1
|
Su S, Wahl A, Rugis J, Suresh V, Yule DI, Sneyd J. A mathematical model of ENaC and Slc26a6 regulation by CFTR in salivary gland ducts. Am J Physiol Gastrointest Liver Physiol 2024; 326:G555-G566. [PMID: 38349781 PMCID: PMC11551000 DOI: 10.1152/ajpgi.00168.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Cystic fibrosis (CF) is a genetic disease caused by the mutations of cystic fibrosis transmembrane conductance regulator (CFTR), the cystic fibrosis transmembrane conductance regulator gene. Cftr is a critical ion channel expressed in the apical membrane of mouse salivary gland striated duct cells. Although Cftr is primarily a Cl- channel, its knockout leads to higher salivary Cl- and Na+ concentrations and lower pH. Mouse experiments show that the activation of Cftr upregulates epithelial Na+ channel (ENaC) protein expression level and Slc26a6 (a 1Cl-:2[Formula: see text] exchanger of the solute carrier family) activity. Experimentally, it is difficult to predict how much the coregulation effects of CFTR contribute to the abnormal Na+, Cl-, and [Formula: see text] concentrations and pH in CF saliva. To address this question, we construct a wild-type mouse salivary gland model and simulate CFTR knockout by altering the expression levels of CFTR, ENaC, and Slc26a6. By reproducing the in vivo and ex vivo final saliva measurements from wild-type and CFTR knockout animals, we obtain computational evidence that ENaC and Slc26a6 activities are downregulated in CFTR knockout in salivary glands.NEW & NOTEWORTHY This paper describes a salivary gland mathematical model simulating the ion exchange between saliva and the salivary gland duct epithelium. The novelty lies in the implementation of CFTR regulating ENaC and Slc26a6 in a CFTR knockout gland. By reproducing the experimental saliva measurements in wild-type and CFTR knockout glands, the model shows that CFTR regulates ENaC and Slc26a6 anion exchanger in salivary glands. The method could be used to understand the various cystic fibrosis phenotypes.
Collapse
Affiliation(s)
- Shan Su
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Amanda Wahl
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, United States
| | - John Rugis
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Vinod Suresh
- Auckland Biomedical Engineering Institute, University of Auckland, Auckland, New Zealand
- Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, United States
| | - James Sneyd
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Wahl AM, Takano T, Su S, Warner BM, Perez P, Sneyd J, Yule DI. Structural and functional analysis of salivary intercalated duct cells reveals a secretory phenotype. J Physiol 2023; 601:4539-4556. [PMID: 37724716 PMCID: PMC10591963 DOI: 10.1113/jp285104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
Currently, all salivary ducts (intercalated, striated and collecting) are assumed to function broadly in a similar manner, reclaiming ions that were secreted by the secretory acinar cells while preserving fluid volume and delivering saliva to the oral cavity. Nevertheless, there has been minimal investigation into the structural and functional differences between distinct types of salivary duct cells. Therefore, in this study, the expression profile of proteins involved in stimulus-secretion coupling, as well as the function of the intercalated duct (ID) and striated duct cells, was examined. Particular focus was placed on defining differences between distinct duct cell populations. To accomplish this, immunohistochemistry and in situ hybridization were utilized to examine the localization and expression of proteins involved in reabsorption and secretion of ions and fluid. Further, in vivo calcium imaging was employed to investigate cellular function. Based on the protein expression profile and functional data, marked differences between the IDs and striated ducts were observed. Specifically, the ID cells express proteins native to the secretory acinar cells while lacking proteins specifically expressed in the striated ducts. Further, the ID and striated duct cells display different calcium signalling characteristics, with the IDs responding to a neural stimulus in a manner similar to the acinar cells. Overall, our data suggest that the IDs have a distinct role in the secretory process, separate from the reabsorptive striated ducts. Instead, based on our evidence, the IDs express proteins found in secretory cells, generate calcium signals in a manner similar to acinar cells, and, therefore, are likely secretory cells. KEY POINTS: Current studies examining salivary intercalated duct cells are limited, with minimal documentation of the ion transport machinery and the overall role of the cells in fluid generation. Salivary intercalated duct cells are presumed to function in the same manner as other duct cells, reclaiming ions, maintaining fluid volume and delivering the final saliva to the oral cavity. Here we systematically examine the structure and function of the salivary intercalated duct cells using immunohistochemistry, in situ hybridization and by monitoring in vivo Ca2+ dynamics. Structural data revealed that the intercalated duct cells lack proteins vital for reabsorption and express proteins necessary for secretion. Ca2+ dynamics in the intercalated duct cells were consistent with those observed in secretory cells and resulted from GPCR-mediated IP3 production.
Collapse
Affiliation(s)
- Amanda M Wahl
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - Shan Su
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | | | - Paola Perez
- Salivary Disorders Unit, NIDCR, Bethesda, MD, USA
| | - James Sneyd
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
3
|
Purushothaman AK, Nelson EJR. Role of innate immunity and systemic inflammation in cystic fibrosis disease progression. Heliyon 2023; 9:e17553. [PMID: 37449112 PMCID: PMC10336457 DOI: 10.1016/j.heliyon.2023.e17553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Pathophysiological manifestations of cystic fibrosis (CF) result from a functional defect in the cystic fibrosis transmembrane conductance regulator (CFTR) paving way for mucus obstruction and pathogen colonization. The role of CFTR in modulating immune cell function and vascular integrity, irrespective of mucus thickening, in determining the host cell response to pathogens/allergens and causing systemic inflammation is least appreciated. Since CFTR plays a key role in the conductance of anions like Cl-, loss of CFTR function could affect various basic cellular processes, such as cellular homeostasis, lysosome acidification, and redox balance. CFTR aids in endotoxin tolerance by regulating Toll-like receptor-mediated signaling resulting in uncontrolled activation of innate immune cells. Although leukocytes of CF patients are hyperactivated, they exhibit compromised phagosome activity thus favouring the orchestration of sepsis from defective pathogen clearance. This review will emphasize the importance of innate immunity and systemic inflammatory response in the development of CF and other CFTR-associated pathologies.
Collapse
Affiliation(s)
- Anand Kumar Purushothaman
- Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Everette Jacob Remington Nelson
- Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
4
|
Updates and Original Case Studies Focused on the NMR-Linked Metabolomics Analysis of Human Oral Fluids Part II: Applications to the Diagnosis and Prognostic Monitoring of Oral and Systemic Cancers. Metabolites 2022; 12:metabo12090778. [PMID: 36144183 PMCID: PMC9505390 DOI: 10.3390/metabo12090778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Human saliva offers many advantages over other biofluids regarding its use and value as a bioanalytical medium for the identification and prognostic monitoring of human diseases, mainly because its collection is largely non-invasive, is relatively cheap, and does not require any major clinical supervision, nor supervisory input. Indeed, participants donating this biofluid for such purposes, including the identification, validation and quantification of surrogate biomarkers, may easily self-collect such samples in their homes following the provision of full collection details to them by researchers. In this report, the authors have focused on the applications of metabolomics technologies to the diagnosis and progressive severity monitoring of human cancer conditions, firstly oral cancers (e.g., oral cavity squamous cell carcinoma), and secondly extra-oral (systemic) cancers such as lung, breast and prostate cancers. For each publication reviewed, the authors provide a detailed evaluation and critical appraisal of the experimental design, sample size, ease of sample collection (usually but not exclusively as whole mouth saliva (WMS)), their transport, length of storage and preparation for analysis. Moreover, recommended protocols for the optimisation of NMR pulse sequences for analysis, along with the application of methods and techniques for verifying and resonance assignments and validating the quantification of biomolecules responsible, are critically considered. In view of the authors’ specialisms and research interests, the majority of these investigations were conducted using NMR-based metabolomics techniques. The extension of these studies to determinations of metabolic pathways which have been pathologically disturbed in these diseases is also assessed here and reviewed. Where available, data for the monitoring of patients’ responses to chemotherapeutic treatments, and in one case, radiotherapy, are also evaluated herein. Additionally, a novel case study featured evaluates the molecular nature, levels and diagnostic potential of 1H NMR-detectable salivary ‘acute-phase’ glycoprotein carbohydrate side chains, and/or their monomeric saccharide derivatives, as biomarkers for cancer and inflammatory conditions.
Collapse
|
5
|
Takano T, Wahl AM, Huang KT, Narita T, Rugis J, Sneyd J, Yule DI. Highly localized intracellular Ca 2+ signals promote optimal salivary gland fluid secretion. eLife 2021; 10:66170. [PMID: 34240705 PMCID: PMC8352588 DOI: 10.7554/elife.66170] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
Salivary fluid secretion involves an intricate choreography of membrane transporters to result in the trans-epithelial movement of NaCl and water into the acinus lumen. Current models are largely based on experimental observations in enzymatically isolated cells where the Ca2+ signal invariably propagates globally and thus appears ideally suited to activate spatially separated Cl and K channels, present on the apical and basolateral plasma membrane, respectively. We monitored Ca2+ signals and salivary secretion in live mice expressing GCamp6F, following stimulation of the nerves innervating the submandibular gland. Consistent with in vitro studies, Ca2+ signals were initiated in the apical endoplasmic reticulum. In marked contrast to in vitro data, highly localized trains of Ca2+ transients that failed to fully propagate from the apical region were observed. Following stimuli optimum for secretion, large apical-basal gradients were elicited. A new mathematical model, incorporating these data was constructed to probe how salivary secretion can be optimally stimulated by apical Ca2+ signals.
Collapse
Affiliation(s)
- Takahiro Takano
- Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
| | - Amanda M Wahl
- Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
| | - Kai-Ting Huang
- Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
| | - Takanori Narita
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - John Rugis
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - James Sneyd
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
| |
Collapse
|
6
|
Sneyd J, Vera-Sigüenza E, Rugis J, Pages N, Yule DI. Calcium Dynamics and Water Transport in Salivary Acinar Cells. Bull Math Biol 2021; 83:31. [PMID: 33594615 PMCID: PMC8018713 DOI: 10.1007/s11538-020-00841-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/25/2020] [Indexed: 01/07/2023]
Abstract
Saliva is secreted from the acinar cells of the salivary glands, using mechanisms that are similar to other types of water-transporting epithelial cells. Using a combination of theoretical and experimental techniques, over the past 20 years we have continually developed and modified a quantitative model of saliva secretion, and how it is controlled by the dynamics of intracellular calcium. However, over approximately the past 5 years there have been significant developments both in our understanding of the underlying mechanisms and in the way these mechanisms should best be modelled. Here, we review the traditional understanding of how saliva is secreted, and describe how our work has suggested important modifications to this traditional view. We end with a brief description of the most recent data from living animals and discuss how this is now contributing to yet another iteration of model construction and experimental investigation.
Collapse
Affiliation(s)
- James Sneyd
- Department of Mathematics, The University of Auckland, Level 2, Building 303, 38 Princes Street, Auckland, New Zealand.
| | | | | | | | - David I Yule
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 711, Rochester, NY, USA
| |
Collapse
|
7
|
Imbery JF, Iqbal AK, Desai T, Giovannucci DR. Role of NAADP for calcium signaling in the salivary gland. Cell Calcium 2019; 80:29-37. [PMID: 30947088 DOI: 10.1016/j.ceca.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 03/02/2019] [Accepted: 03/03/2019] [Indexed: 11/26/2022]
Abstract
Coordination of intracellular Ca2+ signaling in parotid acini is crucial for controlling the secretion of primary saliva. Previous work from our lab has demonstrated acidic-organelle Ca2+ release as a participant in agonist-evoked signaling dynamics of the parotid acinar cell. Furthermore, results implicated a potential role for the potent Ca2+ releasing second messenger NAADP in these events. The current study interrogated a direct role of NAADP for Ca2+ signaling in the parotid salivary gland acinar cell. Use of live-cell Ca2+ imaging, patch-clamp methods, and confocal microscopy revealed for the first time NAADP can evoke or enhance Ca2+ dynamics in parotid acini. These results were compared with pancreatic acini, a morphologically similar cell type previously shown to display NAADP-dependent Ca2+ signals. Findings presented here may be relevant in establishing new therapeutic targets for those suffering from xerostomia produced by hypofunctioning salivary glands.
Collapse
Affiliation(s)
- John F Imbery
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH, 43614, United States
| | - Azwar K Iqbal
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH, 43614, United States
| | - Tanvi Desai
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH, 43614, United States
| | - David R Giovannucci
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH, 43614, United States.
| |
Collapse
|
8
|
Xu H, Ghishan FK, Kiela PR. SLC9 Gene Family: Function, Expression, and Regulation. Compr Physiol 2018; 8:555-583. [PMID: 29687889 DOI: 10.1002/cphy.c170027] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Slc9 family of Na+ /H+ exchangers (NHEs) plays a critical role in electroneutral exchange of Na+ and H+ in the mammalian intestine as well as other absorptive and secretory epithelia of digestive organs. These transport proteins contribute to the transepithelial Na+ and water absorption, intracellular pH and cellular volume regulation as well as the electrolyte, acid-base, and fluid volume homeostasis at the systemic level. They also influence the function of other membrane transport mechanisms, affect cellular proliferation and apoptosis as well as cell migration, adherence to the extracellular matrix, and tissue repair. Additionally, they modulate the extracellular milieu to facilitate other nutrient absorption and to regulate the intestinal microbial microenvironment. Na+ /H+ exchange is inhibited in selected gastrointestinal diseases, either by intrinsic factors (e.g., bile acids, inflammatory mediators) or infectious agents and associated bacterial toxins. Disrupted NHE activity may contribute not only to local and systemic electrolyte imbalance but also to the disease severity via multiple mechanisms. In this review, we describe the cation proton antiporter superfamily of Na+ /H+ exchangers with a particular emphasis on the eight SLC9A isoforms found in the digestive tract, followed by a more integrative description in their roles in each of the digestive organs. We discuss regulatory mechanisms that determine the function of Na+ /H+ exchangers as pertinent to the digestive tract, their regulation in pathological states of the digestive organs, and reciprocally, the contribution of dysregulated Na+ /H+ exchange to the disease pathogenesis and progression. © 2018 American Physiological Society. Compr Physiol 8:555-583, 2018.
Collapse
Affiliation(s)
- Hua Xu
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Fayez K Ghishan
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Pawel R Kiela
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA.,Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
9
|
Ishibashi K, Yamazaki J, Okamura K, Teng Y, Kitamura K, Abe K. Roles of CLCA and CFTR in Electrolyte Re-absorption from Rat Saliva. J Dent Res 2016; 85:1101-5. [PMID: 17122162 DOI: 10.1177/154405910608501207] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A molecular basis for Cl− re-absorption has not been well-characterized in salivary ductal cells. Previously, we found strong expression of a rat homologue proposed to be Ca2+-dependent Cl− channels (rCLCA) in the intralobular ducts of the rat submandibular gland. To address the question as to whether rCLCA and cystic fibrosis transmembrane conductance regulator (CFTR) are involved in Cl− re-absorption, we evaluated the electrolyte content of saliva from glands pre-treated with a small interfering RNA (siRNA). Retrograde injection into a given submandibular duct of an siRNA designed to knock down either rCLCA or CFTR reduced the expression of each of the proteins. rCLCA and CFTR siRNAs significantly increased Cl− concentration in the final saliva during pilocarpine stimulation. These results represent the first in vivo evidence for a physiological significance of rCLCA, along with CFTR, in transepithelial Cl− transport in the ductal system of the rat submandibular gland.
Collapse
Affiliation(s)
- K Ishibashi
- Department of Functional Bioscience, Fukuoka Dental College, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Shin YH, Lee SW, Kim M, Choi SY, Cong X, Yu GY, Park K. Epigenetic regulation of CFTR in salivary gland. Biochem Biophys Res Commun 2016; 481:31-37. [DOI: 10.1016/j.bbrc.2016.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/05/2016] [Indexed: 01/19/2023]
|
11
|
Ueno K, Hirono C, Kitagawa M, Shiba Y, Sugita M. Different rate-limiting activities of intracellular pH regulators for HCO 3- secretion stimulated by forskolin and carbachol in rat parotid intralobular ducts. J Physiol Sci 2016; 66:477-490. [PMID: 26969473 PMCID: PMC10717326 DOI: 10.1007/s12576-016-0443-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/23/2016] [Indexed: 11/26/2022]
Abstract
Intracellular pH (pHi) regulation fundamentally participates in maintaining HCO3- release from HCO3--secreting epithelia. We used parotid intralobular ducts loaded with BCECF to investigate the contributions of a carbonic anhydrase (CA), anion channels and a Na+-H+ exchanger (NHE) to pHi regulation for HCO3- secretion by cAMP and Ca2+ signals. Resting pHi was dispersed between 7.4 and 7.9. Forskolin consistently decreased pHi showing the dominance of pHi-lowering activities, but carbachol gathered pHi around 7.6. CA inhibition suppressed the forskolin-induced decrease in pHi, while it allowed carbachol to consistently increase pHi by revealing that carbachol prominently activated NHE via Ca2+-calmodulin. Under NHE inhibition, forskolin and carbachol induced the remarkable decreases in pHi, which were slowed predominantly by CA inhibition and by CA or anion channel inhibition, respectively. Our results suggest that forskolin and carbachol primarily activate the pHi-lowering CA and pHi-raising NHE, respectively, to regulate pHi for HCO3- secretion.
Collapse
Affiliation(s)
- Kaori Ueno
- Department of Physiology and Oral Physiology, Institute of Biomedical and Health Sciences, Hiroshima University, 2-3 Kasumi 1-Chome, Minami-ku, Hiroshima, 734-8553, Japan
| | - Chikara Hirono
- Department of Physiology and Oral Physiology, Institute of Biomedical and Health Sciences, Hiroshima University, 2-3 Kasumi 1-Chome, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Michinori Kitagawa
- Department of Physiology and Oral Physiology, Institute of Biomedical and Health Sciences, Hiroshima University, 2-3 Kasumi 1-Chome, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yoshiki Shiba
- Department of Physiology and Oral Physiology, Institute of Biomedical and Health Sciences, Hiroshima University, 2-3 Kasumi 1-Chome, Minami-ku, Hiroshima, 734-8553, Japan
| | - Makoto Sugita
- Department of Physiology and Oral Physiology, Institute of Biomedical and Health Sciences, Hiroshima University, 2-3 Kasumi 1-Chome, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
12
|
El Khoury J, Habre S, Nasr M, Hokayem N. Botulinum Neurotoxin A for Parotid Enlargement in Cystic Fibrosis: The First Case Report. J Oral Maxillofac Surg 2016; 74:1771-3. [DOI: 10.1016/j.joms.2016.03.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
|
13
|
Sneyd J, Means S, Zhu D, Rugis J, Won JH, Yule DI. Modeling calcium waves in an anatomically accurate three-dimensional parotid acinar cell. J Theor Biol 2016; 419:383-393. [PMID: 27155044 DOI: 10.1016/j.jtbi.2016.04.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/20/2016] [Accepted: 04/25/2016] [Indexed: 11/24/2022]
Abstract
We construct a model of calcium waves in a three-dimensional anatomically accurate parotid acinar cell, constructed from experimental data. Gradients of inositol trisphosphate receptor (IPR) density are imposed, with the IPR density being greater closer to the lumen, which has a branched structure, and inositol trisphosphate (IP3) is produced only at the basal membrane. We show (1) that IP3 equilibrates so quickly across the cell that it can be assumed to be spatially homogeneous; (2) spatial separation of the sites of IP3 action and IP3 production does not preclude the formation of stable oscillatory Ca2+ waves. However, these waves are not waves in the mathematical sense of a traveling wave with fixed profile. They result instead from a time delay between the Ca2+ rise in the apical and basal regions; (3) the ryanodine receptors serve to reinforce the Ca2+ wave, but are not necessary for the wave to exist; (4) a spatially independent model is not sufficient to study saliva secretion, although a one-dimensional model might be sufficient. Our results here form the first stages of the construction of a multiscale and multicellular model of saliva secretion in an entire acinus.
Collapse
Affiliation(s)
- James Sneyd
- Department of Mathematics, University of Auckland, New Zealand.
| | - Shawn Means
- Department of Mathematics, University of Auckland, New Zealand
| | - Di Zhu
- Department of Mathematics, University of Auckland, New Zealand
| | - John Rugis
- Department of Mathematics, University of Auckland, New Zealand
| | - Jong Hak Won
- Department of Pharmacology and Physiology, University of Rochester Medical Centre, Rochester, USA
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester Medical Centre, Rochester, USA
| |
Collapse
|
14
|
Dhooghe B, Bouckaert C, Capron A, Wallemacq P, Leal T, Noel S. Resveratrol increases F508del-CFTR dependent salivary secretion in cystic fibrosis mice. Biol Open 2015; 4:929-36. [PMID: 26092868 PMCID: PMC4571083 DOI: 10.1242/bio.010967] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cystic fibrosis (CF) is a fatal genetic disease associated with widespread exocrine gland dysfunction. Studies have suggested activating effects of resveratrol, a naturally-occurring polyphenol compound with antioxidant and anti-inflammatory properties, on CF transmembrane conductance regulator (CFTR) protein function. We assayed, in F508del-CFTR homozygous (CF) and in wild-type mice, the effect of resveratrol on salivary secretion in basal conditions, in response to inhibition by atropine (basal β-adrenergic-dependent component) and to stimulation by isoprenaline (CFTR-dependent component). Both components of the salivary secretion were smaller in CF mice than in controls. Two hours after intraperitoneal administration of resveratrol (50 mg/kg) dissolved in DMSO, the compound was detected in salivary glands. As in both CF and in wild-type mice, DMSO alone increased the response to isoprenaline in males but not in females, the effect of resveratrol was only measured in females. In wild-type mice, isoprenaline increased secretion by more than half. In CF mice, resveratrol rescued the response to isoprenaline, eliciting a 2.5-fold increase of β-adrenergic-stimulated secretion. We conclude that the salivary secretion assay is suitable to test DMSO-soluble CFTR modulators in female mice. We show that resveratrol applied in vivo to mice reaches salivary glands and increases β-adrenergic secretion. Immunolabelling of CFTR in human bronchial epithelial cells suggests that the effect is associated with increased CFTR protein expression. Our data support the view that resveratrol is beneficial for treating CF. The salivary secretion assay has a potential application to test efficacy of novel CF therapies.
Collapse
Affiliation(s)
- Barbara Dhooghe
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels B1200, Belgium
| | - Charlotte Bouckaert
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels B1200, Belgium
| | - Arnaud Capron
- Clinical Chemistry Department, Cliniques Universitaires St. Luc, Université Catholique de Louvain, Brussels B1200, Belgium
| | - Pierre Wallemacq
- Clinical Chemistry Department, Cliniques Universitaires St. Luc, Université Catholique de Louvain, Brussels B1200, Belgium
| | - Teresinha Leal
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels B1200, Belgium
| | - Sabrina Noel
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels B1200, Belgium
| |
Collapse
|
15
|
Quast TA, Combs MD, Edwards SH. Pharmacokinetics of bromide in adult sheep following oral and intravenous administration. Aust Vet J 2015; 93:20-5. [DOI: 10.1111/avj.12285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2013] [Indexed: 11/29/2022]
Affiliation(s)
- TA Quast
- School of Animal and Veterinary Science; Charles Sturt University; Wagga Wagga New South Wales Australia
| | - MD Combs
- School of Animal and Veterinary Science; Charles Sturt University; Wagga Wagga New South Wales Australia
| | - SH Edwards
- School of Animal and Veterinary Science; Charles Sturt University; Wagga Wagga New South Wales Australia
| |
Collapse
|
16
|
Digestive system dysfunction in cystic fibrosis: challenges for nutrition therapy. Dig Liver Dis 2014; 46:865-74. [PMID: 25053610 DOI: 10.1016/j.dld.2014.06.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/10/2014] [Accepted: 06/28/2014] [Indexed: 02/08/2023]
Abstract
Cystic fibrosis can affect food digestion and nutrient absorption. The underlying mutation of the cystic fibrosis trans-membrane regulator gene depletes functional cystic fibrosis trans-membrane regulator on the surface of epithelial cells lining the digestive tract and associated organs, where Cl(-) secretion and subsequently secretion of water and other ions are impaired. This alters pH and dehydrates secretions that precipitate and obstruct the lumen, causing inflammation and the eventual degradation of the pancreas, liver, gallbladder and intestine. Associated conditions include exocrine pancreatic insufficiency, impaired bicarbonate and bile acid secretion and aberrant mucus formation, commonly leading to maldigestion and malabsorption, particularly of fat and fat-soluble vitamins. Pancreatic enzyme replacement therapy is used to address this insufficiency. The susceptibility of pancreatic lipase to acidic and enzymatic inactivation and decreased bile availability often impedes its efficacy. Brush border digestive enzyme activity and intestinal uptake of certain disaccharides and amino acids await clarification. Other complications that may contribute to maldigestion/malabsorption include small intestine bacterial overgrowth, enteric circular muscle dysfunction, abnormal intestinal mucus, and intestinal inflammation. However, there is some evidence that gastric digestive enzymes, colonic microflora, correction of fatty acid abnormalities using dietary n-3 polyunsaturated fatty acid supplementation and emerging intestinal biomarkers can complement nutrition management in cystic fibrosis.
Collapse
|
17
|
Multiscale modelling of saliva secretion. Math Biosci 2014; 257:69-79. [PMID: 25014770 DOI: 10.1016/j.mbs.2014.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 06/18/2014] [Accepted: 06/26/2014] [Indexed: 01/28/2023]
Abstract
We review a multiscale model of saliva secretion, describing in brief how the model is constructed and what we have so far learned from it. The model begins at the level of inositol trisphosphate receptors (IPR), and proceeds through the cellular level (with a model of acinar cell calcium dynamics) to the multicellular level (with a model of the acinus), finally to a model of a saliva production unit that includes an acinus and associated duct. The model at the level of the entire salivary gland is not yet completed. Particular results from the model so far include (i) the importance of modal behaviour of IPR, (ii) the relative unimportance of Ca(2+) oscillation frequency as a controller of saliva secretion, (iii) the need for the periodic Ca(2+) waves to be as fast as possible in order to maximise water transport, (iv) the presence of functional K(+) channels in the apical membrane increases saliva secretion, (v) the relative unimportance of acinar spatial structure for isotonic water transport, (vi) the prediction that duct cells are highly depolarised, (vii) the prediction that the secondary saliva takes at least 1mm (from the acinus) to reach ionic equilibrium. We end with a brief discussion of future directions for the model, both in construction and in the study of scientific questions.
Collapse
|
18
|
Kidokoro M, Nakamoto T, Mukaibo T, Kondo Y, Munemasa T, Imamura A, Masaki C, Hosokawa R. Na(+)-K(+)-2Cl(-) cotransporter-mediated fluid secretion increases under hypotonic osmolarity in the mouse submandibular salivary gland. Am J Physiol Renal Physiol 2014; 306:F1155-60. [PMID: 24623142 DOI: 10.1152/ajprenal.00709.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Water-handling epithelia are sensitive to the osmotic environment. In this study, the effects of a hypo-osmotic challenge on carbachol (CCh)-induced fluid secretion was investigated using an ex vivo submandibular gland perfusion technique and intracellular pH and Ca(2+) measurements. The osmolality of the perfusion solution was altered to examine the response of the gland to a hypotonic challenge. The flow rate was increased by 34% with a 30% hypotonic solution (225 mosmol/kgH2O), although the Ca(2+) response was unchanged. The lowering of the external Cl(-) by 50% abolished this increase in the 30% hypotonic solution. Furthermore, bumetanide, an inhibitor of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1), completely inhibited the fluid secretion increase caused by the 30% hypotonic solution, and both the total amount of fluid and the flow rate were identical to those of the isotonic solution. This finding was confirmed by measuring the NKCC1 bumetanide-dependent NH4 (+) transport; Na(+)-K(+)-2Cl(-) transport was upregulated >40% by a 30% hypotonic challenge. Therefore, the increase in CCh-induced fluid secretion in response to hypotonic conditions can be attributed, to a large extent, to the specific activation of the NKCC1.
Collapse
Affiliation(s)
- Manami Kidokoro
- Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu City, Fukuoka, Japan
| | - Tetsuji Nakamoto
- Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu City, Fukuoka, Japan
| | - Taro Mukaibo
- Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu City, Fukuoka, Japan
| | - Yusuke Kondo
- Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu City, Fukuoka, Japan
| | - Takashi Munemasa
- Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu City, Fukuoka, Japan
| | - Atsushi Imamura
- Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu City, Fukuoka, Japan
| | - Chihiro Masaki
- Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu City, Fukuoka, Japan
| | - Ryuji Hosokawa
- Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu City, Fukuoka, Japan
| |
Collapse
|
19
|
Park HS, Betzenhauser MJ, Zhang Y, Yule DI. Regulation of Ca²⁺ release through inositol 1,4,5-trisphosphate receptors by adenine nucleotides in parotid acinar cells. Am J Physiol Gastrointest Liver Physiol 2012; 302:G97-G104. [PMID: 21960523 PMCID: PMC3345966 DOI: 10.1152/ajpgi.00328.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Secretagogue-stimulated intracellular Ca(2+) signals are fundamentally important for initiating the secretion of the fluid and ion component of saliva from parotid acinar cells. The Ca(2+) signals have characteristic spatial and temporal characteristics, which are defined by the specific properties of Ca(2+) release mediated by inositol 1,4,5-trisphosphate receptors (InsP(3)R). In this study we have investigated the role of adenine nucleotides in modulating Ca(2+) release in mouse parotid acinar cells. In permeabilized cells, the Ca(2+) release rate induced by submaximal [InsP(3)] was increased by 5 mM ATP. Enhanced Ca(2+) release was not observed at saturating [InsP(3)]. The EC(50) for the augmented Ca(2+) release was ∼8 μM ATP. The effect was mimicked by nonhydrolysable ATP analogs. ADP and AMP also potentiated Ca(2+) release but were less potent than ATP. In acini isolated from InsP(3)R-2-null transgenic animals, the rate of Ca(2+) release was decreased under all conditions but now enhanced by ATP at all [InsP(3)]. In addition the EC(50) for ATP potentiation increased to ∼500 μM. These characteristics are consistent with the properties of the InsP(3)R-2 dominating the overall features of InsP(3)R-induced Ca(2+) release despite the expression of all isoforms. Finally, Ca(2+) signals were measured in intact parotid lobules by multiphoton microscopy. Consistent with the release data, carbachol-stimulated Ca(2+) signals were reduced in lobules exposed to experimental hypoxia compared with control lobules only at submaximal concentrations. Adenine nucleotide modulation of InsP(3)R in parotid acinar cells likely contributes to the properties of Ca(2+) signals in physiological and pathological conditions.
Collapse
Affiliation(s)
- Hyung Seo Park
- University of Rochester Medical Center, Department of Pharmacology and Physiology, University of Rochester, Rochester, New York
| | - Matthew J. Betzenhauser
- University of Rochester Medical Center, Department of Pharmacology and Physiology, University of Rochester, Rochester, New York
| | - Yu Zhang
- University of Rochester Medical Center, Department of Pharmacology and Physiology, University of Rochester, Rochester, New York
| | - David I. Yule
- University of Rochester Medical Center, Department of Pharmacology and Physiology, University of Rochester, Rochester, New York
| |
Collapse
|
20
|
CO2-dependent opening of an inwardly rectifying K+ channel. Pflugers Arch 2011; 461:337-44. [PMID: 21234597 PMCID: PMC3037493 DOI: 10.1007/s00424-010-0916-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/11/2010] [Accepted: 12/17/2010] [Indexed: 11/25/2022]
Abstract
CO2 chemosensing is a vital function for the maintenance of life that helps to control acid–base balance. Most studies have reported that CO2 is measured via its proxy, pH. Here we report an inwardly rectifying channel, in outside-out excised patches from HeLa cells that was sensitive to modest changes in PCO2 under conditions of constant extracellular pH. As PCO2 increased, the open probability of the channel increased. The single-channel currents had a conductance of 6.7 pS and a reversal potential of –70 mV, which lay between the K+ and Cl– equilibrium potentials. This reversal potential was shifted by +61 mV following a tenfold increase in extracellular [K+] but was insensitive to variations of extracellular [Cl–]. The single-channel conductance increased with extracellular [K+]. We propose that this channel is a member of the Kir family. In addition to this K+ channel, we found that many of the excised patches also contained a conductance carried via a Cl–-selective channel. This CO2-sensitive Kir channel may hyperpolarize excitable cells and provides a potential mechanism for CO2-dependent inhibition during hypercapnia.
Collapse
|
21
|
|
22
|
Roussa E, Wittschen P, Wolff NA, Torchalski B, Gruber AD, Thévenod F. Cellular distribution and subcellular localization of mCLCA1/2 in murine gastrointestinal epithelia. J Histochem Cytochem 2010; 58:653-68. [PMID: 20385786 DOI: 10.1369/jhc.2010.955211] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
mCLCA1/2 are members of the CLCA protein family that are widely expressed in secretory epithelia, but their putative physiological role still awaits elucidation. mCLCA1/2 have 95% amino acid identity, but currently no specific antibody is available. We have generated a rabbit polyclonal antibody (pAb849) against aa 424-443 of mCLCA1/2. In HEK293 cells transfected with mCLCA1; pAb849 detected two specific protein bands at approximately 125 kDa and 90 kDa, representing full-length precursor and N-terminal cleavage product, respectively. pAb849 also immunoprecipitated mCLCA1 and labeled the protein by immunostaining. But pAb849 crossreacted with mCLCA3/4/6 despite < or =80% amino acid identity of the antigenic epitope. We therefore investigated the cellular localization of mCLCA1/2 in epithelial tissues, which do not express mCLCA3/4/6 (salivary glands, pancreas, kidney) or express mCLCA3/6 with known localization (mucus cells of stomach and small intestine; villi of small intestine). mCLCA1/2 mRNA and protein expression were found in both parotid and submandibular gland, and immunohistochemistry revealed labeling in parotid acinar cells, in the luminal membrane of parotid duct cells, and in the duct cells of submandibular gland. In exocrine pancreas, mCLCA1/2 expression was restricted to acinar zymogen granule membranes, as assessed by immunoblotting, immunohistochemistry, and preembedding immunoperoxidase and immunogold electron microscopy. Moreover, mCLCA1/2 immunolabeling was present in luminal membranes of gastric parietal cells and small intestinal crypt enterocytes, whereas in the kidney, mCLCA1/2 protein was localized to proximal and distal tubules. The apical membrane localization and overall distribution pattern of mCLCA1/2 favor a transmembrane protein implicated in transepithelial ion transport and protein secretion.
Collapse
Affiliation(s)
- Eleni Roussa
- Department of Molecular Embryology, Institute for Anatomy and Cell Biology II, University of Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 2010; 6:78-95. [PMID: 20300169 PMCID: PMC2818837 DOI: 10.1007/s11306-009-0178-y] [Citation(s) in RCA: 710] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 08/18/2009] [Indexed: 12/14/2022]
Abstract
Saliva is a readily accessible and informative biofluid, making it ideal for the early detection of a wide range of diseases including cardiovascular, renal, and autoimmune diseases, viral and bacterial infections and, importantly, cancers. Saliva-based diagnostics, particularly those based on metabolomics technology, are emerging and offer a promising clinical strategy, characterizing the association between salivary analytes and a particular disease. Here, we conducted a comprehensive metabolite analysis of saliva samples obtained from 215 individuals (69 oral, 18 pancreatic and 30 breast cancer patients, 11 periodontal disease patients and 87 healthy controls) using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS). We identified 57 principal metabolites that can be used to accurately predict the probability of being affected by each individual disease. Although small but significant correlations were found between the known patient characteristics and the quantified metabolites, the profiles manifested relatively higher concentrations of most of the metabolites detected in all three cancers in comparison with those in people with periodontal disease and control subjects. This suggests that cancer-specific signatures are embedded in saliva metabolites. Multiple logistic regression models yielded high area under the receiver-operating characteristic curves (AUCs) to discriminate healthy controls from each disease. The AUCs were 0.865 for oral cancer, 0.973 for breast cancer, 0.993 for pancreatic cancer, and 0.969 for periodontal diseases. The accuracy of the models was also high, with cross-validation AUCs of 0.810, 0.881, 0.994, and 0.954, respectively. Quantitative information for these 57 metabolites and their combinations enable us to predict disease susceptibility. These metabolites are promising biomarkers for medical screening. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-009-0178-y) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Extracellular ATP and P2Y2 receptors mediate intercellular Ca(2+) waves induced by mechanical stimulation in submandibular gland cells: Role of mitochondrial regulation of store operated Ca(2+) entry. Cell Calcium 2010; 47:65-76. [PMID: 20022109 DOI: 10.1016/j.ceca.2009.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 11/13/2009] [Accepted: 11/17/2009] [Indexed: 12/29/2022]
Abstract
Coordination of Ca(2+) signaling among cells contributes to synchronization of salivary gland cell function. However, mechanisms that underlie this signaling remain elusive. Here, intercellular Ca(2+) waves (ICW) in submandibular gland cells were investigated using Fura-2 fluorescence imaging. Mechanical stimulation of single cells induced ICW propagation from the stimulated cells through approximately 7 layers of cells or approximately 120microm. Our findings indicate that an extracellular ATP-dependent pathway is involved because the purinergic receptor antagonist suramin and the ATP hydrolyzing enzyme apyrase blocked ICW propagation. However, the gap junction uncoupler oleamide had no effect. ATP is released from mechanically stimulated cells possibly through opening of mechanosensitive maxi-anion channels, and does not appear to be directly linked to cytosolic Ca(2+). The ICW is propagated by diffusing ATP, which activates purinergic receptors in neighboring cells. This purinergic signaling induces a Ca(2+) transient that is dependent on Ca(2+) release via IP(3) receptors in the ER and store operated Ca(2+) entry (SOCE). Finally, inhibition of mitochondrial Ca(2+) uptake modified ICW indicating an important role of these organelles in this phenomenon. These studies increase our understanding of purinergic receptor signaling in salivary gland cells, and its role as a coordination mechanism of Ca(2+) signals induced by mechanical stimulation.
Collapse
|
25
|
Hille C, Lahn M, Löhmannsröben HG, Dosche C. Two-photon fluorescence lifetime imaging of intracellular chloride in cockroach salivary glands. Photochem Photobiol Sci 2009; 8:319-27. [DOI: 10.1039/b813797h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Romanenko VG, Nakamoto T, Catalán MA, Gonzalez-Begne M, Schwartz GJ, Jaramillo Y, Sepúlveda FV, Figueroa CD, Melvin JE. Clcn2 encodes the hyperpolarization-activated chloride channel in the ducts of mouse salivary glands. Am J Physiol Gastrointest Liver Physiol 2008; 295:G1058-67. [PMID: 18801913 PMCID: PMC2584831 DOI: 10.1152/ajpgi.90384.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transepithelial Cl(-) transport in salivary gland ducts is a major component of the ion reabsorption process, the final stage of saliva production. It was previously demonstrated that a Cl(-) current with the biophysical properties of ClC-2 channels dominates the Cl(-) conductance of unstimulated granular duct cells in the mouse submandibular gland. This inward-rectifying Cl(-) current is activated by hyperpolarization and elevated intracellular Cl(-) concentration. Here we show that ClC-2 immunolocalized to the basolateral region of acinar and duct cells in mouse salivary glands, whereas its expression was most robust in granular and striated duct cells. Consistent with this observation, nearly 10-fold larger ClC-2-like currents were observed in granular duct cells than the acinar cells obtained from submandibular glands. The loss of inward-rectifying Cl(-) current in cells from Clcn2(-/-) mice confirmed the molecular identity of the channel responsible for these currents as ClC-2. Nevertheless, both in vivo and ex vivo fluid secretion assays failed to identify significant changes in the ion composition, osmolality, or salivary flow rate of Clcn2(-/-) mice. Additionally, neither a compensatory increase in Cftr Cl(-) channel protein expression nor in Cftr-like Cl(-) currents were detected in Clcn2 null mice, nor did it appear that ClC-2 was important for blood-organ barrier function. We conclude that ClC-2 is the inward-rectifying Cl(-) channel in duct cells, but its expression is not apparently required for the ion reabsorption or the barrier function of salivary ductal epithelium.
Collapse
Affiliation(s)
- Victor G. Romanenko
- The Center for Oral Biology and the Department of Pharmacology and Physiology, and Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York; Centro de Estudios Científicos, Valdivia; and Instituto de Anatomía, Histología y Patología. Universidad Austral de Chile, Valdivia, Chile
| | - Tetsuji Nakamoto
- The Center for Oral Biology and the Department of Pharmacology and Physiology, and Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York; Centro de Estudios Científicos, Valdivia; and Instituto de Anatomía, Histología y Patología. Universidad Austral de Chile, Valdivia, Chile
| | - Marcelo A. Catalán
- The Center for Oral Biology and the Department of Pharmacology and Physiology, and Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York; Centro de Estudios Científicos, Valdivia; and Instituto de Anatomía, Histología y Patología. Universidad Austral de Chile, Valdivia, Chile
| | - Mireya Gonzalez-Begne
- The Center for Oral Biology and the Department of Pharmacology and Physiology, and Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York; Centro de Estudios Científicos, Valdivia; and Instituto de Anatomía, Histología y Patología. Universidad Austral de Chile, Valdivia, Chile
| | - George J. Schwartz
- The Center for Oral Biology and the Department of Pharmacology and Physiology, and Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York; Centro de Estudios Científicos, Valdivia; and Instituto de Anatomía, Histología y Patología. Universidad Austral de Chile, Valdivia, Chile
| | - Yasna Jaramillo
- The Center for Oral Biology and the Department of Pharmacology and Physiology, and Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York; Centro de Estudios Científicos, Valdivia; and Instituto de Anatomía, Histología y Patología. Universidad Austral de Chile, Valdivia, Chile
| | - Francisco V. Sepúlveda
- The Center for Oral Biology and the Department of Pharmacology and Physiology, and Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York; Centro de Estudios Científicos, Valdivia; and Instituto de Anatomía, Histología y Patología. Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D. Figueroa
- The Center for Oral Biology and the Department of Pharmacology and Physiology, and Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York; Centro de Estudios Científicos, Valdivia; and Instituto de Anatomía, Histología y Patología. Universidad Austral de Chile, Valdivia, Chile
| | - James E. Melvin
- The Center for Oral Biology and the Department of Pharmacology and Physiology, and Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York; Centro de Estudios Científicos, Valdivia; and Instituto de Anatomía, Histología y Patología. Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
27
|
Sun QF, Sun QH, Du J, Wang S. Differential gene expression profiles of normal human parotid and submandibular glands. Oral Dis 2008; 14:500-9. [PMID: 18826381 DOI: 10.1111/j.1601-0825.2007.01408.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Parotid and submandibular glands have different properties including characteristics of the secreted saliva and tumor incidences. The differences in properties of parotid and submandibular glands are not clear from a genetic viewpoint. OBJECTIVE To study differential gene expression profiles between normal human parotid and submandibular glands. MATERIALS AND METHODS Three pairs of normal parotid and submandibular glands were obtained. RNA was extracted from these samples. After reverse transcription, the cDNA was in vitro-transcribed to produce biotin-labeled cRNA. The purified biotin-labeled cRNA samples were hybridized to microarray chips. RESULTS Among the 54 675 tested transcripts, 47 transcripts were upregulated at least twofold in the parotid gland compared with the submandibular gland, including tumor-associated genes (pleiotrophin, WNT5A, ABCC1) and transport-associated genes (SLCO1A2, SLC13A5, KCNJ15). Ninety-eight transcripts were upregulated at least twofold in the submandibular gland compared with the parotid gland, including the chloride channel CFTR and mucin-associated genes that belong to the starch and sucrose metabolism pathway (GalNAc-T4, GalNAc-T7 and GalNAc-T13). Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of nine differentially expressed genes confirmed the microarray results. CONCLUSION This study revealed the different gene expression profiles of normal human parotid and submandibular glands, providing a genetic basis for their differing properties.
Collapse
Affiliation(s)
- Q-F Sun
- Salivary Gland Disease Center and the Molecular Laboratory for Gene Therapy, Capital Medical University School of Stomatology, Beijing, China
| | | | | | | |
Collapse
|
28
|
Ishibashi K, Okamura K, Yamazaki J. Involvement of apical P2Y2 receptor-regulated CFTR activity in muscarinic stimulation of Cl(-) reabsorption in rat submandibular gland. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1729-36. [PMID: 18337312 DOI: 10.1152/ajpregu.00758.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we presented in vivo evidence for a physiological significance of cAMP-regulated CFTR Cl(-) channels in Ca(2+)-activated Cl(-) reabsorption in the ductal system of the rat submandibular gland. Here, we address the mechanism by which basal CFTR activation contributes to the transepithelial Cl(-) movement evoked by muscarinic stimulation. The Cl(-) concentration ([Cl(-)]) was increased in the final saliva from rat submandibular gland during pilocarpine stimulation when a small interfering RNA for CFTR or a specific CFTR inhibitor, CFTR(inh)-172, was injected retrogradely into the gland's own duct, indicating that basal CFTR activation is involved in Cl(-) reabsorption. Systemically administered propranolol failed to alter the [Cl(-)], suggesting little involvement of a beta-adrenergic pathway in the Cl(-) movement that occurs through basal CFTR activation. Intraductal injection of suramin (a nonspecific P2-receptor antagonist) increased the salivary [Cl(-)], indicating the existence of endogenous purinergic activation. Upon separate intraductal injection, ATP and a P2Y(2)-receptor agonist, UTP, decreased the salivary [Cl(-)] almost equipotently. CFTR(inh)-172 and suramin each prevented these effects, whereas 2',3'-O-(4-benzoylbenzoyl)-ATP (Bz-ATP), a P2X(7) agonist, had no specific effect. Pilocarpine stimulation evoked ATP secretion into the salivary fluid. Immunohistochemistry revealed the partial coexistence of CFTR and P2Y(2) receptors on the luminal surface of epithelial cells in the striated ducts of this gland. These results raise the possibility that muscarinic stimulation-induced Cl(-) reabsorption occurs through basal CFTR activity and that this is regulated by P2Y(2) receptors in the ductal epithelium via stimulation by ATP secreted into the salivary fluid.
Collapse
Affiliation(s)
- Kazunari Ishibashi
- Department of Functional Bioscience, Fukuoka Dental College, Fukuoka, Japan
| | | | | |
Collapse
|
29
|
Shintani T, Hirono C, Sugita M, Iwasa Y, Shiba Y. Suppression of carbachol-induced oscillatory Cl- secretion by forskolin in rat parotid and submandibular acinar cells. Am J Physiol Gastrointest Liver Physiol 2008; 294:G738-47. [PMID: 18187520 DOI: 10.1152/ajpgi.00239.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sympathetic stimulation induces weak salivation compared with parasympathetic stimulation. To clarify this phenomenon in salivary glands, we investigated cAMP-induced modulation of Ca(2+)-activated Cl(-) secretion from rat parotid and submandibular acinar cells because fluid secretion from salivary glands depends on the Cl(-) secretion. Carbachol (Cch), a Ca(2+)-increasing agent, induced hyperpolarization of the cells with oscillatory depolarization in the current clamp mode of the gramicidin-perforated patch recording. In the voltage clamp mode at -80 mV, Cch induced a bumetanide-sensitive oscillatory inward current, which was larger in rat submandibular acinar cells than in parotid acinar cells. Forskolin and IBMX, cAMP-increasing agents, did not induce any marked current, but they evoked a small nonoscillatory inward current in the presence of Cch and suppressed the Cch-induced oscillatory inward current in all parotid acinar cells and half (56%) of submandibular acinar cells. In the current clamp mode, forskolin + IBMX evoked a small nonoscillatory depolarization in the presence of Cch and reduced the amplitude of Cch-induced oscillatory depolarization in both acinar cells. The oscillatory inward current estimated at the depolarized membrane potential was suppressed by forskolin + IBMX. These results indicate that cAMP suppresses Ca(2+)-activated oscillatory Cl(-) secretion of parotid and submandibular acinar cells at -80 mV and possibly at the membrane potential during Cch stimulation. The suppression may result in the weak salivation induced by sympathetic stimulation.
Collapse
Affiliation(s)
- Takahide Shintani
- Department of Oral Physiology, Hiroshima University Graduate School of Biomedical Sciences, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | | | |
Collapse
|
30
|
Noël S, Strale PO, Dannhoffer L, Wilke M, DeJonge H, Rogier C, Mettey Y, Becq F. Stimulation of salivary secretion in vivo by CFTR potentiators in Cftr+/+ and Cftr-/- mice. J Cyst Fibros 2007; 7:128-33. [PMID: 17766192 DOI: 10.1016/j.jcf.2007.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 06/20/2007] [Accepted: 06/25/2007] [Indexed: 11/26/2022]
Abstract
BACKGROUND Physiologically, salivary secretion is controlled by cholinergic and adrenergic pathways but the role of ionic channels in this process is not yet clearly understood. In cystic fibrosis (CF), most exocrine glands failed to response to beta-adrenergic agonists. METHODS To determine the implication of CFTR in this process, we measured in vivo the salivary secretion of Cftr(+/+) and Cftr(-/-) mice in the presence of 2 water-soluble benzo[c]quinolizinium derivatives; MPB-07 a potentiator of CFTR Cl(-) channel and MPB-05 an inactive analogue. We also used genistein and its vehicle ethanol to confirm the implication of CFTR in salivary secretion. RESULTS We showed that subcutaneous injection of MPB-07 in the mice cheek enhanced in a dose dependent manner the isoprenaline-induced salivary secretion in Cftr(+/+) but not in Cftr(-/-) mice. By contrast, MPB-05 did not activate the salivary secretion in Cftr(+/+) mice. The CFTR activator genistein (50 microM) significantly potentiated the secretory response of Cftr(+/+) mice whereas its vehicle, ethanol, had no effect. CONCLUSIONS These results show for the first time in vivo pharmacological stimulation of salivary secretion by a water-soluble CFTR potentiator, MPB-07 and by the isoflavone, ethanol-soluble genistein and suggest that this chloride channel plays an important role in salivary gland physiology.
Collapse
Affiliation(s)
- Sabrina Noël
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, 40 avenue du recteur Pineau, 86022, Poitiers, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Schröder B, Breves G. Mechanisms and regulation of calcium absorption from the gastrointestinal tract in pigs and ruminants: comparative aspects with special emphasis on hypocalcemia in dairy cows. Anim Health Res Rev 2007; 7:31-41. [PMID: 17389052 DOI: 10.1017/s1466252307001144] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adequate blood calcium (Ca) concentrations are a prerequisite to maintain several physiological functions of mammals such as pig and ruminants. Thus, blood Ca levels have to be regulated within very close limits. This is basically ensured through the coordinated effects of the calcitropic hormones parathyroid hormone (PTH) and calcitriol (1,25-dihydroxyvitamin D3). If plasma Ca decreases, one main effect of subsequently secreted PTH is the stimulation of renal reabsorption of Ca from the glomerular filtrate to reduce urinary Ca loss. Another important action of PTH is the induction of the renal enzyme 1[@@@]\rmalpha [@@@]-hydroxylase, which is responsible for the production of calcitriol. In most monogastric species, so far investigated, one of the most important effects of calcitriol is to stimulate active absorption of Ca from the gastrointestinal tract, particularly the upper small intestines, via a vitamin D-receptor-mediated genomic action. Whether this concept can be transferred without any constrictions to ruminants is still under discussion. Marked interspecies differences have to be recognized with respect to ruminant or non-ruminant animals, particularly with respect to individual segments along the gastrointestinal axis and with respect to vitamin D sensitivity of Ca transport mechanisms. This review will elucidate some of the current concepts related to the mechanisms and sites of Ca absorption in pigs and ruminants with special emphasis on dairy cows where Ca homeostasis is occasionally compromised at the time of parturition.
Collapse
Affiliation(s)
- Bernd Schröder
- Department of Physiology, School of Veterinary Medicine, Bischofsholer Damm 15, 30173 Hannover, Germany.
| | | |
Collapse
|
32
|
|
33
|
Ishikawa Y, Cho G, Yuan Z, Inoue N, Nakae Y. Aquaporin-5 water channel in lipid rafts of rat parotid glands. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1053-60. [PMID: 16712780 DOI: 10.1016/j.bbamem.2006.03.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 03/02/2006] [Accepted: 03/21/2006] [Indexed: 01/26/2023]
Abstract
Aquaporin-5 (AQP5), an apical plasma membrane (APM) water channel in salivary glands, lacrimal glands, and airway epithelium, has an important role in fluid secretion. The activation of M3 muscarinic acetylcholine receptors (mAChRs) or alpha1-adrenoceptors on the salivary glands induces salivary fluid secretion. AQP5 localizes in lipid rafts and activation of the M3 mAChRs or alpha1-adrenoceptors induced its translocation together with the lipid rafts to the APM in the interlobular ducts of rat parotid glands. This review focuses on the mechanisms of AQP5 translocation together with lipid rafts to the APM in the interlobular duct cells of parotid glands of normal rats and the impairment of AQP5 translocation in diabetes and senescence.
Collapse
Affiliation(s)
- Yasuko Ishikawa
- Department of Medical Pharmacology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima 770-8504, Japan.
| | | | | | | | | |
Collapse
|
34
|
Hirono C. [Electrolyte transport by salivary glands]. Nihon Yakurigaku Zasshi 2006; 127:256-60. [PMID: 16755076 DOI: 10.1254/fpj.127.256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
35
|
Yamazaki J, Okamura K, Ishibashi K, Kitamura K. Characterization of CLCA protein expressed in ductal cells of rat salivary glands. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1715:132-44. [PMID: 16137643 DOI: 10.1016/j.bbamem.2005.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 08/04/2005] [Accepted: 08/04/2005] [Indexed: 12/11/2022]
Abstract
A molecular entity for Ca2+-dependent Cl- transport has not been well characterized in salivary cells. Here, we identify a rat CLCA homologue (rCLCA1) using a polymerase chain reaction (PCR)-based strategy. The full length of the isoform was 3.3 kb, and the predicted open reading frame encoded a 903-amino acid protein. Immunoblotting using a specific anti-rCLCA antibody recognizing near the amino-terminus showed the expression of N-glycosylated 120- and 86-kDa proteins in the membrane fraction of rCLCA1-transfected HEK293 cells. Reverse transcription-PCR results showed mRNA expressions in rat submandibular gland (SMG), ileum, and lung. Intense immunostaining was detected in the striated ducts, but not in the acinar cells, of SMG. Immunoblot for the membrane fraction of SMG revealed the existence of 137- and 90-kDa protein species. N-glycosidase F reduced the size of these bands toward those of the deglycosylated forms in the transfected HEK293 cells. A marked ionomycin-induced Cl- conductance was observed in the transfected cells. The current was Ca2+-dependent and sensitive to niflumic acid and DIDS. rCLCA1 proteins are probably responsible for modulation of Ca2+-dependent Cl- transport in salivary ductal cells, where the 137- and 90-kDa proteins may be modified posttranslationally in a manner similar to those in the heterologous expression system.
Collapse
Affiliation(s)
- Jun Yamazaki
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan.
| | | | | | | |
Collapse
|
36
|
Walcott B, Birzgalis A, Moore LC, Brink PR. Fluid secretion and the Na+-K+-2Cl- cotransporter in mouse exorbital lacrimal gland. Am J Physiol Cell Physiol 2005; 289:C860-7. [PMID: 15917300 DOI: 10.1152/ajpcell.00526.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously suggested that fluid flow in the mouse exorbital lacrimal gland is driven by the opening of apical Cl- and K+ channels. These ions move into the lumen of the gland and water follows by osmosis. In many tissues, the Na+-K+-2Cl- cotransporter (NKCC1) replaces the Cl- and K+ ions that move into the lumen. We hypothesize that mouse exorbital lacrimal glands would have NKCC1 co-transporters and that they would be important in fluid transport by this gland. We used immunocytochemistry to localize NKCC1-like immunoreactivity to the membranes of the acinar cells as well as to the basolateral membranes of the duct cells. We developed a method to measure tear flow and its composition from mouse glands in situ. Stimulation with the acetylcholine agonist carbachol produced a peak flow followed by a plateau. Ion concentration measurements of this stimulated fluid showed it was high in K+ and Cl-. Treatment of the gland with furosemide, a blocker of the NKCC1 cotransporter, reduced the plateau phase of fluid flow by approximately 30%. Isolated cells exposed to a hypertonic shock shrank by approximately 20% and then showed a regulatory volume increase (RVI). Both the RVI and swelling were blocked by treatment with furosemide. Cells isolated from these glands shrink by approximately 10% in the presence of carbachol. Blocking NKCC1 with furosemide reduced the amount of shrinkage by approximately 50%. These data suggest that NKCC1 plays an important role in fluid secretion by the exorbital gland of mice.
Collapse
Affiliation(s)
- Benjamin Walcott
- Centre for Visual Sciences, Research School of Biological Sciences, Australian National University, PO Box 475, Canberra ACT 2601, Australia.
| | | | | | | |
Collapse
|
37
|
Melvin JE, Yule D, Shuttleworth T, Begenisich T. Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol 2005; 67:445-69. [PMID: 15709965 DOI: 10.1146/annurev.physiol.67.041703.084745] [Citation(s) in RCA: 337] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The secretion of fluid and electrolytes by salivary gland acinar cells requires the coordinated regulation of multiple water and ion transporter and channel proteins. Notably, all the key transporter and channel proteins in this process appear to be activated, or are up-regulated, by an increase in the intracellular Ca2+ concentration ([Ca2+]i). Consequently, salivation occurs in response to agonists that generate an increase in [Ca2+]i. The mechanisms that act to modulate these increases in [Ca2+]i obviously influence the secretion of salivary fluid. Such modulation may involve effects on mechanisms of both Ca2+ release and Ca2+ entry and the resulting spatial and temporal aspects of the [Ca2+]i signal, as well as interactions with other signaling pathways in the cells. The molecular cloning of many of the transporter and regulatory molecules involved in fluid and electrolyte secretion has yielded a better understanding of this process at the cellular level. The subsequent characterization of mice with null mutations in many of these genes has demonstrated the physiological roles of individual proteins. This review focuses on recent developments in determining the molecular identification of the proteins that regulate the fluid secretion process.
Collapse
Affiliation(s)
- James E Melvin
- The Center for Oral Biology in the Aab Institute of Biomedical Sciences, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA.
| | | | | | | |
Collapse
|
38
|
Coppes RP, Meter A, Latumalea SP, Roffel AF, Kampinga HH. Defects in muscarinic receptor-coupled signal transduction in isolated parotid gland cells after in vivo irradiation: evidence for a non-DNA target of radiation. Br J Cancer 2005; 92:539-46. [PMID: 15668705 PMCID: PMC2362077 DOI: 10.1038/sj.bjc.6602365] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Radiation-induced dysfunction of normal tissue, an unwanted side effect of radiotherapeutic treatment of cancer, is usually considered to be caused by impaired loss of cell renewal due to sterilisation of stem cells. This implies that the onset of normal tissue damage is usually determined by tissue turnover rate. Salivary glands are a clear exception to this rule: they have slow turnover rates (>60 days), yet develop radiation-induced dysfunction within hours to days. We showed that this could not be explained by a hypersensitivity to radiation-induced apoptosis or necrosis of the differentiated cells. In fact, salivary cells are still capable of amylase secretion shortly after irradiation while at the same time water secretion seems specifically and severely impaired. Here, we demonstrate that salivary gland cells isolated after in vivo irradiation are impaired in their ability to mobilise calcium from intracellular stores (Ca2+ i), the driving force for water secretion, after exposure to muscarinic acetylcholine receptor agonists. Using radioligand-receptor-binding assays it is shown that radiation caused no changes in receptor density, receptor affinity nor in receptor-G-protein coupling. However, muscarinic acetylcholine agonist-induced activation of protein kinase C alpha (PKCalpha), measured as translocation to the plasma membrane, was severely affected in irradiated cells. Also, the phorbol ester PMA could no longer induce PKCalpha translocation in irradiated cells. Our data hence indicate that irradiation specifically interferes with PKCalpha association with membranes, leading to impairment of intracellular signalling. To the best of our knowledge, these data for the first time suggest that, the cells' capacity to respond to a receptor agonist is impaired after irradiation.
Collapse
Affiliation(s)
- R P Coppes
- Department of Radiation and Stress Cell Biology, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
39
|
Brown DA, Bruce JIE, Straub SV, Yule DI. cAMP potentiates ATP-evoked calcium signaling in human parotid acinar cells. J Biol Chem 2004; 279:39485-94. [PMID: 15262999 DOI: 10.1074/jbc.m406201200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In salivary acinar cells, intracellular calcium ([Ca(2+)](i)) signaling plays an important role in eliciting fluid secretion through the activation of Ca(2+)-activated ionic conductances. Ca(2+) and cAMP have synergistic effects on fluid secretion such that peak secretion is elicited following activation of both parasympathetic and sympathetic pathways. We have recently demonstrated that cAMP exerts effects on Ca(2+) release, through protein kinase A (PKA)-mediated phosphorylation of inositol 1,4,5-trisphosphate receptors (InsP(3)R) in mouse parotid acinar cells. To extend these findings, in the present study cross-talk between Ca(2+) signaling and cAMP pathways in human parotid acinar cells was investigated. In human parotid acinar cells, carbachol stimulation evoked increases in the [Ca(2+)](i) and the initial peak amplitude was enhanced following PKA activation, consistent with reports from mouse parotid. Stimulation with ATP also evoked an increase in [Ca(2+)](i). The ATP-evoked Ca(2+) elevation was largely dependent on extracellular Ca(2+), suggesting the involvement of the P2X family of purinergic receptors. Pharmacological elevation of cAMP resulted in a approximately 5-fold increase in the peak [Ca(2+)](i) change evoked by ATP stimulation. This enhanced [Ca(2+)](i) increase was not dependent on intracellular release from InsP(3)R or ryanodine receptors, suggesting a direct effect on P2XR. Reverse transcription-polymerase chain reaction and Western blot analysis confirmed the presence of P2X(4)R and P2X(7)R mRNA and protein in human parotid acinar cells. ATP-activated cation currents were studied using whole cell patch clamp techniques in HEK-293 cells, a null background for P2XR. Raising cAMP resulted in a approximately 4.5-fold enhancement of ATP-activated current in HEK-293 cells transfected with P2X(4)R DNA but had no effects on currents in cells expressing P2X(7)R. These data indicate that in human parotid acinar cells, in addition to modulation of Ca(2+) release, Ca(2+) influx through P2X(4)R may constitute a further locus for the synergistic effects of Ca(2+) and PKA activation.
Collapse
Affiliation(s)
- David A Brown
- Department of Pharmacology & Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
40
|
Brown DA, Melvin JE, Yule DI. Critical role for NHE1 in intracellular pH regulation in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2003; 285:G804-12. [PMID: 12842825 DOI: 10.1152/ajpgi.00150.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The primary function of pancreatic acinar cells is to secrete digestive enzymes together with a NaCl-rich primary fluid which is later greatly supplemented and modified by the pancreatic duct. A Na+/H+ exchanger(s) [NHE(s)] is proposed to be integral in the process of fluid secretion both in terms of the transcellular flux of Na+ and intracellular pH (pHi) regulation. Multiple NHE isoforms have been identified in pancreatic tissue, but little is known about their individual functions in acinar cells. The Na+/H+ exchange inhibitor 5-(N-ethyl-N-isopropyl) amiloride completely blocked pHi recovery after an NH4Cl-induced acid challenge, confirming a general role for NHE in pHi regulation. The targeted disruption of the Nhe1 gene also completely abolished pHi recovery from an acid load in pancreatic acini in both HCO3--containing and HCO3--free solutions. In contrast, the disruption of either Nhe2 or Nhe3 had no effect on pHi recovery. In addition, NHE1 activity was upregulated in response to muscarinic stimulation in wild-type mice but not in NHE1-deficient mice. Fluctuations in pHi could potentially have major effects on Ca2+ signaling following secretagogue stimulation; however, the targeted disruption of Nhe1 was found to have no significant effect on intracellular Ca2+ homeostasis. These data demonstrate that NHE1 is the major regulator of pHi in both resting and muscarinic agonist-stimulated pancreatic acinar cells.
Collapse
Affiliation(s)
- David A Brown
- Dept. of Pharmacology and Physiology, School of Medicine and Dentistry, Univ. of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642, USA.
| | | | | |
Collapse
|
41
|
Almståhl A, Wikström M. Electrolytes in stimulated whole saliva in individuals with hyposalivation of different origins. Arch Oral Biol 2003; 48:337-44. [PMID: 12711377 DOI: 10.1016/s0003-9969(02)00200-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There are reasons to believe that changes in the secretion rate of saliva as well as changes in its protein and electrolyte composition promote the growth of micro-organisms associated with oral disorders. Knowledge of the electrolytes in the saliva of those with hyposalivation might therefore be of value in designing oral health-promoting measures. In this study, electrolytes in stimulated whole saliva were analysed in individuals with hyposalivation due to radiation therapy in the head and neck region (RT group), primary Sjögren's syndrome (pSS group), neuroleptic treatment (Neuro group), and to medication or of unknown origin (Unknown group). The bicarbonate concentration was significantly lower in all four hyposalivation groups compared with controls. The bicarbonate concentration, which in normal conditions is positively correlated with the salivary secretion rate, was lower in the Neuro group than in the RT and Sjögren's groups despite a stimulated secretion rate about twice as high. Furthermore, the Neuro group had the highest phosphate concentration. The RT and Sjögren's groups tended to have increased sodium concentrations. For potassium and calcium, the RT group had significantly higher concentrations than the other hyposalivation groups and the controls. The substantial increase in calcium and decrease in bicarbonate suggest that the function of the parotid glands is more affected than that of the other salivary glands. The results also indicate a contribution of plasma to the electrolyte concentrations determined in whole saliva in the RT and Sjögren's groups. In conclusion, in individuals with hyposalivation the concentrations of electrolytes in stimulated whole saliva seem to be more related to the reason for the hyposalivation than to the salivary secretion rate.
Collapse
Affiliation(s)
- Annica Almståhl
- Department of Oral Microbiology, Institute of Odontology, Göteborg University, P.O. Box 450, 405 30 Göteborg, Sweden
| | | |
Collapse
|
42
|
Stummann TC, Poulsen JH, Hay-Schmidt A, Grunnet M, Klaerke DA, Rasmussen HB, Olesen SP, Jorgensen NK. Pharmacological investigation of the role of ion channels in salivary secretion. Pflugers Arch 2003; 446:78-87. [PMID: 12690466 DOI: 10.1007/s00424-002-0985-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2002] [Accepted: 10/29/2002] [Indexed: 01/01/2023]
Abstract
The role of K+ and Cl- channels in salivary secretion was investigated, with emphasis on the potential role of Ca2+ -activated K+ channels. Ligand saturation kinetic assays and autoradiography showed large-conductance (BK) K+ channels to be highly expressed in rat submandibular and parotid glands, whereas low-conductance (SK) K+ channels could not be detected. To investigate the role of K+ and Cl- channels in secretion, intact rabbit submandibular glands were vascularly perfused and secretion induced by 10 microM ACh. Secretion was inhibited by 34+/-3% following perfusion with the general K+ channel inhibitor Ba2+ (5 mM), whereas organic inhibitors of BK (200 nM paxilline) or intermediate-conductance (IK) K+ channels (5 microM clotrimazole) had no effect. Secretion was strongly influenced by Cl- channel inhibitors, as 100 microM 5-nitro-2-(3-phenylpropylamino)benzoate (NPPB) completely abolished, while 10 microM NPPB, 20 microM NS1652 and 20 microM NS3623 reduced secretion by 34+/-3%, 23+/-3% and 59+/-4%, respectively. In conclusion, although high expression levels of BK channels were demonstrated, pharmacological tools failed to demonstrate any role for BK, IK or SK channels in salivary secretion in the rabbit submandibular gland. Other types of K+ channel, however, and particularly Cl- channels, are essential for ACh-induced salivary secretion.
Collapse
Affiliation(s)
- Tina C Stummann
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Arreola J, Melvin JE. A novel chloride conductance activated by extracellular ATP in mouse parotid acinar cells. J Physiol 2003; 547:197-208. [PMID: 12562938 PMCID: PMC2342604 DOI: 10.1113/jphysiol.2002.028373] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Salivary gland fluid secretion is driven by transepithelial Cl- movement involving an apical Cl- channel whose molecular identity remains unknown. Extracellular ATP (ATP(o)) has been shown to activate a Cl- conductance (I(ATPCl)) in secretory epithelia; to gain further insight into I(ATPCl) in mouse parotid acinar cells, we investigated the effects of ATP(o) using the whole-cell patch-clamp technique. ATP(o) and 2'- and 3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate triethylammonium salt (Bz-ATP) produced concentration-dependent, time-independent Cl- currents with an EC50 of 160 and 15 microM, respectively. I(ATPCl) displayed a selectivity sequence of SCN- > I- = NO3- > Cl- > glutamate, similar to the Cl- channels activated by Ca2+, cAMP and cell swelling in acinar cells. In contrast, I(ATPCl) was insensitive to pharmacological agents that are known to inhibit these latter Cl- channels, was independent of Ca2+ and was not regulated by cell volume. Moreover, the I(ATPCl) magnitude from wild-type animals was comparable to that from mice with null mutations in the Cftr, Clcn3 and Clcn2 Cl- channel genes. Taken together, our results demonstrate that I(ATPCl) is distinct from the channels described previously in acinar cells. The activation of I(ATPCl) by Bz-ATP suggests that P2 nucleotide receptors are involved. However, inhibition of G-protein activation with GDP-beta-S failed to block I(ATPCl), and Cibacron Blue 3GA and 4,4'-diisothyocyanostilbene-2,2'-disulphonic disodium salt selectively inhibited the Na+ currents (presumably through P2X receptors) without altering I(ATPCl), suggesting that neither P2Y nor P2X receptors are likely to be involved in I(ATPCl) activation. We conclude that I(ATPCl) is not associated with Cl- channels previously characterized in mouse parotid acinar cells, nor is it dependent on P2 nucleotide receptor stimulation. I(ATPCl) expressed in acinar cells reflects the activation of a novel ATP-gated Cl- channel that may play an important physiological role in salivary gland fluid secretion.
Collapse
Affiliation(s)
- Jorge Arreola
- Center for Oral Biology in the Aab Institute of Biomedical Sciences and the Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | |
Collapse
|
44
|
Nakamoto T, Shiba Y, Hirono C, Sugita M, Takemoto K, Iwasa Y, Akagawa Y. Carbachol-induced fluid movement through methazolamide-sensitive bicarbonate production in rat parotid intralobular ducts: quantitative analysis of fluorescence images using fluorescent dye sulforhodamine under a confocal laser scanning microscope. Eur J Cell Biol 2002; 81:497-504. [PMID: 12416726 DOI: 10.1078/0171-9335-00261] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fluid secretion is observed at the openings of ducts in the exocrine gland. It remains unclear whether the ducts are involved in fluid secretion in the salivary glands. In the present study, we investigated the exclusion of fluorescent dye from the duct lumen by carbachol (CCh) in isolated parotid intralobular duct segments to clarify the ability of the ducts for the fluid secretion. When the membrane-impermeable fluorescent dye, sulforhodamine, was added to the superfused extracellular solution, quantitative fluorescence images of the duct lumen were obtained under the optical sectioning at the level of the duct lumen using a confocal laser scanning microscope. CCh decreased the fluorescent intensity in the duct lumen during the superfusion of the fluorescent dye, and CCh flushed out small viscous substances stained with the fluorescent dye from isolated duct lumen, suggesting that CCh might induce fluid secretion in the duct, leading to the clearance of the dye and small stained clumps from the duct lumen. CCh-induced clearance of the fluorescent dye was divided into two phases by the sensitivity to external Ca2+ and methazolamide, an inhibitor for carbonic anhydrase. The initial phase was insensitive to these, and the subsequent late phase was sensitive to these. A major portion in the late phase was inhibited by removal of bicarbonate in the superfusion solution and DPC, but not low concentration of external Cl-, bumetanide or DIDS, suggesting that methazolamide-sensitive production of HCO3-, but not the Cl- uptake mechanism, might contribute to the CCh-induced clearance of the dye from the duct lumen. These results represent the first measurements of fluid movement in isolated duct segments, and suggest that carbachol might evoke fluid secretion possibly through Ca2+-activated, DPC-sensitive anion channels with HCO3- secretion in the rat parotid intralobular ducts.
Collapse
Affiliation(s)
- Tetsuji Nakamoto
- Department of Removable Prosthodontics, Hiroshima University Faculty of Dentistry, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
This article provides a review of the application of gene transfer technology to studies of salivary glands. Salivary glands provide an uncommon target site for gene transfer but offer many experimental situations likely of interest to the cell biologist. The reader is provided with a concise overview of salivary biology, along with a general discussion of the strategies available for gene transfer to any tissue. In particular, adenoviral vectors have been useful for proof of concept studies with salivary glands. Several examples are given, using adenoviral-mediated gene transfer, for addressing both biological and clinical questions. Additionally, benefits and shortcomings affecting the utility of this technology are discussed.
Collapse
Affiliation(s)
- Bruce J Baum
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
46
|
Pochet S, Keskiner N, Fernandez M, Marino A, Chaïb N, Dehaye JP, Métioui M. Multiple effects of trichloroethanol on calcium handling in rat submandibular acinar cells. Br J Pharmacol 2002; 136:568-80. [PMID: 12055135 PMCID: PMC1573375 DOI: 10.1038/sj.bjp.0704745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The effect of trichloroethanol (TCEt), the active metabolite of chloral hydrate, on the intracellular concentration of calcium ([Ca(2+)](i)) was investigated in rat submandibular glands (RSMG) acini loaded with fura-2. TCEt (1 - 10 mM) increased the [Ca(2+)](i) independently of the presence of calcium in the extracellular medium. Dichloroethanol (DCEt) and monochloroethanol (MCEt) reproduced the stimulatory effect of TCEt but at much higher concentrations (about 6 fold higher for DCEt and 20 fold higher for MCEt). TCEt mobilized an intracellular pool of calcium, which was depleted by a pretreatment with thapsigargin, an inhibitor of the sarcoplasmic and endoplasmic reticulum calcium-dependent ATPases, but not with FCCP, an uncoupler of mitochondria. TCEt 10 mM inhibited by 50% the thapsigargin-sensitive microsomal Ca(2+)-ATPase. DCEt 10 mM and MCEt 10 mM inhibited the ATPase by 20 and 10%, respectively. TCEt inhibited the increase of the [Ca(2+)](i) and the production of inositol phosphates in response to carbachol, epinephrine and substance P. TCEt inhibited the uptake of calcium mediated by the store-operated calcium channel (SOCC). ATP and Bz-ATP increased the [Ca(2+)](i) in RSMG acini and this effect was blocked by extracellular magnesium, by Coomassie blue and by oxydized ATP (oATP). TCEt potentiated the increase of the [Ca(2+)](i) and of the uptake of extracellular calcium in response to ATP and Bz-ATP. TCEt had no effect on the uptake of barium and of ethidium bromide in response to purinergic agonists. These results suggest that TCEt, at sedative concentrations, exerts various effects on the calcium regulation: (1) it mobilizes a thapsigargin-sensitive intracellular pool of calcium in RSMG acini; (2) it inhibits the uptake of calcium via the SOCC; (3) it inhibits the activation by G protein-coupled receptors of a polyphosphoinositide-specific phospholipase C. It does not interfere with the activation of the ionotropic P2X receptors. The use of chloral hydrate should be avoided in studies exploring the in vivo responses to sialagogues.
Collapse
Affiliation(s)
- S Pochet
- Laboratoire de Biochimie et de Biologie Cellulaire, Institut de Pharmacie, Université libre de Bruxelles, B-1050 Brussels, Belgium
| | - N Keskiner
- Laboratoire de Biochimie et de Biologie Cellulaire, Institut de Pharmacie, Université libre de Bruxelles, B-1050 Brussels, Belgium
| | - M Fernandez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad del País Vasco, 48080 Bilbao, Spain
| | - A Marino
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad del País Vasco, 48080 Bilbao, Spain
| | - N Chaïb
- Laboratoire de Biochimie et de Biologie Cellulaire, Institut de Pharmacie, Université libre de Bruxelles, B-1050 Brussels, Belgium
| | - J P Dehaye
- Laboratoire de Biochimie et de Biologie Cellulaire, Institut de Pharmacie, Université libre de Bruxelles, B-1050 Brussels, Belgium
| | - M Métioui
- Laboratoire de Biochimie et de Biologie Cellulaire, Institut de Pharmacie, Université libre de Bruxelles, B-1050 Brussels, Belgium
- Author for correspondence:
| |
Collapse
|
47
|
Park K, Evans RL, Watson GE, Nehrke K, Richardson L, Bell SM, Schultheis PJ, Hand AR, Shull GE, Melvin JE. Defective fluid secretion and NaCl absorption in the parotid glands of Na+/H+ exchanger-deficient mice. J Biol Chem 2001; 276:27042-50. [PMID: 11358967 DOI: 10.1074/jbc.m102901200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple Na(+)/H(+) exchangers (NHEs) are expressed in salivary gland cells; however, their functions in the secretion of saliva by acinar cells and the subsequent modification of the ionic composition of this fluid by the ducts are unclear. Mice with targeted disruptions of the Nhe1, Nhe2, and Nhe3 genes were used to study the in vivo functions of these exchangers in parotid glands. Immunohistochemistry indicated that NHE1 was localized to the basolateral and NHE2 to apical membranes of both acinar and duct cells, whereas NHE3 was restricted to the apical region of duct cells. Na(+)/H(+) exchange was reduced more than 95% in acinar cells and greater than 80% in duct cells of NHE1-deficient mice (Nhe1(-/-)). Salivation in response to pilocarpine stimulation was reduced significantly in both Nhe1(-/-) and Nhe2(-/-) mice, particularly during prolonged stimulation, whereas the loss of NHE3 had no effect on secretion. Expression of Na(+)/K(+)/2Cl(-) cotransporter mRNA increased dramatically in Nhe1(-/-) parotid glands but not in those of Nhe2(-/-) or Nhe3(-/-) mice, suggesting that compensation occurs for the loss of NHE1. The sodium content, chloride activity and osmolality of saliva in Nhe2(-/-) or Nhe3(-/-) mice were comparable with those of wild-type mice. In contrast, Nhe1(-/-) mice displayed impaired NaCl absorption. These results suggest that in parotid duct cells apical NHE2 and NHE3 do not play a major role in Na(+) absorption. These results also demonstrate that basolateral NHE1 and apical NHE2 modulate saliva secretion in vivo, especially during sustained stimulation when secretion depends less on Na(+)/K(+)/2Cl(-) cotransporter activity.
Collapse
Affiliation(s)
- K Park
- Center for Oral Biology, Rochester Institute of Biomedical Sciences, and the Eastman Department of Dentistry, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Melvin JE, Nguyen HV, Evans RL, Shull GE. What can transgenic and gene-targeted mouse models teach us about salivary gland physiology? Adv Dent Res 2000; 14:5-11. [PMID: 11842924 DOI: 10.1177/08959374000140010801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thousands of genetically modified mice have been developed since the first reports of stable expression of recombinant DNA in this species nearly 20 years ago. This mammalian model system has revolutionized the study of whole-animal, organ, and cell physiology. Transgenic and gene-targeted mice have been widely used to characterize salivary-gland-specific expression and to identify genes associated with tumorigenesis. Moreover, several of these mouse lines have proved to be useful models of salivary gland disease related to impaired immunology, i.e., Sjögren's syndrome, and disease states associated with pathogens. Despite the availability of genetically modified mice, few investigators have taken advantage of this resource to better their understanding of salivary gland function as it relates to the production of saliva. In this article, we describe the methods used to generate transgenic and gene-targeted mice and provide an overview of the advantages of and potential difficulties with these models. Finally, using these mouse models, we discuss the advances made in our understanding of the salivary gland secretion process.
Collapse
Affiliation(s)
- J E Melvin
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Aab Institute of Biomedical Sciences, NY 14642, USA.
| | | | | | | |
Collapse
|
49
|
Abstract
Stimulation of secretory cells with muscarinic agonists leads to an increase in the intracellular Ca (2+)concentration ([Ca (2+)]( i)), which activates protein secretion through exocytosis and causes closure of gap junctions between adjacent cells. In addition, the increase in [Ca (2+)](i) activates three different kinds of ion channels: large K(+) channels, Cl(-) channels and non-specific cation channels. The opening of those channels leads to an increase of [Na(+ )] and a decrease of [Cl(-)] and [K(+) ] in the cell. The two components that contribute to the increase in [Ca (2+)]( i) are calcium release from intracellular stores, localised in the endoplasmic reticulum and calcium influx through the plasma membrane. Several models for the regulation of [Ca (2+)](i) have been proposed, including a recently suggested model whereby a distinct pathway involving arachidonic acid is added to the well-established capacitative model. Different hypotheses concerning coupling between the intra-cellular calcium stores and membrane channels co-exist. In addition to a historical overview, recent developments and future challenges are discussed in this review.
Collapse
|
50
|
Redman RS, Peagler FD, Johansson I. Immunohistochemical localization of carbonic anhydrases I, II, and VI in the developing rat sublingual and submandibular glands. THE ANATOMICAL RECORD 2000; 258:269-76. [PMID: 10705347 DOI: 10.1002/(sici)1097-0185(20000301)258:3<269::aid-ar6>3.0.co;2-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Carbonic anhydrase has been localized to the acini and ducts of mature rat salivary glands. This enzyme has been associated with ion transport, a prominent function of striated and excretory ducts in salivary glands, suggesting that it might be used as a marker of ductal differentiation. The purpose of this study was to immunohistochemically document developmental changes in carbonic anhydrase in the ducts of the rat sublingual and submandibular glands. Immunohistochemistry was performed with antibodies to human carbonic anhydrase isoenzymes I, II and VI on sections of sublingual and submandibular glands from rats at representative postnatal developmental ages. Reactions were weak in the ducts of both glands at 1 day, then progressively increased. By 42 days, reactions had the adult pattern of virtually none in the mucous or seromucous acini, moderate to strong in the striated and excretory ducts, and none to weak in the intercalated ducts. Weak to moderate reactions were observed in the granular convoluted tubules of the submandibular gland as they became recognizable at age 42 days. Reactions to carbonic anhydrase I and II antibodies also increased from none (1 day) to modest (42 days) in the demilunes of the sublingual gland. The order of reaction intensity of the antibodies was II > I > VI. When localized via these anti-human antibodies, carbonic anhydrase is a useful marker of the functional differentiation of the striated and excretory ducts of the developing rat sublingual and submandibular glands.
Collapse
Affiliation(s)
- R S Redman
- Oral Pathology Research Laboratory, Department of Veterans Affairs Medical Center, Washington, District of Columbia, 20422, USA
| | | | | |
Collapse
|