1
|
Kronic J, Duckworth RM, Angione C, Levy SM, Zohoori FV. Assessment of fluoride bio-accessibility in early childhood diets. FRONTIERS IN ORAL HEALTH 2025; 6:1526262. [PMID: 39981123 PMCID: PMC11839772 DOI: 10.3389/froh.2025.1526262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Currently available dietary recommendations for fluoride provided as "adequate intake" (AI) and "tolerable upper intake level" (UL) assume 100% fluoride availability for utilization by the body, which is often not the case. To prevent the development of dental fluorosis, AI and UL values must include fluoride bioavailability. However, the lack of data on fluoride bioavailability/bio-accessibility has hindered progress so far. This study aimed to measure fluoride bio-accessibility of the dietary sources commonly consumed by children below four years of age. Methods A total of 103 food and meal samples were purchased, prepared, and analyzed for fluoride content, subjected to a standardized static in vitro digestion procedure and subsequent determination of fluoride concentration of resultant mixtures necessary for the final fluoride bio-accessibility calculation. Fluoride concentrations before and after in vitro digestion were determined directly using a fluoride-ion-selective electrode after addition of TISAB III, or indirectly by an acid diffusion method. Additionally, fluoride concentration of milk samples was determined using a combination of microwave-assisted acid digestion and the direct method of fluoride analysis. Results Mean (SD) fluoride bio-accessibility for individual food samples was 44.7% (37.5%). The mean (SD) fluoride bio-accessibilities for meals created with juice, carbonated drinks, tap water, and milk were 79.0% (21.9%), 64.3% (20.7%), 40.2% (20.9%), and 71.5% (17.1%), respectively. For the rest of the meals with no common mixing agent, the mean (SD) fluoride bio-accessibility was 50.8% (55.9%). Conclusion The majority of dietary sources analyzed in this project resulted in fluoride bio-accessibilities below 100%, indicating incomplete utilization of consumed fluoride. As the first study of its kind, these findings represent a critical initial step for future research and provide valuable insights to inform policymakers and health authorities in revising fluoride intake guidelines.
Collapse
Affiliation(s)
- Jelena Kronic
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | - Ralph M. Duckworth
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, United Kingdom
| | - Steven M. Levy
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, United States
| | - Fatemeh Vida Zohoori
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
| |
Collapse
|
2
|
Bibi S, Kerbiriou C, Uzma, Mckirdy S, Kostrytsia A, Rasheed H, Eqani SAMAS, Gerasimidis K, Nurulain SM, Ijaz UZ. Gut microbiome and function are altered for individuals living in high fluoride concentration areas in Pakistan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116959. [PMID: 39232295 DOI: 10.1016/j.ecoenv.2024.116959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Endemic fluorosis refers to the condition when individuals are exposed to excessive amounts of fluoride ion due to living in a region characterized by elevated levels of fluorine in the drinking water, food, and/or air. In Pakistan, a substantial proportion of the population is thereby affected, posing a public health concern. OBJECTIVES Assessing how the gut microbiota and its metabolic profiles are impacted by chronic exposure to fluoride in drinking water (that caused Dental Fluorosis) as well as to perceive how this microbiota is connected to adverse health outcomes prevailing with fluoride exposure. METHODS Drinking water (n=27) and biological samples (n=100) of blood, urine and feces were collected from 70 high fluoride exposed (with Dental Fluorosis) and 30 healthy control (without Dental Fluorosis) subjects. Water and urinary fluoride concentrations were determined. Serum/plasma biochemical testing was performed. Fecal DNA extraction, 16S rRNA analysis of microbial taxa, their predicted metabolic function and fecal short chain fatty acids (SCFAs) quantification were carried out. RESULTS The study revealed that microbiota taxonomic shifts and their metabolic characterization had been linked to certain host clinical parameters under the chronic fluoride exposure. Some sets of genera showed strong specificity to water and urine fluoride concentrations, Relative Fat Mass index and SCFAs. The SCFAs response in fluoride-exposed samples was observed to be correlated with bacterial taxa that could contribute to adverse health effects. CONCLUSIONS Microbial dysbiosis as a result of endemic fluorosis exhibits a structure that is associated with risk of metabolic deregulation and is implicated in various diseases. Our results may form the development of novel interventions and may have utility in diagnosis and monitoring.
Collapse
Affiliation(s)
- Sara Bibi
- Department of Biosciences, COMSATS University Islamabad, 45550, Pakistan; Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow G11 6EW, UK
| | - Caroline Kerbiriou
- School of Medicine, Dentistry & Nursing, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Uzma
- Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow G11 6EW, UK
| | - Shona Mckirdy
- School of Medicine, Dentistry & Nursing, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Anastasiia Kostrytsia
- Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow G11 6EW, UK
| | - Hifza Rasheed
- National Water Quality Laboratory, Pakistan Council of Research in Water Resources (PCRWR), Islamabad, Pakistan
| | | | | | | | - Umer Zeeshan Ijaz
- Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow G11 6EW, UK; Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 7BE, UK; National University of Ireland, University Road, Galway H91 TK33, Ireland.
| |
Collapse
|
3
|
Nezihovski SS, Findler M, Chackartchi T, Mann J, Haim D, Tobias G. The effect of cessation of drinking water fluoridation on dental restorations and crowns in children aged 3-5 years in Israel - a retrospective study. Isr J Health Policy Res 2024; 13:50. [PMID: 39304948 DOI: 10.1186/s13584-024-00637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Community water fluoridation began in the 1945 as a public health measure to prevent and control caries and was implemented in Israel in 1981. Community water fluoridation reduced caries significantly, but in 2014, the Ministry of Health decided to stop Community water fluoridation in Israel. The aim of our study was to examine the effect of fluoridation cessation on the dental health of children aged 3-5, treated in "Assuta Tel Aviv" dental clinics, under general anesthesia or deep sedation. METHODS The computerized Maccabi-Dent database provided data for this retrospective study. Records from the years 2014-2019 including treatment codes for procedures relevant to the study, the number of stainless-steel crowns and restorations of all types were examined. Kruskal-Wallis test was performed to compare the results from before and after fluoridation cessation. RESULTS A statistically significant increase in the mean number of treatments in the years after fluoridation cessation (P < 0.05) was found. There was approximately a two-fold increase in the number of all treatments for all ages. CONCLUSION The results of the study emphasize the advantages of water fluoridation and are further proof of the need to restore community water fluoridation in Israel.
Collapse
Affiliation(s)
- Shiran Shemesh Nezihovski
- Department of Community Dentistry, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel.
| | - Mordechai Findler
- Dental Research Unit - Maccabi-Dent, Maccabi Healthcare Fund, Tel-Aviv, Israel
| | - Tali Chackartchi
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Jonathan Mann
- Department of Community Dentistry, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
- Dental Research Unit - Maccabi-Dent, Maccabi Healthcare Fund, Tel-Aviv, Israel
| | - Doron Haim
- Dental Research Unit - Maccabi-Dent, Maccabi Healthcare Fund, Tel-Aviv, Israel
| | - Guy Tobias
- Department of Community Dentistry, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
4
|
Lu W, Zhang H, Hua F. Adding calcium phosphate agents alongside fluorides may enhance caries prevention and remineralization, although evidence is limited. J Evid Based Dent Pract 2024; 24:102024. [PMID: 39174165 DOI: 10.1016/j.jebdp.2024.102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
ARTICLE TITLE AND BIBLIOGRAPHIC INFORMATION Effectiveness of Calcium Phosphate derivative agents on the prevention and remineralization of caries among children- A systematic review & meta-analysis of randomized controlled trials. Singal K, Sharda S, Gupta A, Malik VS, Singh M, Chauhan A, Agarwal A, Pradhan P, Singh M. J Evid Based Dent Pract. 2022; 22(3):101746. SOURCE OF FUNDING Indian Council of Medical Research. TYPE OF STUDY/DESIGN Systematic review with meta-analysis.
Collapse
|
5
|
Dokumacigil G, Korkut B, Atali PY. Combined Minimally Invasive Esthetic Rehabilitation of Dental Fluorosis-5-year Follow-up: Case Report. Oper Dent 2024; 49:497-506. [PMID: 39187955 DOI: 10.2341/23-176-s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 08/28/2024]
Abstract
Dental fluorosis (DF) is a specific esthetic issue characterized by a persistent condition in which there is a disruption in enamel development, leading to the formation of hypomineralized enamel. The resulting unusual appearance varies in intensity, presenting as mildly white and opaque to dark brown, and significantly impacts individuals' esthetic features and self-confidence. The objective of this case report was to assess the efficacy of microabrasion, dental whitening, and resin infiltration in terms of resolving lesions, tracking the sensitivity of teeth, and evaluating patient satisfaction over a period of time. A minimally invasive treatment approach in a 27-year-old woman with severe DF is detailed. The treatment plan involved enamel microabrasion, in-office bleaching, and two weeks of at-home bleaching, followed by resin infiltration for the affected tooth under rubber dam isolation. After a 5-year follow-up, the assessment of the patient's esthetic appearance indicated a successful treatment of teeth affected by DF.
Collapse
Affiliation(s)
- G Dokumacigil
- *Gokhan Dokumacigil, DDS, Department of Restorative Dentistry, Faculty of Dentistry, Istanbul Galata University, Istanbul, Turkey
| | - B Korkut
- Bora Korkut, DDS, PhD, Department of Restorative Dentistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - P Y Atali
- Pinar Yilmaz Atali, DDS, PhD, Department of Restorative Dentistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
6
|
Zhang J, Zhu B, Zhang X, Peng Y, Li S, Han D, Ren S, Qin K, Wang Y, Zhou H, Gao Z. CLICK-FLISA Based on Metal-Organic Frameworks for Simultaneous Detection of Fumonisin B1 (FB1) and Zearalenone (ZEN) in Maize. BIOSENSORS 2024; 14:355. [PMID: 39056631 PMCID: PMC11275017 DOI: 10.3390/bios14070355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Mycotoxins are secondary products produced primarily by fungi and are pathogens of animals and cereals, not only affecting agriculture and the food industry but also causing great economic losses. The development of rapid and sensitive methods for the detection of mycotoxins in food is of great significance for livelihood issues. This study employed an amino-functionalized zirconium luminescent metal-organic framework (LOF) (i.e., UiO-66-NH2). Click chemistry was utilized to assemble UiO-66-NH2 in a controlled manner, generating LOF assemblies to serve as probes for fluorescence-linked immunoassays. The proposed fluoroimmunoassay method for Zearalenone (ZEN) and Fumonisin B1 (FB1) detection based on the UiO-66-NH2 assembled probe (CLICK-FLISA) afforded a linear response range of 1-20 μmol/L for ZEN, 20 μmol/L for FB1, and a very low detection limit (0.048-0.065 μmol/L for ZEN; 0.048-0.065 μmol/L for FB1). These satisfying results demonstrate promising applications for on-site quick testing in practical sample analysis. Moreover, the amino functionalization may also serve as a modification strategy to design luminescent sensors for other food contaminants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yu Wang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (J.Z.); (X.Z.); (Y.P.); (S.L.); (D.H.); (S.R.); (K.Q.)
| | - Huanying Zhou
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (J.Z.); (X.Z.); (Y.P.); (S.L.); (D.H.); (S.R.); (K.Q.)
| | - Zhixian Gao
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (J.Z.); (X.Z.); (Y.P.); (S.L.); (D.H.); (S.R.); (K.Q.)
| |
Collapse
|
7
|
Zhu S, Liu B, Fu G, Yang L, Wei D, Zhang L, Zhang Q, Gao Y, Sun D, Wei W. PKC-θ is an important driver of fluoride-induced immune imbalance of regulatory T cells/effector T cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173081. [PMID: 38754514 DOI: 10.1016/j.scitotenv.2024.173081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Fluoride is unnecessary in the human body. Long-term fluoride exposure may lead to immune system abnormalities. However, the mechanism remains unclear. This study aim to explore the mechanism of fluoride interference in the immune system and also identify the key indicators of fluoride-induced immune damage. Questionnaires were used to collect basic information. Multiple linear analyses and other statistical methods were used in order to process the data. Flow cytometry was used to detect relevant immunomarkers and analyze immune damage. Simultaneously, Wistar rats and cell models exposed to fluoride were established to detect the effects of fluoride on immune homeostasis. The results showed that sex, residence time, smoking, and Corona Virus Disease 2019 (COVID-19) infection may indirectly influence fluoride-induced immune damage. In residents of fluoride-exposed areas, there was a significant decrease in CD3+ T lymphocytes and CD4+ and CD8+ cells and a downward trend in the CD4+/CD8+ cell ratio. CD4+CD8+/CD4+, regulatory T cells (Tregs), and Tregs/effector T cells (Teffs) ratios showed opposite changes. Fluoride inhibits T cell activation by inhibiting the expression and phosphorylation of Protein Kinase C-θ (PKC-θ), hinders the internalization of T cell receptors, and affects NF-kB and c-Jun protein expression, leading to homeostatic Treg/Teff imbalance in vivo and in vitro experiments. This study represents the first evidence suggesting that PKC-θ may be the key to immune imbalance in the body under fluoride exposure. It is possible that Tregs/Teffs cell ratio provide a reference point for the diagnosis and treatment of fluoride-induced immune damage.
Collapse
Affiliation(s)
- Siqi Zhu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Bingshu Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Guiyu Fu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Liu Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Dan Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Liwei Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China
| | - Qiong Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China.
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China.
| | - Wei Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
8
|
Pontigo-Loyola AP, Mendoza-Rodriguez M, de la Rosa-Santillana R, Rivera-Pacheco MG, Islas-Granillo H, Casanova-Rosado JF, Márquez-Corona MDL, Navarrete-Hernández JDJ, Medina-Solís CE, Manton DJ. Control of Dental Caries in Children and Adolescents Using Fluoride: An Overview of Community-Level Fluoridation Methods. Pediatr Rep 2024; 16:243-253. [PMID: 38651460 PMCID: PMC11036215 DOI: 10.3390/pediatric16020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
The maintenance of oral health is a crucial aspect of general well-being; however, a significant proportion of the worldwide population experiences a range of oral diseases. Dental caries is a highly prevalent non-communicable disease globally, especially in children and adolescents. Fluoride is involved in the control of dental caries, primarily by decreasing the critical pH for dental hard tissue dissolution and decreasing enamel solubility. Due to the substantial data supporting the efficacy of fluoride in controlling dental caries, many community-level fluoridation initiatives have been devised and executed as global public health preventive interventions. These initiatives encompass the fluoridation of water, salt, and milk. Water fluoridation is considered safe and effective when fluoride levels are maintained within the recommended range (0.6 to 1.1 mg/L). Salt fluoridation has a cariostatic potential similar to that of water fluoridation, and a fluoride concentration of 250 micrograms per gram in salt is not associated with an increased risk of developing dental fluorosis. However, there is currently an effort to reduce the consumption of table salt in order to mitigate the harmful effects of excessive salt consumption. It has been hypothesized that fluoride food supplementation, such as fluoridated milk, is associated with a decrease in caries experience in permanent teeth; however, the effect is not clear in primary teeth. Public-level fluoride interventions are more cost-effective than the operative care of caries lesions and limit the burden of care. The administration of fluorides should be conducted using safe methods, limiting ingestion, and adhering to the guidelines set by international and national health agencies in each country. This is particularly important when considering children with developing dentitions. Fluoride is an important tool in the control of dental caries, but it is crucial to combine it with good oral hygiene, a healthy diet, and regular visits to a dental professional to maintain long-term oral health.
Collapse
Affiliation(s)
- América Patricia Pontigo-Loyola
- Academic Area of Dentistry of Health Sciences Institute, Autonomous University of Hidalgo State, Pachuca 42160, Mexico; (A.P.P.-L.); (M.M.-R.); (R.d.l.R.-S.); (M.G.R.-P.); (H.I.-G.); (M.d.L.M.-C.)
| | - Martha Mendoza-Rodriguez
- Academic Area of Dentistry of Health Sciences Institute, Autonomous University of Hidalgo State, Pachuca 42160, Mexico; (A.P.P.-L.); (M.M.-R.); (R.d.l.R.-S.); (M.G.R.-P.); (H.I.-G.); (M.d.L.M.-C.)
| | - Rubén de la Rosa-Santillana
- Academic Area of Dentistry of Health Sciences Institute, Autonomous University of Hidalgo State, Pachuca 42160, Mexico; (A.P.P.-L.); (M.M.-R.); (R.d.l.R.-S.); (M.G.R.-P.); (H.I.-G.); (M.d.L.M.-C.)
| | - Maria Gracia Rivera-Pacheco
- Academic Area of Dentistry of Health Sciences Institute, Autonomous University of Hidalgo State, Pachuca 42160, Mexico; (A.P.P.-L.); (M.M.-R.); (R.d.l.R.-S.); (M.G.R.-P.); (H.I.-G.); (M.d.L.M.-C.)
- Department of Cariology, Centre for Dentistry and Oral Hygiene, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Horacio Islas-Granillo
- Academic Area of Dentistry of Health Sciences Institute, Autonomous University of Hidalgo State, Pachuca 42160, Mexico; (A.P.P.-L.); (M.M.-R.); (R.d.l.R.-S.); (M.G.R.-P.); (H.I.-G.); (M.d.L.M.-C.)
| | | | - María de Lourdes Márquez-Corona
- Academic Area of Dentistry of Health Sciences Institute, Autonomous University of Hidalgo State, Pachuca 42160, Mexico; (A.P.P.-L.); (M.M.-R.); (R.d.l.R.-S.); (M.G.R.-P.); (H.I.-G.); (M.d.L.M.-C.)
| | - José de Jesús Navarrete-Hernández
- Academic Area of Dentistry of Health Sciences Institute, Autonomous University of Hidalgo State, Pachuca 42160, Mexico; (A.P.P.-L.); (M.M.-R.); (R.d.l.R.-S.); (M.G.R.-P.); (H.I.-G.); (M.d.L.M.-C.)
| | - Carlo Eduardo Medina-Solís
- Academic Area of Dentistry of Health Sciences Institute, Autonomous University of Hidalgo State, Pachuca 42160, Mexico; (A.P.P.-L.); (M.M.-R.); (R.d.l.R.-S.); (M.G.R.-P.); (H.I.-G.); (M.d.L.M.-C.)
- Advanced Studies and Research Center in Dentistry “Dr. Keisaburo Miyata” of Faculty of Dentistry, Autonomous University of the State of Mexico, Toluca 50130, Mexico
| | - David J. Manton
- Department of Cariology, Centre for Dentistry and Oral Hygiene, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| |
Collapse
|
9
|
Trevizol JS, Buzalaf NR, Dionizio A, Delgado AQ, de Lara JPZ, Magalhães AC, Bosqueiro JR, Buzalaf MAR. Adaptive responses of the ileum of NOD mice to low-dose fluoride: A proteomic exploratory study. Cell Biochem Funct 2024; 42:e3976. [PMID: 38489223 DOI: 10.1002/cbf.3976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024]
Abstract
Fluoride (F) has been employed worldwide to control dental caries. More recently, it has been suggested that the consumption of low doses of F in the drinking water may reduce blood glucose levels, introducing a new perspective for the use of F for the management of blood glucose. However, the exact mechanism by which F affects blood glucose levels remains largely unexplored. Given that the small gut plays a pivotal role in glucose homeostasis, the aim of this study was to investigate the proteomic changes induced by low doses of F in the ileum of female nonobese-diabetic (NOD) mice. Forty-two female NOD mice were divided into two groups based on the F concentration in their drinking water for 14 weeks: 0 (control) or 10 mgF/L. At the end of the experimental period, the ileum was collected for proteomic and Western blot analyses. Proteomic analysis indicated an increase in isoforms of actin, gastrotropin, several H2B histones, and enzymes involved in antioxidant processes, as well as a decrease in enzymes essential for energy metabolism. In summary, our data indicates an adaptive response of organism to preserve protein synthesis in the ileum, despite significant alterations in energy metabolism typically induced by F, therefore highlighting the safety of controlled fluoridation in water supplies.
Collapse
Affiliation(s)
- Juliana S Trevizol
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Nathalia R Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Aislan Q Delgado
- Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - João P Z de Lara
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Ana C Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - José R Bosqueiro
- Department of Physical Education, Faculty of Science, São Paulo State University, Bauru, Brazil
| | - Marília A R Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
10
|
Carvalho TS, Martini T, Lima KP, Araújo TT, Feitosa CMVB, Marron LR, Lavender S, Grizzo LT, Magalhães AC, Buzalaf MAR. Xylitol associated or not with fluoride: Is the action the same on de- and remineralization? Arch Oral Biol 2024; 159:105873. [PMID: 38215591 DOI: 10.1016/j.archoralbio.2023.105873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024]
Abstract
OBJECTIVES This study evaluated the effect of xylitol combined or not with fluoride (F) on reduction of demineralization and increase of remineralization of shallow and deep artificial enamel lesions. METHODS Bovine enamel samples were allocated to the following solutions groups: no xylitol (negative control), 5% xylitol, 10% xylitol, 20% xylitol, 500 ppm F (as NaF), 5% xylitol+F, 10% xylitol+F or 20% xylitol+F (n = 12-15). For the demin study, a pH-cycling model (demineralization-6 h, pH 4.7/remineralization 18 h, pH 7.0) was employed for 7 days. Treatments were applied 2 × 1 min. In the remin study, specimens were pre-demineralized for 2, 5 or 10 days. Afterwards, a pH-cycling protocol was conducted (2 h demineralizing and 22 h remineralizing solution/day for 8 days) and the same treatments were done. The response variables were percentage surface hardness loss (%SHL) and transverse microradiography. Data were analyzed by RM ANOVA/Tukey or Kruskal-Wallis/Dunn (p < 0.05) RESULTS: F and Xylitol combined with F reduced the %SHL (23-30%) compared to the negative control (61.5%). The integrated mineral loss and the lesion depth were not reduced by any treatment. Surface hardness recovery was seen only for shallow lesions in case of 20% xylitol+F compared to negative control. No lesion depth recovery, but significant mineral recovery was seen for F (2-days and 10-days lesion). CONCLUSIONS All concentrations of xylitol+F reduced enamel surface demineralization, while only 20% xylitol+F improved surface remineralization of shallow lesions in vitro. CLINICAL SIGNIFICANCE Our results suggest that while F or any concentration of xylitol + F reduces surface demineralization, only 20% xylitol+F improves surface remineralization of shallow lesions in vitro. Therefore, xylitol may be added into oral products, combined to F, to control dental caries.
Collapse
Affiliation(s)
- Thamyris Souza Carvalho
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Tatiana Martini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Karen Pavan Lima
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Tamara Teodoro Araújo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | | | | | - Larissa Tercilia Grizzo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Ana Carolina Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | |
Collapse
|
11
|
Mudd AL, Bal M, Verra SE, Poelman MP, de Wit J, Kamphuis CBM. The current state of complex systems research on socioeconomic inequalities in health and health behavior-a systematic scoping review. Int J Behav Nutr Phys Act 2024; 21:13. [PMID: 38317165 PMCID: PMC10845451 DOI: 10.1186/s12966-024-01562-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/14/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Interest in applying a complex systems approach to understanding socioeconomic inequalities in health is growing, but an overview of existing research on this topic is lacking. In this systematic scoping review, we summarize the current state of the literature, identify shared drivers of multiple health and health behavior outcomes, and highlight areas ripe for future research. METHODS SCOPUS, Web of Science, and PubMed databases were searched in April 2023 for peer-reviewed, English-language studies in high-income OECD countries containing a conceptual systems model or simulation model of socioeconomic inequalities in health or health behavior in the adult general population. Two independent reviewers screened abstracts and full texts. Data on study aim, type of model, all model elements, and all relationships were extracted. Model elements were categorized based on the Commission on Social Determinants of Health framework, and relationships between grouped elements were visualized in a summary conceptual systems map. RESULTS A total of 42 publications were included; 18 only contained a simulation model, 20 only contained a conceptual model, and 4 contained both types of models. General health outcomes (e.g., health status, well-being) were modeled more often than specific outcomes like obesity. Dietary behavior and physical activity were by far the most commonly modeled health behaviors. Intermediary determinants of health (e.g., material circumstances, social cohesion) were included in nearly all models, whereas structural determinants (e.g., policies, societal values) were included in about a third of models. Using the summary conceptual systems map, we identified 15 shared drivers of socioeconomic inequalities in multiple health and health behavior outcomes. CONCLUSIONS The interconnectedness of socioeconomic position, multiple health and health behavior outcomes, and determinants of socioeconomic inequalities in health is clear from this review. Factors central to the complex system as it is currently understood in the literature (e.g., financial strain) may be both efficient and effective policy levers, and factors less well represented in the literature (e.g., sleep, structural determinants) may warrant more research. Our systematic, comprehensive synthesis of the literature may serve as a basis for, among other things, a complex systems framework for socioeconomic inequalities in health.
Collapse
Affiliation(s)
- Andrea L Mudd
- Department of Interdisciplinary Social Science- Public Health, Utrecht University, PO Box 80140, 3508 TC, Utrecht, The Netherlands.
| | - Michèlle Bal
- Department of Interdisciplinary Social Science- Public Health, Utrecht University, PO Box 80140, 3508 TC, Utrecht, The Netherlands
| | - Sanne E Verra
- Department of Interdisciplinary Social Science- Public Health, Utrecht University, PO Box 80140, 3508 TC, Utrecht, The Netherlands
| | - Maartje P Poelman
- Chair Group Consumption and Healthy Lifestyles, Wageningen University & Research, Hollandseweg 1, 6706 KN, Wageningen, the Netherlands
| | - John de Wit
- Department of Interdisciplinary Social Science- Public Health, Utrecht University, PO Box 80140, 3508 TC, Utrecht, The Netherlands
| | - Carlijn B M Kamphuis
- Department of Interdisciplinary Social Science- Public Health, Utrecht University, PO Box 80140, 3508 TC, Utrecht, The Netherlands
| |
Collapse
|
12
|
Kumar S, Chhabra V, Mehra M, K S, Kumar B H, Shenoy S, Swamy RS, Murti K, Pai KSR, Kumar N. The fluorosis conundrum: bridging the gap between science and public health. Toxicol Mech Methods 2024; 34:214-235. [PMID: 37921264 DOI: 10.1080/15376516.2023.2268722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023]
Abstract
Fluorosis, a chronic condition brought on by excessive fluoride ingestion which, has drawn much scientific attention and public health concern. It is a complex and multifaceted issue that affects millions of people worldwide. Despite decades of scientific research elucidating the causes, mechanisms, and prevention strategies for fluorosis, there remains a significant gap between scientific understanding and public health implementation. While the scientific community has made significant strides in understanding the etiology and prevention of fluorosis, effectively translating this knowledge into public health policies and practices remains challenging. This review explores the gap between scientific research on fluorosis and its practical implementation in public health initiatives. It suggests developing evidence-based guidelines for fluoride exposure and recommends comprehensive educational campaigns targeting the public and healthcare providers. Furthermore, it emphasizes the need for further research to fill the existing knowledge gaps and promote evidence-based decision-making. By fostering collaboration, communication, and evidence-based practices, policymakers, healthcare professionals, and the public can work together to implement preventive measures and mitigate the burden of fluorosis on affected communities. This review highlighted several vital strategies to bridge the gap between science and public health in the context of fluorosis. It emphasizes the importance of translating scientific evidence into actionable guidelines, raising public awareness about fluoride consumption, and promoting preventive measures at individual and community levels.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Vishal Chhabra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Manmeet Mehra
- Department of Pharmacology, Guru Nanak Dev University, Amritsar, India
| | - Saranya K
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Harish Kumar B
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ravindra Shantakumar Swamy
- Division of Anatomy, Department of Basic Medical Sciences (DBMS), Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| |
Collapse
|
13
|
Niu Z, Duan L, Du Y, Yu F, Chen R, Li Z, Ba Y, Zhou G. Effect of zinc intake on association between fluoride exposure and abnormal sex steroid hormones among US pubertal males: NHANES, 2013-2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2759-2772. [PMID: 38063965 DOI: 10.1007/s11356-023-31135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
Excessive fluoride exposure can disturb the balance of sex hormones. Zinc is essential for sex hormone synthesis and spermatogenesis. But it is not clear how zinc affects the relationship of fluoride exposure with abnormal sex steroid hormones. Here, a total of 1008 pubertal males from the National Health and Nutrition Examination Survey (NHANES) in two cycles (2013-2014, 2015-2016) were enrolled. The concentrations of water fluoride and plasma fluoride and the levels of serum testosterone, estradiol, and sex hormone binding globulin (SHBG) were measured. Two 24-h dietary recall interviews were conducted to assess the dietary zinc intake. The relationships of fluoride exposure and zinc intake with sex hormones were examined using linear regression and logistic regression models, while the generalized additive model was used to evaluate their non-linear relationship. Our findings revealed that for every two-fold increase in plasma fluoride concentration, testosterone levels decreased by 7.27% (95% CI - 11.49%, - 2.86%) and estradiol levels decreased by 8.73% (95% CI - 13.61%, - 3.57%). There was also significant non-linear association observed between zinc intake and SHBG levels. Being in the first tertile of plasma fluoride had a 60% lower risk of high SHBG (OR = 0.40, 95% CI 0.18, 0.89) compared with being in the second tertile. When compared to the first tertile, being in the second tertile of zinc intake was associated with a 63% (OR = 0.37, 95% CI 0.14, 0.98) lower risk of high SHBG. Furthermore, we observed an interactive effect between the plasma fluoride and zinc intake on estradiol and SHBG, as well as the risk of high SHBG (P-interaction < 0.10). These findings suggest that fluoride exposure and zinc intake can affect sex steroid hormone levels and the risk of high SHBG. Notably, zinc intake may alleviate the increased risk of high SHBG and the abnormal changes of estradiol and SHBG caused by higher fluoride exposure.
Collapse
Affiliation(s)
- Zeyuan Niu
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Leizhen Duan
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yuhui Du
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Fangfang Yu
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Ruiqin Chen
- Jinshui District Center for Disease Control and Prevention, Zhengzhou, Henan, People's Republic of China
| | - Zhiyuan Li
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yue Ba
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
- Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Guoyu Zhou
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
14
|
Kjellevold M, Kippler M. Fluoride - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67:10327. [PMID: 38187801 PMCID: PMC10770722 DOI: 10.29219/fnr.v67.10327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/23/2022] [Accepted: 10/25/2023] [Indexed: 01/09/2024] Open
Abstract
Fluoride has a well-documented role in the prevention and treatment of dental caries, but the mechanism is attributed to local effects on the tooth enamel surface rather than systemic effects. Fluoride is not considered essential for humans, no deficiencies are known, and no optimal range, which will not result in moderate fluorosis in some individuals, can be set. Recently, research studies have shown evidence for a relationship between fluoride intake and cognitive outcomes and interaction with iodine nutrition, but the evidence is weak so more data are warranted. For performing longitudinal cohort studies in the Nordic and Baltic region, data on fluoride in food and beverages need to be implemented in food composition tables. As the preventive effects of fluoride are mainly from topical treatment, monitoring of fluoride intake and establishing reference values for fluoride in urine and plasma are warranted to establish safe intake values.
Collapse
Affiliation(s)
- Marian Kjellevold
- Department of Seafood, Nutrition and Environmental State, Institute of Marine Research, Bergen, Norway
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Velez-León E, Pacheco-Quito EM, Díaz-Dosque M, Tobar-Almache D. Worldwide Variations in Fluoride Content in Beverages for Infants. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1896. [PMID: 38136098 PMCID: PMC10741400 DOI: 10.3390/children10121896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
In situations where breastfeeding is impractical, milk formulas have emerged as the primary choice for infant nutrition. Numerous global studies have scrutinized the fluoride content in these formulas, uncovering fluctuations in fluoride levels directly associated with the method of preparation. This variability poses a potential risk of elevated fluoride concentrations and, consequently, an increased susceptibility to dental fluorosis in infants. The primary objective of this review is to intricately delineate the fluoride content in dairy formulas and emphasize the variability of these values concerning their reconstitution process. The review's findings reveal that, among the 17 studies assessing fluoride levels in infant formula, milk-based formulas exhibit a range of 0.01-0.92 ppm, with only two studies exceeding 1.30 ppm. Conversely, soy-based formulas demonstrate values ranging from 0.13-1.11 ppm. In conclusion, the observed variability in fluoride levels in infant formulas is ascribed to the choice of the water source employed in the preparation process. This underscores the paramount importance of meticulously adhering to recommendations and guidelines provided by healthcare professionals concerning the utilization of these formulas and their meticulous reconstitution.
Collapse
Affiliation(s)
- Eleonor Velez-León
- Unidad Académica de Salud y Bienestar, Facultad de Odontología, Universidad Católica de Cuenca, Cuenca 010105, Ecuador;
- Grupo de Investigación Innovación y Desarrollo Farmacéutico en Odontología, Facultad de Odontología, Jefatura de Investigación e Innovación, Universidad Católica de Cuenca, Cuenca 010105, Ecuador
- Latin American Network of Research on Fluorides and Dental Fluorosis, Cartagena 130009, Colombia; (M.D.-D.); (D.T.-A.)
| | - Edisson-Mauricio Pacheco-Quito
- Unidad Académica de Salud y Bienestar, Facultad de Odontología, Universidad Católica de Cuenca, Cuenca 010105, Ecuador;
- Grupo de Investigación Innovación y Desarrollo Farmacéutico en Odontología, Facultad de Odontología, Jefatura de Investigación e Innovación, Universidad Católica de Cuenca, Cuenca 010105, Ecuador
- Latin American Network of Research on Fluorides and Dental Fluorosis, Cartagena 130009, Colombia; (M.D.-D.); (D.T.-A.)
| | - Mario Díaz-Dosque
- Latin American Network of Research on Fluorides and Dental Fluorosis, Cartagena 130009, Colombia; (M.D.-D.); (D.T.-A.)
- Laboratory of Pharmacology, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago 8380544, Chile
| | - Daniela Tobar-Almache
- Latin American Network of Research on Fluorides and Dental Fluorosis, Cartagena 130009, Colombia; (M.D.-D.); (D.T.-A.)
- Laboratory of Pharmacology, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago 8380544, Chile
| |
Collapse
|
16
|
Camayo JS, Gutierrez-Ilave M, Cardenas-Silva W, Mallma-Medina A, Calderon KLM, Espinoza-Carhuancho F, Mayta-Tovalino F. A Bibliometric Study of Trends, Indicators, and Characteristics in the Global Scientific Production on Fluorosis. J Contemp Dent Pract 2023; 24:743-749. [PMID: 38152906 DOI: 10.5005/jp-journals-10024-3579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
AIM To perform an analysis of the trends, indicators, and characteristics of the world scientific production on fluorosis, and to evaluate its impact on scientific research in this field. MATERIALS AND METHODS A descriptive, cross-sectional study was conducted with a bibliometric approach of the worldwide scientific production on fluorosis published during the years 2018-2023. All metadata were extracted from the Scopus database. The articles were exported in .csv format to SciVal (Elsevier). Of the collected articles, 69 were original, 17 were reviews, 2 were conference papers, 6 were book chapters, among others. RESULTS It was found that among the journals with the highest number of articles were Biological Trace Element, Caries Research, Children, Fluoride, and Indian Journal of Forensics. In addition, the highest percentage of authors have published between 1 and 2 articles, with a smaller proportion having 3-4 publications. Among the journals with the highest number of articles are Biological Trace Element, Caries Research, Children, Fluoride, and Indian Journal of Forensics. The Universidade de São Paulo has the most publications, although it is also one of those with the lowest citation-weighted impact in relation to the global average (FWCI: 0.9). CONCLUSION The collaboration map shows a wide international cooperation network, with an active participation of Brazil among Latin American countries. Scientific production in fluorosis has a negative trend from 2018 to 2023 and is mainly concentrated in high-impact scientific journals. CLINICAL SIGNIFICANCE The study shows a wide network of international cooperation on fluorosis, so the results provide important information to guide future clinically focused research on fluorosis and its impact on public health.
Collapse
Affiliation(s)
| | - Margot Gutierrez-Ilave
- Department of Academic, Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - William Cardenas-Silva
- Department of Academic, Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Adrian Mallma-Medina
- Department of Academic, Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | | - Fran Espinoza-Carhuancho
- Grupo de Bibliometría, Evaluación de evidencia y Revisiones Sistemáticas (BEERS), Human Medicine Career, Universidad Cientifica del Sur, Lima, Peru
| | - Frank Mayta-Tovalino
- Department of Academic, Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Lima, Peru; Grupo de Bibliometría, Evaluación de evidencia y Revisiones Sistemáticas (BEERS), Human Medicine Career, Universidad Cientifica del Sur, Lima, Peru, Phone: +511214-2500, e-mail:
| |
Collapse
|
17
|
Houari S, DeRocher K, Thuy TT, Coradin T, Srot V, van Aken PA, Lecoq H, Sauvage T, Balan E, Aufort J, Calemme M, Roubier N, Bosco J, Jedeon K, Berdal A, Joester D, Babajko S. Multi-scale characterization of Developmental Defects of Enamel and their clinical significance for diagnosis and treatment. Acta Biomater 2023; 169:155-167. [PMID: 37574156 DOI: 10.1016/j.actbio.2023.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Developmental Defects of Enamel (DDE) such as Dental Fluorosis (DF) and Molar Incisor Hypomineralization (MIH) are a major public health problem. Their clinical aspects are extremely variable, challenging their early and specific diagnosis and hindering progresses in restorative treatments. Here, a combination of macro-, micro- and nano-scale structural and chemical methods, including, among others, Atom Probe Tomography recently applied on tooth enamel, were used to study and compare MIH, DF and healthy teeth from 89 patients. Globally, we show that DF is characterized by an homogenous loss of mineral content and crystallinity mainly disrupting outside layer of enamel, whereas MIH is associated with localized defects in the depth of enamel where crystalline mineral particles are embedded in an organic phase. Only minor differences in elemental composition of the mineral phase could be detected at the nanoscale such as increased F and Fe content in both severe DDE. We demonstrate that an improved digital color measurement of clinical relevance can discriminate between DF and MIH lesions, both in mild and severe forms. Such discriminating ability was discussed in the light of enamel composition and structure, especially its microstructure, organics presence and metal content (Fe, Zn). Our results offer additional insights on DDE characterization and pathogenesis, highlight the potentiality of colorimetric measurements in their clinical diagnosis and provide leads to improve the performance of minimally invasive restorative strategies. STATEMENT OF SIGNIFICANCE: Developmental Defects of Enamel (DDE) are associated to caries and tooth loose affecting billions of people worldwide. Their precise characterization for adapted minimally invasive care with optimized materials is highly expected. Here In this study, first we propose the use of color parameters measured by a spectrophotometer as a means of differential clinical diagnosis. Second, we have used state-of-the-art techniques to systematically characterize the structure, chemical composition and mechanical optical properties of dental enamel teeth affected by two major DDE, Dental Fluorosis (DF) or Molar Incisor Hypomineralization (MIH). We evidence specific enamel structural and optical features for DF and MIH while chemical modifications of the mineral nanocrystals were mostly correlated with lesion severity. Our results pave the way of the concept of personalized dentistry. In the light of our results, we propose a new means of clinical diagnosis for an adapted and improved restoration protocol for these patients.
Collapse
Affiliation(s)
- Sophia Houari
- Laboratoire de Pathophysiologie Orale Moleculaire, Centre de Recherche des Cordeliers, INSERM UMRS, Université Paris Cité, Sorbonne Université, Paris 1138, France; Unité de Formation et de Recherche d'Odontologie, Université Paris Cité, APHP, Service d'Odontologie - Hôpital La pitié-Salpetrière, Paris, France; Fédération Hospitalo-Universitaire DDS-ParisNet, INSERM, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, France.
| | - Karen DeRocher
- Department of Materials Science and Engineering, Northwestern University, IL, USA
| | - Tran Thu Thuy
- Faculty of Odonto-stomatology, HochiMinh University of Medicine and Pharmacology, HôchiMinh Ville, Viet Nam
| | - Thibaud Coradin
- Laboratoire de Chimie de la Matière Condensée, Sorbonne Université, CNRS, Paris, France
| | - Vesna Srot
- Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Peter A van Aken
- Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Hélène Lecoq
- CNRS UPR3079, Université d'Orléans, Conditions Extrêmes et Matériaux: Haute Température et Irradiation, Orléans, France
| | - Thierry Sauvage
- CNRS UPR3079, Université d'Orléans, Conditions Extrêmes et Matériaux: Haute Température et Irradiation, Orléans, France
| | - Etienne Balan
- Sorbonne Université, CNRS, Institut de Recherche pour le Developpement, Museum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Paris, France
| | - Julie Aufort
- Sorbonne Université, CNRS, Institut de Recherche pour le Developpement, Museum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Paris, France
| | | | - Nicolas Roubier
- Laboratoire de Mécanique Paris-Saclay, CNRS, Centrale-Supélec, Université Paris-Saclay, Châtenay-Malabry, France
| | - Julia Bosco
- Unité de Formation et de Recherche d'Odontologie, Université Paris Cité, APHP, Service d'Odontologie - Hôpital La pitié-Salpetrière, Paris, France
| | - Katia Jedeon
- Laboratoire de Pathophysiologie Orale Moleculaire, Centre de Recherche des Cordeliers, INSERM UMRS, Université Paris Cité, Sorbonne Université, Paris 1138, France; Fédération Hospitalo-Universitaire DDS-ParisNet, INSERM, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, France
| | - Ariane Berdal
- Laboratoire de Pathophysiologie Orale Moleculaire, Centre de Recherche des Cordeliers, INSERM UMRS, Université Paris Cité, Sorbonne Université, Paris 1138, France; Fédération Hospitalo-Universitaire DDS-ParisNet, INSERM, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, France
| | - Derk Joester
- Department of Materials Science and Engineering, Northwestern University, IL, USA
| | - Sylvie Babajko
- Laboratoire de Pathophysiologie Orale Moleculaire, Centre de Recherche des Cordeliers, INSERM UMRS, Université Paris Cité, Sorbonne Université, Paris 1138, France; Fédération Hospitalo-Universitaire DDS-ParisNet, INSERM, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, France; UR2496, Biomedical research in Odontology, Université Paris Cité, Montrouge, France
| |
Collapse
|
18
|
Huang Y, Liu Y, Pandey NK, Shah S, Simon-Soro A, Hsu JC, Ren Z, Xiang Z, Kim D, Ito T, Oh MJ, Buckley C, Alawi F, Li Y, Smeets PJM, Boyer S, Zhao X, Joester D, Zero DT, Cormode DP, Koo H. Iron oxide nanozymes stabilize stannous fluoride for targeted biofilm killing and synergistic oral disease prevention. Nat Commun 2023; 14:6087. [PMID: 37773239 PMCID: PMC10541875 DOI: 10.1038/s41467-023-41687-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023] Open
Abstract
Dental caries is the most common human disease caused by oral biofilms despite the widespread use of fluoride as the primary anticaries agent. Recently, an FDA-approved iron oxide nanoparticle (ferumoxytol, Fer) has shown to kill and degrade caries-causing biofilms through catalytic activation of hydrogen peroxide. However, Fer cannot interfere with enamel acid demineralization. Here, we show notable synergy when Fer is combined with stannous fluoride (SnF2), markedly inhibiting both biofilm accumulation and enamel damage more effectively than either alone. Unexpectedly, we discover that the stability of SnF2 is enhanced when mixed with Fer in aqueous solutions while increasing catalytic activity of Fer without any additives. Notably, Fer in combination with SnF2 is exceptionally effective in controlling dental caries in vivo, even at four times lower concentrations, without adverse effects on host tissues or oral microbiome. Our results reveal a potent therapeutic synergism using approved agents while providing facile SnF2 stabilization, to prevent a widespread oral disease with reduced fluoride exposure.
Collapse
Affiliation(s)
- Yue Huang
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuan Liu
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nil Kanatha Pandey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shrey Shah
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Aurea Simon-Soro
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Stomatology, Dental School, University of Seville, Seville, Spain
| | - Jessica C Hsu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhi Ren
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhenting Xiang
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dongyeop Kim
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Preventive Dentistry, School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
| | - Tatsuro Ito
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatric Dentistry, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Min Jun Oh
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Christine Buckley
- Department of Cariology, Operative Dentistry and Dental Public Health and Oral Health Research Institute, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Faizan Alawi
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Li
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul J M Smeets
- Northwestern University Atomic and Nanoscale Characterization Experimental Center, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Sarah Boyer
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Xingchen Zhao
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Derk Joester
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Domenick T Zero
- Department of Cariology, Operative Dentistry and Dental Public Health and Oral Health Research Institute, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - David P Cormode
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| | - Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Naser MY, Momani M, Naser AY, Alarabeyat MA, Altarawneh AMB, Aladwan AS. Oral health profile and periodontal diseases awareness and knowledge among the jordanian population: a cross-sectional study. BMC Oral Health 2023; 23:503. [PMID: 37468879 DOI: 10.1186/s12903-023-03203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
OBJECTIVE To explore the oral health profile and periodontal diseases awareness and knowledge among the Jordanian population. In addition, we aimed to identify predictors of good knowledge of periodontal diseases. METHOD This was an online cross-sectional survey study that was conducted in Jordan between January and May 2022. A total of 13 item from the world health organisation (WHO) oral health questionnaire for adults were used to examine the oral health profile of our study participants. In addition, a previously developed questionnaire by Abdulbaqi et al. were adapted and used to examine participants' knowledge about periodontal diseases. Binary logistic regression analysis was used to identify predictors of better knowledge of periodontal diseases. RESULTS This study involved 1,099 participants in total. More than half of them (61.1%) claimed that throughout the previous 12 months, they had experienced pain or discomfort in their mouths or teeth. Nearly half of the participants said their teeth and gums were in good or very good condition. 70.7% said they brush their teeth once or more per day. The vast majority of them (93.0%) claimed to brush their teeth using toothpaste that contained 61.9% fluoride. The most frequent cited cause for dental visits was pain or difficulty with teeth, gums, or mouth (36.3%), according to almost one-third of study participants who said they had visited a dentist during the previous six months. The most commonly reported problems that occurs frequently due to the state of the participants' teeth or mouth were avoiding smiling because of teeth, feeling embarrassed due to appearance of teeth, and having difficulty in biting foods with 11.0%, 10.2%, and 9.0%, respectively. Tea with sugar (16.5%) was the most frequently reported beverage as being consumed frequently on a daily basis. The most popular tobacco product to be smoked often on a daily basis was cigarettes (21.6%). For periodontitis knowledge questions, the percentage of accurate responses ranged from 32.3 to 55.8%. The majority of participants (55.8%) were able to recognize that poor oral hygiene is one of the most frequent causes of malodor, whereas the least number of participants (32.3%) were able to recognize that improper teeth brushing is a frequent cause of gingival recession. CONCLUSION The average degree of periodontitis knowledge among Jordanians was moderate. Along with it, there were modest oral hygiene practices. In order to prevent further oral complications that have a detrimental influence on patients' quality of life, educational campaigns are required to increase public awareness of knowledge and practices in terms of proper oral hygiene and periodontitis.
Collapse
Affiliation(s)
| | - Moath Momani
- Prosthodontics Department, Royal Medical Services, Amman, Jordan
| | - Abdallah Y Naser
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan.
| | | | | | | |
Collapse
|
20
|
Puty B, Bittencourt LO, Lima LAO, Plaça JR, Dionizio A, Buzalaf MAR, Gomes BD, de Oliveira EHC, Lima RR. Unraveling molecular characteristic of fluoride neurotoxicity on U87 glial-like cells: insights from transcriptomic and proteomic approach. Front Cell Neurosci 2023; 17:1153198. [PMID: 37362003 PMCID: PMC10289037 DOI: 10.3389/fncel.2023.1153198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
The potential of fluoride (F) as a neurotoxicant in humans is still controversial in the literature. However, recent studies have raised the debate by showing different mechanism of F-induced neurotoxicity, as oxidative stress, energy metabolism and inflammation in the central nervous system (CNS). In the present study, we investigated the mechanistic action of two F concentration (0.095 and 0.22 μg/ml) on gene and protein profile network using a human glial cell in vitro model over 10 days of exposure. A total of 823 genes and 2,084 genes were modulated after exposure to 0.095 and 0.22 μg/ml F, respectively. Among them, 168 were found to be modulated by both concentrations. The number of changes in protein expression induced by F were 20 and 10, respectively. Gene ontology annotations showed that the main terms were related to cellular metabolism, protein modification and cell death regulation pathways, such as the MAP kinase (MAPK) cascade, in a concentration independent manner. Proteomics confirmed the changes in energy metabolism and also provided evidence of F-induced changes in cytoskeleton components of glial cells. Our results not only reveal that F has the potential to modulate gene and protein profiles in human U87 glial-like cells overexposed to F, but also identify a possible role of this ion in cytoskeleton disorganization.
Collapse
Affiliation(s)
- Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Cell Culture and Cytogenetics, Environmental Section, Evandro Chagas Institute, Ananindeua, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Leidiane Alencar Oliveira Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Jéssica Rodrigues Plaça
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, Centro de Pesquisa, Inovacão e Desenvolvimento/Fundacão de Amparo á Pesuisa do Estado de São Paulo (CEPID/FAPESP), Ribeirão Preto, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Bruno Duarte Gomes
- Laboratory of Neurophysiology Eduardo Oswaldo Cruz, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
21
|
Trevizol JS, Dionizio A, Delgado AQ, Ventura TMO, Ribeiro CFDS, Ribeiro L, Buzalaf NR, Cestari TM, Magalhães AC, Suzuki M, Bosqueiro JR, Buzalaf MAR. Metabolic effect of low fluoride levels in the islets of NOD mice: integrative morphological, immunohistochemical, and proteomic analyses. J Appl Oral Sci 2023; 31:e20230036. [PMID: 37283331 PMCID: PMC10247282 DOI: 10.1590/1678-7757-2023-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/31/2023] [Accepted: 05/03/2023] [Indexed: 06/08/2023] Open
Abstract
OBJECTIVES Fluoride (F) has been widely used to control dental caries, and studies suggest beneficial effects against diabetes when a low dose of F is added to the drinking water (10 mgF/L). This study evaluated metabolic changes in pancreatic islets of NOD mice exposed to low doses of F and the main pathways altered by the treatment. METHODOLOGY In total, 42 female NOD mice were randomly divided into two groups, considering the concentration of F administered in the drinking water for 14 weeks: 0 or 10 mgF/L. After the experimental period, the pancreas was collected for morphological and immunohistochemical analysis, and the islets for proteomic analysis. RESULTS In the morphological and immunohistochemical analysis, no significant differences were found in the percentage of cells labelled for insulin, glucagon, and acetylated histone H3, although the treated group had higher percentages than the control group. Moreover, no significant differences were found for the mean percentages of pancreatic areas occupied by islets and for the pancreatic inflammatory infiltrate between the control and treated groups. Proteomic analysis showed large increases in histones H3 and, to a lesser extent, in histone acetyltransferases, concomitant with a decrease in enzymes involved in the formation of acetyl-CoA, besides many changes in proteins involved in several metabolic pathways, especially energy metabolism. The conjunction analysis of these data showed an attempt by the organism to maintain protein synthesis in the islets, even with the dramatic changes in energy metabolism. CONCLUSION Our data suggests epigenetic alterations in the islets of NOD mice exposed to F levels comparable to those found in public supply water consumed by humans.
Collapse
Affiliation(s)
- Juliana Sanches Trevizol
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Aline Dionizio
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | | | | | | | - Laura Ribeiro
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Nathalia Rabelo Buzalaf
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Tânia Mary Cestari
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Ana Carolina Magalhães
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Maiko Suzuki
- The Dental College of Georgia, Department of Oral Biology and Diagnostic Sciences, Augusta, Georgia, United States
| | - José Roberto Bosqueiro
- Universidade Estadual Paulista, Faculdade de Ciências, Departamento de Educação Física, Bauru, São Paulo, Brasil
| | - Marília Afonso Rabelo Buzalaf
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| |
Collapse
|
22
|
Ma Y, Meng X, Sowanou A, Wang J, Li H, Li A, Zhong N, Yao Y, Pei J. Effect of Fluoride on the Expression of 8-Hydroxy-2'-Deoxyguanosine in the Blood, Kidney, Liver, and Brain of Rats. Biol Trace Elem Res 2023; 201:2904-2916. [PMID: 35984601 DOI: 10.1007/s12011-022-03394-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Excessive exposure of fluoride not only leads to damage on bone, but also has an adverse effect on soft tissues. Oxidative DNA damage induced by fluoride is thought to be one of the toxic mechanisms of fluoride effect. However, the dose-response of fluoride on oxidative DNA damage is barely studied in organisms. This study investigated the concentration of fluoride in rat blood, kidney, liver, and brain as well as the dose-time effect of fluoride on the expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the above tissues. Rats were exposed to 0 mg/L, 25 mg/L, 50 mg/L, and 100 mg/L of fluorine ion and treated for one and three months. The results showed that the accumulation of fluoride in soft tissues was very different. At the first month, blood fluoride was increased, liver and brain fluoride showed a U-shaped change, and kidney fluoride was not significant. At the third month, blood fluoride was altered with an inverted U-shaped change, kidney and brain fluoride increased, but liver fluoride decreased. Both the exposure concentration and the time of exposure had a significant effect on the expression of 8-OHdG in the above tissues. However, the effect patterns of fluoride on these tissues were notably different at different times. At the first month of fluoride treatment, blood, kidney, and liver 8-OHdG decreased with the increasing fluoride concentration. At the third month, blood 8-OHdG showed a U-shaped change, but kidney 8-OHdG altered with an inverted U-shaped change. Liver 8-OHdG increased, while brain 8-OHdG decreased at the third month. Correlation analysis showed that only blood 8-OHdG was significantly inversely correlated with blood fluoride and dental fluorosis grade in both the first and third months. Liver 8-OHdG was negatively and significantly correlated with liver fluoride. There was a weak but nonsignificant correlation between kidney and brain 8-OHdG and fluoride in both tissues. Additionally, blood 8-OHdG was positively correlated with kidney and liver 8-OHdG at the first month and positively correlated with brain 8-OHdG at the third month. Taken together, our data suggests that concentration and time of fluoride exposure had a significant effect on 8-OHdG, but the effect patterns of fluoride on 8-OHdG were different in the tissues, which suggests that the impact of fluoride on 8-OHdG may be a tissue-specific, as well as a non-monotonic positive correlation.
Collapse
Affiliation(s)
- Yongzheng Ma
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Xinyue Meng
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Alphonse Sowanou
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Jian Wang
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Hanying Li
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Ailin Li
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Nan Zhong
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yingjie Yao
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Junrui Pei
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| |
Collapse
|
23
|
Huang Y, Liu Y, Pandey N, Shah S, Simon-Soro A, Hsu J, Ren Z, Xiang Z, Kim D, Ito T, Oh MJ, Buckley C, Alawi F, Li Y, Smeets P, Boyer S, Zhao X, Joester D, Zero D, Cormode D, Koo H. Iron oxide nanozymes stabilize stannous fluoride for targeted biofilm killing and synergistic oral disease prevention. RESEARCH SQUARE 2023:rs.3.rs-2723097. [PMID: 37066293 PMCID: PMC10104273 DOI: 10.21203/rs.3.rs-2723097/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Dental caries (tooth decay) is the most prevalent human disease caused by oral biofilms, affecting nearly half of the global population despite increased use of fluoride, the mainstay anticaries (tooth-enamel protective) agent. Recently, an FDA-approved iron oxide nanozyme formulation (ferumoxytol, Fer) has been shown to disrupt caries-causing biofilms with high specificity via catalytic activation of hydrogen peroxide, but it is incapable of interfering with enamel acid demineralization. Here, we find notable synergy when Fer is combined with stannous fluoride (SnF 2 ), markedly inhibiting both biofilm accumulation and enamel damage more effectively than either alone. Unexpectedly, our data show that SnF 2 enhances the catalytic activity of Fer, significantly increasing reactive oxygen species (ROS) generation and antibiofilm activity. We discover that the stability of SnF 2 (unstable in water) is markedly enhanced when mixed with Fer in aqueous solutions without any additives. Further analyses reveal that Sn 2+ is bound by carboxylate groups in the carboxymethyl-dextran coating of Fer, thus stabilizing SnF 2 and boosting the catalytic activity. Notably, Fer in combination with SnF 2 is exceptionally effective in controlling dental caries in vivo , preventing enamel demineralization and cavitation altogether without adverse effects on the host tissues or causing changes in the oral microbiome diversity. The efficacy of SnF 2 is also enhanced when combined with Fer, showing comparable therapeutic effects at four times lower fluoride concentration. Enamel ultrastructure examination shows that fluoride, iron, and tin are detected in the outer layers of the enamel forming a polyion-rich film, indicating co-delivery onto the tooth surface. Overall, our results reveal a unique therapeutic synergism using approved agents that target complementary biological and physicochemical traits, while providing facile SnF 2 stabilization, to prevent a widespread oral disease more effectively with reduced fluoride exposure.
Collapse
Affiliation(s)
| | - Yuan Liu
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | - Tatsuro Ito
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Faizan Alawi
- Department of Cariology, Operative Dentistry and Dental Public Health, Oral Health Research Institute, Indiana University School of Dentistry, Indianapolis, USA
| | - Yong Li
- Biofilm Research Labs, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | - Domenick Zero
- Department of Cariology, Operative Dentistry and Dental Public Health, Oral Health Research Institute, Indiana University School of Dentistry, Indianapolis, USA
| | | | | |
Collapse
|
24
|
Zhou J, Sun D, Wei W. Necessity to Pay Attention to the Effects of Low Fluoride on Human Health: an Overview of Skeletal and Non-skeletal Damages in Epidemiologic Investigations and Laboratory Studies. Biol Trace Elem Res 2023; 201:1627-1638. [PMID: 35661326 DOI: 10.1007/s12011-022-03302-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
Abstract
Due to the implementation of water improvement and fluoride reduction plans supported by central and local governments in recent years, areas with high fluoride exposure are being gradually decreased. Therefore, it is of practical importance to study the effect of low fluoride on human health. Epidemiologic investigations and in vivo and in vitro studies based on low fluoride have also confirmed that fluoride not only causes skeletal damage, such as dental fluorosis, but also causes non-skeletal damage involving the cardiovascular system, nervous system, hepatic and renal function, reproductive system, thyroid function, blood glucose homeostasis, and the immune system. This article summarizes the effects of low fluoride on human and animal skeletal and non-skeletal systems. A preliminary exploration of corresponding mechanisms that will help to fully understand the harm of low fluoride on human health was undertaken to provide the basis for establishing new water fluoride standards and help to implement individual guidance.
Collapse
Affiliation(s)
- Jing Zhou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- National Health Commission, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, 150081, Harbin, Heilongjiang Province, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- National Health Commission, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, 150081, Harbin, Heilongjiang Province, China
| | - Wei Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- National Health Commission, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, Heilongjiang Province, China.
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, 150081, Harbin, Heilongjiang Province, China.
| |
Collapse
|
25
|
Lavalle-Carrasco J, Vergara-Onofre M, González-González R, Bologna-Molina R, Isiordia-Espinoza MA, Gaona E, Molina-Frechero N. A Systematic Review and Meta-Analysis of the Relationship Between the Severity of Dental Fluorosis and Fluoride Biomarkers in Endemic Areas. Biol Trace Elem Res 2023; 201:1051-1062. [PMID: 35397104 DOI: 10.1007/s12011-022-03227-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
The intake of high concentrations of fluoride, mainly through drinking water, diet and fluoridated dentifrices, produces fluorosis, which in its early stages is manifested as dental fluorosis (DF). To recognize exposure to fluoride in endemic areas and to evaluate the risk of developing health impairment, the WHO has established several biomarkers that are used to determine systemic fluorine (F-) exposure. Thus, the aim of this study was to conduct a systematic review and meta-analysis of the relationship between the severity of DF and fluoride biomarkers in endemic areas. The protocol of this study was previously registered as CRD42021244974. A digital search was carried out in PubMed/Medline, SpringerLink, Scopus, Cochrane and Google Scholar by employing the keywords "urine", "nails", "hair", "plasma", "saliva" and "dental fluorosis" for the original studies with content associated with F- for the biomarkers and DF. The mean difference was established as the effect measure for the meta-analysis. Seven studies fulfilled the eligibility criteria, among which five assessed urine and two employed nails as fluoride biomarkers. A positive significant difference was found between the biomarkers and the severity of DF (0.27, p < 0.001) and individually for each biomarker (urine: 0.14, p = 0.001; nails: 0.88, p < 0.05). The F- concentration in urine and nails is correlated with the severity of DF, with the most evident differences between healthy individuals and those with mild severity. Both biomarkers are adequate to assess this relationship in endemic areas of fluoride and DF.
Collapse
Affiliation(s)
- Jesús Lavalle-Carrasco
- Dental Sciences, Autonomous Metropolitan University Xochimilco (UAM), 04960, Mexico City, Mexico
| | - Marcela Vergara-Onofre
- Division of Biological and Health Sciences, Autonomous Metropolitan University Xochimilco (UAM), 04960, Mexico City, Mexico
| | - Rogelio González-González
- Department of Research, School of Dentistry, Juarez University of the Durango State (UJED), 34000, Durango, Mexico
| | - Ronell Bologna-Molina
- Department of Research, School of Dentistry, Juarez University of the Durango State (UJED), 34000, Durango, Mexico
- Molecular Pathology Area, School of Dentistry, University of the Republic (UDELAR), 11200, Montevideo, Uruguay
| | - Mario Alberto Isiordia-Espinoza
- Institute of Research in Medical Sciences, Department of Clinics, Los Altos University Center, University of Guadalajara (UdG), 47650, Tepatitlán de Morelos, Jalisco, Mexico
| | - Enrique Gaona
- Division of Biological and Health Sciences, Autonomous Metropolitan University Xochimilco (UAM), 04960, Mexico City, Mexico
| | - Nelly Molina-Frechero
- Division of Biological and Health Sciences, Autonomous Metropolitan University Xochimilco (UAM), 04960, Mexico City, Mexico.
| |
Collapse
|
26
|
Tang H, Wang M, Li G, Wang M, Luo C, Zhou G, Zhao Q, Dong L, Liu H, Cui Y, Liu L, Zhang S, Wang A. Association between dental fluorosis prevalence and inflammation levels in school-aged children with low-to-moderate fluoride exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:120995. [PMID: 36603756 DOI: 10.1016/j.envpol.2022.120995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/24/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Inflammation mediates the neurological deficits caused by fluoride. Thus, whether inflammation is the underlying mechanism of dental fluorosis (DF) in school-aged children is worth exploring. A cross-sectional study was conducted to investigate the association between inflammation and the prevalence and severity of DF with low-to-moderate fluoride exposure. Fasting morning urine and venous blood samples were collected from 593 children aged 7-14 years. The fluoride content in the water and urine samples was measured using a fluoride ion-selective electrode assay. The levels of interleukin-1β (IL-1β) and C-reactive protein (CRP) were detected using an enzyme-linked immunosorbent assay. The Dean's index was used when performing dental examinations. Regression, stratified, and mediation analyses were performed to analyze the association between fluoride exposure, inflammation, and DF prevalence. In the adjusted regression models, the prevalence of mild DF was 1.723-fold (95% confidence interval [CI]:1.612, 1.841) and 1.594-fold (1.479, 1.717) greater than that of normal DF for each 1 mg/L increase in water and urinary fluoride content, respectively. The prevalence of mild DF increased by 3.3% for each 1 pg/mL increase in the IL-1β level and by 26.0% for each 1 mg/L increase in the CRP level. Stratified analysis indicated a weaker association between fluoride concentration and DF prevalence in boys than in girls, and susceptibility in the boys was reflected by the association of IL-1β with very mild and moderate DF prevalence. For every 1 mg/L increase in water and urinary fluoride levels, the proportion of IL-1β-mediated effects on the prevalence of mild DF was 10.0% (6.1%, 15.8%) and 8.7% (4.8%, 15.2%), respectively, and the proportion of CRP-mediated effects was 9.2% (5.5%, 14.9%) and 6.1% (3.3%, 11.0%), respectively. This study indicates that the DF prevalence may be sex-specific. Inflammatory factors may partially mediate the increased prevalence of mild DF in school-aged children with low-to-moderate fluoride exposure.
Collapse
Affiliation(s)
- Huayang Tang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Mengru Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Henan Center for Disease Control and Prevention, Zhengzhou, Henan, PR China
| | - Gaochun Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Mengwei Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chen Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Guoyu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qian Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Lixin Dong
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hongliang Liu
- Tianjin Center for Disease Control and Prevention, Tianjin, PR China
| | - Yushan Cui
- Tianjin Center for Disease Control and Prevention, Tianjin, PR China
| | - Li Liu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shun Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Aiguo Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health(incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
27
|
Araujo TT, Moraes SM, Carvalho TDS, Grizzo LT, Buzalaf MAR. Estimated Dietary Fluoride Intake by 24-Month-Olds from Chocolate Bars, Cookies, Infant Cereals, and Chocolate Drinks in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3175. [PMID: 36833869 PMCID: PMC9965682 DOI: 10.3390/ijerph20043175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The use of fluoride (F) in the prevention of dental caries is established. However, a high amount of F intake during tooth development can cause dental fluorosis The aim of this study was to analyze variations in F concentrations in chocolate bars (CB), chocolate cookies (CC), infant cereals (IC), and chocolate milk drinks (CD) to determine the daily intake of F from different sources by children at the age of risk for developing dental fluorosis. Distinct brands of CB, CC, IC, and CD were analyzed. Fluoride was separated by hexamethyldisiloxane-facilitated diffusion. Analysis was made in triplicate with an F ion-specific electrode. F ingestion (mg/kg body weight) was evaluated with the suggested consumption (0.05-0.07 mg/kg/day) for children aged 24 months (12 kg). The concentrations for all the analyzed products ranged from 0.025 to 1.827 µg/g F. The mean (range) F concentrations were CB= 0.210 ± 0.205 µg/g (0.073-0.698, n = 8), CC = 0.366 ± 0.416 µg/g (0.320-1.827, n = 9), IC = 0.422 ± 0.395 µg/g (0.073-1.061, n = 5), and CD = 0.169 ± 0.170 µg/mL (0.025-0.443, n = 12). The products that had the highest concentration in the categories CB, CC, IC, and CD, respectively, were Nescau-Ball (0.698 µg/g), Passatempo (1.827 µg/g), Milnutri (1.061 µg/g), and Toddynho (0.443 µg/mL). The consumption of only one unit of Toddynho (CD) is equivalent to more than 11% of the maximum suggested daily intake for a 24-month-old child (0.07 mg/kg body weight). When one product from each category is consumed together only once a day, this consumption is equivalent to approximately 24% of the suggested daily intake of fluoride for a 24-month-old child. The presence of high levels of fluoride in certain products suggests that they play a significant role in overall fluoride intake. It is crucial to closely monitor the fluoride content of food and drinks that are consumed by children who are at risk for dental fluorosis, and for product labels to clearly display the fluoride concentrations.
Collapse
Affiliation(s)
| | | | | | | | - Marilia Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, São Paulo, Brazil
| |
Collapse
|
28
|
Li Y, Zhang J, Sun L, Zhao H, Jia X, Zhang Y, Li Y. Fluoride-Induced Sperm Damage and HuR-Mediated Excessive Apoptosis and Autophagy in Spermatocytes. Biol Trace Elem Res 2023; 201:295-305. [PMID: 35226278 DOI: 10.1007/s12011-022-03138-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/25/2022] [Indexed: 01/11/2023]
Abstract
It is critical to determine the mechanism underlying fluoride (F)-induced damage of the testes to develop appropriate strategies for monitoring and intervention. In the present study, exposure to 50 mg/L sodium fluoride (NaF) for 90 days damaged the normal structure of the testes and quality of the sperm, particularly the spermatocytes, and triggered overexpression of human antigen R (Elavl1/HuR) according to western blotting and immunofluorescence. Furthermore, 0.5 mM NaF exposure for 24 h exposure increased the proportion of apoptosis and expression of caspase-3 and caspase-9 in mouse spermatocytes (GC-2spd cell line), whereas inhibition of HuR reduced apoptosis and the expression of caspase-3 and caspase-9. Additionally, inhibition of HuR alleviated F-induced autophagy based on observation of the autophagy bodies, detection of autophagy activity, and analysis of the expression of the LC3II/LC3I and p62 proteins. These results reveal that excessive F can lead to overexpression of HuR, resulting in high levels of apoptosis and autophagy in spermatocytes. These findings improve the understanding of the mechanisms underlying F-induced male reproductive toxicity, and HuR may be explored as a treatment target for certain conditions. Excessive fluoride can induce overexpression of HuR in testis and result in excessive apoptosis and autophagy in spermatocytes as well as male reproductive damage, such as a decreased sperm count, decreased sperm motility, and increased deformity rate.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China.
| | - Jianbin Zhang
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Linlin Sun
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Hongyu Zhao
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Xiaohan Jia
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Yingri Zhang
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| | - Yuanbin Li
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, Shanxi, 046011, People's Republic of China
| |
Collapse
|
29
|
Arheiam A, Aloshiby A, Gaber A, Fakron S. Dental Fluorosis and Its Associated Factors Amongst Libyan Schoolchildren. Int Dent J 2022; 72:853-858. [PMID: 35933225 DOI: 10.1016/j.identj.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/12/2022] [Accepted: 04/24/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Little is known about dental fluorosis (DF) in Benghazi, Libya, where the public water supply is naturally fluoridated. OBJECTIVE The study aims to investigate the distribution of DF and its related risk factors and impact on oral health-related quality of life (OHRQoL) and the association between DF and caries amongst Libyan school children. METHODS A cross-sectional survey was carried out amongst 12-year-old schoolchildren in the city of Benghazi. Dean's and decayed, missing, and filled surfaces (DMF) indices were used to assess the severity of DF and dental caries. In addition, a self-administered questionnaire was used to collect sociodemographic and behavioural information and OHRQoL using the Child Oral Health Impact Profile-Short Version 19 (COHIP-SF19). RESULTS Out of 1125 children who participated in the study, 15%, 7.8%, 2.2%, and 0.4% of participants were coded as having questionable, mild, moderate, and severe DF, respectively. Children enrolled in private schools were less likely to have DF (odds ratio, 0.55; 95% confidence interval, 0.35-0.83; P = .007). Moderate-severe DF was associated with more decayed surfaces and DMF scores and low scores for COHIP-SF19 and its socioemotional well-being subscale. CONCLUSIONS The data demonstrate that rates of DF are relatively low in naturally fluoridated areas in Libya. DF amongst Libyan schoolchildren was associated with social disparities, higher caries rates, and negative impacts on OHRQoL.
Collapse
Affiliation(s)
- Arheiam Arheiam
- Department of Dental Public Health and Preventive Dentistry, Faculty of Dentistry, University of Benghazi, Benghazi, Libya.
| | - Aisha Aloshiby
- Department of Dental Public Health and Preventive Dentistry, Faculty of Dentistry, University of Benghazi, Benghazi, Libya
| | - Amal Gaber
- Department of Dental Public Health and Preventive Dentistry, Faculty of Dentistry, University of Benghazi, Benghazi, Libya
| | - Sarah Fakron
- Department of Paediatric Dentistry, Faculty of Dentistry, University of Benghazi, Benghazi, Libya
| |
Collapse
|
30
|
Cao Q, Wang J, Hao Y, Zhao F, Fu R, Yu Y, Wang J, Niu R, Bian S, Sun Z. Exercise Ameliorates Fluoride-induced Anxiety- and Depression-like Behavior in Mice: Role of GABA. Biol Trace Elem Res 2022; 200:678-688. [PMID: 33825162 DOI: 10.1007/s12011-021-02678-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 12/31/2022]
Abstract
Fluoride exposure caused anxiety- and depression-like behavior in mice. Meanwhile, exercise contributes to relieve anxiety and depression. However, the effects of exercise on anxiety- and depression-like behavior in fluorosis mice remain unclear. In the current study, thirty-six Institute of Cancer Research (ICR) female mice were randomly assigned to four groups: control group (C, gavage with distilled water); exercise group (E, gavage with distilled water and treadmill exercise (speed, 10 m/min; time, 30 min/day)); fluoride group (F, gavage with 24 mg/kg sodium fluoride (NaF)); and exercise plus fluoride group (EF, gavage with 24 mg/kg NaF and treadmill exercise). All treatments lasted for 8 weeks. A number of entries into and time spent in the open zone in the elevated zero maze (EZM), resting time in the tail suspension test (TST) and levels of serotonin (5-HT) and gamma-aminobutyric acid (GABA), were significantly altered in F when compared to C. Meanwhile, the anxiety-like behavior in the EZM and the depression-like behavior in the TST were significantly improved in EF when compared to group F. Exercise significantly enhanced fluoride-induced low GABA level, with less effect on the concentration of 5-HT. Moreover, the mRNA and protein expressions of GABA synthesis and transport-related proteins of glutamic acid decarboxylase (GAD) 65 and GAD67 and vesicular GABA transporter (VGAT) were all strikingly decreased in F, while those in EF were increased. In conclusion, exercise ameliorates anxiety- and depression-like behavior in fluorosis mice through increasing the expressions of GABA synthesis and transport-related proteins, rather than 5-HT system.
Collapse
Affiliation(s)
- Qiqi Cao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Jixiang Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Yanru Hao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Fangye Zhao
- Division of Sports Science and Physical Education, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Rong Fu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Yanghuan Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Shengtai Bian
- School of Sport Science, Beijing Sport University, Beijing, 100084, China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China.
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China.
| |
Collapse
|
31
|
Tobias G, Mordechai F, Tali C, Yaron B, Beatrice GP, Jonathan M, Harold SC. The effect of community water fluoridation cessation on children's dental health: a national experience. Isr J Health Policy Res 2022; 11:4. [PMID: 35090561 PMCID: PMC8796457 DOI: 10.1186/s13584-022-00514-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Community water fluoride (CWF) is the proven cornerstone of primary dental health care promotion. In 2002 CWF was made mandatory at a national level in Israel, however a new government revoked these regulations in August 2014. "Maccabi" is the second largest national health care provider with 2.3 million members, "Maccabi-Dent", its dental branch, has 53 clinics, employing 1100 dentists. The aim of this study was to evaluate the cumulative effect on treatment rates 6 years after CWF was terminated in Israel, based on the number of dental treatments provided to children aged 3-12 years in "Maccabi-Dent" clinics. METHODS For this retrospective study, computerized dental treatment codes were collected. The "rate of treatment" was calculated by dividing the number of restorative treatments or extractions, by the number of individuals receiving treatment. The population size and the age group visiting the specific clinic were also considered. RESULTS The independent variables were fluoride concentration in drinking water, age and socioeconomic position (SEP). There was a significant increase in restorative dental treatments after 2014, (R2 = 0.0402), with approximately twice the number of treatments required in the absence of CWF. Age had a significant association (β = - 0.389, p < 0.001) as did SEP (β = 0.086, p = 0.019). CONCLUSION After CWF cessation in Israel, rates of dental treatments significantly increased. PRACTICAL IMPLICATION By examining accepted notions with up-to-date information, new confirmatory evidence helps decision makers understand the importance of adding fluoride to drinking water.
Collapse
Affiliation(s)
- Guy Tobias
- Department of Community Dentistry, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Findler Mordechai
- Dental Research Unit – Maccabi-Dent, Maccabi Healthcare Fund, Tel Aviv, Israel
| | - Chackartchi Tali
- Department of Periodontology, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Bernstein Yaron
- Dental Research Unit – Maccabi-Dent, Maccabi Healthcare Fund, Tel Aviv, Israel
| | | | - Mann Jonathan
- Dental Research Unit – Maccabi-Dent, Maccabi Healthcare Fund, Tel Aviv, Israel
| | - Sgan-Cohen Harold
- Department of Community Dentistry, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
32
|
Fernandes MS, Sabino-Arias IT, Dionizio A, Fabricio MF, Trevizol JS, Martini T, Azevedo LB, Valentine RA, Maguire A, Zohoori FV, L. Amaral S, Buzalaf MAR. Effect of Physical Exercise and Genetic Background on Glucose Homeostasis and Liver/Muscle Proteomes in Mice. Metabolites 2022; 12:metabo12020117. [PMID: 35208192 PMCID: PMC8878675 DOI: 10.3390/metabo12020117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
We compared the parameters related to glucose homeostasis, and liver and muscle proteomes in fluorosis-susceptible (A/J; S) and fluorosis-resistant (129P3/J; R) mice in response to fluoride (F) exposure and exercise. Ninety male mice (45 R-mice and 45 S-mice) were randomized into three groups: (SI; RI) No-F, No-Exercise, (SII; RII) 50 ppm F, No-Exercise, (SIII; RIII) 50 ppm F, Exercise. Overall, mean F concentrations in the plasma and femur were significantly higher in R-mice compared with S-mice. In R-mice, exercise resulted in an increase in F accumulation in the femur. In S-mice, the mean plasma glucose level was significantly higher in Group II compared with Groups I and III. There was an increase in liver proteins involved in energy flux and antioxidant enzymes in non-exercise groups (I, II) of S-mice in comparison with the corresponding groups of R-mice. The results also showed a decrease in muscle protein expression in Group I S-mice compared with their R-mice counterparts. In conclusion, the findings suggest an increased state of oxidative stress in fluorosis-susceptible mice that might be exacerbated by the treatment with F. In addition, fluorosis-susceptible mice have plasma glucose levels higher than fluorosis-resistant mice on exposure to F, and this is not affected by exercise.
Collapse
Affiliation(s)
- Mileni S. Fernandes
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Isabela T. Sabino-Arias
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Aline Dionizio
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Mayara F. Fabricio
- Department of Physical Education, School of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil; (M.F.F.); (S.L.A.)
| | - Juliana S. Trevizol
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Tatiana Martini
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Liane B. Azevedo
- School of Human and Health Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK;
| | - Ruth A. Valentine
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK; (R.A.V.); (A.M.)
| | - Anne Maguire
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK; (R.A.V.); (A.M.)
| | - Fatemeh V. Zohoori
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
- Correspondence: (F.V.Z.); (M.A.R.B.)
| | - Sandra L. Amaral
- Department of Physical Education, School of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil; (M.F.F.); (S.L.A.)
| | - Marília A. R. Buzalaf
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
- Correspondence: (F.V.Z.); (M.A.R.B.)
| |
Collapse
|
33
|
Mehlawat J, Marya C, Nagpal R, Kataria S, Taneja P. Dentists' knowledge, attitudes, and professional behavior regarding silver diamine fluoride: A cross-sectional questionnaire study. JOURNAL OF INDIAN ASSOCIATION OF PUBLIC HEALTH DENTISTRY 2022. [DOI: 10.4103/jiaphd.jiaphd_24_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
34
|
Dietary fluoride intake during pregnancy and neurodevelopment in toddlers: A prospective study in the progress cohort. Neurotoxicology 2021; 87:86-93. [PMID: 34478773 PMCID: PMC8595627 DOI: 10.1016/j.neuro.2021.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/03/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022]
Abstract
Foods and beverages provide a source of fluoride exposure in Mexico. While high fluoride concentrations are neurotoxic, recent research suggests that exposures within the optimal range may also pose a risk to the developing brain. This prospective study examined whether dietary fluoride intake during pregnancy is associated with toddlers' neurodevelopment in 103 mother-child pairs from the PROGRESS cohort in Mexico City. Food and beverage fluoride intake was assessed in trimesters 2 and 3 using a food frequency questionnaire and Mexican tables of fluoride content. We used the Bayley-III to evaluate cognitive, motor, and language outcomes at 12 and 24 months of age. Adjusted linear regression models were generated for each neurodevelopment assessment time point (12 and 24 months). Mixed-effects models were used to consider a repeated measurement approach. Interactions between maternal fluoride intake and child sex on neurodevelopmental outcomes were tested. Median (IQR) dietary fluoride intake during pregnancy was 1.01 mg/d (0.73, 1.32). Maternal fluoride intake was not associated with cognitive, language, or motor outcomes collapsing across boys and girls. However, child sex modified the association between maternal fluoride intake and cognitive outcome (p interaction term = 0.06). A 0.5 mg/day increase in overall dietary fluoride intake was associated with a 3.50-point lower cognitive outcome in 24-month old boys (95 % CI: -6.58, -0.42); there was no statistical association with girls (β = 0.07, 95 % CI: -2.37, 2.51), nor on the cognitive outcome at 12-months of age. Averaging across the 12- and 24-month cognitive outcomes using mixed-effects models revealed a similar association: a 0.5 mg/day increase in overall dietary fluoride intake was associated with a 3.46-point lower cognitive outcome in boys (95 % CI: -6.23, -0.70). These findings suggest that the development of nonverbal abilities in males may be more vulnerable to prenatal fluoride exposure than language or motor abilities, even at levels within the recommended intake range.
Collapse
|
35
|
Cardoso CS, Freitas JDD, Santos NRLD, Almeida Júnior A, Basílio Júnior ID, Nascimento TGD, Grillo LAM, Porto ICCDM, Marinho JLG, Santos GEDSD, Meili L, Sampaio FC, Dornelas CB. Layered double hydroxides for controlled fluoride release. Braz Oral Res 2021; 35:e104. [PMID: 34816893 DOI: 10.1590/1807-3107bor-2021.vol35.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/21/2021] [Indexed: 11/22/2022] Open
Abstract
This study aims to develop a nano-sized fluoridated layered double hydroxide (LDH)-based release system via hydrothermal treatment for the controlled delivery of fluoride (F-) ions in the oral environment. The synthesis of conventional LDH-type (C-LDH) precursor nanomaterials was conducted using a co-precipitation method at constant pH, and the nanoparticulate-LDH (N-LDH) was synthesized by a hydrothermal procedure. Fluoride LDH (F-LDH) products were obtained through indirect synthesis using the precursor ion-exchange technique by varying the agitation time (2 and 24 h) and temperature (25 and 40 °C) to produce 12 material samples. The materials were characterized by energy dispersive x-ray, hexamethyldisilazane, digital radiography x-ray, Fourier-transform infrared, thermogravimetric analysis, and scanning electron microscopy. Additionally, the F-release kinetic profile was evaluated for 21 d in neutral and acid media with mathematical model analysis. Products with varying F-quantities were obtained, revealing specific release profiles. In general, there was a higher F-release in the acid medium, with emphasis on F-LDH-8. Fluoride-LDH and controlled fluoride delivery was successfully obtained, proving the potential of these nanomaterials as alternative anti-caries agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lucas Meili
- Universidade Federal de Alagoas - UFAL, Technology Center, Maceio, AL, Brazil
| | - Fábio Correia Sampaio
- Universidade Federal da Paraíba - UFPB, Department of Dentistry and Social Clinic, João Pessoa, PB, Brazil
| | - Camila Braga Dornelas
- Universidade Federal de Alagoas - UFAL, Pharmaceutical Science Institute, Maceio, AL, Brazil
| |
Collapse
|
36
|
The Groundwater Geochemistry and the Human Health Risk Assessment of Drinking Water in an Area with a High Prevalence of Chronic Kidney Disease of Unknown Etiology (CKDu), Sri Lanka. J CHEM-NY 2021. [DOI: 10.1155/2021/1755140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chronic kidney disease of unknown etiology (CKDu) has become an alarming health issue in Sri Lanka. The disease is more notable among farming communities and people who consume groundwater as their main source of drinking water. To assess the possible links between drinking water chemistry and expansion of CKDu, the study was compared with hydrogeochemical data of drinking water sources in a CKDu prevalent area (Girandurukotte GND, Badulla District) and a reference area (Dambethalawa GND, Ampara District) in Sri Lanka. Based on the results, nephrotoxic heavy metal (Cd, Cr, Pb, and As) concentrations were significantly higher in the CKDu prevalent site than the reference area, compromised the harmful consequences to the people in the CKDu hotspot. Results of the inverse distance weighted (IDW) interpolation tool indicated the nephrotoxic heavy metals contents including Cd, Pb, As, and Cr in CKDu hotspot were changed in the ranges of 9.78–187.25 μg/L, 0.08–0.66 μg/L, 20.76–103.30 μg/L, and 0.03–0.34 μg/L. The random distribution patterns were shown by the result in Moran’s index values. Noteworthy, the results have emphasized a strong association between fluoride and water hardness. The frequency of occurrence above the threshold limit of fluoride was 28% in non-CKDu water samples, while 81% in CKDu prevalent sites. The hardness values in the CKDu prevalent site indicated “moderately hard water,” while the non-CKDu area indicated the “soft water.” Furthermore, this paper quantified overall water quality and heavy metal contamination and assessed the human health risks associated with drinking water. According to the results of the water quality index, 90% of the samples in the CKDu prevalent area were classified as “poor water” and “very poor water” for drinking purposes, while 73.33% of the samples in the non-CKDu area were “good” and “excellent” for drinking usage. Calculated chronic daily intake (CDIoral) and hazard quotient (HQoral) of nephrotoxicants were higher in CKDu hotspot than the non-CKDu site. Besides, the hazard index (HI) values obtained for the CKDu prevalent area exceeding the acceptable limit (HI = 1) indicated potential health risks to the people in those areas. This study suggests that long-term exposure to nephrotoxic heavy metals, water hardness, and fluoride present in drinking water may threaten human health and affect kidney functions. Therefore, regular monitoring and better management of water supplies in CKDu prevalent areas are essential to determine the contamination load and reduce the health impacts due to excessive and long-term exposure to the nephrotoxicants.
Collapse
|
37
|
Dong H, Yang X, Zhang S, Wang X, Guo C, Zhang X, Ma J, Niu P, Chen T. Associations of low level of fluoride exposure with dental fluorosis among U.S. children and adolescents, NHANES 2015-2016. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112439. [PMID: 34166938 DOI: 10.1016/j.ecoenv.2021.112439] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Drinking water fluoridation was a mid-twentieth century innovation based on the medical hypothesis that consuming low doses of fluoride at the teeth forming years provided protection against dental decays. Numerous studies showed that high level exposure to fluoride could cause dental and skeleton fluorosis. However, there was limited study focusing on the fluorosis effect of low levels of exposure to fluoride. Therefore, our study aimed to examine whether the low level of fluoride exposure (measured in blood plasma and household tap water) was associated with the risk of dental fluorosis based on data of the National Health and Nutrition Examination Survey (NHANES) 2015-2016. We analyzed data in 2098 children and adolescents who had Dean's Index scores, and water and plasma fluoride measures. The Dean's Index score was measured by calibrated dental examiners using the modified Dean's fluorosis classification system. Fluoride was measured in plasma and household tap water. In this study, we found that the rate of fluoride concentration in water above the recommended level of 0.7 mg/L was 25%, but the prevalence of dental fluorosis was 70%. Binary logistic regression adjusted for covariates showed that higher water fluoride concentrations (0.31-0.50, 0.51-0.70, > 0.70 compared 0.00-0.30) were associated with higher odds of dental fluorosis (OR = 1.48, 95% CI: 1.13-1.96, p = 0.005; OR = 1.92, 95% CI: 1.44-2.58, p < 0.001, and OR = 2.30, 95% CI: 1.75-3.07, p < 0.001, respectively). The pattern of regression between plasma fluoride and dental fluorosis was similar. Inclusion, our study showed that even low level of water or plasma fluoride exposure was associated with increased the risk of dental fluorosis. The safety of public health approach of drinking water fluoridation for global dental caries reduction are urgently needed further research.
Collapse
Affiliation(s)
- Haitao Dong
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xin Yang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Shixuan Zhang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xueting Wang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Chunlan Guo
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xinyuan Zhang
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Junxiang Ma
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Tian Chen
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
38
|
Santesso MR, Oliveira FA, Tokuhara CK, Oliveira GSN, Levy FM, Antonio LS, Buzalaf MAR, Oliveira RC. Fluoride effects on cell viability and ENaC expression in kidney epithelial cells. Toxicol Mech Methods 2021; 31:566-571. [PMID: 34151709 DOI: 10.1080/15376516.2021.1938325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fluoride (F) at micromolar (µM) concentrations induces apoptosis in several cell lines. Moreover, proteomic studies have shown major changes in the profile of proteins involved in signal transduction. These effects may negatively affect ion transport in the kidneys. The activity of epithelial sodium channels (ENaCs) is a limiting factor for sodium and water resorption in the kidneys, which is essential for the maintenance of the electrolyte balance and homeostasis of the body. Here we investigated the effects of F, at different concentrations (10, 40, 100, 200, and 400 μM), on the viability of renal epithelial cells (M-1), and ENaC expression. We showed that sodium fluoride (NaF) reduces cell viability in a concentration-dependent manner (p < 0.05) up to a 96-h time-point when compared to control. Sodium fluoride at moderate concentrations (100 and 200 μM), upregulated the ENaC subunit genes Scnn1a and Scnn1g, but not Scnn1b. Sodium fluoride downregulated all three ENaC subunit genes at a higher concentration of 400 μM (p < 0.05). Immunofluorescence analysis showed that Scnn1a and Scnn1g expression was decreased within 24 h of NaF treatment. After 48 h, NaF (400 μM) increased the expression of Scnn1a but not Scnn1g. However, NaF decreased the expression of Scnn1g at all studied concentrations. We conclude that F, at µM concentrations, modulates the expression of ENaC subunit genes, which is likely to significantly affect molecular signaling in kidney epithelial cells.
Collapse
Affiliation(s)
- Mariana R Santesso
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Bauru, Brazil
| | - Flávia A Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Bauru, Brazil.,Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Cintia K Tokuhara
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Bauru, Brazil
| | - Gabriela S N Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Bauru, Brazil
| | - Flávia M Levy
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Bauru, Brazil
| | - Lígia S Antonio
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Marília A R Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Bauru, Brazil
| | - Rodrigo C Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Bauru, Brazil
| |
Collapse
|
39
|
Song C, Shi D, Chang K, Li X, Dong Q, Ma X, Wang X, Guo Z, Liu Y, Wang J. Sodium fluoride activates the extrinsic apoptosis via regulating NOX4/ROS-mediated p53/DR5 signaling pathway in lung cells both in vitro and in vivo. Free Radic Biol Med 2021; 169:137-148. [PMID: 33857626 DOI: 10.1016/j.freeradbiomed.2021.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/03/2023]
Abstract
An extensive body of research has demonstrated that pulmonary toxicity induced by fluoride is related to cell apoptosis. Although induction of death receptor-initiated extrinsic apoptosis by sodium fluoride (NaF) has been reported, its mechanism of action is still not clearly defined. Herein, we found that NaF treatment induced activation of caspase-8 in BEAS-2B cells, resulting in apoptosis, which was markedly reduced by blocking caspase-8 using small interfering RNA (siRNA). In this study, we report that death receptor 5 (DR5), a major component of the extrinsic apoptotic pathway, is markedly induced upon NaF stimulation. Enhanced DR5 induction was necessary for the apoptotic effects of NaF, inasmuch as transfected BEAS-2B cells with DR5 siRNA attenuated NaF-induced caspase-8 activation in lung cells. Mechanism investigation indicated that the induction of DR5, following NaF exposure, was mediated by tumor protein 53 (p53)-dependent transcriptional activation. Notably, we demonstrated that NaF could induce a significant increase in intracellular reactive oxygen species (ROS) level derived from nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). Specifically, NOX4 knockdown inhibited NaF-induced the activation of p53/DR5 axis by reducing NOX4-derived ROS production. Further in vivo investigation demonstrated that NOX4 deficiency markedly attenuates NaF-induced lung injury, apoptosis, and ROS levels in the lung. Moreover, the expressions of p53 and DR5 were significantly reduced after NaF treatment in NOX4 knockout mice compared with the wild type mice. Taken together, our findings provide a novel insight into for the pulmonary apoptosis in response to NaF exposure.
Collapse
Affiliation(s)
- Chao Song
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, Henan, China.
| | - Dongmei Shi
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, Henan, China
| | - Kaiwen Chang
- Key Laboratory of Medical Molecular Probes, Department of Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xianghui Li
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, Henan, China
| | - Qing Dong
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, Henan, China
| | - Xia Ma
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, Henan, China
| | - Xuefei Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, Henan, China
| | - Zhenhuan Guo
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, Henan, China
| | - Yonglu Liu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, Henan, China
| | - Jundong Wang
- Zhengzhou Key Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, Henan, China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
40
|
Li Y, Du X, Zhao Y, Wang J, Wang J. Fluoride Can Damage the Spleen of Mice by Perturbing Th1/Th2 Cell Balance. Biol Trace Elem Res 2021; 199:1493-1500. [PMID: 32710348 DOI: 10.1007/s12011-020-02264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/21/2020] [Indexed: 10/23/2022]
Abstract
To investigate the mechanism of fluoride-induced splenic toxicity, 0, 25, 50, and 100 mg/L sodium fluoride (NaF) were administered in male mice via drinking water for 90 days. After NaF treatment, the histological structure of the spleen, the proportion of helper T 1 cell (Th1) and helper T 2 cell (Th2), and the relative expression levels of cytokines and T-bet and GATA3 were analyzed. The results showed that 50 and 100 mg/L NaF consumption can change the normal structure of mouse spleen and the proportion of Th1/Th2 cells. It also decreased the mRNA expression levels of IL-2, INF-γ, and TGF-β, but increased the levels of IL-4, IL-6, and IL-10. Importantly, fluoride increased the protein expression of GATA3 but decreased the expression of T-bet. Our findings indicate that superfluous fluoride intake damages the balance of Th1/Th2 cells by changing the levels of T-bet and GATA3 in the spleen, and further changes the expression of Th1/Th2 cell-related cytokines in the spleen microenvironment, eventually leading to spleen injury.
Collapse
Affiliation(s)
- Yanyan Li
- , Jinzhong, Shanxi, People's Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Xiaoping Du
- , Jinzhong, Shanxi, People's Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Yangfei Zhao
- , Jinzhong, Shanxi, People's Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jinming Wang
- , Jinzhong, Shanxi, People's Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jundong Wang
- , Jinzhong, Shanxi, People's Republic of China.
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
41
|
Dental Fluorosis according to Birth Cohort and Fluoride Markers in an Endemic Region of Colombia. ScientificWorldJournal 2021; 2021:6662940. [PMID: 33746635 PMCID: PMC7960045 DOI: 10.1155/2021/6662940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 01/21/2023] Open
Abstract
Objectives To analyze changes in the dental fluorosis (DF) incidence according to a birth cohort and explore current exposure to DF in a case series. Methods Repeated cross-sectional study of two periods: 2015 and 2018. Two standardized examiners registered DF using the Thylstrup-Fejerskov index in permanent teeth of children aged 7–18 years. Period and birth cohort frequencies were estimated by a generalized linear model, binomial family, and logarithmic link function. Period estimates are presented as prevalence ratios (PR) and birth cohort estimates as cumulative incidence ratios (RR); 95% confidence intervals and P values are reported. In a subsample of 37 volunteers (12.29 ± 2.63 years), the fluoride (F) concentration in toenails was measured using the HMDS diffusion method and an ion-specific electrode. Other samples from the local environment such as food, soil, and coal were also collected. Results In 274 children, we found that nonsignificant increases between periods (PR = 1.17; 95% CI: 0.89–1.55) were not explained by birth cohort effects. A total of 37.8% of the subsample had a toenail F concentration ≥2 μg F/g. The salty snacks and seasoning had the highest F concentrations among local environmental samples. Conclusion In this population with a high DF frequency according to birth cohort and the evaluated period, the study of soil, coal, and food samples indicated a continued F exposure. F concentration found in the toenails shows a moderate F exposure; nearly a third of the children and adolescents exceeded the adopted threshold of 2 μg F/g. It is important to monitor and explore changes in exposure in highly affected population.
Collapse
|
42
|
Mahmood M, Azevedo LB, Maguire A, Buzalaf M, Zohoori FV. Pharmacokinetics of fluoride in human adults: The effect of exercise. CHEMOSPHERE 2021; 262:127796. [PMID: 32755695 DOI: 10.1016/j.chemosphere.2020.127796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
The literature is sparse in terms of the effect of exercise on the pharmacokinetics of fluoride (F) in humans. In a 4-treatment repeated measures cross-over study, we investigated F pharmacokinetics following no exercise (control) and three exercise intensity conditions (light, moderate and vigorous) in healthy adults. At a pre-experimental session, 8 participants (18-30y) residing in a non-fluoridated-area, underwent a VO2 max test to guide the three exercise intensities for the experimental sessions. Participants were on a F-free regime one week before and throughout the four experimental weeks. We measured urinary F excretion (UFE), maximum plasma concentration (Cmax), lag time of Cmax (Tmax), and Area Under the Curve (AUC) for plasma F concentration against time, following F ingestion then no, light, moderate and vigorous exercise. Results showed no statistically significant difference in Tmax among all sessions; whereas Cmax for moderate exercise (226.2 ng/ml) was significantly higher than for no (27.0 ng/ml; p < 0.001), light (105.6 ng/ml; p = 0.016) and vigorous (94.2 ng/ml; p = 0.008) exercise. Mean AUC over 0-90 min following F ingestion was also significantly higher in moderate exercise than for no (p < 0.001), light (p = 0.004) and vigorous (p = 0.001) exercise. Mean UFE over 0-14h was 638.8, 718.7, 574.6 and 450.5 μg for no, light, moderate and vigorous exercise, with no statistically significant differences among different sessions. In conclusion, this human experimental study suggests that moderate exercise may increase the fraction of F absorbed systemically which is therefore available to produce a biological effect. Future studies should be conducted with larger samples, different age groups and using different F doses.
Collapse
Affiliation(s)
- Maria Mahmood
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Liane B Azevedo
- School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK
| | - Anne Maguire
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - M Buzalaf
- Bauru Dental School, University of Sao Paulo, Brazil
| | | |
Collapse
|
43
|
Huang X, Xie J, Lan Y, Sun Z, Zhang M, Guo L. The effects of 45S5 bioactive glass and Er:YAG Laser on the microtensile bond strength of fluorosed teeth. Microsc Res Tech 2020; 83:1558-1565. [PMID: 33220004 DOI: 10.1002/jemt.23550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/08/2020] [Accepted: 06/30/2020] [Indexed: 11/07/2022]
Abstract
This vitro study aimed to evaluate the effects of 45S5 bioactive glass (BAG) and Er:YAG laser as desensitization treatments on the microtensile bond strength (MTBS) of fluorosed teeth. The 120 noncarious fluorosis were to obtain superficial dentin, being classified into four groups according to the Thylstrup and Fejerskov Index (TFI). Specimens from each group were randomly divided into five subgroups. After fluorosed teeth hypersensitivity models were established, the following pretreatments were applied on dentine surface: Subgroup 1: deionized water (Control); Subgroup 2: BAG; Subgroup 3: Er:YAG laser; Subgroup 4: BAG + Er:YAG laser, and Subgroup 5: Er:YAG laser + BAG. One sample was randomly selected from each subgroup for scanning electron microscope (SEM). The remaining samples were bonded with composite resin by Adper Single Bond 2 adhesive. Then water bath at 37°C for 24 hr. After 5,000 thermocycling, MTBS was tested and fracture mode was analyzed. The difference of MTBS between BAG group and Control group was found statistically significant (p < .05) in fluorosis. The Er:YAG laser + BAG group showed lowest MTBS values in fluorosis. In conclusion, the pretreatment of BAG might be beneficial to the adhesive of fluorosed teeth. Er:YAG laser desensitization alone or using BAG first and then Er:YAG laser desensitization might not affect the adhesive of fluorosed teeth, while Er:YAG laser desensitization followed by the pretreatment of BAG would be not conducive to the adhesive of fluorosed teeth.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Xie
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Yuyan Lan
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Zhengfan Sun
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Meifeng Zhang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Guo
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
44
|
Trevizol JS, Buzalaf NR, Dionizio A, Delgado AQ, Cestari TM, Bosqueiro JR, Magalhães AC, Buzalaf MAR. Effects of low-level fluoride exposure on glucose homeostasis in female NOD mice. CHEMOSPHERE 2020; 254:126602. [PMID: 32334241 DOI: 10.1016/j.chemosphere.2020.126602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/11/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Water fluoridation is an important public health measure for the control of dental caries. Recent animal studies have shown that low doses of fluoride (F) in the drinking water, similar to those found in public water supplies, increase insulin sensitivity and reduce blood glucose. In the present study we evaluated the effects of low-level F exposure through the drinking water on glucose homeostasis in female NOD mice. Seventy-two 6-week mice were randomly divided into 2 groups according to the concentration of F in the drinking water (0-control, or 10 mg/L) they received for 14 weeks. After the experimental period the blood was collected for analyses of plasma F, glucose and insulin. Liver and gastrocnemius muscle were collected for proteomic analysis. Plasma F concentrations were significantly higher in the F-treated than in the control group. Despite treatment with fluoridated water reduced plasma levels glucose by 20% compared to control, no significant differences were found between the groups for plasma glucose and insulin. In the muscle, treatment with fluoridated water increased the expression of proteins related to muscle contraction, while in the liver, there was an increase in expression of antioxidant proteins and in proteins related to carboxylic acid metabolic process. Remarkably, phosphoenolpyruvate carboxykinase (PEPCK) was found exclusively in the liver of control mice. The reduction in PEPCK, a positive regulator of gluconeogenesis, thus increasing glucose uptake, might be a probable mechanism to explain the anti-diabetic effects of low doses of F, which should be evaluated in further studies.
Collapse
Affiliation(s)
- Juliana Sanches Trevizol
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Nathalia Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | | | - Tania Mary Cestari
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - José Roberto Bosqueiro
- Department of Physical Education, Faculty of Science, São Paulo State University, Bauru, São Paulo, Brazil
| | - Ana Carolina Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Marilia Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil.
| |
Collapse
|
45
|
Sampaio C, Delbem ACB, Paiva MF, Zen I, Danelon M, Cunha RF, Pessan JP. Amount of Dentifrice and Fluoride Concentration Influence Salivary Fluoride Concentrations and Fluoride Intake by Toddlers. Caries Res 2020; 54:234-241. [PMID: 32516769 DOI: 10.1159/000503780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/26/2019] [Indexed: 11/19/2022] Open
Abstract
The present study evaluated fluoride (F) concentrations in saliva of toddlers after brushing with dentifrices containing different F concentrations, applied in different quantities, and estimated F intake from toothbrushing. The study comprised a double-blind, crossover protocol, in which toddlers (n = 18, 2-3 years old) were randomly assigned into six groups, according to possible combinations of dentifrices (0/550/1,100 ppm F, as NaF) and amounts (rice grain, pea size, and transverse technique). Volunteers used a F-free dentifrice during 1 week. On the 7th day, saliva samples were collected before (baseline), and at 5/15/30/60 min after toothbrushing. All dentifrice expectorated after brushing was collected. F concentrations (saliva and expectorate) were determined with an ion-specific electrode. Data were submitted to ANOVA or Kruskal-Wallis test, followed by Fisher's LSD or Student-Newman-Keuls' tests (p <0.05). Brushing with 550 ppm F dentifrice (pea size or transversal technique) increased the area under the curve (AUC) at similar levels compared to 1,100 ppm F (rice grain). The highest AUC and salivary F at 5 min after brushing were achieved by 1,100 ppm F (pea size), followed by 550 ppm F (transversal technique). Regarding F intake, the highest values were observed for 550 ppm F (transversal technique), followed by 1,100 ppm F (pea size). It is possible to conclude that the amount of dentifrice and F concentration in the product significantly affected both salivary F concentrations and F intake during toothbrushing.
Collapse
Affiliation(s)
- Caio Sampaio
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Alberto Carlos Botazzo Delbem
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Mayra Frasson Paiva
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Igor Zen
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Marcelle Danelon
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Robson Frederico Cunha
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil,
| |
Collapse
|
46
|
Lacson CFZ, Lu MC, Huang YH. Fluoride network and circular economy as potential model for sustainable development-A review. CHEMOSPHERE 2020; 239:124662. [PMID: 31499305 DOI: 10.1016/j.chemosphere.2019.124662] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/13/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Fluorine is the most reactive elements among the halogen group and commonly and ubiquitously occurs as fluoride in nature. The industrial processes produce fluoride by-products causing the increase of unwanted environmental levels and consequently posing risk on human and environmental health worldwide. This review gives a fundamental understanding of fluoride networks in the industrial processes, in the geological and hydrological transport, and in the biological sphere. Numerous biological pathways of fluoride also increase the risk of exposure. Literature shows that various environmental levels of fluoride due to its chemical characteristics cause bioaccumulation resulting in health deterioration among organisms. These problems are aggravated by emitted fluoride in the air and wastewater streams. Moreover, the current waste disposal dependent on incineration and landfilling superpose to the problem. In our analysis, the fluoride material flow model still follows a linear economy and reuse economy to some extent. This flow model spoils resources with high economic potential and worsens environmental problems. Thus, we intend a shift from the conventional linear economy to a circular economy with the revival of three-dimensional objectives of sustainable development. Linkages between key dimensions of the circular economy to stimulate momentum for perpetual sustainable development are proposed to gain economic, environmental and social benefits.
Collapse
Affiliation(s)
- Carl Francis Z Lacson
- Department of Chemical Engineering, Sustainable Environment Research Center, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ming-Chun Lu
- Department of Environmental Resources Management, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan.
| | - Yao-Hui Huang
- Department of Chemical Engineering, Sustainable Environment Research Center, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
47
|
Araujo TT, Barbosa Silva Pereira HA, Dionizio A, Sanchez CDC, de Souza Carvalho T, da Silva Fernandes M, Rabelo Buzalaf MA. Changes in energy metabolism induced by fluoride: Insights from inside the mitochondria. CHEMOSPHERE 2019; 236:124357. [PMID: 31325826 DOI: 10.1016/j.chemosphere.2019.124357] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
The mechanisms involved in changes in energy metabolism caused by excessive exposure to fluoride (F) are not completely understood. The present study employed proteomic tools to investigate the molecular mechanisms underlying the dose- and time-dependency of the effects of F in the rat liver mitochondria. Thirty-six male Wistar rats received water containing 0, 15 or 50 mgF/L (as NaF) for 20 or 60 days. Rat liver mitochondria were isolated and the proteome profiles were examined using label-free quantitative nLC-MS/MS. PLGS software was used to detect changes in protein expression among the different groups. The bioinformatics analysis was done using the software CYTOSCAPE® 3.0.7 (Java®) with the aid of ClueGo plugin. The dose of 15 mgF/L, when administered for 20 days, reduced glycolysis, which was counterbalanced by an increase in other energetic pathways. At 60 days, however, an increase in all energy pathways was observed. On the other hand, the dose of 50 mgF/L, when administered for 20 days, reduced the enzymes involved in all energetic pathways, indicating a lower rate of energy production, with less generation of ROS and consequent reduction of antioxidant enzymes. However, when the 50 mgF/L dose was administered for 60 days, an increase in energy metabolism was seen but in general no changes were observed in the antioxidant enzymes. Except for the group treated with 50 mgF/L for 20 days, all the other groups had alterations in proteins in attempt to maintain calcium homeostasis and avoid apoptosis. The results suggest that the organism seems to adapt to the effects of F over time, activating pathways to reduce the toxicity of this ion. Ultimately, our findings corroborate the safety of the use of fluoride for caries control.
Collapse
Affiliation(s)
- Tamara Teodoro Araujo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Heloisa Aparecida Barbosa Silva Pereira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | | | - Thamyris de Souza Carvalho
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Mileni da Silva Fernandes
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Marília Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil.
| |
Collapse
|
48
|
Ranasinghe N, Kruger E, Tennant M. Spatial distribution of groundwater fluoride levels and population at risk for dental caries and dental fluorosis in Sri Lanka. Int Dent J 2019; 69:295-302. [PMID: 30843611 PMCID: PMC9379046 DOI: 10.1111/idj.12476] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
OBJECTIVES To investigate the distribution of groundwater fluoride levels in Sri Lanka in relation to its population distribution to determine the population at risk for dental caries or dental fluorosis. METHODS The study used the most upgraded spatial distribution map of groundwater fluoride levels in Sri Lanka, and it was overlaid with a census of population data of the country. RESULTS The results indicated that 12% of children aged <12 years were at risk for dental fluorosis, while 81.4% of those who lived in low-fluoride zones were vulnerable for development of dental decay. Overall, 82.4% of the country's population lived in low-fluoride zones and 11.2% were at risk of potential health hazards posed by ingestion of excessive fluoride. CONCLUSION The spatial approach provides a useful decision-support tool for developing an oral health strategy of safe fluoride use based on predicted oral health risks in communities.
Collapse
Affiliation(s)
- Nirosha Ranasinghe
- International Research Collaborative – Oral Health And Equity, Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Estie Kruger
- International Research Collaborative – Oral Health And Equity, Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Marc Tennant
- International Research Collaborative – Oral Health And Equity, Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
49
|
Jia B, Zong L, Lee JY, Lei J, Zhu Y, Xie H, Clemens JL, Feller MC, Na Q, Dong J, McLane MW, Jones-Beatty K, Burd I. Maternal Supplementation of Low Dose Fluoride Alleviates Adverse Perinatal Outcomes Following Exposure to Intrauterine Inflammation. Sci Rep 2019; 9:2575. [PMID: 30796233 PMCID: PMC6385257 DOI: 10.1038/s41598-018-38241-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/12/2018] [Indexed: 11/09/2022] Open
Abstract
Maternal periodontal disease has been linked to adverse pregnancy sequelae, including preterm birth (PTB); yet, root planing and scaling in pregnancy has not been associated with improved perinatal outcomes. Fluoride, a cariostatic agent, has been added to drinking water and dental products to prevent caries and improve dental health. The objective of this study was to explore the effects of fluoride supplementation using a mouse model of preterm birth and perinatal sequalae. Pregnant mice were fed low dose fluoride (LF-) or high dose fluoride (HF-) and given intrauterine injections of lipopolysaccharide (LPS) or phosphate-buffered saline (PBS). We found that LPS + LF- significantly increased livebirths, pup survival, and litter size compared to LPS alone. Moreover, offspring from the LPS + LF- group exhibited significantly improved neuromotor performance and more neurons compared to those from the LPS group. Additionally, LF- treatment on human umbilical vein endothelial cells (HUVECs) increased cell viability and decreased oxidative stress after treatment with LPS. Collectively, our data demonstrates that maternal LF- supplementation during pregnancy postpones the onset of PTB, acts to increase the liveborn rate and survival time of newborns, and reduces perinatal brain injury in cases of intrauterine inflammation.
Collapse
Affiliation(s)
- Bei Jia
- Integrated Research Center for Fetal Medicine, Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Center for Prenatal and Hereditary Disease Diagnosis, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lu Zong
- Integrated Research Center for Fetal Medicine, Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Ji Yeon Lee
- Integrated Research Center for Fetal Medicine, Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Yan Zhu
- Integrated Research Center for Fetal Medicine, Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Han Xie
- Integrated Research Center for Fetal Medicine, Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Julia L Clemens
- Integrated Research Center for Fetal Medicine, Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Mia C Feller
- Integrated Research Center for Fetal Medicine, Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Quan Na
- Integrated Research Center for Fetal Medicine, Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jie Dong
- Integrated Research Center for Fetal Medicine, Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Michael W McLane
- Integrated Research Center for Fetal Medicine, Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Kimberly Jones-Beatty
- Integrated Research Center for Fetal Medicine, Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
50
|
Trieu A, Mohamed A, Lynch E. Silver diamine fluoride versus sodium fluoride for arresting dentine caries in children: a systematic review and meta-analysis. Sci Rep 2019; 9:2115. [PMID: 30765785 PMCID: PMC6376061 DOI: 10.1038/s41598-019-38569-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/07/2018] [Indexed: 11/08/2022] Open
Abstract
Dental caries can compromise quality of life and is associated with demineralization of tooth structure by organic acids produced by microorganisms. This study systematically reviewed the dentine caries arrest capabilities of silver diamine fluoride (SDF) and sodium fluoride (NaF). A comprehensive search strategy was developed to identify the relevant publications in electronic databases and hand searched journals and reviews (to March 2018). By applying strict inclusion and exclusion criteria, only six papers (two randomized controlled trials, two follow-up articles and two secondary statistical analysis studies) were considered for full text qualitative and quantitative assessment. The included studies were critically appraised and statistically evaluated. Only four articles were considered for meta-analysis, as the other two were secondary analyses of included studies. When comparing the caries arrest lesions of SDF and NaF, SDF was found to be statistically more effective in dentine caries arrest of primary teeth during the 18 and 30 month clinical examinations. The weighted total effect size of the differences between SDF and NaF regarding arrested caries surfaces was calculated and showed nearly double the effectiveness of SDF to NaF at 30 months. Therefore, SDF is a more effective caries management reagent than NaF. Further clinical research is needed to consolidate the findings of this systematic review.
Collapse
Affiliation(s)
- Alice Trieu
- Pediatric Dental Resident, Pediatric Dentistry Department, University of Nevada, Las Vegas (UNLV), 89106, USA
| | - Ahmed Mohamed
- Visiting Faculty, Biomedical and Clinical Research, University of Nevada, Las Vegas (UNLV), 89106, USA
| | - Edward Lynch
- Professor and Principal Director of Biomedical and Clinical Research, University of Nevada, Las Vegas (UNLV), 89106, USA.
| |
Collapse
|