1
|
Ibi A, Chang C, Zhang Y, Kuo YC, Du M, Roh K, Gahler R, Solnier J. An in vitro investigation on the physicochemical properties of different quercetin formulations. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024:jcim-2024-2002. [PMID: 39665312 DOI: 10.1515/jcim-2024-2002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
OBJECTIVES Quercetin is a naturally occurring plant flavonoid commonly used as a nutritional supplement due to its antioxidant and anti-inflammatory properties. Its well-known low bioavailability has led to the design of different quercetin formulations by various commercial entities seeking to market a highly bioavailable quercetin product. This study investigates four different commercially available quercetin formulations (LMQ, QUX, QUO, and QUV) for their physicochemical properties that influence bioavailability. LMQ and QUX are liquid-based formulations while QUO and QUV are solid powder-based formulations. METHODS Studies were conducted on particle size using a particle size analyzer; solubility (in water, simulated gastric and intestinal fluid) using Ultra High Performance Liquid Chromatography (UHPLC) to quantify the quercetin content; intestinal permeability and toxicity using Caco-2 cells and HepG2 liver cells. RESULTS LMQ and QUX had the narrowest particle size distribution as well as the highest solubility while QUO and QUV had the widest particle size distribution but the poorest solubility. One formulation (QUO) exhibited a significant reduction in cell viability with HepG2 and Caco-2 cells including a significant decrease in TEER value change (-39.0 %; p<0.01); its higher Caco-2 cell permeability (Papp 2.85 × 10-4 ± 4.22 × 10-5; p<0.05) likely resulted from reduced membrane integrity. The other formulations significantly increased the TEER value within the first 4 h (≥22.7 %; p<0.05). CONCLUSIONS The particle size distribution of each of the individual formulations reflected their solubilities in water and gastrointestinal fluids. Despite QUO having the highest permeability, its negative change in TEER value over time revealed its evident cytotoxic effects. QUV performed poorly in terms of solubility, and permeability. LMQ and QUX were the most consistent across each study with LMQ performing better than QUX overall. Findings of this study present one formulation (LMQ) with superior intestinal absorption while maintaining high cell viability, thus making it one of the safer and more effective quercetin formulations.
Collapse
Affiliation(s)
| | | | | | | | - Min Du
- ISURA, Burnaby, BC, Canada
| | | | | | | |
Collapse
|
2
|
Goyal R, Mittal G, Khurana S, Malik N, Kumar V, Soni A, Chopra H, Kamal MA. Insights on Quercetin Therapeutic Potential for Neurodegenerative Diseases and its Nano-technological Perspectives. Curr Pharm Biotechnol 2024; 25:1132-1141. [PMID: 37649295 DOI: 10.2174/1389201025666230830125410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
The neurodegeneration process begins in conjunction with the aging of the neurons. It manifests in different parts of the brain as Aβ plaques, neurofibrillary tangles, Lewy bodies, Pick bodies, and other structures, which leads to progressive loss or death of neurons. Quercetin (QC) is a flavonoid compound found in fruits, tea, and other edible plants have antioxidant effects that have been studied from subcellular compartments to tissue levels in the brain. Also, quercetin has been reported to possess a neuroprotective role by decreasing oxidative stress-induced neuronal cell damage. The use of QC for neurodegenerative therapy, the existence of the blood-brain barrier (BBB) remains a significant barrier to improving the clinical effectiveness of the drug, so finding an innovative solution to develop simultaneous BBB-crossing ability of drugs for treating neurodegenerative disorders and improving neurological outcomes is crucial. The nanoparticle formulation of QC is considered beneficial and useful for its delivery through this route for the treatment of neurodegenerative diseases seems necessary. Increased QC accumulation in the brain tissue and more significant improvements in tissue and cellular levels are among the benefits of QC-involved nanostructures.
Collapse
Affiliation(s)
- Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Garima Mittal
- Panipat Institute of Engineering and Technology, Samalkha, (Panipat), 132102, Haryana, India
| | - Suman Khurana
- Panipat Institute of Engineering and Technology, Samalkha, (Panipat), 132102, Haryana, India
- Amity Institute of Pharmacy, Amity University Haryana, Panchgaon (Manesar), 122413; Haryana, India
- Amity Institute of Pharmacy, Amity University Haryana, Panchgaon (Manesar), 122413; Haryana, India
| | - Neelam Malik
- Panipat Institute of Engineering and Technology, Samalkha, (Panipat), 132102, Haryana, India
| | - Vivek Kumar
- Janta College of Pharmacy, Butana, (Sonipat), 131001, Hayana, India
| | - Arti Soni
- Panipat Institute of Engineering and Technology, Samalkha, (Panipat), 132102, Haryana, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh
- Enzymoics, NSW; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
3
|
DiGuilio KM, Rybakovsky E, Valenzano MC, Nguyen HH, Del Rio EA, Newberry E, Spadea R, Mullin JM. Quercetin improves and protects Calu-3 airway epithelial barrier function. Front Cell Dev Biol 2023; 11:1271201. [PMID: 38078004 PMCID: PMC10701405 DOI: 10.3389/fcell.2023.1271201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/07/2023] [Indexed: 04/29/2025] Open
Abstract
Introduction: In light of the impact of airway barrier leaks in COVID-19 and the significance of vitamin D in COVID-19 outcomes, including airway barrier protection, we investigated whether the very common dietary flavonoid quercetin could also be efficacious in supporting airway barrier function. Methods: To address this question, we utilized the widely used airway epithelial cell culture model, Calu-3. Results: We observed that treating Calu-3 cell layers with quercetin increased transepithelial electrical resistance while simultaneously reducing transepithelial leaks of 14C-D-mannitol (Jm) and 14C-inulin. The effects of quercetin were concentration-dependent and exhibited a biphasic time course. These effects of quercetin occurred with changes in tight junctional protein composition as well as a partial inhibition of cell replication that resulted in decreased linear junctional density. Both of these effects potentially contribute to improved barrier function. Quercetin was equally effective in reducing the barrier compromise caused by the pro-inflammatory cytokine TNF-α, an action that seemed to derive, in part, from reducing the elevation of ERK 1/2 caused by TNF-α. Discussion: Quercetin improved Calu-3 barrier function and reduced TNF-α-induced barrier compromise, mediated in part by changes in the tight junctional complex.
Collapse
Affiliation(s)
- K. M. DiGuilio
- The Lankenau Institute for Medical Research, Wynnewood, PA, United States
| | - E. Rybakovsky
- The Lankenau Institute for Medical Research, Wynnewood, PA, United States
| | - M. C. Valenzano
- The Lankenau Institute for Medical Research, Wynnewood, PA, United States
| | - H. H. Nguyen
- The Departments of Biology and Chemistry, Drexel University, Philadelphia, PA, United States
| | - E. A. Del Rio
- The Lankenau Institute for Medical Research, Wynnewood, PA, United States
| | - E. Newberry
- The Departments of Biology and Chemistry, Drexel University, Philadelphia, PA, United States
| | - R. Spadea
- The Departments of Biology and Chemistry, Drexel University, Philadelphia, PA, United States
| | - J. M. Mullin
- The Lankenau Institute for Medical Research, Wynnewood, PA, United States
- The Division of Gastroenterology, The Lankenau Medical Center, Wynnewood, PA, United States
| |
Collapse
|
4
|
Liu J, Shi L, Ma X, Jiang S, Hou X, Li P, Cheng Y, Lv J, Li S, Ma T, Han B. Characterization and anti-inflammatory effect of selenium-enriched probiotic Bacillus amyloliquefaciens C-1, a potential postbiotics. Sci Rep 2023; 13:14302. [PMID: 37652982 PMCID: PMC10471622 DOI: 10.1038/s41598-023-40988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/19/2023] [Indexed: 09/02/2023] Open
Abstract
A patented strain of Bacillus amyloliquefaciens C-1 in our laboratory could produce functional sodium selenite (Na2SeO3) under optimized fermentation conditions. With the strong stress resistance and abundant secondary metabolites, C-1 showed potential to be developed as selenium-enriched postbiotics. C-1 has the ability to synthesize SeNPs when incubated with 100 μg/ml Na2SeO3 for 30 h at 30 °C aerobically with 10% seeds-culture. The transformation rate from Na2SeO3 into SeNPs reached to 55.51%. After selenium enrichment, there were no significant morphology changes in C-1 cells but obvious SeNPs accumulated inside of cells, observed by scanning electron microscope and transmission electron microscope, verified by energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. SeNPs had antioxidant activity in radical scavenge of superoxide (O2-), Hydroxyl radical (OH-) and 1,1-diphenyl-2-picryl-hydrazine (DPPH), where scavenging ability of OH- is the highest. Selenium-enriched C-1 had obvious anti-inflammatory effect in protecting integrity of Caco-2 cell membrane destroyed by S. typhimurium; it could preventing inflammatory damage in Caco-2 stressed by 200 μM H2O2 for 4 h, with significantly reduced expression of IL-8 (1.687 vs. 3.487, P = 0.01), IL-1β (1.031 vs. 5.000, P < 0.001), TNF-α (2.677 vs. 9.331, P < 0.001), increased Claudin-1 (0.971 vs. 0.611, P < 0.001) and Occludin (0.750 vs. 0.307, P < 0.001). Transcriptome data analysis showed that there were 381 differential genes in the vegetative growth stage and 1674 differential genes in the sporulation stage of C-1 with and without selenium-enrichment. A total of 22 ABC transporter protein-related genes at vegetative stage and 70 ABC transporter protein-related genes at sporulation stage were founded. Genes encoding MsrA, thiol, glutathione and thioredoxin reduction were significantly up-regulated; genes related to ATP synthase such as atpA and atpD genes showed down-regulated during vegetative stage; the flagellar-related genes (flgG, fliM, fliL, and fliJ) showed down-regulated during sporulation stage. The motility, chemotaxis and colonization ability were weakened along with synthesized SeNPs accumulated intracellular at sporulation stage. B. amyloliquefaciens C-1 could convert extracellular selenite into intracellular SeNPs through the oxidation-reduction pathway, with strong selenium-enriched metabolism. The SeNPs and selenium-enriched cells had potential to be developed as nano-selenium biomaterials and selenium-enriched postbiotics.
Collapse
Affiliation(s)
- Jin Liu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Lu Shi
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xinxin Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Sijin Jiang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xinyao Hou
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Pu Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yue Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, 710061, Shaanxi, China
| | - Jia Lv
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, 710061, Shaanxi, China
| | - Shaoru Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, 710061, Shaanxi, China
| | - Tianyou Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, 710061, Shaanxi, China.
| | - Bei Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
5
|
Xiao K, Zhou M, Lv Q, He P, Qin X, Wang D, Zhao J, Liu Y. Protocatechuic acid and quercetin attenuate ETEC-caused IPEC-1 cell inflammation and injury associated with inhibition of necroptosis and pyroptosis signaling pathways. J Anim Sci Biotechnol 2023; 14:5. [PMID: 36721159 PMCID: PMC9890695 DOI: 10.1186/s40104-022-00816-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/02/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Necroptosis and pyroptosis are newly identified forms of programmed cell death, which play a vital role in development of many gastrointestinal disorders. Although plant polyphenols have been reported to protect intestinal health, it is still unclear whether there is a beneficial role of plant polyphenols in modulating necroptosis and pyroptosis in intestinal porcine epithelial cell line (IPEC-1) infected with enterotoxigenic Escherichia coli (ETEC) K88. This research was conducted to explore whether plant polyphenols including protocatechuic acid (PCA) and quercetin (Que), attenuated inflammation and injury of IPEC-1 caused by ETEC K88 through regulating necroptosis and pyroptosis signaling pathways. METHODS IPEC-1 cells were treated with PCA (40 μmol/L) or Que (10 μmol/L) in the presence or absence of ETEC K88. RESULTS PCA and Que decreased ETEC K88 adhesion and endotoxin level (P < 0.05) in cell supernatant. PCA and Que increased cell number (P < 0.001) and decreased lactate dehydrogenases (LDH) activity (P < 0.05) in cell supernatant after ETEC infection. PCA and Que improved transepithelial electrical resistance (TEER) (P < 0.001) and reduced fluorescein isothiocyanate-labeled dextran (FD4) flux (P < 0.001), and enhanced membrane protein abundance of occludin, claudin-1 and ZO-1 (P < 0.05), and rescued distribution of these tight junction proteins (P < 0.05) after ETEC infection. PCA and Que also declined cell necrosis ratio (P < 0.05). PCA and Que reduced mRNA abundance and concentration of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-8 (P < 0.001), and down-regulated gene expression of toll-like receptors 4 (TLR4) and its downstream signals (P < 0.001) after ETEC infection. PCA and Que down-regulated protein abundance of total receptor interacting protein kinase 1 (t-RIP1), phosphorylated-RIP1 (p-RIP1), p-RIP1/t-RIP1, t-RIP3, p-RIP3, mixed lineage kinase domain-like protein (MLKL), p-MLKL, dynamin- related protein 1 (DRP1), phosphoglycerate mutase 5 (PGAM5) and high mobility group box 1 (HMGB1) (P < 0.05) after ETEC infection. Moreover, PCA and Que reduced protein abundance of nod-like receptor protein 3 (NLRP3), nod-like receptors family CARD domain-containing protein 4 (NLRC4), apoptosis-associated speck-like protein containing a CARD (ASC), gasdermin D (GSDMD) and caspase-1 (P < 0.05) after ETEC infection. CONCLUSIONS In general, our data suggest that PCA and Que are capable of attenuating ETEC-caused intestinal inflammation and damage via inhibiting necroptosis and pyroptosis signaling pathways.
Collapse
Affiliation(s)
- Kan Xiao
- grid.412969.10000 0004 1798 1968Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Mohan Zhou
- grid.412969.10000 0004 1798 1968Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Qingqing Lv
- grid.412969.10000 0004 1798 1968Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Pengwei He
- grid.412969.10000 0004 1798 1968Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Xu Qin
- grid.412969.10000 0004 1798 1968Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Dan Wang
- grid.412969.10000 0004 1798 1968Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Jiangchao Zhao
- grid.411017.20000 0001 2151 0999Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701 USA
| | - Yulan Liu
- grid.412969.10000 0004 1798 1968Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| |
Collapse
|
6
|
Aleman RS, Moncada M, Aryana KJ. Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules 2023; 28:619. [PMID: 36677677 PMCID: PMC9862683 DOI: 10.3390/molecules28020619] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
The human body is in daily contact with potentially toxic and infectious substances in the gastrointestinal tract (GIT). The GIT has the most significant load of antigens. The GIT can protect the intestinal integrity by allowing the passage of beneficial agents and blocking the path of harmful substances. Under normal conditions, a healthy intestinal barrier prevents toxic elements from entering the blood stream. However, factors such as stress, an unhealthy diet, excessive alcohol, antibiotics, and drug consumption can compromise the composition of the intestinal microbiota and the homeostasis of the intestinal barrier function of the intestine, leading to increased intestinal permeability. Intestinal hyperpermeability can allow the entry of harmful agents through the junctions of the intestinal epithelium, which pass into the bloodstream and affect various organs and systems. Thus, leaky gut syndrome and intestinal barrier dysfunction are associated with intestinal diseases, such as inflammatory bowel disease and irritable bowel syndrome, as well as extra-intestinal diseases, including heart diseases, obesity, type 1 diabetes mellitus, and celiac disease. Given the relationship between intestinal permeability and numerous conditions, it is convenient to seek an excellent strategy to avoid or reduce the increase in intestinal permeability. The impact of dietary nutrients on barrier function can be crucial for designing new strategies for patients with the pathogenesis of leaky gut-related diseases associated with epithelial barrier dysfunctions. In this review article, the role of functional ingredients is suggested as mediators of leaky gut-related disorders.
Collapse
Affiliation(s)
- Ricardo Santos Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| | - Marvin Moncada
- Department of Food, Bioprocessing & Nutrition Sciences and the Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 27599, USA
| | - Kayanush J. Aryana
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| |
Collapse
|
7
|
Pravda J. Evidence-based pathogenesis and treatment of ulcerative colitis: A causal role for colonic epithelial hydrogen peroxide. World J Gastroenterol 2022; 28:4263-4298. [PMID: 36159014 PMCID: PMC9453768 DOI: 10.3748/wjg.v28.i31.4263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/19/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
In this comprehensive evidence-based analysis of ulcerative colitis (UC), a causal role is identified for colonic epithelial hydrogen peroxide (H2O2) in both the pathogenesis and relapse of this debilitating inflammatory bowel disease. Studies have shown that H2O2 production is significantly increased in the non-inflamed colonic epithelium of individuals with UC. H2O2 is a powerful neutrophilic chemotactic agent that can diffuse through colonic epithelial cell membranes creating an interstitial chemotactic molecular “trail” that attracts adjacent intravascular neutrophils into the colonic epithelium leading to mucosal inflammation and UC. A novel therapy aimed at removing the inappropriate H2O2 mediated chemotactic signal has been highly effective in achieving complete histologic resolution of colitis in patients experiencing refractory disease with at least one (biopsy-proven) histologic remission lasting 14 years to date. The evidence implies that therapeutic intervention to prevent the re-establishment of a pathologic H2O2 mediated chemotactic signaling gradient will indefinitely preclude neutrophilic migration into the colonic epithelium constituting a functional cure for this disease. Cumulative data indicate that individuals with UC have normal immune systems and current treatment guidelines calling for the suppression of the immune response based on the belief that UC is caused by an underlying immune dysfunction are not supported by the evidence and may cause serious adverse effects. It is the aim of this paper to present experimental and clinical evidence that identifies H2O2 produced by the colonic epithelium as the causal agent in the pathogenesis of UC. A detailed explanation of a novel therapeutic intervention to normalize colonic H2O2, its rationale, components, and formulation is also provided.
Collapse
Affiliation(s)
- Jay Pravda
- Disease Pathogenesis, Inflammatory Disease Research Centre, Palm Beach Gardens, FL 33410, United States
| |
Collapse
|
8
|
Xue Y, Zhu MJ. Unraveling enterohemorrhagic Escherichia coli infection: the promising role of dietary compounds and probiotics in bacterial elimination and host innate immunity boosting. Crit Rev Food Sci Nutr 2021; 63:1551-1563. [PMID: 34404306 DOI: 10.1080/10408398.2021.1965538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The innate immune system has developed sophisticated strategies to defense against infections. Host cells utilize the recognition machineries such as toll-like receptors and nucleotide binding and oligomerization domain-like receptors to identify the pathogens and alert immune system. However, some pathogens have developed tactics to evade host defenses, including manipulation of host inflammatory response, interference with cell death pathway, and highjack of phagocytosis signaling for a better survival and colonization in host. Enterohemorrhagic Escherichia coli (EHEC) is a notorious foodborne pathogen that causes severe tissue damages and gastrointestinal diseases, which has been reported to disturb host immune responses. Diverse bioactive compounds such as flavonoids, phenolic acids, alkaloids, saccharides, and terpenoids derived from food varieties and probiotics have been discovered and investigated for their capability of combating bacterial infections. Some of them serve as novel antimicrobial agents and act as immune boosters that harness host immune system. In this review, we will discuss how EHEC, specifically E. coli O157:H7, hijacks the host immune system and interferes with host signaling pathway; and highlight the promising role of food-derived bioactive compounds and probiotics in harnessing host innate immunity and eliminating E. coli O157:H7 infection with multiple strategies.
Collapse
Affiliation(s)
- Yansong Xue
- Key Laboratory of Functional Dairy, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, USA
| |
Collapse
|
9
|
Ganesan K, Quiles JL, Daglia M, Xiao J, Xu B. Dietary phytochemicals modulate intestinal epithelial barrier dysfunction and autoimmune diseases. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
- The School of Chinese Medicine The University of Hong Kong Hong Kong China
| | - José L. Quiles
- Institute of Nutrition and Food Technology “José Mataix Verdú,” Department of Physiology Biomedical Research Center University of Granada Granada Spain
| | - Maria Daglia
- Department of Pharmacy University of Naples Federico II Naples Italy
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo Vigo Pontevedra E‐36310 Spain
| | - Baojun Xu
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
| |
Collapse
|
10
|
Zorraquín-Peña I, Taladrid D, Tamargo A, Silva M, Molinero N, de Llano DG, Bartolomé B, Moreno-Arribas MV. Effects of Wine and Its Microbial-Derived Metabolites on Intestinal Permeability Using Simulated Gastrointestinal Digestion/Colonic Fermentation and Caco-2 Intestinal Cell Models. Microorganisms 2021; 9:microorganisms9071378. [PMID: 34202738 PMCID: PMC8306816 DOI: 10.3390/microorganisms9071378] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/04/2023] Open
Abstract
This paper explores the effects of wine polyphenols on intestinal permeability in in vitro conditions. A red wine (2500 mg/L of gallic acid equivalents) was sequentially subjected to gastrointestinal and colonic digestion in the Dynamic Gastrointestinal Simulator (simgi®) to obtain two simulated fluids: intestinal-digested wine (IDW) and colonic-digested wine (CDW). The two fluids were incubated with Caco-2 cell monolayers grown in Transwell® inserts, and paracellular permeability was measured as transport of FITC-dextran. Non-significant decreases (p > 0.05) in paracellular permeability were found, which was attributed to the relatively low phenolic concentration in the solutions tested (15.6 and 7.8 mg of gallic acid equivalents/L for IDW and CDW, respectively) as quercetin (200 µM) and one of its microbial-derived phenolic metabolites, 3,4-dihydroxyphenylacetic acid (200 µM), led to significant decreases (p < 0.05). The expression of tight junction (TJ) proteins (i.e., ZO-1 and occludin) in Caco-2 cells after incubation with IDW and CDW was also determined. A slight increase in mRNA levels for occludin for both IDW and CDW fluids, albeit without statistical significance (p > 0.05), was observed. Analysis of the microbiome and microbial activity during wine colonic fermentation revealed relevant changes in the relative abundance of some families/genera (i.e., reduction in Bacteroides and an increase in Veillonella, Escherichia/Shigella and Akkermansia) as well as in the microbial production of SCFA (i.e., a significant increase in propionic acid in the presence of IDW), all of which might affect paracellular permeability. Both direct and indirect (microbiota-mediated) mechanisms might be involved in the protective effects of (wine) polyphenols on intestinal barrier integrity. Overall, this paper reinforces (wine) polyphenols as a promising dietary strategy to improve gut functionality, although further studies are needed to evaluate the effect on the intestinal barrier under different conditions.
Collapse
|
11
|
Zou YF, Chen M, Fu YP, Zhu ZK, Zhang YY, Paulsen BS, Rise F, Chen YL, Yang YZ, Jia RY, Li LX, Song X, Tang HQ, Feng B, Lv C, Ye G, Wu DT, Yin ZQ, Huang C. Characterization of an antioxidant pectic polysaccharide from Platycodon grandiflorus. Int J Biol Macromol 2021; 175:473-480. [PMID: 33571586 DOI: 10.1016/j.ijbiomac.2021.02.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Platycodonis Radix is widely used as homology of medicine and food in China; polysaccharides are thought to be one of its functional constituents. In this study, a pectic polysaccharide, PGP-I-I, was obtained from the root of the traditional medicine plant Platycodon grandiflorus through ion exchange chromatography and gel filtration. This was characterized being mainly composed of 1,5-α-L-arabinan and both arabinogalactan type I (AG-I) and II chains linked to rhamnogalacturonan I (RG-I) backbone linked to longer galacturonan chains. In vitro bioactivity study showed that PGP-I-I could restore the intestinal cellular antioxidant defense under the condition of hydrogen peroxide (H2O2) treatment through promoting the expressions of cellular antioxidant genes and protect against oxidative damages.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mengsi Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Department of Pharmacy, Section Pharmaceutical Chemistry, Area Pharmacognosy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway
| | - Zhong-Kai Zhu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yan-Yun Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Berit Smestad Paulsen
- Department of Pharmacy, Section Pharmaceutical Chemistry, Area Pharmacognosy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Yu-Long Chen
- Sichuan Academy of Forestry, Ecological Restoration and Conservation on Forest and Wetland Key Laboratory of Sichuan Province, Chengdu, Sichuan 610081, China.
| | - Yong-Zhi Yang
- Sichuan Academy of Forestry, Ecological Restoration and Conservation on Forest and Wetland Key Laboratory of Sichuan Province, Chengdu, Sichuan 610081, China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hua-Qiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Yaan 625014, PR China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
12
|
Regulatory effects of flavonoids luteolin on BDE-209-induced intestinal epithelial barrier damage in Caco-2 cell monolayer model. Food Chem Toxicol 2021; 150:112098. [DOI: 10.1016/j.fct.2021.112098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023]
|
13
|
Patra AK. Influence of Plant Bioactive Compounds on Intestinal Epithelial Barrier in Poultry. Mini Rev Med Chem 2020; 20:566-577. [PMID: 31878854 DOI: 10.2174/1389557520666191226111405] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/14/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
Natural plant bioactive compounds (PBC) have recently been explored as feed additives to improve productivity, health and welfare of poultry following ban or restriction of in-feed antibiotic use. Depending upon the types of PBC, they possess antimicrobial, digestive enzyme secretion stimulation, antioxidant and many pharmacological properties, which are responsible for beneficial effects in poultry production. Moreover, they may also improve the intestinal barrier function and nutrient transport. In this review, the effects of different PBC on the barrier function, permeability of intestinal epithelia and their mechanism of actions are discussed, focusing on poultry feeding. Dietary PBC may regulate intestinal barrier function through several molecular mechanisms by interacting with different metabolic cascades and cellular transcription signals, which may then modulate expressions of genes and their proteins in the tight junction (e.g., claudins, occludin and junctional adhesion molecules), adherens junction (e.g., E-cadherin), other intercellular junctional proteins (e.g., zonula occludens and catenins), and regulatory proteins (e.g., kinases). Interactive effects of PBC on immunomodulation via expressions of several cytokines, chemokines, complement components, pattern recognition receptors and their transcription factors and cellular immune system, and alteration of mucin gene expressions and goblet cell abundances in the intestine may change barrier functions. The effects of PBC are not consistent among the studies depending upon the type and dose of PBC, physiological conditions and parts of the intestine in chickens. An effective concentration in diets and specific molecular mechanisms of PBC need to be elucidated to understand intestinal barrier functionality in a better way in poultry feeding.
Collapse
Affiliation(s)
- Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata, India
| |
Collapse
|
14
|
Li DL, Mao L, Gu Q, Wei F, Gong YY. Quercetin protects retina external barrier from oxidative stress injury by promoting autophagy. Cutan Ocul Toxicol 2020; 40:7-13. [PMID: 33283549 DOI: 10.1080/15569527.2020.1860082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose: This study aimed to investigate the protective effects of quercetin on the tight junction proteins of human retinal pigment epithelial cells (ARPE-19 cells) suffering from oxidative stress injury and explore the possible mechanism.Methods: H2O2 (300 μM) was used to establish an oxidative stress model of ARPE-19 cells. ARPE-19 cells were pretreated with different concentrations (0-80 μM) of quercetin before H2O2 exposure. The expression and distribution of tight junction proteins and autophagy-related proteins were detected by Western blot and immunostaining. ARPE-19 cells were pretreated with 5 mM 3-methyladenine (3-MA).Results: The cell viability weakened in the H2O2 group compared with the control group. However, it was preserved after pretreatment with quercetin. It was observed that the expression levels of occludin, claudin-1 were decreased in the H2O2 group. Quercetin treatment significantly enhanced the expression levels of them as compared to the H2O2 group. H2O2 alone strongly decreased the Zonula occludens protein 1 (ZO-1) expression in the cytomembrane. Quercetin supplementation enhanced the accumulation of ZO-1 in ARPE-19 cells. The expression levels of Beclin-1 and Microtubule associated protein light chain 3 II (LC-3II) increased, and that of P62 decreased in the quercetin protection group. The appearance of LC-3II, which examined by immunofluorescence experiments, enhanced in the quercetin protection group as compared with the control group. The expression levels of beclin-1 and LC-3II increased, and that of P62 increased in the autophagy-inhibited group compared with the quercetin protection group. The levels of occludin and claudin-1 also decreased.Conclusion: Quercetin prevents the loss of tight junction proteins by upregulating autophagy after oxidative stress in ARPE-19 cells.
Collapse
Affiliation(s)
- Dong Li Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Lei Mao
- Department of Ophthalmology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yuan-Yuan Gong
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
15
|
Hisada M, Hiranuma M, Nakashima M, Goda N, Tenno T, Hiroaki H. High dose of baicalin or baicalein can reduce tight junction integrity by partly targeting the first PDZ domain of zonula occludens-1 (ZO-1). Eur J Pharmacol 2020; 887:173436. [PMID: 32745606 DOI: 10.1016/j.ejphar.2020.173436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023]
Abstract
The tight junction (TJ) is the apical-most intercellular junction complex, serving as a biological barrier of intercellular spaces between epithelial cells. The TJ's integrity is maintained by a key protein-protein interaction between C-terminal motifs of claudins (CLDs) and the postsynaptic density 95 (PSD-95)/discs large/zonula occludens 1 (ZO-1; PDZ) domains of ZO-1. Weak but direct interaction of baicalin and its aglycon, baicalein-which are pharmacologically active components of Chinese skullcap (Radix scutellariae)-with ZO-1(PDZ1) have been observed in NMR experiments. Next, we observed TJ-mitigating activity of these flavonoids against Madin-Darby canine kidney (MDCK) II cells with the downregulation of subcellular localization of CLD-2 at TJs. Meanwhile, baicalein-but not baicalin-induced a slender morphological change of MDCK cells' shape from their normal cobblestone-like shapes. Since baicalin and baicalein did not induce a localization change of occludin (OCLN), a "partial" epithelial-mesenchymal transition (EMT) induced by these flavonoids was considered. SB431542, an ALK-5 inhibitor, reversed the CLD-2 downregulation of both baicalin and baicalein, while SB431542 did not reverse the slender morphology. In contrast, the MEK/ERK inhibitor U0126 reversed the slender shape change. Thus, in addition to inhibition of the ZO-1-CLD interaction, activation of both transforming growth factor-β (TGF-β) and MEK/ERK signaling pathways have been suggested to be involved in TJ reduction by these flavonoids. Finally, we demonstrated that baicalin enhanced the permeability of fluorescence-labeled insulin via the paracellular pathway of the Caco-2 cell layer. We propose that baicalin, baicalein, and Radix scutellariae extract are useful as drug absorption enhancers.
Collapse
Affiliation(s)
- Misaki Hisada
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Minami Hiranuma
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Mio Nakashima
- Department of Biological Sciences, Faculty of Science, Nagoya University, Japan
| | - Natsuko Goda
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Takeshi Tenno
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan; BeCerllBar, LLC., Nagoya, Aichi, Japan
| | - Hidekazu Hiroaki
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan; Department of Biological Sciences, Faculty of Science, Nagoya University, Japan; BeCerllBar, LLC., Nagoya, Aichi, Japan.
| |
Collapse
|
16
|
Arcambal A, Taïlé J, Couret D, Planesse C, Veeren B, Diotel N, Gauvin-Bialecki A, Meilhac O, Gonthier MP. Protective Effects of Antioxidant Polyphenols against Hyperglycemia-Mediated Alterations in Cerebral Endothelial Cells and a Mouse Stroke Model. Mol Nutr Food Res 2020; 64:e1900779. [PMID: 32447828 DOI: 10.1002/mnfr.201900779] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/08/2020] [Indexed: 12/15/2022]
Abstract
SCOPE Hyperglycemia alters cerebral endothelial cell and blood-brain barrier functions, aggravating cerebrovascular complications such as stroke during diabetes. Redox and inflammatory changes play a causal role. This study evaluates polyphenol protective effects in cerebral endothelial cells and a mouse stroke model during hyperglycemia. METHODS AND RESULTS Murine bEnd.3 cerebral endothelial cells and a mouse stroke model are exposed to a characterized, polyphenol-rich extract of Antirhea borbonica or its predominant constituent caffeic acid, during hyperglycemia. Polyphenol effects on redox, inflammatory and vasoactive markers, infarct volume, and hemorrhagic transformation are determined. In vitro, polyphenols improve reactive oxygen species levels, Cu/Zn superoxide dismutase activity, and both NAPDH oxidase 4 and nuclear factor erythroid 2-related factor 2 (Nrf2) gene expression deregulated by high glucose. Polyphenols reduce Nrf2 nuclear translocation and counteract nuclear factor-ĸappa B activation, interleukin-6 secretion, and the altered production of vasoactive markers mediated by high glucose. In vivo, polyphenols reduce cerebral infarct volume and hemorrhagic transformation aggravated by hyperglycemia. Polyphenols attenuate redox changes, increase vascular endothelial-Cadherin production, and decrease neuro-inflammation in the infarcted hemisphere. CONCLUSION Polyphenols protect against hyperglycemia-mediated alterations in cerebral endothelial cells and a mouse stroke model. It is relevant to assess polyphenol benefits to improve cerebrovascular damages during diabetes.
Collapse
Affiliation(s)
- Angélique Arcambal
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - Janice Taïlé
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - David Couret
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France.,CHU de La Réunion, Saint-Pierre, La Réunion, 97410, France
| | - Cynthia Planesse
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - Bryan Veeren
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - Anne Gauvin-Bialecki
- Université de La Réunion, EA 2212 Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments (LCSNSA), Saint-Denis, La Réunion, 97490, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France.,CHU de La Réunion, Saint-Pierre, La Réunion, 97410, France
| | - Marie-Paule Gonthier
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| |
Collapse
|
17
|
Bernardi S, Del Bo' C, Marino M, Gargari G, Cherubini A, Andrés-Lacueva C, Hidalgo-Liberona N, Peron G, González-Dominguez R, Kroon P, Kirkup B, Porrini M, Guglielmetti S, Riso P. Polyphenols and Intestinal Permeability: Rationale and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1816-1829. [PMID: 31265272 DOI: 10.1021/acs.jafc.9b02283] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Increasing evidence links intestinal permeability (IP), a feature of the intestinal barrier, to several pathological or dysfunctional conditions. Several host and environmental factors, including dietary factors, can affect the maintenance of normal IP. In this regard, food bioactives, such as polyphenols, have been proposed as potential IP modulators, even if the mechanisms involved are not yet fully elucidated. The aim of the present paper is to provide a short overview of the main evidence from in vitro and in vivo studies supporting the role of polyphenols in modulating IP and briefly discuss future perspectives in this research area.
Collapse
Affiliation(s)
- Stefano Bernardi
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Antonio Cherubini
- Geriatria, Accettazione Geriatrica e Centro di Ricerca per l'Invecchiamento , Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-l'Istituto Nazionale Ricovero e Cura Anziani (INRCA) , 60127 Ancona , Italy
| | - Cristina Andrés-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Nicole Hidalgo-Liberona
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Gregorio Peron
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Raúl González-Dominguez
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Paul Kroon
- Quadram Institute Bioscience , Norwich Research Park, Norwich NR4 7UQ , United Kingdom
| | - Benjamin Kirkup
- Quadram Institute Bioscience , Norwich Research Park, Norwich NR4 7UQ , United Kingdom
| | - Marisa Porrini
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| |
Collapse
|
18
|
Cong X, Kong W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal 2019; 66:109485. [PMID: 31770579 DOI: 10.1016/j.cellsig.2019.109485] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Endothelial tight junctions (TJs) regulate the transport of water, ions, and molecules through the paracellular pathway, serving as an important barrier in blood vessels and maintaining vascular homeostasis. In endothelial cells (ECs), TJs are highly dynamic structures that respond to multiple external stimuli and pathological conditions. Alterations in the expression, distribution, and structure of endothelial TJs may lead to many related vascular diseases and pathologies. In this review, we provide an overview of the assessment methods used to evaluate endothelial TJ barrier function both in vitro and in vivo and describe the composition of endothelial TJs in diverse vascular systems and ECs. More importantly, the direct phosphorylation and dephosphorylation of TJ proteins by intracellular kinases and phosphatases, as well as the signaling pathways involved in the regulation of TJs, including and the protein kinase C (PKC), PKA, PKG, Ras homolog gene family member A (RhoA), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and Wnt/β-catenin pathways, are discussed. With great advances in this area, targeting endothelial TJs may provide novel treatment for TJ-related vascular pathologies.
Collapse
Affiliation(s)
- Xin Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
19
|
Impact of quercetin on tight junctional proteins and BDNF signaling molecules in hippocampus of PCBs-exposed rats. Interdiscip Toxicol 2019; 11:294-305. [PMID: 31762681 PMCID: PMC6853011 DOI: 10.2478/intox-2018-0029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/06/2018] [Indexed: 12/26/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) consist of a range of toxic substances which are directly proportional to carcinogenesis and tumor-promoting factors as well as having neurotoxic properties. Reactive oxygen species, which are produced from PCBs, alter blood–brain barrier (BBB) integrity, which is paralleled by cytoskeletal rearrangements and redistribution and disappearance of tight junction proteins (TJPs) like claudin-5 and occludin. Brain-derived neurotrophic factor (BDNF), plays an important role in the maintenance, survival of neurons and synaptic plasticity. It is predominant in the hippocampal areas vital to learning, memory and higher thinking. Quercetin, a flavonoid, had drawn attention to its neurodefensive property. The study is to assess the role of quercetin on serum PCB, estradiol and testosterone levels and mRNA expressions of estrogen receptor α and β, TJPs and BDNF signaling molecules on the hippocampus of PCBs-exposed rats. Rats were divided into 4 groups of 6 each. Group I rats were intraperitoneally (i.p.) administered corn oil (vehicle). Group II received quercetin 50 mg/kg/bwt (gavage). Group III received PCBs (Aroclor 1254) at 2 mg/kg bwt (i.p). Group IV received quercetin 50 mg/kg bwt (gavage) simultaneously with PCBs 2 mg/kg bwt (i.p.). The treatment was given daily for 30 days. The rats were euthanized 24 h after the experimental period. Blood was collected for quantification of serum PCBs estradiol and testosterone. The hippocampus was dissected and processed for PCR and Western blot; serum PCB was observed in PCB treated animals, simultaneously quercetin treated animals showed PCB metabolites. Serum testosterone and estradiol were decreased after PCB exposure. Quercetin supplementation brought back normal levels. mRNA expressions of estrogen α and β were decreased in the hippocampus of PCB treated rats. TJPS and BDNF signalling molecules were decreased in hippocampus of PCB treated rats. Quercetin supplementation retrieved all the parameters. Quercetin alone treated animals showed no alteration. Thus in PCB caused neurotoxicity, quercetin protects and prevents neuronal damage in the hippocampus.
Collapse
|
20
|
Temporal Effects of Quercetin on Tight Junction Barrier Properties and Claudin Expression and Localization in MDCK II Cells. Int J Mol Sci 2019; 20:ijms20194889. [PMID: 31581662 PMCID: PMC6801663 DOI: 10.3390/ijms20194889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 01/22/2023] Open
Abstract
: Kidney stones affect 10% of the population. Yet, there is relatively little known about how they form or how to prevent and treat them. The claudin family of tight junction proteins has been linked to the formation of kidney stones. The flavonoid quercetin has been shown to prevent kidney stone formation and to modify claudin expression in different models. Here we investigate the effect of quercetin on claudin expression and localization in MDCK II cells, a cation-selective cell line, derived from the proximal tubule. For this study, we focused our analyses on claudin family members that confer different tight junction properties: barrier-sealing (Cldn1, -3, and -7), cation-selective (Cldn2) or anion-selective (Cldn4). Our data revealed that quercetin's effects on the expression and localization of different claudins over time corresponded with changes in transepithelial resistance, which was measured continuously throughout the treatment. In addition, these effects appear to be independent of PI3K/AKT signaling, one of the pathways that is known to act downstream of quercetin. In conclusion, our data suggest that quercetin's effects on claudins result in a tighter epithelial barrier, which may reduce the reabsorption of sodium, calcium and water, thereby preventing the formation of a kidney stone.
Collapse
|
21
|
Nunes C, Freitas V, Almeida L, Laranjinha J. Red wine extract preserves tight junctions in intestinal epithelial cells under inflammatory conditions: implications for intestinal inflammation. Food Funct 2019; 10:1364-1374. [PMID: 30735221 DOI: 10.1039/c8fo02469c] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The altered expression and subcellular distribution of tight junction (TJ) proteins, leading to a dysfunctional intestinal barrier, is a key mechanistic feature of inflammatory bowel disease (IBD). Therefore, increasing the integrity of the intestinal barrier by manipulating the TJ may constitute an innovative and effective therapeutic strategy in IBD. In this context, recent studies showed that dietary polyphenols are able to protect the intestinal TJ barrier integrity. Here, using a cellular model of intestinal inflammation, consisting of cytokine-stimulated HT-29 colon epithelial cells, we show that a polyphenolic extract obtained from Portuguese red wine (RWE) decreased the paracellular permeability across the cell monolayer compared with the control cells, even in the presence of pro-inflammatory cytokines. The beneficial effect of RWE was exerted at three complementary levels: (1) by promoting a significant increase of the mRNA of key barrier-forming TJ proteins, including occludin, claudin-5 and zonnula occludens (ZO)-1 above the levels observed in the control cells; (2) by preventing the decrease in the expression of these proteins under inflammatory conditions and (3) by averting the increase in claudin-2 mRNA, a channel-forming TJ protein induced by pro-inflammatory cytokines. Taken together, these results strongly suggest that polyphenols presented and consumed in red wine as a mixture can reinforce and protect the intestinal barrier against inflammatory stimulus by affecting the TJ protein expression and, thus, without the need for purifying individual compounds, might represent a readily available therapeutic intervention against IBD and intestinal inflammation.
Collapse
Affiliation(s)
- Carla Nunes
- Center for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | | | | | | |
Collapse
|
22
|
Ebegboni VJ, Balahmar RM, Dickenson JM, Sivasubramaniam SD. The effects of flavonoids on human first trimester trophoblast spheroidal stem cell self-renewal, invasion and JNK/p38 MAPK activation: Understanding the cytoprotective effects of these phytonutrients against oxidative stress. Biochem Pharmacol 2019; 164:289-298. [PMID: 31022396 DOI: 10.1016/j.bcp.2019.04.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/19/2019] [Indexed: 12/19/2022]
Abstract
Adequate invasion and complete remodelling of the maternal spiral arteries by the invading extravillous trophoblasts are the major determinants of a successful pregnancy. Increase in oxidative stress during pregnancy has been linked to the reduction in trophoblast invasion and incomplete conversion of the maternal spiral arteries, resulting in pregnancy complications such as pre-eclampsia, intrauterine growth restriction, and spontaneous miscarriages resulting in foetal/maternal mortality. The use of antioxidant therapy (vitamin C and E) and other preventative treatments (such as low dose aspirin) have been ineffective in preventing pre-eclampsia. Also, as the majority of antihypertensive drugs pose side effects, choosing an appropriate treatment would depend upon the efficacy and safety of mother/foetus. Since pre-eclampsia is mainly linked to placental oxidative stress, new diet-based antioxidants can be of use to prevent this condition. The antioxidant properties of flavonoids (naturally occurring phenolic compounds which are ubiquitously distributed in fruits and vegetables) have been well documented in non-trophoblast cells. Therefore, this study aimed to investigate the effects of flavonoids (quercetin, hesperidin) and their metabolites (Quercetin 3-O-β-glucuronide and hesperetin), either alone or in combination, on first trimester trophoblast cell line HTR-8/SVneo during oxidative stress. The data obtained from this study indicate that selected flavonoids, their respective metabolites significantly reduced the levels of reduced glutathione (p < 0.0001) during HR-induced oxidative stress. These flavonoids also inhibited the activation of pro-apoptotic kinases (p38 MAPK and c-Jun N-terminal kinase) during HR-induced phosphorylation. In addition, they enhanced spheroid stem-like cell generation from HTR8/SVneo cells, aiding their invasion. Our data suggest that dietary intake of food rich in quercetin or hesperidin during early pregnancy can significantly improve trophoblast (placenta) health and function against oxidative stress.
Collapse
Affiliation(s)
- Vernon J Ebegboni
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Reham M Balahmar
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - John M Dickenson
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Shiva D Sivasubramaniam
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK; School of Human Sciences, University of Derby, Kidleston Road, Derby DE22, 1GB, UK.
| |
Collapse
|
23
|
Bachinger D, Mayer E, Kaschubek T, Schieder C, König J, Teichmann K. Influence of phytogenics on recovery of the barrier function of intestinal porcine epithelial cells after a calcium switch. J Anim Physiol Anim Nutr (Berl) 2018; 103:210-220. [PMID: 30353576 PMCID: PMC7379982 DOI: 10.1111/jpn.12997] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/06/2018] [Accepted: 08/26/2018] [Indexed: 12/13/2022]
Abstract
Background The gut barrier is essential for animal health as it prevents the passage of potentially harmful foreign substances. The epithelial tight junctions support the intestinal barrier and can be disrupted by stress caused, for example, by pathogens or dietary or environmental factors, predisposing the host to disease. In animal husbandry, phytogenics (plant‐derived feed additives) are used to support and maintain growth, feed efficiency and health. Therefore, several phytogenics were tested in vitro for their influence on the barrier function recovery of intestinal porcine epithelial cells (IPEC‐J2) after disruption, particularly on the abundance of tight junction proteins. Results IPEC‐J2 treated with 1,000 µg/ml liquorice root extract, 80 µg/ml plant powder mix, or 80 µg/ml angelica root powder showed significantly higher trans‐epithelial electric resistance (TEER) 24 hr after tight junction disruption via a calcium switch assay than the control. In contrast, cells treated with 1,000 µg/ml oak bark extract showed a significantly lower TEER after 6 hr but not at later time points. The increased TEER caused by the liquorice root extract correlated with an increase in the abundance of the tight junction protein claudin‐4. Conclusions This study suggests potential beneficial effects of liquorice and angelica root extracts on the gut barrier function when used as feed additives for livestock. Further studies, especially in vivo, are necessary to confirm these findings.
Collapse
Affiliation(s)
| | | | - Theresa Kaschubek
- BIOMIN Research Center, Tulln an der Donau, Austria.,Department of Nutritional Science, University of Vienna, Vienna, Austria
| | | | - Jürgen König
- Department of Nutritional Science, University of Vienna, Vienna, Austria
| | | |
Collapse
|
24
|
Developing a link between toxicants, claudins and neural tube defects. Reprod Toxicol 2018; 81:155-167. [DOI: 10.1016/j.reprotox.2018.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
|
25
|
Patra AK, Amasheh S, Aschenbach JR. Modulation of gastrointestinal barrier and nutrient transport function in farm animals by natural plant bioactive compounds – A comprehensive review. Crit Rev Food Sci Nutr 2018; 59:3237-3266. [DOI: 10.1080/10408398.2018.1486284] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amlan Kumar Patra
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, Berlin, Germany
- Institute of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, 37 K. B. Sarani, Belgachia, Kolkata, India
| | - Salah Amasheh
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, Berlin, Germany
| | - Jörg Rudolf Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, Berlin, Germany
| |
Collapse
|
26
|
Rybakovsky E, Valenzano MC, Deis R, DiGuilio KM, Thomas S, Mullin JM. Improvement of Human-Oral-Epithelial-Barrier Function and of Tight Junctions by Micronutrients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10950-10958. [PMID: 29172516 DOI: 10.1021/acs.jafc.7b04203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The oral epithelium represents a major interface between an organism and its external environment. Improving this barrier at the molecular level can provide an organism added protection from microbial-based diseases. Barrier function of the Gie-3B11-human-gingival-epithelial-cell-culture model is enhanced by the micronutrients zinc, quercetin, retinoic acid, and acetyl-11-keto-β-boswellic acid, as observed by a concentration-dependent increase in transepithelial electrical resistance and a decrease in transepithelial 14C-d-mannitol permeability. With this improvement of tight-junction (TJ)-barrier function (reduced leak) comes a pattern of micronutrient-induced changes in TJ claudin abundance that is specific to each individual micronutrient, along with changes in claudin subcellular localization. These micronutrients were effective not only when administered to both cell surfaces simultaneously but also when administered to the apical surface alone, the surface to which the micronutrients would be presented in routine clinical use. The biomedical implications of micronutrient enhancement of the oral-epithelial barrier are discussed.
Collapse
Affiliation(s)
- Elizabeth Rybakovsky
- Lankenau Institute for Medical Research , 100 East Lancaster Avenue, Wynnewood, Pennsylvania 19096 United States
| | - Mary Carmen Valenzano
- Lankenau Institute for Medical Research , 100 East Lancaster Avenue, Wynnewood, Pennsylvania 19096 United States
| | - Rachael Deis
- Lankenau Institute for Medical Research , 100 East Lancaster Avenue, Wynnewood, Pennsylvania 19096 United States
| | - Katherine M DiGuilio
- Lankenau Institute for Medical Research , 100 East Lancaster Avenue, Wynnewood, Pennsylvania 19096 United States
| | - Sunil Thomas
- Lankenau Institute for Medical Research , 100 East Lancaster Avenue, Wynnewood, Pennsylvania 19096 United States
| | - James M Mullin
- Lankenau Institute for Medical Research , 100 East Lancaster Avenue, Wynnewood, Pennsylvania 19096 United States
| |
Collapse
|
27
|
Yang G, Bibi S, Du M, Suzuki T, Zhu MJ. Regulation of the intestinal tight junction by natural polyphenols: A mechanistic perspective. Crit Rev Food Sci Nutr 2017; 57:3830-3839. [PMID: 27008212 DOI: 10.1080/10408398.2016.1152230] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Impairment of the epithelial barrier function is closely linked to the pathogenesis of various gastrointestinal diseases, food allergies, type I diabetes, and other systematic diseases. Plant-derived polyphenols are natural secondary metabolites and exert various physiological benefits, including anti-inflammatory, anti-oxidative, anti-carcinogenic, and anti-aging effects. Recent studies also show the role of plant polyphenols in regulation of the intestinal barrier and prevention of intestinal inflammatory diseases. Here we summarize the regulatory pathways and mediators linking polyphenols to their beneficial effects on tight junction and gut epithelial barrier functions, and provide useful information about using polyphenols as nutraceuticals for intestinal diseases.
Collapse
Affiliation(s)
- Guan Yang
- a School of Food Science , Washington State University , Pullman , Washington , USA
| | - Shima Bibi
- a School of Food Science , Washington State University , Pullman , Washington , USA
| | - Min Du
- b Department of Animal Science , Washington State University , Pullman , Washington , USA
| | - Takuya Suzuki
- c Department of Biofunctional Science and Technology , Hiroshima University , Higashi-Hiroshima , Japan
| | - Mei-Jun Zhu
- a School of Food Science , Washington State University , Pullman , Washington , USA
| |
Collapse
|
28
|
Vergauwen H, Prims S, Degroote J, Wang W, Casteleyn C, van Cruchten S, de Smet S, Michiels J, van Ginneken C. In Vitro Investigation of Six Antioxidants for Pig Diets. Antioxidants (Basel) 2016; 5:antiox5040041. [PMID: 27845706 PMCID: PMC5187539 DOI: 10.3390/antiox5040041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/03/2016] [Accepted: 11/02/2016] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress in the small intestinal epithelium can lead to barrier malfunction. In this study, the effect of rosmarinic acid (RA), quercetin (Que), gallic acid (GA), lipoic acid (LA), ethoxyquin (ETQ) and Se-methionine (SeMet) pre-treatments using 2 mM Trolox as a control on the viability and the generation of intracellular reactive oxygen species (iROS) of oxidatively (H₂O₂) stressed intestinal porcine epithelial cells (IPEC-J2) was investigated. A neutral red assay showed that RA (50-400 µM), Que (12.5-200 µM), GA (50-400 µM), ETQ (6.25-100 µM), and SeMet (125-1000 µM) pre-treatments but not LA significantly increased the viability of H₂O₂-stressed IPEC-J2 cells (p < 0.05). A 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H₂DCFDA) fluorescent probe showed that RA (100-600 µM), Que (25-800 µM), ETQ (3.125-100 µM) and SeMet (500-2000 µM) pre-treatments significantly reduced iROS in IPEC-J2 monolayers (p < 0.05). Moreover, RA and Que were most effective in reducing iROS. Therefore, the effects of RA and Que on barrier functioning in vitro were examined. RA and Que pre-treatments significantly decreased fluorescein isothiocyanate (FITC)-conjugated dextran-4 (4 kDa) permeability and transepithelial electrical resistance (TEER) of an IPEC-J2 cell monolayer (p < 0.05). These in vitro results of RA and Que hold promise for their use as antioxidants in pig feed.
Collapse
Affiliation(s)
- Hans Vergauwen
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Biomedical, University of Antwerp, Wilrijk 2610, Belgium.
| | - Sara Prims
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Biomedical, University of Antwerp, Wilrijk 2610, Belgium.
| | - Jeroen Degroote
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium.
| | - Wei Wang
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium.
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Melle 9090, Belgium.
| | - Christophe Casteleyn
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Biomedical, University of Antwerp, Wilrijk 2610, Belgium.
| | - Steven van Cruchten
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Biomedical, University of Antwerp, Wilrijk 2610, Belgium.
| | - Stefaan de Smet
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Melle 9090, Belgium.
| | - Joris Michiels
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium.
| | - Chris van Ginneken
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Biomedical, University of Antwerp, Wilrijk 2610, Belgium.
| |
Collapse
|
29
|
Power KA, Lu JT, Monk JM, Lepp D, Wu W, Zhang C, Liu R, Tsao R, Robinson LE, Wood GA, Wolyn DJ. Purified rutin and rutin-rich asparagus attenuates disease severity and tissue damage following dextran sodium sulfate-induced colitis. Mol Nutr Food Res 2016; 60:2396-2412. [PMID: 27349947 DOI: 10.1002/mnfr.201500890] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 06/07/2016] [Accepted: 06/15/2016] [Indexed: 12/25/2022]
Abstract
SCOPE This study investigated the effects of cooked whole asparagus (ASP) versus its equivalent level of purified flavonoid glycoside, rutin (RUT), on dextran sodium sulfate (DSS)-induced colitis and subsequent colitis recovery in mice. METHODS AND RESULTS C57BL/6 male mice were fed an AIN-93G basal diet (BD), or BD supplemented with 2% cooked ASP or 0.025% RUT for 2 wks prior to and during colitis induction with 2% DSS in water for 7 days, followed by 5 days colitis recovery. In colitic mice, both ASP and RUT upregulated mediators of improved barrier integrity and enhanced mucosal injury repair (e.g. Muc1, IL-22, Rho-A, Rac1, and Reg3γ), increased the proportion of mouse survival, and improved disease activity index. RUT had the greatest effect in attenuating DSS-induced colonic damage indicated by increased crypt and goblet cell restitution, reduced colonic myeloperoxidase, as well as attenuated DSS-induced microbial dysbiosis (reduced Enterobacteriaceae and Bacteroides, and increased unassigned Clostridales, Oscillospira, Lactobacillus, and Bifidobacterium). CONCLUSION These findings demonstrate that dietary cooked ASP and its flavonoid glycoside, RUT, may be useful in attenuating colitis severity by modulating the colonic microenvironment resulting in reduced colonic inflammation, promotion of colonic mucosal injury repair, and attenuation of colitis-associated microbial dysbiosis.
Collapse
Affiliation(s)
- Krista A Power
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Jenifer T Lu
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Jennifer M Monk
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Dion Lepp
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Wenqing Wu
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Claire Zhang
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Ronghua Liu
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Rong Tsao
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Lindsay E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - David J Wolyn
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
30
|
Rocha BS, Nunes C, Laranjinha J. Tuning constitutive and pathological inflammation in the gut via the interaction of dietary nitrate and polyphenols with host microbiome. Int J Biochem Cell Biol 2016; 81:393-402. [PMID: 27989963 DOI: 10.1016/j.biocel.2016.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/22/2016] [Accepted: 10/26/2016] [Indexed: 02/08/2023]
Abstract
Chronic inflammation is currently recognized as a critical process in modern-era epidemics such as diabetes, obesity and neurodegeneration. However, little attention is paid to the constitutive inflammatory pathways that operate in the gut and that are mandatory for local welfare and the prevention of such multi-organic diseases. Hence, the digestive system, while posing as a barrier between the external environment and the host, is crucial for the balance between constitutive and pathological inflammatory events. Gut microbiome, a recently discovered organ, is now known to govern the interaction between exogenous agents and the host with ensued impact on local and systemic homeostasis. Whereas gut microbiota may be modulated by a myriad of factors, diet constitutes one of its major determinants. Thus, dietary compounds that influence microbial flora may thereby impact on inflammatory pathways. One such example is the redox environment in the gut lumen which is highly dependent on the local generation of nitric oxide along the nitrate-nitrite-nitric oxide pathway and that is further enhanced by simultaneous consumption of polyphenols. In this paper, different pathways encompassing the interaction of dietary nitrate and polyphenols with gut microbiota will be presented and discussed in connection with local and systemic inflammatory events. Furthermore, it will be discussed how these interactive cycles (nitrate-polyphenols-microbiome) may pose as novel strategies to tackle inflammatory diseases.
Collapse
Affiliation(s)
- Bárbara S Rocha
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carla Nunes
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - João Laranjinha
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
31
|
Allium cepa Extract and Quercetin Protect Neuronal Cells from Oxidative Stress via PKC- ε Inactivation/ERK1/2 Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2495624. [PMID: 27668036 PMCID: PMC5030440 DOI: 10.1155/2016/2495624] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/17/2016] [Indexed: 01/28/2023]
Abstract
Oxidative stress plays an important role in the pathophysiology of various neurologic disorders. Allium cepa extract (ACE) and their main flavonoid component quercetin (QCT) possess antioxidant activities and protect neurons from oxidative stress. We investigated the underlying molecular mechanisms, particularly those linked to the antioxidant effects of the ACE. Primary cortical neuronal cells derived from mouse embryos were preincubated with ACE or QCT for 30 min and exposed to L-buthionine sulfoximine for 4~24 h. We found that ACE and QCT significantly decreased neuronal death and the ROS increase induced by L-buthionine-S, R-sulfoximine (BSO) in a concentration-dependent manner. Furthermore, ACE and QCT activated extracellular signal-regulated kinase 1/2 (ERK1/2), leading to downregulation of protein kinase C-ε (PKC-ε) in BSO-stimulated neuronal cells. In addition, ACE and QCT decreased the phosphorylated levels of p38 mitogen-activated protein kinase. Our results provide new insight into the protective mechanism of ACE and QCT against oxidative stress in neuronal cells. The results suggest that the inactivation of PKC-ε induced by phosphorylating ERK1/2 is responsible for the neuroprotective effect of ACE and QCT against BSO-induced oxidative stress.
Collapse
|
32
|
Remodeling of Tight Junctions and Enhancement of Barrier Integrity of the CACO-2 Intestinal Epithelial Cell Layer by Micronutrients. PLoS One 2015; 10:e0133926. [PMID: 26226276 PMCID: PMC4520484 DOI: 10.1371/journal.pone.0133926] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/22/2015] [Indexed: 01/21/2023] Open
Abstract
The micronutrients zinc, quercetin, butyrate, indole and berberine were evaluated for their ability to induce remodeling of epithelial tight junctions (TJs) and enhance barrier integrity in the CACO-2 gastrointestinal epithelial cell culture model. All five of these chemically very diverse micronutrients increased transepithelial electrical resistance (Rt) significantly, but only berberine also improved barrier integrity to the non-electrolyte D-mannitol. Increases of Rt as much as 200% of untreated controls were observed. Each of the five micronutrients also induced unique, signature-like changes in TJ protein composition, suggesting multiple pathways (and TJ arrangements) by which TJ barrier function can be enhanced. Decreases in abundance by as much as 90% were observed for claudin-2, and increases of over 300% could be seen for claudins -5 and -7. The exact effects of the micronutrients on barrier integrity and TJ protein composition were found to be highly dependent on the degree of differentiation of the cell layer at the time it was exposed to the micronutrient. The substratum to which the epithelial layer adheres was also found to regulate the response of the cell layer to the micronutrient. The implications of these findings for therapeutically decreasing morbidity in Inflammatory Bowel Disease are discussed.
Collapse
|
33
|
Takashima K, Matsushima M, Hashimoto K, Nose H, Sato M, Hashimoto N, Hasegawa Y, Kawabe T. Protective effects of intratracheally administered quercetin on lipopolysaccharide-induced acute lung injury. Respir Res 2014; 15:150. [PMID: 25413579 PMCID: PMC4276052 DOI: 10.1186/s12931-014-0150-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/11/2014] [Indexed: 12/30/2022] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) can result in a life-threatening form of respiratory failure, and established, effective pharmacotherapies are therefore urgently required. Quercetin is one of the most common flavonoids found in fruits and vegetables, and has potent anti-inflammatory and anti-oxidant activities. Quercetin has been demonstrated to exhibit cytoprotective effects through the induction of heme oxygenase (HO)-1. Here, we investigated whether the intratracheal administration of quercetin could suppress lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice as well as the involvement of HO-1 in quercetin’s suppressive effects. Methods Mouse model of ALI were established by challenging intratracheally LPS. The wet lung-to-body weight ratio, matrix metalloproteinase (MMP)-9 activities, and pro-inflammatory cytokine productions, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in bronchoalveolar lavage fluid (BALF) were examined in ALI mice with or without quercetin pretreatment. We also examined the effects of quercetin on LPS stimulation in the mouse alveolar macrophage cell line, AMJ2-C11 cells. Results Intratracheal administration of quercetin decreased the wet lung-to-body weight ratio. Moreover, quercetin decreased MMP-9 activity and the production of pro-inflammatory cytokines in BALF cells activated by LPS in advance. We determined the expression of quercetin-induced HO-1 in mouse lung, e.g., alveolar macrophages (AMs), alveolar and bronchial epithelial cells. When AMJ2-C11 cells were cultured with quercetin, a marked suppression of LPS-induced pro-inflammatory cytokine production was observed. The cytoprotective effects were attenuated by the addition of the HO-1 inhibitor SnPP. These results indicated that quercetin suppressed LPS-induced lung inflammation, and that an HO-1-dependent pathway mediated these cytoprotective effects. Conclusions Our findings indicated that quercetin suppressed LPS-induced lung inflammation, and that an HO-1-dependent pathway mediated these cytoprotective effects. Intratracheal administration of quercetin will lead to new supportive strategies for cytoprotection in these serious lung conditions.
Collapse
Affiliation(s)
- Koji Takashima
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Miyoko Matsushima
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daikou-minami, Higashi-ku, Nagoya, 461-8673, Japan.
| | - Katsunori Hashimoto
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daikou-minami, Higashi-ku, Nagoya, 461-8673, Japan.
| | - Haruka Nose
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daikou-minami, Higashi-ku, Nagoya, 461-8673, Japan.
| | - Mitsuo Sato
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Tsutomu Kawabe
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daikou-minami, Higashi-ku, Nagoya, 461-8673, Japan.
| |
Collapse
|
34
|
Soares H, Marinho HS, Real C, Antunes F. Cellular polarity in aging: role of redox regulation and nutrition. GENES AND NUTRITION 2013; 9:371. [PMID: 24306961 DOI: 10.1007/s12263-013-0371-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023]
Abstract
Cellular polarity concerns the spatial asymmetric organization of cellular components and structures. Such organization is important not only for biological behavior at the individual cell level, but also for the 3D organization of tissues and organs in living organisms. Processes like cell migration and motility, asymmetric inheritance, and spatial organization of daughter cells in tissues are all dependent of cell polarity. Many of these processes are compromised during aging and cellular senescence. For example, permeability epithelium barriers are leakier during aging; elderly people have impaired vascular function and increased frequency of cancer, and asymmetrical inheritance is compromised in senescent cells, including stem cells. Here, we review the cellular regulation of polarity, as well as the signaling mechanisms and respective redox regulation of the pathways involved in defining cellular polarity. Emphasis will be put on the role of cytoskeleton and the AMP-activated protein kinase pathway. We also discuss how nutrients can affect polarity-dependent processes, both by direct exposure of the gastrointestinal epithelium to nutrients and by indirect effects elicited by the metabolism of nutrients, such as activation of antioxidant response and phase-II detoxification enzymes through the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In summary, cellular polarity emerges as a key process whose redox deregulation is hypothesized to have a central role in aging and cellular senescence.
Collapse
Affiliation(s)
- Helena Soares
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | | | | | | |
Collapse
|
35
|
Mercado J, Valenzano MC, Jeffers C, Sedlak J, Cugliari MK, Papanikolaou E, Clouse J, Miao J, Wertan NE, Mullin JM. Enhancement of tight junctional barrier function by micronutrients: compound-specific effects on permeability and claudin composition. PLoS One 2013; 8:e78775. [PMID: 24236048 PMCID: PMC3827273 DOI: 10.1371/journal.pone.0078775] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/18/2013] [Indexed: 12/11/2022] Open
Abstract
Amid an increasing number of reports in the literature concerning epithelial barrier enhancement by various nutrient compounds, there has never been a study performing side-by-side comparisons of these agents in a single epithelial model. We compare five nutrient compounds (previously reported in various epithelial models to enhance barrier function) regarding their ability to increase transepithelial electrical resistance (Rt) and decrease transepithelial mannitol permeability (Jm) across LLC-PK1 renal epithelial cell layers. The effects of these nutrients on the abundance of various tight junctional proteins are also compared. In the overall group of nutrients tested - zinc, indole, quercetin, butyrate and nicotine - only nicotine failed to improve barrier function by either parameter. Nicotine also was without effect on tight junctional proteins. Quercetin simultaneously increased Rt and decreased Jm. Zinc, butyrate and indole only exhibited statistically significant enhancement of Rt. Each of these four effective nutrient compounds had unique patterns of effects on the panel of tight junctional proteins studied. No two compounds produced the same pattern of effects. This unique pattern of effects on tight junctional complex composition by each compound establishes the chance for additive or even synergistic improvement of barrier function by combinations of compounds. A synergistic effect of the combination of quercetin and zinc on Rt is shown.
Collapse
Affiliation(s)
- Joanna Mercado
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Mary Carmen Valenzano
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Cameron Jeffers
- Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Jason Sedlak
- Drexel University, Philadelphia, Pennsylvania, United States of America
| | | | | | - Jacob Clouse
- Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Jingya Miao
- Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Nina E. Wertan
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - James M. Mullin
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
36
|
Carrasco-Pozo C, Morales P, Gotteland M. Polyphenols protect the epithelial barrier function of Caco-2 cells exposed to indomethacin through the modulation of occludin and zonula occludens-1 expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5291-5297. [PMID: 23668856 DOI: 10.1021/jf400150p] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The aim of this study was to determine the protective effect of quercetin, epigallocatechingallate, resveratrol, and rutin against the disruption of epithelial integrity induced by indomethacin in Caco-2 cell monolayers. Indomethacin decreased the transepithelial electrical resistance and increased the permeability of the monolayers to fluorescein-dextran. These alterations were abolished by all the tested polyphenols but rutin, with quercetin being the most efficient. The protective effect of quercetin was associated with its capacity to inhibit the redistribution of ZO-1 protein induced in the tight junction by indomethacin or rotenone, a mitochondrial complex-I inhibitor, and to prevent the decrease of ZO-1 and occludin expression induced by indomethacin. The fact that the antioxidant polyphenols assayed in this study differ in their protective capacity against the epithelial damage induced by indomethacin suggests that this damage is due to the ability of this agent to induce not only oxidative stress but also mitochondrial dysfunction.
Collapse
Affiliation(s)
- Catalina Carrasco-Pozo
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA) , Av. Macul 5540, Santiago, P.O. Box 138-11, Chile
| | | | | |
Collapse
|
37
|
Simoneau B, Houle F, Huot J. Regulation of endothelial permeability and transendothelial migration of cancer cells by tropomyosin-1 phosphorylation. Vasc Cell 2012; 4:18. [PMID: 23157718 PMCID: PMC3552968 DOI: 10.1186/2045-824x-4-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/11/2012] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED BACKGROUND Loss of endothelial cell integrity and selective permeability barrier is an early event in the sequence of oxidant-mediated injury and may result in atherosclerosis, hypertension and facilitation of transendothelial migration of cancer cells during metastasis. We already reported that endothelial cell integrity is tightly regulated by the balanced co-activation of p38 and ERK pathways. In particular, we showed that phosphorylation of tropomyosin-1 (tropomyosin alpha-1 chain = Tm1) at Ser283 by DAP kinase, downstream of the ERK pathway might be a key event required to maintain the integrity and normal functions of the endothelium in response to oxidative stress. METHODS Endothelial permeability was assayed by monitoring the passage of Dextran-FITC through a tight monolayer of HUVECs grown to confluence in Boyden chambers. Actin and Tm1 dynamics and distribution were evaluated by immunofluorescence. We modulated the expression of Tm1 by siRNA and lentiviral-mediated expression of wild type and mutated forms of Tm1 insensitive to the siRNA. Transendothelial migration of HT-29 colon cancer cells was monitored in Boyden chambers similarly as for permeability. RESULTS We provide evidence indicating that Tm1 phosphorylation at Ser283 is essential to regulate endothelial permeability under oxidative stress by modulating actin dynamics. Moreover, the transendothelial migration of colon cancer cells is also regulated by the phosphorylation of Tm1 at Ser283. CONCLUSION Our finding strongly support the role for the phosphorylation of endothelial Tm1 at Ser283 to prevent endothelial barrier dysfunction associated with oxidative stress injury.
Collapse
Affiliation(s)
- Bryan Simoneau
- Centre de recherche du CHU de Québec, l'Hôtel-Dieu de Québec et Le Centre de recherche en cancérologie de l'Université Laval, 9 rue McMahon, Québec, G1R 2J6, Canada.
| | | | | |
Collapse
|
38
|
Selvakumar K, Prabha RL, Saranya K, Bavithra S, Krishnamoorthy G, Arunakaran J. Polychlorinated biphenyls impair blood–brain barrier integrity via disruption of tight junction proteins in cerebrum, cerebellum and hippocampus of female Wistar rats. Hum Exp Toxicol 2012; 32:706-20. [DOI: 10.1177/0960327112464798] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Polychlorinated biphenyls (PCBs) comprise a ubiquitous class of toxic substances associated with carcinogenic and tumor-promoting effects as well as neurotoxic properties. Reactive oxygen species, which is produced from PCBs, alters blood–brain barrier (BBB) integrity, which is paralleled by cytoskeletal rearrangements and redistribution and disappearance of tight junction proteins (TJPs) like claudin-5 and occludin. Quercetin, a potent antioxidant present in onion and other vegetables, appears to protect brain cells against oxidative stress, a tissue-damaging process associated with Alzheimer’s and other neurodegenerative disorders. The aim of this study is to analyze the role of quercetin on oxidative stress markers and transcription of transmembrane and cytoplasmic accessory TJPs on cerebrum, cerebellum and hippocampus of female rats exposed to PCBs. Rats were divided into the following four groups. Group I: received only vehicle (corn oil) intraperitoneally (i.p.); group II: received Aroclor 1254 at a dose of 2 mg/kg body weight (bwt)/day (i.p); group III: received Aroclor 1254 (i.p.) and simultaneously quercetin 50 mg/kg bwt/day through gavage and group IV: received quercetin alone gavage. From the experiment, the levels of hydrogen peroxide, lipid peroxidation and thiobarbituric acid reactive substances were observed to increase significantly in cerebrum, cerebellum and hippocampus as 50%, 25% and 20%, respectively, after exposure to PCB, and the messenger RNA expression of TJP in rats exposed to PCBs is decreased and is retrieved to the normal level simultaneously in quercetin-treated rats. Hence, quercetin can be used as a preventive medicine to PCBs exposure and prevents neurodegenerative disorders.
Collapse
Affiliation(s)
- K. Selvakumar
- Department of Endocrinology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - R. Lakshmi Prabha
- Department of Endocrinology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - K. Saranya
- Department of Endocrinology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - S. Bavithra
- Department of Endocrinology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - G. Krishnamoorthy
- Department of Biochemistry, Asan Memorial Dental College and Hospital, Asan Nagar, Chengalpattu, India
| | - J. Arunakaran
- Department of Endocrinology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|