhibit CD8+ T cell migration. Consistently, levels of CD93+ monocytes positively correlated with the density of peritumoral CD8+ T cells while negatively correlated with that of intratumoral CD8+ T cells. Targeting CD93 on monocytes not only increased the infiltration and activation of CD8+ T cells but also enhanced tumor sensitivity to anti-PD-1 treatment in mice in vivo. CONCLUSION This study identified an important mechanism contributing to the activation and limited infiltration of CD8+ T cells in solid tumors, and CD93+ monocytes might represent a plausible immunotherapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Da Jiang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Aiqi Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bai-Xi Zhu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiangling Gong
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yong-Hao Ruan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xing-Chen Liu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Limin Zheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Shen Y, Wu Y, Hao M, Fu M, Zhu K, Luo P, Wang J. Clinicopathological association of CD93 expression in gastric adenocarcinoma. J Cancer Res Clin Oncol 2024; 150:400. [PMID: 39190192 PMCID: PMC11349802 DOI: 10.1007/s00432-024-05874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 08/28/2024]
Abstract
AIMS CD93 was recently identified as a promising therapeutic target for angiogenesis blockade in various tumors. Herein, we aimed to investigate the expression and clinicopathological significance of CD93 in gastric adenocarcinoma. METHODS The gene expression of CD93 gastric adenocarcinoma was assessed using The Cancer Genome Atlas (TCGA) dataset. We then analyzed CD93 expression in 404 cases of gastric adenocarcinoma using immunohistochemistry. Clinicopathological associations and prognostic implications of CD93 expression were further investigated. RESULTS Using the TCGA dataset, we observed a significantly elevated CD93 gene expression in gastric adenocarcinoma compared to normal gastric tissues. The immunohistochemistry assay revealed a highly variable CD93 expression among patients with gastric adenocarcinoma, consistently demonstrating higher intratumor expression than in adjacent normal tissues. Notably, CD93 was predominantly expressed on the membrane of CD31+ vascular endothelial cells. Furthermore, patients with higher CD93 expression demonstrated significantly poorer overall survival. Accordingly, higher CD93 expression was associated with deeper invasion and a higher possibility of lymph node metastasis and developing tumor thrombus. Cox proportional hazards regression suggested CD93 expression was an independent predictor for the prognosis of patients with gastric adenocarcinoma. CONCLUSIONS Our study revealed a significantly higher CD93 expression in gastric adenocarcinoma when compared with adjacent normal gastric tissues, and demonstrated its predominant expression on vascular endothelial cells. Our findings also highlighted the clinicopathological significance of CD93 in gastric adenocarcinoma, shedding light on a potential therapeutic target.
Collapse
Affiliation(s)
- Yun Shen
- Department of Pathology, People's Hospital of Tongling City, Tongling, Anhui, China
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Yahui Wu
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Mengfei Hao
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
- Department of Pathology, the First Clinical College of Changzhi Medical College, No.161 Jiefang East Street, Changzhi, Shanxi, China
| | - Minghan Fu
- Department of Pathology, Yueyang Central Hospital, Yueyang, Hunan, China
| | - Kai Zhu
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
- Department of Pathology, the First Clinical College of Changzhi Medical College, No.161 Jiefang East Street, Changzhi, Shanxi, China
| | - Panru Luo
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
- Department of Pathology, the First Clinical College of Changzhi Medical College, No.161 Jiefang East Street, Changzhi, Shanxi, China
| | - Jinsheng Wang
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China.
- Department of Pathology, the First Clinical College of Changzhi Medical College, No.161 Jiefang East Street, Changzhi, Shanxi, China.
- Key Laboratory of Esophageal Cancer Basic Research and Clinical Transformation, Shanxi Provincial Health Commission, Changzhi, Shanxi, China.
| |
Collapse
|
14
|
Wei R, Zhou J, Bui B, Liu X. Glioma actively orchestrate a self-advantageous extracellular matrix to promote recurrence and progression. BMC Cancer 2024; 24:974. [PMID: 39118096 PMCID: PMC11308147 DOI: 10.1186/s12885-024-12751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
The intricate interplay between cancer cells and their surrounding microenvironment has emerged as a critical factor driving the aggressive progression of various malignancies, including gliomas. Among the various components of this dynamic microenvironment, the extracellular matrix (ECM) holds particular significance. Gliomas, intrinsic brain tumors that originate from neuroglial progenitor cells, have the remarkable ability to actively reform the ECM, reshaping the structural and biochemical landscape to their advantage. This phenomenon underscores the adaptability and aggressiveness of gliomas, and highlights the intricate crosstalk between tumor cells and their surrounding matrix.In this review, we delve into how glioma actively regulates glioma ECM to organize a favorable microenvironment for its survival, invasion, progression and therapy resistance. By unraveling the intricacies of glioma-induced ECM remodeling, we gain valuable insights into potential therapeutic strategies aimed at disrupting this symbiotic relationship and curbing the relentless advance of gliomas within the brain.
Collapse
Affiliation(s)
- Ruolun Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Jiasheng Zhou
- Medical Laboratory Science, Nantong University, Nantong, Jiangsu, China
| | - Brandon Bui
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Human Biology, Stanford University, Stanford, CA, USA
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
15
|
Prasad RR, Mishra N, Kant R, Fox JT, Shoemaker RH, Agarwal C, Raina K, Agarwal R. Effect of nonsteroidal anti-inflammatory drugs (aspirin and naproxen) on inflammation-associated proteomic profiles in mouse plasma and prostate during TMPRSS2-ERG (fusion)-driven prostate carcinogenesis. Mol Carcinog 2024; 63:1188-1204. [PMID: 38506376 PMCID: PMC11096027 DOI: 10.1002/mc.23718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Recent preclinical studies have shown that the intake of nonsteroidal anti-inflammatory drugs (NSAIDs) aspirin and naproxen could be an effective intervention strategy against TMPRSS2-ERG fusion-driven prostate tumorigenesis. Herein, as a follow-up mechanistic study, employing TMPRSS2-ERG (fusion) positive tumors and plasma from TMPRSS2-ERG. Ptenflox/flox mice, we profiled the stage specific proteomic changes (focused on inflammatory circulating and prostate tissue/tumor-specific cytokines, chemokines, and growth factors/growth signaling-associated molecules) that contribute to prostate cancer (PCa) growth and progression in the TMPRSS2-ERG fusion-driven mouse model of tumorigenesis. In addition, the association of the protective effects of NSAIDs (aspirin 1400 ppm and naproxen 400 ppm) with the modulation of these specific molecular pathways was determined. A sandwich Elisa based membrane array-proteome profiler identifying 111 distinct signaling molecules was employed. Overall, the plasma and prostate tissue sample analyses identified 54 significant and differentially expressed cytokines, chemokines, and growth factors/growth signaling-associated molecules between PCa afflicted mice (TMPRSS2-ERG. Ptenflox/flox, age-matched noncancerous controls, NSAIDs-supplemented and no-drug controls). Bioinformatic analysis of the array outcomes indicated that the protective effect of NSAIDs was associated with reduced expression of (a) tumor promoting inflammatory molecules (M-CSF, IL-33, CCL22, CCL12, CX3CL1, CHI3L1, and CD93), (b) growth factors- growth signaling-associated molecules (Chemerin, FGF acidic, Flt-3 ligand, IGFBP-5, and PEDF), and (c) tumor microenvironment/stromal remodeling proteins MMP2 and MMP9. Overall, our findings corroborate the pathological findings that protective effects of NSAIDs in TMPSS2-ERG fusion-driven prostate tumorigenesis are associated with antiproliferative and anti-inflammatory effects and possible modulation of the immune cell enriched microenvironment.
Collapse
Affiliation(s)
- Ram Raj Prasad
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Jennifer T. Fox
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Robert H. Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
16
|
Wang D, Xing C, Liang Y, Wang C, Zhao P, Liang X, Li Q, Yuan L. Ultrasound Imaging of Tumor Vascular CD93 with MMRN2 Modified Microbubbles for Immune Microenvironment Prediction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310421. [PMID: 38270289 DOI: 10.1002/adma.202310421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Vascular microenvironment is found to be closely related to immunotherapy efficacy. Identification and ultrasound imaging of the unique vascular characteristics, able to predict immune microenvironment, is important for immunotherapy decision-making. Herein, it is proved that high CD93 expression in the tumor vessels is closely related to the poor immune response of prostate cancer. For ultrasound molecular imaging of CD93, CD93-targeted microbubbles (MBs) consist a gaseous core and the MMRN2 (Multimerin-2) containing cell membrane (CM) /lipid hybrid membrane is then synthesized. In vitro and in vivo assays demonstrate that these MBs can recognize CD93 efficiently and then accumulate within tumor regions highly expressing CD93. Contrast-enhanced ultrasound (CEUS) imaging with CD93-targeted MBs demonstrates that targeted ultrasound intensity is negatively related to inflammatory tumor immune microenvironment (TIME) and cytotoxic T cell infiltration. Together, endothelial expression of CD93 in tumor is a unique predictor of immunosuppressive microenvironment and CD93-targeted MBs have a great potential to evaluate tumor immune status.
Collapse
Affiliation(s)
- Dingyi Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China
- Department of Ultrasound Diagnostics, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Changyang Xing
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China
| | - Yuan Liang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China
| | - Chen Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China
| | - Ping Zhao
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China
| | - Xiao Liang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China
| | - Qiuyang Li
- Department of Ultrasound Diagnostics, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China
| |
Collapse
|
17
|
Miao H, Wu Y, Ouyang H, Zhang P, Zheng W, Ma X. Screening and construction of nanobodies against human CD93 using phage libraries and study of their antiangiogenic effects. Front Bioeng Biotechnol 2024; 12:1372245. [PMID: 38751868 PMCID: PMC11094214 DOI: 10.3389/fbioe.2024.1372245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Background Cluster of Differentiation 93 (CD93) plays an important role in angiogenesis and is considered an important target for inhibiting tumor angiogenesis, but there are currently no therapeutic antibodies against CD93 in the clinic. Thus, we describe the screening of novel nanobodies (Nbs) targeting human CD93 from a phage library of shark-derived Nbs. Methods Screening and enrichment of phage libraries by enzyme-linked immunosorbent assay (ELISA). Anti-CD93 Nbs were purified by expression in E. coli. The binding affinity of anti-CD93 Nbs NC81/NC89 for CD93 was examined by flow cytometry (FC) and ELISA. The thermal stability of NC81/NC89 was examined by ELISA and CD spectroscopy. Afterward, the anti-angiogenic ability of NC81/NC89 was examined by MTT, wound healing assay, and tube formation assay. The expression level of VE-cadherin (VE-Ca) and CD93 was detected by Western Blot (WB). The binding sites and binding forms of NC81/NC89 to CD93 were analyzed by molecular docking. Results The anti-CD93 Nbs were screened in a phage library, expressed in E. coli, and purified to >95% purity. The results of FC and ELISA showed that NC81/NC89 have binding ability to human umbilical vein endothelial cells (HUVECs). The results of ELISA and CD spectroscopy showed that NC81/NC89 retained the ability to bind CD93 at 80°C and that the secondary structure remained stable. In vitro, the results showed that NC81 and NC89 significantly inhibited the proliferation and migration of human umbilical vein endothelial cells (HUVECs) as well as tube formation on Matrigel. Western Blot showed that NC81 and NC89 also inhibited the expression of VE-Ca thereby increasing vascular permeability. It was found during molecular docking that the CDR regions of NC81 and NC89 could be attached to CD93 by strong hydrogen bonds and salt bridges, and the binding sites were different. Conclusion We have successfully isolated NC81 and NC89, which bind CD93, and both Nbs significantly inhibit angiogenesis and increase vascular permeability. These results suggest that NC81 and NC89 have potential clinical applications in angiogenesis-related therapies.
Collapse
Affiliation(s)
- Hui Miao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiling Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hao Ouyang
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peiwen Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
18
|
Liu H, Zhang J, Zhao Y, Fan Z, Yang Y, Mao Y, Yang J, Ma S. CD93 regulates breast cancer growth and vasculogenic mimicry through the PI3K/AKT/SP2 signaling pathway activated by integrin β1. J Biochem Mol Toxicol 2024; 38:e23688. [PMID: 38511888 DOI: 10.1002/jbt.23688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/25/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
In women, breast cancer (BC) accounts for 7%-10% of all cancer cases and is one of the most common cancers. To identify a new method for treating BC, the role of CD93 and its underlying mechanism were explored. MDA-MB-231 cells were used in this study and transfected with si-CD93, si-MMRN2, oe-CD93, si-integrin β1, or oe-SP2 lentivirus. After MDA-MB-231 cells were transfected with si-NC or si-CD93, they were injected into nude mice by subcutaneous injection at a dose of 5 × 106/mouse to construct a BC animal model. The expression of genes and proteins and cell migration, invasion and vasculogenic mimicry were detected by RT‒qPCR, western blot, immunohistochemistry, immunofluorescence, Transwell, and angiogenesis assays. In pathological samples and BC cell lines, CD93 was highly expressed. Functionally, CD93 promoted the proliferation, migration, and vasculogenic mimicry of MDA-MB-231 cells. Moreover, CD93 interacts with MMRN2 and integrin β1. Knockdown of CD93 and MMRN2 can inhibit the activation of integrin β1, thereby inhibiting the PI3K/AKT/SP2 signaling pathway and inhibiting BC growth and vasculogenic mimicry. In conclusion, the binding of CD93 to MMRN2 can activate integrin β1, thereby activating the PI3K/AKT/SP2 signaling pathway and subsequently promoting BC growth and vasculogenic mimicry.
Collapse
Affiliation(s)
- Hong Liu
- Department of Thyroid & Breast Surgery, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| | - Jianhui Zhang
- Department of Thyroid & Breast Surgery, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| | - Yanjun Zhao
- Department of Thyroid & Breast Surgery, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| | - Zhixiong Fan
- Department of Thyroid & Breast Surgery, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| | - Yongheng Yang
- Department of Thyroid & Breast Surgery, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| | - Yuanyuan Mao
- Department of Radiology, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Jingyuan Yang
- Department of Thyroid & Breast Surgery, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| | - Shungao Ma
- Department of Clinical Laboratory, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| |
Collapse
|
19
|
Debnath K, Qayoom I, O'Donnell S, Ekiert J, Wang C, Sanborn MA, Liu C, Rivera A, Cho IS, Saichellappa S, Toth PT, Mehta D, Rehman J, Du X, Gao Y, Shin JW. Matrimeres are systemic nanoscale mediators of tissue integrity and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586585. [PMID: 38585943 PMCID: PMC10996590 DOI: 10.1101/2024.03.25.586585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Tissue barriers must be rapidly restored after injury to promote regeneration. However, the mechanism behind this process is unclear, particularly in cases where the underlying extracellular matrix is still compromised. Here, we report the discovery of matrimeres as constitutive nanoscale mediators of tissue integrity and function. We define matrimeres as non-vesicular nanoparticles secreted by cells, distinguished by a primary composition comprising at least one matrix protein and DNA molecules serving as scaffolds. Mesenchymal stromal cells assemble matrimeres from fibronectin and DNA within acidic intracellular compartments. Drawing inspiration from this biological process, we have achieved the successful reconstitution of matrimeres without cells. This was accomplished by using purified matrix proteins, including fibronectin and vitronectin, and DNA molecules under optimal acidic pH conditions, guided by the heparin-binding domain and phosphate backbone, respectively. Plasma fibronectin matrimeres circulate in the blood at homeostasis but exhibit a 10-fold decrease during systemic inflammatory injury in vivo . Exogenous matrimeres rapidly restore vascular integrity by actively reannealing endothelial cells post-injury and remain persistent in the host tissue matrix. The scalable production of matrimeres holds promise as a biologically inspired platform for regenerative nanomedicine.
Collapse
|
20
|
Xu Y, Sun Y, Zhu Y, Song G. Structural insight into CD93 recognition by IGFBP7. Structure 2024; 32:282-291.e4. [PMID: 38218180 DOI: 10.1016/j.str.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
The CD93/IGFBP7 axis proteins are key factors expressed in endothelial cells (EC) that mediate EC angiogenesis and migration. Their upregulation contributes to tumor vascular abnormality and a blockade of this interaction promotes a favorable tumor microenvironment for therapeutic interventions. However, the interactions of these proteins with each other remain unclear. In this study, we determined a partial structure of the human CD93-IGFBP7 complex comprising the EGF1 domain of CD93 and the IB domain of IGFBP7. Mutagenesis studies confirmed interactions and specificities. Cellular and mouse tumor studies demonstrated the physiological relevance of the CD93-IGFBP7 interaction in EC angiogenesis. Our study provides leads for the development of therapeutic agents to precisely disrupt unwanted CD93-IGFBP7 signaling in the tumor microenvironment. Additionally, analysis of the CD93 full-length architecture provides insights into how CD93 protrudes on the cell surface and forms a flexible platform for binding to IGFBP7 and other ligands.
Collapse
Affiliation(s)
- Yueming Xu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yi Sun
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Gaojie Song
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
21
|
Vemuri K, de Alves Pereira B, Fuenzalida P, Subashi Y, Barbera S, van Hooren L, Hedlund M, Pontén F, Lindskog C, Olsson AK, Lugano R, Dimberg A. CD93 maintains endothelial barrier function and limits metastatic dissemination. JCI Insight 2024; 9:e169830. [PMID: 38441970 PMCID: PMC11128212 DOI: 10.1172/jci.insight.169830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
Compromised vascular integrity facilitates extravasation of cancer cells and promotes metastatic dissemination. CD93 has emerged as a target for antiangiogenic therapy, but its importance for vascular integrity in metastatic cancers has not been evaluated. Here, we demonstrate that CD93 participates in maintaining the endothelial barrier and reducing metastatic dissemination. Primary melanoma growth was hampered in CD93-/- mice, but metastatic dissemination was increased and associated with disruption of adherens and tight junctions in tumor endothelial cells and elevated expression of matrix metalloprotease 9 at the metastatic site. CD93 directly interacted with vascular endothelial growth factor receptor 2 (VEGFR2) and its absence led to VEGF-induced hyperphosphorylation of VEGFR2 in endothelial cells. Antagonistic anti-VEGFR2 antibody therapy rescued endothelial barrier function and reduced the metastatic burden in CD93-/- mice to wild-type levels. These findings reveal a key role of CD93 in maintaining vascular integrity, which has implications for pathological angiogenesis and endothelial barrier function in metastatic cancer.
Collapse
Affiliation(s)
- Kalyani Vemuri
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Beatriz de Alves Pereira
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Patricia Fuenzalida
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Yelin Subashi
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Stefano Barbera
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Luuk van Hooren
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Marie Hedlund
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Uppsala University Biomedical Center, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, and
| |
Collapse
|
22
|
Qu J, Lin L, Fu G, Zheng M, Geng J, Sun X, Xing L. The analysis of multiple omics and examination of pathological images revealed the prognostic and therapeutic significances of CD93 in lung squamous cell carcinoma. Life Sci 2024; 339:122422. [PMID: 38224815 DOI: 10.1016/j.lfs.2024.122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
As a potent pro-angiogenic factor, the role of CD93 in the prognosis and therapeutic outcomes of lung squamous cell carcinoma (LUSC) merits exploration. In this study, we systematically collected transcriptomic, genomic, and clinical data from various public databases, as well as pathological images from hospital-operated patients. Employing statistical analysis software like R (Version 4.2.2) and GraphPad (Version 8.0), we conducted comprehensive analyses of multi-omics data. The results revealed elevated CD93 expression in LUSC tissues, closely associated with various cancer-related pathways. High CD93 expression indicated advanced clinical stage and poorer prognosis. Furthermore, CD93 contributed to resistance against chemotherapy and immunotherapy by enhancing tumor cell stemness, reducing immune cell infiltration, and inducing T cell exhaustion. Patients with low CD93 expression exhibited higher response rates to both chemotherapy and immunotherapy. Immunohistochemistry validated the significance of CD93 in LUSC. CD93 emerges as a biomarker signaling unfavorable prognosis and influencing therapeutic outcomes, suggesting a potential LUSC treatment avenue.
Collapse
Affiliation(s)
- Jialin Qu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan 250117, Shandong, China
| | - Li Lin
- Department of Respiratory Medicine, Shandong Provincial Chest Hospital, Shandong Public Health Clinical Center, Jinan 250117, Shandong, China
| | - Guangming Fu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Mei Zheng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan 250117, Shandong, China
| | - Jiaxiao Geng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan 250117, Shandong, China
| | - Xiaorong Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan 250117, Shandong, China.
| |
Collapse
|
23
|
Yu X, Zhang H, Li J, Gu L, Cao L, Gong J, Xie P, Xu J. Construction of a prognostic prediction model in liver cancer based on genes involved in integrin cell surface interactions pathway by multi-omics screening. Front Cell Dev Biol 2024; 12:1237445. [PMID: 38374893 PMCID: PMC10875080 DOI: 10.3389/fcell.2024.1237445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Background: Liver cancer is a common malignant tumor with an increasing incidence in recent years. We aimed to develop a model by integrating clinical information and multi-omics profiles of genes to predict survival of patients with liver cancer. Methods: The multi-omics data were integrated to identify liver cancer survival-associated signal pathways. Then, a prognostic risk score model was established based on key genes in a specific pathway, followed by the analysis of the relationship between the risk score and clinical features as well as molecular and immunologic characterization of the key genes included in the prediction model. The function experiments were performed to further elucidate the undergoing molecular mechanism. Results: Totally, 4 pathways associated with liver cancer patients' survival were identified. In the pathway of integrin cell surface interactions, low expression of COMP and SPP1, and low CNVs level of COL4A2 and ITGAV were significantly related to prognosis. Based on above 4 genes, the risk score model for prognosis was established. Risk score, ITGAV and SPP1 were the most significantly positively related to activated dendritic cell. COL4A2 and COMP were the most significantly positively associated with Type 1 T helper cell and regulatory T cell, respectively. The nomogram (involved T stage and risk score) may better predict short-term survival. The cell assay showed that overexpression of ITGAV promoted tumorigenesis. Conclusion: The risk score model constructed with four genes (COMP, SPP1, COL4A2, and ITGAV) may be used to predict survival in liver cancer patients.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Hao Zhang
- Department of Hepatobiliary Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Hepatobiliary Surgery, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jinze Li
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Lu Gu
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Lei Cao
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jun Gong
- Department of Hepatobiliary Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Hepatobiliary Surgery, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ping Xie
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jian Xu
- Department of Hepatobiliary Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Hepatobiliary Surgery, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
24
|
Trivigno SMG, Vismara M, Canobbio I, Rustichelli S, Galvagni F, Orlandini M, Torti M, Guidetti GF. The C-Type Lectin Receptor CD93 Regulates Platelet Activation and Surface Expression of the Protease Activated Receptor 4. Thromb Haemost 2024; 124:122-134. [PMID: 37669782 DOI: 10.1055/a-2166-5841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
BACKGROUND The C-type lectin receptor CD93 is a single pass type I transmembrane glycoprotein involved in inflammation, immunity, and angiogenesis. This study investigates the role of CD93 in platelet function. CD93 knockout (KO) mice and wild-type (WT) controls were compared in this study. METHODS Platelet activation and aggregation were investigated by flow cytometry and light transmission aggregometry, respectively. Protein expression and phosphorylation were analyzed by immunoblotting. Subcellular localization of membrane receptors was investigated by wide-field and confocal microscopy. RESULTS The lack of CD93 in mice was not associated to any evident bleeding defect and no alterations of platelet activation were observed upon stimulation with thromboxane A2 analogue and convulxin. Conversely, platelet aggregation induced by stimulation of the thrombin receptor PAR4 was significantly reduced in the absence of CD93. This defect was associated with a significant reduction of α-granule secretion, integrin αIIbβ3 activation, and protein kinase C (PKC) stimulation. Resting WT and CD93-deficient platelets expressed comparable amounts of PAR4. However, upon stimulation with a PAR4 activating peptide, a more pronounced clearance of PAR4 from the platelet surface was observed in CD93-deficient platelets compared with WT controls. Confocal microscopy analysis revealed a massive movement of PAR4 in cytosolic compartments of activated platelets lacking CD93. Accordingly, platelet desensitization following PAR4 stimulation was more pronounced in CD93 KO platelets compared with WT controls. CONCLUSION These results demonstrate that CD93 supports platelet activation triggered by PAR4 stimulation and is required to stabilize the expression of the thrombin receptor on the cell surface.
Collapse
Affiliation(s)
- Silvia Maria Grazia Trivigno
- University School for Advanced Studies IUSS, Pavia, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Mauro Vismara
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Serena Rustichelli
- University School for Advanced Studies IUSS, Pavia, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Mauro Torti
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
25
|
Bhat GP, Maurizio A, Motta A, Podini P, Diprima S, Malpighi C, Brambilla I, Martins L, Badaloni A, Boselli D, Bianchi F, Pellegatta M, Genua M, Ostuni R, Del Carro U, Taveggia C, de Pretis S, Quattrini A, Bonanomi D. Structured wound angiogenesis instructs mesenchymal barrier compartments in the regenerating nerve. Neuron 2024; 112:209-229.e11. [PMID: 37972594 DOI: 10.1016/j.neuron.2023.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/19/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Organ injury stimulates the formation of new capillaries to restore blood supply raising questions about the potential contribution of neoangiogenic vessel architecture to the healing process. Using single-cell mapping, we resolved the properties of endothelial cells that organize a polarized scaffold at the repair site of lesioned peripheral nerves. Transient reactivation of an embryonic guidance program is required to orient neovessels across the wound. Manipulation of this structured angiogenic response through genetic and pharmacological targeting of Plexin-D1/VEGF pathways within an early window of repair has long-term impact on configuration of the nerve stroma. Neovessels direct nerve-resident mesenchymal cells to mold a provisionary fibrotic scar by assembling an orderly system of stable barrier compartments that channel regenerating nerve fibers and shield them from the persistently leaky vasculature. Thus, guided and balanced repair angiogenesis enables the construction of a "bridge" microenvironment conducive for axon regrowth and homeostasis of the regenerated tissue.
Collapse
Affiliation(s)
- Ganesh Parameshwar Bhat
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Aurora Maurizio
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessia Motta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Paola Podini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Santo Diprima
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Malpighi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Ilaria Brambilla
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Luis Martins
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Aurora Badaloni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Daniela Boselli
- FRACTAL-Flow cytometry Resource Advanced Cytometry Technical Applications Laboratory, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Bianchi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Marta Pellegatta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Marco Genua
- San Raffaele Telethon Institute for Gene therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ubaldo Del Carro
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Carla Taveggia
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Stefano de Pretis
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Angelo Quattrini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Dario Bonanomi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|
26
|
Pan S, Zhu J, Liu P, Wei Q, Zhang S, An W, Tong Y, Cheng Z, Liu F. FN1 mRNA 3'-UTR supersedes traditional fibronectin 1 in facilitating the invasion and metastasis of gastric cancer through the FN1 3'-UTR-let-7i-5p-THBS1 axis. Theranostics 2023; 13:5130-5150. [PMID: 37771777 PMCID: PMC10526670 DOI: 10.7150/thno.82492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
Background: Current clinical treatments for gastric cancer (GC), particularly advanced GC, lack infallible therapeutic targets. The 3'-untranslated region (3'-UTR) has attracted increasing attention as a drug target. Methods: In vitro and in vivo experiments were conducted to determine the function of FN1 3'-UTR and FN1 protein in invasion and metastasis. RNA pull-down assay and high-throughput sequencing were used to screen the factors regulated by FN1 3'-UTR and construct the regulatory network. Western blotting and polymerase chain reaction were used to examine the correlation of intermolecular expression levels. RNA-binding protein immunoprecipitation was used to verify the correlation between FN1 3'-UTR and target mRNAs. Results: The FN1 3'-UTR may have stronger prognostic implications than the FN1 protein in GC patients. Upregulation of FN1 3'-UTR significantly promoted the invasive and metastatic abilities of GC cells to a greater extent than FN1 protein in vitro and in vivo. A novel regulatory network was constructed based on the FN1 3'-UTR-let-7i-5p-THBS1 axis, wherein FN1 3'-UTR displayed stronger oncogenic effects than the FN1 protein. Conclusions: FN1 3'-UTR may be a better therapeutic target for constructing targeted drugs in GC than the FN1 protein.
Collapse
Affiliation(s)
- Siwei Pan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
- Phase I Clinical Trails Center, The First Hospital, China Medical University, 518 North Chuangxin Road, Baita Street, Hunnan District, Shenyang, 110102 Liaoning, China
| | - Jiaming Zhu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
| | - Pengfei Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
- Phase I Clinical Trails Center, The First Hospital, China Medical University, 518 North Chuangxin Road, Baita Street, Hunnan District, Shenyang, 110102 Liaoning, China
| | - Qiaochu Wei
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
- Phase I Clinical Trails Center, The First Hospital, China Medical University, 518 North Chuangxin Road, Baita Street, Hunnan District, Shenyang, 110102 Liaoning, China
| | - Siyu Zhang
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Wen An
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
| | - Yuxin Tong
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Zhenguo Cheng
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhenzhou 450000, China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110016 China
- Phase I Clinical Trails Center, The First Hospital, China Medical University, 518 North Chuangxin Road, Baita Street, Hunnan District, Shenyang, 110102 Liaoning, China
| |
Collapse
|
27
|
Li Y, Fu L, Wu B, Guo X, Shi Y, Lv C, Yu Y, Zhang Y, Liang Z, Zhong C, Han S, Xu F, Tian Y. Angiogenesis modulated by CD93 and its natural ligands IGFBP7 and MMRN2: a new target to facilitate solid tumor therapy by vasculature normalization. Cancer Cell Int 2023; 23:189. [PMID: 37660019 PMCID: PMC10474740 DOI: 10.1186/s12935-023-03044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023] Open
Abstract
The tumor vasculature was different from the normal vasculature in both function and morphology, which caused hypoxia in the tumor microenvironment (TME). Previous anti-angiogenesis therapy had led to a modest improvement in cancer immunotherapy. However, antiangiogenic therapy only benefitted a few patients and caused many side effects. Therefore, there was still a need to develop a new approach to affect tumor vasculature formation. The CD93 receptor expressed on the surface of vascular endothelial cells (ECs) and its natural ligands, MMRN2 and IGFBP7, were now considered potential targets in the antiangiogenic treatment because recent studies had reported that anti-CD93 could normalize the tumor vasculature without impacting normal blood vessels. Here, we reviewed recent studies on the role of CD93, IGFBP7, and MMRN2 in angiogenesis. We focused on revealing the interaction between IGFBP7-CD93 and MMRN2-CD93 and the signaling cascaded impacted by CD93, IGFBP7, and MMRN2 during the angiogenesis process. We also reviewed retrospective studies on CD93, IGFBP7, and MMRN2 expression and their relationship with clinical factors. In conclusion, CD93 was a promising target for normalizing the tumor vasculature.
Collapse
Affiliation(s)
- Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Lei Fu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Xingqi Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yu Shi
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yang Yu
- Department of Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Shukun Han
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
28
|
Jiang Q, Kuai J, Jiang Z, Que W, Wang P, Huang W, Ding W, Zhong L. CD93 overexpresses in liver hepatocellular carcinoma and represents a potential immunotherapy target. Front Immunol 2023; 14:1158360. [PMID: 37483608 PMCID: PMC10359974 DOI: 10.3389/fimmu.2023.1158360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background Liver hepatocellular carcinoma (LIHC) is one of the malignant tumors with high incidence as well as high death, which is ranked as the sixth most common tumor and the third highest mortality worldwide. CD93, a transmembrane protein, has been widely reported to play an important role in different types of diseases, including many types of cancer by mainly functioning in extracellular matrix formation and vascular maturation. However, there are few researches focusing on the role and potential function of CD93 in LIHC. Methods In this study, we comprehensively analyzed the relationship between CD93 and LIHC. We not only discovered transcriptional expression of CD93 in LIHC by using the TIMER, GEPIA and UALCAN database, but also performed WB and IHC to verify the protein expression of CD93 in LIHC. Meantime, Kaplan-Meier Plotter Database Analysis were used to assess the prognosis of CD93 in LIHC. After knowing close correlation between CD93 expression and LIHC, there were STRING, GeneMania and GO and KEGG enrichment analyses to find how CD93 functions in LIHC. We further applied CIBERSORT Algorithm to explore the correlation between CD93 and immune cells and evaluate prognostic value of CD93 based on them in LIHC patients. Results The transcriptional and protein expression of CD93 were both obviously increased in LIHC by above methods. There was also a significant and close correlation between the expression of CD93 and the prognosis of LIHC patients by using Kaplan-Meier Analysis, which showed that LIHC patients with elevated expression of CD93 were associated with a predicted poor prognosis. We found that the functions of CD93 in different cancers are mainly related to Insulin like growth factor binding protein 7 Gene (IGFBP7)/CD93 pathway via STRING, GeneMania and functional enrichment analyses. Further, our data obtained from CIBERSORT Algorithm suggested CD93 was also associated with the immune response. There is a close positive correlation between CD93 expression and the infiltration levels of all six types of immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells). Importantly, CD93 can affect the prognosis of patients with LIHC partially due to immune infiltration. Conclusion Our results demonstrated CD93 may be a candidate predictor of clinical prognosis and immunotherapy response in LIHC.
Collapse
Affiliation(s)
- Qianwei Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Kuai
- Department of Hepatobiliary Surgery, Weifang People’s Hospital, Shandong, Weifang, Shandong, China
| | - Zhongyi Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weitao Que
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pusen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenxin Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Ding
- Department of Hepatobiliary Surgery, Weifang People’s Hospital, Shandong, Weifang, Shandong, China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Tossetta G, Piani F, Borghi C, Marzioni D. Role of CD93 in Health and Disease. Cells 2023; 12:1778. [PMID: 37443812 PMCID: PMC10340406 DOI: 10.3390/cells12131778] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
CD93 (also known as complement protein 1 q subcomponent receptor C1qR1 or C1qRp), is a transmembrane glycoprotein encoded by a gene located on 20p11.21 and composed of 652 amino acids. CD93 can be present in two forms: soluble (sCD93) and membrane-bound (CD93). CD93 is mainly expressed on endothelial cells, where it plays a key role in promoting angiogenesis both in physiology and disease, such as age-related macular degeneration and tumor angiogenesis. In fact, CD93 is highly expressed in tumor-associated vessels and its presence correlates with a poor prognosis, poor immunotherapy response, immune cell infiltration and high tumor, node and metastasis (TNM) stage in many cancer types. CD93 is also expressed in hematopoietic stem cells, cytotrophoblast cells, platelets and many immune cells, i.e., monocytes, neutrophils, B cells and natural killer (NK) cells. Accordingly, CD93 is involved in modulating important inflammatory-associated diseases including systemic sclerosis and neuroinflammation. Finally, CD93 plays a role in cardiovascular disease development and progression. In this article, we reviewed the current literature regarding the role of CD93 in modulating angiogenesis, inflammation and tumor growth in order to understand where this glycoprotein could be a potential therapeutic target and could modify the outcome of the abovementioned pathologies.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Federica Piani
- Cardiovascular Medicine Unit, Heart, Chest and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (C.B.)
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Claudio Borghi
- Cardiovascular Medicine Unit, Heart, Chest and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (C.B.)
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| |
Collapse
|
30
|
Sokol L, Cuypers A, Truong ACK, Bouché A, Brepoels K, Souffreau J, Rohlenova K, Vinckier S, Schoonjans L, Eelen G, Dewerchin M, de Rooij LPMH, Carmeliet P. Prioritization and functional validation of target genes from single-cell transcriptomics studies. Commun Biol 2023; 6:648. [PMID: 37330599 PMCID: PMC10276815 DOI: 10.1038/s42003-023-05006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/01/2023] [Indexed: 06/19/2023] Open
Abstract
Translation of academic results into clinical practice is a formidable unmet medical need. Single-cell RNA-sequencing (scRNA-seq) studies generate long descriptive ranks of markers with predicted biological function, but without functional validation, it remains challenging to know which markers truly exert the putative function. Given the lengthy/costly nature of validation studies, gene prioritization is required to select candidates. We address these issues by studying tip endothelial cell (EC) marker genes because of their importance for angiogenesis. Here, by tailoring Guidelines On Target Assessment for Innovative Therapeutics, we in silico prioritize previously unreported/poorly described, high-ranking tip EC markers. Notably, functional validation reveals that four of six candidates behave as tip EC genes. We even discover a tip EC function for a gene lacking in-depth functional annotation. Thus, validating prioritized genes from scRNA-seq studies offers opportunities for identifying targets to be considered for possible translation, but not all top-ranked scRNA-seq markers exert the predicted function.
Collapse
Affiliation(s)
- Liliana Sokol
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Anne Cuypers
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Anh-Co K Truong
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Ann Bouché
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Katleen Brepoels
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Joris Souffreau
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Katerina Rohlenova
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Laura P M H de Rooij
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium.
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
31
|
Xu Y, Sun Y, Zhu Y, Song G. Structural insight into CD93 recognition by IGFBP7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.543655. [PMID: 37333140 PMCID: PMC10274810 DOI: 10.1101/2023.06.07.543655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The CD93/IGFBP7 axis are key factors expressed in endothelial cells (EC) that mediate EC angiogenesis and migration. Upregulation of them contributes to tumor vascular abnormality and blockade of this interaction promotes a favorable tumor microenvironment for therapeutic interventions. However, how these two proteins associated to each other remains unclear. In this study, we solved the human CD93-IGFBP7 complex structure to elucidate the interaction between the EGF 1 domain of CD93 and the IB domain of IGFBP7. Mutagenesis studies confirmed the binding interactions and specificities. Cellular and mouse tumor studies demonstrated the physiological relevance of the CD93-IGFBP7 interaction in EC angiogenesis. Our study provides hints for development of therapeutic agents to precisely disrupt unwanted CD93-IGFBP7 signaling in the tumor microenvironment. Additionally, analysis of the CD93 full-length architecture provides insights into how CD93 protrudes on the cell surface and forms a flexible platform for binding to IGFBP7 and other ligands.
Collapse
|
32
|
Mao XG, Xue XY, Lv R, Ji A, Shi TY, Chen XY, Jiang XF, Zhang X. CEBPD is a master transcriptional factor for hypoxia regulated proteins in glioblastoma and augments hypoxia induced invasion through extracellular matrix-integrin mediated EGFR/PI3K pathway. Cell Death Dis 2023; 14:269. [PMID: 37059730 PMCID: PMC10104878 DOI: 10.1038/s41419-023-05788-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
Hypoxia contributes to the initiation and progression of glioblastoma by regulating a cohort of genes called hypoxia-regulated genes (HRGs) which form a complex molecular interacting network (HRG-MINW). Transcription factors (TFs) often play central roles for MINW. The key TFs for hypoxia induced reactions were explored using proteomic analysis to identify a set of hypoxia-regulated proteins (HRPs) in GBM cells. Next, systematic TF analysis identified CEBPD as a top TF that regulates the greatest number of HRPs and HRGs. Clinical sample and public database analysis revealed that CEBPD is significantly up-regulated in GBM, high levels of CEBPD predict poor prognosis. In addition, CEBPD is highly expressed in hypoxic condition both in GBM tissue and cell lines. For molecular mechanisms, HIF1α and HIF2α can activate the CEBPD promotor. In vitro and in vivo experiments demonstrated that CEBPD knockdown impaired the invasion and growth capacity of GBM cells, especially in hypoxia condition. Next, proteomic analysis identified that CEBPD target proteins are mainly involved in the EGFR/PI3K pathway and extracellular matrix (ECM) functions. WB assays revealed that CEBPD significantly positively regulated EGFR/PI3K pathway. Chromatin immunoprecipitation (ChIP) qPCR/Seq analysis and Luciferase reporter assay demonstrated that CEBPD binds and activates the promotor of a key ECM protein FN1 (fibronectin). In addition, the interactions of FN1 and its integrin receptors are necessary for CEBPD-induced EGFR/PI3K activation by promoting EGFR phosphorylation. Furthermore, GBM sample analysis in the database corroborated that CEBPD is positively correlated with the pathway activities of EGFR/PI3K and HIF1α, especially in highly hypoxic samples. At last, HRPs are also enriched in ECM proteins, indicating that ECM activities are important components of hypoxia induced responses in GBM. In conclusion, CEPBD plays important regulatory roles in the GBM HRG-MINW as a key TF, which activates the EGFR/PI3K pathway through ECM, especially FN1, mediated EGFR phosphorylation.
Collapse
Affiliation(s)
- Xing-Gang Mao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China.
| | - Xiao-Yan Xue
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Rui Lv
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, People's Republic of China
| | - Ang Ji
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Ting-Yu Shi
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xiao-Yan Chen
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xiao-Fan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China.
| | - Xiang Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China.
| |
Collapse
|
33
|
Lugano R, Vemuri K, Barbera S, Orlandini M, Dejana E, Claesson‐Welsh L, Dimberg A. CD93 maintains endothelial barrier function by limiting the phosphorylation and turnover of VE-cadherin. FASEB J 2023; 37:e22894. [PMID: 36961390 PMCID: PMC11977521 DOI: 10.1096/fj.202201623rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/25/2023]
Abstract
Regulation of vascular permeability to plasma is essential for tissue and organ homeostasis and is mediated by endothelial cell-to-cell junctions that tightly regulate the trafficking of molecules between blood and tissue. The single-pass transmembrane glycoprotein CD93 is upregulated in endothelial cells during angiogenesis and controls cytoskeletal dynamics. However, its role in maintaining homeostasis by regulating endothelial barrier function has not been elucidated yet. Here, we demonstrate that CD93 interacts with vascular endothelial (VE)-cadherin and limits its phosphorylation and turnover. CD93 deficiency in vitro and in vivo induces phosphorylation of VE-cadherin under basal conditions, displacing it from endothelial cell-cell contacts. Consistent with this, endothelial junctions are defective in CD93-/- mice, and the blood-brain barrier permeability is enhanced. Mechanistically, CD93 regulates VE-cadherin phosphorylation and turnover at endothelial junctions through the Rho/Rho kinase-dependent pathway. In conclusion, our results identify CD93 as a key regulator of VE-cadherin stability at endothelial junctions, opening up possibilities for therapeutic strategies directed to control vascular permeability.
Collapse
Affiliation(s)
- Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life LaboratoryUppsala UniversityThe Rudbeck Laboratory75185UppsalaSweden
| | - Kalyani Vemuri
- Department of Immunology, Genetics and Pathology, Science for Life LaboratoryUppsala UniversityThe Rudbeck Laboratory75185UppsalaSweden
| | - Stefano Barbera
- Department of Immunology, Genetics and Pathology, Science for Life LaboratoryUppsala UniversityThe Rudbeck Laboratory75185UppsalaSweden
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaVia A. Moro, 253100SienaItaly
| | - Elisabetta Dejana
- Department of Immunology, Genetics and Pathology, Science for Life LaboratoryUppsala UniversityThe Rudbeck Laboratory75185UppsalaSweden
- Vascular Biology UnitFIRC Institute of Molecular OncologyMilan20129Italy
| | - Lena Claesson‐Welsh
- Department of Immunology, Genetics and Pathology, Science for Life LaboratoryUppsala UniversityThe Rudbeck Laboratory75185UppsalaSweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life LaboratoryUppsala UniversityThe Rudbeck Laboratory75185UppsalaSweden
| |
Collapse
|
34
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 273] [Impact Index Per Article: 136.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
35
|
Su C, Liang T, Qu B, Zhang C, Han Y, Hou G, Gao F. Evaluation of CD93hi Macrophage on atherosclerosis through dynamic cells adoptive transfer. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
36
|
Li Z, Zhang XJ, Sun CY, Fei H, Li ZF, Zhao DB. CD93 serves as a potential biomarker of gastric cancer and correlates with the tumor microenvironment. World J Clin Cases 2023; 11:738-755. [PMID: 36818626 PMCID: PMC9928705 DOI: 10.12998/wjcc.v11.i4.738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The tumor microenvironment (TME) plays an important role in the growth and expansion of gastric cancer (GC). Studies have identified that CD93 is involved in abnormal tumor angiogenesis, which may be related to the regulation of the TME.
AIM To determine the role of CD93 in GC.
METHODS Transcriptomic data of GC was investigated in a cohort from The Cancer Genome Atlas. Additionally, RNA-seq data sets from Gene Expression Omnibus (GSE118916, GSE52138, GSE79973, GSE19826, and GSE84433) were applied to validate the results. We performed the immune infiltration analyses using ESTIMATE, CIBERSORT, and ssGSEA. Furthermore, weighted gene co-expression network analysis (WGCNA) was conducted to identify the immune-related genes.
RESULTS Compared to normal tissues, CD93 significantly enriched in tumor tissues (t = 4.669, 95%CI: 0.342-0.863, P < 0.001). Higher expression of CD93 was significantly associated with shorter overall survival (hazard ratio = 1.62, 95%CI: 1.09-2.4, P = 0.017), less proportion of CD8 T and activated natural killer cells in the TME (P < 0.05), and lower tumor mutation burden (t = 4.131, 95%CI: 0.721-0.256, P < 0.001). Genes co-expressed with CD93 were mainly enriched in angiogenesis. Moreover, 11 genes were identified with a strong relationship between CD93 and the immune microenvironment using WGCNA.
CONCLUSION CD93 is a novel prognostic and diagnostic biomarker for GC, that is closely related to the immune infiltration in the TME. Although this retrospective study was a comprehensive analysis, the prospective cohort studies are preferred to further confirm these conclusions.
Collapse
Affiliation(s)
- Zheng Li
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiao-Jie Zhang
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chong-Yuan Sun
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - He Fei
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ze-Feng Li
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dong-Bing Zhao
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
37
|
Wu B, Fu L, Guo X, Hu H, Li Y, Shi Y, Zhang Y, Han S, Lv C, Tian Y. Multi-omics profiling and digital image analysis reveal the potential prognostic and immunotherapeutic properties of CD93 in stomach adenocarcinoma. Front Immunol 2023; 14:984816. [PMID: 36761750 PMCID: PMC9905807 DOI: 10.3389/fimmu.2023.984816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Background Recent evidence highlights the fact that immunotherapy has significantly improved patient outcomes. CD93, as a type I transmembrane glycoprotein, was correlated with tumor-associated angiogenesis; however, how CD93 correlates with immunotherapy in stomach adenocarcinoma (STAD) remains unclear. Methods TCGA, GTEx, GEO, TIMER2.0, HPA, TISIDB, TCIA, cBioPortal, LinkedOmics, and ImmuCellAI public databases were used to elucidate CD93 in STAD. Visualization and statistical analysis of data were performed by R (Version 4.1.3), GraphPad (Version 8.0.1), and QuPath (Version 0.3.2). Results CD93 was highly expressed in STAD compared with adjacent normal tissues. The overexpression of CD93 was significantly correlated with a poor prognosis in STAD. There was a negative correlation between CD93 expression levels with CD93 mutation and methylation in STAD. Our results revealed that CD93 expression was positively associated with most immunosuppressive genes (including PD-1, PD-L1, CTLA-4, and LAG3), immunostimulatory genes, HLA, chemokine, and chemokine receptor proteins in STAD. Furthermore, in STAD, CD93 was noticeably associated with the abundance of multiple immune cell infiltration levels. Functional HALLMARK and KEGG term enhancement analysis of CD93 through Gene Set Enrichment Analysis was correlated with the process of the angiogenesis pathway. Subsequently, digital image analysis results by QuPath revealed that the properties of CD93+ cells were statistically significant in different regions of stomach cancer and normal stomach tissue. Finally, we utilized external databases, including GEO, TISIDB, ImmuCellAI, and TCIA, to validate that CD93 plays a key role in the immunotherapy of STAD. Conclusion Our study reveals that CD93 is a potential oncogene and is an indicative biomarker of a worse prognosis and exerts its immunomodulatory properties and potential possibilities for immunotherapy in STAD.
Collapse
|
38
|
Dong C, Luan F, Tian W, Duan K, Chen T, Ren J, Li W, Li D, Zhi Q, Zhou J. Identification and validation of crucial lnc-TRIM28-14 and hub genes promoting gastric cancer peritoneal metastasis. BMC Cancer 2023; 23:76. [PMID: 36690975 PMCID: PMC9872371 DOI: 10.1186/s12885-023-10544-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Gastric cancer peritoneal metastasis (GCPM) is an important cause of cancer-related deaths worldwide. Long non-coding RNAs (lncRNAs) play a key role in the regulation of GCPM, but the underlying mechanisms have not been elucidated. METHODS High-throughput RNA sequencing (RNA-seq) was performed on four groups of clinical specimens (non-metastatic gastric cancer primary tumor, adjacent normal gastric mucosal tissue, gastric cancer primary tumor with peritoneal metastasis and adjacent normal gastric mucosal tissue). After sequencing, many lncRNAs and mRNAs were screened for further Weighted Gene Co-expression Network Analysis (WGCNA). GCPM-related hub lncRNAs and genes were identified by cytoHubba and validated by Quantitative real-time PCR (qRT-PCR), Receiver operating characteristic curve (ROC) analysis and Kaplan-Meier survival analysis. GO, KEGG and GSEA showed GCPM-related pathways. Correlation analysis revealed the potential relationship between hub lncRNAs and genes. RESULTS By analyzing lncRNA expression data by WGCNA, we found that blue module was highly correlated with GCPM (r = 0.44, p = 0.04) and six lncRNAs involved in this module (DNM3OS, lnc-MFAP2-53, lnc-PPIAL4C-4, lnc-RFNG-1, lnc-TRIM28-14 and lnc-YARS2-4) were identified. We then performed qRT-PCR validation of gastric cancer specimens and found that the expression of lnc-RFNG-1 and lnc-TRIM28-14 was significantly increased in gastric cancer tissues with peritoneal metastasis. Kaplan-Meier survival analysis showed shorter overall survival time (OS) for gastric cancer patients with high expression of lnc-TRIM28-14. Receiver operating characteristic curve (ROC) analysis showed that lnc-TRIM28-14 could improve the sensitivity and specificity of GCPM diagnosis. In addition, we identified three key mRNAs (CD93, COL3A1 and COL4A1) associated with gastric cancer peritoneal metastasis through WGCNA analysis and clinical specimen validation. Moreover, there was a positive correlation between lnc-TRIM28-14 and the expression of CD93 and COL4A1 in gastric cancer peritoneal metastasis, suggesting a regulatory relationship between them. Subsequent GO, KEGG and GSEA analysis suggested that ECM-receptor interaction and focal adhesion were the hub pathways of GCPM. CONCLUSION In summary, lnc-RFNG-1, lnc-TRIM28-14, CD93, COL3A1 and COL4A1 could be novel tumor biomarkers and potential therapeutic targets for GCPM.
Collapse
Affiliation(s)
- Chao Dong
- grid.429222.d0000 0004 1798 0228Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Fujuan Luan
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Wenyan Tian
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Kaipeng Duan
- grid.429222.d0000 0004 1798 0228Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Tao Chen
- grid.429222.d0000 0004 1798 0228Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Jiayu Ren
- grid.429222.d0000 0004 1798 0228Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Weikang Li
- grid.429222.d0000 0004 1798 0228Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Dongbao Li
- grid.429222.d0000 0004 1798 0228Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Qiaoming Zhi
- grid.429222.d0000 0004 1798 0228Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Jin Zhou
- grid.429222.d0000 0004 1798 0228Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| |
Collapse
|
39
|
Qiao N, Zhang J, Zhang Y, Liu X. Synergistic regulation of microglia differentiation by CD93 and integrin β1 in the rat pneumococcal meningitis model. Immunol Lett 2022; 251-252:63-74. [PMID: 36336138 DOI: 10.1016/j.imlet.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/15/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Streptococcus pneumoniae is the main bacterial pathogen of meningitis worldwide, which has a high mortality rate and survivors are prone to central nervous system (CNS) sequelae. In this regard, microglia activation has been associated with injury to the CNS. The aim of this study was to investigate the relationship between CD93, integrin β1, and microglia activation. In the rat pneumococcal meningitis model, we found significant increases of CD93 and integrin β1 expression and differentiation of M1 phenotype microglia. Furthermore, we showed in vitro siRNA-mediated downregulation of CD93 and integrin β1 expression after infecting highly aggressive proliferating immortalized (HAPI) microglia cells with S. pneumoniae. We observed differentiation of S. pneumonia-infected HAPI microglia cells to the M1 phenotype and significant release of soluble CD93 (sCD93) and integrin β1 expression. Complement C1q and metalloproteinases promoted sCD93 release. We also showed that downregulation of CD93 significantly reduced differentiation to M1 microglia and increased differentiation to M2 microglia. However, addition of recombinant CD93 may regulate microglia differentiation to the M1 phenotype. Furthermore, the downregulation of integrin β1 resulted in downregulation of the CD93 protein. In conclusion, interaction between integrin β1 and CD93 promotes differentiation of microglia to the M1 phenotype, increases the release of pro-inflammatory factors, and leads to nervous system injury in pneumococcal meningitis.
Collapse
Affiliation(s)
- Nana Qiao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jinghui Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Ya Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xinjie Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
40
|
Deficiency of CD93 exacerbates inflammation-induced activation and migration of BV2 microglia by regulating the TAK1/NF-κB pathway. Neurosci Lett 2022; 791:136914. [DOI: 10.1016/j.neulet.2022.136914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022]
|
41
|
Guo A, Zhang J, Tian Y, Peng Y, Luo P, Zhang J, Liu Z, Wu W, Zhang H, Cheng Q. Identify the immune characteristics and immunotherapy value of CD93 in the pan-cancer based on the public data sets. Front Immunol 2022; 13:907182. [PMID: 36389798 PMCID: PMC9646793 DOI: 10.3389/fimmu.2022.907182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
CD93 is a transmembrane receptor that is mainly expressed on endothelial cells. A recent study found that upregulated CD93 in tumor vessels is essential for tumor angiogenesis in several cancers. However, the underlying mechanisms are largely unexplored. Our present research systematically analyzed the characteristics of CD93 in tumor immunotherapy among 33 cancers. CD93 levels and co-expression of CD93 on cancer and stromal cells were detected using public databases and multiple immunofluorescence staining. The Kaplan-Meier (KM) analysis identified the predictive role of CD93 in these cancer types. The survival differences between CD93 mutants and WT, CNV groups, and methylation were also investigated. The immune landscape of CD93 in the tumor microenvironment was analyzed using the SangerBox, TIMER 2.0, and single-cell sequencing. The immunotherapy value of CD93 was predicted through public databases. CD93 mRNA and protein levels differed significantly between cancer samples and adjacent control tissues in multiply cancer types. CD93 mRNA expression associated with patient prognosis in many cancers. The correlation of CD93 levels with mutational status of other gene in these cancers was also analyzed. CD93 levels significantly positively related to three scores (immune, stromal, and extimate), immune infiltrates, immune checkpoints, and neoantigen expression.. Additionally, single-cell sequencing revealed that CD93 is predominantly co-expressed on tumor and stromal cells, such as endothelial cells, cancer-associated fibroblasts (CAFs), neutrophils, T cells, macrophages, M1 and M2 macrophages. Several immune-related signaling pathways were enriched based on CD93 expression, including immune cells activation and migration, focal adhesion, leukocyte transendothelial migration, oxidative phosphorylation, and complement. Multiple immunofluorescence staining displayed the relationship between CD93 expression and CD8, CD68, and CD163 in these cancers. Finally, the treatment response of CD93 in many immunotherapy cohorts and sensitive small molecules was predicted from the public datasets. CD93 expression is closely associated with clinical prognosis and immune infiltrates in a variety of tumors. Targeting CD93-related signaling pathways in the tumor microenvironment may be a novel therapeutic strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Aiyuan Guo
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqiu Tian
- Department of Infectious Disease, Zhuzhou Central Hospital, Zhuzhou, China
| | - Yun Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
42
|
Dimerization of the C-type lectin-like receptor CD93 promotes its binding to Multimerin-2 in endothelial cells. Int J Biol Macromol 2022; 224:453-464. [DOI: 10.1016/j.ijbiomac.2022.10.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
43
|
Ma K, Chen S, Chen X, Zhao X, Yang J. CD93 is Associated with Glioma-related Malignant Processes and Immunosuppressive Cell Infiltration as an Inspiring Biomarker of Survivance. J Mol Neurosci 2022; 72:2106-2124. [PMID: 36006582 DOI: 10.1007/s12031-022-02060-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Previous reports have confirmed the significance of CD93 in the progression of multiple tumors; however, there are few studies examining its immune properties for gliomas. Here, we methodically investigated the pathophysiological characteristics and clinical manifestations of gliomas. Six hundred ninety-nine glioma patients in TCGA along with 325 glioma patients in CGGA were correspondingly collected for training and validating. We analyzed and visualized total statistics using RStudio. One-way ANOVA and Student's t-test were used to assess groups' differences. All differences were considered statistically significant at the level of P < 0.05. CD93 markedly upregulated among HGG, MGMT promoter unmethylated subforms, IDH wild forms, 1p19q non-codeletion subforms, and mesenchyme type gliomas. ROC analysis illustrated the favorable applicability of CD93 in estimating mesenchyme subform. Kaplan-Meier curves together with multivariable Cox analyses upon survivance identified high-expression CD93 as a distinct prognostic variable for glioma patients. GO analysis of CD93 documented its predominant part in glioma-related immunobiological processes and inflammation responses. We examined the associations of CD93 with immune-related meta-genes, and CD93 positively correlated with HCK, LCK, MHC I, MHC II, STAT1 and IFN, while adverse with IgG. Association analyses between CD93 and gliomas-infiltrating immunocytes indicated that the infiltrating degrees of most immunocytes exhibited positive correlations with CD93, particularly these immunosuppressive subsets such as TAM, Treg, and MDSCs. CD93 is markedly associated with adverse pathology types, unfavorable survival, and immunosuppressive immunocytes infiltration among gliomas, thus identifying CD93 as a practicable marker and a promising target for glioma-based precise diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Kaiming Ma
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China
| | - Suhua Chen
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China
| | - Xin Chen
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Xiaofang Zhao
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China. .,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China.
| |
Collapse
|
44
|
Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Peng Y, Liu Z, Tang L, Cheng Q. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol 2022; 15:111. [PMID: 35978433 PMCID: PMC9386972 DOI: 10.1186/s13045-022-01325-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022] Open
Abstract
The discovery of immune checkpoint inhibitors (ICIs) has now been universally acknowledged as a significant breakthrough in tumor therapy after the targeted treatment of checkpoint molecules: anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) on several cancer types achieved satisfying results. However, there are still quite a lot of patients suffering from severe side effects and ineffective treatment outcomes. Although the current ICI therapy is far from satisfying, a series of novel immune checkpoint molecules with remarkable preclinical and clinical benefits are being widely investigated, like the V-domain Ig suppressor of T cell activation (VISTA), which can also be called PD-1 homolog (PD-1H), and ectonucleotidases: CD39, CD73, and CD38, which belong to the ribosyl cyclase family, etc. In this review, we systematically summarized and discussed these molecules' biological structures, molecular features, and the corresponding targeted drugs, aiming to help the in-depth understanding of immune checkpoint molecules and promote the clinical practice of ICI therapy.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, People's Republic of China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, People's Republic of China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,Department of Neurosurgery, and Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, USA.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jason Hu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,Department of Neonatology, Yale University School of Medicine, New Haven, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, People's Republic of China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Lanhua Tang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China. .,Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
45
|
Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Peng Y, Liu Z, Tang L, Cheng Q. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol 2022. [PMID: 35978433 DOI: 10.1186/s13045-022-01325-0.pmid:35978433;pmcid:pmc9386972.[125]robertc.adecadeofimmune-checkpointinhibitorsincancertherapy.natcommun.2020jul30;11(1):3801.doi:10.1038/s41467-020-17670-y.pmid:32732879;pmcid:pmc7393098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
The discovery of immune checkpoint inhibitors (ICIs) has now been universally acknowledged as a significant breakthrough in tumor therapy after the targeted treatment of checkpoint molecules: anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) on several cancer types achieved satisfying results. However, there are still quite a lot of patients suffering from severe side effects and ineffective treatment outcomes. Although the current ICI therapy is far from satisfying, a series of novel immune checkpoint molecules with remarkable preclinical and clinical benefits are being widely investigated, like the V-domain Ig suppressor of T cell activation (VISTA), which can also be called PD-1 homolog (PD-1H), and ectonucleotidases: CD39, CD73, and CD38, which belong to the ribosyl cyclase family, etc. In this review, we systematically summarized and discussed these molecules' biological structures, molecular features, and the corresponding targeted drugs, aiming to help the in-depth understanding of immune checkpoint molecules and promote the clinical practice of ICI therapy.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, People's Republic of China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, People's Republic of China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, and Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, USA
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jason Hu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neonatology, Yale University School of Medicine, New Haven, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, People's Republic of China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Lanhua Tang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
46
|
Ma B, Wang T, Li J, Wang Q. Extracellular matrix derived from Wharton's Jelly-derived mesenchymal stem cells promotes angiogenesis via integrin αVβ3/c-Myc/P300/VEGF. Stem Cell Res Ther 2022; 13:327. [PMID: 35851415 PMCID: PMC9290299 DOI: 10.1186/s13287-022-03009-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/17/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Angiogenesis is required in many physiological conditions, including bone regeneration, wound healing, and tissue regeneration. Mesenchymal stem cells-derived extracellular matrix (MSCs-ECM) could guide intricate cellular and tissue processes such as homeostasis, healing and regeneration. METHODS The purpose of this study is to explore the effect and mechanism of ECM derived from decellularized Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) on endothelial cell viability and angiogenesis. The human umbilical vein endothelial cells (HUVECs) were pretreated with WJ-MSCs ECM for 2d/7d/14d, respectively. After pretreatment, the angiogenesis ability of HUVECs was detected. RESULTS In this study, we found for the first time that WJ-MSCs ECM could improve the angiogenesis ability of HUVECs with a time-dependent manner in vitro. Mechanically, WJ-MSCs ECM activated the focal adhesion kinase (FAK)/P38 signaling pathway via integrin αVβ3, which further promoted the expression of the cellular (c)-Myc. Further, c-Myc increased histone acetylation levels of the vascular endothelial growth factor (VEGF) promoter by recruiting P300, which ultimately promoting VEGF expression. CONCLUSIONS ECM derived from Wharton's Jelly-derived mesenchymal stem cells promotes angiogenesis via integrin αVβ3/c-Myc/P300/VEGF. This study is expected to provide a new approach to promote angiogenesis in bone and tissue regeneration.
Collapse
Affiliation(s)
- Beilei Ma
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Tengkai Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China
| | - Qian Wang
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
47
|
Xiao W, Chen W, Wang Y, Zhang C, Zhang X, Zhang S, Wu W. Recombinant DTβ4-inspired porous 3D vascular graft enhanced antithrombogenicity and recruited circulating CD93 +/CD34 + cells for endothelialization. SCIENCE ADVANCES 2022; 8:eabn1958. [PMID: 35857526 PMCID: PMC9278867 DOI: 10.1126/sciadv.abn1958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/27/2022] [Indexed: 05/31/2023]
Abstract
Matching material degradation with host remodeling, including endothelialization and muscular remodeling, is important to vascular regeneration. We fabricated 3D PGS-PCL vascular grafts, which presented tunable polymer components, porosity, mechanical strength, and degrading rate. Furthermore, highly porous structures enabled 3D patterning of conjugated heparin-binding peptide, dimeric thymosin β4 (DTβ4), which played key roles in antiplatelets, fibrinogenesis inhibition, and recruiting circulating progenitor cells, thereafter contributed to high patency rate, and unprecedentedly acquired carotid arterial regeneration in rabbit model. Through single-cell RNA sequencing analysis and cell tracing studies, a subset of endothelial progenitor cells, myeloid-derived CD93+/CD34+ cells, was identified as the main contributor to final endothelium regeneration. To conclude, DTβ4-inspired porous 3DVGs present adjustable physical properties, superior anticoagulating, and re-endothelializing potentials, which leads to the regeneration of small-caliber artery, thus offering a promising tool for vessel replacement in clinical applications.
Collapse
Affiliation(s)
- Weiwei Xiao
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Wanli Chen
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Yinggang Wang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Cun Zhang
- State Key Laboratory of Cancer Biology Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Xinchi Zhang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Siqian Zhang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Wei Wu
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
48
|
Zheng X, Xu H, Lin T, Tan P, Xiong Q, Yi X, Qiu S, Yang L, Shen B, Ai J, Wei Q. CD93 orchestrates the tumor microenvironment and predicts the molecular subtype and therapy response of bladder cancer. Comput Biol Med 2022; 147:105727. [PMID: 35785664 DOI: 10.1016/j.compbiomed.2022.105727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 06/11/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND CD93 is newly reported to normalize vasculature and attenuate pancreatic cancer therapy response, but its role in bladder cancer (BLCA) is unknown. METHOD The immunologic role of CD93 is analyzed across TCGA pan-cancers. The correlation between CD93 and BLCA clinical and tumor microenvironment features, predicted immunotherapy pathways, molecular subtypes, therapeutic signatures and mutation status was evaluated in TCGA-BLCA and other two BLCA cohorts. The impact of CD93 on immunotherapy response was validated by five real-world cohorts, and chemotherapy response was assessed with IC50. CD93-based risk model was constructed with LASSO regression and validated by seven independent cohorts. RESULT CD93 is positively correlated with immunomodulators, tumor-infiltrating lymphocytes (TILs) and immune checkpoints across pan-cancers. In BLCA, CD93 leads to higher T cell inflamed score and expression of immune checkpoints. However, CD93 is indicative of more aggressive clinical features, worse survival, more tumor-associated macrophages and regulatory T cells recruitment, less recognition and killing of cancer cells by T cells, lower predicted chemotherapy and immunotherapy response, which is further validated by immunotherapy cohorts (IMvigor210: 16.11% vs 29.53%; GSE176307: 15.56% vs 20.93%). Notably, CD93 correlates with enriched neuroendocrine subtype and epithelial-mesenchymal transition differentiation, while CD93-low group has enriched luminal subtype. Pathways including hypoxia and Wnt-β-catenin are enriched along with CD93 expression, and more frequent FGFR3 mutation is also observed. Lastly, the CD93-based risk model, validated by seven independent cohorts, is powerful in distinguishing the survival probability of BLCA (3-year AUC 0.808). CONCLUSION CD93 plays a critical role in tumor immune regulation. CD93 expression indicates more aggressive clinicopathological status and molecular subtypes of BLCA and worse therapy response, which implies that combing anti-CD93 therapy with immunotherapy (or chemotherapy) may be potentially beneficial for BLCA in clinical practice.
Collapse
Affiliation(s)
- Xiaonan Zheng
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hang Xu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tianhai Lin
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Tan
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiao Xiong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xianyanling Yi
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shi Qiu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Yang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bairong Shen
- Institute of Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianzhong Ai
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
49
|
Cicaloni V, Karmakar M, Frusciante L, Pettini F, Visibelli A, Orlandini M, Galvagni F, Mongiat M, Silk M, Nardi F, Ascher D, Santucci A, Spiga O. Bioinformatics Approaches to Predict Mutation Effects in the Binding Site of the Proangiogenic Molecule CD93. FRONTIERS IN BIOINFORMATICS 2022; 2:891553. [PMID: 36353214 PMCID: PMC9638713 DOI: 10.3389/fbinf.2022.891553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
The transmembrane glycoprotein CD93 has been identified as a potential new target to inhibit tumor angiogenesis. Recently, Multimerin-2 (MMRN2), a pan-endothelial extracellular matrix protein, has been identified as a ligand for CD93, but the interaction mechanism between these two proteins is yet to be studied. In this article, we aim to investigate the structural and functional effects of induced mutations on the binding domain of CD93 to MMRN2. Starting from experimental data, we assessed how specific mutations in the C-type lectin-like domain (CTLD) affect the binding interaction profile. We described a four-step workflow in order to predict the effects of variations on the inter-residue interaction network at the PPI, based on evolutionary information, complex network metrics, and energetic affinity. We showed that the application of computational approaches, combined with experimental data, allowed us to gain more in-depth molecular insights into the CD93–MMRN2 interaction, offering a platform for developing innovative therapeutics able to target these molecules and block their interaction. This comprehensive molecular insight might prove useful in drug design in cancer therapy.
Collapse
Affiliation(s)
| | - Malancha Karmakar
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Parkville, VIC, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Parkville, VIC, Australia
| | - Luisa Frusciante
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Francesco Pettini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- *Correspondence: Ottavia Spiga, ; Maurizio Orlandini, ; Federico Galvagni, ; Francesco Pettini,
| | - Anna Visibelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- *Correspondence: Ottavia Spiga, ; Maurizio Orlandini, ; Federico Galvagni, ; Francesco Pettini,
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- *Correspondence: Ottavia Spiga, ; Maurizio Orlandini, ; Federico Galvagni, ; Francesco Pettini,
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Michael Silk
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Parkville, VIC, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Parkville, VIC, Australia
| | - Federica Nardi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - David Ascher
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Parkville, VIC, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Parkville, VIC, Australia
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- *Correspondence: Ottavia Spiga, ; Maurizio Orlandini, ; Federico Galvagni, ; Francesco Pettini,
| |
Collapse
|
50
|
Barbera S, Cucini C. A glimpse into the past: phylogenesis and protein domain analysis of the group XIV of C-type lectins in vertebrates. BMC Genomics 2022; 23:420. [PMID: 35659564 PMCID: PMC9167495 DOI: 10.1186/s12864-022-08659-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
The group XIV of C-type lectin domain-containing proteins (CTLDcps) is one of the seventeen groups of CTLDcps discovered in mammals and composed by four members: CD93, Clec14A, CD248 and Thrombomodulin, which have shown to be important players in cancer and vascular biology. Although these proteins belong to the same family, their phylogenetic relationship has never been dissected. To resolve their evolution and characterize their protein domain composition we investigated CTLDcp genes in gnathostomes and cyclostomes and, by means of phylogenetic approaches as well as synteny analyses, we inferred an evolutionary scheme that attempts to unravel their evolution in modern vertebrates.
Results
Here, we evidenced the paralogy of the group XIV of CTLDcps in gnathostomes and discovered that a gene loss of CD248 and Clec14A occurred in different vertebrate groups, with CD248 being lost due to chromosome disruption in birds, while Clec14A loss in monotremes and marsupials did not involve chromosome rearrangements. Moreover, employing genome annotations of different lampreys as well as one hagfish species, we investigated the origin and evolution of modern group XIV of CTLDcps. Furthermore, we carefully retrieved and annotated gnathostome CTLDcp domains, pointed out important differences in domain composition between gnathostome classes, and assessed codon substitution rate of each domain by analyzing nonsynonymous (Ka) over synonymous (Ks) substitutions using one representative species per gnathostome order.
Conclusions
CTLDcps appeared with the advent of early vertebrates after a whole genome duplication followed by a sporadic tandem duplication. These duplication events gave rise to three CTLDcps in the ancestral vertebrate that underwent further duplications caused by the independent polyploidizations that characterized the evolution of cyclostomes and gnathostomes. Importantly, our analyses of CTLDcps in gnathostomes revealed critical inter-class differences in both extracellular and intracellular domains, which might help the interpretation of experimental results and the understanding of differences between animal models.
Collapse
|