1
|
Shah MV, Solem CT, Bell KF, Aziez A, Sun X, Du M, Du EX, Yang H, Wang H, Hua Q, Tapan U. Real-World Maintenance Treatment Patterns Among Patients with Advanced Non-Small Cell Lung Cancer. Adv Ther 2025:10.1007/s12325-025-03178-8. [PMID: 40232624 DOI: 10.1007/s12325-025-03178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/11/2025] [Indexed: 04/16/2025]
Abstract
INTRODUCTION Immuno-oncology (IO) agents and pemetrexed are approved for the first-line (1L) maintenance treatment (1LMT) of advanced/metastatic non-small cell lung cancer (a/mNSCLC). This international retrospective chart review assessed real-world treatment patterns and outcomes in patients with a/mNSCLC lacking targetable mutations. METHODS Oncologists from seven countries (Canada, France, Germany, Italy, Spain, UK, USA) provided deidentified, medical chart-derived data on randomly selected adults with a/mNSCLC who remained stable or responded to 1L chemotherapy + IO. Treatment patterns, overall survival (OS), progression-free survival (PFS), and healthcare resource utilization (HCRU) were compared by maintenance treatment use following propensity score weighting. The effects of adding pemetrexed to IO-containing 1LMT was investigated in patients with non-squamous/mixed histology. RESULTS Of 942 patients analyzed, 680 initiated 1LMT. After weighting, 1LMT was associated with longer median PFS (17.7 vs 7.1 months; HR [95% CI] 0.63 [0.41-0.85]), similar OS (31.7 vs 31.0 months; 0.82 [0.47-1.17]), and fewer mean monthly hospitalizations (0.03 vs 0.1; p < 0.01) versus no 1LMT. Among 469 patients with non-squamous/mixed histology who initiated an IO-containing 1LMT, 283 received IO only while 186 received IO + pemetrexed. Median time to treatment discontinuation (20.0 vs 11.0 months; p < 0.001), PFS (21.1 vs 11.1 months; HR [95% CI] 0.56 [0.37-0.76]), and OS (35.3 vs 27.3 months; 0.70 [0.41-0.98]) were longer for patients receiving IO only versus IO + pemetrexed. Fewer patients administered IO only experienced fatigue (28.3% vs 39.8% [IO + pemetrexed]; p < 0.05) and anemia (16.6% vs 31.2%; p < 0.001). CONCLUSION 1LMT was associated with significantly longer PFS and similar OS, without substantially increasing HCRU, among the current study population with a/mNSCLC. Adding pemetrexed to 1LM IO did not confer significant clinical benefit in patients with non-squamous/mixed histology and these patients incurred more adverse events. Additional 1LMT options are needed to further improve clinical outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | - Mandy Du
- Analysis Group, Inc., Boston, MA, USA
| | - Ella X Du
- Analysis Group, Inc., Boston, MA, USA
| | | | | | - Qi Hua
- Analysis Group, Inc., Boston, MA, USA
| | - Umit Tapan
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, 820 Harrison Ave, Boston, MA, 02118, USA.
| |
Collapse
|
2
|
Datta A, C GPD. Comparative investigation of lung adenocarcinoma and squamous cell carcinoma transcriptome to reveal potential candidate biomarkers: An explainable AI approach. Comput Biol Chem 2025; 115:108333. [PMID: 39787672 DOI: 10.1016/j.compbiolchem.2024.108333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/03/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
Patients with Non-Small Cell Lung Cancer (NSCLC) present a variety of clinical symptoms, such as dyspnea and chest pain, complicating accurate diagnosis. NSCLC includes subtypes distinguished by histological characteristics, specifically lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). This study aims to compare and identify abnormal gene expression patterns in LUAD and LUSC samples relative to adjacent healthy tissues using an explainable artificial intelligence (XAI) framework. The LASSO algorithm was employed to identify the top gene features in the LUAD and LUSC datasets. An ensemble-based extreme gradient boosting (XGBoost) machine learning (ML) algorithm was trained and interpreted using SHapley Additive exPlanations (SHAP), with top features undergoing biological annotation through survival and functional enrichment analyses. The XAI-based SHAP module addresses the opaque nature of ML models. Notably, 35 and 33 genes were identified for LUAD and LUSC, respectively, using the LASSO algorithm. Performance metrics such as average accuracy and Matthew's correlation coefficient were evaluated. The XGBoost model demonstrated an average accuracy of 99.1 % for LUAD and 98.6 % for LUSC. The SFTPC gene emerged as the most significant feature across both NSCLC subtypes. For LUAD, genes such as STX11, CLEC3B, EMP2, and LYVE1 significantly influenced the XAI-SHAP framework. Conversely, GKN2, OGN, SLC39A8, and MMRN1 were identified for LUSC. Survival analysis and functional validation of these genes highlighted the physiological functions observed to be dysregulated in the NSCLC subtypes. These identified genes have the potential to enhance current medical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ankur Datta
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
3
|
Gomatou G, Charpidou A, Li P, Syrigos N, Gkiozos I. Mechanisms of primary resistance to immune checkpoint inhibitors in NSCLC. Clin Transl Oncol 2025; 27:1426-1437. [PMID: 39307892 DOI: 10.1007/s12094-024-03731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/10/2024] [Indexed: 04/16/2025]
Abstract
Immune checkpoint inhibitors (ICIs) redefined the therapeutics of non-small cell lung cancer (NSCLC), leading to significant survival benefits and unprecedented durable responses. However, the majority of the patients develop resistance to ICIs, either primary or acquired. Establishing a definition of primary resistance to ICIs in different clinical scenarios is challenging and remains a work in progress due to the changing landscape of ICI-based regimens, mainly in the setting of early-stage NSCLC. The mechanisms of primary resistance to ICIs in patients with NSCLC include a plethora of pathways involving a cross-talk of the tumor cells, the tumor microenvironment and the host, leading to the development of an immunosuppressive phenotype. The optimal management of patients with NSCLC following primary resistance to ICIs represents a significant challenge in current thoracic oncology. Research in this field includes exploring other immunotherapeutic approaches, such as cancer vaccines, and investigating novel antibody-drug conjugates in patients with NSCLC.
Collapse
Affiliation(s)
- Georgia Gomatou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece.
| | - Andriani Charpidou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Nikolaos Syrigos
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Gkiozos
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Huang W, Zhong L, Shi Y, Ma Q, Yang X, Zhang H, Zhang J, Wang L, Wang K, Li J, Zou J, Yang X, Yang L, Zeng Q, Jing L, Chen Z, Zhao Y. An Anti-CD147 Antibody-Drug Conjugate Mehozumab-DM1 is Efficacious Against Hepatocellular Carcinoma in Cynomolgus Monkey. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410438. [PMID: 39985225 PMCID: PMC12005782 DOI: 10.1002/advs.202410438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/21/2025] [Indexed: 02/24/2025]
Abstract
Effective treatment strategies are urgently needed for hepatocellular carcinoma (HCC) patients due to frequent therapeutic resistance and recurrence. Antibody-drug conjugate (ADC) is a specific antibody-drug conjugated with small molecular compounds, which has potent killing activity against cancer cells. However, few ADC candidates for HCC are undergoing clinical evaluation. CD147 is a tumor-associated antigen that is highly expressed on the surface of tumor cells. Here CD147 is found significantly upregulated in tumor tissues of HCC. Mehozumab-DM1, a humanized anti-CD147 monoclonal antibody conjugated with Mertansine (DM1) is developed. Mehozumab-DM1 is effectively internalized by cancer cells and demonstrated potent antitumor efficacy in HCC cells. In vivo evaluation of Mehozumab-DM1 is conducted in a CRISPR-mediated PTEN and TP53 mutation cynomolgus monkey liver cancer model, which is poorly responsive to sorafenib treatment. Mehozumab-DM1 demonstrated potent tumor inhibitory efficacy at doses of 0.2 and 1.0 mg kg-1 treatment groups in cynomolgus monkey. No treatment-related adverse reactions or body weight loss are observed. Interestingly, Mehozumab-DM1 treatment induced RIPK-dependent tumor cell necroptosis through inhibiting IκB kinase/NF-κB pathway. In conclusion, Mehozumab-DM1 potently inhibits hepatoma through effective internalization to release payload and inducing cell necroptosis to enhance the bystander effect, which is a promising treatment for refractory HCC.
Collapse
Affiliation(s)
- Wan Huang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Liping Zhong
- State Key Laboratory of Targeting OncologyNational Center for International Research of Biotargeting TheranosticsGuangxi Key Laboratory of Biotargeting TheranosticsCollaborative Innovation Center for Targeting Tumor Diagnosis and TherapyGuangxi Medical UniversityNanningGuangxi530021China
| | - Ying Shi
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Qingzhi Ma
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Xiangmin Yang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Hongmei Zhang
- Department of Clinical OncologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jing Zhang
- Department of PathologyXijing HospitalThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Ling Wang
- Department of Health StatisticsSchool of Preventive MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Kun Wang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Jingzhuo Li
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Jie Zou
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Xu Yang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Liu Yang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Qingmei Zeng
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Lin Jing
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Zhi‐Nan Chen
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Yongxiang Zhao
- State Key Laboratory of Targeting OncologyNational Center for International Research of Biotargeting TheranosticsGuangxi Key Laboratory of Biotargeting TheranosticsCollaborative Innovation Center for Targeting Tumor Diagnosis and TherapyGuangxi Medical UniversityNanningGuangxi530021China
| |
Collapse
|
5
|
Wang T, Sun J, Wang L, Lin Y, Wu Z, Jia Q, Zhang S, An J, Ma X, Wu Q, Su Z, Wang H. Therapeutic potential of isochlorogenic acid A from Taraxacum officinale in improving immune response and enhancing the efficacy of PD-1/PD-L1 blockade in triple-negative breast cancer. Front Immunol 2025; 16:1529710. [PMID: 40109332 PMCID: PMC11920172 DOI: 10.3389/fimmu.2025.1529710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Taraxacum officinale, a traditional medicinal herb, has garnered significant attention for its potential role in the prevention and treatment of breast cancer. Although clinical recognition of its efficacy has gradually increased, research has shown that Taraxacum officinale contains a variety of chemical components, including triterpenes, carbohydrates, flavonoids, phenolic acids, sesquiterpenes, coumarins, fatty acids, and organic acids. However, the pharmacological mechanisms underlying Taraxacum officinale's effects and the identification of its key bioactive components warrant further investigation. Methods Flow cytometry was utilized to investigate the effects of Taraxacum officinale extract (TOE) in combination with PD-1/PD-L1 inhibitor 2 on the immune microenvironment of triple-negative breast cancer (TNBC). Active compounds and their potential targets were identified through an integrative approach involving GeneCards, OMIM, and DisGeNET databases, as well as UPLC-Q-Orbitrap MS analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted, followed by molecular docking to explore compound-target interactions. The anti-proliferative effects of isochlorogenic acid A (ICGA-A) and chicoric acid (CRA) on MDA-MB-231 and 4T1 cells were evaluated using the CCK-8 assay. In vivo validation was performed using a 4T1 murine model and flow cytometry. Results TOE and its active constituents, ICGA-A and CRA, demonstrate potential in augmenting PD-1 blockade therapy for TNBC. This study investigated the combination of ICGA-A and PD-1/PD-L1 inhibitor 2, which significantly enhanced the infiltration of macrophages and CD8+ T cells into tumors in murine models, while concurrently reducing the population of exhausted T cells. Furthermore, CRA notably increased the frequency of CD8+ T cells. Both ICGA-A and CRA therapies were also found to suppress tumor proliferation by inhibiting the FAK/PI3K/AKT/mTOR signaling pathway. These findings highlight the potential of ICGA-A and CRA as effective adjuvants to improve the therapeutic efficacy of PD-1 inhibitor-based immunotherapy in TNBC. Discussion ICGA-A and CRA, bioactive compounds from Taraxacum officinale, exhibit significant antitumor activity in TNBC by targeting the FAK/PI3K/AKT/mTOR pathway, a critical regulator of cancer progression. Their ability to modulate the tumor immune microenvironment highlights their potential as immune modulators that enhance the efficacy of immunotherapy. These findings suggest that ICGA-A and CRA could serve as promising adjuncts in TNBC treatment, offering a novel strategy to overcome challenges such as therapeutic resistance and limited treatment options. Further investigation is warranted to explore their synergistic effects with immunotherapies in improving TNBC outcomes.
Collapse
Affiliation(s)
- Tangyi Wang
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
| | - Jingwei Sun
- Department of Medical Laboratory, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Li Wang
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
| | - Yuxin Lin
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
| | - Zhijing Wu
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
| | - Qiangqiang Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Shoude Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Juan An
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China
| | - Xueman Ma
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China
| | - Qiong Wu
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China
| | - Zhanhai Su
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China
| | - Haiyan Wang
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai, China
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
6
|
Ge Y, Zhou Q, Pan F, Wang R. Utilizing Nanoparticles to Overcome Anti-PD-1/PD-L1 Immunotherapy Resistance in Non-Small Cell Lung cancer: A Potential Strategy. Int J Nanomedicine 2025; 20:2371-2394. [PMID: 40027868 PMCID: PMC11871910 DOI: 10.2147/ijn.s505539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/25/2025] [Indexed: 03/05/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality globally, with non-small cell lung cancer (NSCLC) constituting 85% of cases. Immune checkpoint inhibitors (ICIs) represented by anti-programmed cell death protein 1 (PD-1)/ programmed cell death ligand 1 (PD-L1) have emerged as a promising frontier in cancer treatment, effectively extending the survival of patients with NSCLC. However, the efficacy of ICIs exhibits significant variability across diverse patient populations, with a substantial proportion showing poor responsiveness and acquired resistance in those initially responsive to ICIs treatments. With the advancement of nanotechnology, nanoparticles offer unique advantages in tumor immunotherapy, including high permeability and prolonged retention(EPR) effects, enhanced drug delivery and stability, and modulation of the inflammatory tumor microenvironment(TME). This review summarizes the mechanisms of resistance to ICIs in NSCLC, focusing on tumor antigens loss and defective antigen processing and presentation, failure T cell priming, impaired T cell migration and infiltration, immunosuppressive TME, and genetic mutations. Furthermore, we discuss how nanoparticles, through their intrinsic properties such as the EPR effect, active targeting effect, shielding effect, self-regulatory effect, and synergistic effect, can potentiate the efficacy of ICIs and reverse resistance. In conclusion, nanoparticles serve as a robust platform for ICIs-based NSCLC therapy, aiding in overcoming resistance challenges.
Collapse
Affiliation(s)
- Yuli Ge
- Department of Medical Oncology, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Qiong Zhou
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
| | - Fan Pan
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
| | - Rui Wang
- Department of Medical Oncology, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| |
Collapse
|
7
|
Zhang A, Liang J, Lao X, Xia X, Li S, Liu S. Single-Cell Sequencing Reveals PD-L1-Mediated Immune Escape Signaling in Lung Adenocarcinoma. J Cancer 2025; 16:1438-1450. [PMID: 39991571 PMCID: PMC11843243 DOI: 10.7150/jca.103656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025] Open
Abstract
Background: Lung cancer has the highest mortality rate among all cancers, for which immunotherapy can frequently lead to drug resistance. To understand the molecular mechanisms behind immune escape in patients with lung cancer and develop predictive and therapeutic targets, we carried out analytical experiments using single-cell sequencing. Methods: We collected eight tumor tissue samples from eight patients with lung adenocarcinoma and categorized them based on the positive reactions for programmed cell death ligand 1 (PD-L1) expression levels. Single-cell sequencing analysis was employed to create a comprehensive cellular landscape. Uniform Manifold Approximation and Projection was used to show the proportion of immune and endothelial cells, along with a map depicting the distribution of different cell types. Cells were subdivided according to molecular markers; the subpopulations were grouped based on PD-L1 levels and tumor marker-positive reactions. The correlation between the occurrence of the PD-L1 reaction and the response time of immune cells was explored; differential gene expression between the groups was elucidated. Finally, quantitative polymerase chain reaction (qPCR) was used to examine the relationship between key differentially expressed genes and PD-L1 immune escape checkpoint response. Results: A total of 58,810 single cells were analyzed, identifying seven distinct cell types. In the PD-L1-positive sample group, B cells, astrocytes, endothelial cells, outer skin cells, and tissue stem cells were present in higher proportions, whereas T and dendritic cells were the main cells in the PD-L1-negative sample group. According to the molecular markers, the seven cell types were divided into 17 cell clusters, with one cluster classified as tumor cells, showing PD-L1 positivity. Eleven molecular markers with different expression levels were simultaneously screened (NAPSA, MUC1, WFDC2, MYO6, LYZ, IGHG4, IGLL5, IGHM, IGKC, AQP3, and IGFBP7), and their association with the PD-L1/PD-1 immune escape axis response was confirmed by qPCR. Conclusion: Our study suggests that PD-L1-mediated immune escape may occur at a later stage of tumor progression, involving both PD-L1-positive and negative immune cells. Additionally, we identified 11 differentially expressed genes that could provide insights into the potential mechanisms of immune escape in patients with lung cancer. These findings offer promising molecular targets for the detection and treatment of immune escape in clinical settings.
Collapse
Affiliation(s)
- Anbing Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Department of Pulmonary and Critical Care Medicine, Zhongshan People's Hospital, Zhongshan 528403, China
| | - Jianping Liang
- Department of Pulmonary and Critical Care Medicine, Zhongshan People's Hospital, Zhongshan 528403, China
| | - Xiaoli Lao
- Department of Pulmonary and Critical Care Medicine, Zhongshan People's Hospital, Zhongshan 528403, China
- Graduate School, Guangdong Medical University, Zhanjiang 524023, China
| | - Xiuqiong Xia
- Department of Pulmonary and Critical Care Medicine, Zhongshan People's Hospital, Zhongshan 528403, China
| | - Siqi Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan People's Hospital, Zhongshan 528403, China
| | - Shengming Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|
8
|
Ahn MJ, Tanaka K, Paz-Ares L, Cornelissen R, Girard N, Pons-Tostivint E, Vicente Baz D, Sugawara S, Cobo M, Pérol M, Mascaux C, Poddubskaya E, Kitazono S, Hayashi H, Hong MH, Felip E, Hall R, Juan-Vidal O, Brungs D, Lu S, Garassino M, Chargualaf M, Zhang Y, Howarth P, Uema D, Lisberg A, Sands J. Datopotamab Deruxtecan Versus Docetaxel for Previously Treated Advanced or Metastatic Non-Small Cell Lung Cancer: The Randomized, Open-Label Phase III TROPION-Lung01 Study. J Clin Oncol 2025; 43:260-272. [PMID: 39250535 PMCID: PMC11771353 DOI: 10.1200/jco-24-01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
PURPOSE The randomized, open-label, global phase III TROPION-Lung01 study compared the efficacy and safety of datopotamab deruxtecan (Dato-DXd) versus docetaxel in patients with pretreated advanced/metastatic non-small cell lung cancer (NSCLC). METHODS Patients received Dato-DXd 6 mg/kg or docetaxel 75 mg/m2 once every 3 weeks. Dual primary end points were progression-free survival (PFS) and overall survival (OS). Objective response rate, duration of response, and safety were secondary end points. RESULTS In total, 299 and 305 patients were randomly assigned to receive Dato-DXd or docetaxel, respectively. The median PFS was 4.4 months (95% CI, 4.2 to 5.6) with Dato-DXd and 3.7 months (95% CI, 2.9 to 4.2) with docetaxel (hazard ratio [HR], 0.75 [95% CI, 0.62 to 0.91]; P = .004). The median OS was 12.9 months (95% CI, 11.0 to 13.9) and 11.8 months (95% CI, 10.1 to 12.8), respectively (HR, 0.94 [95% CI, 0.78 to 1.14]; P = .530). In the prespecified nonsquamous histology subgroup, the median PFS was 5.5 versus 3.6 months (HR, 0.63 [95% CI, 0.51 to 0.79]) and the median OS was 14.6 versus 12.3 months (HR, 0.84 [95% CI, 0.68 to 1.05]). In the squamous histology subgroup, the median PFS was 2.8 versus 3.9 months (HR, 1.41 [95% CI, 0.95 to 2.08]) and the median OS was 7.6 versus 9.4 months (HR, 1.32 [95% CI, 0.91 to 1.92]). Grade ≥3 treatment-related adverse events occurred in 25.6% and 42.1% of patients, and any-grade adjudicated drug-related interstitial lung disease/pneumonitis occurred in 8.8% and 4.1% of patients, in the Dato-DXd and docetaxel groups, respectively. CONCLUSION Dato-DXd significantly improved PFS versus docetaxel in patients with advanced/metastatic NSCLC, driven by patients with nonsquamous histology. OS showed a numerical benefit but did not reach statistical significance. No unexpected safety signals were observed.
Collapse
Affiliation(s)
- Myung-Ju Ahn
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | - Manuel Cobo
- Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | | | - Céline Mascaux
- Hopitaux Universitaire de Strasbourg, Strasbourg, France
| | | | - Satoru Kitazono
- The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | - Min Hee Hong
- Yonsei Cancer Center, Severance Hospital, Seoul, Republic of Korea
| | - Enriqueta Felip
- Vall d’Hebron Hospital Campus, Vall d’Hebron Institute of Oncology, Universitat Autònoma de Barcelona, Spain
| | - Richard Hall
- University of Virginia Health System, Charlottesville, VA
| | | | - Daniel Brungs
- Southern Medical Day Care Centre, University of Wollongong, Wollongong, Australia
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Marina Garassino
- Department of Medicine, Hematology-Oncology Section, Thoracic Oncology Program, The University of Chicago Medicine & Biological Sciences, Chicago, IL
| | | | | | | | | | - Aaron Lisberg
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA
| | | |
Collapse
|
9
|
Colarusso C, Terlizzi M, Di Caprio S, Falanga A, D’Andria E, d’Emmanuele di Villa Bianca R, Sorrentino R. Conventional Chemotherapy and Inflammation: What Is the Role of the Inflammasome in the Tumor Microenvironment? Biomedicines 2025; 13:203. [PMID: 39857785 PMCID: PMC11762891 DOI: 10.3390/biomedicines13010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
The link between inflammation and cancer has been extensively studied over the years. While the inflammatory process can facilitate tumor establishment and progression, on the other hand, current clinical approaches aim to boost the immune system against the tumor mass. In this scenario, the conventional chemotherapy has proven to induce immunogenic cell death in that the release of danger-associated alarmins can foster the cytotoxic immunity following the blockade of immune checkpoints. The release of alarmins can activate the inflammasome pathway. Thus, one of the questions is as follows: can conventional anti-tumor drugs lead to inflammasome activation? And if so, is the resulting effect anti- or pro-tumor? In this review, we provide an overview on the role of the inflammasome in cancer.
Collapse
Affiliation(s)
- Chiara Colarusso
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, SA, Italy; (C.C.); (M.T.); (S.D.C.); (A.F.); (E.D.)
| | - Michela Terlizzi
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, SA, Italy; (C.C.); (M.T.); (S.D.C.); (A.F.); (E.D.)
| | - Simone Di Caprio
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, SA, Italy; (C.C.); (M.T.); (S.D.C.); (A.F.); (E.D.)
| | - Anna Falanga
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, SA, Italy; (C.C.); (M.T.); (S.D.C.); (A.F.); (E.D.)
| | - Emmanuel D’Andria
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, SA, Italy; (C.C.); (M.T.); (S.D.C.); (A.F.); (E.D.)
| | | | - Rosalinda Sorrentino
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, SA, Italy; (C.C.); (M.T.); (S.D.C.); (A.F.); (E.D.)
| |
Collapse
|
10
|
Alsaafeen BH, Ali BR, Elkord E. Resistance mechanisms to immune checkpoint inhibitors: updated insights. Mol Cancer 2025; 24:20. [PMID: 39815294 PMCID: PMC11734352 DOI: 10.1186/s12943-024-02212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/25/2024] [Indexed: 01/18/2025] Open
Abstract
The last decade has witnessed unprecedented succusses with the use of immune checkpoint inhibitors in treating cancer. Nevertheless, the proportion of patients who respond favorably to the treatment remained rather modest, partially due to treatment resistance. This has fueled a wave of research into potential mechanisms of resistance to immune checkpoint inhibitors which can be classified into primary resistance or acquired resistance after an initial response. In the current review, we summarize what is known so far about the mechanisms of resistance in terms of being tumor-intrinsic or tumor-extrinsic taking into account the multimodal crosstalk between the tumor, immune system compartment and other host-related factors.
Collapse
Affiliation(s)
- Besan H Alsaafeen
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates.
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
11
|
Santiago-Sánchez GS, Fabian KP, Hodge JW. A landscape of checkpoint blockade resistance in cancer: underlying mechanisms and current strategies to overcome resistance. Cancer Biol Ther 2024; 25:2308097. [PMID: 38306161 PMCID: PMC10841019 DOI: 10.1080/15384047.2024.2308097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
The discovery of immune checkpoints and the development of immune checkpoint inhibitors (ICI) have achieved a durable response in advanced-stage cancer patients. However, there is still a high proportion of patients who do not benefit from ICI therapy due to a lack of response when first treated (primary resistance) or detection of disease progression months after objective response is observed (acquired resistance). Here, we review the current FDA-approved ICI for the treatment of certain solid malignancies, evaluate the contrasting responses to checkpoint blockade in different cancer types, explore the known mechanisms associated with checkpoint blockade resistance (CBR), and assess current strategies in the field that seek to overcome these mechanisms. In order to improve current therapies and develop new ones, the immunotherapy field still has an unmet need in identifying other molecules that act as immune checkpoints, and uncovering other mechanisms that promote CBR.
Collapse
Affiliation(s)
- Ginette S. Santiago-Sánchez
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kellsye P. Fabian
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W. Hodge
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Magaña Rodriguez JR, Guerra-Rebollo M, Borrós S, Fornaguera C. Nucleic acid-loaded poly(beta-aminoester) nanoparticles for cancer nano-immuno therapeutics: the good, the bad, and the future. Drug Deliv Transl Res 2024; 14:3477-3493. [PMID: 38700815 PMCID: PMC11499432 DOI: 10.1007/s13346-024-01585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 10/24/2024]
Abstract
Immunotherapy has emerged as a promising approach to cancer treatment, offering improved survival rates and enhanced patients' quality of life. However, realizing the full potential of immunotherapy in clinical practice remains a challenge, as there is still plenty of room for modulating the complexity of the human immune system in favor of an antitumor immunogenicity. Nanotechnology, with its unique properties, holds promise in augmenting the efficacy of cancer immunotherapies in biotherapeutic protection and site- and time-controlled delivery of the immune modulator biologicals. Polymeric nanoparticles are promising biomaterials among different nanocarriers thanks to their robustness, versatility, and cost-efficient design and production. This perspective paper overviews critical concepts in nanometric advanced delivery systems applied to cancer immunotherapy. We focus on a detailed exploration of the current state of the art and trends in using poly(beta-aminoester) (pBAE) polymers for nucleic acid-based antitumor immunotherapies. Through different examples of the use of pBAE polymers reported in the literature, we revise the main advantages these polymers offer and some challenges to overcome. Finally, the paper provides insights and predictions on the path toward the clinical implementation of cancer nano-immunotherapies, highlighting the potential of pBAE polymers for advancements in this field.
Collapse
Affiliation(s)
- J Rodrigo Magaña Rodriguez
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, 08017, Spain
| | - Marta Guerra-Rebollo
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, 08017, Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, 08017, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, 08017, Spain.
| |
Collapse
|
13
|
Okamoto I, Kuyama S, Girard N, Lu S, Franke F, Li Z, Danchaivijitr P, Han JY, Sun JM, Sugawara S, Pan E, Ren N, Chen A, Rajagopalan R, Lisberg AE. TROPION-Lung07: Phase III study of Dato-DXd + pembrolizumab ± platinum-based chemotherapy as 1L therapy for advanced non-small-cell lung cancer. Future Oncol 2024; 20:2927-2936. [PMID: 39469838 PMCID: PMC11572237 DOI: 10.1080/14796694.2024.2409621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
For patients with advanced/metastatic non-small-cell lung cancer (NSCLC) without actionable genomic alterations and low (<50%) PD-L1 expression, pembrolizumab plus pemetrexed and platinum chemotherapy is a preferred first-line treatment. These patients have comparatively worse outcomes than those with higher PD-L1 expression, underscoring the need for new combination strategies. Datopotamab deruxtecan (Dato-DXd), a TROP2-directed antibody-drug conjugate, has demonstrated encouraging antitumor activity and safety in this patient population. We describe the rationale and design of TROPION-Lung07, a randomized, open-label Phase III study assessing Dato-DXd in combination with pembrolizumab with/without platinum-based chemotherapy versus pembrolizumab plus pemetrexed and platinum-based chemotherapy in patients with advanced/metastatic non-squamous NSCLC without actionable genomic alterations and <50% PD-L1 expression. Primary study objectives are progression-free survival and overall survival.Clinical Trial Registration: NCT05555732 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Isamu Okamoto
- Kyushu University Hospital, Department of Respiratory Medicine, Fukuoka, 812-8582, Japan
| | - Shoichi Kuyama
- Iwakuni Clinical Center, Department of Respiratory Medicine, Yamaguchi, 740-8510, Japan
| | - Nicolas Girard
- Institut Curie, Department of Medical Oncology, Paris75005, France
| | - Shun Lu
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Lung Cancer Center, Shanghai200030, China
| | - Fábio Franke
- Oncosite-Centro De Pesquisa Clínica, Department of Clinical Research, Ijuí 98700-000, Brazil
| | - Ziming Li
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Lung Cancer Center, Shanghai200030, China
| | - Pongwut Danchaivijitr
- Faculty of Medicine Siriraj Hospital, Department of Medicine, Bangkok, 10700, Thailand
| | - Ji-Youn Han
- National Cancer Center, Center for Lung Cancer, Goyang, Gyeonggi10408, Republic of Korea
| | - Jong-Mu Sun
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Medicine, Seoul, 06351, Republic of Korea
| | - Shunichi Sugawara
- Sendai Kousei Hospital, Department of Pulmonary Medicine, Sendai, 9810914, Japan
| | - Edward Pan
- Daiichi Sankyo, Inc., Global Research & Development, Basking Ridge, NJ07920, USA
| | - Natalie Ren
- Daiichi Sankyo, Inc., Clinical Development, Basking Ridge, NJ07921, USA
| | - Aiying Chen
- Daiichi Sankyo Inc., Biostatics and Data Management, Basking Ridge, NJ07921, USA
| | - Rachana Rajagopalan
- Daiichi Sankyo, Inc., Clinical Safety and Pharmacovigilance, LondonUB8 1DH, UK
| | - Aaron E Lisberg
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Department of Medicine, Division of Hematology & Oncology, Los Angeles, CA90404, USA
| |
Collapse
|
14
|
Sigawi T, Israeli A, Ilan Y. Harnessing Variability Signatures and Biological Noise May Enhance Immunotherapies' Efficacy and Act as Novel Biomarkers for Diagnosing and Monitoring Immune-Associated Disorders. Immunotargets Ther 2024; 13:525-539. [PMID: 39431244 PMCID: PMC11488351 DOI: 10.2147/itt.s477841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
Lack of response to immunotherapies poses a significant challenge in treating immune-mediated disorders and cancers. While the mechanisms associated with poor responsiveness are not well defined and change between and among subjects, the current methods for overcoming the loss of response are insufficient. The Constrained Disorder Principle (CDP) explains biological systems based on their inherent variability, bounded by dynamic boundaries that change in response to internal and external perturbations. Inter and intra-subject variability characterize the immune system, making it difficult to provide a single therapeutic regimen to all patients and even the same patients over time. The dynamicity of the immune variability is also a significant challenge for personalizing immunotherapies. The CDP-based second-generation artificial intelligence system is an outcome-based dynamic platform that incorporates personalized variability signatures into the therapeutic regimen and may provide methods for improving the response and overcoming the loss of response to treatments. The signatures of immune variability may also offer a method for identifying new biomarkers for early diagnosis, monitoring immune-related disorders, and evaluating the response to treatments.
Collapse
Affiliation(s)
- Tal Sigawi
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Adir Israeli
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
15
|
Zagardo V, Martorana E, Harikar M, Pergolizzi S, Ferini G. Effectiveness of radiotherapy in delaying treatment changes in primary or secondary immunorefractory oligoprogressive patients: preliminary results from a single-center study. Discov Oncol 2024; 15:531. [PMID: 39377996 PMCID: PMC11461402 DOI: 10.1007/s12672-024-01360-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024] Open
Abstract
AIMS To investigate whether the addition of radiotherapy could be an appropriate option to delay the time-to-next systemic treatment (TTNsT) in patients with oligoprogressive solid tumors who had acquired or innate resistance to immune checkpoint inhibitors (ICIs). MATERIAL AND METHODS Patients with oligoprogressive disease treated with ICIs and radiotherapy at our Institute from January 2019 to June 2023 were retrospectively identified. Patients were stratified as primary or secondary immunorefractory according to the time of onset of ICI resistance. TTNsT and Time-To-Resistance (TTR) were the primary outcomes. Secondary outcomes included: post-radiotherapy first progression-free survival (pR-PFS), Local Control (LC), Overall Survival (OS), and treatment-related toxicities. In addition, out-of-field effects (such as the abscopal effect) of radiotherapy have been hypothesized. The survival rates were analyzed using the Kaplan-Meier method and long-rank test. RESULTS 40 out of 105 screened patients with oligoprogressive disease met the inclusion criteria. Of these, 28 had an acquired drug resistance while 12 had an innate drug resistance. Radiotherapy was offered as a local treatment approach in all patients. RT techniques were classified into three regimens: standard palliative hypofractionated radiotherapy (hypo-RT), stereotactic radiotherapy (SRS/SBRT), and lattice radiotherapy (LRT). After a median follow-up of 22.5 months, the median TTR was 4 months (range 3-4) in patients with innate resistance vs 14 months (range 7-36) in patients with acquired resistance. Median TTNsT among patients with acquired and those with innate resistance was not reached (NR) vs 24 months (range 7-72). Overall, only six patients suffered from a local failure. Although out-of-field effects of radiotherapy were hypothesized, we were unable to record them as they did not occur during the observation period. Regardless of the radiation dose, there was no observable ≥ Grade 2 acute or late treatment-related toxicity. CONCLUSION Our preliminary results seem to confirm that the integration of radiotherapy and ICIs may allow for the continuation of systemic therapy beyond progression, which can have a subsequent benefit in terms of survival outcomes even in patients with innate resistance.
Collapse
Affiliation(s)
- Valentina Zagardo
- Radiation Oncology Unit, REM Radioterapia Srl, 95029, Viagrande, Italy
| | | | - Mandara Harikar
- Clinical Trials Programme, The University of Edinburgh, Edinburgh, UK
| | - Stefano Pergolizzi
- Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98122, Messina, Italy
| | - Gianluca Ferini
- Radiation Oncology Unit, REM Radioterapia Srl, 95029, Viagrande, Italy.
- Department of Medicine and Surgery, Kore University of Enna, Enna, Italy.
| |
Collapse
|
16
|
Hashemi M, Mohandesi Khosroshahi E, Tanha M, Khoushab S, Bizhanpour A, Azizi F, Mohammadzadeh M, Matinahmadi A, Khazaei Koohpar Z, Asadi S, Taheri H, Khorrami R, Ramezani Farani M, Rashidi M, Rezaei M, Fattah E, Taheriazam A, Entezari M. Targeting autophagy can synergize the efficacy of immune checkpoint inhibitors against therapeutic resistance: New promising strategy to reinvigorate cancer therapy. Heliyon 2024; 10:e37376. [PMID: 39309904 PMCID: PMC11415696 DOI: 10.1016/j.heliyon.2024.e37376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/29/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Immune checkpoints are a set of inhibitory and stimulatory molecules/mechanisms that affect the activity of immune cells to maintain the existing balance between pro- and anti-inflammatory signaling pathways and avoid the progression of autoimmune disorders. Tumor cells can employ these checkpoints to evade immune system. The discovery and development of immune checkpoint inhibitors (ICIs) was thereby a milestone in the area of immuno-oncology. ICIs stimulate anti-tumor immune responses primarily by disrupting co-inhibitory signaling mechanisms and accelerate immune-mediated killing of tumor cells. Despite the beneficial effects of ICIs, they sometimes encounter some degrees of therapeutic resistance, and thereby do not effectively act against tumors. Among multiple combination therapies have been introduced to date, targeting autophagy, as a cellular degradative process to remove expired organelles and subcellular constituents, has represented with potential capacities to overcome ICI-related therapy resistance. It has experimentally been illuminated that autophagy induction blocks the immune checkpoint molecules when administered in conjugation with ICIs, suggesting that autophagy activation may restrict therapeutic challenges that ICIs have encountered with. However, the autophagy flux can also provoke the immune escape of tumors, which must be considered. Since the conventional FDA-approved ICIs have designed and developed to target programmed cell death receptor/ligand 1 (PD-1/PD-L1) as well as cytotoxic T lymphocyte-associated molecule 4 (CTLA-4) immune checkpoint molecules, we aim to review the effects of autophagy targeting in combination with anti-PD-1/PD-L1- and anti-CTLA-4-based ICIs on cancer therapeutic resistance and tumor immune evasion.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Anahita Bizhanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farnaz Azizi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Mohammadzadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hengameh Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Rezaei
- Health Research Center, Chamran Hospital, Tehran, Iran
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
17
|
Yang P, Luo H, Zhao L, Xiong F, Tang C. Effectiveness and safety of anlotinib plus anti-programmed cell death 1/ligand 1 (anti-PD-1/PD-L1) antibodies as maintenance therapy after first-line chemotherapy combined with anti-PD-1/PD-L1 antibodies in extensive-stage small cell lung cancer: a real-world study. J Thorac Dis 2024; 16:4391-4399. [PMID: 39144292 PMCID: PMC11320278 DOI: 10.21037/jtd-24-394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/31/2024] [Indexed: 08/16/2024]
Abstract
Background Currently, chemotherapy plus immunotherapy followed by maintenance therapy with immune monotherapy is the preferred first-line treatment option for extensive-stage small cell lung cancer (ES-SCLC), but with limited overall survival (OS) and progression-free survival (PFS) benefits. The combination of anti-angiogenic drugs with immunotherapy has shown encouraging anti-tumor activity and tolerability, with some degree of overcoming immune resistance. This study aimed to evaluate the effectiveness and safety of anlotinib plus anti-programmed cell death 1/ligand 1 (anti-PD-1/PD-L1) antibodies as maintenance therapy after first-line chemotherapy combined with immunotherapy in ES-SCLC. Methods Between June 2020 and December 2021, 12 patients with newly diagnosed ES-SCLC in the First Affiliated Hospital of Army Medical University were retrospectively analyzed. All patients without disease progression after 4-6 cycles of first-line platinum-containing chemotherapy plus anti-PD-1/PD-L1 antibodies received anlotinib (12 mg oral/day, days 1-14, followed by 1 week off, every 3 weeks per cycle) plus anti-PD-1/PD-L1 antibodies as maintenance therapy. Several patients underwent chest radiotherapy (intensity-modulated radiotherapy using a 6 MV X-ray) without disease progression before maintenance therapy. The effectiveness and safety of anlotinib plus anti-PD-1/PD-L1 antibodies as maintenance therapy after first-line chemotherapy combined with immunotherapy in ES-SCLC were evaluated. Results The median follow-up time was 31.1 months. During first-line treatment (including maintenance therapy), one patient achieved a complete response, eight patients achieved a partial response (PR), and three patients had stable disease, with an objective response rate of 75.0% and a disease control rate of 100.0%. During maintenance therapy with anlotinib plus anti-PD-1/PD-L1 antibodies, 50.0% of patients achieved further lesion remission on the basis of the prior initial treatment, of which one patient achieved a PR. The median PFS was 13.6 [95% confidence interval (CI): 11.2-15.6] months, and the median OS was 19.5 (95% CI: 14.5-24.5) months. Treatment-related any grade and grade 3-4 adverse events (AEs) were reported in 100.0% and 58.3% of patients, respectively. No life-threatening AEs were observed. Grade 3-4 AEs included leukocytopenia (58.3%, 7/12), thrombocytopenia (33.3%, 4/12), nausea (33.3%, 4/12), anemia (16.7%, 2/12), and fatigue (8.3%, 1/12). All AEs during maintenance therapy were tolerated and were regarded as grade 1-2, with the majority being fatigue, nausea, rash, and hemoptysis. Conclusions The combination of anlotinib with anti-PD-1/PD-L1 antibodies demonstrated encouraging effectiveness and safety in treating patients with ES-SCLC, suggesting that it may be a preferred option for maintenance therapy after first-line chemotherapy combined with immunotherapy.
Collapse
Affiliation(s)
- Pan Yang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hu Luo
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Lintao Zhao
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Fu Xiong
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Chunlan Tang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
18
|
Lian F, Yang H, Hong R, Xu H, Yu T, Sun G, Zheng G, Xie B. Evaluation of the antitumor effect of neoantigen peptide vaccines derived from the translatome of lung cancer. Cancer Immunol Immunother 2024; 73:129. [PMID: 38744688 PMCID: PMC11093939 DOI: 10.1007/s00262-024-03670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/08/2024] [Indexed: 05/16/2024]
Abstract
Emerging evidence suggests that tumor-specific neoantigens are ideal targets for cancer immunotherapy. However, how to predict tumor neoantigens based on translatome data remains obscure. Through the extraction of ribosome-nascent chain complexes (RNCs) from LLC cells, followed by RNC-mRNA extraction, RNC-mRNA sequencing, and comprehensive bioinformatic analysis, we successfully identified proteins undergoing translatome and exhibiting mutations in the cells. Subsequently, novel antigens identification was analyzed by the interaction between their high affinity and the Major Histocompatibility Complex (MHC). Neoantigens immunogenicity was analyzed by enzyme-linked immunospot assay (ELISpot). Finally, in vivo experiments in mice were conducted to evaluate the antitumor effects of translatome-derived neoantigen peptides on lung cancer. The results showed that ten neoantigen peptides were identified and synthesized by translatome data from LLC cells; 8 out of the 10 neoantigens had strong immunogenicity. The neoantigen peptide vaccine group exhibited significant tumor growth inhibition effect. In conclusion, neoantigen peptide vaccine derived from the translatome of lung cancer exhibited significant tumor growth inhibition effect.
Collapse
Affiliation(s)
- Fenbao Lian
- Shengli Clinical Medical College, Fujian Medical University, No. 134 East Street, Fuzhou City, 350001, Fujian Province, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, No. 134 East Street, Fuzhou, 350001, China
| | - Haitao Yang
- Shengli Clinical Medical College, Fujian Medical University, No. 134 East Street, Fuzhou City, 350001, Fujian Province, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, No. 134 East Street, Fuzhou, 350001, China
| | - Rujun Hong
- Shengli Clinical Medical College, Fujian Medical University, No. 134 East Street, Fuzhou City, 350001, Fujian Province, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, No. 134 East Street, Fuzhou, 350001, China
| | - Hang Xu
- Shengli Clinical Medical College, Fujian Medical University, No. 134 East Street, Fuzhou City, 350001, Fujian Province, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, No. 134 East Street, Fuzhou, 350001, China
| | - Tingting Yu
- Department of Thoracic Oncology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Gang Sun
- Department of Breast and Thyroid Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, 789 East Suzhou Street, Xinshi District, Urumqi, 830011, Xinjiang, China.
- Xinjiang Cancer Center/Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, 830011, Xinjiang, China.
| | - Guanying Zheng
- Shengli Clinical Medical College, Fujian Medical University, No. 134 East Street, Fuzhou City, 350001, Fujian Province, China.
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, No. 134 East Street, Fuzhou, 350001, China.
| | - Baosong Xie
- Shengli Clinical Medical College, Fujian Medical University, No. 134 East Street, Fuzhou City, 350001, Fujian Province, China.
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, No. 134 East Street, Fuzhou, 350001, China.
| |
Collapse
|
19
|
Santiso A, Heinemann A, Kargl J. Prostaglandin E2 in the Tumor Microenvironment, a Convoluted Affair Mediated by EP Receptors 2 and 4. Pharmacol Rev 2024; 76:388-413. [PMID: 38697857 DOI: 10.1124/pharmrev.123.000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 05/05/2024] Open
Abstract
The involvement of the prostaglandin E2 (PGE2) system in cancer progression has long been recognized. PGE2 functions as an autocrine and paracrine signaling molecule with pleiotropic effects in the human body. High levels of intratumoral PGE2 and overexpression of the key metabolic enzymes of PGE2 have been observed and suggested to contribute to tumor progression. This has been claimed for different types of solid tumors, including, but not limited to, lung, breast, and colon cancer. PGE2 has direct effects on tumor cells and angiogenesis that are known to promote tumor development. However, one of the main mechanisms behind PGE2 driving cancerogenesis is currently thought to be anchored in suppressed antitumor immunity, thus providing possible therapeutic targets to be used in cancer immunotherapies. EP2 and EP4, two receptors for PGE2, are emerging as being the most relevant for this purpose. This review aims to summarize the known roles of PGE2 in the immune system and its functions within the tumor microenvironment. SIGNIFICANCE STATEMENT: Prostaglandin E2 (PGE2) has long been known to be a signaling molecule in cancer. Its presence in tumors has been repeatedly associated with disease progression. Elucidation of its effects on immunological components of the tumor microenvironment has highlighted the potential of PGE2 receptor antagonists in cancer treatment, particularly in combination with immune checkpoint inhibitor therapeutics. Adjuvant treatment could increase the response rates and the efficacy of immune-based therapies.
Collapse
Affiliation(s)
- Ana Santiso
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
20
|
Zhang Y, Chen Z, Liu Y, Han L, Jiang W, Wang Q, Shi J, Lu L, Li J, Zhang M, Huang Y, Yang Y, Hou X, Zhang L, Li J, Fang W, Chen G. Chidamide plus envafolimab as subsequent treatment in advanced non-small cell lung cancer patients resistant to anti-PD-1 therapy: A multicohort, open-label, phase II trial with biomarker analysis. Cancer Med 2024; 13:e7175. [PMID: 38597130 PMCID: PMC11004905 DOI: 10.1002/cam4.7175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Combination of chidamide and anti-PD-L1 inhibitor produce synergistic anti-tumor effect in advanced NSCLC patients resistant to anti-PD-1 treatment. However, the effect of chidamide plus envafolimab has not been reported. AIMS This study aimed to evaluate the efficacy of chidamide plus envafolimab in advanced NSCLC patients resistant toanti-PD-1 treatment. MATERIALS AND METHODS Eligible advanced NSCLC patients after resistant to anti-PD-1 therapy received chidamide and envafolimab. The primary endpoint was objective response rate (ORR). The secondary end points included disease control rate (DCR), progression-free survival (PFS), and safety. The expression of histone deacetylase 2 (HDAC2), PD-L1, and blood TMB (bTMB) was also analyzed. RESULTS After a median follow-up of 8.1 (range: 7.6-9.2) months, only two patients achieved partial response. The ORR was 6.7% (2/30), DCR was 50% (15/30), and median PFS (mPFS) was 3.5 (95% confidence interval: 1.9-5.5) months. Biomarker analysis revealed that patients with high-level HDAC2 expression had numerically superior ORR (4.3% vs. 0), DCR (52.2% vs. 0) and mPFS (3.7 vs. 1.4m). Patients with negative PD-L1 had numerically superior DCR (52.2% vs. 33.3%) and mPFS (3.7m vs. 1.8m), so were those with low-level bTMB (DCR: 59.1% vs. 16.7%, mPFS: 3.8 vs.1.9m). Overall safety was controllable. DISCUSSION High HDAC2patients showed better ORR, DCR, and PFS. In addition, patient with negative PD-L1 and low-level bTMB had better DCR and PFS. This may be related to the epigenetic function of chidamide. However, the sample size was not big enough, so it is necessary to increase sample size to confirm the conclusion. CONCLUSION Combination of chidamide and envafolimab showed efficacy signals in certain NSCLC patients. But further identification of beneficial population is necessary for precision treatment.
Collapse
Affiliation(s)
- Yaxiong Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zihong Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yu Liu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Liang Han
- Department of OncologyXuzhou Central HospitalXuzhouJiangsuChina
| | - Wei Jiang
- Department of Respiratory OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Qiming Wang
- Department of Internal Medicine, Henan Cancer HospitalAffiliated Cancer Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Jianhua Shi
- Department of OncologyLinyi Cancer HospitalLinyiShandongChina
| | - Liqin Lu
- Department of Medical OncologyThe People's Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| | - Jianying Li
- Department of OncologyNantong Tumor HospitalNantongJiangsuChina
| | - Mingjun Zhang
- Department of OncologyThe Second Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yunpeng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xue Hou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jing Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wenfeng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Gang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
21
|
Besse B, Pons-Tostivint E, Park K, Hartl S, Forde PM, Hochmair MJ, Awad MM, Thomas M, Goss G, Wheatley-Price P, Shepherd FA, Florescu M, Cheema P, Chu QSC, Kim SW, Morgensztern D, Johnson ML, Cousin S, Kim DW, Moskovitz MT, Vicente D, Aronson B, Hobson R, Ambrose HJ, Khosla S, Reddy A, Russell DL, Keddar MR, Conway JP, Barrett JC, Dean E, Kumar R, Dressman M, Jewsbury PJ, Iyer S, Barry ST, Cosaert J, Heymach JV. Biomarker-directed targeted therapy plus durvalumab in advanced non-small-cell lung cancer: a phase 2 umbrella trial. Nat Med 2024; 30:716-729. [PMID: 38351187 PMCID: PMC10957481 DOI: 10.1038/s41591-024-02808-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/09/2024] [Indexed: 03/23/2024]
Abstract
For patients with non-small-cell lung cancer (NSCLC) tumors without currently targetable molecular alterations, standard-of-care treatment is immunotherapy with anti-PD-(L)1 checkpoint inhibitors, alone or with platinum-doublet therapy. However, not all patients derive durable benefit and resistance to immune checkpoint blockade is common. Understanding mechanisms of resistance-which can include defects in DNA damage response and repair pathways, alterations or functional mutations in STK11/LKB1, alterations in antigen-presentation pathways, and immunosuppressive cellular subsets within the tumor microenvironment-and developing effective therapies to overcome them, remains an unmet need. Here the phase 2 umbrella HUDSON study evaluated rational combination regimens for advanced NSCLC following failure of anti-PD-(L)1-containing immunotherapy and platinum-doublet therapy. A total of 268 patients received durvalumab (anti-PD-L1 monoclonal antibody)-ceralasertib (ATR kinase inhibitor), durvalumab-olaparib (PARP inhibitor), durvalumab-danvatirsen (STAT3 antisense oligonucleotide) or durvalumab-oleclumab (anti-CD73 monoclonal antibody). Greatest clinical benefit was observed with durvalumab-ceralasertib; objective response rate (primary outcome) was 13.9% (11/79) versus 2.6% (5/189) with other regimens, pooled, median progression-free survival (secondary outcome) was 5.8 (80% confidence interval 4.6-7.4) versus 2.7 (1.8-2.8) months, and median overall survival (secondary outcome) was 17.4 (14.1-20.3) versus 9.4 (7.5-10.6) months. Benefit with durvalumab-ceralasertib was consistent across known immunotherapy-refractory subgroups. In ATM-altered patients hypothesized to harbor vulnerability to ATR inhibition, objective response rate was 26.1% (6/23) and median progression-free survival/median overall survival were 8.4/22.8 months. Durvalumab-ceralasertib safety/tolerability profile was manageable. Biomarker analyses suggested that anti-PD-L1/ATR inhibition induced immune changes that reinvigorated antitumor immunity. Durvalumab-ceralasertib is under further investigation in immunotherapy-refractory NSCLC.ClinicalTrials.gov identifier: NCT03334617.
Collapse
Affiliation(s)
- Benjamin Besse
- Institut Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Elvire Pons-Tostivint
- Medical Oncology, Centre Hospitalier Universitaire Nantes, Nantes University, Nantes, France
| | - Keunchil Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- MD Anderson Cancer Center, Houston, TX, USA
| | - Sylvia Hartl
- Ludwig Boltzmann Institute for Lung Health, Clinic Penzing, Vienna, Austria
- Sigmund Freud University, Vienna, Austria
| | - Patrick M Forde
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maximilian J Hochmair
- Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Mark M Awad
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Thomas
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Glenwood Goss
- The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Paul Wheatley-Price
- The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Frances A Shepherd
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Marie Florescu
- Division of Hematology Oncology, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Parneet Cheema
- William Osler Health System, University of Toronto, Toronto, Ontario, Canada
| | | | - Sang-We Kim
- Department of Oncology, Asan Medical Center, Seoul, Republic of Korea
| | - Daniel Morgensztern
- Department of Medicine, Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Melissa L Johnson
- Sarah Cannon Research Institute, Tennessee Oncology, Nashville, TN, USA
| | - Sophie Cousin
- Department of Medical Oncology, Institut Bergonié, Regional Comprehensive Cancer Center, Bordeaux, France
| | - Dong-Wan Kim
- Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| | - Mor T Moskovitz
- Institute of Oncology, Rambam Medical Center, Haifa, Israel
- Thoracic Cancer Service, Rabin Medical Center Davidoff Cancer Centre, Beilinson Campus, Petah Tikva, Israel
| | - David Vicente
- Department of Medical Oncology, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Boaz Aronson
- Oncology Early Global Development, AstraZeneca, Gaithersburg, MD, USA
| | | | - Helen J Ambrose
- Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Sajan Khosla
- Real-World Evidence, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Avinash Reddy
- Oncology Data Science, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Deanna L Russell
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Mohamed Reda Keddar
- Oncology Data Science, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - James P Conway
- Oncology Data Science, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - J Carl Barrett
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Emma Dean
- Oncology R&D, AstraZeneca, Cambridge, UK
| | - Rakesh Kumar
- Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | | | - Sonia Iyer
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, MA, USA
| | | | | | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
22
|
Sun W, Qiu F, Zheng J, Fang L, Qu J, Zhang S, Jiang N, Zhou J, Zeng X, Zhou J. CD57-positive CD8 + T cells define the response to anti-programmed cell death protein-1 immunotherapy in patients with advanced non-small cell lung cancer. NPJ Precis Oncol 2024; 8:25. [PMID: 38297019 PMCID: PMC10830454 DOI: 10.1038/s41698-024-00513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/08/2023] [Indexed: 02/02/2024] Open
Abstract
Immune checkpoint inhibitors have transformed the treatment landscape of non-small cell lung cancer (NSCLC). However, accurately identifying patients who will benefit from immunotherapy remains a challenge. This study aimed to discover potential biomarkers for predicting immunotherapy response in NSCLC patients. Single-cell mass cytometry (CyTOF) was utilized to analyze immune cell subsets in peripheral blood mononuclear cells (PBMCs) obtained from NSCLC patients before and 12 weeks after single-agent immunotherapy. The CyTOF findings were subsequently validated using flow cytometry and multiplex immunohistochemistry/immunofluorescence in PBMCs and tumor tissues, respectively. RNA sequencing (RNA-seq) was performed to elucidate the underlying mechanisms. In the CyTOF cohort (n = 20), a high frequency of CD57+CD8+ T cells in PBMCs was associated with durable clinical benefit from immunotherapy in NSCLC patients (p = 0.034). This association was further confirmed in an independent cohort using flow cytometry (n = 27; p < 0.001), with a determined cutoff value of 12.85%. The cutoff value was subsequently validated in another independent cohort (AUC = 0.733). We also confirmed the CyTOF findings in pre-treatment formalin-fixed and paraffin-embedded tissues (n = 90; p < 0.001). RNA-seq analysis revealed 475 differentially expressed genes (DEGs) between CD57+CD8+ T cells and CD57-CD8+ T cells, with functional analysis identifying DEGs significantly enriched in immune-related signaling pathways. This study highlights CD57+CD8+ T cells as a promising biomarker for predicting immunotherapy success in NSCLC patients.
Collapse
Affiliation(s)
- Wenjia Sun
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fengqi Qiu
- Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jing Zheng
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liangjie Fang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jingjing Qu
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shumeng Zhang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Nan Jiang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianying Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jianya Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
23
|
Kong Q, Zhu H, Gong W, Deng X, Liu B, Dong J. Modified Bushen Yiqi formula enhances antitumor immunity by reducing the chemotactic recruitment of M2-TAMs and PMN-MDSCs in Lewis lung cancer-bearing mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117183. [PMID: 37739106 DOI: 10.1016/j.jep.2023.117183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Modified Bushen Yiqi formula (MBYF) has shown efficacy as an herbal combination therapy with anti-PD-1 for lung cancer patients. However, the underlying mechanisms of its antitumor effects in lung cancer remain unclear. AIM OF THE STUDY This study aims to observe the antitumor effect of MBYF and explore its synergistic mechanism in combination with anti-PD-1 based on the tumor immune microenvironment. MATERIALS AND METHODS The antitumor effect of MBYF was assessed in Lewis Lung Cancer (LLC)-bearing mice by evaluating tumor volume, weight, and histology in five groups (model control, MBYF 8.125 g/kg, MBYF 16.25 g/kg, MBYF 32.50 g/kg, anti-PD-1). Mechanisms were analyzed using pharmacology network and tumor RNA-sequencing. Tumor-infiltrating immune cells were measured by flow cytometry and immunohistochemistry. Targets and pathways were validated through qRT-PCR, immuno-histochemistry, and western blotting. The synergistic effect of MBYF in combination with anti-PD-1 was validated in three groups (model control, anti-PD-1, anti-PD-1+MBYF 16.25 g/kg). RESULTS MBYF inhibited tumor growth and proliferation and demonstrated safety for the heart, liver, and kidney. Mechanistically, MBYF downregulated tumor proliferation by suppressing the expression of CCND1, CTNNB1, EGFR, and the PI3K-AKT/STAT3/ERK pathway. Furthermore, MBYF may upregulated the antitumor immunity (CD4+T cells, active CD8+ T cells, and NK cells) by reducing the infiltration of M2-TAMs and PMN-MDSCs. MBYF may inhibit the recruitment of M2-TAMs by downregulating the CCR5-CCLs axis and PMN-MDSCs by the CXCR2-CXCLs axis. In vivo study confirmed that MBYF enhanced the antitumor effect of anti-PD-1 therapy. CONCLUSION Modified Bushen Yiqi formula enhances antitumor immunity in the treatment of lung cancer by reducing the chemotactic recruitment of M2-TAMs and PMN-MDSCs, suggesting its potential as an adjunct therapy to enhance anti-PD-1 responses and improve treatment outcomes. Further research and clinical studies are needed to validate and expand upon these promising findings.
Collapse
Affiliation(s)
- Qing Kong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Huahe Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Weiyi Gong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Xiaohong Deng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Baojun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Lin L, Chen X, Lin G, Chen L, Xu Y, Zeng Y. FUT3 facilitates glucose metabolism of lung adenocarcinoma via activation of NF-κB pathway. BMC Pulm Med 2023; 23:436. [PMID: 37946130 PMCID: PMC10636925 DOI: 10.1186/s12890-023-02688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE Fucosyltransferases (FUTs) molecules have been identified to be involved in carcinogenesis of malignant tumors. Nevertheless, the biological function of fucosyltransferases-3 (FUT3) in lung adenocarcinoma (LUAD) malignant phenotype remains unclear. Herein, we investigated the association between FUT3 and LUAD pathological process. METHODS Immunochemistry, RT-qPCR and western blot assays were conducted to evaluate the expression of FUT3 in LUAD and corresponding adjacent tissues. The prognostic value of FUT3 was assessed via Kaplan‑Meier plotter database. The biological process and potential mechanism of FUT3 in LUAD were conducted via GSEA. Additionally, immunofluorescence and metabolite activity detection were performed to determine the potential role of FUT3 in LUAD glucose metabolism. The active biomarkers associated with NF-κB signaling pathway were detected via western blot. Subcutaneous tumor model was conducted to analyze the effect of FUT3 on tumorigenesis of LUAD. RESULTS FUT3 was remarkably upregulated in LUAD tissues compared with adjacent tissues from individuals. FUT3 overexpression may predict poor prognosis of LUAD patients. Knockdown of FUT3 significantly inhibited tumor proliferation, migration and glucometabolic alteration in LUAD cells. Moreover, GSEA demonstrated that elevated FUT3 was positively related to NF-κB signaling pathway. Additionally, in vitro and in vivo assays also indicated that downregulation of FUT3 resulted in the suppression of oncogenesis and glucose metabolism via inactivation of NF-κB pathway. CONCLUSION Our findings demonstrated that FUT3 was involved in glucometabolic process and tumorigenesis of LUAD via NF-κB signaling pathway. FUT3 may be an optimal target for diagnosis and treatment of LUAD patients.
Collapse
Affiliation(s)
- Lanlan Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
| | - Xiaohui Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
| | - Guofu Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
| | - Luyang Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
| | - Yuan Xu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China.
- Clinical Research Center, Quanzhou, Fujian Province, 362000, China.
- School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, 350000, China.
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China.
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China.
| |
Collapse
|
25
|
Park JE, Jo J, Youk J, Kim M, Yoon SH, Keam B, Kim TM, Kim DW. Prognostic utility of body composition parameters based on computed tomography analysis of advanced non-small cell lung cancer treated with immune checkpoint inhibitors. Insights Imaging 2023; 14:182. [PMID: 37880430 PMCID: PMC10600077 DOI: 10.1186/s13244-023-01532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate the prognostic impact of body composition parameters based on computed tomography (CT) in patients with non-small cell lung cancer (NSCLC) who received ICI treatment. METHODS This retrospective study analyzed the data from advanced NSCLC patients treated with ICI therapy between 2013 and 2019. We included patients with NSCLC who underwent baseline CT scans. The exclusion criteria included patients who received three or more lines of chemotherapy, those with insufficient clinical information, or those without treatment response evaluation. RESULTS A total of 136 patients were enrolled. Among the volumetric body composition parameters, patients in the highest quartiles (Q2-4) of the visceral fat index (VFI) exhibited a higher response rate to ICI therapy than those in the lowest quartile (Q1) of VFI (Q1 vs. Q2-4: 18.2% vs. 43.1%, p = 0.012). Patients with a VFI in Q2-4 had significantly prolonged progression-free survival (PFS) and overall survival (OS) (PFS, Q1 vs. Q2-4: 3.0 months vs. 6.4 months, p = 0.043; OS, Q1 vs. Q2-4: 5.6 months vs. 16.3 months, p = 0.004). Kaplan-Meier analysis based on the VFI and visceral fat Hounsfield unit (HU) revealed that patients with VFI in Q1 and HU in Q2-4 had the worst prognosis. CONCLUSIONS Visceral fat volume is significantly associated with treatment outcomes in ICI-treated patients with NSCLC. Moreover, fat quality may impact the treatment outcomes. This finding underscores the potential significance of both fat compartments and fat quality as prognostic indicators. CRITICAL RELEVANCE STATEMENT Visceral fat volume is significantly associated with treatment outcomes in ICI-treated patients with non-small cell lung cancer. Moreover, fat quality may impact the treatment outcomes. This finding underscores the potential significance of both fat compartments and fat quality as prognostic indicators. KEY POINTS • We found that visceral fat volume positively correlated with treatment response and survival in patients with non-small cell lung cancer receiving immune checkpoint inhibitors. • Additionally, a trend toward a negative correlation between visceral fat attenuation and survival was observed. • The findings highlight the prognostic utility of fat compartments and fat quality.
Collapse
Affiliation(s)
- Ji Eun Park
- Department of Internal Medicine, Jeju National University Hospital, Jeju, South Korea
| | - Jaemin Jo
- Department of Internal Medicine, Jeju National University Hospital, Jeju, South Korea
| | - Jeonghwan Youk
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Miso Kim
- Cancer Research Institute, Seoul National University, Seoul, South Korea.
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| | - Soon Ho Yoon
- Department of Radiology, Seoul National University College of Medicine and Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| | - Bhumsuk Keam
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Tae Min Kim
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Dong-Wan Kim
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| |
Collapse
|
26
|
Shimizu T, Sands J, Yoh K, Spira A, Garon EB, Kitazono S, Johnson ML, Meric-Bernstam F, Tolcher AW, Yamamoto N, Greenberg J, Kawasaki Y, Zebger-Gong H, Kobayashi F, Phillips P, Lisberg AE, Heist RS. First-in-Human, Phase I Dose-Escalation and Dose-Expansion Study of Trophoblast Cell-Surface Antigen 2-Directed Antibody-Drug Conjugate Datopotamab Deruxtecan in Non-Small-Cell Lung Cancer: TROPION-PanTumor01. J Clin Oncol 2023; 41:4678-4687. [PMID: 37327461 PMCID: PMC10564307 DOI: 10.1200/jco.23.00059] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 06/18/2023] Open
Abstract
PURPOSE This first-in-human, dose-escalation and dose-expansion study evaluated the safety, tolerability, and antitumor activity of datopotamab deruxtecan (Dato-DXd), a novel trophoblast cell-surface antigen 2 (TROP2)-directed antibody-drug conjugate in solid tumors, including advanced non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS Adults with locally advanced/metastatic NSCLC received 0.27-10 mg/kg Dato-DXd once every 3 weeks during escalation or 4, 6, or 8 mg/kg Dato-DXd once every 3 weeks during expansion. Primary end points were safety and tolerability. Secondary end points included objective response rate (ORR), survival, and pharmacokinetics. RESULTS Two hundred ten patients received Dato-DXd, including 180 in the 4-8 mg/kg dose-expansion cohorts. This population had a median of three prior lines of therapy. The maximum tolerated dose was 8 mg/kg once every 3 weeks; the recommended dose for further development was 6 mg/kg once every 3 weeks. In patients receiving 6 mg/kg (n = 50), median duration on study, including follow-up, and median exposure were 13.3 and 3.5 months, respectively. The most frequent any-grade treatment-emergent adverse events (TEAEs) were nausea (64%), stomatitis (60%), and alopecia (42%). Grade ≥3 TEAEs and treatment-related AEs occurred in 54% and 26% of patients, respectively. Interstitial lung disease adjudicated as drug-related (two grade 2 and one grade 4) occurred in three of 50 patients (6%). The ORR was 26% (95% CI, 14.6 to 40.3), and median duration of response was 10.5 months; median progression-free survival and overall survival were 6.9 months (95% CI, 2.7 to 8.8 months) and 11.4 months (95% CI, 7.1 to 20.6 months), respectively. Responses occurred regardless of TROP2 expression. CONCLUSION Promising antitumor activity and a manageable safety profile were seen with Dato-DXd in heavily pretreated patients with advanced NSCLC. Further investigation as first-line combination therapy in advanced NSCLC and as monotherapy in the second-line setting and beyond is ongoing.
Collapse
Affiliation(s)
- Toshio Shimizu
- National Cancer Center Hospital, Tokyo, Japan
- Wakayama Medical University Hospital, Wakayama, Japan
| | | | - Kiyotaka Yoh
- National Cancer Center Hospital East, Chiba, Japan
| | - Alexander Spira
- Virginia Cancer Specialists (VCS) Research Institute, Fairfax, VA
| | | | | | - Melissa L. Johnson
- Sarah Cannon Research Institute, Tennessee Oncology, PLLC/OneOncology, Nashville, TN
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liang H, Zhang L, Zhao X, Rong J. The therapeutic potential of exosomes in lung cancer. Cell Oncol (Dordr) 2023; 46:1181-1212. [PMID: 37365450 DOI: 10.1007/s13402-023-00815-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Lung cancer (LC) is one of the most common malignancies globally. Besides early detection and surgical resection, there is currently no effective curative treatment for metastatic advanced LC. Exosomes are endogenous nano-extracellular vesicles produced by somatic cells that play an important role in the development and maintenance of normal physiology. Exosomes can carry proteins, peptides, lipids, nucleic acids, and various small molecules for intra- and intercellular material transport or signal transduction. LC cells can maintain their survival, proliferation, migration, invasion, and metastasis, by producing or interacting with exosomes. Basic and clinical data also show that exosomes can be used to suppress LC cell proliferation and viability, induce apoptosis, and enhance treatment sensitivity. Due to the high stability and target specificity, good biocompatibility, and low immunogenicity of exosomes, they show promise as vehicles of LC therapy. CONCLUSION We have written this comprehensive review to communicate the LC treatment potential of exosomes and their underlying molecular mechanisms. We found that overall, LC cells can exchange substances or crosstalk with themselves or various other cells in the surrounding TME or distant organs through exosomes. Through this, they can modulate their survival, proliferation, stemness, migration, and invasion, EMT, metastasis, and apoptotic resistance.
Collapse
Affiliation(s)
- Hongyuan Liang
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Lingyun Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, No. 210, BaiTa Street, Hunnan District, Shenyang, 110001, People's Republic of China
| | - Xiangxuan Zhao
- Health Sciences Institute, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110022, People's Republic of China.
| | - Jian Rong
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning Province, 110004, People's Republic of China.
| |
Collapse
|
28
|
Wang Z, Zhang J, Shi S, Ma H, Wang D, Zuo C, Zhang Q, Lian C. Predicting lung adenocarcinoma prognosis, immune escape, and pharmacomic profile from arginine and proline-related genes. Sci Rep 2023; 13:15198. [PMID: 37709932 PMCID: PMC10502151 DOI: 10.1038/s41598-023-42541-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is a highly heterogeneous disease that ranks first in morbidity and mortality. Abnormal arginine metabolism is associated with inflammatory lung disease and may influence alterations in the tumor immune microenvironment. However, the potential role of arginine and proline metabolic patterns and immune molecular markers in LUAD is unclear. Gene expression, somatic mutations, and clinicopathological information of LUAD were downloaded from The Cancer Genome Atlas (TCGA) database. Univariate Cox regression analysis was performed to identify metabolic genes associated with overall survival (OS). Unsupervised clustering divided the sample into two subtypes with different metabolic and immunological profiles. Gene set enrichment analysis (GESA) and gene set variation analysis (GSVA) were used to analyze the underlying biological processes of the two subtypes. Drug sensitivity between subtypes was also predicted; then prognostic features were developed by multivariate Cox regression analysis. In addition, validation was obtained in the GSE68465, and GSE50081 dataset. Then, gene expression, and clinical characterization of hub genes CPS1 and SMS were performed; finally, in vitro validation experiments for knockdown of SMS were performed in LUAD cell lines. In this study, we first identified 12 arginine and proline-related genes (APRGs) significantly associated with OS and characterized the clinicopathological features and tumor microenvironmental landscape of two different subtypes. Then, we established an arginine and proline metabolism-related scoring system and identified two hub genes highly associated with prognosis, namely CPS1, and SMS. In addition, we performed CCK8, transwell, and other functional experiments on SMS to obtain consistent results. Our comprehensive analysis revealed the potential molecular features and clinical applications of APRGs in LUAD. A model based on 2 APRGs can accurately predict survival outcomes in LUAD, improve our understanding of APRGs in LUAD, and pave a new pathway to guide risk stratification and treatment strategy development for LUAD patients.
Collapse
Affiliation(s)
- Ziqiang Wang
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, 233030, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
| | - Shuhua Shi
- Department of Genetics, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
| | - Hongyu Ma
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, 233030, China
| | - Dongqin Wang
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, 233030, China
| | - Chao Zuo
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Qiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China.
| | - Chaoqun Lian
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, 233030, China.
| |
Collapse
|
29
|
Yu Z, Qin L, Yu G. The progresses of relevant factors on the efficacy of immune checkpoint inhibitors in the non-small cell lung cancer patients. Cancer Treat Res Commun 2023; 37:100758. [PMID: 37776694 DOI: 10.1016/j.ctarc.2023.100758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 10/02/2023]
Abstract
Lung cancer has the highest mortality rate of all cancers worldwide. Although immune checkpoint inhibitor (ICI)-based therapy can improve the survival of patients with lung cancer, its efficacy is affected by many factors. Therefore, it is necessary to identify factors that affect the efficacy of ICI-based treatment and establish a model for predicting drug response and resistance before and during treatment for individualized and accurate treatment of patients. This review summarizes the clinical and biological factors related to ICI-based treatment of non-small cell lung cancer (NSCLC) and the recent research progress of predictive models for assessing ICI efficacy.
Collapse
Affiliation(s)
- Zhaoqing Yu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Li Qin
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Guifang Yu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
30
|
Das P, Peterson CB, Ni Y, Reuben A, Zhang J, Zhang J, Do KA, Baladandayuthapani V. Bayesian hierarchical quantile regression with application to characterizing the immune architecture of lung cancer. Biometrics 2023; 79:2474-2488. [PMID: 36239535 PMCID: PMC10102253 DOI: 10.1111/biom.13774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
The successful development and implementation of precision immuno-oncology therapies requires a deeper understanding of the immune architecture at a patient level. T-cell receptor (TCR) repertoire sequencing is a relatively new technology that enables monitoring of T-cells, a subset of immune cells that play a central role in modulating immune response. These immunologic relationships are complex and are governed by various distributional aspects of an individual patient's tumor profile. We propose Bayesian QUANTIle regression for hierarchical COvariates (QUANTICO) that allows simultaneous modeling of hierarchical relationships between multilevel covariates, conducts explicit variable selection, estimates quantile and patient-specific coefficient effects, to induce individualized inference. We show QUANTICO outperforms existing approaches in multiple simulation scenarios. We demonstrate the utility of QUANTICO to investigate the effect of TCR variables on immune response in a cohort of lung cancer patients. At population level, our analyses reveal the mechanistic role of T-cell proportion on the immune cell abundance, with tumor mutation burden as an important factor modulating this relationship. At a patient level, we find several outlier patients based on their quantile-specific coefficient functions, who have higher mutational rates and different smoking history.
Collapse
Affiliation(s)
- Priyam Das
- Dept. of Biomedical Informatics, Harvard Medical School
| | | | - Yang Ni
- Dept. of Statistics, Texas A&M University
| | - Alexandre Reuben
- Dept. of Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center
| | - Jiexin Zhang
- Dept. of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center
| | - Jianjun Zhang
- Dept. of Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center
| | - Kim-Anh Do
- Dept. of Biostatistics, University of Texas MD Anderson Cancer Center
| | | |
Collapse
|
31
|
Feng Y, Tao Y, Chen H, Zhou Y, Tang L, Liu C, Hu X, Shi Y. Efficacy and safety of immune checkpoint inhibitor rechallenge in non-small cell lung cancer: A systematic review and meta-analysis. Thorac Cancer 2023; 14:2536-2547. [PMID: 37551891 PMCID: PMC10481143 DOI: 10.1111/1759-7714.15063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND The aim of the study was to explore the efficacy and safety of immune checkpoint inhibitor (ICI) rechallenge in patients with non-small cell lung cancer (NSCLC). METHODS Studies that enrolled NSCLC patients treated with two lines of ICIs were included using four databases. The initial line (1L-) and subsequent lines (2L-) of ICIs were defined as 1L-ICI and 2L-ICI, respectively. RESULTS A total of 17 studies involving 2100 patients were included. The pooled objective response rate (ORR), disease control rate (DCR), median progression-free survival (mPFS), and median overall survival (mOS) for 2L-ICIs were 10%, 50%, 3.0 months, and 13.1 months, respectively. The 2L-ICI discontinuation rates caused by toxicities ranged from 0% to 23.5%. Original data were extracted from six studies, covering 89 patients. Patients in whom 1L-ICIs were discontinued following clinical decision (the mPFS of 2L-ICIs was not reach) achieved a more prolonged mPFS of 2L-ICIs than those due to toxicity (5.2 months) and progressive disease (2.1 months) (p < 0.0001). Patients' 1L-PFS for more than 2-years had preferable 2L-ORR (35.0% vs. 9.8%, p = 0.03), 2L-DCR (85.0% vs. 49.0%, p = 0.007), and 2L-mPFS (12.4 vs. 3.0 months, p < 0.0001) than those less than 1-year. Patients administered the same drugs achieved a significantly prolonged mPFS compared with the remaining patients (5.4 vs. 2.3 months, p = 0.0004), and those who did not accept antitumor treatments during the intervals of two lines of ICIs achieved a prolonged mPFS compared to those patients who did accept treatments (7.6 vs. 1.9 months, p < 0.0001). CONCLUSIONS ICI rechallenge is a useful therapeutic strategy for NSCLC patients, especially suitable for those who achieve long-term tumor remission for more than 2-years under 1L-ICIs.
Collapse
Affiliation(s)
- Yu Feng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted DrugsBeijingChina
- Department of Medical OncologyBeijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua UniversityBeijingChina
| | - Yunxia Tao
- Department of OncologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Haizhu Chen
- Breast Tumor Center, Department of Medical Oncology, Phase I Clinical Trial Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangzhouChina
| | - Yu Zhou
- Thoracic Medicine Department II, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted DrugsBeijingChina
| | - Chenwei Liu
- Department of PharmacyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xingsheng Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted DrugsBeijingChina
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted DrugsBeijingChina
| |
Collapse
|
32
|
Chen C, Yin H, Zhang Y, Chen H, Xu J, Ren L. Plasma D-dimer and interleukin-6 are associated with treatment response and progression-free survival in advanced NSCLC patients on anti-PD-1 therapy. Cancer Med 2023; 12:15831-15840. [PMID: 37326149 PMCID: PMC10469714 DOI: 10.1002/cam4.6222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND/AIMS Response to therapy after using immune checkpoint inhibitors (ICIs) is unpredictable due to significant interindividual variation in efficacy among advanced non-small cell lung cancer (NSCLC) patients. The current study centered on the identification of perivascular blood biomarkers for predicting the effectiveness of anti-programmed cell death protein 1 (anti-PD-1) treatment and progression-free survival (PFS) in advanced NSCLC patients, that could be applied to help determine how to change treatment plans therapeutic regimens for optimizing clinical benefits. METHODS A comprehensive review of 100 advanced or recurrent NSCLC patients receiving anti-PD-1 therapy (Camrelizumab, pembrolizumab, sintilimab, or nivolumab) was conducted between January 2018 and April 2021 in Tianjin Medical University Cancer Hospital. The cutoff values of D-dimer were selected from rom our previous study, and interleukin-6 (IL-6) was divided according to the median. Using computed tomography, tumor response was evaluated in accordance with the Response Assessment Criteria in Solid Tumors, version 1.1. RESULTS High IL-6 level in advanced NSCLC patients was predictive of low efficacy and a short PFS duration after anti-PD-1 therapy. An increased D-dimer value of 981 ng/mL was significantly predictive of disease progression in NSCLC patients treated with anti-PD-1 and high D-dimer expression predictive of short duration of PFS. Further studies on the correlation between IL-6, D-dimer, and anti-PD-1 efficacy in NSCLC patients stratified by gender revealed that D-dimer and IL-6 levels were significantly associated with the risk of PFS in male patients. CONCLUSIONS High IL-6 content in peripheral blood in patients with advanced non-small cell lung cancer may contribute to poor anti-PD-1 efficacy and short duration of PFS through inducing alterations in the tumor microenvironment. D-dimer in peripheral blood is predictive of hyperfibrinolysis and contributes to the release of tumor-driven specific factors, leading to poor effects of anti-PD-1 therapy.
Collapse
Affiliation(s)
- Chong Chen
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for CancerKey Laboratory of Cancer Immunology and Biotherapy, TianjinTianjinChina
| | - Huaru Yin
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for CancerKey Laboratory of Cancer Immunology and Biotherapy, TianjinTianjinChina
| | - Yu Zhang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for CancerKey Laboratory of Cancer Immunology and Biotherapy, TianjinTianjinChina
| | - Huan Chen
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for CancerKey Laboratory of Cancer Immunology and Biotherapy, TianjinTianjinChina
| | - Jie Xu
- Department of Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for CancerTianjin Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Li Ren
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for CancerKey Laboratory of Cancer Immunology and Biotherapy, TianjinTianjinChina
| |
Collapse
|
33
|
Castillo DR, Jeon WJ, Park D, Pham B, Yang C, Joung B, Moon JH, Lee J, Chong EG, Park K, Reeves ME, Duerksen-Hughes P, Mirshahidi HR, Mirshahidi S. Comprehensive Review: Unveiling the Pro-Oncogenic Roles of IL-1ß and PD-1/PD-L1 in NSCLC Development and Targeting Their Pathways for Clinical Management. Int J Mol Sci 2023; 24:11547. [PMID: 37511306 PMCID: PMC10380530 DOI: 10.3390/ijms241411547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
In the past decade, targeted therapies for solid tumors, including non-small cell lung cancer (NSCLC), have advanced significantly, offering tailored treatment options for patients. However, individuals without targetable mutations pose a clinical challenge, as they may not respond to standard treatments like immune-checkpoint inhibitors (ICIs) and novel targeted therapies. While the mechanism of action of ICIs seems promising, the lack of a robust response limits their widespread use. Although the expression levels of programmed death ligand 1 (PD-L1) on tumor cells are used to predict ICI response, identifying new biomarkers, particularly those associated with the tumor microenvironment (TME), is crucial to address this unmet need. Recently, inflammatory cytokines such as interleukin-1 beta (IL-1β) have emerged as a key area of focus and hold significant potential implications for future clinical practice. Combinatorial approaches of IL-1β inhibitors and ICIs may provide a potential therapeutic modality for NSCLC patients without targetable mutations. Recent advancements in our understanding of the intricate relationship between inflammation and oncogenesis, particularly involving the IL-1β/PD-1/PD-L1 pathway, have shed light on their application in lung cancer development and clinical outcomes of patients. Targeting these pathways in cancers like NSCLC holds immense potential to revolutionize cancer treatment, particularly for patients lacking targetable genetic mutations. However, despite these promising prospects, there remain certain aspects of this pathway that require further investigation, particularly regarding treatment resistance. Therefore, the objective of this review is to delve into the role of IL-1β in NSCLC, its participation in inflammatory pathways, and its intricate crosstalk with the PD-1/PD-L1 pathway. Additionally, we aim to explore the potential of IL-1β as a therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Dani Ran Castillo
- Division of Hematology and Oncology, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA; (D.R.C.); (E.G.C.); (M.E.R.); (H.R.M.)
| | - Won Jin Jeon
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.J.J.); (B.P.); (B.J.); (J.H.M.)
| | - Daniel Park
- Department of Internal Medicine, University of San Francisco-Fresno, Fresno, CA 93701, USA;
| | - Bryan Pham
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.J.J.); (B.P.); (B.J.); (J.H.M.)
| | - Chieh Yang
- Department of Internal Medicine, School of Medicine, University of California Riverside, Riverside, CA 92521, USA;
| | - Bowon Joung
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.J.J.); (B.P.); (B.J.); (J.H.M.)
| | - Jin Hyun Moon
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.J.J.); (B.P.); (B.J.); (J.H.M.)
| | - Jae Lee
- School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Esther G. Chong
- Division of Hematology and Oncology, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA; (D.R.C.); (E.G.C.); (M.E.R.); (H.R.M.)
| | - Kiwon Park
- Department of Pharmacy, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Mark E. Reeves
- Division of Hematology and Oncology, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA; (D.R.C.); (E.G.C.); (M.E.R.); (H.R.M.)
| | - Penelope Duerksen-Hughes
- Division of Biochemistry, Department of Medicine & Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Hamid R. Mirshahidi
- Division of Hematology and Oncology, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA; (D.R.C.); (E.G.C.); (M.E.R.); (H.R.M.)
| | - Saied Mirshahidi
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
- Division of Microbiology and Molecular Genetics, Department of Medicine & Basic Sciences, Loma Linda University, Loma Linda 92350, CA, USA
| |
Collapse
|
34
|
Leal T, Socinski MA. Emerging agents for the treatment of advanced or metastatic NSCLC without actionable genomic alterations with progression on first-line therapy. Expert Rev Anticancer Ther 2023; 23:817-833. [PMID: 37486248 DOI: 10.1080/14737140.2023.2235895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
INTRODUCTION Lung cancer is the second most common cancer in the world and the leading cause of cancer-related mortality. Immune checkpoint inhibitors (ICIs), as monotherapy or in combination with platinum-based chemotherapy, have emerged as the standard of care first-line treatment option for patients with advanced non-small cell lung cancer (NSCLC) without actionable genomic alterations (AGAs). Despite significant improvements in patient outcomes with these regimens, primary or acquired resistance is common and most patients develop disease progression, resulting in poor survival. AREAS COVERED We review the current treatments commonly used for NSCLC without AGAs in the first-line and subsequent settings and describe the unmet needs for these patients in the second-line setting, including a lack of standard definitions for primary and required resistance, and few effective treatment options for patients who develop progression of their disease on first-line therapy. We describe key mechanisms of resistance to ICIs and emerging therapies that are being investigated for patients who develop progression on ICIs and platinum-based chemotherapy. EXPERT OPINION Emerging agents in development have a variety of different mechanisms of action and will likely change standard of care for second-line therapy and beyond for patients with NSCLC without AGAs in the future.
Collapse
|
35
|
Levy BP, Felip E, Reck M, Yang JC, Cappuzzo F, Yoneshima Y, Zhou C, Rawat S, Xie J, Basak P, Xu L, Sands J. TROPION-Lung08: phase III study of datopotamab deruxtecan plus pembrolizumab as first-line therapy for advanced NSCLC. Future Oncol 2023; 19:1461-1472. [PMID: 37249038 DOI: 10.2217/fon-2023-0230] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Pembrolizumab monotherapy is a standard first-line treatment for PD-L1-high advanced non-small-cell lung cancer (NSCLC) without actionable genomic alterations (AGA). However, few patients experience long-term disease control, highlighting the need for more effective therapies. Datopotamab deruxtecan (Dato-DXd), a novel trophoblast cell-surface antigen 2-directed antibody-drug conjugate, showed encouraging safety and antitumor activity with pembrolizumab in advanced NSCLC. We describe the rationale and design of TROPION-Lung08, a phase III study evaluating safety and efficacy of first-line Dato-DXd plus pembrolizumab versus pembrolizumab monotherapy in patients with advanced/metastatic NSCLC without AGAs and with PD-L1 tumor proportion score ≥50%. Primary end points are progression-free survival and overall survival; secondary end points include objective response rate, duration of response, safety and presence of antidrug antibodies. Clinical trial registration: NCT05215340 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Benjamin P Levy
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Medicine, Washington, DC 20016, USA
| | - Enriqueta Felip
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, 08035, Spain
| | - Martin Reck
- Lung Clinic Grosshansdorf, Airway Research Center North (ARCN), Grosshansdorf, 22927, Germany
| | - James Ch Yang
- Department of Oncology, National Taiwan University Hospital, Taipei, 106, Taiwan
| | | | - Yasuto Yoneshima
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200092, China
| | | | - Jingdong Xie
- Daiichi Sankyo, Inc, Basking Ridge, NJ 07920, USA
| | | | - Lu Xu
- Merck & Co., Inc., Rahway, NJ 07065, USA
- AstraZeneca, Gaithersburg, MD 20878, USA
| | - Jacob Sands
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
36
|
He K, Berz D, Gadgeel SM, Iams WT, Bruno DS, Blakely CM, Spira AI, Patel MR, Waterhouse DM, Richards DA, Pham A, Jotte R, Hong DS, Garon EB, Traynor A, Olson P, Latven L, Yan X, Shazer R, Leal TA. MRTX-500 Phase 2 Trial: Sitravatinib With Nivolumab in Patients With Nonsquamous NSCLC Progressing On or After Checkpoint Inhibitor Therapy or Chemotherapy. J Thorac Oncol 2023; 18:907-921. [PMID: 36842467 PMCID: PMC10330304 DOI: 10.1016/j.jtho.2023.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
INTRODUCTION Sitravatinib, a receptor tyrosine kinase inhibitor targeting TYRO3, AXL, MERTK receptors, and vascular epithelial growth factor receptor 2, can shift the tumor microenvironment toward an immunostimulatory state. Combining sitravatinib with checkpoint inhibitors (CPIs) may augment antitumor activity. METHODS The phase 2 MRTX-500 study evaluated sitravatinib (120 mg daily) with nivolumab (every 2 or 4 wk) in patients with advanced nonsquamous NSCLC who progressed on or after previous CPI (CPI-experienced) or chemotherapy (CPI-naive). CPI-experienced patients had a previous clinical benefit (PCB) (complete response, partial response, or stable disease for at least 12 weeks then disease progression) or no PCB (NPCB) from CPI. The primary end point was objective response rate (ORR); secondary objectives included safety and secondary efficacy end points. RESULTS Overall, 124 CPI-experienced (NPCB, n = 35; PCB, n = 89) and 32 CPI-naive patients were treated. Investigator-assessed ORR was 11.4% in patients with NPCB, 16.9% with PCB, and 25.0% in CPI-naive. The median progression-free survival was 3.7, 5.6, and 7.1 months with NPCB, PCB, and CPI-naive, respectively; the median overall survival was 7.9 and 13.6 months with NPCB and PCB, respectively (not reached in CPI-naive patients; median follow-up 20.4 mo). Overall, (N = 156), any grade treatment-related adverse events (TRAEs) occurred in 93.6%; grade 3/4 in 58.3%. One grade 5 TRAE occurred in a CPI-naive patient. TRAEs led to treatment discontinuation in 14.1% and dose reduction or interruption in 42.9%. Biomarker analyses supported an immunostimulatory mechanism of action. CONCLUSIONS Sitravatinib with nivolumab had a manageable safety profile. Although ORR was not met, this combination exhibited antitumor activity and encouraged survival in CPI-experienced patients with nonsquamous NSCLC.
Collapse
Affiliation(s)
- Kai He
- Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio.
| | - David Berz
- Department of Cellular Therapeutics, Beverly Hills Cancer Center, Beverly Hills, California; Current Affiliation: Valkyrie Clinical Trials, Los Angeles, California
| | - Shirish M Gadgeel
- Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan
| | - Wade T Iams
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Debora S Bruno
- University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Collin M Blakely
- Department of Medicine, University of California San Francisco, San Francisco, California; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Alexander I Spira
- Virginia Cancer Specialists, Fairfax, Virginia; US Oncology Network, The Woodlands, Texas
| | - Manish R Patel
- Division Of Hematology, Oncology and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| | - David M Waterhouse
- US Oncology Network, The Woodlands, Texas; Department of Clinical Research, Oncology Hematology Care, Cincinnati, Ohio; Current affiliation: Dana-Farber/Brigham and Women's Cancer Center at Milford Regional Medical Center, Milford, Massachusetts
| | - Donald A Richards
- US Oncology Network, The Woodlands, Texas; Texas Oncology, Tyler, Texas
| | | | - Robert Jotte
- US Oncology Network, The Woodlands, Texas; Rocky Mountain Cancer Centers, Denver, Colorado
| | - David S Hong
- MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Edward B Garon
- Department Of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Anne Traynor
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | - Peter Olson
- Mirati Therapeutics, Inc., San Diego, California
| | - Lisa Latven
- Mirati Therapeutics, Inc., San Diego, California
| | - Xiaohong Yan
- Mirati Therapeutics, Inc., San Diego, California
| | | | - Ticiana A Leal
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin; Current Affiliation: Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
37
|
Huang Y, Zhao JJ, Soon YY, Kee A, Tay SH, Aminkeng F, Ang Y, Wong ASC, Bharwani LD, Goh BC, Soo RA. Factors Predictive of Primary Resistance to Immune Checkpoint Inhibitors in Patients with Advanced Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:2733. [PMID: 37345072 DOI: 10.3390/cancers15102733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
INTRODUCTION Primary resistance to immune checkpoint inhibitors (ICI) is observed in routine clinical practice. We sought to determine factors predictive of primary resistance to ICI monotherapy, defined by the Society for Immunotherapy of Cancer (SITC) as progression within 6 months of ICI treatment with patients receiving at least 6 weeks of ICI monotherapy, in patients with advanced non-small-cell lung cancer (NSCLC). METHOD Patients with stage IV NSCLC treated with at least 6 weeks of single-agent ICI at two tertiary hospitals in Singapore were included. A multivariate logistic regression model was utilised to elucidate factors predictive of primary resistance to ICI. RESULTS Of the 108 eligible patients, 59 (54.6%) experienced primary resistance. The majority were male (65.7%), smokers (66.3%), Chinese (79.6%), had adenocarcinoma (76.9%), received Pembrolizumab (55.6%) and received immunotherapy treatment in the later line setting (≥2 lines) (61.1%). Female gender (aOR = 3.16, p = 0.041), a sixth-week neutrophil-to-lymphocyte ratio (NLR) of ≥3) (aOR = 3.454, p = 0.037) and a later line of immunotherapy treatment (≥2 lines) (aOR = 2.676, p = 0.040) were factors predictive of primary resistance to ICI monotherapy in patients with advanced NSCLC. CONCLUSIONS Using SITC criteria, an elevated NLR (≥3) at 6 weeks, female gender and a later line of immunotherapy treatment (≥2 lines) were predictive factors of developing primary resistance to ICI monotherapy in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Yiqing Huang
- Department of Haematology-Oncology, National University Cancer Institute Singapore, Singapore 119074, Singapore
| | - Joseph J Zhao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Yu Yang Soon
- Department of Radiation Oncology, National University Cancer Institute Singapore, Singapore 119074, Singapore
| | - Adrian Kee
- Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Hospital, Singapore 119074, Singapore
| | - Sen Hee Tay
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore 119074, Singapore
| | - Folefac Aminkeng
- Department of Biomedical Informatics (DBMI), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Yvonne Ang
- Department of Haematology-Oncology, National University Cancer Institute Singapore, Singapore 119074, Singapore
| | - Alvin S C Wong
- Department of Haematology-Oncology, National University Cancer Institute Singapore, Singapore 119074, Singapore
| | - Lavina D Bharwani
- Department of Oncology, Tan Tock Seng Hospital Singapore, Singapore 308433, Singapore
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Cancer Institute Singapore, Singapore 119074, Singapore
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute Singapore, Singapore 119074, Singapore
| |
Collapse
|
38
|
Villaruz LC, Blumenschein GR, Otterson GA, Leal TA. Emerging therapeutic strategies for enhancing sensitivity and countering resistance to programmed cell death protein 1 or programmed death-ligand 1 inhibitors in non-small cell lung cancer. Cancer 2023; 129:1319-1350. [PMID: 36848319 PMCID: PMC11234508 DOI: 10.1002/cncr.34683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/27/2022] [Accepted: 12/13/2022] [Indexed: 03/01/2023]
Abstract
The availability of agents targeting the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint has transformed treatment of advanced and/or metastatic non-small cell lung cancer (NSCLC). However, a substantial proportion of patients treated with these agents do not respond or experience only a brief period of clinical benefit. Even among those whose disease responds, many subsequently experience disease progression. Consequently, novel approaches are needed that enhance antitumor immunity and counter resistance to PD-(L)1 inhibitors, thereby improving and/or prolonging responses and patient outcomes, in both PD-(L)1 inhibitor-sensitive and inhibitor-resistant NSCLC. Mechanisms contributing to sensitivity and/or resistance to PD-(L)1 inhibitors in NSCLC include upregulation of other immune checkpoints and/or the presence of an immunosuppressive tumor microenvironment, which represent potential targets for new therapies. This review explores novel therapeutic regimens under investigation for enhancing responses to PD-(L)1 inhibitors and countering resistance, and summarizes the latest clinical evidence in NSCLC.
Collapse
Affiliation(s)
- Liza C Villaruz
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - George R Blumenschein
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gregory A Otterson
- The Ohio State University-James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Ticiana A Leal
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
39
|
Zhao J, Yu X, Huang D, Ma Z, Gao B, Cui J, Chu Q, Zhou Q, Sun M, Day D, Wu J, Pan H, Wang L, Voskoboynik M, Wang Z, Liu Y, Li H, Zhang J, Peng Y, Wu YL. SAFFRON-103: a phase 1b study of the safety and efficacy of sitravatinib combined with tislelizumab in patients with locally advanced or metastatic non-small cell lung cancer. J Immunother Cancer 2023; 11:jitc-2022-006055. [PMID: 36808075 PMCID: PMC9944269 DOI: 10.1136/jitc-2022-006055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Some patients with locally advanced/metastatic non-small cell lung cancer (NSCLC) respond poorly to anti-programmed cell death protein 1 (PD-1)/anti-programmed death-ligand 1 (PD-L1) treatments. Combination with other agents may improve the outcomes. This open-label, multicenter, phase 1b trial investigated the combination of sitravatinib, a spectrum-selective tyrosine kinase inhibitor, plus anti-PD-1 antibody tislelizumab. METHODS Patients with locally advanced/metastatic NSCLC were enrolled (Cohorts A, B, F, H, and I; N=22-24 per cohort). Cohorts A and F included patients previously treated with systemic therapy, with anti-PD-(L)1-resistant/refractory non-squamous (cohort A) or squamous (cohort F) disease. Cohort B included patients previously treated with systemic therapy, with anti-PD-(L)1-naïve non-squamous disease. Cohorts H and I included patients without prior systemic therapy for metastatic disease, no prior anti-PD-(L)1/immunotherapy, with PD-L1-positive non-squamous (cohort H) or squamous (cohort I) histology. Patients received sitravatinib 120 mg orally one time per day plus tislelizumab 200 mg intravenously every 3 weeks, until study withdrawal, disease progression, unacceptable toxicity, or death. The primary endpoint was safety/tolerability among all treated patients (N=122). Secondary endpoints included investigator-assessed tumor responses and progression-free survival (PFS). RESULTS Median follow-up was 10.9 months (range: 0.4-30.6). Treatment-related adverse events (TRAEs) occurred in 98.4% of the patients, with ≥Grade 3 TRAEs in 51.6%. TRAEs led to discontinuation of either drug in 23.0% of the patients. Overall response rate was 8.7% (n/N: 2/23; 95% CI: 1.1% to 28.0%), 18.2% (4/22; 95% CI: 5.2% to 40.3%), 23.8% (5/21; 95% CI: 8.2% to 47.2%), 57.1% (12/21; 95% CI: 34.0% to 78.2%), and 30.4% (7/23; 95% CI: 13.2% to 52.9%) in cohorts A, F, B, H, and I, respectively. Median duration of response was not reached in cohort A and ranged from 6.9 to 17.9 months across other cohorts. Disease control was achieved in 78.3-90.9% of the patients. Median PFS ranged from 4.2 (cohort A) to 11.1 months (cohort H). CONCLUSIONS In patients with locally advanced/metastatic NSCLC, sitravatinib plus tislelizumab was tolerable for most patients, with no new safety signals and overall safety profiles consistent with known profiles of these agents. Objective responses were observed in all cohorts, including in patients naïve to systemic and anti-PD-(L)1 treatments, or with anti-PD-(L)1 resistant/refractory disease. Results support further investigation in selected NSCLC populations. TRIAL REGISTRATION NUMBER NCT03666143.
Collapse
Affiliation(s)
- Jun Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xinmin Yu
- Department of Medical Oncology, Cancer Hospital of University of Chinese Academy of Sciences & Zhejiang Cancer Hospital, Hangzhou, China
| | - Dingzhi Huang
- Department of Thoracic Medical Oncology, Tianjin Cancer Hospital, Tianjin, China
| | - Zhiyong Ma
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University; Henan Cancer Hospital, Zhengzhou, China
| | - Bo Gao
- Blacktown Hospital and University of Sydney, Sydney, New South Wales, Australia
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Wuhan, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Meili Sun
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Daphne Day
- Medical Oncology, Monash Health and Monash University, Melbourne, Victoria, Australia
| | - Jingxun Wu
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | | | - Mark Voskoboynik
- Medical Oncology, Nucleus Network, Melbourne, VIC, Australia and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Zhehai Wang
- Department of Internal Medicine - Oncology, Shandong Cancer Hospital & Institute, Jinan, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Hui Li
- BeiGene (Shanghai) Co., Ltd, Shanghai, China
| | - Juan Zhang
- BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Yanyan Peng
- BeiGene (Shanghai) Co., Ltd, Shanghai, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
40
|
Zhou K, Li S, Zhao Y, Cheng K. Mechanisms of drug resistance to immune checkpoint inhibitors in non-small cell lung cancer. Front Immunol 2023; 14:1127071. [PMID: 36845142 PMCID: PMC9944349 DOI: 10.3389/fimmu.2023.1127071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) in the form of anti-CTLA-4 and anti-PD-1/PD-L1 have become the frontier of cancer treatment and successfully prolonged the survival of patients with advanced non-small cell lung cancer (NSCLC). But the efficacy varies among different patient population, and many patients succumb to disease progression after an initial response to ICIs. Current research highlights the heterogeneity of resistance mechanisms and the critical role of tumor microenvironment (TME) in ICIs resistance. In this review, we discussed the mechanisms of ICIs resistance in NSCLC, and proposed strategies to overcome resistance.
Collapse
Affiliation(s)
- Kexun Zhou
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
- Abdominal Oncology Ward, Division of Radiation Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuo Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Lung Cancer Center, West China Hospital Sichuan University, Chengdu, China
| | - Yi Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Ke Cheng
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
- Abdominal Oncology Ward, Division of Radiation Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Zhou J, Lu X, Zhu H, Ding N, Zhang Y, Xu X, Gao L, Zhou J, Song Y, Hu J. Resistance to immune checkpoint inhibitors in advanced lung cancer: Clinical characteristics, potential prognostic factors and next strategy. Front Immunol 2023; 14:1089026. [PMID: 36776868 PMCID: PMC9910216 DOI: 10.3389/fimmu.2023.1089026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/04/2023] [Indexed: 01/28/2023] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have shown unprecedented clinical benefit in cancer immunotherapy and are rapidly transforming the practice of advanced lung cancer. However, resistance routinely develops in patients treated with ICIs. We conducted this retrospective study to provide an overview on clinical characteristics of ICI resistance, optimal treatment beyond disease progression after prior exposure to immunotherapy, as well as potential prognostic factors of such resistance. Methods 190 patients diagnosed with unresectable lung cancer who received at least one administration of an anti-programmed cell death 1 (PD-1)/anti-programmed cell death-ligand 1(PD-L1) at any treatment line at Zhongshan Hospital Fudan University between Sep 2017 and December 2019 were enrolled in our study. Overall survival (OS) and progression-free survival (PFS) were analyzed. Levels of plasma cytokines were evaluated for the prognostic value of ICI resistance. Results We found that EGFR/ALK/ROS1 mutation and receiving ICI treatment as second-line therapy were risk factors associated with ICI resistance. Patients with bone metastasis at baseline had a significantly shorter PFS1 time when receiving initial ICI treatment. Whether or not patients with oligo-progression received local treatment seemed to have no significant effect on PFS2 time. Systemic therapies including chemotherapy and anti-angiogenic therapy rather than continued immunotherapy beyond ICI resistance had significant effect on PFS2 time. TNF, IL-6 and IL-8 were significantly elevated when ICI resistance. Lower plasma TNF level and higher plasma IL-8 level seemed to be significantly associated with ICI resistance. A nomogram was established to prognosis the clinical outcome of patients treated with ICIs. Conclusion Patients with EGFR/ALK/ROS1 mutation, or those receiving ICI treatment as second-line therapy had higher risk of ICI resistance. Patients with bone metastasis had poor prognosis during immunotherapy. For those patients with oligo-progression after ICI resistance, combination with local treatment did not lead to a significantly longer PFS2 time. Chemotherapy and anti-angiogenic therapy rather than continued immunotherapy beyond ICI resistance had significant effect on PFS2 time. Levels of plasma cytokines including TNF, IL-6 and IL-8 were associated with ICI resistance.
Collapse
Affiliation(s)
- Jiebai Zhou
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyuan Lu
- Key Laboratory of Public Health Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Haixing Zhu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Ding
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaobo Xu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Gao
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| | - Jie Hu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Pulmonary and Critical Care Medicine, Shanghai Geriatrics Center, Shanghai, China
| |
Collapse
|
42
|
Dai M, Liu M, Yang H, Küçük C, You H. New insights into epigenetic regulation of resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms and therapeutic opportunities. Exp Hematol Oncol 2022; 11:101. [PMID: 36384676 PMCID: PMC9667634 DOI: 10.1186/s40164-022-00356-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Programmed cell death protein 1(PD-1) is a type of immune-inhibitory checkpoint protein, which delivers inhibitory signals to cytotoxic T cells by binding to the programmed death ligand-1 (PD-L1) displayed on the surface of cancer cells. Antibodies blocking PD-1/PD-L1 interaction have been extensively used in treatment of human malignancies and have achieved promising outcomes in recent years. However, gradual development of resistance to PD-1/PD-L1 blockade has decreased the effectiveness of this immunotherapy in cancer patients. The underlying epigenetic mechanisms need to be elucidated for application of novel strategies overcoming this immunotherapy resistance. Epigenetic aberrations contribute to cancerogenesis by promoting different hallmarks of cancer. Moreover, these alterations may lead to therapy resistance, thereby leading to poor prognosis. Recently, the epigenetic regulatory drugs have been shown to decrease the resistance to PD-1/PD-L1 inhibitors in certain cancer patients. Inhibitors of the non-coding RNAs, DNA methyltransferases, and histone deacetylases combined with PD-1/PD-L1 inhibitors have shown considerable therapeutic efficacy against carcinomas as well as blood cancers. Importantly, DNA methylation-mediated epigenetic silencing can inhibit antigen processing and presentation, which promotes cancerogenesis and aggravates resistance to PD-1/PD-L1 blockade immunotherapy. These observations altogether suggest that the combination of the epigenetic regulatory drugs with PD-1/PD-L1 inhibitors may present potential solution to the resistance caused by monotherapy of PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Mengyuan Dai
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Hematology and Oncology, Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Second Rd., Yuzhong District, 401122, Chongqing, China
| | - Miao Liu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medical, Foshan University, Foshan, China
| | - Can Küçük
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Türkiye
- Basic and Translational Research Program, İzmir Biomedicine and Genome Center, İzmir, Türkiye
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye
| | - Hua You
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Hematology and Oncology, Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Second Rd., Yuzhong District, 401122, Chongqing, China.
| |
Collapse
|
43
|
Artesunate promoted anti-tumor immunity and overcame EGFR-TKI resistance in non-small-cell lung cancer by enhancing oncogenic TAZ degradation. Biomed Pharmacother 2022; 155:113705. [DOI: 10.1016/j.biopha.2022.113705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/13/2023] Open
|
44
|
Ma S, Chen F. Common strategies for effective immunotherapy of gastroesophageal cancers using immune checkpoint inhibitors. Pathol Res Pract 2022; 238:154110. [PMID: 36155325 DOI: 10.1016/j.prp.2022.154110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022]
Abstract
Gastroesophageal cancers (GECs) are very prevalent around the world and rank as the second cause of all cancer-related deaths in men and women and demonstrate a very poor prognosis. Currently, the treatment options for these malignancies are very limited and the response rates are also very low. Recently, immune checkpoint inhibitors (ICIs) have been proposed for immunotherapy of GECs; although preliminary results obtained from the clinical trials of ICIs in GECs were promising, they have shown to be effective only in a few subsets of patients who had a previous immune response to the tumor. In order to maximize the efficacy of ICIs in GECs, as well as identify the patients who will likely benefit from ICIs, several predictive biomarkers, such as Programmed death-ligand 1 (PD-L1) have been developed and evaluated. Since the single ICI therapies resulted in poor treatment response, several clinical studies began to explore various combinations of one or two ICIs with other anti-cancer treatment approaches, including chemotherapy, radiotherapy, and anti-angiogenesis therapy. These combinations demonstrated a more effective response among the ICIs-responsive patients and even in some instances sensitized the non-responsive individuals. This review is aimed to summarize the efforts made so far for improving the effectiveness of ICIs in the treatment of patients with GECs. Furthermore, multiple aspects of translational medicine such as available biomarkers and interactions between tumor and the immune system, as well as clinical aspects regarding the combination therapies and results of clinical trials will be discussed.
Collapse
Affiliation(s)
- Shuang Ma
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China.
| | - Fei Chen
- Department of Gastroenterology, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People's Hospital), Taizhou 317200, China.
| |
Collapse
|
45
|
Moutafi M, Martinez-Morilla S, Divakar P, Vathiotis I, Gavrielatou N, Aung TN, Yaghoobi V, Fernandez AI, Zugazagoitia J, Herbst RS, Schalper KA, Rimm DL. Discovery of Biomarkers of Resistance to Immune Checkpoint Blockade in NSCLC Using High-Plex Digital Spatial Profiling. J Thorac Oncol 2022; 17:991-1001. [PMID: 35490853 PMCID: PMC9356986 DOI: 10.1016/j.jtho.2022.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Despite the clinical efficacy of immune checkpoint inhibitors (ICIs) in NSCLC, only approximately 20% of patients remain disease-free at 5 years. Here, we use digital spatial profiling to find candidate biomarker proteins associated with ICI resistance. METHODS Pretreatment samples from 56 patients with NSCLC treated with ICI were analyzed using the NanoString GeoMx digital spatial profiling method. A panel of 71 photocleavable oligonucleotide-labeled primary antibodies was used for protein detection in four molecular compartments (tumor, leukocytes, macrophages, and immune stroma). Promising candidates were orthogonally validated with quantitative immunofluorescence. Available pretreatment samples from 39 additional patients with NSCLC who received ICI and 236 non-ICI-treated patients with operable NSCLC were analyzed to provide independent cohort validation. RESULTS Biomarker discovery using the protein-based molecular compartmentalization strategy allows 284 protein variables to be assessed for association with ICI resistance by univariate analysis using continuous log-scaled data. Of the 71 candidate protein biomarkers, CD66b in the CD45+CD68 molecular compartment (immune stroma) predicted significantly shorter overall survival (OS) (hazard ratio [HR] 1.31, p = 0.016) and was chosen for validation. Orthogonal validation by quantitative immunofluorescence illustrated that CD66b was associated with resistance to ICI therapy but not prognostic for poor outcomes in untreated NSCLC (discovery cohort [OS HR 2.49, p = 0.026], validation cohort [OS HR 2.05, p = 0.046], non-ICI-treated cohort [OS HR 1.67, p = 0.06]). CONCLUSIONS Using the technique, we have discovered that CD66b expression is indicative of resistance to ICI therapy in NSCLC. Given that CD66b identifies neutrophils, further studies are warranted to characterize the role of neutrophils in ICI resistance.
Collapse
Affiliation(s)
- Myrto Moutafi
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | | | | | - Ioannis Vathiotis
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Niki Gavrielatou
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Thazin Nwe Aung
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Vesal Yaghoobi
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Aileen I Fernandez
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Jon Zugazagoitia
- Section of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Roy S Herbst
- Section of Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut; Section of Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - David L Rimm
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut; Section of Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
46
|
Moore EK, Strazza M, Mor A. Combination Approaches to Target PD-1 Signaling in Cancer. Front Immunol 2022; 13:927265. [PMID: 35911672 PMCID: PMC9330480 DOI: 10.3389/fimmu.2022.927265] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer remains the second leading cause of death in the US, accounting for 25% of all deaths nationwide. Immunotherapy techniques bolster the immune cells' ability to target malignant cancer cells and have brought immense improvements in the field of cancer treatments. One important inhibitory protein in T cells, programmed cell death protein 1 (PD-1), has become an invaluable target for cancer immunotherapy. While anti-PD-1 antibody therapy is extremely successful in some patients, in others it fails or even causes further complications, including cancer hyper-progression and immune-related adverse events. Along with countless translational studies of the PD-1 signaling pathway, there are currently close to 5,000 clinical trials for antibodies against PD-1 and its ligand, PD-L1, around 80% of which investigate combinations with other therapies. Nevertheless, more work is needed to better understand the PD-1 signaling pathway and to facilitate new and improved evidence-based combination strategies. In this work, we consolidate recent discoveries of PD-1 signaling mediators and their therapeutic potential in combination with anti-PD-1/PD-L1 agents. We focus on the phosphatases SHP2 and PTPN2; the kinases ITK, VRK2, GSK-3, and CDK4/6; and the signaling adaptor protein PAG. We discuss their biology both in cancer cells and T cells, with a focus on their role in relation to PD-1 to determine their potential in therapeutic combinations. The literature discussed here was obtained from a search of the published literature and ClinicalTrials.gov with the following key terms: checkpoint inhibition, cancer immunotherapy, PD-1, PD-L1, SHP2, PTPN2, ITK, VRK2, CDK4/6, GSK-3, and PAG. Together, we find that all of these proteins are logical and promising targets for combination therapy, and that with a deeper mechanistic understanding they have potential to improve the response rate and decrease adverse events when thoughtfully used in combination with checkpoint inhibitors.
Collapse
Affiliation(s)
- Emily K. Moore
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Marianne Strazza
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Adam Mor
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
47
|
Peters S, Paz-Ares L, Herbst RS, Reck M. Addressing CPI resistance in NSCLC: targeting TAM receptors to modulate the tumor microenvironment and future prospects. J Immunother Cancer 2022; 10:jitc-2022-004863. [PMID: 35858709 PMCID: PMC9305809 DOI: 10.1136/jitc-2022-004863] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 01/09/2023] Open
Abstract
Lung cancer remains a leading cause of cancer death worldwide, with non-small-cell lung cancer (NSCLC) accounting for the majority of cases. Immune checkpoint inhibitors (CPIs), including those targeting programmed cell death protein-1 and its ligand (PD-1/PD-L1), have revolutionized the treatment landscape for various cancers. Notably, PD-1/PD-L1 inhibitor-based regimens now form the standard first-line therapy for metastatic NSCLC, substantially improving patients' overall survival. Despite the progress made using CPI-based therapies in advanced NSCLC, most patients experience disease progression after an initial response due to resistance. Given the currently limited therapeutic options available for second-line and beyond settings in NSCLC, new treatment approaches are needed to improve long-term survival in these patients. Thus, CPI resistance is an emerging concept in cancer treatment and an active area of clinical research.Among the key mechanisms of CPI resistance is the immunosuppressive tumor microenvironment (TME). Effective CPI therapy is based on shifting immune responses against cancer cells, therefore, manipulating the immunosuppressive TME comprises an important strategy to combat CPI resistance. Several aspects of the TME can contribute to treatment resistance in NSCLC, including through the activation of Tyro3, Axl, MerTK (TAM) receptors which are essential pleiotropic regulators of immune homeostasis. Their roles include negatively modulating the immune response, therefore ectopic expression of TAM receptors in the context of cancer can contribute to the immunosuppressive, protumorigenic TME. Furthermore, TAM receptors represent important candidates to simultaneously target both tumor cells and immune cells in the TME. Clinical development of TAM receptor inhibitors (TAM RIs) is increasingly focused on their ability to rescue the antitumor immune response, thereby shifting the immunosuppressive TME to an immunostimulatory TME. There is a strong biological rationale for combining TAM RIs with a CPI to overcome resistance and improve long-term clinical responses in NSCLC. Combinatorial clinical trials of TAM RIs with CPIs are underway with encouraging preliminary results. This review outlines the key mechanisms of CPI resistance, including the role of the immunosuppressive TME, and discusses the rationale for targeting TAM receptors as a novel, promising therapeutic strategy to overcome CPI resistance in NSCLC.
Collapse
Affiliation(s)
- Solange Peters
- Medical Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Luis Paz-Ares
- Medical Oncology Department, Hospital Universitario 12 de Octubre and CNIO-H12O Lung Cancer Unit, Universidad Complutense and Ciberonc, Madrid, Spain
| | - Roy S Herbst
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Martin Reck
- Lung Clinic Grosshansdorf, Airway Research Center North, Center for Lung Research, Grosshansdorf, Germany
| |
Collapse
|
48
|
Yuan M, Zhao Y, Arkenau HT, Lao T, Chu L, Xu Q. Signal pathways and precision therapy of small-cell lung cancer. Signal Transduct Target Ther 2022; 7:187. [PMID: 35705538 PMCID: PMC9200817 DOI: 10.1038/s41392-022-01013-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/05/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022] Open
Abstract
Small-cell lung cancer (SCLC) encounters up 15% of all lung cancers, and is characterized by a high rate of proliferation, a tendency for early metastasis and generally poor prognosis. Most of the patients present with distant metastatic disease at the time of clinical diagnosis, and only one-third are eligible for potentially curative treatment. Recently, investigations into the genomic make-up of SCLC show extensive chromosomal rearrangements, high mutational burden and loss-of-function mutations of several tumor suppressor genes. Although the clinical development of new treatments for SCLC has been limited in recent years, a better understanding of oncogenic driver alterations has found potential novel targets that might be suitable for therapeutic approaches. Currently, there are six types of potential treatable signaling pathways in SCLC, including signaling pathways targeting the cell cycle and DNA repair, tumor development, cell metabolism, epigenetic regulation, tumor immunity and angiogenesis. At this point, however, there is still a lack of understanding of their role in SCLC tumor biology and the promotion of cancer growth. Importantly optimizing drug targets, improving drug pharmacology, and identifying potential biomarkers are the main focus and further efforts are required to recognize patients who benefit most from novel therapies in development. This review will focus on the current learning on the signaling pathways, the status of immunotherapy, and targeted therapy in SCLC.
Collapse
Affiliation(s)
- Min Yuan
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | - Yu Zhao
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | | | - Tongnei Lao
- Department of Oncology, Centro Medico BO CHI, Macao, SAR, China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China.
| |
Collapse
|
49
|
Harel M, Lahav C, Jacob E, Dahan N, Sela I, Elon Y, Raveh Shoval S, Yahalom G, Kamer I, Zer A, Sharon O, Carbone DP, Dicker AP, Bar J, Shaked Y. Longitudinal plasma proteomic profiling of patients with non-small cell lung cancer undergoing immune checkpoint blockade. J Immunother Cancer 2022; 10:jitc-2022-004582. [PMID: 35718373 PMCID: PMC9207924 DOI: 10.1136/jitc-2022-004582] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have revolutionized the cancer therapy landscape due to long-term benefits in patients with advanced metastatic disease. However, robust predictive biomarkers for response are still lacking and treatment resistance is not fully understood. Methods We profiled approximately 800 pre-treatment and on-treatment plasma proteins from 143 ICI-treated patients with non-small cell lung cancer (NSCLC) using ELISA-based arrays. Different clinical parameters were collected from the patients including specific mutations, smoking habits, and body mass index, among others. Machine learning algorithms were used to identify a predictive signature for response. Bioinformatics tools were used for the identification of patient subtypes and analysis of differentially expressed proteins and pathways in each response group. Results We identified a predictive signature for response to treatment comprizing two proteins (CXCL8 and CXCL10) and two clinical parameters (age and sex). Bioinformatic analysis of the proteomic profiles identified three distinct patient clusters that correlated with multiple parameters such as response, sex and TNM (tumors, nodes, and metastasis) staging. Patients who did not benefit from ICI therapy exhibited significantly higher plasma levels of several proteins on-treatment, and enrichment in neutrophil-related proteins. Conclusions Our study reveals potential biomarkers in blood plasma for predicting response to ICI therapy in patients with NSCLC and sheds light on mechanisms underlying therapy resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Iris Kamer
- Institute of Oncology, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Alona Zer
- Oncology Center, Rambam Health Care Campus, Haifa, Israel
| | | | - David P Carbone
- James Thoracic Oncology Center, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Adam P Dicker
- Radiation Oncology, Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, Pennsylvania, USA
| | - Jair Bar
- Institute of Oncology, Chaim Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Yuval Shaked
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
50
|
Carideo Cunniff E, Sato Y, Mai D, Appleman VA, Iwasaki S, Kolev V, Matsuda A, Shi J, Mochizuki M, Yoshikawa M, Huang J, Shen L, Haridas S, Shinde V, Gemski C, Roberts ER, Ghasemi O, Bazzazi H, Menon S, Traore T, Shi P, Thelen TD, Conlon J, Abu-Yousif AO, Arendt C, Shaw MH, Okaniwa M. TAK-676: A Novel Stimulator of Interferon Genes (STING) Agonist Promoting Durable IFN-dependent Antitumor Immunity in Preclinical Studies. CANCER RESEARCH COMMUNICATIONS 2022; 2:489-502. [PMID: 36923556 PMCID: PMC10010323 DOI: 10.1158/2767-9764.crc-21-0161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
Oncology therapies targeting the immune system have improved patient outcomes across a wide range of tumor types, but resistance due to an inadequate T-cell response in a suppressive tumor microenvironment (TME) remains a significant problem. New therapies that activate an innate immune response and relieve this suppression may be beneficial to overcome this hurdle. TAK-676 is a synthetic novel stimulator of interferon genes (STING) agonist designed for intravenous administration. Here we demonstrate that TAK-676 dose-dependently triggers activation of the STING signaling pathway and activation of type I interferons. Furthermore, we show that TAK-676 is a highly potent modulator of both the innate and adaptive immune system and that it promotes the activation of dendritic cells, natural killer cells, and T cells in preclinical models. In syngeneic murine tumor models in vivo, TAK-676 induces dose-dependent cytokine responses and increases the activation and proliferation of immune cells within the TME and tumor-associated lymphoid tissue. We also demonstrate that TAK-676 dosing results in significant STING-dependent antitumor activity, including complete regressions and durable memory T-cell immunity. We show that TAK-676 is well tolerated, exhibits dose-proportional pharmacokinetics in plasma, and exhibits higher exposure in tumor. The intravenous administration of TAK-676 provides potential treatment benefit in a broad range of tumor types. Further study of TAK-676 in first-in-human phase I trials is ongoing. Significance TAK-676 is a novel systemic STING agonist demonstrating robust activation of innate and adaptive immune activity resulting in durable antitumor responses within multiple syngeneic tumor models. Clinical investigation of TAK-676 is ongoing.
Collapse
Affiliation(s)
| | - Yosuke Sato
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Doanh Mai
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Vicky A Appleman
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Shinji Iwasaki
- Takeda Pharmaceutical Company, Ltd., Fujisawa, Kanagawa, Japan
| | - Vihren Kolev
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Atsushi Matsuda
- Takeda Pharmaceutical Company, Ltd., Fujisawa, Kanagawa, Japan
| | - Judy Shi
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | | | | | - Jian Huang
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Luhua Shen
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Satyajeet Haridas
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Vaishali Shinde
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Chris Gemski
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Emily R Roberts
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Omid Ghasemi
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Hojjat Bazzazi
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Saurabh Menon
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Tary Traore
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Pu Shi
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Tennille D Thelen
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Joseph Conlon
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Adnan O Abu-Yousif
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Christopher Arendt
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Michael H Shaw
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Masanori Okaniwa
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| |
Collapse
|