1
|
Ray A, Moore TF, Pandit R, Burke AD, Borsch DM. An Overview of Selected Bacterial Infections in Cancer, Their Virulence Factors, and Some Aspects of Infection Management. BIOLOGY 2023; 12:963. [PMID: 37508393 PMCID: PMC10376897 DOI: 10.3390/biology12070963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023]
Abstract
In cancer development and its clinical course, bacteria can be involved in etiology and secondary infection. Regarding etiology, various epidemiological studies have revealed that Helicobacter pylori can directly impact gastric carcinogenesis. The Helicobacter pylori-associated virulence factor cytotoxin-associated gene A perhaps plays an important role through different mechanisms such as aberrant DNA methylation, activation of nuclear factor kappa B, and modulation of the Wnt/β-catenin signaling pathway. Many other bacteria, including Salmonella and Pseudomonas, can also affect Wnt/β-catenin signaling. Although Helicobacter pylori is involved in both gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma, its role in the latter disease is more complicated. Among other bacterial species, Chlamydia is linked with a diverse range of diseases including cancers of different sites. The cellular organizations of Chlamydia are highly complex. Interestingly, Escherichia coli is believed to be associated with colon cancer development. Microorganisms such as Escherichia coli and Pseudomonas aeruginosa are frequently isolated from secondary infections in cancer patients. In these patients, the common sites of infection are the respiratory, gastrointestinal, and urinary tracts. There is an alarming rise in infections with multidrug-resistant bacteria and the scarcity of suitable antimicrobial agents adversely influences prognosis. Therefore, effective implementation of antimicrobial stewardship strategies is important in cancer patients.
Collapse
Affiliation(s)
- Amitabha Ray
- College of Medical Science, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA
| | - Thomas F Moore
- College of Medical Science, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA
| | | | | | - Daniel M Borsch
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA 15601, USA
| |
Collapse
|
2
|
Noor F, Ahmad S, Saleem M, Alshaya H, Qasim M, Rehman A, Ehsan H, Talib N, Saleem H, Bin Jardan YA, Aslam S. Designing a multi-epitope vaccine against Chlamydia pneumoniae by integrating the core proteomics, subtractive proteomics and reverse vaccinology-based immunoinformatics approaches. Comput Biol Med 2022; 145:105507. [PMID: 35429833 DOI: 10.1016/j.compbiomed.2022.105507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/03/2022] [Accepted: 04/05/2022] [Indexed: 12/26/2022]
Abstract
Chlamydia pneumoniae, a pneumonia causing specie belonging to chlamydia bacterium. C. pneumonia is considered as a leading cause of pneumonia. Apart from that, C. pneumoniae infection can also cause a variety of inflammatory disorders. There is an urgent need to tackle the major concerns arises due to infections causing by C. pneumoniae as no licensed vaccine available against this bacterial infection. In the framework of this study, a core proteome was generated C. pneumoniae strains was generated which revealed a total of 4754 core proteins. Later, 4 target proteins were obtained from 4754 core proteins by applying subtractive proteomics pipeline. Finally, MEV construct was designed by applying reverse vaccinology-based immunoinformatics approach on four target proteins. Molecular docking analysis were conducted to better understand thermodynamic stability, binding affinities, and interaction of vaccine. The binding interactions of MEV construct against TLR4, MHCII and MHCII showed that these candidate vaccines perfectly fit into the binding domains of the receptors. In addition, MEV construct has a better binding energy of 103.7 ± 15.4, 72.1 ± 9.1, and 70.4 ± 16.0 kcal/mol against TLR4, MHCII and MHCI. MD simulation was run at 200ns on docked complexes which further strengthened the current findings. Respective codon of vaccine construct was optimized and then in silico cloned into an E. coli expression host to ensure maximum vaccine protein expression. Despite the fact that the in-silico analysis used in this research produced reliable results, more studies are needed to validate the effectiveness and performance of proposed vaccine candidate.
Collapse
Affiliation(s)
- Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Maryam Saleem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Huda Alshaya
- Cell and Molecular Biology, University of Arkansas, Fayetteville, 72701, United States
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Abdur Rehman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Hamsa Ehsan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Nimra Talib
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Hamza Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sidra Aslam
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Faisalabad, Pakistan.
| |
Collapse
|
3
|
Filardo S, Di Pietro M, Diaco F, Romano S, Sessa R. Oxidative Stress and Inflammation in SARS-CoV-2- and Chlamydia pneumoniae-Associated Cardiovascular Diseases. Biomedicines 2021; 9:biomedicines9070723. [PMID: 34202515 PMCID: PMC8301438 DOI: 10.3390/biomedicines9070723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Throughout the years, a growing number of studies have provided evidence that oxidative stress and inflammation may be involved in the pathogenesis of infectious agent-related cardiovascular diseases. Amongst the numerous respiratory pathogens, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus responsible for the global ongoing pandemic, and Chlamydia pneumoniae, a widely known intracellular obligate bacteria, seem to have an essential role in promoting reactive oxygen species and cytokine production. The present review highlights the common oxidative and inflammatory molecular pathways underlying the cardiovascular diseases associated with SARS-CoV-2 or C. pneumoniae infections. The main therapeutic and preventive approaches using natural antioxidant compounds will be also discussed.
Collapse
Affiliation(s)
- Simone Filardo
- Department of Public Health and Infectious Diseases, University of Rome “Sapienza”, P.le Aldo Moro, 5, 00185 Rome, Italy; (M.D.P.); (F.D.); (R.S.)
- Correspondence:
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, University of Rome “Sapienza”, P.le Aldo Moro, 5, 00185 Rome, Italy; (M.D.P.); (F.D.); (R.S.)
| | - Fabiana Diaco
- Department of Public Health and Infectious Diseases, University of Rome “Sapienza”, P.le Aldo Moro, 5, 00185 Rome, Italy; (M.D.P.); (F.D.); (R.S.)
| | - Silvio Romano
- Cardiology, Department of Life, Health and Environmental Sciences, University of L’Aquila, P.le Salvatore Tommasi, 1, 67100 L’Aquila, Italy;
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, University of Rome “Sapienza”, P.le Aldo Moro, 5, 00185 Rome, Italy; (M.D.P.); (F.D.); (R.S.)
| |
Collapse
|
4
|
Zhao L, Wang H, Thomas R, Gao X, Bai H, Shekhar S, Wang S, Yang J, Zhao W, Yang X. NK cells modulate T cell responses via interaction with dendritic cells in Chlamydophila pneumoniae infection. Cell Immunol 2020; 353:104132. [DOI: 10.1016/j.cellimm.2020.104132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022]
|
5
|
Sun S, Duan X, Wu Q, He Y, Bu X, Ming X, Yan F, Zhu H. ERK1/2-PPARγ pathway is involved in Chlamydia pneumonia-induced human umbilical vein endothelial cell apoptosis through increased LOX-1 expression. J Recept Signal Transduct Res 2020; 40:126-132. [PMID: 32003295 DOI: 10.1080/10799893.2020.1719416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Chlamydia pneumonia (C.pn) is a common respiratory pathogen that is involved in human cardiovascular diseases and promotes the development of atherosclerosis in hyperlipidemic animal models. C.pn reportedly up-regulated lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in endothelial cells. Recently, the anti-atherosclerotic activity of peroxisome proliferator-activated receptor γ (PPARγ) has been documented. In the present study, we investigated the effect of C.pn on LOX-1 expression in human umbilical vein endothelial cells (HUVECs) and identified the involvement of the PPARγ signaling pathway therein. The results showed that C.pn increased the expression of LOX-1 in HUVECs in a dose- and time-dependent manner. C.pn-induced up-regulation of LOX-1 was mediated by ERK1/2, whereas p38 MAPK and JNK had no effect on this process. C.pn induced apoptosis, inhibited cell proliferation, and decreased the expression PPARγ in HUVECs. Additionally, LOX-1 activity and cell injury caused by C.pn through activation of ERK1/2 was completely inhibited by rosiglitazone, a PPARγ agonist. In conclusion, we inferred that activation of PPARγ in HUVECs suppressed C.pn-induced LOX-1 expression and cell damage by inhibiting ERK1/2 signaling.
Collapse
Affiliation(s)
- Shan Sun
- General Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Duan
- General Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qinqin Wu
- General Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yingxia He
- General Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaofen Bu
- General Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyan Ming
- General Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fengqin Yan
- General Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong Zhu
- General Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Cheok YY, Lee CYQ, Cheong HC, Looi CY, Wong WF. Chronic Inflammatory Diseases at Secondary Sites Ensuing Urogenital or Pulmonary Chlamydia Infections. Microorganisms 2020; 8:microorganisms8010127. [PMID: 31963395 PMCID: PMC7022716 DOI: 10.3390/microorganisms8010127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Chlamydia trachomatis and C. pneumoniae are members of the Chlamydiaceae family of obligate intracellular bacteria. The former causes diseases predominantly at the mucosal epithelial layer of the urogenital or eye, leading to pelvic inflammatory diseases or blindness; while the latter is a major causative agent for pulmonary infection. On top of these well-described diseases at the respective primary infection sites, Chlamydia are notoriously known to migrate and cause pathologies at remote sites of a host. One such example is the sexually acquired reactive arthritis that often occurs at few weeks after genital C. trachomatis infection. C. pneumoniae, on the other hand, has been implicated in an extensive list of chronic inflammatory diseases which include atherosclerosis, multiple sclerosis, Alzheimer’s disease, asthma, and primary biliary cirrhosis. This review summarizes the Chlamydia infection associated diseases at the secondary sites of infection, and describes the potential mechanisms involved in the disease migration and pathogenesis.
Collapse
Affiliation(s)
- Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.)
| | - Chalystha Yie Qin Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.)
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.)
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.)
- Correspondence: ; Tel.: +603-7967-6672
| |
Collapse
|
7
|
Woods JJ, Skelding KA, Martin KL, Aryal R, Sontag E, Johnstone DM, Horvat JC, Hansbro PM, Milward EA. Assessment of evidence for or against contributions of Chlamydia pneumoniae infections to Alzheimer's disease etiology. Brain Behav Immun 2020; 83:22-32. [PMID: 31626972 DOI: 10.1016/j.bbi.2019.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/26/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease, the most common form of dementia, was first formally described in 1907 yet its etiology has remained elusive. Recent proposals that Aβ peptide may be part of the brain immune response have revived longstanding contention about the possibility of causal relationships between brain pathogens and Alzheimer's disease. Research has focused on infectious pathogens that may colonize the brain such as herpes simplex type I. Some researchers have proposed the respiratory bacteria Chlamydia pneumoniae may also be implicated in Alzheimer's disease, however this remains controversial. This review aims to provide a balanced overview of the current evidence and its limitations and future approaches that may resolve controversies. We discuss the evidence from in vitro, animal and human studies proposed to implicate Chlamydia pneumoniae in Alzheimer's disease and other neurological conditions, the potential mechanisms by which the bacterium may contribute to pathogenesis and limitations of previous studies that may explain the inconsistencies in the literature.
Collapse
Affiliation(s)
- Jason J Woods
- School of Biomedical Sciences and Pharmacy, University Drive, University of Newcastle, Callaghan NSW 2308, Australia.
| | - Kathryn A Skelding
- School of Biomedical Sciences and Pharmacy, University Drive, University of Newcastle, Callaghan NSW 2308, Australia
| | - Kristy L Martin
- School of Biomedical Sciences and Pharmacy, University Drive, University of Newcastle, Callaghan NSW 2308, Australia; Discipline of Physiology and Bosch Institute, Anderson Stuart Building F13, University of Sydney, NSW 2006, Australia
| | - Ritambhara Aryal
- School of Biomedical Sciences and Pharmacy, University Drive, University of Newcastle, Callaghan NSW 2308, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, University Drive, University of Newcastle, Callaghan NSW 2308, Australia
| | - Daniel M Johnstone
- Discipline of Physiology and Bosch Institute, Anderson Stuart Building F13, University of Sydney, NSW 2006, Australia
| | - Jay C Horvat
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights NSW 2305, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University Drive, University of Newcastle, Callaghan NSW 2308, Australia; Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights NSW 2305, Australia; Centre for Inflammation, Centenary Institute, Camperdown NSW 2050, Australia; Centre for Inflammation, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Elizabeth A Milward
- School of Biomedical Sciences and Pharmacy, University Drive, University of Newcastle, Callaghan NSW 2308, Australia
| |
Collapse
|
8
|
Amin M, Haghparasti F, Savari M, Montazeri EA. Relative frequency of Chlamydia pneumoniae in patients with respiratory infections using the PCR and ELISA methods in Ahvaz, Iran. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Vanpouille-Box C, Hoffmann JA, Galluzzi L. Pharmacological modulation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat Rev Drug Discov 2019; 18:845-867. [PMID: 31554927 DOI: 10.1038/s41573-019-0043-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Nucleic acid sensors, primarily TLR and RLR family members, as well as cGAS-STING signalling, play a critical role in the preservation of cellular and organismal homeostasis. Accordingly, deregulated nucleic acid sensing contributes to the origin of a diverse range of disorders, including infectious diseases, as well as cardiovascular, autoimmune and neoplastic conditions. Accumulating evidence indicates that normalizing aberrant nucleic acid sensing can mediate robust therapeutic effects. However, targeting nucleic acid sensors with pharmacological agents, such as STING agonists, presents multiple obstacles, including drug-, target-, disease- and host-related issues. Here, we discuss preclinical and clinical data supporting the potential of this therapeutic paradigm and highlight key limitations and possible strategies to overcome them.
Collapse
Affiliation(s)
- Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Jules A Hoffmann
- University of Strasbourg Institute for Advanced Studies, Strasbourg, France.,CNRS UPR 9022, Institute for Molecular and Cellular Biology, Strasbourg, France.,Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA. .,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA. .,Université Paris Descartes, Paris, France.
| |
Collapse
|
10
|
Di Pietro M, Filardo S, Romano S, Sessa R. Chlamydia trachomatis and Chlamydia pneumoniae Interaction with the Host: Latest Advances and Future Prospective. Microorganisms 2019; 7:microorganisms7050140. [PMID: 31100923 PMCID: PMC6560445 DOI: 10.3390/microorganisms7050140] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
Research in Chlamydia trachomatis and Chlamydia pneumoniae has gained new traction due to recent advances in molecular biology, namely the widespread use of the metagenomic analysis and the development of a stable genomic transformation system, resulting in a better understanding of Chlamydia pathogenesis. C. trachomatis, the leading cause of bacterial sexually transmitted diseases, is responsible of cervicitis and urethritis, and C. pneumoniae, a widespread respiratory pathogen, has long been associated with several chronic inflammatory diseases with great impact on public health. The present review summarizes the current evidence regarding the complex interplay between C. trachomatis and host defense factors in the genital micro-environment as well as the key findings in chronic inflammatory diseases associated to C. pneumoniae.
Collapse
Affiliation(s)
- Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome "Sapienza", 00185 Rome, Italy.
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome "Sapienza", 00185 Rome, Italy.
| | - Silvio Romano
- Cardiology, Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome "Sapienza", 00185 Rome, Italy.
| |
Collapse
|
11
|
Almeida-da-Silva CLC, Alpagot T, Zhu Y, Lee SS, Roberts BP, Hung SC, Tang N, Ojcius DM. Chlamydia pneumoniae is present in the dental plaque of periodontitis patients and stimulates an inflammatory response in gingival epithelial cells. MICROBIAL CELL 2019; 6:197-208. [PMID: 30956972 PMCID: PMC6444558 DOI: 10.15698/mic2019.04.674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chlamydia pneumoniae is an airborne, Gram-negative, obligate intracellular bacterium which causes human respiratory infections and has been associated with atherosclerosis. Because individuals with periodontitis are at greater risk for atherosclerosis as well as respiratory infections, we in-vestigated the role of C. pneumoniae in inflammation and periodontal dis-ease. We found that C. pneumoniae was more frequently found in subgingival dental plaque obtained from periodontally diseased sites of the mouth versus healthy sites. The known periodontal pathogens, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, were also found in the plaque. In addition, C. pneumoniae could efficiently invade human gingival epithelial cells (GECs) in vitro, causing translocation of NF-κB to the nucleus along with increased secretion of mature IL-1β cytokine. Supernatants collected from C. pneumoniae-infected GECs showed increased activation of caspase-1 protein, which was significantly reduced when nlrp3 gene expression was silenced using shRNA lentiviral vectors. Our results demonstrate that C. pneumoniae was found in higher levels in periodontitis patients compared to control pa-tients. Additionally, C. pneumoniae could infect GECs, leading to inflammation caused by activation of NF-κB and the NLRP3 inflammasome. We propose that the presence of C. pneumoniae in subgingival dental plaque may contribute to periodontal disease and could be used as a potential risk indicator of perio-dontal disease.
Collapse
Affiliation(s)
| | - Tamer Alpagot
- Department of Periodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - Ye Zhu
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - Sonho Sierra Lee
- College of Letters and Science, University of California, Berkeley, CA 94720, USA.,Program of Doctor of Dental Surgery, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - Brian P Roberts
- College of Letters and Science, University of California, Los Angeles, CA 90095, USA
| | - Shu-Chen Hung
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - Norina Tang
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA.,Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - David M Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| |
Collapse
|
12
|
Infectious Agents in Atherosclerotic Cardiovascular Diseases through Oxidative Stress. Int J Mol Sci 2017; 18:ijms18112459. [PMID: 29156574 PMCID: PMC5713425 DOI: 10.3390/ijms18112459] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence demonstrates that vascular oxidative stress is a critical feature of atherosclerotic process, potentially triggered by several infectious agents that are considered as risk co-factors for the atherosclerotic cardiovascular diseases (CVDs). C. pneumoniae has been shown to upregulate multiple enzymatic systems capable of producing reactive oxygen species (ROS) such as NADPH oxidase (NOX) and cyclooxygenase in vascular endothelial cells, NOX and cytochrome c oxidase in macrophages as well as nitric oxide synthase and lipoxygenase in platelets contributing to both early and late stages of atherosclerosis. P. gingivalis seems to be markedly involved in the atherosclerotic process as compared to A. actinomycetemcomitans contributing to LDL oxidation and foam cell formation. Particularly interesting is the evidence describing the NLRP3 inflammasome activation as a new molecular mechanism underlying P. gingivalis-induced oxidative stress and inflammation. Amongst viral agents, immunodeficiency virus-1 and hepatitis C virus seem to have a major role in promoting ROS production, contributing, hence, to the early stages of atherosclerosis including endothelial dysfunction and LDL oxidation. In conclusion, oxidative mechanisms activated by several infectious agents during the atherosclerotic process underlying CVDs are very complex and not well-known, remaining, thus, an attractive target for future research.
Collapse
|
13
|
Chung WS, Hsu WH, Lin CL, Kao CH. Mycoplasma pneumonia increases the risk of acute coronary syndrome: a nationwide population-based cohort study. QJM 2015; 108:697-703. [PMID: 25614614 DOI: 10.1093/qjmed/hcv015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Studies investigating the epidemiological relationship between Mycoplasma pneumonia (MP) and the subsequent development of acute coronary syndrome (ACS) are scant. We conducted a nationwide longitudinal cohort study in Taiwan to explore whether MP patients are at an increased risk of developing ACS. METHODS This study investigated the incidence and risk factors for ACS in 12 152 newly diagnosed MP patients from the Taiwan National Health Insurance Research Database between 2004 and 2011. The control group consisted of 48 600 individuals without MP. The follow-up period ran from the time of initial MP diagnosis to the date of an ACS event, censoring, or 31 December 2011. We analyzed the risk of ACS by using Cox proportional hazard regression models, including variables for sex, age and comorbidities. RESULTS The incidence of ACS was higher in MP patients than in comparison cohort (3.08 vs. 2.42 per 1000 person-years). The hazard ratio of developing ACS increased 37% in MP patients compared with that in the comparison cohort after adjustment for covariates. The effect of MP on subsequent ACS development appeared to 12 months after infection. CONCLUSION This nationwide study determined that compared with the general population, MP patients exhibited a 37% increase in the risk of subsequently developing ACS. Clinicians should be aware of this risk in MP patients and provide appropriate cardiovascular management in addition to MP treatment.
Collapse
Affiliation(s)
- W-S Chung
- From the Department of Internal Medicine, Taichung Hospital, Ministry of Health and Welfare, Department of Health Services Administration, China Medical University, Department of Healthcare Administration, Central Taiwan University of Science and Technology
| | - W-H Hsu
- Department of Respiratory and Critical Care, China Medical University Hospital, Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine, China Medical University
| | - C-L Lin
- Management Office for Health Data, China Medical University Hospital, College of Medicine, China Medical University and
| | - C-H Kao
- Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine, China Medical University, Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
14
|
Chlamydia Pneumoniae and Immunoinflammatory Reactions in an Unstable Atherosclerotic Plaque in Humans. Bull Exp Biol Med 2015; 159:278-81. [DOI: 10.1007/s10517-015-2941-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Indexed: 10/23/2022]
|
15
|
Di Pietro M, Filardo S, De Santis F, Mastromarino P, Sessa R. Chlamydia pneumoniae and oxidative stress in cardiovascular disease: state of the art and prevention strategies. Int J Mol Sci 2014; 16:724-35. [PMID: 25561227 PMCID: PMC4307271 DOI: 10.3390/ijms16010724] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/26/2014] [Indexed: 12/15/2022] Open
Abstract
Chlamydia pneumoniae, a pathogenic bacteria responsible for respiratory tract infections, is known as the most implicated infectious agent in atherosclerotic cardiovascular diseases (CVDs). Accumulating evidence suggests that C. pneumoniae-induced oxidative stress may play a critical role in the pathogenesis of CVDs. Indeed, the overproduction of reactive oxygen species (ROS) within macrophages, endothelial cells, platelets and vascular smooth muscle cells (VSMCs) after C. pneumoniae exposure, has been shown to cause low density lipoprotein oxidation, foam cell formation, endothelial dysfunction, platelet adhesion and aggregation, and VSMC proliferation and migration, all responsible for the typical pathological changes of atherosclerotic plaque. The aim of this review is to improve our insight into C. pneumoniae-induced oxidative stress in order to suggest potential strategies for CVD prevention. Several antioxidants, acting on multi-enzymatic targets related to ROS production induced by C. pneumoniae, have been discussed. A future strategy for the prevention of C. pneumoniae-associated CVDs will be to target chlamydial HSP60, involved in oxidative stress.
Collapse
Affiliation(s)
- Marisa Di Pietro
- Department of Public Health and Infectious Diseases, "Sapienza" University, Rome 00185, Italy.
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, "Sapienza" University, Rome 00185, Italy.
| | - Fiorenzo De Santis
- Department of Public Health and Infectious Diseases, "Sapienza" University, Rome 00185, Italy.
| | - Paola Mastromarino
- Department of Public Health and Infectious Diseases, "Sapienza" University, Rome 00185, Italy.
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, "Sapienza" University, Rome 00185, Italy.
| |
Collapse
|
16
|
Cheng B, Wu X, Sun S, Wu Q, Mei C, Xu Q, Wu J, He P. MAPK–PPARα/γ signal transduction pathways are involved in Chlamydia pneumoniae-induced macrophage-derived foam cell formation. Microb Pathog 2014; 69-70:1-8. [DOI: 10.1016/j.micpath.2014.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/09/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
|
17
|
Chakraborti S, Alam MN, Chaudhury A, Sarkar J, Pramanik A, Asrafuzzaman S, Das SK, Ghosh SN, Chakraborti T. Pathophysiological Aspects of Lipoprotein-Associated Phospholipase A2: A Brief Overview. PHOSPHOLIPASES IN HEALTH AND DISEASE 2014:115-133. [DOI: 10.1007/978-1-4939-0464-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
18
|
|
19
|
|
20
|
Atherosclerosis Induced by Chlamydophila pneumoniae: A Controversial Theory. Interdiscip Perspect Infect Dis 2013; 2013:941392. [PMID: 23956742 PMCID: PMC3730386 DOI: 10.1155/2013/941392] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/18/2013] [Indexed: 02/02/2023] Open
Abstract
More than a century ago, inflammation and infection were considered to have atherogenic effects. The old idea that coronary heart disease (CHD) possibly has an infectious etiology has only reemerged in recent years. Atherosclerosis is the main pathological process involved in CHD and is, logically, the first place to look for infectious etiology. The process of atherosclerosis itself provides the first hints of potential infectious cause. Smooth muscle proliferation, with subsequent intimal thickening, luminal narrowing, and endothelial degeneration, constitutes the natural history of atherosclerosis, being with the severity and speed of these changes. Both viral and bacterial pathogens have been proposed to be associated with the inflammatory changes found in atherosclerosis. Recently, Chlamydophila pneumoniae (C. pneumoniae) has been implicated as a possible etiologic agent of coronary artery disease and atherosclerosis. New evidence which supports a role for C. pneumoniae in the pathogenesis of atherosclerosis has emerged. C. pneumoniae has been detected in atherosclerotic arteries by several techniques, and the organism has been isolated from both coronary and carotid atheromas. Recent animal models have suggested that C. pneumoniae is capable of inducing atherosclerosis in both rabbit and mouse models of atherosclerosis. Furthermore, human clinical treatment studies which examined the use of antichlamydial macrolide antibiotics in patients with coronary atherosclerosis have been carried out. The causal relationship has not yet been proven, but ongoing large intervention trials and research on pathogenetic mechanisms may lead to the use of antimicrobial agents in the treatment of CHD in the future.
Collapse
|
21
|
Beaufrère H, Ammersbach M, Reavill DR, Garner MM, Heatley JJ, Wakamatsu N, Nevarez JG, Tully TN. Prevalence of and risk factors associated with atherosclerosis in psittacine birds. J Am Vet Med Assoc 2013; 242:1696-704. [DOI: 10.2460/javma.242.12.1696] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
High prevalence of Chlamydia pneumoniae infection in an asymptomatic Jordanian population. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2013; 47:412-7. [PMID: 23751768 DOI: 10.1016/j.jmii.2013.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/10/2013] [Accepted: 04/15/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND/PURPOSE The bacterium Chlamydia pneumoniae is associated with respiratory diseases and nonrespiratory illnesses like atherosclerosis. This study aims to investigate the seroprevalence of immunoglobulin G (IgG) against C. pneumoniae in an asymptomatic population in Jordan and to analyze the immunity state in relation to age and sex. METHODS Serum samples were collected from 588 apparently healthy individuals aged 2-86 years. Using the microimmunofluorescence (MIF) test, seropositivity was defined as an anti-C. pneumoniae IgG titer ≥1:16. Titers from 1:16 to 1:256 were considered indicative for a past infection, whereas 1:512 was considered diagnostic of an acute infection. RESULTS The overall prevalence of C. pneumoniae was 54.9%. The mean seropositivity in males was slightly higher than females. The seroprevalence of infection was relatively low in children aged 2-9 years, and steadily increased to reach a plateau of 66.7% at around 30-39 years of age, which remained stable in later years. Recent infection was indicated in 14.3% of study subjects. The seropositivity was highest in males, and more frequent in adults than in children and teenagers. CONCLUSION A high seroprevalence of C. pneumoniae in the asymptomatic population suggests that infection with this pathogen is common in Jordan. Higher seropositivity in males compared to females was observed. The primary infection is acquired during the first four decades of life, and in older ages high antibody levels are likely maintained by reinfection or persistent infection.
Collapse
|
23
|
Di Pietro M, Schiavoni G, Sessa V, Pallotta F, Costanzo G, Sessa R. Chlamydia pneumoniae and osteoporosis-associated bone loss: a new risk factor? Osteoporos Int 2013; 24:1677-82. [PMID: 23160916 DOI: 10.1007/s00198-012-2217-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/26/2012] [Indexed: 01/18/2023]
Abstract
UNLABELLED We found an association between the presence of Chlamydia pneumoniae DNA both in osteoporotic bone tissue and peripheral blood mononuclear cells (PBMCs) and the increase in circulating resorptive cytokines. INTRODUCTION Our study was designed to determine whether C. pneumoniae infection may be involved in osteoporosis-associated bone loss. METHODS The study included 59 women undergoing hip joint replacement surgery for femoral neck fracture: 32 with osteoporosis and 27 with osteoarthritis. A total of 118 tissue specimens (59 bone tissues, 59 PBMCs) were examined for C. pneumoniae DNA by real-time polymerase chain reaction (PCR). Serum levels of soluble receptor activator of nuclear factor kappa B ligand (sRANKL), osteoprotegerin (OPG), interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 were also measured. RESULTS C. pneumoniae DNA was detected in osteoporotic bone tissue whereas it was not found in non-osteoporotic bone tissue (p < 0.05). A significantly higher rate of C. pneumoniae DNA (p < 0.05) was found in PBMCs of osteoporotic patients than in those of osteoarthritis patients. Among osteoporotic patients, serum sRANKL, IL-1, and IL-6 concentrations as well as sRANKL/OPG ratio significantly differ between patients with bone tissue and PBMCs positive to C. pneumoniae and C. pneumoniae-negative patients. CONCLUSION The association between the presence of C. pneumoniae DNA, both in bone tissue and PBMCs, and the increase in sRANKL/OPG ratio as well as in IL-1β and IL-6 levels observed in osteoporotic patients suggests C. pneumoniae infection as a new risk factor for osteoporosis.
Collapse
Affiliation(s)
- M Di Pietro
- Department of Public Health and Infectious Diseases, "Sapienza" University, P.le Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Ishida K, Kubo T, Saeki A, Yamane C, Matsuo J, Yimin, Nakamura S, Hayashi Y, Kunichika M, Yoshida M, Takahashi K, Hirai I, Yamamoto Y, Shibata KI, Yamaguchi H. Chlamydophila pneumoniae in human immortal Jurkat cells and primary lymphocytes uncontrolled by interferon-γ. Microbes Infect 2013; 15:192-200. [PMID: 23178757 DOI: 10.1016/j.micinf.2012.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/27/2012] [Accepted: 11/10/2012] [Indexed: 10/27/2022]
Abstract
Lymphocytes are a potential host cell for Chlamydophila pneumoniae, although why the bacteria must hide in lymphocytes remains unknown. Meanwhile, interferon (IFN)-γ is a crucial factor for eliminating chlamydiae from infected cells through indoleamine 2,3-dioxygenase (IDO) expression, resulting in depletion of tryptophan. We therefore assessed if lymphocytes could work as a shelter for the bacteria to escape IFN-γ. C. pneumoniae grew normally in human lymphoid Jurkat cells, even in the presence of IFN-γ or under stimulation with phorbol myristate acetate plus ionomycin. Although Jurkat cells expressed IFN-γ receptor CD119, their lack of IDO expression was confirmed by RT-PCR and western blotting. Also, C. pneumoniae survived in enriched human peripheral blood lymphocytes, even in the presence of IFN-γ. Furthermore, C. pneumoniae in spleen cells obtained from IFN-γ knockout mice with C57BL/6 background was maintained in a similar way to wild-type mice, supporting a minimal role of IFN-γ-related response for eliminating C. pneumoniae from lymphocytes. Thus, we concluded that IFN-γ did not remove C. pneumoniae from lymphocytes, possibly providing a shelter for C. pneumoniae to escape from the innate immune response, which has direct clinical significance.
Collapse
Affiliation(s)
- Kasumi Ishida
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Nishi-5 Kita-12 Jo, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Di Pietro M, De Santis F, De Biase D, Sessa R. The Elusive but Pathogenic Peptidoglycan of Chlamydiae. EUR J INFLAMM 2013. [DOI: 10.1177/1721727x1301100126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chlamydia species cause a broad spectrum of diseases in humans including severe chronic sequelae related to persistent forms. Despite the lack of detectable amounts of peptidoglycan, several studies suggest the presence of small quantities of peptidoglycan or its derivative at least in some stages of the growth cycle. Based on recent discovery in Chlamydiae of the aminotransferase pathway for biosynthesis of meso-diaminopimelic acid, we demonstrated the up-regulation of the gene (cp0259) encoding L,L-diaminopimelate aminotransferase in chlamydial persistent forms. This finding may be important in the search for target molecules to diagnose and treat Chlamydia-associated chronic diseases.
Collapse
Affiliation(s)
- M. Di Pietro
- Department of Public Health and Infectious Diseases, “Sapienza” University, Rome, Italy
| | - F. De Santis
- Department of Public Health and Infectious Diseases, “Sapienza” University, Rome, Italy
| | - D. De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University, Latina, Italy
| | - R. Sessa
- Department of Public Health and Infectious Diseases, “Sapienza” University, Rome, Italy
| |
Collapse
|
26
|
Paul-Clark MJ, George PM, Gatheral T, Parzych K, Wright WR, Crawford D, Bailey LK, Reed DM, Mitchell JA. Pharmacology and therapeutic potential of pattern recognition receptors. Pharmacol Ther 2012; 135:200-15. [PMID: 22627269 DOI: 10.1016/j.pharmthera.2012.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 04/20/2012] [Indexed: 12/30/2022]
Abstract
Pharmacologists have used pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS) for decades as a stimulus for studying mediators involved in inflammation and for the screening of anti-inflammatory compounds. However, in the view of immunologists, LPS was too non-specific for studying the mechanisms of immune signalling in infection and inflammation, as no receptors had been identified. This changed in the late 1990s with the discovery of the Toll-like receptors. These 'pattern recognition receptors' (PRRs) were able to recognise highly conserved sequences, the so called pathogen associated molecular patterns (PAMPs) present in or on pathogens. This specificity of particular PAMPs and their newly defined receptors provided a common ground between pharmacologists and immunologists for the study of inflammation. PRRs also recognise endogenous agonists, the so called danger-associated molecular patterns (DAMPs), which can result in sterile inflammation. The signalling pathways and ligands of many PRRs have now been characterised and there is no doubt that this rich vein of research will aid the discovery of new therapeutics for infectious conditions and chronic inflammatory disease.
Collapse
Affiliation(s)
- M J Paul-Clark
- Department of Cardiothoracic Pharmacology, Pharmacology and Toxicology, National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse Street, London SW3 6LY, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lu Z, Li Y, Jin J, Zhang X, Lopes-Virella MF, Huang Y. Toll-like receptor 4 activation in microvascular endothelial cells triggers a robust inflammatory response and cross talk with mononuclear cells via interleukin-6. Arterioscler Thromb Vasc Biol 2012; 32:1696-706. [PMID: 22596222 DOI: 10.1161/atvbaha.112.251181] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE It is known that toll-like receptor 4 (TLR4) plays an important role in atherosclerosis. Because both microvascular (MIC) and macrovascular (MAC) endothelial cells (ECs) are present in atherosclerotic lesions, the present study compared TLR4-triggered inflammatory response and cross talk with mononuclear cells between MIC and MAC ECs. METHODS AND RESULTS ELISA, real-time polymerase chain reaction, and gene expression profiling showed that TLR4 activation by lipopolysaccharide stimulated a much higher expression of inflammatory genes including cytokines, chemokines, growth factors, and adhesion molecules in MIC ECs than MAC ECs. Furthermore, coculture studies showed that TLR4 activation in MIC ECs, but not MAC ECs, induced a cross talk with U937 mononuclear cells through MIC EC-released interleukin-6 to upregulate matrix metalloproteinase-1 expression in U937 cells. To explore molecular mechanisms underlying the different responses to TLR4 activation between MIC and MAC ECs, we showed that MIC ECs had a higher expression of TLR4 and CD14 and a higher TLR4-mediated nuclear factor-kappaB activity than MAC ECs. CONCLUSIONS The present study showed that TLR4 activation triggers a more robust inflammatory response in MIC ECs than MAC ECs. Given the importance of inflammatory cytokines and matrix metalloproteinases in plaque rupture, MIC ECs may play a key role in plaque destabilization through a TLR4-dependent mechanism.
Collapse
Affiliation(s)
- Zhongyang Lu
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | | | | | | | | | | |
Collapse
|
28
|
Dinakaran V, John L, Rathinavel A, Gunasekaran P, Rajendhran J. Prevalence of bacteria in the circulation of cardiovascular disease patients, Madurai, India. Heart Lung Circ 2012; 21:281-3. [PMID: 22459237 DOI: 10.1016/j.hlc.2012.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/22/2012] [Accepted: 02/18/2012] [Indexed: 10/28/2022]
Abstract
Cardiovascular diseases (CVDs) have a complex aetiology determined by risk factors, which include genetic and environmental factors. Chronic infection and inflammation is reported to be a pathogenic determinant for the development of CVDs. Here, we report the prevalence of bacterial pathogens in the circulation of CVD patients in Madurai, India. Blood culturing was performed using BD BACTEC automated culture system and organisms were identified by16S rRNA gene sequence analysis. From a total of 133 samples screened, 47 samples showed culture positive which indicates a high level of bacteraemia in CVD patients. From the 47 samples that showed growth, we have identified 57 bacterial isolates comprising 35 different species. Coagulase negative Staphylococci (CoNS) was the most predominant group of bacteria and other notable bacterial species isolated in this study are discussed.
Collapse
Affiliation(s)
- Vasudevan Dinakaran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, India
| | | | | | | | | |
Collapse
|
29
|
Faludi I, Szabó Á. Vaccination with DNA vector expressing chlamydial low calcium response protein E (LcrE) against Chlamydophila pneumoniae infection. Acta Microbiol Immunol Hung 2011; 58:123-34. [PMID: 21715282 DOI: 10.1556/amicr.58.2011.2.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chlamydophila pneumoniae is an obligate intracellular human pathogen, which causes acute respiratory tract infections and can also cause chronic infections. C. pneumoniae possess type III secretion system (TTSS), which allows them to secrete effector molecules into the inclusion membrane and the host cell cytosol. Low calcium response protein E (LcrE) is a part of TTSS. The gene of LcrE in a 6His-tagged form was cloned from C. pneumoniae CWL029, expressed and purified from Escherichia coli using the HIS-select TALON CellThru Resin, this gene was also cloned into a eukaryotic expression vector (pΔRC). One group of BALB/c mice received an intramuscular pΔRC inoculation then the mice were immunized with purified LcrE protein; the second group of mice was immunized two times with the recombinant plasmid (pΔRCLcrE), and the third group was primed with pΔRCLcrE inoculation then boosted with LcrE protein. LcrE-specific antibody response was induced by DNA immunization with a shift towards Th1 isotype pattern compared to protein-immunization, this shifting pattern was observed in plasmid primed then protein-boosted animals. DNA immunization given as a priming and followed by a protein booster significantly reduced the number of viable bacteria in the lungs after challenge with C. pneumoniae. These results confirm that immunization with pΔRCLcrE can be an effective part of a vaccination schedule against C. pneumoniae.
Collapse
Affiliation(s)
- Ildikó Faludi
- 1 University of Szeged Department of Medical Microbiology and Immunobiology Szeged Hungary
| | - Ágnes Szabó
- 1 University of Szeged Department of Medical Microbiology and Immunobiology Szeged Hungary
| |
Collapse
|
30
|
Asquith KL, Horvat JC, Kaiko GE, Carey AJ, Beagley KW, Hansbro PM, Foster PS. Interleukin-13 promotes susceptibility to chlamydial infection of the respiratory and genital tracts. PLoS Pathog 2011; 7:e1001339. [PMID: 21573182 PMCID: PMC3088704 DOI: 10.1371/journal.ppat.1001339] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 04/06/2011] [Indexed: 12/22/2022] Open
Abstract
Chlamydiae are intracellular bacteria that commonly cause infections of the respiratory and genital tracts, which are major clinical problems. Infections are also linked to the aetiology of diseases such as asthma, emphysema and heart disease. The clinical management of infection is problematic and antibiotic resistance is emerging. Increased understanding of immune processes that are involved in both clearance and immunopathology of chlamydial infection is critical for the development of improved treatment strategies. Here, we show that IL-13 was produced in the lungs of mice rapidly after Chlamydia muridarum (Cmu) infection and promoted susceptibility to infection. Wild-type (WT) mice had increased disease severity, bacterial load and associated inflammation compared to IL-13 deficient (-/-) mice as early as 3 days post infection (p.i.). Intratracheal instillation of IL-13 enhanced bacterial load in IL-13-/- mice. There were no differences in early IFN-g and IL-10 expression between WT and IL-13-/- mice and depletion of CD4+ T cells did not affect infection in IL-13-/- mice. Collectively, these data demonstrate a lack of CD4+ T cell involvement and a novel role for IL-13 in innate responses to infection. We also showed that IL-13 deficiency increased macrophage uptake of Cmu in vitro and in vivo. Moreover, the depletion of IL-13 during infection of lung epithelial cells in vitro decreased the percentage of infected cells and reduced bacterial growth. Our results suggest that enhanced IL-13 responses in the airways, such as that found in asthmatics, may promote susceptibility to chlamydial lung infection. Importantly the role of IL-13 in regulating infection was not limited to the lung as we showed that IL-13 also promoted susceptibility to Cmu genital tract infection. Collectively our findings demonstrate that innate IL-13 release promotes infection that results in enhanced inflammation and have broad implications for the treatment of chlamydial infections and IL-13-associated diseases.
Collapse
Affiliation(s)
- Kelly L. Asquith
- Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Jay C. Horvat
- Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Gerard E. Kaiko
- Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Alison J. Carey
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Kenneth W. Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Philip M. Hansbro
- Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Paul S. Foster
- Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| |
Collapse
|
31
|
Bobryshev YV, Orekhov AN, Killingsworth MC, Lu J. Decreased Expression of Liver X Receptor-α in Macrophages Infected with Chlamydia pneumoniae in Human Atherosclerotic Arteries in situ. J Innate Immun 2011; 3:483-94. [DOI: 10.1159/000327522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/14/2011] [Indexed: 11/19/2022] Open
|
32
|
Al-Bannawi A, Al-Wesebai K, Taha S, Bakhiet M. Chlamydia pneumoniae induces chemokine expression by platelets in patients with atherosclerosis. Med Princ Pract 2011; 20:438-43. [PMID: 21757933 DOI: 10.1159/000324553] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 12/20/2010] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE In this study, the role of Chlamydia pneumoniae in triggering platelets to induce the inflammatory potential chemokines CCL3, CCL5, CCL7 and CXCL8 in atherosclerotic patients was investigated. SUBJECTS AND METHODS Venous blood from control subjects (n = 35) and atherosclerotic patients (n = 35) was collected in tubes with and without EDTA. Platelets from controls and patients were separated from whole blood and then stimulated with lipopolysaccharide (LPS), live C. pneumoniae and heat-treated C. pneumoniae. The ability of C. pneumoniae and its LPS to stimulate platelets and expression of CCL3, CCL5, CCL7 and CXCL8 was assessed with immunofluorescence. Immunosorbent assays were used to detect anti-C. pneumoniae antibodies in sera from patients and healthy subjects. RESULTS Nonstimulated platelets from patients showed significant expression of CCL3, CCL5, CCL7 and CXCL8 compared to controls (p < 0.0001). Stimulation of platelets from patients with live and heat-treated C. pneumoniae and its LPS demonstrated significant induction of chemokines compared to similarly stimulated platelets from controls (p < 0.01). After stimulation with heat-treated C. pneumoniae chemokine expression in platelets from controls was significantly lower than after stimulation with live C. pneumoniae (p < 0.01), which was not the case when platelets from patients were stimulated. Increased levels of anti-C. pneumoniae antibodies were detected in sera from patients compared to healthy subjects, suggesting prior C. pneumoniae exposure. CONCLUSION Our data demonstrated an interactive link between C. pneumoniae and platelets in atherosclerotic patients, leading to induction of potential chemokines and possibly disease development.
Collapse
Affiliation(s)
- Abdelhad Al-Bannawi
- Department of Molecular Medicine, HH Princess Al-Jawhara Center for Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Manama, Kingdom of Bahrain
| | | | | | | |
Collapse
|
33
|
Betts-Hampikian HJ, Fields KA. The Chlamydial Type III Secretion Mechanism: Revealing Cracks in a Tough Nut. Front Microbiol 2010; 1:114. [PMID: 21738522 PMCID: PMC3125583 DOI: 10.3389/fmicb.2010.00114] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/22/2010] [Indexed: 12/22/2022] Open
Abstract
Present-day members of the Chlamydiaceae contain parasitic bacteria that have been co-evolving with their eukaryotic hosts over hundreds of millions of years. Likewise, a type III secretion system encoded within all genomes has been refined to complement the unique obligate intracellular niche colonized so successfully by Chlamydia spp. All this adaptation has occurred in the apparent absence of the horizontal gene transfer responsible for creating the wide range of diversity in other Gram-negative, type III-expressing bacteria. The result is a system that is, in many ways, uniquely chlamydial. A critical mass of information has been amassed that sheds significant light on how the chlamydial secretion system functions and contributes to an obligate intracellular lifestyle. Although the overall mechanism is certainly similar to homologous systems, an image has emerged where the chlamydial secretion system is essential for both survival and virulence. Numerous apparent differences, some subtle and some profound, differentiate chlamydial type III secretion from others. Herein, we provide a comprehensive review of the current state of knowledge regarding the Chlamydia type III secretion mechanism. We focus on the aspects that are distinctly chlamydial and comment on how this important system influences chlamydial pathogenesis. Gaining a grasp on this fascinating system has been challenging in the absence of a tractable genetic system. However, the surface of this tough nut has been scored and the future promises to be fruitful and revealing.
Collapse
|
34
|
|
35
|
Association of carotid plaque Lp-PLA(2) with macrophages and Chlamydia pneumoniae infection among patients at risk for stroke. PLoS One 2010; 5:e11026. [PMID: 20543948 PMCID: PMC2882946 DOI: 10.1371/journal.pone.0011026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 05/11/2010] [Indexed: 11/20/2022] Open
Abstract
Background We previously showed that the burden of Chlamydia pneumoniae in carotid plaques was significantly associated with plaque interleukin (IL)-6, and serum IL-6 and C-reactive protein (CRP), suggesting that infected plaques contribute to systemic inflammatory markers in patients with stroke risk. Since lipoprotein-associated phospholipase A2 (Lp-PLA2) mediates inflammation in atherosclerosis, we hypothesized that serum Lp-PLA2 mass and activity levels and plaque Lp-PLA2 may be influenced by plaque C. pneumoniae infection. Methodology/Principal Findings Forty-two patients underwent elective carotid endarterectomy. Tissue obtained at surgery was stained by immunohistochemistry for Lp-PLA2 grade, macrophages, IL-6, C. pneumoniae and CD4+ and CD8+ cells. Serum Lp-PLA2 activity and mass were measured using the colorimetric activity method (CAM™) and ELISA, respectively. Serum homocysteine levels were measured by HPLC. Eleven (26.2%) patients were symptomatic with transient ischemic attacks. There was no correlation between patient risk factors (smoking, coronary artery disease, elevated cholesterol, diabetes, obesity, hypertension and family history of genetic disorders) for atherosclerosis and serum levels or plaque grade for Lp-PLA2. Plaque Lp-PLA2 correlated with serum homocysteine levels (p = 0.013), plaque macrophages (p<0.01), and plaque C. pneumoniae (p<0.001), which predominantly infected macrophages, co-localizing with Lp-PLA2. Conclusions The significant association of plaque Lp-PLA2 with plaque macrophages and C. pneumoniae suggests an interactive role in accelerating inflammation in atherosclerosis. A possible mechanism for C. pneumoniae in the atherogenic process may involve infection of macrophages that induce Lp-PLA2 production leading to upregulation of inflammatory mediators in plaque tissue. Additional in vitro and in vivo research will be needed to advance our understanding of specific C. pneumoniae and Lp-PLA2 interactions in atherosclerosis.
Collapse
|
36
|
Hongliang C, Zhou Z, Zhan H, Yanhua Z, Zhongyu L, Yingbiao L, Guozhi D, Yimou W. Serodiagnosis of Chlamydia pneumoniae infection using three inclusion membrane proteins. J Clin Lab Anal 2010; 24:55-61. [PMID: 20087957 DOI: 10.1002/jcla.20367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Chlamydia pneumoniae genome-encoded open reading frames Cpn0146, Cpn0147, and Cpn0308 were expressed as recombinant proteins for detecting C. pneumoniae-specific antibodies in samples from three groups of individuals including 183 with C. pneumoniae-associated respiratory infection (group I), 60 healthy blood donors (group II), and 32 with no known respiratory infection (group III). The recombinant Cpn0146 was recognized by 71 (38.8% positive recognition rate), 15 (25%) and 1 (3.1%), Cpn0147 by 75 (40.9%), 14 (23.3%), and 2 (6.3%), and Cpn0308 by 82 (44.8%), 16 (26.7%), and 0 (0%) samples from groups I, II, and III, respectively. The positive recognition rates with any of the three antigens were significantly higher in group I than those in groups II and III, suggesting that more individuals from group I were likely infected with C. pneumoniae. This conclusion was confirmed with a commercially available whole organism-based ELISA kit (Savyon Diagnostics Ltd., Ashdod, Israel), which detected C. pneumoniae antibodies in 98 (64.1%), 26 (43.3%), and 4 (12.5%) samples from group I, II, and III, respectively. Comparing to the commercial kit, the recombinant antigen-based detection assays displayed >97% of detection specificity and >87% of sensitivity, suggesting that these recombinant antigens can be considered alternative tools for aiding in serodiagnosis of C. pneumoniae infection.
Collapse
Affiliation(s)
- Chen Hongliang
- Institute of Pathogenic Biology Medical College, University of South China, Hengyang, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Mertens G. Gene/Environment interaction in atherosclerosis: an example of clinical medicine as seen from the evolutionary perspective. Int J Hypertens 2010; 2010:654078. [PMID: 20981301 PMCID: PMC2958465 DOI: 10.4061/2010/654078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 02/19/2010] [Indexed: 11/20/2022] Open
Abstract
Evolutionary medicine is the application of evolution theory to understanding health and disease. It provides a complementary scientific approach to the present mechanistic explanations that dominate medical science, and particularly medical education.
The chronic multifactorial disease of atherosclerosis clearly illustrates the Darwinian paradigm. Recent research, combining the effects of genes and environment, has provided surprising clues to the pathogenesis of this major public health problem. This example makes a strong case for recognizing evolution biology as a basic science for medicine.
Collapse
Affiliation(s)
- Gerhard Mertens
- Department of Clinical Biology, Antwerp University Hospital, University of Antwerp, Wilrijkstraat 10, 2650 Edegem, Belgium
| |
Collapse
|
38
|
Sessa R, Di Pietro M, Schiavoni G, Macone A, Maras B, Fontana M, Zagaglia C, Nicoletti M, Del Piano M, Morrone S. Chlamydia pneumoniae induces T cell apoptosis through glutathione redox imbalance and secretion of TNF-alpha. Int J Immunopathol Pharmacol 2009; 22:659-68. [PMID: 19822082 DOI: 10.1177/039463200902200311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chlamydia pneumoniae persistent infection has been implicated in the pathogenesis of several chronic inflammatory diseases including atherosclerosis, and we hypothesized that modulation of the apoptosis of macrophages and/or T cells by C. pneumoniae infection may contribute to the development of such diseases. We therefore evaluated apoptosis, cytokine response, and redox status in human primary T cells and macrophages infected with C. pneumoniae. In addition, co-cultures of T cells and macrophages infected with C. pneumoniae were also carried out. Apoptosis, and levels of glutathione (GSH), glutathione disulfide (GSSG), and tumour necrosis factor (TNF)-alpha were measured by flow cytometry, high performance liquid chromatography and enzyme-linked immunosorbent assay. C. pneumoniae induced apoptosis in T cells as well as in co-cultures of T cells and infected macrophages by marked decrease in GSH/GSSG ratio and increased production of TNF-alpha, respectively. The results demonstrate that interaction of C. pneumoniae with T cells and/or macrophages characterized by interference with redox status, and secretion of tumour necrosis factor-alpha culminates in the induction of T cell apoptosis and survival of infected macrophages. In conclusion, the inappropriate T cell response against C. pneumoniae and survival of infected macrophages could explain the persistence of this intracellular obligate pathogen in the host-organism; it may contribute to the development of chronic inflammatory diseases, although further studies are needed to clarify such a complex mechanism.
Collapse
Affiliation(s)
- R Sessa
- Department of Public Health Sciences, Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Li Y, Ahluwalia SK, Borovkov A, Loskutov A, Wang C, Gao D, Poudel A, Sykes KF, Kaltenboeck B. Novel Chlamydia pneumoniae vaccine candidates confirmed by Th1-enhanced genetic immunization. Vaccine 2009; 28:1598-605. [PMID: 19961962 DOI: 10.1016/j.vaccine.2009.11.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/30/2009] [Accepted: 11/18/2009] [Indexed: 01/22/2023]
Abstract
Identification of highly immunogenic antigens is critical for the construction of an efficacious subunit vaccine against Chlamydia pneumoniae infections. A previous project used a genome-wide screen to identify 12 protective C. pneumoniae candidate genes in an A/J mouse lung disease model (Li et al. [14]). Due to insufficient induction of Th1 immunity, these genes elicited only modest protection. Here, we used the Escherichia coli heat-labile enterotoxin as a Th1-enhancing genetic adjuvant, and re-tested these 12 genes, in parallel with six genes identified by other investigators. Vaccine candidate genes cutE and Cpn0420 conferred significant protection by all criteria evaluated (prevention of C. pneumoniae-induced death, reduction of lung disease, elimination of C. pneumoniae). Gene oppA_2 was protective by disease reduction and C. pneumoniae elimination. Four other genes were protective by a single criterion. None of the six genes reported elsewhere protected by reduction of lung disease or elimination of C. pneumoniae, but three protected by increasing survival.
Collapse
Affiliation(s)
- Yihang Li
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849-5519, USA
| | | | | | | | | | | | | | | | | |
Collapse
|