1
|
Dias LM, Paul P, Pavarina AC, Siqueira WL. Salivary proteins-enhanced antimicrobial photodynamic therapy: Overcoming three distinct cultures of resistant mixed biofilms. J Dent 2025; 157:105778. [PMID: 40268113 DOI: 10.1016/j.jdent.2025.105778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Denture stomatitis is frequently associated with biofilm formation by Candida albicans, which can coexist with Streptococcus mutans. Current treatments face several limitations, including the emergence of resistant strains and the persistent impact of biofilm formation on antimicrobial efficacy. The salivary proteins Histatin 3 (His3) and Histatin 5 (His5) have demonstrated effectiveness against C. albicans single-species biofilms. However, their efficacy against mixed-species biofilms, particularly those involving S. mutans and antifungal-resistant C. albicans strains, remains poorly understood. OBJECTIVES To investigate the efficacy of combining His3 and His5 with antimicrobial photodynamic therapy (aPDT) against mixed biofilms containing polyene-resistant (CaP+Sm), wild-type (CaW+Sm), and fluconazole-resistant (CaF+Sm) and S. mutans (Sm) on acrylic resins. METHODS 48-hour mixed biofilms (37 °C/5 % CO₂) were formed on acrylic resin disks treated with His3 and His5 (2h/37 °C/120 rpm). Biofilms were subjected to aPDT using Photodithazine (200 mg/L) followed by 30 min of red LED irradiation (660 nm, 50 J/cm²). Viability was assessed by colony-forming units (CFU), while ECM components (proteins, alkali-soluble polysaccharides (ASP), water-soluble polysaccharides (WSP), and extracellular DNA (eDNA)) were analyzed (n = 6). RESULTS Complete eradication of mixed biofilms was observed in CaW+Sm and CaF+Sm treated with His3+aPDT and His5+aPDT, while CaP+Sm showed a 98 % reduction in total microbiota. For CaP+Sm, combined His3+aPDT and His5+aPDT significantly reduced biofilm viability, achieving up to 99 % reduction in C. albicans and 80 % in S. mutans. ECM components, including proteins, ASP, WSP, and eDNA, were notably reduced, particularly in CaW+Sm and CaF+Sm cultures. CONCLUSION Combining Histatins with aPDT demonstrated superior efficacy compared to individual treatments, disrupting mixed biofilms of C. albicans and S. mutans and significantly reducing viability. CLINICAL SIGNIFICANCE Histatins with antimicrobial photodynamic therapy (aPDT) reduce biofilm viability and disrupt key components of extracellular matrix in resistant biofilm that contribute to the persistence of infections in denture stomatitis.
Collapse
Affiliation(s)
- Luana Mendonça Dias
- College of Dentistry, University of Saskatchewan (USASK), Saskatoon, SK, Canada; Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-903, Brazil.
| | - Promi Paul
- College of Dentistry, University of Saskatchewan (USASK), Saskatoon, SK, Canada.
| | - Ana Claudia Pavarina
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-903, Brazil.
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan (USASK), Saskatoon, SK, Canada.
| |
Collapse
|
2
|
Ferrari CR, Hannig M, Buzalaf MAR. Acquired pellicle engineering: a fascinating approach to prevent demineralization. J Appl Oral Sci 2025; 33:e20240359. [PMID: 40332163 PMCID: PMC12061453 DOI: 10.1590/1678-7757-2024-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 05/08/2025] Open
Abstract
The acquired enamel pellicle (AEP) consists of an organic, acellular, and bacteria-free film, formed in vivo as a result of biomolecules adsorption onto the tooth surface. It is composed of proteins, glycoproteins, lipids, phospholipids, and other macromolecules, such as carbohydrates. The AEP formation process is complex and can be divided into three stages: initiation, development, and maturation. The pellicle has two main layers: the globular and basal layers. The basal layer offers the most protection against demineralization, as the subsequent globular layer is weaker and less tenacious. The formation of the AEP can be influenced by various factors, such as the physicochemical properties of the teeth, location in the oral cavity, pathologies, and even the oral microbiota. With the advancement of "omics" techniques, it has been possible to observe the presence of acid-resistant proteins in the AEP, which allowed the development of the "acquired pellicle engineering" strategy. This strategy involves enriching and modifying the basal layer with acid-resistant proteins. Among these proteins, hemoglobin, statherin-derived peptide, and a protein derived from sugarcane stand out. The objective of this literature review is to provide a comprehensive overview of the AEP, detailing its composition, formation process, and protective functions. Additionally, the review aims to explore recent advances in the field of "acquired pellicle engineering," highlighting the acid-resistant proteins of the AEP and their potential applications in dentistry. Finally, the review intends to highlight the clinical implications of these findings and how they may contribute to the development of new strategies for the prevention and treatment of dental pathologies according to published studies.
Collapse
Affiliation(s)
- Carolina Ruis Ferrari
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, Brasil
| | - Matthias Hannig
- Saarland University, Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Homburg, Germany
| | | |
Collapse
|
3
|
Sakr C, Al-Mosawi M, Grünewald TA, Cook P, Tack P, Vincze L, Micha JS, Anderson P, Al-Jawad M, Lichtenegger HC. Energy-dispersive Laue diffraction analysis of the influence of statherin and histatin on the crystallographic texture during human dental enamel demineralization. J Appl Crystallogr 2024; 57:1514-1527. [PMID: 39387092 PMCID: PMC11460385 DOI: 10.1107/s1600576724007180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/20/2024] [Indexed: 10/12/2024] Open
Abstract
Energy-dispersive Laue diffraction (EDLD) is a powerful method to obtain position-resolved texture information in inhomogeneous biological samples without the need for sample rotation. This study employs EDLD texture scanning to investigate the impact of two salivary peptides, statherin (STN) and histatin-1 (HTN) 21 N-terminal peptides (STN21 and HTN21), on the crystallographic structure of dental enamel. These proteins are known to play crucial roles in dental caries progression. Three healthy incisors were randomly assigned to three groups: artificially demineralized, demineralized after HTN21 peptide pre-treatment and demineralized after STN21 peptide pre-treatment. To understand the micro-scale structure of the enamel, each specimen was scanned from the enamel surface to a depth of 250 µm using microbeam EDLD. Via the use of a white beam and a pixelated detector, where each pixel functions as a spectrometer, pole figures were obtained in a single exposure at each measurement point. The results revealed distinct orientations of hydroxyapatite crystallites and notable texture variation in the peptide-treated demineralized samples compared with the demineralized control. Specifically, the peptide-treated demineralized samples exhibited up to three orientation populations, in contrast to the demineralized control which displayed only a single orientation population. The texture index of the demineralized control (2.00 ± 0.21) was found to be lower than that of either the STN21 (2.32 ± 0.20) or the HTN21 (2.90 ± 0.46) treated samples. Hence, texture scanning with EDLD gives new insights into dental enamel crystallite orientation and links the present understanding of enamel demineralization to the underlying crystalline texture. For the first time, the feasibility of EDLD texture measurements for quantitative texture evaluation in demineralized dental enamel samples is demonstrated.
Collapse
Affiliation(s)
- Charbel Sakr
- University of Natural Resources and Life Sciences (BOKU)ViennaAustria
- European Synchrotron Radiation FacilityGrenobleFrance
| | | | | | - Philip Cook
- University of LeedsLeedsUnited Kingdom
- Danish Technological InstituteHøje TaastrupDenmark
| | | | | | | | | | | | | |
Collapse
|
4
|
Nobrega C, Nunes GP, de Paiva Buischi Y, Kajimoto NDC, Delbem ACB. In vitro assessment of dental erosion caused by clear aligners. J Mech Behav Biomed Mater 2024; 152:106390. [PMID: 38277909 DOI: 10.1016/j.jmbbm.2024.106390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
The primary objective of this in vitro study was to investigate the erosive potential of enamel under the use of clear aligners (CA), by simulating in vivo conditions experienced by patients who do not remove their CA during the consumption of acidic beverages. In addition, the difference in erosion protection conferred by artificial and human saliva was also evaluated. Sound-extracted human premolars (n = 20) had half of their surfaces protected with acid-resistant nail polish and were randomly distributed into two experimental groups (n = 10): teeth immersed in human saliva or artificial saliva. All teeth had half of their lingual surfaces enclosed by a CA device. The erosive challenges consisted of individual immersion of each sample in citrus acid three times a day, intermediated by immersion in human saliva or artificial saliva for 2 h, during ten days of the erosive protocol. The enamel mineral content was analyzed by high-resolution microtomography. The differential mineral concentration profiles were obtained by subtracting the profile of the mineral concentration of the exposed area and enamel under the CA area from the respective sound area (control). In addition, enamel wear and enamel volume loss were measured. Scanning electron microscopy (SEM) was also performed to analyze the enamel surface. Data were analyzed by two-way ANOVA, followed by the Student-Newman-Keuls test. The enamel wear was higher in teeth immersed in artificial saliva, when compared to human saliva (p < 0.001). The volume loss of the exposed enamel area was lower for tooth immersed in human saliva than in artificial saliva (p < 0.001), during the acid challenge protocol. The use of CA during acid challenges promoted wear and mineral loss of dental enamel, being these changes more pronounced on the enamel surface under the CA. These results open a new path for the development of further studies adopting clinical protocols that promote more accurate responses in the clinical practice during orthodontic treatment.
Collapse
Affiliation(s)
- Celestino Nobrega
- Department of Orthodontics, Case Western Reserve University, Cleveland, OH, United States.
| | - Gabriel Pereira Nunes
- Department of Preventive and Restorative Dentistry, São Paulo State University, Araçatuba, São Paulo, Brazil
| | - Yvonne de Paiva Buischi
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Natália de Campos Kajimoto
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | | |
Collapse
|
5
|
Ahmad P, Marin LM, Lowe C, Katselis GS, Siqueira WL. Salivary protein homology between humans and dogs: Mass spectrometry-based proteomics analysis. J Dent 2024; 142:104855. [PMID: 38246308 DOI: 10.1016/j.jdent.2024.104855] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVE This benchmark study aimed to investigate sex-related differences based on the identification and characterization of the salivary proteome of healthy male and female dogs using mass spectrometry (MS) technique and a homology-driven approach to analyze salivary proteins in both human and dog species utilizing protein sequence alignment technique. METHODS Unstimulated whole saliva was collected from 10 healthy Beagles. After processing the samples and determining the total protein content, in-solution protein digestion was performed involving denaturation, reduction of disulfide bonds, alkylation, and removal of interfering compounds. Samples were analyzed using LC-ESI-MS/MS. RESULTS LC-ESI-MS/MS analysis identified 327 and 341 unique proteins in male and female dog saliva, respectively, of which 318 (97.25 %) in male dogs and 326 (95.60 %) in female dogs were characterized. Abundant shared proteins included albumin, BPI fold-containing family A member 2, and VWFD domain-containing protein. A notable uncharacterized protein, VWFD domain-containing protein, was among the most abundant in both sexes. Comparative analysis of 69 abundant shared proteins indicated an upregulation of CES5A, EFHD, GC, IGHM, LOC100653049, KRT10, LCP1, PGD, TPI1 in male dogs, while LOC100855593 was upregulated in female dogs. In total, 84 % (n = 229/274) and 86 % (n = 235/275) salivary proteins identified in male and female dogs, respectively, were homologous to human proteins, with an overall homology of 86 % (n = 364/423), including 15 with 100 % homology. CONCLUSION The study revealed clear differences in the salivary proteomics profile of healthy male and female dogs. However, most of the salivary proteins in both male and female dogs showed homology with human salivary proteins. CLINICAL RELEVANCE The identification of unique salivary proteome profiles in male and female dogs, coupled with substantial homology to human proteins, provides promising biomarkers for health assessment, highlighting its clinical significance for diagnostics and therapeutic exploration not only in veterinary and human dentistry, but across mammalian species.
Collapse
Affiliation(s)
- Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N E5E, Canada
| | - Lina M Marin
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N E5E, Canada
| | - Candace Lowe
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - George S Katselis
- Department of Medicine, Canadian Centre for Rural and Agricultural Health, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 2Z4, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N E5E, Canada.
| |
Collapse
|
6
|
Hertel S, Basche S, Schmidt V, Staszyk C, Hannig C, Sterzenbach T, Hannig M. Erosion behaviour of human, bovine and equine dental hard tissues. Sci Rep 2023; 13:19617. [PMID: 37949920 PMCID: PMC10638419 DOI: 10.1038/s41598-023-46759-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023] Open
Abstract
Dental hard tissues from different species are used in dental research, but little is known about their comparability. The aim of this study was to compare the erosive behaviour of dental hard tissues (enamel, dentin) obtained from human, bovine and equine teeth. In addition, the protective effect of the pellicle on each hard tissue under erosive conditions was determined. In situ pellicle formation was performed for 30 min on enamel and dentin samples from all species in four subjects. Calcium and phosphate release was assessed during 120 s of HCl incubation on both native and pellicle-covered enamel and dentin samples. SEM and TEM were used to examine surface changes in native enamel and dentin samples after acid incubation and the ultrastructure of the pellicle before and after erosive exposure. In general, bovine enamel and dentin showed the highest degree of erosion after acid exposure compared to human and equine samples. Erosion of human primary enamel tended to be higher than that of permanent teeth, whereas dentin showed the opposite behaviour. SEM showed that eroded equine dentin appeared more irregular than human or bovine dentin. TEM studies showed that primary enamel appeared to be most susceptible to erosion.
Collapse
Affiliation(s)
- S Hertel
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - S Basche
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - V Schmidt
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, 66421, Homburg, Germany
| | - C Staszyk
- Institute for Veterinary-Anatomy, -Histology and -Embryology, Faculty for Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Str. 98, 35392, Giessen, Germany
| | - C Hannig
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - T Sterzenbach
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - M Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
7
|
Enax J, Ganss B, Amaechi BT, Schulze zur Wiesche E, Meyer F. The composition of the dental pellicle: an updated literature review. FRONTIERS IN ORAL HEALTH 2023; 4:1260442. [PMID: 37899941 PMCID: PMC10600522 DOI: 10.3389/froh.2023.1260442] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Background The dental pellicle is a thin layer of up to several hundred nm in thickness, covering the tooth surface. It is known to protect the teeth from acid attacks through its selective permeability and it is involved in the remineralization process of the teeth. It functions also as binding site and source of nutrients for bacteria and conditioning biofilm (foundation) for dental plaque formation. Methods For this updated literature review, the PubMed database was searched for the dental pellicle and its composition. Results The dental pellicle has been analyzed in the past years with various state-of-the art analytic techniques such as high-resolution microscopic techniques (e.g., scanning electron microscopy, atomic force microscopy), spectrophotometry, mass spectrometry, affinity chromatography, enzyme-linked immunosorbent assays (ELISA), and blotting-techniques (e.g., western blot). It consists of several different amino acids, proteins, and proteolytic protein fragments. Some studies also investigated other compounds of the pellicle, mainly fatty acids, and carbohydrates. Conclusions The dental pellicle is composed mainly of different proteins, but also fatty acids, and carbohydrates. Analysis with state-of-the-art analytical techniques have uncovered mainly acidic proline-rich proteins, amylase, cystatin, immunoglobulins, lysozyme, and mucins as main proteins of the dental pellicle. The pellicle has protective properties for the teeth. Further research is necessary to gain more knowledge about the role of the pellicle in the tooth remineralization process.
Collapse
Affiliation(s)
- Joachim Enax
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| | - Bernhard Ganss
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Bennett T. Amaechi
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, United States
| | | | - Frederic Meyer
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| |
Collapse
|
8
|
Baumann T, Niemeyer SH, Buzalaf MAR, Carvalho TS. Protease-inhibitors added to saliva in vitro influence the erosion protective effect of enamel pellicles. Sci Rep 2023; 13:8618. [PMID: 37244955 DOI: 10.1038/s41598-023-35334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/16/2023] [Indexed: 05/29/2023] Open
Abstract
In contrast to pellicles formed in vivo, pellicles formed in vitro provide little to no erosion protection for enamel, possibly due to protein degradation from proteases during pellicle formation. With the objective to achieve a more similar effect as observed for in vivo pellicles, the effects of adding protease inhibitors (PI) to saliva in vitro, and/or exchanging saliva repeatedly during pellicle formation were investigated in a cyclic model of pellicle formation and erosion with human enamel specimens. We repeatedly assessed surface microhardness (SMH), measured initial and final surface reflection intensity (SRI), and determined calcium released during erosion. For all the parameters tested, we observed a clear positive effect on erosion protection when adding PI to saliva for pellicle formation: SMH remained harder, SRI remained higher, and less calcium was released. Additionally, exchanging saliva with fresh one during pellicle formation led to a protective effect, but not as strong as the addition of PI. We conclude that adding protease inhibitors to saliva in vitro for pellicle formation leads to an erosion protective effect, which was further increased by repeatedly exchanging the saliva. Whether the pellicle itself more closely resembles in vivo pellicles remains to be investigated.
Collapse
Affiliation(s)
- Tommy Baumann
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland.
| | - Samira Helena Niemeyer
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland
| | - Marília Afonso Rabelo Buzalaf
- Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | - Thiago Saads Carvalho
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland
| |
Collapse
|
9
|
Moussa DG, Kung RW, Tse JS, Siqueira WL. Mechanistic Insights into Bioengineered Antibiofilm Enamel Pellicles. J Dent Res 2023:220345231162336. [PMID: 37082872 DOI: 10.1177/00220345231162336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Dental caries remains the most widespread chronic disease worldwide. Basically, caries originates within biofilms accumulated on dental enamel. Despite the nonrenewable nature of the enamel tissue, targeted preventive strategies are still very limited. We previously introduced customized multifunctional proteinaceous pellicles (coatings) for controlling bacterial attachment and subsequent biofilm succession. Stemmed from our whole proteome/peptidome analysis of the in vivo acquired enamel pellicle, we designed these pellicles using hybrid mixtures of the most abundant and complementary-acting antimicrobial and antifouling proteins/peptides for synergetic suppression of early biofilms. In conjugating these domains synthetically, their bioinhibitory efficacy was remarkably boosted. Herein, we sought to explore the key structure-function relationship of these potent de novo hybridized conjugates in comparison with their individual domains, solely or in physical mixtures. Specifically, we interrelated the following facets: physicochemical and 3-dimensional folding characteristics via molecular dynamics simulations, adopted secondary structure by circular dichroism, immobilization capacity on enamel through high-spatial resolution multiphoton microscopy, and biofilm suppression potency. Our data showed consistent associations among the increased preference for protein folding structures, α-helix content, and enamel-immobilization capacity; all were inversely correlated with the attached bioburden. The expressed phenotypes could be explained by the adopted strongly amphipathic helical conformation upon conjugation, mediated by the highly anionic and acidic N-terminal pentapeptide shared region/motif for enhanced immobilization on enamel. In conclusion, conjugating bioactive proteins/peptides is a novel translational approach to engineer robust antibiofilm pellicles for caries prevention. The adopted α-helical conformation is key to enhance the antibiofilm efficacy and immobilization capacity on enamel that are promoted by certain physicochemical properties of the constituent domains. These data are valuable for bioengineering versatile therapeutics to prevent/arrest dental caries, a condition that otherwise requires invasive treatments with substantial health care expenditures.
Collapse
Affiliation(s)
- D G Moussa
- College of Dentistry, University of Saskatchewan, Saskatoon, Canada
| | - R W Kung
- Department of Physics and Engineering Physics, College of Art and Science, University of Saskatchewan, Saskatoon, Canada
| | - J S Tse
- Department of Physics and Engineering Physics, College of Art and Science, University of Saskatchewan, Saskatoon, Canada
| | - W L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
10
|
Li Y, Yang Z, Cai T, Jiang D, Luo J, Zhou Z. Untargeted metabolomics of saliva in caries-active and caries-free children in the mixed dentition. Front Cell Infect Microbiol 2023; 13:1104295. [PMID: 37082714 PMCID: PMC10110944 DOI: 10.3389/fcimb.2023.1104295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
ObjectiveTo compare the differences in salivary metabolites between caries-active and caries-free children in the mixed dentition, and explore their correlation with caries status.MethodsThe study involved 20 children (aged 8–9 years) in the mixed dentition, including 10 caries-active (aged 8.6 ± 0.49years) and 10 caries-free children(aged 8.5 ± 0.5years), with a male/female ratio of 1:1. The saliva samples were collected from all children. Metabolite extraction, LC-MS/MS-based untargeted metabolomics, qualitative and semi-quantitative analysis and bioinformatics analysis were performed to identify differential metabolites between the two sample groups. The differential metabolites identified were further analyzed in an attempt to find their correlations with caries status.ResultsIn the positive ion mode, a total of 1606 molecular features were detected in the samples of the two groups, 189 of which were differential metabolites when comparing the caries-active group with the caries-free group, including 104 up-regulated and 85 down-regulated metabolites. In the negative ion mode, a total of 532 molecular features were detected in the samples of two groups, 70 of which were differential metabolites when comparing the caries-active group with the caries-free group, including 37 up-regulated and 33 down-regulated metabolites. In the positive ion mode, two of the top 5 up-regulated differential metabolites were found in and annotated to specific metabolic pathways, whereas in the negative ion mode, only one of the top 5 up-regulated differential metabolites was found in and annotated to specific metabolic pathways. In both the positive and negative ion modes, the top 5 down-regulated differential metabolites were both annotated to the metabolic pathways. KEGG pathway enrichment analysis of differential metabolites showed that histamine and arachidonic acid identified in the positive ion mode, as well as succinate and L-histidine identified in the negative ion mode were enriched in the top 3 significantly altered pathways.ConclusionThe enriched differential metabolites including histamine, L-histidine and succinate were correlated with the presence of dental caries, but their role in the caries process needs to be further investigated.
Collapse
Affiliation(s)
- Yueheng Li
- Department of Preventive Dentistry, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zhengyan Yang
- Department of Preventive Dentistry, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ting Cai
- Department of Preventive Dentistry, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Dan Jiang
- Department of Preventive Dentistry, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jun Luo
- Department of Preventive Dentistry, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Jun Luo, ; Zhi Zhou,
| | - Zhi Zhou
- Department of Preventive Dentistry, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Jun Luo, ; Zhi Zhou,
| |
Collapse
|
11
|
Zhang X, Bai R, Sun Q, Zhuang Z, Zhang Y, Chen S, Han B. Bio-inspired special wettability in oral antibacterial applications. Front Bioeng Biotechnol 2022; 10:1001616. [PMID: 36110327 PMCID: PMC9468580 DOI: 10.3389/fbioe.2022.1001616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Most oral diseases originate from biofilms whose formation is originated from the adhesion of salivary proteins and pioneer bacteria. Therefore, antimicrobial materials are mainly based on bactericidal methods, most of which have drug resistance and toxicity. Natural antifouling surfaces inspire new antibacterial strategies. The super wettable surfaces of lotus leaves and fish scales prompt design of biomimetic oral materials covered or mixed with super wettable materials to prevent adhesion. Bioinspired slippery surfaces come from pitcher plants, whose porous surfaces are infiltrated with lubricating liquid to form superhydrophobic surfaces to reduce the contact with liquids. It is believed that these new methods could provide promising directions for oral antimicrobial practice, improving antimicrobial efficacy.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Rushui Bai
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qiannan Sun
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Zimeng Zhuang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yunfan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Si Chen
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Bing Han
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
12
|
Engineered Salivary Peptides Reduce Enamel Demineralization Provoked by Cariogenic S. mutans Biofilm. Microorganisms 2022; 10:microorganisms10040742. [PMID: 35456793 PMCID: PMC9032980 DOI: 10.3390/microorganisms10040742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Engineering of the acquired enamel pellicle using salivary peptides has been shown to be a promising anticaries strategy. However, the mechanisms by which these peptides protect teeth against tooth decay are not fully understood. In this study, we evaluated the effect of the engineered salivary peptides DR9-DR9 and DR9-RR14 on enamel demineralization in two experimental conditions: (1) adsorbed onto the enamel surface forming the AEP, and (2) forming the AEP combined with their use to treat the biofilms 2×/day, using a validated cariogenic Streptococcus mutans in vitro biofilm model. Biofilms were grown for 144 h on enamel slabs and then collected to determine the bacterial viability (CFU/biofilm) and biofilm mass (mg protein/biofilm), and to extract cellular/extracellular proteins, which were characterized by mass spectrometry. The culture medium was changed 2×/day to fresh medium, and pH (indicator of biofilm acidogenicity) and calcium concentration (indicator of demineralization) was determined in used medium. DR9-RR14 peptide significantly reduced enamel demineralization (p < 0.0001) in both experimental conditions. However, this peptide did not have a significant effect on biofilm biomass (p > 0.05) nor did it modulate the expression of cellular and extracellular bacterial proteins involved in biofilm cariogenicity. These findings suggest that DR9-RR14 may control caries development mainly by a physicochemical mechanism.
Collapse
|
13
|
Marin LM, Xiao Y, Cury JA, Siqueira WL. Modulation of Streptococcus mutans Adherence to Hydroxyapatite by Engineered Salivary Peptides. Microorganisms 2022; 10:microorganisms10020223. [PMID: 35208678 PMCID: PMC8875007 DOI: 10.3390/microorganisms10020223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/23/2022] Open
Abstract
Since the modification of the proteinaceous components of the Acquired Enamel Pellicle (AEP) could influence the adhesion of Streptococcus mutans, the most cariogenic bacteria, to dental surfaces, we assessed if engineered salivary peptides would affect the adherence and modulate the bacterial proteome upon adherence. Single-component AEPs were formed onto hydroxyapatite (HAp) discs by incubating them with statherin, histatin-3, DR9, DR9-DR9, DR9-RR14, RR14, and parotid saliva. Then, the discs were inoculated with S. mutans UA159 and the bacteria were allowed to adhere for 2 h, 4 h, and 8 h (n = 12/treatment/time point). The number of bacteria adhered to the HAp discs was determined at each time point and analyzed by two-way ANOVA and Bonferroni tests. Cell-wall proteins were extracted from adhered, planktonic, and inoculum (baseline) bacteria and proteome profiles were obtained after a bottom-up proteomics approach. The number of adhered bacteria significantly increased over time, being the mean values obtained at 8 h, from highest to lowest, as follows: DR9-RR14 > statherin > RR14 = DR9-DR9 > DR9 = histatin3 > saliva (p < 0.05). Treatments modulated the bacterial proteome upon adherence. The findings suggested a potential use of our engineered peptide DR9-DR9 to control S. mutans biofilm development by reducing bacterial colonization.
Collapse
Affiliation(s)
- Lina Maria Marin
- College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada;
| | - Yizhi Xiao
- Schulich School of Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada;
| | - Jaime Aparecido Cury
- Piracicaba Dental School, University of Campinas, Piracicaba CEP 13414-903, Brazil;
| | - Walter Luiz Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada;
- Correspondence:
| |
Collapse
|
14
|
Marin LM, Cury JA, Siqueira WL. Validation of a cariogenic biofilm model by evaluating the effect of fluoride on enamel demineralization. J Microbiol Methods 2021; 192:106386. [PMID: 34848194 DOI: 10.1016/j.mimet.2021.106386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 02/05/2023]
Abstract
In vitro biofilm models have been extensively used, but only few of the models available to date had been validated in terms of the dose-response effect of anti-caries and/or antimicrobial substances. Additionally, none of the validated models allow the use of microliter volumes of the treatment solutions, needed mainly to test (screen) novel but expensive substances under development. This study aimed at modifying an in vitro cariogenic Streptococcus mutans biofilm model and validating it by assessing the dose-response effect of fluoride on enamel demineralization. S. mutans cariogenic biofilms were developed on saliva-coated enamel slabs previously bonded to acrylic holders fixed to a lid of a culture plate. Biofilms were incubated 8 h/day in culture medium supplemented with 1% sucrose and then overnight in culture medium with glucose 0.1 mM. Biofilms were also treated 2×/day with 2.0 mL of solutions containing 0, 125, 275 and 1250 μg F/mL (n = 10/group). The replaced culture medium was used to: determine the biofilm acidogenicity; estimate the demineralization of enamel; and monitor the fluoride concentration. At 144 h, biofilms were collected for fluoride concentration analyses, and the fluoride uptake by enamel was determined in each slab. The model showed a dose-response effect of fluoride (R2 = 0.96, p < 0.001) between enamel demineralization and the fluoride concentration of the treatments. Water-soluble and bound biofilm fluoride concentrations (p < 0.007), as well as the firmly-bound fluoride concentration found in enamel (p < 0.0001), increased in a dose-dependent manner. Our model constitutes a validated approach that would allow the assessment of the anticaries potential of novel biotechnological strategies, as in the case of expensive salivary peptides, because it would allow to test the treatment solutions using smaller volumes.
Collapse
Affiliation(s)
- Lina M Marin
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Jaime A Cury
- Piracicaba Dental School, University of Campinas, Av. Limeira 901, Piracicaba, SP, 13414-903, Brazil
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
15
|
Moussa DG, Siqueira WL. Bioinspired caries preventive strategy via customizable pellicles of saliva-derived protein/peptide constructs. Sci Rep 2021; 11:17007. [PMID: 34417532 PMCID: PMC8379205 DOI: 10.1038/s41598-021-96622-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/02/2021] [Indexed: 01/18/2023] Open
Abstract
Dental caries has been the most widespread chronic disease globally associated with significant health and financial burdens. Caries typically starts in the enamel, which is a unique tissue that cannot be healed or regrown; nonetheless, new preventive approaches have limitations and no effective care has developed yet. Since enamel is a non-renewable tissue, we believe that the intimate overlaying layer, the acquired enamel pellicle (AEP), plays a crucial lifetime protective role and could be employed to control bacterial adhesion and dental plaque succession. Based on our identified AEP whole proteome/peptidome, we investigated the bioinhibitory capacities of the native abundant proteins/peptides adsorbed in pellicle-mimicking conditions. Further, we designed novel hybrid constructs comprising antifouling and antimicrobial functional domains derived from statherin and histatin families, respectively, to attain synergistic preventive effects. Three novel constructs demonstrated significant multifaceted bio-inhibition compared to either the whole saliva and/or its native proteins/peptides via reducing biomass fouling and inducing biofilm dispersion beside triggering bacterial cell death. These data are valuable to bioengineer precision-guided enamel pellicles as an efficient and versatile prevention remedy. In conclusion, integrating complementary acting functional domains of salivary proteins/peptides is a novel translational approach to design multifunctional customizable enamel pellicles for caries prevention.
Collapse
Affiliation(s)
- Dina G Moussa
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
16
|
Siqueira WL, Canales MP, Crosara KTB, Marin LM, Xiao Y. Proteome difference among the salivary proteins adsorbed onto metallic orthodontic brackets and hydroxyapatite discs. PLoS One 2021; 16:e0254909. [PMID: 34319997 PMCID: PMC8318307 DOI: 10.1371/journal.pone.0254909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to investigate the atomic composition and the proteome of the salivary proteins adsorbed on the surface of orthodontic metallic bracket. For this, the atomic composition of orthodontic metallic brackets was analyzed with X-ray Photoelectron Spectroscopy (XPS). The acquired bracket pellicle was characterized after brackets were immersed in human whole saliva supernatant for 2 hours at 37°C. Hydroxyapatite (HA) discs were used as a control. Acquired pellicle was harvested from the HA discs (n = 12) and from the metallic brackets (n = 12). Proteomics based on mass spectrometry technology was used for salivary protein identification and characterization. Results showed that most of the proteins adsorbed on the surface of orthodontic metallic brackets and on the HA discs were identified specifically to each group, indicating a small overlapping between the salivary proteins on each study group. A total of 311 proteins present on the HA discs were unique to this group while 253 proteins were unique to metallic brackets, and only 45 proteins were common to the two groups. Even though most proteins were unique to each study group, proteins related to antimicrobial activity, lubrication, and remineralization were present in both groups. These findings demonstrate that the salivary proteins adsorbed on the bracket surface are dependent on the material molecular composition.
Collapse
Affiliation(s)
- Walter Luiz Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
- * E-mail:
| | - Maria Pia Canales
- Schulich Dentistry & Medicine, The University of Western Ontario, London, ON, Canada
| | | | - Lina Maria Marin
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yizhi Xiao
- Schulich Dentistry & Medicine, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
17
|
Zhang F, Cheng Z, Ding C, Li J. Functional biomedical materials derived from proteins in the acquired salivary pellicle. J Mater Chem B 2021; 9:6507-6520. [PMID: 34304263 DOI: 10.1039/d1tb01121a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the oral environment, the acquired salivary pellicle (ASP) on the tooth surface comprises proteins, glycoproteins, carbohydrates, and lipids. The ASP can specifically and rapidly adsorb on the enamel surface to provide effective lubrication, protection, hydration, and remineralisation, as well as be recognised by various bacteria to form a microbial biofilm (plaque). The involved proteins, particularly various phosphoproteins such as statherins, histatins, and proline-rich proteins, are vital to their specific functions. This review first describes the relationship between the biological functions of these proteins and their structures. Subsequently, recent advances in functional biomedical materials derived from these proteins are reviewed in terms of dental/bone therapeutic materials, antibacterial materials, tissue engineering materials, and coatings for medical devices. Finally, perspectives and challenges regarding the rational design and biomedical applications of ASP-derived materials are discussed.
Collapse
Affiliation(s)
- Fan Zhang
- Physical Examination Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | | | | | | |
Collapse
|
18
|
Zhou L, Li QL, Wong HM. A Novel Strategy for Caries Management: Constructing an Antibiofouling and Mineralizing Dual-Bioactive Tooth Surface. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31140-31152. [PMID: 34156831 DOI: 10.1021/acsami.1c06989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Existing single-functional agents against dental caries are inadequate in antibacterial performance or mineralization balance. This problem can be resolved through a novel strategy, namely, the construction of an antibiofouling and mineralizing dual-bioactive tooth surface by grafting a dentotropic moiety to an antimicrobial peptide. The constructed bioactive peptide can strongly adsorb onto the tooth surface and has beneficial functions in a myriad of ways. It inhibits cariogenic bacteria Streptococcus mutans adhesion, kills planktonic S. mutans, and destroys the S. mutans biofilm on the tooth surface. It also protects teeth from demineralization in acidic environments, and induces self-healing regeneration in the remineralization environment. Molecular dynamics simulations elucidate the main adsorption mechanism that the positively charged amino acid residues in the bioactive peptide bind to phosphate groups on the tooth surface, and the main mineralization mechanism that the negative charges on the outermost layer of the bioactive peptide repel acetic acid ions and attract calcium ions as nucleation sites for remineralization. This study suggests that this in-house synthesized dual-bioactive peptide is a promising functional agent to prevent dental caries, and is effective in inducing in situ self-healing remineralization for the treatment of decayed teeth.
Collapse
Affiliation(s)
- Li Zhou
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR 999077, China
| | - Quan Li Li
- Key Lab. of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230000, China
| | - Hai Ming Wong
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR 999077, China
| |
Collapse
|
19
|
Zhu Y, Marin LM, Xiao Y, Gillies ER, Siqueira WL. pH-Sensitive Chitosan Nanoparticles for Salivary Protein Delivery. NANOMATERIALS 2021; 11:nano11041028. [PMID: 33920657 PMCID: PMC8073935 DOI: 10.3390/nano11041028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/01/2022]
Abstract
Salivary proteins such as histatins (HTNs) have demonstrated critical biological functions directly related to tooth homeostasis and prevention of dental caries. However, HTNs are susceptible to the high proteolytic activities in the oral environment. Therefore, pH-sensitive chitosan nanoparticles (CNs) have been proposed as potential carriers to protect proteins from enzymatic degradation at physiological salivary pH. Four different types of chitosan polymers were investigated and the optimal formulation had good batch to batch reproducibility, with an average hydrodynamic diameter of 144 ± 6 nm, a polydispersity index of 0.15 ± 0.04, and a zeta potential of 18 ± 4 mV at a final pH of 6.3. HTN3 encapsulation and release profiles were characterized by cationic polyacrylamide gel electrophoresis. The CNs successfully encapsulated HTN3 and selectively swelled at acidic pH to facilitate HTN3 release. Protection of HTN3 against enzymatic degradation was investigated in diluted whole saliva. HTN3 encapsulated in the CNs had a prolonged survival time compared to the free HTN3. CNs with and without HTN3 also successfully reduced biofilm weight and bacterial viability. The results of this study have demonstrated the suitability of CNs as potential protein carriers for oral applications, especially for complications occurring at acidic conditions.
Collapse
Affiliation(s)
- Yi Zhu
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada; (Y.Z.); (E.R.G.)
| | - Lina M. Marin
- College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, SK S7N 5E4, Canada;
| | - Yizhi Xiao
- Schulich Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada;
| | - Elizabeth R. Gillies
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada; (Y.Z.); (E.R.G.)
- Department of Chemistry, Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Walter L. Siqueira
- College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, SK S7N 5E4, Canada;
- Correspondence:
| |
Collapse
|
20
|
Fischer NG, Aparicio C. The salivary pellicle on dental biomaterials. Colloids Surf B Biointerfaces 2021; 200:111570. [PMID: 33460965 PMCID: PMC8005451 DOI: 10.1016/j.colsurfb.2021.111570] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022]
Abstract
The salivary pellicle, an adlayer formed by adsorption of salivary components on teeth and dental biomaterials, has direct consequences on basic outcomes of dentistry. Here, we provide an overview of salivary pellicle formation processes with a critical focus on dental biomaterials. We describe and critique the array of salivary pellicle measurement techniques. We also discuss factors that may affect salivary pellicle formation and the heterogeneity of the published literature describing salivary pellicle formation on dental biomaterials. Finally, we survey the many effects salivary pellicles have on dental biomaterials and highlight its implications on design criteria for dental biomaterials. Future investigations may lead to rationally designed dental biomaterials to control the salivary pellicle and enhance material function and patient outcomes.
Collapse
Affiliation(s)
- Nicholas G Fischer
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Conrado Aparicio
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| |
Collapse
|
21
|
Zhou L, Wong HM, Li QL. Anti-Biofouling Coatings on the Tooth Surface and Hydroxyapatite. Int J Nanomedicine 2020; 15:8963-8982. [PMID: 33223830 PMCID: PMC7671468 DOI: 10.2147/ijn.s281014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/21/2020] [Indexed: 01/02/2023] Open
Abstract
Dental plaque is one type of biofouling on the tooth surface that consists of a diverse population of microorganisms and extracellular matrix and causes oral diseases and even systematic diseases. Numerous studies have focused on preventing bacteria and proteins on tooth surfaces, especially with anti-biofouling coatings. Anti-biofouling coatings can be stable and sustainable over the long term on the tooth surface in the complex oral environment. In this review, numerous anti-biofouling coatings on the tooth surface and hydroxyapatite (as the main component of dental hard tissue) were summarized based on their mechanisms, which include three major strategies: antiprotein and antibacterial adhesion through chemical modification, contact killing through the modification of antimicrobial agents, and antibacterial agent release. The first strategy of coatings can resist the adsorption of proteins and bacteria. However, these coatings use passive strategies and cannot kill bacteria. The second strategy can interact with the cell membrane of bacteria to cause bacterial death. Due to the possibility of delivering a high antibacterial agent concentration locally, the third strategy is recommended and will be the trend of local drug use in dentistry in the future.
Collapse
Affiliation(s)
- Li Zhou
- Department of Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR999077, People’s Republic of China
| | - Hai Ming Wong
- Department of Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR999077, People’s Republic of China
| | - Quan Li Li
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei230000, People’s Republic of China
| |
Collapse
|
22
|
Mercer DK, O'Neil DA. Innate Inspiration: Antifungal Peptides and Other Immunotherapeutics From the Host Immune Response. Front Immunol 2020; 11:2177. [PMID: 33072081 PMCID: PMC7533533 DOI: 10.3389/fimmu.2020.02177] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
The purpose of this review is to describe antifungal therapeutic candidates in preclinical and clinical development derived from, or directly influenced by, the immune system, with a specific focus on antimicrobial peptides (AMP). Although the focus of this review is AMP with direct antimicrobial effects on fungi, we will also discuss compounds with direct antifungal activity, including monoclonal antibodies (mAb), as well as immunomodulatory molecules that can enhance the immune response to fungal infection, including immunomodulatory AMP, vaccines, checkpoint inhibitors, interferon and colony stimulating factors as well as immune cell therapies. The focus of this manuscript will be a non-exhaustive review of antifungal compounds in preclinical and clinical development that are based on the principles of immunology and the authors acknowledge the incredible amount of in vitro and in vivo work that has been conducted to develop such therapeutic candidates.
Collapse
|
23
|
Bringel M, Jorge PK, Francisco PA, Lowe C, Sabino-Silva R, Colombini-Ishikiriama BL, Machado MADAM, Siqueira WL. Salivary proteomic profile of dogs with and without dental calculus. BMC Vet Res 2020; 16:298. [PMID: 32814559 PMCID: PMC7437026 DOI: 10.1186/s12917-020-02514-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 08/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dogs' saliva is a complex mixture of inorganic and organic constituents, rich in proteins. Therefore, knowing the saliva composition of these animals is extremely important to identify the presence of proteins that may be involved in physiological and pathological mechanisms of their oral cavity. The present study aimed to characterize the proteomic profile of saliva from dogs with and without dental calculus. RESULTS Saliva samples were collected from 20 dogs. Before the collection, a visual clinical examination was performed and 8 subjects (40%) did not present any signs of dental calculus, while 12 (60%) presented dental calculus. After saliva collection, the samples were submitted to protein quantification (mBCA), and then they were prepared for analysis by nLC-ESI-MS/MS. A total of 658 unique proteins were identified, of which 225 were specific to dogs without dental calculus, 300 were specific to dogs with dental calculus, and 133 were common to all subjects. These proteins presented functions including transportation, immune response, structural, enzymatic regulation, signal transduction, transcription, metabolism, and some proteins perform functions as yet unknown. Several salivary proteins in dogs with dental calculus differed from those found in the group without dental calculus. Among the abundant proteins detected in periodontal affected cases, can be highlighting calcium-sensing receptor and transforming growth factor beta. Enrichment analysis reveled the presence of Rho GTPases signaling pathway. CONCLUSIONS This research identified salivary proteins, that should be further investigated as potencial biomarkers of chronic periodontits with dental calculus formation in dogs.
Collapse
Affiliation(s)
- Mayara Bringel
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Pediatric Dentistry, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil
| | - Paula Karine Jorge
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Pediatric Dentistry, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil
| | | | - Cadance Lowe
- College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Robinson Sabino-Silva
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
24
|
Mutahar M, Bartlett D, Carpenter G, Moazzez R. Proteins from whole mouth saliva mediate greater protection against severe erosive tooth wear than proteins from parotid saliva using an in vitro model. J Dent 2020; 95:103319. [DOI: 10.1016/j.jdent.2020.103319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 02/04/2020] [Accepted: 03/09/2020] [Indexed: 12/25/2022] Open
|
25
|
Zhou L, Wong HM, Zhang YY, Li QL. Constructing an Antibiofouling and Mineralizing Bioactive Tooth Surface to Protect against Decay and Promote Self-Healing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3021-3031. [PMID: 31877018 DOI: 10.1021/acsami.9b19745] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Numerous methods have been investigated to manage dental caries, one of the top three diseases threatening human health as reported by the World Health Organization. An innovative strategy was proposed to prevent dental caries and achieve self-healing of the decayed tooth, and a novel bioactive peptide was designed and synthesized to construct an antibiofouling and mineralizing dual-bioactive tooth surface. Compared to its original endogenous peptide, the synthesized bioactive peptide showed statistically significantly higher binding affinity to the tooth surface, stronger suppression of demineralization, and a certain promotion of tooth remineralization. The abilities of the peptide to inhibit Streptococcus mutans (S. mutans) biofilm formation and S. mutans adhesion on the tooth surface were not affected after synthesis. Biocompatibility tests revealed the safety of the synthesized bioactive peptide. Interaction mechanisms between the synthesized bioactive peptide and tooth surface were also explained by molecular dynamic simulation analysis. In summary, the synthesized bioactive peptide could be applied safely to prevent dental caries and effectively induce in situ self-healing remineralization for treatment of the decayed tooth.
Collapse
Affiliation(s)
- Li Zhou
- Department of Paediatric Dentistry, Faculty of Dentistry , The University of Hong Kong , Hong Kong SAR 999077 , China
| | - Hai Ming Wong
- Department of Paediatric Dentistry, Faculty of Dentistry , The University of Hong Kong , Hong Kong SAR 999077 , China
| | - Yu Yuan Zhang
- Department of Paediatric Dentistry, Faculty of Dentistry , The University of Hong Kong , Hong Kong SAR 999077 , China
| | - Quan Li Li
- Department of Prosthodontic, College and Hospital of Stomatology , Anhui Medical University , Hefei 230000 , China
| |
Collapse
|
26
|
Fiorillo L. We Do Not Eat Alone: Formation and Maturation of the Oral Microbiota. BIOLOGY 2020; 9:biology9010017. [PMID: 31940979 PMCID: PMC7168179 DOI: 10.3390/biology9010017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022]
Abstract
From the earliest moments of life, contact with the outside world and with other individuals invalidates the sterility of the oral cavity. The oral cavity passes from a sterility condition, that is present only during intrauterine life, to a condition in which a microbiota organizes and evolves itself, accompanying the person throughout their life. Depending on a patient’s age, systemic conditions and/or oral conditions, different characteristics of the oral microbiome are shown. By verifying and analyzing this process it is possible to understand what is at the basis of the etiopathogenesis of some oral pathologies, and also the function of the oral microbiome.
Collapse
Affiliation(s)
- Luca Fiorillo
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Policlinico G. Martino, Via Consolare Valeria, 98100 Messina, Italy
| |
Collapse
|
27
|
van Dijk IA, Veerman ECI, Reits EAJ, Bolscher JGM, Stap J. Salivary peptide histatin 1 mediated cell adhesion: a possible role in mesenchymal-epithelial transition and in pathologies. Biol Chem 2019; 399:1409-1419. [PMID: 30138105 DOI: 10.1515/hsz-2018-0246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/31/2018] [Indexed: 12/21/2022]
Abstract
Histatins are histidine-rich peptides present in the saliva of humans and higher primates and have been implicated in the protection of the oral cavity. Histatin 1 is one of the most abundant histatins and recent reports show that it has a stimulating effect on cellular adherence, thereby suggesting a role in maintaining the quality of the epithelial barrier and stimulating mesenchymal-to-epithelial transition. Here we summarize these findings and discuss them in the context of previous reports. The recent findings also provide new insights in the physiological functions of histatin 1, which are discussed here. Furthermore, we put forward a possible role of histatin 1 in various pathologies and its potential function in clinical applications.
Collapse
Affiliation(s)
- Irene A van Dijk
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, NL-1105 AZ Amsterdam, The Netherlands
| | - Enno C I Veerman
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, NL-1081 AL Amsterdam, The Netherlands
| | - Eric A J Reits
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, NL-1081 AL Amsterdam, The Netherlands
| | - Jan G M Bolscher
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, NL-1081 AL Amsterdam, The Netherlands
| | - Jan Stap
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, NL-1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
28
|
Esteves CV, Campos WGD, Souza MMD, Lourenço SV, Siqueira WL, Lemos-Júnior CA. Diagnostic potential of saliva proteome analysis: a review and guide to clinical practice. Braz Oral Res 2019; 33:e043. [PMID: 31508727 DOI: 10.1590/1807-3107bor-2019.vol33.0043] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/25/2019] [Indexed: 01/26/2023] Open
Abstract
Proteomic techniques have become popular in medicine and dentistry because of their widespread use in analyzing bodily fluids such as blood, saliva, urine, and gingival crevicular fluids as well as hard tissues such as enamel, dentine, and cementum. This review is a guide to proteomic techniques in general dentistry, summarizing techniques and their clinical application in understanding and diagnosing diseases and their use in identifying biomarkers of various diseases.
Collapse
Affiliation(s)
- Camilla Vieira Esteves
- Department of Stomatology, School of Dentistry, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Silvia Vanessa Lourenço
- Department of General Pathology, School of Dentistry, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Walter Luiz Siqueira
- Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | | |
Collapse
|
29
|
The role of natural salivary defences in maintaining a healthy oral microbiota. J Dent 2019; 80 Suppl 1:S3-S12. [DOI: 10.1016/j.jdent.2018.08.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/22/2018] [Indexed: 01/19/2023] Open
|
30
|
Pedersen AML, Sørensen CE, Proctor GB, Carpenter GH, Ekström J. Salivary secretion in health and disease. J Oral Rehabil 2018; 45:730-746. [PMID: 29878444 DOI: 10.1111/joor.12664] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2018] [Indexed: 12/16/2022]
Abstract
Saliva is a complex fluid produced by 3 pairs of major salivary glands and by hundreds of minor salivary glands. It comprises a large variety of constituents and physicochemical properties, which are important for the maintenance of oral health. Saliva not only protects the teeth and the oropharyngeal mucosa, it also facilitates articulation of speech, and is imperative for mastication and swallowing. Furthermore, saliva plays an important role in maintaining a balanced microbiota. Thus, the multiple functions provided by saliva are essential for proper protection and functioning of the body as a whole and for the general health. A large number of diseases and medications can affect salivary secretion through different mechanisms, leading to salivary gland dysfunction and associated oral problems, including xerostomia, dental caries and fungal infections. The first part of this review article provides an updated insight into our understanding of salivary gland structure, the neural regulation of salivary gland secretion, the mechanisms underlying the formation of saliva, the various functions of saliva and factors that influence salivary secretion under normal physiological conditions. The second part focuses on how various diseases and medical treatment including commonly prescribed medications and cancer therapies can affect salivary gland structure and function. We also provide a brief insight into how to diagnose salivary gland dysfunction.
Collapse
Affiliation(s)
- A M L Pedersen
- Oral Medicine, Oral Pathology & Clinical Oral Physiology, University of Copenhagen, Copenhagen, Denmark
| | - C E Sørensen
- Oral Biochemistry, Cariology & Endodontics, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - G B Proctor
- Mucosal & Salivary Biology Division, King's College London Dental Institute, London, UK
| | - G H Carpenter
- Mucosal & Salivary Biology Division, King's College London Dental Institute, London, UK
| | - J Ekström
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
Torres P, Castro M, Reyes M, Torres VA. Histatins, wound healing, and cell migration. Oral Dis 2018; 24:1150-1160. [PMID: 29230909 DOI: 10.1111/odi.12816] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022]
Abstract
Wounds in the oral mucosa heal faster and more efficiently than those in the skin, although the mechanisms underlying these differences are not completely clear. In the last 10 years, a group of salivary peptides, the histatins, has gained attention on behalf of their ability to improve several phases of the wound-healing process. In addition to their roles as anti-microbial agents and in enamel maintenance, histatins elicit other biological effects, namely by promoting the migration of different cell types contained in the oral mucosa and in non-oral tissues. Histatins, and specifically histatin-1, promote cell adhesion and migration in oral keratinocytes, gingival and dermal fibroblasts, non-oral epithelial cells, and endothelial cells. This is particularly relevant, as histatin-1 promotes the re-epithelialization phase and the angiogenic responses by increasing epithelial and endothelial cell migration. Although the molecular mechanisms associated with histatin-dependent cell migration remain poorly understood, recent studies have pointed to the control of signaling endosomes and the balance of small GTPases. This review aimed to update the literature on the effects of histatins in cell migration, with a focus on wound healing. We will also discuss the consequences that this increasing field will have in disease and therapy design.
Collapse
Affiliation(s)
- P Torres
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - M Castro
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - M Reyes
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - V A Torres
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
32
|
Pechlivani N, Devine DA, Marsh PD, Mighell A, Brookes SJ. Novel methodology for determining the effect of adsorbates on human enamel acid dissolution. Arch Oral Biol 2017; 85:46-50. [PMID: 29031237 PMCID: PMC5713683 DOI: 10.1016/j.archoralbio.2017.09.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 11/18/2022]
Abstract
Method for investigating effect of adsorbates on acid dissolution of enamel. Effect of repeated acid exposures on adsorbates can be measured over time. Specific salivary proteins significantly reduced acid demineralisation of enamel. Desorption of specific proteins corresponds to reduction in protection against acid.
Objective The effect of various interventions on enamel demineralisation can be determined by chemically measuring mineral ions dissolved by the attacking acid. Results are usually expressed as mineral loss per surface area of enamel exposed. Acid resistant varnish or adhesive tape are typically used to delineate an area of enamel. However, enamel surface curvature, rugosity and porosity reduce the reliability of simple area measurements made at the macro scale. Our aim was to develop a simple method for investigating the effect of adsorbates on enamel demineralisation that does not rely on knowing the area of enamel exposed. As an exemplar we have used salivary proteins as a model adsorbate. Design Natural human tooth enamel surfaces were subjected to five sequential acid challenges and then incubated in adsorbate (whole clarified saliva) followed by a further 15 acid challenges. Demineralisation was determined by measuring the phosphate released into the acid during each exposure by a spectrophotometric assay. The initial five challenges established a mean baseline mineral loss for each tooth against which the effect of subsequently adsorbed proteins could be compared. Results Salivary proteins significantly reduced the acid demineralisation of human enamel by 43% (p < 0.01). Loss of proteins during each challenge corresponded to a gradual reduction in the degree of protection afforded. Conclusions The methodology provides a simple and flexible means to investigate the effect of any adsorbate on enamel acid dissolution. Knowledge of the area of exposed enamel is irrelevant as each tooth acts as its own negative control.
Collapse
Affiliation(s)
- N Pechlivani
- Department of Oral Biology, School of Dentistry, Wellcome Trust Brenner Building, St. James's University Hospital, University of Leeds, Leeds, LS9 7TF, UK
| | - D A Devine
- Department of Oral Biology, School of Dentistry, Wellcome Trust Brenner Building, St. James's University Hospital, University of Leeds, Leeds, LS9 7TF, UK
| | - P D Marsh
- Department of Oral Biology, School of Dentistry, Wellcome Trust Brenner Building, St. James's University Hospital, University of Leeds, Leeds, LS9 7TF, UK
| | - A Mighell
- Department of Oral Biology, School of Dentistry, Wellcome Trust Brenner Building, St. James's University Hospital, University of Leeds, Leeds, LS9 7TF, UK
| | - S J Brookes
- Department of Oral Biology, School of Dentistry, Wellcome Trust Brenner Building, St. James's University Hospital, University of Leeds, Leeds, LS9 7TF, UK.
| |
Collapse
|
33
|
Effect of gels containing chlorhexidine or epigallocatechin-3-gallate on the protein composition of the acquired enamel pellicle. Arch Oral Biol 2017. [PMID: 28622550 DOI: 10.1016/j.archoralbio.2017.05.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE This study evaluated changes in protein profile of the acquired enamel pellicle (AEP) formed in vivo, after application of gels containing chlorhexidine or EGCG and further challenge with citric acid. DESIGN AEP was formed in 9 volunteers for 2h and then treated with one of the following gels: placebo, 400μM EGCG or 0.012% chlorhexidine. A thin layer of gel was applied and after 1min the excess was removed. One hour after gel application, the AEP was collected from the buccal surface (upper and lower jaw) of one of the sides with filter paper dipped in 3% citric acid. On the other side, erosive challenge was performed through gentle application of 1% citric acid (pH 2.5) for 20s (using a pipette) followed by washing with deionized water. The AEP was collected as mentioned before. Proteomic analysis was performed through liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The MS/MS spectra obtained were compared with human protein databases (SWISS-PROT). Label-free quantitation was done using the PLGS software. RESULTS In total, 223 proteins were identified. After treatment with EGCG and CHX gels, proteins with potential functions to protect against caries and erosion such as PRPs, calcium-bind proteins and Statherin were increased. When EGCG and CHX-treated AEPs were challenged with citric acid, there was increase in cystatins and Profilin-1. CONCLUSION CHX- and EGCG-treated AEPs, submitted to challenge with citric acid or not, had remarkable changes in their proteomic profiles.
Collapse
|
34
|
Basiri T, Johnson N, Moffa E, Mulyar Y, Serra Nunes P, Machado M, Siqueira W. Duplicated or Hybridized Peptide Functional Domains Promote Oral Homeostasis. J Dent Res 2017; 96:1162-1167. [DOI: 10.1177/0022034517708552] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- T. Basiri
- School of Dentistry and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - N.D. Johnson
- School of Dentistry and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - E.B. Moffa
- School of Dentistry and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru Dental School, University of São Paulo, Bauru, Brazil
- CEUMA University, Post-Graduate Program in Dentistry, Maranhão, Brazil
| | - Y. Mulyar
- School of Dentistry and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - P.L. Serra Nunes
- CEUMA University, Post-Graduate Program in Dentistry, Maranhão, Brazil
| | - M.A.A.M. Machado
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru Dental School, University of São Paulo, Bauru, Brazil
| | - W.L. Siqueira
- School of Dentistry and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
35
|
Mai S, Mauger MT, Niu LN, Barnes JB, Kao S, Bergeron BE, Ling JQ, Tay FR. Potential applications of antimicrobial peptides and their mimics in combating caries and pulpal infections. Acta Biomater 2017; 49:16-35. [PMID: 27845274 DOI: 10.1016/j.actbio.2016.11.026] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/24/2016] [Accepted: 11/10/2016] [Indexed: 02/02/2023]
Abstract
Antimicrobial peptides (AMPs) are short cationic host-defense molecules that provide the early stage of protection against invading microbes. They also have important modulatory roles and act as a bridge between innate and acquired immunity. The types and functions of oral AMPs were reviewed and experimental reports on the use of natural AMPs and their synthetic mimics in caries and pulpal infections were discussed. Natural AMPs in the oral cavity, predominantly defensins, cathelicidins and histatins, possess antimicrobial activities against oral pathogens and biofilms. Incomplete debridement of microorganisms in root canal space may precipitate an exacerbated immune response that results in periradicular bone resorption. Because of their immunomodulatory and wound healing potentials, AMPs stimulate pro-inflammatory cytokine production, recruit host defense cells and regulate immuno-inflammatory responses in the vicinity of the pulp and periapex. Recent rapid advances in the development of synthetic AMP mimics offer exciting opportunities for new therapeutic initiatives in root canal treatment and regenerative endodontics. STATEMENT OF SIGNIFICANCE Identification of new therapeutic strategies to combat antibiotic-resistant pathogens and biofilm-associated infections continues to be one of the major challenges in modern medicine. Despite the presence of commercialization hurdles and scientific challenges, interests in using antimicrobial peptides as therapeutic alternatives and adjuvants to combat pathogenic biofilms have never been foreshortened. Not only do these cationic peptides possess rapid killing ability, their multi-modal mechanisms of action render them advantageous in targeting different biofilm sub-populations. These factors, together with adjunctive bioactive functions such as immunomodulation and wound healing enhancement, render AMPs or their synthetic mimics exciting candidates to be considered as adjuncts in the treatment of caries, infected pulps and root canals.
Collapse
|
36
|
Hegde MN, Sajnani AR. Salivary Proteins-A Barrier on Enamel Demineralization: An in vitro Study. Int J Clin Pediatr Dent 2017; 10:10-13. [PMID: 28377647 PMCID: PMC5360795 DOI: 10.5005/jp-journals-10005-1398] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/04/2016] [Indexed: 11/29/2022] Open
Abstract
AIM The aim of this study is to evaluate the protective effect of the salivary proteins on the demineralization of enamel. MATERIALS AND METHODS Twenty freshly extracted human molar teeth were used in this study. Enamel samples (2 mm thickness) were prepared from the buccal and lingual surfaces of the teeth selected. An acid-resistant nail varnish was used to cover every aspect of the sample, except an area of 5 * 5 mm limited by an adhesive tape. After drying, the adhesive tape was removed, exhibiting a rectangular area on the enamel surface. Samples were divided into two groups: Group I (10 samples): Each sample was coated by 100 μg of albumin for 2 hours at 37°C. Group II (10samples): Each sample was exposed to 100 μL of deionized water.Samples were washed by dipping once in deionized water. They were then disposed into individual tubes containing demineralization solution for 1, 2, 3, and 4 minutes at 37°C with gentle agitation. The demineralization solution was utilized to determine the calcium loss from specimens at 1, 2, 3, 4 minutes using an ultraviolet-visible spectrophotometer. RESULTS Calcium loss was less from the albumin-coated samples than control group at all times and was statistically significant (p < 0.05). Also, calcium loss was maximum at the end of 1 minute, and it decreased as time interval increased and was statistically significant (p < 0.001). CONCLUSION Albumin has provided a strong protection against enamel demineralization at all times compared to the one without it. HOW TO CITE THIS ARTICLE Hegde MN, Sajnani AR. Salivary Proteins-A Barrier on Enamel Demineralization: An in vitro Study. Int J Clin Pediatr Dent 2017;10(1):10-13.
Collapse
Affiliation(s)
- Mithra N Hegde
- Head, Department of Conservative Dentistry and Endodontics AB Shetty Memorial Institute of Dental Sciences, Mangaluru Karnataka, India
| | - Ankit R Sajnani
- Postgraduate Student, Department of Conservative Dentistry and Endodontics AB Shetty Memorial Institute of Dental Sciences, Mangaluru Karnataka, India
| |
Collapse
|
37
|
Sun X, Huang X, Tan X, Si Y, Wang X, Chen F, Zheng S. Salivary peptidome profiling for diagnosis of severe early childhood caries. J Transl Med 2016; 14:240. [PMID: 27527350 PMCID: PMC4986381 DOI: 10.1186/s12967-016-0996-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Severe early childhood caries (s-ECC), which has quite high prevalence among children, is a widespread problem with significant impacts among both developing and developed countries. At present, it is widely known that no early detective techniques and diagnostic tests could have high sensitivity and specificity when using for clinical screening of s-ECC. In this study, we had applied magnetic bead (MB)-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to screen distinctive candidate biomarkers of this disease, so as to establish protein profiles and diagnostic models of s-ECC. METHODS Firstly, we used the technique mentioned above to detect specifically expressed peptides in saliva samples from ten children with s-ECC, separately at the time point of before, 1 and 4 weeks after dental treatment. Then a diagnostic model for s-ECC was established with the K nearest-neighbour method, which was validated in another six children in the next stage of study. After that, linear ion trap-orbitrap-mass spectrometry (LTQ-Orbitrap-MS) was performed to identify which of the proteins in saliva might be the origination of these peptides. RESULTS We found that seven peptide peaks were significantly different when comparing the three time points, among them two were higher, while other five were lower in the pre-treatment s-ECC group compared with post-treatment. The sensitivity and specificity of the diagnostic model we built were both 83.3 %. Two of these peptides were identified to be segments of histatin-1, which was one important secretory protein in saliva. CONCLUSIONS Hereby we confirmed that MB-based MALDI-TOF MS is an effective method for screening distinctive peptides from the saliva of junior patients with s-ECC, and histatin-1 may probably be one important candidate biomarker of this common dental disease. These findings might have bright prospect in future in establishing new diagnostic methods for s-ECC.
Collapse
Affiliation(s)
- Xiangyu Sun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Xin Huang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Xu Tan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China.,Stomatological Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Yan Si
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Xiaozhe Wang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China.
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
38
|
Advances of Proteomic Sciences in Dentistry. Int J Mol Sci 2016; 17:ijms17050728. [PMID: 27187379 PMCID: PMC4881550 DOI: 10.3390/ijms17050728] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/01/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022] Open
Abstract
Applications of proteomics tools revolutionized various biomedical disciplines such as genetics, molecular biology, medicine, and dentistry. The aim of this review is to highlight the major milestones in proteomics in dentistry during the last fifteen years. Human oral cavity contains hard and soft tissues and various biofluids including saliva and crevicular fluid. Proteomics has brought revolution in dentistry by helping in the early diagnosis of various diseases identified by the detection of numerous biomarkers present in the oral fluids. This paper covers the role of proteomics tools for the analysis of oral tissues. In addition, dental materials proteomics and their future directions are discussed.
Collapse
|
39
|
Hyltegren K, Nylander T, Lund M, Skepö M. Adsorption of the intrinsically disordered saliva protein histatin 5 to silica surfaces. A Monte Carlo simulation and ellipsometry study. J Colloid Interface Sci 2016; 467:280-290. [DOI: 10.1016/j.jcis.2016.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 11/26/2022]
|
40
|
Cragnell C, Durand D, Cabane B, Skepö M. Coarse-grained modeling of the intrinsically disordered protein Histatin 5 in solution: Monte Carlo simulations in combination with SAXS. Proteins 2016; 84:777-91. [PMID: 26914439 DOI: 10.1002/prot.25025] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 01/24/2023]
Abstract
Monte Carlo simulations and coarse-grained modeling have been used to analyze Histatin 5, an unstructured short cationic salivary peptide known to have anticandidical properties. The calculated scattering functions have been compared with intensity curves and the distance distribution function P(r) obtained from small angle X-ray scattering (SAXS), at both high and low salt concentrations. The aim was to achieve a molecular understanding and a physico-chemical insight of the obtained SAXS results and to gain information of the conformational changes of Histatin 5 due to altering salt content, charge distribution, and net charge. From a modeling perspective, the accuracy of the electrostatic interactions are of special interest. The used coarse-grained model was based on the primitive model in which charged hard spheres differing in charge and in size represent the ionic particles, and the solvent only enters the model through its relative permittivity. The Hamiltonian of the model comprises three different contributions: (i) excluded volumes, (ii) electrostatic, and (iii) van der Waals interactions. Even though the model can be considered as gross omitting all atomistic details, a great correspondence is obtained with the experimental results. Proteins 2016; 84:777-791. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carolina Cragnell
- Chemical Department, Theoretical Chemistry, Lund University, Lund, Sweden
| | | | - Bernard Cabane
- PMMH, CNRS UMR 7636, ESPCI, Paris Cedex 05, F-75231, France
| | - Marie Skepö
- Chemical Department, Theoretical Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
41
|
Batista GR, Rocha Gomes Torres C, Sener B, Attin T, Wiegand A. Artificial Saliva Formulations versus Human Saliva Pretreatment in Dental Erosion Experiments. Caries Res 2016; 50:78-86. [PMID: 26870948 DOI: 10.1159/000443188] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 12/04/2015] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to evaluate the erosion-preventive effect of different artificial saliva formulations and human saliva in vitro compared to human saliva in situ. In the in vitro experiment, bovine enamel and dentin specimens were stored in artificial saliva (4 different formulations, each n = 20), deionized water (n = 20) or human saliva (n = 6 enamel and dentin specimens/volunteer) for 120 min. In the in situ experiment, each of the 6 enamel and dentin specimens was worn intraorally by 10 volunteers for 120 min. The specimens were then eroded (HCl, pH 2.6, 60 s). Half of the specimens were subjected to microhardness analysis (enamel) and the determination of calcium release into the acid (enamel and dentin), while the other half were again placed in the respective medium or worn intraorally, respectively, for 120 min before a second erosion was performed. Knoop microhardness of enamel and the calcium release of enamel and dentin into the acid were again determined. Statistical analysis was conducted by two-way repeated-measures ANOVA or two-way ANOVA (α = 0.05). Enamel microhardness was not significantly different between all test groups after the first and the second erosive challenge, respectively. Enamel calcium loss was significantly lower in situ compared to the in vitro experiment, where there was no significant difference between all test groups. Dentin calcium loss was significantly lower than deionized water only after the first and than all except one artificial saliva after the second erosion. Under the conditions of this experiment, the use of artificial saliva formulations and human saliva in vitro does not reflect the intraoral situation in dental erosion experiments adequately.
Collapse
Affiliation(s)
- Graziela Ribeiro Batista
- Department of Preventive Dentistry, Periodontology and Cariology, University of Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
42
|
Antibacterial Peptides: Opportunities for the Prevention and Treatment of Dental Caries. Probiotics Antimicrob Proteins 2016; 3:68. [PMID: 26781572 DOI: 10.1007/s12602-011-9076-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dental caries is a multifactorial disease that is a growing and costly global health concern. The onset of disease is a consequence of an ecological imbalance within the dental plaque biofilm that favors specific acidogenic and aciduric caries pathogens, namely Streptococcus mutans and Streptococcus sobrinus. It is now recognized by the scientific and medical community that it is neither possible nor desirable to totally eliminate dental plaque. Conversely, the chemical biocides most commonly used for caries prevention and treatment indiscriminately attack all plaque microorganisms. These treatments also suffer from other drawbacks such as bad taste, irritability, and staining. Furthermore, the public demand for safe and natural personal hygiene products continues to rise. Therefore, there are opportunities that exist to develop new strategies for the treatment of this disease. As an alternative to conventional antibiotics, antibacterial peptides have been explored greatly over the last three decades for many different therapeutic uses. There are currently tens of hundreds of antibacterial peptides characterized across the evolutionary spectrum, and among these, many demonstrate physical and/or biological properties that may be suitable for a more targeted approach to the selective control or elimination of putative caries pathogens. Additionally, many peptides, such as nisin, are odorless, colorless, and tasteless and do not cause irritation or staining. This review focuses on antibacterial peptides for their potential role in the treatment and prevention of dental caries and suggests candidates that need to be explored further. Practical considerations for the development of antibacterial peptides as oral treatments are also discussed.
Collapse
|
43
|
O’Toole S, Mistry M, Mutahar M, Moazzez R, Bartlett D. Sequence of stannous and sodium fluoride solutions to prevent enamel erosion. J Dent 2015; 43:1498-503. [DOI: 10.1016/j.jdent.2015.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/28/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022] Open
|
44
|
In Vitro Identification of Histatin 5 Salivary Complexes. PLoS One 2015; 10:e0142517. [PMID: 26544073 PMCID: PMC4636238 DOI: 10.1371/journal.pone.0142517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 10/22/2015] [Indexed: 01/20/2023] Open
Abstract
With recent progress in the analysis of the salivary proteome, the number of salivary proteins identified has increased dramatically. However, the physiological functions of many of the newly discovered proteins remain unclear. Closely related to the study of a protein’s function is the identification of its interaction partners. Although in saliva some proteins may act primarily as single monomeric units, a significant percentage of all salivary proteins, if not the majority, appear to act in complexes with partners to execute their diverse functions. Coimmunoprecipitation (Co-IP) and pull-down assays were used to identify the heterotypic complexes between histatin 5, a potent natural antifungal protein, and other salivary proteins in saliva. Classical protein–protein interaction methods in combination with high-throughput mass spectrometric techniques were carried out. Co-IP using protein G magnetic Sepharose TM beads suspension was able to capture salivary complexes formed between histatin 5 and its salivary protein partners. Pull-down assay was used to confirm histatin 5 protein partners. A total of 52 different proteins were identified to interact with histatin 5. The present study used proteomic approaches in conjunction with classical biochemical methods to investigate protein–protein interaction in human saliva. Our study demonstrated that when histatin 5 is complexed with salivary amylase, one of the 52 proteins identified as a histatin 5 partner, the antifungal activity of histatin 5 is reduced. We expected that our proteomic approach could serve as a basis for future studies on the mechanism and structural-characterization of those salivary protein interactions to understand their clinical significance.
Collapse
|
45
|
How does it kill?: understanding the candidacidal mechanism of salivary histatin 5. EUKARYOTIC CELL 2014; 13:958-64. [PMID: 24951439 DOI: 10.1128/ec.00095-14] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Histatins are salivary cationic peptides that provide the first line of defense against oral candidiasis caused by Candida albicans. This minireview presents a critical evaluation of our knowledge of the candidacidal mechanism of histatin 5 (Hst 5). Hst 5 is the most potent among all histatin family members with regard to its antifungal activity. The mode of action of Hst 5 has been a subject of intense debate. Unlike other classical host innate immune proteins, pore formation or membrane lysis by Hst 5 has largely been disproven, and it is now known that all targets of Hst 5 are intracellular. Hst 5 binds C. albicans cell wall proteins (Ssa1/2) and glycans and is taken up by the cells through fungal polyamine transporters in an energy-dependent manner. Once inside the fungal cells, Hst 5 may affect mitochondrial functions and cause oxidative stress; however, the ultimate cause of cell death is by volume dysregulation and ion imbalance triggered by osmotic stress. Besides these diverse targets, a novel mechanism based on the metal binding abilities of Hst 5 is discussed. Finally, translational approaches for Hst 5, based on peptide design and synergy with other known drugs, are considered a step forward for bench-to-bed application of Hst 5.
Collapse
|
46
|
Acquired pellicle as a modulator for dental erosion. Arch Oral Biol 2014; 59:631-8. [DOI: 10.1016/j.archoralbio.2014.02.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 11/11/2013] [Accepted: 02/04/2014] [Indexed: 11/19/2022]
|
47
|
Vukosavljevic D, Hutter JL, Helmerhorst EJ, Xiao Y, Custodio W, Zaidan FC, Oppenheim FG, Siqueira WL. Nanoscale adhesion forces between enamel pellicle proteins and hydroxyapatite. J Dent Res 2014; 93:514-9. [PMID: 24591293 DOI: 10.1177/0022034514526599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The acquired enamel pellicle (AEP) is important for minimizing the abrasion caused by parafunctional conditions as they occur, for instance, during bruxism. It is a remarkable feature of the AEP that a protein/peptide film can provide enough protection in normofunction to prevent teeth from abrasion and wear. Despite its obvious critical role in the protection of tooth surfaces, the essential adhesion features of AEP proteins on the enamel surface are poorly characterized. The objective of this study was to measure the adhesion force between histatin 5, a primary AEP component, and hydroxyapatite (HA) surfaces. Both biotinylated histatin 5 and biotinylated human serum albumin were allowed to adsorb to streptavidin-coated silica microspheres attached to atomic force microscope (AFM) cantilevers. A multimode AFM with a Nanoscope IIIa controller was used to measure the adhesion force between protein-functionalized silica microspheres attached to cantilever tips and the HA surface. The imaging was performed in tapping mode with a Si3N4 AFM cantilever, while the adhesion forces were measured in AFM contact mode. A collection of force-distance curves (~3,000/replicate) was obtained to generate histograms from which the adhesion forces between histatin 5 or albumin and the HA surface were measured. We found that histatin 5 exhibited stronger adhesion forces (90% >1.830 nN) to the HA surface than did albumin (90% > 0.282 nN). This study presents an objective approach to adhesion force measurements between histatin 5 and HA, and provides the experimental basis for measuring the same parameters for other AEP constituents. Such knowledge will help in the design of synthetic proteins and peptides with preventive and therapeutic benefits for tooth enamel.
Collapse
Affiliation(s)
- D Vukosavljevic
- Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N5A 6C1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Roberts AP, Mullany P. Oral biofilms: a reservoir of transferable, bacterial, antimicrobial resistance. Expert Rev Anti Infect Ther 2014; 8:1441-50. [DOI: 10.1586/eri.10.106] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Denture polymers with antimicrobial properties: a review of the development and current status of anionic poly(methyl methacrylate) polymers. Future Med Chem 2013; 5:1635-45. [DOI: 10.4155/fmc.13.145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The denture base polymer poly(methyl methacrylate) (PMMA) is highly susceptible for microbial colonization resulting in denture-associated infections. Over the years research has focused on ways to modify the PMMA properties via surface and chemical modification. These studies led to the development of new denture polymers that include anionic PMMA polymers. The new anionic polymers presented the possibility of compromising the physical and mechanical properties required for denture fabrication. These obstacles were overcome by generating anionic PMMA polymers with physical and mechanical properties suitable for denture fabrication. A large body of literature is available on the anionic PMMA polymers, their antimicrobial properties and their potential for the commercial and clinical application as dental biomaterials. This article describes a review and evaluation of the anionic PMMA polymers for their suitability to serve as denture base polymers, their antimicrobial properties, their efficacy to prevent denture-induced infection and their safety in the oral environment.
Collapse
|
50
|
Rezende TMB, Lima SMF, Petriz BA, Silva ON, Freire MS, Franco OL. Dentistry proteomics: From laboratory development to clinical practice. J Cell Physiol 2013; 228:2271-84. [DOI: 10.1002/jcp.24410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 05/21/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Taia M. B. Rezende
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
- Curso de Odontologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Stella M. F. Lima
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
- Curso de Odontologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Bernardo A. Petriz
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Osmar N. Silva
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Mirna S. Freire
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Octávio L. Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| |
Collapse
|