1
|
Zhang X, Ji D, Zhang Y, Du C, Liang L, Ahmad A, Feng Y, Ye G. Study on the mechanism of action of berberine combined with Jianpi Yishen Huazhuo formulation in treating obese polycystic ovary syndrome by activating PI3K/AKT signaling pathway. Gynecol Endocrinol 2025; 41:2462068. [PMID: 39967331 DOI: 10.1080/09513590.2025.2462068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/19/2025] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
OBJECTIVES This study aims to investigate the effects and potential mechanisms of berberine in conjunction with Jianpi Yishen Huazhuo formulation (JPYSHZF) on obese rats that serve as a model for polycystic ovary syndrome (PCOS). METHODS Letrozole combined with high-fat diet (HFD) was used to establish an overweight PCOS rat model. After successful modeling, each intervention group was monitored for 28 d. An oral glucose tolerance test (OGTT) is performed to assess glucose metabolism. Enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of sex hormones and serum levels of gastrointestinal hormones in rats. Biochemical analyzers were used to assess blood lipid levels. The protein expression levels of p38, PI3K, GLUT4, and AKT in ovarian tissue were demonstrated using Western Blotting (WB). Real-time fluorescence quantitative PCR (RT-qPCR) was used to measure the mRNA expression levels of p38, PI3K, GLUT4 and AKT in the same tissue. The morphological changes of ovarian tissue were observed using Hematoxylin-eosin (HE). RESULTS Treatment with berberine in conjunction with JPYSHZF has been shown to reduce serum testosterone T and luteinizing hormone (LH) levels while increasing serum follicle-stimulating hormone (FSH) and E2 levels. This combination therapy also decreases the LH/FSH ratio and ameliorates polycystic ovary-like pathological changes in the ovaries of rats with PCOS. Additionally, this treatment decreases serum TC, TG, and LDL-c levels while increasing HDL-c levels. It also reduces levels of GLU and Ghrelin while enhancing levels of CCK, PYY, and GLP-1. Furthermore, the relative 6 of PI3K and AKT proteins, as well as the mRNA levels of PI3K, GLUT4, and AKT, were found to be increased. CONCLUSIONS Berberine combined with JPYSHZF can improve the sex hormone levels, ovarian function, glucose and lipid metabolism levels, and gastrointestinal hormone levels in obese PCOS rats by activating the PI3K/AKT signaling pathway, thereby playing a role in treating obese PCOS.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Gynecology, Ningxia Hui Autonomous Region Hospital of Traditional Chinese Medicine and the Research Institute of Traditional Chinese Medicine, Ningxia, China
| | - Dejiang Ji
- Department of Acupuncture and Moxibustion, Ningxia Hui Autonomous Region Hospital of Traditional Chinese Medicine and the Research Institute of Traditional Chinese Medicine, Ningxia, China
| | - Yan Zhang
- The First Clinical Medical College of Ningxia Medical University, Ningxia, China
| | - Cuizhong Du
- Department of Gynecology, Ningxia Hui Autonomous Region Hospital of Traditional Chinese Medicine and the Research Institute of Traditional Chinese Medicine, Ningxia, China
| | - Lijun Liang
- Department of Pediatrics, General Hospital of Ningxia Medical University, Ningxia, China
| | - Aqsa Ahmad
- The First Clinical Medical College of Ningxia Medical University, Ningxia, China
| | - Yahong Feng
- Department of Gynecology, Ningxia Hui Autonomous Region Hospital of Traditional Chinese Medicine and the Research Institute of Traditional Chinese Medicine, Ningxia, China
| | - Gaxi Ye
- Department of Acupuncture and Moxibustion, Ningxia Hui Autonomous Region Hospital of Traditional Chinese Medicine and the Research Institute of Traditional Chinese Medicine, Ningxia, China
| |
Collapse
|
2
|
Kaduk K, Petrella A, Müller SJ, Koenig J, Kroemer NB. Non-Invasive Auricular Vagus Nerve Stimulation Decreases Heart Rate Variability Independent of Caloric Load. Psychophysiology 2025; 62:e70017. [PMID: 40007175 PMCID: PMC11862327 DOI: 10.1111/psyp.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
The vagus nerve is crucial in regulating physiological functions, including the cardiovascular system. While heart rate (HR) and its variability (HRV) may provide non-invasive proxies of cardiac vagal activity, transcutaneous auricular vagus nerve stimulation (taVNS) has yielded mixed effects, with limited research on right branch stimulation. In a randomized crossover study with 36 healthy participants, we investigated taVNS effects on HR and HRV indexed by SDRR, RMSSD, HF-HRV, and LF/HF ratio. To assess the impact of the stimulation side (left vs. right ear) on cardiovascular indices and interaction with the physiological state, we recorded electrocardiograms in four sessions per person, covering three session phases: baseline, during stimulation (taVNS vs. sham), and post-milkshake consumption with stimulation. First, we found moderate evidence against taVNS affecting HR (BF10 = 0.21). Second, taVNS decreased HRV (multivariate p = 0.004) independent of physiological state, with strong evidence for RMSSD (BF10 = 15.11) and HF-HRV (BF10 = 11.80). Third, taVNS-induced changes were comparable across sides and stronger than sham, indicating consistent cardiovascular effects independent of the stimulation side. We conclude that taVNS reduces HRV as indexed by RMSSD, HF-HRV, and SDRR without altering HR, contradicting the assumption that taVNS per se increases cardiovagal activity as indexed by increased HRV due to stimulating vagal afferents. Instead, our results support the role of vagal afferent activation in arousal. Crucially, taVNS on both sides can safely modulate the cardiovascular system without increasing the risk of bradycardia or causing adverse events in healthy participants, offering new treatment possibilities.
Collapse
Affiliation(s)
- Kristin Kaduk
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental HealthUniversity of TübingenTübingenGermany
- German Center for Mental Health (DZPG), partner site TübingenTübingenGermany
| | - Alessandro Petrella
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental HealthUniversity of TübingenTübingenGermany
| | - Sophie J. Müller
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental HealthUniversity of TübingenTübingenGermany
| | - Julian Koenig
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Nils B. Kroemer
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental HealthUniversity of TübingenTübingenGermany
- German Center for Mental Health (DZPG), partner site TübingenTübingenGermany
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of MedicineUniversity of BonnBonnGermany
| |
Collapse
|
3
|
Soengas JL, Comesaña S, Blanco AM, Conde-Sieira M. Feed Intake Regulation in Fish: Implications for Aquaculture. REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2025; 33:8-60. [DOI: 10.1080/23308249.2024.2374259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- José L. Soengas
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Sara Comesaña
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Ayelén M. Blanco
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Marta Conde-Sieira
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
4
|
Niu Y, Yu W, Kou X, Wu S, Liu M, Chen C, Ji J, Shao Y, Xue Z. Bioactive compounds regulate appetite through the melanocortin system: a review. Food Funct 2024; 15:11811-11833. [PMID: 39506527 DOI: 10.1039/d4fo04024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Obesity, a significant health crisis, arises from an imbalance between energy intake and expenditure. Enhancing appetite regulation has garnered substantial attention from researchers as a novel and effective strategy for weight management. The melanocortin system, situated in the hypothalamus, is recognized as a critical node in the regulation of appetite. It integrates long-term and short-term hormone signals from the periphery as well as nutrients, forming a complex network of interacting feedback mechanisms with the gut-brain axis, significantly contributing to the regulation of energy homeostasis. Appetite regulation by bioactive compounds has been a focus of intensive research due to their favorable safety profiles and easy accessibility. These bioactive compounds, derived from a variety of plant and animal sources, modulate the melanocortin system and influence appetite and energy homeostasis through multiple pathways: central nervous system, peripheral hormones, and intestinal microbiota. Here, we review the anatomy, function, and receptors of the melanocortin system, outline the long-term and short-term regulatory hormones that act on the melanocortin system, and discuss the bioactive compounds and their mechanisms of action that exert a regulatory effect on appetite by targeting the melanocortin system. This review contributes to a better understanding of how bioactive compounds regulate appetite via the melanocortin system, thereby providing nutritional references for citizens' dietary preferences.
Collapse
Affiliation(s)
- Yujia Niu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Shuqi Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Chenlong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jiaxin Ji
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Ying Shao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
5
|
Drougard A, Ma EH, Wegert V, Sheldon R, Panzeri I, Vatsa N, Apostle S, Fagnocchi L, Schaf J, Gossens K, Völker J, Pang S, Bremser A, Dror E, Giacona F, Sagar S, Henderson MX, Prinz M, Jones RG, Pospisilik JA. An acute microglial metabolic response controls metabolism and improves memory. eLife 2024; 12:RP87120. [PMID: 39625057 PMCID: PMC11614388 DOI: 10.7554/elife.87120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
Chronic high-fat feeding triggers metabolic dysfunction including obesity, insulin resistance, and diabetes. How high-fat intake first triggers these pathophysiological states remains unknown. Here, we identify an acute microglial metabolic response that rapidly translates intake of high-fat diet (HFD) to a surprisingly beneficial effect on metabolism and spatial/learning memory. High-fat intake rapidly increases palmitate levels in cerebrospinal fluid and triggers a wave of microglial metabolic activation characterized by mitochondrial membrane activation and fission as well as metabolic skewing toward aerobic glycolysis. These effects are detectable throughout the brain and can be detected within as little as 12 hr of HFD exposure. In vivo, microglial ablation and conditional DRP1 deletion show that the microglial metabolic response is necessary for the acute effects of HFD. 13C-tracing experiments reveal that in addition to processing via β-oxidation, microglia shunt a substantial fraction of palmitate toward anaplerosis and re-release of bioenergetic carbons into the extracellular milieu in the form of lactate, glutamate, succinate, and intriguingly, the neuroprotective metabolite itaconate. Together, these data identify microglia as a critical nutrient regulatory node in the brain, metabolizing away harmful fatty acids and liberating the same carbons as alternate bioenergetic and protective substrates for surrounding cells. The data identify a surprisingly beneficial effect of short-term HFD on learning and memory.
Collapse
Affiliation(s)
- Anne Drougard
- Department of Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Eric H Ma
- Department of Metabolism and Nutritional Programming, Van Andel Research InstituteGrand RapidsUnited States
| | - Vanessa Wegert
- Department of Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Ryan Sheldon
- Metabolomics and Bioenergetics Core, Van Andel InstituteGrand RapidsUnited States
| | - Ilaria Panzeri
- Department of Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Naman Vatsa
- Department of Neurodegenerative Sciences, Van Andel Research InstituteGrand RapidsUnited States
| | - Stefanos Apostle
- Department of Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
| | - Judith Schaf
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Klaus Gossens
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Josephine Völker
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Shengru Pang
- Institute of Neuropathology, Medical Faculty, University of FreiburgFreiburgGermany
| | - Anna Bremser
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Erez Dror
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Francesca Giacona
- Department of Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
| | - Sagar Sagar
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
- Department of Medicine II, University Hospital FreiburgFreiburgGermany
| | - Michael X Henderson
- Department of Neurodegenerative Sciences, Van Andel Research InstituteGrand RapidsUnited States
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of FreiburgFreiburgGermany
- Centre for NeuroModulation (NeuroModBasics), University of FreiburgFreiburgGermany
- Signaling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Research InstituteGrand RapidsUnited States
| | - John Andrew Pospisilik
- Department of Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| |
Collapse
|
6
|
Netam RK. Short-term feeding of high-fat diet induces neuroinflammation and oxidative stress in arcuate nucleus in rats. INDIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY 2024; 68:126-134. [DOI: 10.25259/ijpp_627_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Objectives:
This study aimed to compare the effects of high-fat diet-induced neuroinflammation and oxidative stress in the arcuate nucleus (ARC) of obese-prone and obese-resistant rats.
Materials and Methods:
Rats were divided into obese-prone and obese-resistant groups based on their initial body weight. They were then fed either a 5% or 60% fat-containing diet. In the ARC, the expression of inflammatory markers [Interleukin (IL-6); Nuclear Factor Kappa-B Inhibitor Alpha (NFKBIA); Cluster of Differentiation (CD)-66; and mucin-like hormone receptor-like 1 (EMR-1)], as well as levels of reactive oxygen species (ROS) and antioxidant enzymes (glutathione and glutathione peroxidase and superoxide dismutase), was assessed along with body weight, blood glucose, Homeostatic Model Assessment for Insulin Resistance, plasma insulin and plasma leptin levels after ten days of intervention.
Results:
The results showed a significantly higher expression of inflammatory markers in the ARC of high-fat diet-induced obese rats after ten days. Body weight, plasma insulin, plasma leptin and hydrogen peroxide production were also significantly higher in obese-prone rats fed a high-fat diet.
Conclusion:
In conclusion, this study demonstrates that short-term consumption of a high-fat diet can lead to hypothalamic inflammation and ROS production in the ARC of rats. Obese-prone rats exhibited hyperinsulinaemia and hyperleptinaemia after short-term high-fat diet consumption.
Collapse
Affiliation(s)
- Ritesh Kumar Netam
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, Delhi, India,
| |
Collapse
|
7
|
Drougard A, Ma EH, Wegert V, Sheldon R, Panzeri I, Vatsa N, Apostle S, Fagnocchi L, Schaf J, Gossens K, Völker J, Pang S, Bremser A, Dror E, Giacona F, Sagar, Henderson MX, Prinz M, Jones RG, Pospisilik JA. An acute microglial metabolic response controls metabolism and improves memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.03.535373. [PMID: 37066282 PMCID: PMC10103996 DOI: 10.1101/2023.04.03.535373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Chronic high-fat feeding triggers chronic metabolic dysfunction including obesity, insulin resistance, and diabetes. How high-fat intake first triggers these pathophysiological states remains unknown. Here, we identify an acute microglial metabolic response that rapidly translates intake of high-fat diet (HFD) to a surprisingly beneficial effect on metabolism and spatial / learning memory. High-fat intake rapidly increases palmitate levels in cerebrospinal fluid and triggers a wave of microglial metabolic activation characterized by mitochondrial membrane activation and fission as well as metabolic skewing towards aerobic glycolysis. These effects are detectable throughout the brain and can be detected within as little as 12 hours of HFD exposure. In vivo, microglial ablation and conditional DRP1 deletion show that the microglial metabolic response is necessary for the acute effects of HFD. 13C-tracing experiments reveal that in addition to processing via β-oxidation, microglia shunt a substantial fraction of palmitate towards anaplerosis and re-release of bioenergetic carbons into the extracellular milieu in the form of lactate, glutamate, succinate, and intriguingly, the neuro-protective metabolite itaconate. Together, these data identify microglia as a critical nutrient regulatory node in the brain, metabolizing away harmful fatty acids and releasing the same carbons as alternate bioenergetic and protective substrates for surrounding cells. The data identify a surprisingly beneficial effect of short-term HFD on learning and memory.
Collapse
Affiliation(s)
- Anne Drougard
- Department of Epigenetics, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Eric H Ma
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
| | - Vanessa Wegert
- Department of Epigenetics, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Ryan Sheldon
- Metabolomics and Bioenergetics Core, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
| | - Ilaria Panzeri
- Department of Epigenetics, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Naman Vatsa
- Department of Neurodegenerative Sciences, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
| | - Stefanos Apostle
- Department of Epigenetics, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
| | - Judith Schaf
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Klaus Gossens
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Josephine Völker
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Shengru Pang
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Anna Bremser
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Erez Dror
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Francesca Giacona
- Department of Epigenetics, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
| | - Sagar
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Michael X Henderson
- Department of Neurodegenerative Sciences, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Centre for NeuroModulation (NeuroModBasics), University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
| | - J. Andrew Pospisilik
- Department of Epigenetics, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| |
Collapse
|
8
|
Guldemir HH, Buyukuslu N, Yigit P, Cakici C, Ozdemir EM. Effects of omega fatty acids on the short-term postprandial satiety related peptides in rats. INT J VITAM NUTR RES 2023; 93:401-409. [PMID: 34986656 DOI: 10.1024/0300-9831/a000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We aimed to assess the effects of omega fatty acids on time depending on responses of satiety hormones. Sixty adult rats were randomly divided into 4 groups; linoleic acid (LA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) groups. For each fatty acid, the dose of 400 mg/kg was applied by oral gavage. Blood samples were taken after the 15, 30, 60 and 120 minutes. Ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), peptide YY (PYY), leptin and insulin hormones were analyzed by ELISA. We observed the significant increases (p<0.05) of the levels of CCK between n-3 (ALA, at 60th min; EPA, at 30th and 60th min and DHA, at 60 min) and n-6 (LA) supplemented rats. The highest GLP-1 levels were in ALA (0.70 ng/mL) and DHA (0.67 ng/mL) supplemented groups at 60th and 120th min indicating n-3 fatty acids efficiency on satiety compared to LA. It seems that ALA at 60th min and EPA at 120th min could provide the highest satiety effect with the highest insulin response, while the efficiency of LA supplementation on insulin-induced satiety diminished. The only significant change in AUC values among all hormones was in the CCK of the ALA group (p=0.004). The level of leptin increased in DHA and EPA supplemented rats (p=0.140). Our results showed that dietary omega fatty acids influenced the releasing of hormones in different ways possibly depending on chain length or saturation degree. Comprehensive studies need to be addressed for each fatty acid on satiety-related peptide hormones.
Collapse
Affiliation(s)
- Hilal Hizli Guldemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Anadolu University, Eskisehir, Turkey
| | - Nihal Buyukuslu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Pakize Yigit
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Cagri Cakici
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ekrem Musa Ozdemir
- Medical Research Center (MEDITAM), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
9
|
Wunderlich ALM, Martins AB, de Souza CF, Stopa LRS, Monteiro ÉCAM, Aguiar DD, Guergolette RP, Zaia CTBV, Uchôa ET. Neonatal overnutrition, but not neonatal undernutrition, disrupts CCK-induced hypophagia and neuron activation of the nucleus of the solitary tract and paraventricular nucleus of hypothalamus of male Wistar rats. Brain Res Bull 2023; 195:109-119. [PMID: 36813046 DOI: 10.1016/j.brainresbull.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Metabolic programming may be induced by reduction or enhancement of litter size, which lead to neonatal over or undernutrition, respectively. Changes in neonatal nutrition can challenge some regulatory processes in adulthood, such as the hypophagic effect of cholecystokinin (CCK). In order to investigate the effects of nutritional programming on the anorexigenic function of CCK in adulthood, pups were raised in small (SL, 3 pups per dam), normal (NL, 10 pups per dam), or large litters (LL, 16 pups per dam), and on postnatal day 60, male rats were treated with vehicle or CCK (10 µg/Kg) for the evaluation of food intake and c-Fos expression in the area postrema (AP), nucleus of solitary tract (NTS), and paraventricular (PVN), arcuate (ARC), ventromedial (VMH), and dorsomedial (DMH) nuclei of the hypothalamus. Overnourished rats showed increased body weight gain that was inversely correlated with neuronal activation of PaPo, VMH, and DMH neurons, whereas undernourished rats had lower body weight gain, inversely correlated with increased neuronal activation of PaPo only. SL rats showed no anorexigenic response and lower neuron activation in the NTS and PVN induced by CCK. LL exhibited preserved hypophagia and neuron activation in the AP, NTS, and PVN in response to CCK. CCK showed no effect in c-Fos immunoreactivity in the ARC, VMH, and DMH in any litter. These results indicate that anorexigenic actions, associated with neuron activation in the NTS and PVN, induced by CCK were impaired by neonatal overnutrition. However, these responses were not disrupted by neonatal undernutrition. Thus, data suggest that an excess or poor supply of nutrients during lactation display divergent effects on programming CCK satiation signaling in male adult rats.
Collapse
Affiliation(s)
| | - Andressa Busetti Martins
- Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Camila Franciele de Souza
- Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Larissa Rugila S Stopa
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | | | - Danielly D Aguiar
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Rhauany P Guergolette
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Cássia Thaïs B V Zaia
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil; Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil; Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Ernane Torres Uchôa
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil; Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil; Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil.
| |
Collapse
|
10
|
Ye W, Xing J, Yu Z, Hu X, Zhao Y. Mechanism and treatments of antipsychotic-induced weight gain. Int J Obes (Lond) 2023; 47:423-433. [PMID: 36959286 DOI: 10.1038/s41366-023-01291-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
The long-term use of antipsychotics (APs) may cause a variety of diseases, such as metabolic syndrome, antipsychotic-induced weight gain (AIWG), and even obesity. This paper reviews the various mechanisms of AIWG and obesity in detail, involving genetics, the central nervous system, the neuroendocrine system, and the gut microbiome. The common drug and non-drug therapies used in clinical practice are also introduced, providing the basis for research on the molecular mechanisms and the future selection of treatments.
Collapse
Affiliation(s)
- Wujie Ye
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyu Xing
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zekai Yu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xingang Hu
- Internal encephalopathy of traditional Chinese medicine, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Yan Zhao
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
11
|
Zhao L, Ding Y, Yang C, Wang P, Zhao Z, Ma Y, Shi Y, Kang X. Identification and characterization of hypothalamic circular RNAs associated with bovine residual feed intake. Gene 2023; 851:147017. [PMID: 36341726 DOI: 10.1016/j.gene.2022.147017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/04/2022]
Abstract
Residual feed intake (RFI) is crucial economic indicator used for calculating the feed efficiency of growing beef cattle. circRNA plays an important biological role in gene transcriptional regulation, but little is known about its potential functional regulation underlying RFI phenotypic variation. As the core center of regulation of animal feeding, the hypothalamus is closely associated with RFI. Therefore, the present study aimed to identify the key genes and functional pathways contributing to variance in cattle RFI phenotypes using RNA sequencing from hypothalamic tissue samples, in order to gain insight into the potential regulatory role of circRNAs in bovine RFI phenotypic variation. Differentially expressed genes were detected by RNA sequencing for beef cattle in the high and low RFI groups, followed by GO, KEGG enrichment, and circRNA-miRNA co-expression network analysis. A total of 257 circRNAs were differentially expressed between the two groups, with 128 significantly upregulated and 129 significantly downregulated genes in H group compared to L group. Among them, 9 unique circRNAs were present in group L and 4 unique circRNAs were present in group H. GO and KEGG enrichment analysis of the source genes of the differentially expressed circRNAs revealed that they were mainly involved in metabolic processes, such as cellular metabolic processes, cellular macromolecular metabolic processes, and regulatory pathways related to nutrient metabolism, including protein and amino acid metabolism, as well as vitamin metabolism and pancreatic secretion associated with the animal feeding behavior. The circRNAs detected in this study were mostly novel, and have not been investigated directly to be associated with the RFI phenotype. Interestingly, most miRNAs of differentially expressed circRNAs predicted based on the circRNA-miRNA co-expression network analysis by using top 50 differentially expressed circRNAs and 13 unique circRNAs, have been reported to be related to animal RFIs, implying that circRNAs in bovine hypothalamic tissue may regulate phenotypic variation in RFI through miRNAs. The study results illustrate the complex biological functions of the hypothalamus in regulating feed efficiency and showing the potential role of circRNAs in the feeding behavior regulation of livestock, which would contributing to expanding the understanding of circRNA.
Collapse
|
12
|
Obesity-Related Genes Expression in Testes and Sperm Parameters Respond to GLP-1 and Caloric Restriction. Biomedicines 2022; 10:biomedicines10102609. [PMID: 36289871 PMCID: PMC9599882 DOI: 10.3390/biomedicines10102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022] Open
Abstract
Aim: Calorie restriction (CR) diets and glucagon-Like Peptide-1 (GLP-1) analogs are known to alter energy homeostasis with the potential to affect the expression of obesity-related genes (ORGs). We hypothesized that CR and GLP-1 administration can alter ORGs expression in spermatozoa and testes, as well as the sperm parameters implicated in male fertility. Materials and Methods: Six-week-old adult male Wistar rats (n = 16) were divided into three groups, submitted either to CR (n = 6, fed with 30% less chow diet than the control rats), GLP-1 administration (n = 5, 3.5 pmol/min/kg intraperitoneal) for 28 days, or used as controls (n = 5, fed ad libitum). Selected ORGs expression, namely the fat mass and obesity-associated (FTO), melanocortin-4 receptor (MC4R), glucosamine-6-phosphate deaminase 2 (GNPDA2), and transmembrane protein 18 (TMEM18) were evaluated in testes and spermatozoa by a quantitative polymerase chain reaction (qPCR). Results: CR resulted in lower body weight gain and insulin resistance, but a higher percentage of sperm head defects. GLP-1 administration, despite showing no influence on body weight or glucose homeostasis, resulted in a lower percentage of sperm head defects. CR and GLP-1 administration were associated with a higher expression of all ORGs in the testes. Under CR conditions, the genes FTO and TMEM18 expression in the testes and the MC4R and TMEM18 transcripts abundance in sperm were positively correlated with the spermatozoa oxidative status. The abundance of FTO and TMEM18 in the spermatozoa of rats under CR were positively correlated with sperm concentration, while the testes’ TMEM18 expression was also positively correlated with sperm vitality and negatively correlated with insulin resistance. Testes GNPDA2 expression was negatively correlated with sperm head defects. Conclusions: CR and GLP-1 administration results in higher ORGs expression in testes, and these were correlated with several alterations in sperm fertility parameters.
Collapse
|
13
|
Chen X, Xiao Z, Cai Y, Huang L, Chen C. Hypothalamic mechanisms of obesity-associated disturbance of hypothalamic-pituitary-ovarian axis. Trends Endocrinol Metab 2022; 33:206-217. [PMID: 35063326 DOI: 10.1016/j.tem.2021.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022]
Abstract
Ovulatory disorders are the most common clinical feature exhibited among obese women. Initiation of ovulation physiologically requires a surge of gonadotropin-releasing hormone (GnRH) released from GnRH neurons located in the hypothalamus. These GnRH neurons receive metabolic signals from circulation and vicinal neurons to regulate GnRH release. Leptin acts indirectly on GnRH via adjacent leptin receptor (LEPR)-expressing neurons such as proopiomelanocortin (POMC), neuropeptide Y (NPY)/agouti-related peptide (AgRP), and neuronal nitric oxide (NO) synthase (nNOS) neurons to affect GnRH neuronal activities. Additionally, hypothalamic inflammation also affects ovulation independent of obesity. Therefore, this review focuses on hypothalamic mechanisms that underlie the disturbance of hypothalamic-pituitary-ovarian (HPO) axis during obesity with an attempt to promote future studies and/or novel therapeutic strategies for ovulatory disorders in obesity.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Zhuoni Xiao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Lili Huang
- School of Biomedical Science, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Chen Chen
- School of Biomedical Science, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
14
|
Kęska A, Tkaczyk J, Malara M, Iwańska D. Metabolic Risk Factors in Young Men With Healthy Body Fat But Different Level of Physical Activity. Am J Mens Health 2022; 16:15579883211070384. [PMID: 35045742 PMCID: PMC8785314 DOI: 10.1177/15579883211070384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The study was performed to evaluate metabolic risk in young lean individuals characterized by different physical activity. A total of 194 students (93 active with 5–7 h weekly physical activity and 101 inactive) were accepted for the study. The following percentages of body fat were accepted as characteristic for lean men: 14% to 17% in active and 18% to 24% in inactive participants. Circulating glucose, insulin, triacylglycerols (TG), total cholesterol (TC), and high-dendity lipoprotein (HDL)-cholesterol (HDL-C) were assayed. Daily intake of energy and macronutrients was briefly assessed from 24 h food records collected over 4 days preceding blood collection. Insulin and TG differed with respect to physical activity and was lower by 37.5% and 12.5%, respectively, in active versus inactive participants. In active students with upper quartile of body fat percentage, the only significant difference was found between circulating insulin (by 28%, p < .04). In inactive participants with upper quartile of body fat, significant differences were found between levels of insulin and TG (by 25% and by 37.5%, respectively). Diet composition did not differ with respect to the percentage of energy derived from protein, fat, and carbohydrates. An inverse association between insulin level and the percentage of body fat seems to be physiological one because it has been noted in both active and inactive individuals. On the contrary, elevation in circulating TG found exclusively in inactive subjects seems to be secondary to the changes in adiposity and circulating insulin and is followed by tendency to higher levels of TC.
Collapse
Affiliation(s)
- Anna Kęska
- Department of Human Biology, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Joanna Tkaczyk
- Department of Human Biology, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Marzena Malara
- Department of Human Biology, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Dagmara Iwańska
- Department of Biomedical Sciences, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| |
Collapse
|
15
|
Coupling of GABA Metabolism to Mitochondrial Glucose Phosphorylation. Neurochem Res 2021; 47:470-480. [PMID: 34623563 DOI: 10.1007/s11064-021-03463-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
Glucose and oxygen (O2) are vital to the brain. Glucose metabolism and mitochondria play a pivotal role in this process, culminating in the increase of reactive O2 species. Hexokinase (HK) is a key enzyme on glucose metabolism and is coupled to the brain mitochondrial redox modulation by recycling ADP for oxidative phosphorylation (OXPHOS). GABA shunt is an alternative pathway to GABA metabolism that increases succinate levels, a Krebs cycle intermediate. Although glucose and GABA metabolisms are intrinsically connected, their interplay coordinating mitochondrial function is poorly understood. Here, we hypothesize that the HK and the GABA shunt interact to control mitochondrial metabolism differently in the cortex and the hypothalamus. The GABA shunt stimulated mitochondrial O2 consumption and H2O2 production higher in hypothalamic synaptosomes (HSy) than cortical synaptosomes (CSy). The GABA shunt increased the HK coupled to OXPHOS activity in both population of synaptosomes, but the rate of activation was higher in HSy than CSy. Significantly, malonate and vigabatrin blocked the effects of the GABA shunt in the HK activity coupled to OXPHOS. It indicates that the glucose phosphorylation is linked to GABA and Krebs cycle reactions. Together, these data shed light on the HK and SDH role on the metabolism of each region fed by GABA turnover, which depends on the neurons' metabolic route.
Collapse
|
16
|
Cavalcanti-de-Albuquerque JP, Donato J. Rolling out physical exercise and energy homeostasis: Focus on hypothalamic circuitries. Front Neuroendocrinol 2021; 63:100944. [PMID: 34425188 DOI: 10.1016/j.yfrne.2021.100944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 01/17/2023]
Abstract
Energy balance is the fine regulation of energy expenditure and energy intake. Negative energy balance causes body weight loss, while positive energy balance promotes weight gain. Modern societies offer a maladapted way of life, where easy access to palatable foods and the lack of opportunities to perform physical activity are considered the roots of the obesity pandemic. Physical exercise increases energy expenditure and, consequently, is supposed to promote weight loss. Paradoxically, physical exercise acutely drives anorexigenic-like effects, but the mechanisms are still poorly understood. Using an evolutionary background, this review aims to highlight the potential involvement of the melanocortin system and other hypothalamic neural circuitries regulating energy balance during and after physical exercise. The physiological significance of these changes will be explored, and possible signalling agents will be addressed. The knowledge discussed here might be important for clarifying obesity aetiology as well as new therapeutic approaches for body weight loss.
Collapse
Affiliation(s)
| | - José Donato
- Department of Physiology and Biophysics, University of São Paulo, São Paulo 05508-900, Brazil.
| |
Collapse
|
17
|
Nagata T, Adachi Y, Taniguchi A, Kimura Y, Iitaka D, Iwata G, Yamaoka N. Impact of Preoperative Nutritional Indicator on Poor Postoperative Outcomes in Geriatric Patients with Colorectal Cancer. Nutr Cancer 2021; 74:1347-1355. [PMID: 34547938 DOI: 10.1080/01635581.2021.1952625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The present study aimed to analyze the association between preoperative nutritional assessment and poor postoperative outcomes in geriatric patients with colorectal cancer. This retrospective study included 138 patients aged ≥80 years with colorectal cancer who underwent surgery from January 2013 to December 2018. Patients were classified into two groups according to outcomes, poor group and normal group. Clinicopathological factors were compared between the groups, and the relationships of several nutritional indices were examined. There was no significant difference in sex, age, or preoperative comorbidities. There were significant differences in volume of blood loss and proportion of laparoscopic surgery. The group with poor outcomes had significantly higher neutrophil/lymphocyte ratio (NLR) and modified Glasgow prognostic score (mGPS) than the group with normal outcomes. Multivariate analysis revealed that open approach, high NLR, and category D mGPS were independent risk factors of poor postoperative outcomes in elderly patients with colorectal cancer. Our findings indicate that mGPS and NLR could be useful nutritional indicators of short-term outcomes of surgical treatment in geriatric patients with colorectal cancer. They can be evaluated based on albumin and C-reactive protein levels and blood count, which are inexpensive and beneficial to use in routine clinical practice.
Collapse
Affiliation(s)
- Tomoyuki Nagata
- Department of Surgery, Kyoto Chubu Medical Center, Nantan, Japan
| | - Yuki Adachi
- Department of Surgery, Kyoto Chubu Medical Center, Nantan, Japan
| | | | - Yu Kimura
- Department of Surgery, Kyoto Chubu Medical Center, Nantan, Japan
| | - Daisuke Iitaka
- Department of Surgery, Kyoto Chubu Medical Center, Nantan, Japan
| | - George Iwata
- Department of Surgery, Kyoto Chubu Medical Center, Nantan, Japan
| | - Nobuki Yamaoka
- Department of Surgery, Kyoto Chubu Medical Center, Nantan, Japan
| |
Collapse
|
18
|
Martínez-García MÁ, Moncayo S, Insenser M, Álvarez-Blasco F, Luque-Ramírez M, Escobar-Morreale HF. Postprandial responses of circulating energy homeostasis mediators to single macronutrient challenges: influence of obesity and sex hormones. Food Funct 2021; 12:1051-1062. [PMID: 33443255 DOI: 10.1039/d0fo02305a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We analysed the influence of obesity, sex and sex steroids on the postprandial responses of circulating energy homeostasis mediators and their receptors to different macronutrient challenges. Seventeen women with polycystic ovary syndrome (PCOS, 8 with obesity), 17 non-hyperandrogenic control women (8 with obesity) and 19 control men (9 with obesity) were submitted, on alternate days, to isocaloric (300 kcal) oral glucose, lipid and protein loads. We evaluated serum ghrelin, leptin, soluble leptin receptor and adiponectin levels and the leukocyte gene expression of ghrelin (GHRL) and its receptor (GHSR), leptin receptor (LEPR) and adiponectin receptor 1 (ADIPOR1) during the macronutrient challenges. The postprandial responses of circulating energy homeostasis mediators were entirely different than those of their related genes. After macronutrient loads the postprandial response of serum energy homeostasis mediators showed a generalized physiological decrease that was blunted in subjects with obesity but was not influenced by sex, sex hormones or PCOS. However, gene expression of GHRL, LEPR and ADIPOR1 showed a marked increase following the ingestion of glucose compared with lipids and proteins, regardless of obesity and sex steroids. The physiological decrease after macronutrient loads, that was deregulated in obesity, did not reflect the acute leukocyte gene expression mainly after glucose, and may suggest a possible role for ghrelin, leptin and adiponectin in the postprandial inflammatory process.
Collapse
Affiliation(s)
- M Ángeles Martínez-García
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| | - Samuel Moncayo
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| | - María Insenser
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| | - Francisco Álvarez-Blasco
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| | - Manuel Luque-Ramírez
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| | - Héctor F Escobar-Morreale
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| |
Collapse
|
19
|
Puklin L, Cartmel B, Harrigan M, Lu L, Li FY, Sanft T, Irwin ML. Randomized trial of weight loss on circulating ghrelin levels among breast cancer survivors. NPJ Breast Cancer 2021; 7:49. [PMID: 33976224 PMCID: PMC8113314 DOI: 10.1038/s41523-021-00260-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/08/2021] [Indexed: 02/05/2023] Open
Abstract
Obesity among breast cancer survivors is associated with increased risk for recurrence and mortality. The hormone ghrelin plays a role in initiating appetite and thus regulating body weight. This study aims to determine the effect of a lifestyle intervention on ghrelin levels in breast cancer survivors with a body mass index (BMI) ≥ 25 kg/m2. The Lifestyle, Exercise, and Nutrition (LEAN) study was a 6-month randomized trial, examining the effectiveness of a weight loss intervention versus usual care in 151 breast cancer survivors with BMI ≥ 25 kg/m2. Ghrelin was measured in fasting baseline and 6-month blood samples. Baseline associations between ghrelin, body composition, and blood biomarkers were examined. Six-month change in ghrelin was compared between study arms. Ghrelin measurements were available for 149 women. At baseline, ghrelin was correlated with age (r = 0.28, p < 0.001) and inversely correlated with weight (r = -0.18, p = 0.03), lean body mass (r = -0.18, p = 0.02), and leptin (r = -0.18, p = 0.03). Over 6 months, ghrelin increased by 144 pg/mL (7.2%) in the intervention and decreased by 466 pg/mL (32.5%) in the usual care (p = 0.07). Among all women, greater weight loss was associated with an increase in ghrelin (p = 0.01). These findings indicate that weight loss, achieved through a lifestyle intervention, is associated with higher ghrelin levels in breast cancer survivors which may be informative for developing sustainable weight loss programming for this population. Future research should investigate the long term impacts of lifestyle interventions on ghrelin levels in the context of weight maintenance and weight regain.
Collapse
Affiliation(s)
- Leah Puklin
- Yale University School of Public Health, New Haven, CT, USA.
| | - Brenda Cartmel
- Yale University School of Public Health, New Haven, CT, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Maura Harrigan
- Yale University School of Public Health, New Haven, CT, USA
| | - Lingeng Lu
- Yale University School of Public Health, New Haven, CT, USA
| | - Fang-Yong Li
- Yale University School of Public Health, New Haven, CT, USA
| | - Tara Sanft
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Melinda L Irwin
- Yale University School of Public Health, New Haven, CT, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
20
|
Libowitz MR, Nurmi EL. The Burden of Antipsychotic-Induced Weight Gain and Metabolic Syndrome in Children. Front Psychiatry 2021; 12:623681. [PMID: 33776816 PMCID: PMC7994286 DOI: 10.3389/fpsyt.2021.623681] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Antipsychotic medications are critical to child and adolescent psychiatry, from the stabilization of psychotic disorders like schizophrenia, bipolar disorder, and psychotic depression to behavioral treatment of autism spectrum disorder, tic disorders, and pediatric aggression. While effective, these medications carry serious risk of adverse events-most commonly, weight gain and cardiometabolic abnormalities. Negative metabolic consequences affect up to 60% of patients and present a major obstacle to long-term treatment. Since antipsychotics are often chronically prescribed beginning in childhood, cardiometabolic risk accumulates. An increased susceptibility to antipsychotic-induced weight gain (AIWG) has been repeatedly documented in children, particularly rapid weight gain. Associated cardiometabolic abnormalities include central obesity, insulin resistance, dyslipidemia, and systemic inflammation. Lifestyle interventions and medications such as metformin have been proposed to reduce risk but remain limited in efficacy. Furthermore, antipsychotic medications touted to be weight-neutral in adults can cause substantial weight gain in children. A better understanding of the biological underpinnings of AIWG could inform targeted and potentially more fruitful treatments; however, little is known about the underlying mechanism. As yet, modest genetic studies have nominated a few risk genes that explain only a small percentage of the risk. Recent investigations have begun to explore novel potential mechanisms of AIWG, including a role for gut microbiota and microbial metabolites. This article reviews the problem of AIWG and AP metabolic side effects in pediatric populations, proposed mechanisms underlying this serious side effect, and strategies to mitigate adverse impact. We suggest future directions for research efforts that may advance the field and lead to improved clinical interventions.
Collapse
Affiliation(s)
| | - Erika L. Nurmi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
21
|
Rangel Negrín A, Coyohua Fuentes A, de la Torre Herrera A, Cano Huertes B, Reynoso Cruz E, Ceccarelli E, Gómez Espinosa EE, Chavira Ramírez DR, Moreno Espinoza DE, Canales-Espinosa D, Maya Lastra N, Cruz Miros P, Cañadas Santiago S, Garau S, Dias PAD. Female reproductive energetics in mantled howler monkeys (Alouatta palliata): A follow-up study. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 174:396-406. [PMID: 33429455 DOI: 10.1002/ajpa.24222] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/12/2020] [Accepted: 12/20/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Reproduction entails several challenges to primate females, among which energetic costs are remarkable at certain stages of the reproductive cycle. Still, females may use behavioral and physiological strategies to cope with those challenges. We had previously reported covariation between female energetic condition through the reproductive cycle and time-budget adjustments in mantled howler monkeys (Alouatta palliata). Accordingly, we suggested that behavioral flexibility allowed coping with the energetic challenges of reproduction. Subsequent evidence from the same population, however, suggested otherwise, so we performed a follow-up study on the variation in female reproductive energetics based on a larger sample of females. METHODS We studied 48 free-ranging adult females at Los Tuxtlas (Mexico). We assessed energy balance via urinary C-peptide concentrations (2717 urine samples), behavioral energy intake and expenditure (5728 sampling hours), and physiological energy expenditure via fecal triiodothyronine metabolites (fTH3; 3138 fecal samples). RESULTS We found that energy balance varied among reproductive states: (a) cycling was a period of low C-peptide concentrations; (b) the highest C-peptide concentrations occurred during gestation; and (c) the beginning of lactation marked a notable decrease in C-peptide concentrations, which then improved at mid-lactation to again decline at lactation offset. These peaks and valleys in energy balance did not seem to be associated with variation in energy acquisition but were rather mirrored by activity levels and fTH3 during lactation. DISCUSSION Energy balance was not preserved through the reproductive cycle, supporting previous contentions that the reproductive performance of female mantled howler monkeys may be energetically constrained. The contrast between these and results that we have previously reported, highlights the importance of conducting follow-up studies to continually improve our understanding of the reproductive energetics of primate females.
Collapse
Affiliation(s)
- Ariadna Rangel Negrín
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | | | - Amalia de la Torre Herrera
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico.,Posgrado en Neuroetología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Beatriz Cano Huertes
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico.,Posgrado en Neuroetología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Eduardo Reynoso Cruz
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico.,Posgrado en Neuroetología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Enrico Ceccarelli
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico.,Posgrado en Neuroetología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Eugenia E Gómez Espinosa
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico.,Posgrado en Neuroetología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - David R Chavira Ramírez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Diana E Moreno Espinoza
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico.,Posgrado en Neuroetología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Domingo Canales-Espinosa
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Natalia Maya Lastra
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico.,Posgrado en Neuroetología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Pamela Cruz Miros
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico.,Posgrado en Neuroetología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Samuel Cañadas Santiago
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico.,Posgrado en Neuroetología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico.,Sociedad Mexicana Forense del Documento y la Escritura S.C., Xalapa, Mexico.,Departamento de Didáctica de las Ciencias Experimentales, Universidad de Granada, Granada, Spain
| | - Sara Garau
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico.,Posgrado en Neuroetología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Pedro A D Dias
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
22
|
Fürtbauer I, Christensen C, Bracken A, O'Riain MJ, Heistermann M, King AJ. Energetics at the urban edge: Environmental and individual predictors of urinary C-peptide levels in wild chacma baboons (Papio ursinus). Horm Behav 2020; 126:104846. [PMID: 32860833 DOI: 10.1016/j.yhbeh.2020.104846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/23/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
As human-modified landscapes encroach into natural habitats, wildlife face a reduction in natural food sources but also gain access to calorie-rich, human-derived foods. However, research into the energetics of wildlife living within and adjacent to urban and rural landscapes is lacking. C-peptide - a proxy for insulin production and a diagnostic tool for assessing pancreatic function in humans and domestic animals - can be quantified non-invasively from urine (uCP) and may provide a way to investigate the energetic correlates of living in human-altered landscapes. UCP is increasingly used in studies of primate energetics, and here we examine predictors of variation in uCP levels in n = 17 wild chacma baboons (Papio ursinus) living at the urban edge on the Cape Peninsula, South Africa. We find that uCP was positively associated with food provisioning and negatively with night fasting. UCP levels were comparable between winter and summer but significantly lower during spring, possibly driven by consumption of energy-rich seeds during summer and more human-derived foods during winter. UCP was elevated in pregnant females and similar for lactating and cycling females. We find no effect of dominance rank on uCP. Samples collected with synthetic Salivettes had significantly lower uCP levels than directly pipetted samples. Overall, our results indicate that uCP is a reliable, non-invasive measure of energy balance and intake in baboons, and suggest potential energetic benefits of living at the urban edge. More broadly, studies of uCP may offer unique insight into the environmental control of hormone-behaviour relationships in species crossing natural and urban environments.
Collapse
Affiliation(s)
- Ines Fürtbauer
- Department of Biosciences, College of Science, Swansea University, SA2 8PP Swansea, UK; Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa.
| | - Charlotte Christensen
- Department of Biosciences, College of Science, Swansea University, SA2 8PP Swansea, UK; Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - Anna Bracken
- Department of Biosciences, College of Science, Swansea University, SA2 8PP Swansea, UK; Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - M Justin O'Riain
- Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | | | - Andrew J King
- Department of Biosciences, College of Science, Swansea University, SA2 8PP Swansea, UK; Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
23
|
Role of Flavonoids in The Interactions among Obesity, Inflammation, and Autophagy. Pharmaceuticals (Basel) 2020; 13:ph13110342. [PMID: 33114725 PMCID: PMC7692407 DOI: 10.3390/ph13110342] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
Nowadays, obesity is considered as one of the main concerns for public health worldwide, since it encompasses up to 39% of overweight and 13% obese (WHO) adults. It develops because of the imbalance in the energy intake/expenditure ratio, which leads to excess nutrients and results in dysfunction of adipose tissue. The hypertrophy of adipocytes and the nutrients excess trigger the induction of inflammatory signaling through various pathways, among others, an increase in the expression of pro-inflammatory adipocytokines, and stress of the endoplasmic reticulum (ER). A better understanding of obesity and preventing its complications are beneficial for obese patients on two facets: treating obesity, and treating and preventing the pathologies associated with it. Hitherto, therapeutic itineraries in most cases are based on lifestyle modifications, bariatric surgery, and pharmacotherapy despite none of them have achieved optimal results. Therefore, diet can play an important role in the prevention of adiposity, as well as the associated disorders. Recent results have shown that flavonoids intake have an essential role in protecting against oxidative damage phenomena, and presents biochemical and pharmacological functions beneficial to human health. This review summarizes the current knowledge of the anti-inflammatory actions and autophagic flux of natural flavonoids, and their molecular mechanisms for preventing and/or treating obesity.
Collapse
|
24
|
Early life overnutrition impairs plasticity of non-neuronal brainstem cells and drives obesity in offspring across development in rats. Int J Obes (Lond) 2020; 44:2405-2418. [PMID: 32999409 DOI: 10.1038/s41366-020-00658-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/17/2020] [Accepted: 08/15/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The prevalence of adolescent obesity has increased dramatically, becoming a serious public health concern. While previous evidence suggests that in utero- and early postnatal overnutrition increases adult-onset obesity risk, the neurobiological mechanisms underlying this outcome are not well understood. Non-neuronal cells play an underestimated role in the physiological responses to metabolic/nutrient signals. Hypothalamic glial-mediated inflammation is now considered a contributing factor in the development and perpetuation of obesity; however, attention on the role of gliosis and microglia activation in other nuclei is still needed. METHODS/RESULTS Here, we demonstrate that early life consumption of high-fat/sucrose diet (HFSD) is sufficient to increase offspring body weight, hyperleptinemia and potentially maladaptive cytoarchitectural changes in the brainstem dorsal-vagal-complex (DVC), an essential energy balance processing hub, across postnatal development. Our data demonstrate that pre- and postnatal consumption of HFSD result in increased body weight, hyperleptinemia and dramatically affects the non-neuronal landscape, and therefore the plasticity of the DVC in the developing offspring. CONCLUSIONS Current findings are very provocative, considering the importance of the DVC in appetite regulation, suggesting that HFSD-consumption during early life may contribute to subsequent obesity risk via DVC cytoarchitectural changes.
Collapse
|
25
|
Pena-Leon V, Perez-Lois R, Seoane LM. mTOR Pathway is Involved in Energy Homeostasis Regulation as a Part of the Gut-Brain Axis. Int J Mol Sci 2020; 21:ijms21165715. [PMID: 32784967 PMCID: PMC7460813 DOI: 10.3390/ijms21165715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Mammalian, or mechanic, target of rapamycin (mTOR) signaling is a crucial factor in the regulation of the energy balance that functions as an energy sensor in the body. The present review explores how the mTOR/S6k intracellular pathway is involved in modulating the production of different signals such as ghrelin and nesfatin-1 in the gastrointestinal tract to regulate food intake and body weight. The role of gastric mTOR signaling in different physiological processes was studied in depth through different genetic models that allow the modulation of mTOR signaling in the stomach and specifically in gastric X/A type cells. It has been described that mTOR signaling in X/A-like gastric cells has a relevant role in the regulation of glucose and lipid homeostasis due to its interaction with different organs such as liver and adipose tissue. These findings highlight possible therapeutic strategies, with the gut–brain axis being one of the most promising targets in the treatment of obesity.
Collapse
Affiliation(s)
- Veronica Pena-Leon
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (V.P.-L.); (R.P.-L.)
- Centro de Investigacion Biomedica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Raquel Perez-Lois
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (V.P.-L.); (R.P.-L.)
- Centro de Investigacion Biomedica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Luisa Maria Seoane
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (V.P.-L.); (R.P.-L.)
- Centro de Investigacion Biomedica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
- Correspondence:
| |
Collapse
|
26
|
Ferreira de Sá DS, Römer S, Brückner AH, Issler T, Hauck A, Michael T. Effects of intranasal insulin as an enhancer of fear extinction: a randomized, double-blind, placebo-controlled experimental study. Neuropsychopharmacology 2020; 45:753-760. [PMID: 31896118 PMCID: PMC7076012 DOI: 10.1038/s41386-019-0593-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/26/2019] [Accepted: 12/16/2019] [Indexed: 01/27/2023]
Abstract
Fear-extinction based psychotherapy (exposure) is the most effective method for treating anxiety disorders. Notwithstanding, since some patients show impairments in the unlearning of fear and insufficient fear remission, there is a growing interest in using cognitive enhancers as adjuvants to exposure. As insulin plays a critical role in stress processes and acts as a memory enhancer, this study aimed to assess the capacity of intranasal insulin to augment fear extinction. A double-blind, placebo-controlled differential fear-conditioning paradigm was conducted in 123 healthy participants (63 females). Pictures of faces with neutral expressions were used as conditioned stimuli and electric shocks as unconditioned stimuli. The paradigm consisted of four phases presented on three consecutive days: acquisition (day 1), extinction (day 2), reinstatement and re-extinction (day 3). A single intranasal dose of insulin (160 IU) or placebo was applied on day 2, 45 min before fear extinction. Skin conductance response (SCR), fear-potentiated startle (FPS) and expectancy ratings were assessed. During extinction, the insulin group (independent of sex) showed a significantly stronger decrease in differential FPS in comparison with the placebo group. Furthermore, a sex-specific effect was found for SCR, with women in the insulin group showing a greater decrease of differential SCR both at early extinction and at late re-extinction. Our results provide first evidence that intranasal insulin facilitates fear extinction processes and is therefore a promising adjuvant for extinction-based therapies in anxiety and related disorders. Sex-specific effects should be taken into consideration in future studies.
Collapse
Affiliation(s)
- Diana S. Ferreira de Sá
- 0000 0001 2167 7588grid.11749.3aDivision of Clinical Psychology and Psychotherapy, Department of Psychology, Saarland University, Saarbrücken, Germany
| | - Sonja Römer
- 0000 0001 2167 7588grid.11749.3aDivision of Clinical Psychology and Psychotherapy, Department of Psychology, Saarland University, Saarbrücken, Germany
| | - Alexandra H. Brückner
- 0000 0001 2167 7588grid.11749.3aDivision of Clinical Psychology and Psychotherapy, Department of Psychology, Saarland University, Saarbrücken, Germany
| | - Tobias Issler
- 0000 0001 2167 7588grid.11749.3aDivision of Clinical Psychology and Psychotherapy, Department of Psychology, Saarland University, Saarbrücken, Germany
| | - Alexander Hauck
- 0000 0001 2167 7588grid.11749.3aDivision of Clinical Psychology and Psychotherapy, Department of Psychology, Saarland University, Saarbrücken, Germany
| | - Tanja Michael
- 0000 0001 2167 7588grid.11749.3aDivision of Clinical Psychology and Psychotherapy, Department of Psychology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
27
|
Abstract
AbstractKnowing the biological signals associated with appetite control is crucial for understanding the regulation of food intake. Biomarkers of appetite have been defined as physiological measures that relate to subjective appetite ratings, measured food intake, or both. Several metabolites including amino acids, lipids and glucose were proposed as key molecules associated with appetite control over 60 years ago, and along with bile acids are all among possible appetite biomarker candidates. Additional metabolites that have been associated with appetite include endocannabinoids, lactate, cortisol and β-hydroxybutyrate. However, although appetite is a complex integrative process, studies often investigated a limited number of markers in isolation. Metabolomics involves the study of small molecules or metabolites present in biological samples such as urine or blood, and may present a powerful approach to further the understanding of appetite control. Using multiple analytical techniques allows the characterisation of molecules, such as carbohydrates, lipids, amino acids, bile acids and fatty acids. Metabolomics has proven successful in identifying markers of consumption of certain foods and biomarkers implicated in several diseases. However, it has been underexploited in appetite control or obesity. The aim of the present narrative review is to: (1) provide an overview of existing metabolites that have been identified in human biofluids and associated with appetite control; and (2) discuss the potential of metabolomics to deepen understanding of appetite control in humans.
Collapse
|
28
|
Merino B, Fernández-Díaz CM, Cózar-Castellano I, Perdomo G. Intestinal Fructose and Glucose Metabolism in Health and Disease. Nutrients 2019; 12:E94. [PMID: 31905727 PMCID: PMC7019254 DOI: 10.3390/nu12010094] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
The worldwide epidemics of obesity and diabetes have been linked to increased sugar consumption in humans. Here, we review fructose and glucose metabolism, as well as potential molecular mechanisms by which excessive sugar consumption is associated to metabolic diseases and insulin resistance in humans. To this end, we focus on understanding molecular and cellular mechanisms of fructose and glucose transport and sensing in the intestine, the intracellular signaling effects of dietary sugar metabolism, and its impact on glucose homeostasis in health and disease. Finally, the peripheral and central effects of dietary sugars on the gut-brain axis will be reviewed.
Collapse
Affiliation(s)
- Beatriz Merino
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
| | - Cristina M. Fernández-Díaz
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
| | - Irene Cózar-Castellano
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid 28029, Spain
| | - German Perdomo
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
- Departamento de Ciencias de la Salud, Universidad de Burgos, Burgos 09001, Spain
| |
Collapse
|
29
|
Ratanpaul V, Williams BA, Black JL, Gidley MJ. Review: Effects of fibre, grain starch digestion rate and the ileal brake on voluntary feed intake in pigs. Animal 2019; 13:2745-2754. [PMID: 31223098 DOI: 10.1017/s1751731119001459] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Grains rich in starch constitute the primary source of energy for both pigs and humans, but there is incomplete understanding of physiological mechanisms that determine the extent of digestion of grain starch in monogastric animals including pigs and humans. Slow digestion of starch to produce glucose in the small intestine (SI) leads to undigested starch escaping to the large intestine where it is fermented to produce short-chain fatty acids. Glucose generated from starch provides more energy than short-chain fatty acids for normal metabolism and growth in monogastrics. While incomplete digestion of starch leads to underutilised feed in pigs and economic losses, it is desirable in human nutrition to maintain consistent body weight in adults. Undigested nutrients reaching the ileum may trigger the ileal brake, and fermentation of undigested nutrients or fibre in the large intestine triggers the colonic brake. These intestinal brakes reduce the passage rate in an attempt to maximise nutrient utilisation, and lead to increased satiety that may reduce feed intake. The three physiological mechanisms that control grain digestion and feed intake are: (1) gastric emptying rate; (2) interplay of grain digestion and passage rate in the SI controlling the activation of the ileal brake; and (3) fermentation of undigested nutrients or fibre in the large intestine activating the colonic brake. Fibre plays an important role in influencing these mechanisms and the extent of their effects. In this review, an account of the physiological mechanisms controlling the passage rate, feed intake and enzymatic digestion of grains is presented: (1) to evaluate the merits of recently developed methods of grain/starch digestion for application purposes; and (2) to identify opportunities for future research to advance our understanding of how the combination of controlled grain digestion and fibre content can be manipulated to physiologically influence satiety and food intake.
Collapse
Affiliation(s)
- V Ratanpaul
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - B A Williams
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - J L Black
- John L Black Consulting, PO Box 4021, Warrimoo, NSW, 2774, Australia
| | - M J Gidley
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
30
|
Uygun B, Kiyici S, Ozmen S, Gul Z, Sigirli D, Cavun S. The Association Between Olfaction and Taste Functions with Serum Ghrelin and Leptin Levels in Obese Women. Metab Syndr Relat Disord 2019; 17:452-457. [DOI: 10.1089/met.2019.0037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Burcin Uygun
- Department of Internal Medicine, Bursa Yuksek Ihtisas Education and Training Hospital, University of Health Sciences, Bursa, Turkey
| | - Sinem Kiyici
- Department of Endocrinology and Metabolism, Bursa Yuksek Ihtisas Education and Training Hospital, University of Health Sciences, Bursa, Turkey
| | - Suay Ozmen
- Department of Otorhinolaryngology, Bursa Yuksek Ihtisas Education and Training Hospital, University of Health Sciences, Bursa, Turkey
| | - Zulfiye Gul
- Department of Pharmacology, Medical Faculty, Bahcesehir University, Istanbul, Turkey
| | - Deniz Sigirli
- Department of Bio-Statistics, Medical Faculty, Uludag University, Bursa, Turkey
| | - Sinan Cavun
- Department of Pharmacology, Medical Faculty, Uludag University, Bursa, Turkey
| |
Collapse
|
31
|
Exogenous leptin reinforces intestinal barrier function and protects from colitis. Pharmacol Res 2019; 147:104356. [DOI: 10.1016/j.phrs.2019.104356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/19/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
|
32
|
Song D, Cheng L, Zhang X, Wu Z, Zheng X. The modulatory effect and the mechanism of flavonoids on obesity. J Food Biochem 2019; 43:e12954. [PMID: 31368555 DOI: 10.1111/jfbc.12954] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/15/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022]
Abstract
With the improvement of living standards, obesity has become a serious health problem all over the word. Currently, the methods and drugs for obesity treatment have some limitations and side effects. Flavonoids are active constituents with various biological activities, widely found in plants, and numerous studies have shown that flavonoids can inhibit obesity and related metabolism disorders effectively. This perspective reviews the recent progress in understanding the anti-obesity effects of flavonoids through modulating food intake, enzyme activities, nutrition absorption, adipogenesis and adipocyte lifecycle, thermogenesis, energy consumption, and intestinal microbiota. PRACTICAL APPLICATIONS: Natural bioactive substance flavonoids have anti-obesity property, which may play a role in anti-obesity drugs or functional food without any side effects. Flavonoids can inhibit weight gain directly or through their biologically active metabolites by various potential pathways. A better understanding of the modulatory effect and the mechanism of flavonoids on obesity will allow us to better utilize flavonoids in plants to treat obesity and related metabolic syndrome.
Collapse
Affiliation(s)
- Dan Song
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Xiaojie Zheng
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou, P.R. China
| |
Collapse
|
33
|
Nour HA, El Sawaf AL, Elewa SM, El Sayed Y. Strength and independence of associations between ghrelin, leptin, adiponectin and insulin in stimulating basic functions to energy metabolism. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2013.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Hoda A. Nour
- Physiology Department, Medical Research Institute, Alexandria University, Egypt
| | - Amel L. El Sawaf
- Physiology Department, Medical Research Institute, Alexandria University, Egypt
| | - Samia M. Elewa
- Physiology Department, Medical Research Institute, Alexandria University, Egypt
| | - Yosria El Sayed
- Physiology Department, Medical Research Institute, Alexandria University, Egypt
| |
Collapse
|
34
|
Kolbe I, Brehm N, Oster H. Interplay of central and peripheral circadian clocks in energy metabolism regulation. J Neuroendocrinol 2019; 31:e12659. [PMID: 30415480 DOI: 10.1111/jne.12659] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
Metabolic health founds on a homeostatic balance that has to integrate the daily changes of rest/activity and feeding/fasting cycles. A network of endogenous 24-hour circadian clocks helps to anticipate daily recurring events and adjust physiology and behavioural functions accordingly. Circadian clocks are self-sustained cellular oscillators based on a set of clock genes/proteins organised in interlocked transcriptional-translational feedback loops. The body's clocks need to be regularly reset and synchronised with each other to achieve coherent rhythmic output signals. This synchronisation is achieved by interplay of a master clock, which resides in the suprachiasmatic nucleus, and peripheral tissue clocks. This clock network is reset by time signals such as the light/dark cycle, food intake and activity. The balanced interplay of clocks is easily disturbed in modern society by shiftwork or high-energy diets, which may further promote the development of metabolic disorders. In this review, we summarise the current model of central-peripheral clock interaction in metabolic health. Different established mouse models for central or peripheral clock disruption and their metabolic phenotypes are compared and the possible relevance of clock network interaction for the development of therapeutic approaches in humans is discussed.
Collapse
Affiliation(s)
- Isa Kolbe
- Institute of Neurobiology, University of Lubeck, Lubeck, Germany
| | - Niklas Brehm
- Institute of Neurobiology, University of Lubeck, Lubeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lubeck, Lubeck, Germany
| |
Collapse
|
35
|
Al-Najim W, Docherty NG, le Roux CW. Food Intake and Eating Behavior After Bariatric Surgery. Physiol Rev 2018; 98:1113-1141. [PMID: 29717927 DOI: 10.1152/physrev.00021.2017] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obesity is an escalating global chronic disease. Bariatric surgery is a very efficacious treatment for obesity and its comorbidities. Alterations to gastrointestinal anatomy during bariatric surgery result in neurological and physiological changes affecting hypothalamic signaling, gut hormones, bile acids, and gut microbiota, which coalesce to exert a profound influence on eating behavior. A thorough understanding of the mechanisms underlying eating behavior is essential in the management of patients after bariatric surgery. Studies investigating candidate mechanisms have expanded dramatically in the last decade. Herein we review the proposed mechanisms governing changes in eating behavior, food intake, and body weight after bariatric surgery. Additive or synergistic effects of both conditioned and unconditioned factors likely account for the complete picture of changes in eating behavior. Considered application of strategies designed to support the underlying principles governing changes in eating behavior holds promise as a means of optimizing responses to surgery and long-term outcomes.
Collapse
Affiliation(s)
- Werd Al-Najim
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland ; Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden ; and Investigative Science, Imperial College London , London , United Kingdom
| | - Neil G Docherty
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland ; Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden ; and Investigative Science, Imperial College London , London , United Kingdom
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland ; Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden ; and Investigative Science, Imperial College London , London , United Kingdom
| |
Collapse
|
36
|
Oparija L, Rajendran A, Poncet N, Verrey F. Anticipation of food intake induces phosphorylation switch to regulate basolateral amino acid transporter LAT4 (SLC43A2) function. J Physiol 2018; 597:521-542. [PMID: 30379325 DOI: 10.1113/jp276714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/29/2018] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Amino acid absorption requires luminal uptake into and subsequent basolateral efflux out of epithelial cells, with the latter step being critical to regulate the intracellular concentration of the amino acids. The basolateral essential neutral amino acid uniporter LAT4 (SLC43A2) has been suggested to drive the net efflux of non-essential and cationic amino acids via parallel amino acid antiporters by recycling some of their substrates; its deletion has been shown to cause defective postnatal growth and death in mice. Here we test the regulatory function of LAT4 phosphorylation sites by mimicking their phosphorylated and dephosphorylated states in Xenopus laevis oocytes and show that dephosphorylation of S274 and phosphorylation of S297 increase LAT4 membrane localization and function. Using new phosphorylation site-specific antibodies, we observe changes in LAT4 phosphorylation in mouse small intestine that correspond to its upregulation at the expected feeding time. These results strongly suggest that LAT4 phosphorylation participates in the regulation of transepithelial amino acid absorption. ABSTRACT The essential amino acid uniporters LAT4 and TAT1 are located at the basolateral side of intestinal and kidney epithelial cells and their transport function has been suggested to control the transepithelial (re)absorption of neutral and possibly also cationic amino acids. Uniporter LAT4 selectively transports the branched chain amino acids leucine, isoleucine and valine, and additionally methionine and phenylalanine. Its deletion leads to a postnatal growth failure and early death in mice. Since LAT4 has been reported to be phosphorylated in vivo, we hypothesized that phosphorylation regulates its function. Using Xenopus laevis oocytes, we tested the impact of LAT4 phosphorylation at Ser274 and Ser297 by expressing mutant constructs mimicking phosphorylated and dephosphorylated states. We then investigated the in vivo regulation of LAT4 in mouse small intestine using new phosphorylation site-specific antibodies and a time-restricted diet. In Xenopus oocytes, mimicking non-phosphorylation of Ser274 led to an increase in affinity and apparent surface membrane localization of LAT4, stimulating its transport activity, while the same mutation of Ser297 decreased LAT4's apparent surface expression and transport rate. In wild-type mice, LAT4 phosphorylation on Ser274 was uniform at the beginning of the inactive phase (ZT0). In contrast, at the beginning of the active phase (ZT12), corresponding to the anticipated feeding time, Ser274 phosphorylation was decreased and restricted to relatively large patches of cells, while Ser297 phosphorylation was increased. We conclude that phosphorylation of small intestinal LAT4 is under food-entrained circadian control, leading presumably to an upregulation of LAT4 function at the anticipated feeding time.
Collapse
Affiliation(s)
- Lalita Oparija
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Anuradha Rajendran
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Nadège Poncet
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - François Verrey
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,NCCR Kidney.CH, University of Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Wang XT. Resource Signaling via Blood Glucose in Embodied Decision Making. Front Psychol 2018; 9:1965. [PMID: 30374322 PMCID: PMC6196271 DOI: 10.3389/fpsyg.2018.01965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Food, money, and time are exchangeable resources essential for survival and reproduction. Individuals live within finite budgets of these resources and make tradeoffs between money and time when making intertemporal choices between an immediate smaller reward and a delayed lager reward. In this paper, I examine signaling functions of blood glucose in regulating behaviors related to resource regulations beyond caloric metabolisms. These behavioral regulations include choices between energy expenditure and energy conservation, monetary intertemporal choices, and self-control in overcoming temptations. I begin by comparing potential embodied signals for resource forecasting and proactive decision making in terms of their pros and cons as a signal for regulating both metabolism and behavioral decision making and self-control. Based on this analysis, circulating glucose emerges as not only the designated fuel for brain metabolism but also a privileged resource forecasting signal for regulating immediate, short-term, and long-term behavioral adaptations to the resource budget of the decision maker. In the context of an on-going debate between the limited resource model and the motivation accounts of behavioral effects of blood glucose, I propose a dual functions (caloric provision and resource forecasting) and dual signaling (glucose taste and ingestion) hypothesis of circulating glucose in resource management, and provide behavioral and neurophysiological evidence of the separate effects of glucose taste to motivate effort for resource acquisition and glucose ingestion to promote resource conservation and future orientation. Accumulating evidence indicates that the body is able to detect fake signals of non-caloric sweeteners and react to such "caloric crisis" with an enhanced preference for immediate rewards over future rewards, revealing the wisdom of the body.
Collapse
Affiliation(s)
- Xiao-Tian Wang
- School of Humanities and Social Science, The Chinese University of Hong Kong, Shenzhen, Shenzen, China.,Department of Psychology, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
38
|
Dhillon J, Thorwald M, De La Cruz N, Vu E, Asghar SA, Kuse Q, Diaz Rios LK, Ortiz RM. Glucoregulatory and Cardiometabolic Profiles of Almond vs. Cracker Snacking for 8 Weeks in Young Adults: A Randomized Controlled Trial. Nutrients 2018; 10:E960. [PMID: 30044438 PMCID: PMC6115851 DOI: 10.3390/nu10080960] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 11/16/2022] Open
Abstract
The transition to nutritional independence makes new college students vulnerable to alterations in eating patterns, which can increase the risk of cardiometabolic disorders. The aim of the study was to examine the potential benefits of almond vs. cracker snacking in improving glucoregulatory and cardiometabolic profiles in new college students. A randomized controlled, parallel-arm, 8-week intervention of 73 college students (BMI: 18⁻41 kg/m²) with no cardiometabolic disorders was conducted. Participants were randomized into either an almond snack group (56.7 g/day; 364 kcal; n = 38) or Graham cracker control group (77.5 g/day; 338 kcal/d; n = 35). Chronic, static changes were assessed from fasting serum/plasma samples at baseline, and after 4 and 8 weeks. Acute, dynamic effects were assessed during a 2-h oral glucose tolerance test (OGTT) at 8 weeks. Almond snacking resulted in a smaller decline in HDL cholesterol over 8 weeks (13.5% vs. 24.5%, p < 0.05), 13% lower 2-h glucose area under the curve (AUC), 34% lower insulin resistance index (IRI) and 82% higher Matsuda index (p < 0.05) during the OGTT, despite similar body mass gains over 8 weeks compared with the cracker group. In general, both almond and cracker snacking reduced fasting glucose, and LDL cholesterol. CONCLUSIONS Incorporating a morning snack in the dietary regimen of predominantly breakfast-skipping, first-year college students had some beneficial effects on glucoregulatory and cardiometabolic health. Almond consumption has the potential to benefit postprandial glucoregulation in this cohort. These responses may be influenced by cardiometabolic risk factor status.
Collapse
Affiliation(s)
- Jaapna Dhillon
- School of Natural Sciences, University of California, Merced, CA 95343, USA.
| | - Max Thorwald
- School of Natural Sciences, University of California, Merced, CA 95343, USA.
| | - Natalie De La Cruz
- School of Natural Sciences, University of California, Merced, CA 95343, USA.
| | - Emily Vu
- School of Natural Sciences, University of California, Merced, CA 95343, USA.
| | - Syed Asad Asghar
- School of Natural Sciences, University of California, Merced, CA 95343, USA.
| | - Quintin Kuse
- School of Natural Sciences, University of California, Merced, CA 95343, USA.
| | - L Karina Diaz Rios
- Cooperative Extension Specialist, University of California, Merced, CA 95343, USA.
| | - Rudy M Ortiz
- School of Natural Sciences, University of California, Merced, CA 95343, USA.
| |
Collapse
|
39
|
Abstract
The mechanistic target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that senses and integrates environmental information into cellular regulation and homeostasis. Accumulating evidence has suggested a master role of mTOR signalling in many fundamental aspects of cell biology and organismal development. mTOR deregulation is implicated in a broad range of pathological conditions, including diabetes, cancer, neurodegenerative diseases, myopathies, inflammatory, infectious, and autoimmune conditions. Here, we review recent advances in our knowledge of mTOR signalling in mammalian physiology. We also discuss the impact of mTOR alteration in human diseases and how targeting mTOR function can treat human diseases.
Collapse
Affiliation(s)
- Yassine El Hiani
- a Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS B3H 4R2, Canada
| | - Emmanuel Eroume-A Egom
- b Jewish General Hospital and Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
| | - Xian-Ping Dong
- a Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
40
|
Soengas JL, Cerdá-Reverter JM, Delgado MJ. Central regulation of food intake in fish: an evolutionary perspective. J Mol Endocrinol 2018; 60:R171-R199. [PMID: 29467140 DOI: 10.1530/jme-17-0320] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022]
Abstract
Evidence indicates that central regulation of food intake is well conserved along the vertebrate lineage, at least between teleost fish and mammals. However, several differences arise in the comparison between both groups. In this review, we describe similarities and differences between teleost fish and mammals on an evolutionary perspective. We focussed on the existing knowledge of specific fish features conditioning food intake, anatomical homologies and analogies between both groups as well as the main signalling pathways of neuroendocrine and metabolic nature involved in the homeostatic and hedonic central regulation of food intake.
Collapse
Affiliation(s)
- José Luis Soengas
- Departamento de Bioloxía Funcional e Ciencias da SaúdeLaboratorio de Fisioloxía Animal, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - José Miguel Cerdá-Reverter
- Departamento de Fisiología de Peces y BiotecnologíaInstituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - María Jesús Delgado
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
41
|
Burkhard TT, Westwick RR, Phelps SM. Adiposity signals predict vocal effort in Alston's singing mice. Proc Biol Sci 2018; 285:20180090. [PMID: 29695445 PMCID: PMC5936728 DOI: 10.1098/rspb.2018.0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022] Open
Abstract
Advertisement displays often seem extravagant and expensive, and are thought to depend on the body condition of a signaller. Nevertheless, we know little about how signallers adjust effort based on condition, and few studies find a strong relationship between natural variation in condition and display. To examine the relationship between body condition and signal elaboration more fully, we characterized physiological condition and acoustic displays in a wild rodent with elaborate vocalizations, Alston's singing mouse, Scotinomys teguina We found two major axes of variation in condition-one defined by short-term fluctuations in caloric nutrients, and a second by longer-term variation in adiposity. Among acoustic parameters, song effort was characterized by high rates of display and longer songs. Song effort was highly correlated with measures of adiposity. We found that leptin was a particularly strong predictor of display effort. Leptin is known to influence investment in other costly traits, such as immune function and reproduction. Plasma hormone levels convey somatic state to a variety of tissues, and may govern trait investment across vertebrates. Such measures offer new insights into how animals translate body condition into behavioural and life-history decisions.
Collapse
Affiliation(s)
- Tracy T Burkhard
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Rebecca R Westwick
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Steven M Phelps
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
42
|
Roura E, Navarro M. Physiological and metabolic control of diet selection. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an16775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The fact that most farm animals have no dietary choice under commercial practices translates the dietary decisions to the carers. Thus, a lack of understanding of the principles of dietary choices is likely to result in a high toll for the feed industry. In healthy animals, diet selection and, ultimately, feed intake is the result of factoring together the preference for the feed available with the motivation to eat. Both are dynamic states and integrate transient stimulus derived from the nutritional status, environmental and social determinants of the animal with hard-wired genetic mechanisms. Peripheral senses are the primary inputs that determine feed preferences. Some of the sensory aspects of feed, such as taste, are innate and genetically driven, keeping the hedonic value of feed strictly associated with a nutritional frame. Sweet, umami and fat tastes are all highly appetitive. They stimulate reward responses from the brain and reinforce dietary choices related to essential nutrients. In contrast, aroma (smell) recognition is a plastic trait and preferences are driven mostly by learned experience. Maternal transfer through perinatal conditioning and the individual’s own innate behaviour to try or to avoid novel feed (often termed as neophobia) are known mechanisms where the learning process strongly affects preferences. In addtition, the motivation to eat responds to episodic events fluctuating in harmony with the eating patterns. These signals are driven mainly by gastrointestinal hormones (such as cholecystokinin [CCK] and glucagon-like peptide 1 [GLP-1]) and load. In addition, long-term events generate mechanisms for a sustainable nutritional homeostasis managed by tonic signals from tissue stores (i.e. leptin and insulin). Insulin and leptin are known to affect appetite by modulating peripheral sensory inputs. The study of chemosensory mechanisms related to the nutritional status of the animal offers novel tools to understand the dynamic states of feed choices so as to meet nutritional and hedonic needs. Finally, a significant body of literature exists regarding appetite driven by energy and amino acids in farm animals. However, it is surprising that there is scarcity of knowledge regarding what and how specific dietary nutrients may affect satiety. Thus, a better understanding on how bitter compounds and excess dietary nutrients (i.e. amino acids) play a role in no-choice animal feeding is an urgent topic to be addressed so that right choices can be made on the animal’s behalf.
Collapse
|
43
|
Reid AMA, Dunn IC. Gastrointestinal distribution of chicken gastrin-cholecystokinin family transcript expression and response to short-term nutritive state. Gen Comp Endocrinol 2018; 255:64-70. [PMID: 29061367 PMCID: PMC5693036 DOI: 10.1016/j.ygcen.2017.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022]
Abstract
The related peptide hormones cholecystokinin (CCK) and gastrin are conserved throughout vertebrate clades and implicated in energy homeostasis. CCK is generally accepted as a satiety hormone in poultry, but the role of gastrin remains poorly studied. Functional dissection of these ligands is required to characterise the molecular control of growth & satiety in the domestic chicken, for which there is an increasingly pressing mandate. There are limited descriptions of physiological distributions for the two genes in birds, and these are mostly reliant on immunohistochemistry which can prove problematic due to the shared structure of the targets. Therefore, we have defined the tissue distributions of CCK and gastrin in the chicken, focussing on the gastrointestinal tract, by using transcript-dependent techniques to improve reliability by increasing specificity. Though considerably more highly expressed in the brain, gastrointestinal CCK transcripts were dispersed throughout the small intestine and particularly around the proximal ileum. Gastrin expression was strictly limited to the gastric antrum region of the intestinal tract, albeit very highly expressed. We demonstrate that CCK mRNA expression does not respond as expected for a short-term satiety hormone, and that the short-term response of gastrin expression is paradoxical compared to its role in mammals. These results partially corroborate previous peptide distribution studies and initiate exploration of the nutrient-responsive roles of these hormones in avian energy balance.
Collapse
Affiliation(s)
- Angus M A Reid
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland EH25 9RG, UK.
| | - Ian C Dunn
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland EH25 9RG, UK
| |
Collapse
|
44
|
MRAP2 regulates ghrelin receptor signaling and hunger sensing. Nat Commun 2017; 8:713. [PMID: 28959025 PMCID: PMC5620068 DOI: 10.1038/s41467-017-00747-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/25/2017] [Indexed: 01/12/2023] Open
Abstract
Ghrelin is the only known circulating orexigenic hormone. It is primarily secreted by the stomach and acts at its receptor, the growth hormone secretagogue receptor 1a (GHSR1a), in the hypothalamus to signal hunger and promote food intake. The melanocortin receptor accessory protein 2 (MRAP2) was previously shown to regulate energy homeostasis through the modulation of the activity of the melanocortin-4 receptor and prokineticin receptors. In this study we identify MRAP2 as a partner of ghrelin-GHSR1a signaling. We show that MRAP2 interacts with GHSR1a and potentiates ghrelin-stimulated signaling both in vitro and in vivo. We demonstrate that in the absence of MRAP2, fasting fails to activate agouti-related protein neurons. In addition, we show that the orexigenic effect of ghrelin is lost in mice lacking MRAP2. Our results suggest that MRAP2 is an important modulator of the energy homeostasis machinery that operates through the regulation of multiple GPCRs throughout the hypothalamus.Melanocortin receptor accessory protein 2 (MRAP2) is an adaptor protein that contributes to melanocortin-4 receptor and prokineticin receptor 1 signalling. Here the authors show that MRAP2 also regulates ghrelin receptor signalling in the hypothalamus and starvation sensing in mice.
Collapse
|
45
|
Adipokines in hereditary breast cancer patients and healthy relatives. Oncotarget 2017; 8:101255-101261. [PMID: 29254161 PMCID: PMC5731871 DOI: 10.18632/oncotarget.21018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/26/2017] [Indexed: 11/25/2022] Open
Abstract
Background The role of adipocytokines and ghrelin in hereditary breast cancer syndrome (HBCS) has never been tested. Results No significant differences in leptin, adiponectin and ghrelin plasma levels between cancer patients and healthy subjects was observed. Conversely, an higher level of adiponectin was shown in healthy subjects with BRCA 1/2 gene mutation vs those without (p < 0.03). Logistic regression analysis demonstrated that Adiponectin plasma level (OR 0.26; 95% CI:0.007–0.81; p < 0.02) and age (OR 5.51; 95% CI:1.78–19.71; p < 0.004) were the only factors independently associated with BMI; furthermore, Leptin plasma level (OR 0.23; 95% CI:0.06–0.76; p < 0.01) and age (OR 0.05; 95% CI:0.05–0.61; p < 0.007) resulted the only factors significantly associated with breast cancer. Materials and Methods We analyzed blood plasma expression of leptin, adiponectin and ghrelin using Bio-Plex platform in 25 breast cancer patients with HBCS and in 38 healthy relatives. BRCA 1/2 gene status (presence of pathogenic mutations by direct molecular sequencing), clinical-pathological characteristics and Body Mass Index (BMI) of each subject were recorded. Conclusions Adiponectin confirms to be associated with BMI also in subjects with HBCS. Leptin plasma level seems a direct and independent biomarker of a breast cancer risk. A validation of Leptin as a circulating biomarker of breast cancer development in larger series of HBCS subjects is needed.
Collapse
|
46
|
Rejeki PS, Harjanto H, Argarini R, Subadi I. COMPARISON EFFECT OF CV 12, ST 36 AND ST 40 EA ON SHORT TERM ENERGY BALANCE REGULATION IN HIGH FAT DIET RAT. FOLIA MEDICA INDONESIANA 2017. [DOI: 10.20473/fmi.v52i3.5448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine the comparative effects of EA (EA) on the CV12, ST36 and ST40 to weight gain prevention over the short-term regulation of energy balance. The study was conducted with a completely randomized design. Rats were divided into five groups: negative control group (no treatment, n=5), positive control (sham EA/back, n=5), EA CV 12 (n=6), EA ST 36 (n=6) and EA ST 40 (n=7). Rats were exposed to high-fat diet for two weeks and EA was simultaneously performed once daily, five days a week for two weeks with 2 Hz, for 10 minutes with continuous wave. Body weight, BMI, front limb circumference and rear were measured during study. Levels of blood glucose, cholesterol, triglycerides, LDL and HDL were measured at the end of the study; which reflects the short-term regulation of energy homeostasis. For weight loss, EA CV12, ST36 and ST40 group have lost weight significantly compared to the negative and positive control group. The ST40 group has a significant decrease than ST36 and CV12. The most significant decrease in BMI found in the ST40 group. EA did not affect blood glucose levels, but modulated blood lipid profile. In ST 40 group there was a significant decrease in cholesterol, LDL and triglycerides. EA at point ST 40 is potential in preventing increased body weight and BMI in rats exposed to high-fat diet compared to the CV 12 and ST 36. ST 40 is a point with a potential of lowering LDL and triglycerides serum so that it can play a role in the short term regulation of energy homeostasis but also in the prevention of dyslipidemia.
Collapse
|
47
|
Ekstrand B, Young JF, Rasmussen MK. Taste receptors in the gut - A new target for health promoting properties in diet. Food Res Int 2017; 100:1-8. [PMID: 28888429 DOI: 10.1016/j.foodres.2017.08.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/07/2017] [Accepted: 08/12/2017] [Indexed: 12/17/2022]
Abstract
In this review we describe a new target for food functionality, the taste receptors in the gastrointestinal tract. These receptors are involved in an intricate signalling network for monitoring of taste and nutrient intake, homeostasis and energy metabolism, and they are also an early warning system for toxic substances in our diet. Especially the receptors for bitter taste provide a new possibility to activate a number of health related signalling pathways, already at low concentrations of the active substance, without requiring uptake into the body and transport via the circulation. When ligands bind to these receptors, signalling is induced either via peptide hormones into the circulation to other organs in the body, or via nerve fibers directly to the brain.
Collapse
Affiliation(s)
- Bo Ekstrand
- Chalmers University of Technology, Department of Biology and Biological Engineering, Food and Nutrition Science, SE-412 96 Gothenburg, Sweden
| | | | | |
Collapse
|
48
|
|
49
|
Cameron JD, Chaput JP, Sjödin AM, Goldfield GS. Brain on Fire: Incentive Salience, Hedonic Hot Spots, Dopamine, Obesity, and Other Hunger Games. Annu Rev Nutr 2017; 37:183-205. [PMID: 28564556 DOI: 10.1146/annurev-nutr-071816-064855] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review examines human feeding behavior in light of psychological motivational theory and highlights the importance of midbrain dopamine (DA). Prospective evidence of both reward surfeit and reward deficit pathways to increased body weight are evaluated, and we argue that it is more complex than an either/or scenario when examining DA's role in reward sensitivity, eating, and obesity. The Taq1A genotype is a common thread that ties the contrasting models of DA reward and obesity; this genotype related to striatal DA is not associated with obesity class per se but may nevertheless confer an increased risk of weight gain. We also critically examine the concept of so-called food addiction, and despite growing evidence, we argue that there is currently insufficient human data to warrant this diagnostic label. The surgical and pharmacological treatments of obesity are discussed, and evidence is presented for the selective use of DA-class drugs in obesity treatment.
Collapse
Affiliation(s)
- Jameason D Cameron
- Healthy Active Living and Obesity (HALO) Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 5B2, Canada; , ,
| | - Jean-Philippe Chaput
- Healthy Active Living and Obesity (HALO) Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 5B2, Canada; , ,
| | - Anders M Sjödin
- Department of Nutrition, Exercise and Sports, Faculty of Sciences, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - Gary S Goldfield
- Healthy Active Living and Obesity (HALO) Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 5B2, Canada; , ,
| |
Collapse
|
50
|
Panda V, Shinde P. Appetite suppressing effect of Spinacia oleracea in rats: Involvement of the short term satiety signal cholecystokinin. Appetite 2017; 113:224-230. [PMID: 28238891 DOI: 10.1016/j.appet.2017.02.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 12/12/2016] [Accepted: 02/20/2017] [Indexed: 11/26/2022]
Abstract
Spinacia oleracea (spinach) is a green leafy vegetable rich in antioxidant phyto-constituents such as flavonoids, polyphenols, carotenoids and vitamins. Fruits and vegetables rich in flavonoids are known to prevent weight gain by inducing satiety. The present study evaluates the appetite suppressing effect of a flavonoid rich extract of the spinach leaf (SOE) in rats. HPTLC of SOE was performed for detecting flavonoids. Rats were administered SOE (200 mg/kg and 400 mg/kg, p. o) and fluoxetine (6 mg/kg i. p) as a pre-meal for 14 days. Food intake and weight gain was observed daily during the treatment period. Serum levels of the short term satiety signals cholecystokinin (CCK) and glucose were measured on the 7th and 14thdays at different time points after start of meal to study the satiety inducing effect of SOE. HPTLC showed the presence of 14 flavonoids in SOE. SOE and fluoxetine treated rats showed a significant reduction in food intake and weight gain when compared with the normal control rats. On the 7th day of treatment, peak CCK levels were reached in 30 min after start of meal in fluoxetine treated rats and in 60 min in the remaining rats. On the 14th day, CCK peaking was observed in 30 min after start of meal in the fluoxetine as well as SOE 400 mg/kg treated rats. Peak glucose levels in all treatment groups were obtained in 60 min after start of feeding on both days of the study. It maybe concluded that SOE exhibited a promising appetite suppressing effect by inducing a quicker than normal release of CCK, thus eliciting an early onset of satiety in rats. This effect may be due to its high flavonoid content.
Collapse
Affiliation(s)
- Vandana Panda
- Department of Pharmacology & Toxicology, Prin. K. M. Kundnani College of Pharmacy, Jote Joy Building, Rambhau Salgaonkar Marg, Cuffe Parade, Colaba, 400005, Mumbai, India.
| | - Priyanka Shinde
- Department of Pharmacology & Toxicology, Prin. K. M. Kundnani College of Pharmacy, Jote Joy Building, Rambhau Salgaonkar Marg, Cuffe Parade, Colaba, 400005, Mumbai, India
| |
Collapse
|